WO2005031318A2 - Device for measuring porosity characteristics of porous media - Google Patents

Device for measuring porosity characteristics of porous media Download PDF

Info

Publication number
WO2005031318A2
WO2005031318A2 PCT/FR2004/050454 FR2004050454W WO2005031318A2 WO 2005031318 A2 WO2005031318 A2 WO 2005031318A2 FR 2004050454 W FR2004050454 W FR 2004050454W WO 2005031318 A2 WO2005031318 A2 WO 2005031318A2
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
chamber
cell
fluid
pressure
Prior art date
Application number
PCT/FR2004/050454
Other languages
French (fr)
Other versions
WO2005031318A3 (en
Inventor
Thierry Courtois
Original Assignee
Groupe D'etudes Des Procedes De Separation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Groupe D'etudes Des Procedes De Separation filed Critical Groupe D'etudes Des Procedes De Separation
Publication of WO2005031318A2 publication Critical patent/WO2005031318A2/en
Publication of WO2005031318A3 publication Critical patent/WO2005031318A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0866Sorption
    • G01N2015/0873Dynamic sorption, e.g. with flow control means

Definitions

  • the present invention relates to a device for measuring characteristics related to the porosity of porous media such as porous membranes.
  • porous membranes are formed by organic polymers or mineral grains forming a porous nonwoven network. These membranes are used in various fields such as in filtration for drinking water networks or the production of desalinated water. Due to the complexity of the manufacturing processes for these membranes, and the fact that their pores are a distribution of capillaries of variable hydraulic diameter, the porosity characteristics of these membranes are not fully controlled and it is however necessary to be able to measure precisely the dimensional distribution of the pores.
  • Devices for measuring porosity of porous media exist for pore diameters greater than 0.1 micrometers.
  • a membrane wetted by a liquid is placed in a measurement chamber, a gas is then injected on one side of the membrane to reach the bubble point, point for which the pressure exceeds the capillary resistance of the largest pore of the membrane, the pressure is then increased and the flow is measured until all the pores are rid of the liquid and the membrane considered to be dry.
  • the pressure and flow measurement gives the porosity characteristics of the membrane.
  • a device as described above is limited in possible types of measurement and in particular does not allow measurement of characteristics on small pore sizes.
  • the subject of the present invention is a device making it possible to carry out several types of measurement on porous media and in particular membranes: gas-liquid, liquid-liquid, bubble point with wet membrane, drop point with dry membrane, gas permeability with dry membrane, solvent permeability, interfacial tension between two fluids, contact angle between a solvent and a membrane.
  • the present invention mainly relates to a device for measuring characteristics related to the porosity of a media such as a membrane, comprising a first circuit for supplying a first pressurized fluid, a measurement cell receiving a membrane.
  • first means for switching the first circuit on and off with a first cell chamber the device further comprising a reservoir for receiving a second fluid, a second connection circuit between the reservoir and the first chamber and second means for switching the first circuit on and off with the reservoir so that the second fluid can be injected under pressure into said first chamber under the action of the first fluid.
  • the second circuit can advantageously include third means for switching the second circuit on and off with the first chamber.
  • the cell can be of the type comprising a second chamber provided with an outlet known as the filtrate outlet, the first chamber can moreover comprise an outlet, known as the drain outlet, the first and second circuits being able to be connected to the first chamber through a common branch called the cell entrance.
  • the cell is orientable along a horizontal axis.
  • the cell inlet, the filtrate outlet and the drain outlet are angularly spaced with respect to the horizontal axis so that a rotation of the cell along this axis makes it possible to modify their relative height.
  • the drain outlet is provided with a drain circuit comprising a piloted valve.
  • FIG. 1 a schematic view of 'an embodiment of the measuring device according to the invention
  • Figures 2A, 2B, 2C, 2D a schematic view of the cell of the device according to several orientations.
  • the device for measuring characteristics linked to the porosity of media such as membranes according to the invention makes it possible to carry out porometry measurements on membranes and is suitable for carrying out measurements using one or more liquids as well as a gas.
  • This device is built around a measurement cell 2 and comprises a first circuit 1 for supplying a first fluid F1 under pressure, this fluid generally being a gas compressed at a pressure of more than 20 bar, cell 2 of measurement comprises a first chamber 2a and a second chamber 2b between which is disposed a porous medium 3.
  • the first circuit 1 comprises a branch 1 a provided with first means 6 for switching on and off the communication of the first circuit 1 with the first chamber
  • the device comprises a reservoir 5 for receiving a second fluid F2, this second fluid can be a liquid and for certain measurements, which will be explained below, a first then a second liquid are used.
  • Second means 7 for putting on and off communication of the first circuit 1 with the reservoir allow, once the reservoir 5 is filled and closed, the first fluid to compress and / or push the second fluid so that the second fluid can be injected under pressure in the first chamber 2a, the reservoir 5 being placed in communication with this first chamber by a second circuit 4 called the connection circuit between the reservoir 5 and the first chamber 2a.
  • This circuit comprises a main branch and two parallel branches 4a and 4b, each provided with a flowmeter 20a, 20b and third means S, 9 for switching on and off the second circuit 4 with the first chamber 2a.
  • the third means are here duplicated to allow the production of two branches 4a and 4b on which flowmeters 20a, 20b provided with different measurement ranges can be used as a function of the flow rates to be measured in order to obtain significant measurement accuracy.
  • branch 4a or branch 4b is used by opening the means corresponding to this branch and closing the means of the other branch.
  • Either the first fluid is injected directly into the chamber and the reservoir 5 is isolated by opening the first means 6 for switching on and off the first circuit 1 with the chamber 2a, closing the second means 7 for switching on and off the first circuit 1 with the reservoir and closing of the third means 8, 9 for switching on and off the communication of the second circuit 4 with the first chamber 4;
  • Either the first fluid FI is used to push the second fluid F2 into the first chamber 2a by closing the first means 6, opening the second means 7 and opening one of the third means 8, 9; Either isolation of the chamber by closing the first 6 and third means 8, 9.
  • the device according to the invention is completed at the level of the cell by a drain outlet from the first chamber connected to a drain circuit 10 comprising a valve 1 1 controlled and by an output 14 called the filtrate output at the level of the second chamber 2b of the cell.
  • This filtrate outlet 14 is the outlet through which the fluids passing through the media 3 are evacuated under the action of the pressure exerted by the fluid F1.
  • the device for compressing the first fluid F1 for example air must pressurize the cell continuously. As long as the bubble point is not reached, this pressure rise takes place without any consumption of air at the level of the cell.
  • the first circuit 1 comprises a device 12 for controlled leakage.
  • This leak of an order of magnitude greater than the consumption due to the membrane, smooths the pressure build-up. This is particularly sensitive for gas-liquid type measurements where the media is previously wetted and then pressurized with a gaseous F1 fluid to measure the pressure necessary to exceed the capillary pressure of the largest pore of the membrane.
  • the connection of the first and second circuits 1, 4 to the first chamber 2a is done through a common branch 13a called the inlet of the cell 2.
  • the cell has an inlet for fluids and an outlet provided with means closing by the valve controlled at the level of the chamber 2a and comprises an outlet 14 for the filtrates at the level of the second chamber.
  • the cell can be oriented along a horizontal axis, the cell inlet, the filtrate outlet and the outlet of emptying being angularly spaced with respect to said horizontal axis so that a rotation of the cell along said axis makes it possible to modify their relative height.
  • This configuration is described in FIGS. 2A, 2B, 2C, 2D for different positions of the rotating cell. This configuration makes it possible to easily carry out measurements requiring changes of fluids and makes it possible to increase the accuracy of the measurements.
  • the device according to the invention makes it possible to carry out gas-liquid porometry measurements as seen above as well as liquid-liquid porometry measurements.
  • several sensors are present and, in order to allow precise measurements, sensors having suitable measurement ranges are arranged in selectable parallel circuits.
  • selectable parallel circuits For example, three parallel circuits provided with flowmeters 21a, 21b,
  • 21 c with different measurement ranges are provided in the first circuit 1. These parallel circuits are controlled by piloted valves 22a, 22b, 22c making it possible to select the circuit provided with the flow meter whose precision is most suitable for the flow present or expected in the circuit.
  • piloted valves 22a, 22b, 22c upstream of the flowmeters 21 a, 21 b, 21 c, two circuits provided with pressure regulators 23a, 23b piloted and adapted to different pressure ranges are present and selectable by piloted valves 24a, 24b, this downstream a connection 25 to a source of compressed gas.
  • piloted valves 24a, 24b Downstream of the flowmeters 21a, 21b, 21c, on the first circuit 1, there are two pressure sensors 26a, 26b, one being turned on and off by a piloted valve 27.
  • All of the piloted valves, means for switching on and off communication and sensors is optionally connected to a control device such as a computer provided with a control input-output card in order to allow automation of the measurement sequences.
  • a gas-liquid porometry measurement will be carried out by placing the media wet with a solvent of known surface tension in the cell, by increasing the pressure by the first circuit using one of the regulators. pressure 23a, 23b controlled while maintaining a leakage flow by the device 12 controlled leakage until detecting a flow called filtrate flow corresponding to the opening of the largest pore when the pressure reaches and exceeds the capillary pressure of this pore. Once the flow of filtrate has started, the piloted leakage device is gradually closed while the pressure continues to be increased until the last set pressure.
  • the circuit is returned to atmospheric pressure by opening a vent valve 28.
  • the dry membrane is placed in cell 2 which is possibly positioned in the position of FIG. 2A so that the drain outlet of the first chamber 2a is at a high point.
  • the reservoir 5, comprising a filling orifice 1 6 independent of the first circuit 1, is filled with the first liquid, for example a wetting phase while the second circuit 4 is open to fill the first chamber 2a of the cell 2, which the first circuit is closed by valve 6 and the connection between the tank and the first circuit is closed by valve 7.
  • the tank is closed and the connection between the tank and the first circuit is opened by valve 7 so as to allow the reservoir to be pressurized by the first fluid F1, this in the case of this measurement, without opening the calibrated leakage device 12.
  • the pressure is then incremented and the liquid flow rate is measured at using one of the flowmeters 20a, 20b until the last setpoint pressure. Once this pressure is reached, the device is returned to atmospheric pressure by opening the valve 28, the reservoir is emptied for example by positioning the cell so that its drain outlet is at a low point.
  • the second liquid phase or pushing phase is then injected into the reservoir with, in the case where the pushing liquid is heavier than the wetting liquid, the drain outlet of the first chamber positioned at the top point to finish evacuating the wetting liquid not imprisoned in the membrane.
  • the cell is positioned such that the membrane is in a vertical plane to eliminate the effects of gravity, then the pressure is increased, without leakage rate, until the last pressure of setpoint while the filtrate flow is measured using one of the flow meters 20a, 20b.
  • the measurement is made cell in inclined position, chamber 2a under the chamber 2b as shown in Figure 2D so that the remainders of heavy phase fall vertically away from the membrane and cannot distort the measurement.
  • the device according to the invention thus allows numerous gas-liquid measurements such as bubble point, drop point and numerous liquid-liquid measurements.
  • the device also makes it possible to carry out measurements such as interfacial tension between two fluids by using a porous medium whose distribution is known and which is wettable by the couple of liquids to be tested and by carrying out a liquid-liquid porometry measurement with this medium. , the difference in distribution of pore characteristics obtained will be linked to the difference in interfacial tensions.
  • the device makes it possible to carry out a measurement of contact angle by carrying out, on a medium to be tested, a measurement of gas-liquid porometry with a liquid of known contact angle and of known surface tension then by carrying out a gas measurement -liquid with the liquid to be tested.
  • the difference of the two distributions obtained will be linked to the difference of the two contact angles.
  • the device according to the invention combining a gas circuit and a liquid circuit and comprising selectable parallel measurement branches thus makes it possible to cover a wide range of measurements.
  • the swiveling cell eliminates gravity and eliminates measurement errors due to the presence of residual liquid phases between two measurements with different liquids.

Abstract

The invention relates to a device for measuring porosity characteristics of porous media like a membrane comprising a first circuit (1) for supplying a first pressurised fluid (F1), a measuring cell (2) receiving said media (3), first means (6) for connecting and disconnecting the first circuit (1) and a first chamber (2a) of the cell. The inventive device is characterises in that it also comprises a container (5) for receiving a second fluid (F2), a second circuit (4) for connecting the container (5) to the first chamber (2a) and second means for connecting and disconnecting the first circuit (1) and the container in such a way that the second fluid is pressure-injected into said first chamber by action of the first fluid.

Description

DISPOSITIF DE MESURE DE CARACTERISTIQUES LIEES A LA POROSITE DES MEDIA POREUX DEVICE FOR MEASURING CHARACTERISTICS RELATED TO POROSITY OF POROUS MEDIA
La présente invention concerne un dispositif de mesure de caractéristiques liées à la porosité de média poreux tels que membranes poreuses. De nombreuses membranes poreuses sont constituées par des polymères organiques ou des grains minéraux formant un réseau non-tissé poreux. Ces membranes sont utilisées dans divers domaines comme par exemple en filtration pour les réseaux d'eau potable ou la production d'eau dessalée. Du fait de la complexité des procédés de fabrication de ces membranes, et du fait que leurs pores sont une distribution de capillaires de diamètre hydraulique variable, les caractéristiques de porosité de ces membranes ne sont pas totalement maîtrisées et il est cependant nécessaire de pouvoir mesurer précisément la distribution dimensionnelle des pores. Des dispositifs de mesure de porosité de média poreux existent pour des diamètres de pores supérieurs à 0, 1 micromètre. Selon ces dispositifs, une membrane mouillée par un liquide est placée dans une chambre de mesure, un gaz est ensuite injecté d'un côté de la membrane pour atteindre le point de bulle, point pour lequel la pression dépasse la résistance de capillarité du plus gros pore de la membrane, la pression est ensuite augmentée et le débit est mesuré jusqu'à ce que tous les pores soient débarrassés du liquide et la membrane considérée comme sèche. La mesure de pression et de débit donne les caractéristiques de porosité de la membrane. Un dispositif tel que décrit ci dessus est limité en types de mesure possibles et ne permet notamment pas de mesure de caractéristiques sur de faibles tailles de pores. La présente invention a pour objet un dispositif permettant d'effectuer plusieurs types de mesures sur des média poreux et notamment des membranes: gaz-liquide, liquide-liquide, point de bulle avec membrane mouillée, point de goutte avec membrane sèche, perméabilité au gaz avec membrane sèche, perméabilité au solvant, tension interfaciale entre deux fluides, angle de contact entre un solvant et une membrane. Pour ce faire la présente invention concerne principalement un dispositif de mesure de caractéristiques liées à la porosité d'un média tel qu'une membrane, comprenant un premier circuit d'amenée d'un premier fluide sous pression, une cellule de mesure recevant une membrane, des premiers moyens de mise en et hors communication du premier circuit avec une première chambre de la cellule, le dispositif comportant en outre un réservoir de réception d'un deuxième fluide, un deuxième circuit de liaison entre le réservoir et la première chambre et des deuxièmes moyens de mise en et hors communication du premier circuit avec le réservoir de telle sorte que le deuxième fluide puisse être injecté sous pression dans ladite première chambre sous l'action du premier fluide. Le deuxième circuit peut avantageusement comporter des troisièmes moyens de mise en et hors communication du deuxième circuit avec la première chambre. Un problème supplémentaire des mesures de pression est la présence d'une chute de pression au moment du premier passage d'air dans le pore le plus gros. Cette chute de pression cause une imprécision de la mesure. Selon un mode de réalisation particulier de l'invention, le premier circuit comporte un dispositif de fuite pilotée permettant de réguler la pression dans le premier circuit. La cellule peut être de type comportant une seconde chambre pourvue d'une sortie dite sortie filtrat, la première chambre peut par ailleurs comporter une sortie, dite sortie de vidange, les premier et deuxième circuits pouvant être reliés à la première chambre au travers d'une branche commune dite entrée de la cellule. Selon un mode de réalisation préféré, la cellule est orientable selon un axe horizontal. Dans ce cadre, l'entrée de la cellule, la sortie filtrat et la sortie de vidange sont angulairement espacées par rapport à l'axe horizontal de telle sorte qu'une rotation de la cellule selon cet axe permette de modifier leur hauteur relative. Dans un mode de réalisation particulier de l'invention, la sortie de vidange est pourvue d'un circuit de vidange comportant une vanne pilotée. D'autres avantages et caractéristiques de l'invention seront mieux compris à la lecture de la description qui va suivre d'un mode de réalisation particulier et non limitatif de l'invention en référence aux figures qui représentent: En figure 1 une vue schématique d'un exemple de réalisation du dispositif de mesure selon l'invention, En figures 2A, 2B, 2C, 2D une vue schématique de la cellule du dispositif selon plusieurs orientations. Le dispositif de mesure de caractéristiques liées à la porosité de média tels que des membranes selon l'invention permet de réaliser des mesures de porométrie sur des membranes et est adapté à la réalisation de mesures utilisant un ou plusieurs liquides ainsi qu'un gaz. Ce dispositif est construit autour d'une cellule de mesure 2 et comprend un premier circuit 1 d'amenée d'un premier fluide F1 sous pression, ce fluide étant généralement un gaz comprimé à une pression de plus de 20 bar, La cellule 2 de mesure comporte une première chambre 2a et une seconde chambre 2b entre lesquelles est disposé un média poreux 3. Le premier circuit 1 comprend une branche 1 a pourvue de premiers moyens 6 de mise en et hors communication du premier circuit 1 avec la première chambreThe present invention relates to a device for measuring characteristics related to the porosity of porous media such as porous membranes. Many porous membranes are formed by organic polymers or mineral grains forming a porous nonwoven network. These membranes are used in various fields such as in filtration for drinking water networks or the production of desalinated water. Due to the complexity of the manufacturing processes for these membranes, and the fact that their pores are a distribution of capillaries of variable hydraulic diameter, the porosity characteristics of these membranes are not fully controlled and it is however necessary to be able to measure precisely the dimensional distribution of the pores. Devices for measuring porosity of porous media exist for pore diameters greater than 0.1 micrometers. According to these devices, a membrane wetted by a liquid is placed in a measurement chamber, a gas is then injected on one side of the membrane to reach the bubble point, point for which the pressure exceeds the capillary resistance of the largest pore of the membrane, the pressure is then increased and the flow is measured until all the pores are rid of the liquid and the membrane considered to be dry. The pressure and flow measurement gives the porosity characteristics of the membrane. A device as described above is limited in possible types of measurement and in particular does not allow measurement of characteristics on small pore sizes. The subject of the present invention is a device making it possible to carry out several types of measurement on porous media and in particular membranes: gas-liquid, liquid-liquid, bubble point with wet membrane, drop point with dry membrane, gas permeability with dry membrane, solvent permeability, interfacial tension between two fluids, contact angle between a solvent and a membrane. To do this, the present invention mainly relates to a device for measuring characteristics related to the porosity of a media such as a membrane, comprising a first circuit for supplying a first pressurized fluid, a measurement cell receiving a membrane. , first means for switching the first circuit on and off with a first cell chamber, the device further comprising a reservoir for receiving a second fluid, a second connection circuit between the reservoir and the first chamber and second means for switching the first circuit on and off with the reservoir so that the second fluid can be injected under pressure into said first chamber under the action of the first fluid. The second circuit can advantageously include third means for switching the second circuit on and off with the first chamber. An additional problem with pressure measurements is the presence of a pressure drop at the time of the first passage of air through the largest pore. This pressure drop causes an inaccuracy of the measurement. According to a particular embodiment of the invention, the first circuit comprises a piloted leakage device making it possible to regulate the pressure in the first circuit. The cell can be of the type comprising a second chamber provided with an outlet known as the filtrate outlet, the first chamber can moreover comprise an outlet, known as the drain outlet, the first and second circuits being able to be connected to the first chamber through a common branch called the cell entrance. According to a preferred embodiment, the cell is orientable along a horizontal axis. In this context, the cell inlet, the filtrate outlet and the drain outlet are angularly spaced with respect to the horizontal axis so that a rotation of the cell along this axis makes it possible to modify their relative height. In a particular embodiment of the invention, the drain outlet is provided with a drain circuit comprising a piloted valve. Other advantages and characteristics of the invention will be better understood on reading the description which follows of a particular and nonlimiting embodiment of the invention with reference to the figures which represent: In FIG. 1 a schematic view of 'an embodiment of the measuring device according to the invention, In Figures 2A, 2B, 2C, 2D a schematic view of the cell of the device according to several orientations. The device for measuring characteristics linked to the porosity of media such as membranes according to the invention makes it possible to carry out porometry measurements on membranes and is suitable for carrying out measurements using one or more liquids as well as a gas. This device is built around a measurement cell 2 and comprises a first circuit 1 for supplying a first fluid F1 under pressure, this fluid generally being a gas compressed at a pressure of more than 20 bar, cell 2 of measurement comprises a first chamber 2a and a second chamber 2b between which is disposed a porous medium 3. The first circuit 1 comprises a branch 1 a provided with first means 6 for switching on and off the communication of the first circuit 1 with the first chamber
2a de la cellule. Selon l'invention, le dispositif comporte un réservoir 5 de réception d'un deuxième fluide F2, ce deuxième fluide peut être un liquide et pour certaines mesures, qui seront expliquées plus loin, un premier puis un second liquide sont utilisés. Des deuxièmes moyens 7 de mise en et hors communication du premier circuit 1 avec le réservoir permettent, une fois le réservoir 5 rempli et fermé, au premier fluide de comprimer et/ou pousser le deuxième fluide de telle sorte que le deuxième fluide puisse être injecté sous pression dans la première chambre 2a, le réservoir 5 étant mis en communication avec cette première chambre par un deuxième circuit 4 dit circuit de liaison entre le réservoir 5 et la première chambre 2a. Ce circuit selon l'exemple comporte une branche principale et deux branches parallèles 4a et 4b, chacune pourvue d'un débitmètre 20a, 20b et des troisièmes moyens S, 9 de mise en et hors communication du deuxième circuit 4 avec la première chambre 2a. Les troisièmes moyens sont ici dédoublés pour permettre la réalisation de deux branches 4a et 4b sur lesquelles des débitmètres 20a, 20b pourvus de plages de mesures différentes peuvent être utilisés en fonction des débits à mesurer afin d'obtenir une précision de mesure importante. En fonction du débit attendu la branche 4a ou la branche 4b est utilisée par ouverture du moyen correspondant à cette branche et fermeture du moyen de l'autre branche. Ainsi, plusieurs modes de fonctionnement principaux sont possibles. Soit le premier fiuide est injecté directement dans la chambre et le réservoir 5 est isolé par ouverture des premiers moyens 6 de mise en et hors communication du premier circuit 1 avec la chambre 2a, fermeture des deuxièmes moyens 7 de mise en et hors communication du premier circuit 1 avec le réservoir et fermeture des troisièmes moyens 8, 9 de mise en et hors communication du deuxième circuit 4 avec la première chambre 4; Soit le premier fluide FI est utilisé pour pousser le deuxième fluide F2 dans la première chambre 2a par fermeture des premiers moyens 6, ouverture des deuxièmes moyens 7 et ouverture de l'un des troisièmes moyens 8, 9; Soit isolement de la chambre par fermeture des premiers 6 et troisièmes moyens 8, 9. Le dispositif selon l'invention est complété au niveau de la cellule par une sortie de vidange de la première chambre reliée à un circuit 10 de vidange comportant une vanne 1 1 pilotée et par une sortie 14 dite sortie filtrat au niveau de la seconde chambre 2b de la cellule. Cette sortie 14 filtrat est la sortie par laquelle s'évacuent les fluides traversant le média 3 sous l'action de la pression exercée par le fluide F1 . Lors de mesures de type point de bulle, c'est à dire mesure de la pression nécessaire pour ouvrir un premier pore du média 3, puis de mesure de perméabilité, le dispositif de compression du premier fluide F1 , par exemple de l'air doit faire monter en pression la cellule de manière continue. Tant que le point de bulle n'est pas atteint, cette montée en pression se fait sans qu'if n'y ait consommation d'air au niveau de la cellule. Une fois le point de bulle atteint, de l'air traverse le média ce qui cause une consommation d'air. Afin de ne minimiser l'erreur de mesure par chute de la pression due à cette transition entre un mode sans consommation et un mode avec consommation, le premier circuit 1 comporte un dispositif 12 de fuite pilotée. Cette fuite, d'un ordre de grandeur supérieur à la consommation due à la membrane, lisse la montée en pression. Ceci est particulièrement sensible pour des mesures de type gaz-liquide où le média est préalablement mouillée puis mise sous pression par un fluide F1 gazeux pour mesurer la pression nécessaire pour dépasser la pression capillaire du plus gros pore de la membrane. Selon l'exemple le raccordement des premier et deuxième circuits 1 , 4 à la première chambre 2a se fait au travers d'une branche commune 13a dite entrée de la cellule 2. Ainsi la cellule comporte une entrée de fluides et une sortie munie de moyens de fermeture par la vanne pilotée au niveau de la chambre 2a et comporte une sortie 14 pour les filtrats au niveau de la seconde chambre. Selon un aspect avantageux de l'invention, la cellule est orientable selon un axe 15 horizontal, l'entrée de la cellule, la sortie filtrat et la sortie de vidange étant angulairement espacées par rapport audit axe horizontal de telle sorte qu'une rotation de la cellule selon ledit axe permette de modifier leur hauteur relative. Cette configuration est décrite figures 2A, 2B, 2C, 2D pour différentes positions de la cellule en rotation, Cette configuration permet de réaliser aisément des mesures nécessitant des changements de fluides et permet d'accroître la précision des mesures. En particulier, le dispositif selon l'invention permet aussi bien de réaliser des mesures de porométrie gaz-liquide comme vu précédemment que des mesures de porométrie liquide-liquide. Pour les mesures, plusieurs capteurs sont présents et, afin de permettre des mesures précises, des capteurs ayant des gammes de mesure adaptées sont disposés dans des circuits parallèles sélectionnables. Par exemple, trois circuits parallèles pourvus de débitmètres 21a, 21 b,2a of the cell. According to the invention, the device comprises a reservoir 5 for receiving a second fluid F2, this second fluid can be a liquid and for certain measurements, which will be explained below, a first then a second liquid are used. Second means 7 for putting on and off communication of the first circuit 1 with the reservoir allow, once the reservoir 5 is filled and closed, the first fluid to compress and / or push the second fluid so that the second fluid can be injected under pressure in the first chamber 2a, the reservoir 5 being placed in communication with this first chamber by a second circuit 4 called the connection circuit between the reservoir 5 and the first chamber 2a. This circuit according to the example comprises a main branch and two parallel branches 4a and 4b, each provided with a flowmeter 20a, 20b and third means S, 9 for switching on and off the second circuit 4 with the first chamber 2a. The third means are here duplicated to allow the production of two branches 4a and 4b on which flowmeters 20a, 20b provided with different measurement ranges can be used as a function of the flow rates to be measured in order to obtain significant measurement accuracy. Depending on the expected flow, branch 4a or branch 4b is used by opening the means corresponding to this branch and closing the means of the other branch. Several main operating modes are therefore possible. Either the first fluid is injected directly into the chamber and the reservoir 5 is isolated by opening the first means 6 for switching on and off the first circuit 1 with the chamber 2a, closing the second means 7 for switching on and off the first circuit 1 with the reservoir and closing of the third means 8, 9 for switching on and off the communication of the second circuit 4 with the first chamber 4; Either the first fluid FI is used to push the second fluid F2 into the first chamber 2a by closing the first means 6, opening the second means 7 and opening one of the third means 8, 9; Either isolation of the chamber by closing the first 6 and third means 8, 9. The device according to the invention is completed at the level of the cell by a drain outlet from the first chamber connected to a drain circuit 10 comprising a valve 1 1 controlled and by an output 14 called the filtrate output at the level of the second chamber 2b of the cell. This filtrate outlet 14 is the outlet through which the fluids passing through the media 3 are evacuated under the action of the pressure exerted by the fluid F1. During bubble point type measurements, that is to say measurement of the pressure necessary to open a first pore of the media 3, then measurement of permeability, the device for compressing the first fluid F1, for example air must pressurize the cell continuously. As long as the bubble point is not reached, this pressure rise takes place without any consumption of air at the level of the cell. Once the bubble point is reached, air passes through the media which causes air consumption. In order not to minimize the measurement error by drop in pressure due to this transition between a mode without consumption and a mode with consumption, the first circuit 1 comprises a device 12 for controlled leakage. This leak, of an order of magnitude greater than the consumption due to the membrane, smooths the pressure build-up. This is particularly sensitive for gas-liquid type measurements where the media is previously wetted and then pressurized with a gaseous F1 fluid to measure the pressure necessary to exceed the capillary pressure of the largest pore of the membrane. According to the example, the connection of the first and second circuits 1, 4 to the first chamber 2a is done through a common branch 13a called the inlet of the cell 2. Thus the cell has an inlet for fluids and an outlet provided with means closing by the valve controlled at the level of the chamber 2a and comprises an outlet 14 for the filtrates at the level of the second chamber. According to an advantageous aspect of the invention, the cell can be oriented along a horizontal axis, the cell inlet, the filtrate outlet and the outlet of emptying being angularly spaced with respect to said horizontal axis so that a rotation of the cell along said axis makes it possible to modify their relative height. This configuration is described in FIGS. 2A, 2B, 2C, 2D for different positions of the rotating cell. This configuration makes it possible to easily carry out measurements requiring changes of fluids and makes it possible to increase the accuracy of the measurements. In particular, the device according to the invention makes it possible to carry out gas-liquid porometry measurements as seen above as well as liquid-liquid porometry measurements. For the measurements, several sensors are present and, in order to allow precise measurements, sensors having suitable measurement ranges are arranged in selectable parallel circuits. For example, three parallel circuits provided with flowmeters 21a, 21b,
21 c à gammes de mesure différentes sont prévus dans le premier circuit 1 . Ces circuits parallèles sont commandés par des vannes pilotées 22a, 22b, 22c permettant de sélectionner le circuit pourvu du débitmètre dont la précision convient le plus au débit présent ou prévu dans le circuit. De même, en amont des débitmètres 21 a, 21 b, 21 c, deux circuits pourvus de régulateurs de pression 23a, 23b pilotés et adaptés à des gammes de pression différentes sont présents et sélectionnables par des vannes pilotées 24a, 24b, ce en aval d'un branchement 25 vers une source de gaz comprimé. En aval des débitmètres 21 a, 21 b, 21c, sur le premier circuit 1 , se trouvent deux capteurs de pression 26a, 26b, l'un étant mis en et hors service par une vanne pilotée 27. L'ensemble des vannes pilotées, des moyens de mise en et hors communication et capteurs est éventuellement relié à un dispositif de commande tel qu'un ordinateur muni d'une carte d'entrées-sorties de commande afin de permettre une automatisation des séquences de mesures. Une mesure de porométrie gaz-liquide sera réalisée en plaçant le média mouillé d'un solvant de tension superficielle connue dans la cellule, en incrémentant la pression par le premier circuit à l'aide de l'un des régulateur de pression 23a, 23b piloté tout en maintenant un débit de fuite par le dispositif 12 de fuite pilotée jusqu'à détecter un débit dit débit de filtrat correspondant à l'ouverture du plus gros pore lorsque ia pression atteint et dépasse ia pression capillaire de ce pore. Une fois le débit de filtrat amorcé, le dispositif de fuite pilotée est progressivement refermé alors que la pression continue d'être incrémentée jusqu'à la dernière pression de consigne. Une fois la mesure terminée, ie circuit est remis à la pression atmosphérique en ouvrant une vanne de mise à ['air libre 28. Dans le cas d'une mesure liquide-liquide, la membrane sèche est disposée dans la cellule 2 qui est éventuellement positionnée dans la position de la figure 2A pour que la sortie de vidange de la première chambre 2a soit en point haut. Le réservoir 5, comportant un orifice de remplissage 1 6 indépendant du premier circuit 1 , est rempli par le premier liquide, par exemple une phase mouillante alors que le deuxième circuit 4 est ouvert pour remplir la première chambre 2a de la cellule 2, que le premier circuit est fermé par la vanne 6 et que la liaison entre le réservoir et le premier circuit est fermé par la vanne 7. Une fois le remplissage terminé, le réservoir est fermé et la liaison entre le réservoir et le premier circuit est ouverte par la vanne 7 de façon à permettre la mise en pression du réservoir par le premier fluide F1 , ceci dans le cas de cette mesure, sans ouvrir le dispositif de fuite calibrée 12. La pression est alors incrémentée et le débit de liquide est mesuré à l'aide de l'un des débitmètres 20a, 20b jusqu'à la dernière pression de consigne. Une fois cette pression atteinte, le dispositif est remis à pression atmosphérique en ouvrant la vanne 28, le réservoir est vidangé par exemple en positionnant la cellule de telle sorte que sa sortie de vidange soit en point bas. La deuxième phase liquide ou phase poussante est alors injectée dans le réservoir avec, dans le cas où le liquide poussant est plus lourd que Je liquide mouillant, la sortie de vidange de la première chambre positionnée en point haut pour terminer d'évacuer le liquide mouillant non emprisonné dans la membrane. Une fois le circuit rempli, comme représenté en figure 2B, ia cellule est positionnée telle que la membrane est dans un pian vertical pour éliminer les effets de la pesanteur puis la pression est incrémentée, sans débit de fuite, jusqu'à la dernière pression de consigne pendant que le débit de filtrat est mesuré à l'aide de l'un des débitmètres 20a, 20b. Dans le cas où la deuxième phase liquide est plus légère que la première, la mesure se fait cellule en position inclinée, chambre 2a sous la chambre 2b comme représenté en figure 2D de façon à ce que les reliquats de phase lourde tombent verticalement loin de la membrane et ne puissent fausser la mesure. Le dispositif selon l'invention permet ainsi de nombreuses mesures gaz- liquide telles que point de bulle, point de goutte et de nombreuses mesures liquide-liquide. Le dispositif permet en outre de réaliser des mesures telles que tension interfaciale entre deux fluides en utilisant un média poreux dont la répartition est connue et qui est mouiflabie par le couple de liquides à tester et en réalisant une mesure de porométrie liquide-liquide avec ce média, la différence de répartition des caractéristiques de pores obtenue sera liée avec la différence des tensions interfaciales. De même le dispositif permet de réaliser une mesure d'angle de contact en effectuant, sur un média à tester, une mesure de porométrie gaz-liquide avec un liquide d'angle de contact connu et de tension superficielle connue puis en effectuant une mesure gaz-liquide avec le liquide à tester. La différence des deux répartitions obtenues sera liée à 3a différence des deux angles de contact. Le dispositif selon l'invention combinant un circuit gaz et un circuit liquide et comportant des branches de mesure parallèles sélectionnables permet ainsi de couvrir une vaste étendue de mesures. En outre, la cellule orientable permet de s'affranchir de la gravité et de supprimer les erreurs de mesures dues à la présence de reliquats de phases liquides entre deux mesures avec des liquides différents. 21 c with different measurement ranges are provided in the first circuit 1. These parallel circuits are controlled by piloted valves 22a, 22b, 22c making it possible to select the circuit provided with the flow meter whose precision is most suitable for the flow present or expected in the circuit. Similarly, upstream of the flowmeters 21 a, 21 b, 21 c, two circuits provided with pressure regulators 23a, 23b piloted and adapted to different pressure ranges are present and selectable by piloted valves 24a, 24b, this downstream a connection 25 to a source of compressed gas. Downstream of the flowmeters 21a, 21b, 21c, on the first circuit 1, there are two pressure sensors 26a, 26b, one being turned on and off by a piloted valve 27. All of the piloted valves, means for switching on and off communication and sensors is optionally connected to a control device such as a computer provided with a control input-output card in order to allow automation of the measurement sequences. A gas-liquid porometry measurement will be carried out by placing the media wet with a solvent of known surface tension in the cell, by increasing the pressure by the first circuit using one of the regulators. pressure 23a, 23b controlled while maintaining a leakage flow by the device 12 controlled leakage until detecting a flow called filtrate flow corresponding to the opening of the largest pore when the pressure reaches and exceeds the capillary pressure of this pore. Once the flow of filtrate has started, the piloted leakage device is gradually closed while the pressure continues to be increased until the last set pressure. Once the measurement is complete, the circuit is returned to atmospheric pressure by opening a vent valve 28. In the case of a liquid-liquid measurement, the dry membrane is placed in cell 2 which is possibly positioned in the position of FIG. 2A so that the drain outlet of the first chamber 2a is at a high point. The reservoir 5, comprising a filling orifice 1 6 independent of the first circuit 1, is filled with the first liquid, for example a wetting phase while the second circuit 4 is open to fill the first chamber 2a of the cell 2, which the first circuit is closed by valve 6 and the connection between the tank and the first circuit is closed by valve 7. Once filling is complete, the tank is closed and the connection between the tank and the first circuit is opened by valve 7 so as to allow the reservoir to be pressurized by the first fluid F1, this in the case of this measurement, without opening the calibrated leakage device 12. The pressure is then incremented and the liquid flow rate is measured at using one of the flowmeters 20a, 20b until the last setpoint pressure. Once this pressure is reached, the device is returned to atmospheric pressure by opening the valve 28, the reservoir is emptied for example by positioning the cell so that its drain outlet is at a low point. The second liquid phase or pushing phase is then injected into the reservoir with, in the case where the pushing liquid is heavier than the wetting liquid, the drain outlet of the first chamber positioned at the top point to finish evacuating the wetting liquid not imprisoned in the membrane. Once the circuit is filled, as shown in FIG. 2B, the cell is positioned such that the membrane is in a vertical plane to eliminate the effects of gravity, then the pressure is increased, without leakage rate, until the last pressure of setpoint while the filtrate flow is measured using one of the flow meters 20a, 20b. In the case where the second liquid phase is lighter than the first, the measurement is made cell in inclined position, chamber 2a under the chamber 2b as shown in Figure 2D so that the remainders of heavy phase fall vertically away from the membrane and cannot distort the measurement. The device according to the invention thus allows numerous gas-liquid measurements such as bubble point, drop point and numerous liquid-liquid measurements. The device also makes it possible to carry out measurements such as interfacial tension between two fluids by using a porous medium whose distribution is known and which is wettable by the couple of liquids to be tested and by carrying out a liquid-liquid porometry measurement with this medium. , the difference in distribution of pore characteristics obtained will be linked to the difference in interfacial tensions. Similarly, the device makes it possible to carry out a measurement of contact angle by carrying out, on a medium to be tested, a measurement of gas-liquid porometry with a liquid of known contact angle and of known surface tension then by carrying out a gas measurement -liquid with the liquid to be tested. The difference of the two distributions obtained will be linked to the difference of the two contact angles. The device according to the invention combining a gas circuit and a liquid circuit and comprising selectable parallel measurement branches thus makes it possible to cover a wide range of measurements. In addition, the swiveling cell eliminates gravity and eliminates measurement errors due to the presence of residual liquid phases between two measurements with different liquids.

Claims

R E V E N D I C A T I O N S R E V E N D I C A T I O N S
1 - Dispositif de mesure de caractéristiques liées à la porosité d'un média tel qu'une membrane, comprenant un premier circuit (1 ) d'amenée d'un premier fluide (F1 ) sous pression, une cellule (2) de mesure recevant ledit média (3), des premiers moyens {6} de mise en et hors communication du premier circuit (1 ) avec une première chambre (2a) de la cellule, caractérisé en ce qu'il comporte en outre un réservoir (5) de réception d'un deuxième fluide (F2), un deuxième circuit (4) de liaison entre le réservoir (5) et la première chambre (2a) et des deuxièmes moyens (7) de mise en et hors communication du premier circuit (1 ) avec le réservoir de telle sorte que le deuxième fluide puisse être injecté sous pression dans ladite première chambre sous l'action du premier fluide. 2 - Dispositif selon la revendication 1 caractérisé en ce que ie deuxième circuit (4) comporte des troisièmes moyens (8, 9) de. mise en et hors communication du deuxième circuit (4) avec la première chambre (2a). 3 - Dispositif selon la revendication 1 ou 2 caractérisé en ce que le premier circuit (1 } comporte un dispositif (1 2) de fuite pilotée. 4 - Dispositif selon l'une des revendications précédentes caractérisé en ce que la première chambre (2a) comporte une sortie, dite sortie de vidange. 5 - Dispositif selon l'une des revendications précédentes caractérisé en ce que la cellule (2) comporte une seconde chambre (2b) pourvue d'une sortie (14) dite sortie filtrat. 6 - Dispositif selon l'une des revendications précédentes caractérisé en ce que les premier et deuxième circuits (1 , 4) sont reliés à la première chambre (2a) au travers d'une branche commune (13a) dite entrée de la cellule (2). 7 - Dispositif selon l'une des revendications précédentes caractérisé en ce que la cellule est orientable selon un axe (15) horizontal. 8 - Dispositif seion les revendications 4, 5, 6 et 7 caractérisé en ce que l'entrée de ia cellule, la' sortie filtrat et la sortie de vidange sont angulairement espacées par rapport audit axe horizontal de telle sorte qu'une rotation de la cellule selon ledit axe permette de modifier leur hauteur relative. 9 - Dispositif selon la revendication 4 caractérisé en ce que la sortie de vidange est pourvue d'un circuit (10) de vidange comportant une vanne (1 1) pilotée. 10 - Dispositif selon l'une des revendications précédentes caractérisé en ce que le réservoir (5) comporte un orifice de remplissage (1 6) indépendant du premier circuit ( 1 ) . 1 - Device for measuring characteristics related to the porosity of a medium such as a membrane, comprising a first circuit (1) for supplying a first fluid (F1) under pressure, a measuring cell (2) receiving said media (3), first means {6} for switching on and off the first circuit (1) with a first chamber (2a) of the cell, characterized in that it further comprises a reservoir (5) of reception of a second fluid (F2), a second circuit (4) for connection between the reservoir (5) and the first chamber (2a) and second means (7) for switching on and off the first circuit (1) with the reservoir so that the second fluid can be injected under pressure into said first chamber under the action of the first fluid. 2 - Device according to claim 1 characterized in that ie the second circuit (4) comprises third means (8, 9) of. switching the second circuit (4) on and off with the first chamber (2a). 3 - Device according to claim 1 or 2 characterized in that the first circuit (1} comprises a device (1 2) for controlled leakage 4 - Device according to one of the preceding claims characterized in that the first chamber (2a) 5 - Device according to one of the preceding claims, characterized in that the cell (2) has a second chamber (2b) provided with an outlet (14) called the filtrate outlet. according to one of the preceding claims, characterized in that the first and second circuits (1, 4) are connected to the first chamber (2a) through a common branch (13a) called the cell inlet (2). - Device according to one of the preceding claims, characterized in that the cell is orientable along a horizontal axis (15). 8 - Device according to claims 4, 5, 6 and 7 characterized in that the cell inlet, the ' filtrate outlet and the drain outlet are angularly spaced from said horizontal axis so that a rotation of the cell along said axis allows their relative height to be modified. 9 - Device according to claim 4 characterized in that the drain outlet is provided with a circuit (10) for draining comprising a valve (1 1) piloted. 10 - Device according to one of the preceding claims characterized in that the reservoir (5) has a filling orifice (1 6) independent of the first circuit (1).
PCT/FR2004/050454 2003-09-26 2004-09-22 Device for measuring porosity characteristics of porous media WO2005031318A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311315 2003-09-26
FR0311315A FR2860297A1 (en) 2003-09-26 2003-09-26 DEVICE FOR MEASURING CHARACTERISTICS RELATED TO THE POROSITY OF POROUS MEDIA

Publications (2)

Publication Number Publication Date
WO2005031318A2 true WO2005031318A2 (en) 2005-04-07
WO2005031318A3 WO2005031318A3 (en) 2005-10-06

Family

ID=34307203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050454 WO2005031318A2 (en) 2003-09-26 2004-09-22 Device for measuring porosity characteristics of porous media

Country Status (2)

Country Link
FR (1) FR2860297A1 (en)
WO (1) WO2005031318A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447424C2 (en) * 2006-09-19 2012-04-10 Экстрасолюшн С.Р.Л. Method and apparatus for measuring gas permeability through film or container walls
US8698055B2 (en) 2007-10-15 2014-04-15 E I Du Pont De Nemours And Company Microwave field director structure having vanes with outer ends wrapped with a conductive wrapper

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088778B (en) * 2017-12-06 2019-09-24 中国科学院武汉岩土力学研究所 A kind of rock type materials permeability, porosity testing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614109A (en) * 1982-12-27 1986-09-30 Brunswick Corporation Method and device for testing the permeability of membrane filters
US4656865A (en) * 1985-09-09 1987-04-14 The Dow Chemical Company System for analyzing permeation of a gas or vapor through a film or membrane
FR2683043A1 (en) * 1991-10-25 1993-04-30 Centre Nat Rech Scient DEVICE AND METHOD FOR INTEGRAL AND CONTINUOUS MEASUREMENT OF GASEOUS ADSORPTION AND DESORPTION.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614109A (en) * 1982-12-27 1986-09-30 Brunswick Corporation Method and device for testing the permeability of membrane filters
US4656865A (en) * 1985-09-09 1987-04-14 The Dow Chemical Company System for analyzing permeation of a gas or vapor through a film or membrane
FR2683043A1 (en) * 1991-10-25 1993-04-30 Centre Nat Rech Scient DEVICE AND METHOD FOR INTEGRAL AND CONTINUOUS MEASUREMENT OF GASEOUS ADSORPTION AND DESORPTION.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447424C2 (en) * 2006-09-19 2012-04-10 Экстрасолюшн С.Р.Л. Method and apparatus for measuring gas permeability through film or container walls
US8698055B2 (en) 2007-10-15 2014-04-15 E I Du Pont De Nemours And Company Microwave field director structure having vanes with outer ends wrapped with a conductive wrapper

Also Published As

Publication number Publication date
FR2860297A1 (en) 2005-04-01
WO2005031318A3 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
EP0729022B1 (en) Method and device for determining various physical parameters of porous samples in the presence of two or three-phase fluids
EP2321624B1 (en) Method and device for detecting leaks in an underground liquid pipe, particularly a water pipe
WO1997045193A1 (en) Method and installation for in situ testing of filtering membrane integrity
EP0653619B1 (en) Method and device for measuring the pore volume of a solid sample
FR2494433A1 (en) METHOD FOR MEASURING THE DEBITED QUANTITY OF EACH PHASE OF A GAS-LIQUID BIPHASE FLUID AND DEVICE FOR IMPLEMENTING SAID METHOD
EP1882173A2 (en) Method of measuring porosity by means of ellipsometry and device for implementing one such method
EP1327152B1 (en) Fluid dispensing device
FR3000215A1 (en) DEVICE AND METHOD FOR TESTING A SAMPLE, ESPECIALLY DISCRIMINATION OF A GAS FROM A SAMPLE
CA2276848A1 (en) Diaphragm pump
WO2005031318A2 (en) Device for measuring porosity characteristics of porous media
FR2989167A1 (en) METHOD FOR TRANSFERRING PRESSURE OF A FLUID FROM A PLOW OF THIS FLUID AND DEVICE FOR CARRYING OUT SAID METHOD
FR2522140A1 (en) METHOD AND DEVICE FOR MEASURING LIQUID LEVEL IN CONTAINERS
FR2507319A1 (en) DEVICE FOR CONTROLLING PRESSURE IN A PULSE COLUMN AND ITS APPLICATION TO THE MEASUREMENT OF THE INTERFACE LEVEL AND THE DENSITY OF THE LIQUID MEDIUM
EP0088026A2 (en) Head for the detection of a level by the hydrostatic effect with protection
FR2525773A1 (en) DEVICE FOR MEASURING THE THERMODYNAMIC CHARACTERISTICS OF A FLUID
EP0106755A1 (en) Process and device for producing a number of hydrodynamic functions in a current composed of at least two phases
FR2686696A1 (en) Method for determining the liquid-water permeability of a porous material not saturated with water and apparatus for its implementation
FR2672994A1 (en) Osmotic pressure sensor for continuous measurements
WO2019121294A1 (en) Permeametry in a rarefied gaseous medium for characterizing a multi-layer porous structure
WO2022219253A1 (en) Method for measuring the volume of a solid and associated pycnometer
FR2895796A1 (en) Device for extracting gas dissolved in a liquid and for measuring a total pressure of the gas, comprises a crude liquid supply conduit leads into a confined chamber contains a first reference pressure isolated from an outside
EP0489615B1 (en) Method and device for controlling the tightness of an enclosure like a gas meter
WO1993008459A1 (en) Device and method for the integrated and continuous measurement of gas adsorption and desorption
FR2668462A1 (en) HYDROCARBON DISPENSER WITH VAPOR RECOVERY SYSTEM.
CH359295A (en) Hydropneumatic transformer device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase