WO2005044333A2 - Self-actuating applicator for microprojection array - Google Patents

Self-actuating applicator for microprojection array Download PDF

Info

Publication number
WO2005044333A2
WO2005044333A2 PCT/US2004/035052 US2004035052W WO2005044333A2 WO 2005044333 A2 WO2005044333 A2 WO 2005044333A2 US 2004035052 W US2004035052 W US 2004035052W WO 2005044333 A2 WO2005044333 A2 WO 2005044333A2
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cap
spring
housing
set position
Prior art date
Application number
PCT/US2004/035052
Other languages
French (fr)
Other versions
WO2005044333A3 (en
Inventor
Joseph C. Trautman
Lorin Olson
Original Assignee
Alza Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alza Corporation filed Critical Alza Corporation
Priority to BRPI0415629-3A priority Critical patent/BRPI0415629A/en
Priority to AT04796104T priority patent/ATE539687T1/en
Priority to AU2004287414A priority patent/AU2004287414B2/en
Priority to CA002543641A priority patent/CA2543641A1/en
Priority to EP04796104A priority patent/EP1680154B1/en
Priority to JP2006538124A priority patent/JP4682144B2/en
Priority to ES04796104T priority patent/ES2377647T3/en
Publication of WO2005044333A2 publication Critical patent/WO2005044333A2/en
Publication of WO2005044333A3 publication Critical patent/WO2005044333A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • A61B17/205Vaccinating by means of needles or other puncturing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/92Impactors or extractors, e.g. for removing intramedullary devices
    • A61B2017/922Devices for impaction, impact element
    • A61B2017/924Impact element driving means
    • A61B2017/925Impact element driving means a spring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0038Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a channel at the side surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles

Definitions

  • the present invention relates to an apparatus and method for applying a penetrating member to the skin by impact, and more particularly, the invention relates to a self-setting, auto-trigging impact device to reproducibly penetrate the stratum corneum with a penetrating member, such as a microprotrusion array, for transdermal delivery or sampling of an agent.
  • a penetrating member such as a microprotrusion array
  • Active agents are most conventionally administered either orally or by injection. Unfortunately, many agents are completely ineffective or have radically reduced efficacy when orally administered since they either are not absorbed or are adversely affected before entering the bloodstream and thus do not possess the desired activity. Further, orally administered agents typically do not take effect as quickly as injected agents. On the other hand, the direct injection of the agent into the bloodstream, while assuring no modification of the agent during administration, is a difficult, inconvenient, painful and uncomfortable procedure which sometimes results in poor patient compliance.
  • transdermal delivery provides for a method of administering active agents that would otherwise need to be delivered via hypodermic injection or intravenous infusion.
  • Transdermal agent delivery offers improvements in both of these areas.
  • Transdermal delivery when compared to oral delivery, avoids the harsh environment of the digestive tract, bypasses gastrointestinal drug metabolism, reduces first-pass effects and avoids the possible deactivation by digestive and liver enzymes.
  • transdermal refers to delivery of an active agent (e.g., a therapeutic agent, such as a drug or an immunologically active agent, such as a vaccine) through the skin to the local tissue or systemic circulatory system without substantial cutting or penetration of the skin, such as cutting with a surgical knife or piercing the skin with a hypodermic needle.
  • an active agent e.g., a therapeutic agent, such as a drug or an immunologically active agent, such as a vaccine
  • Transdermal agent delivery systems generally rely on passive diffusion to administer the agent, while active transdermal agent delivery systems rely on an external energy source, including electricity (e.g., iontophoresis) and ultrasound (e.g., phonophoresis), to deliver the agent.
  • Passive transde ⁇ nal agent delivery systems typically include an agent reservoir containing a high concentration of the agent. The reservoir is adapted to contact the skin, which enables the agent to diffuse through the skin and into the body tissues or bloodstream of a patient.
  • transdermal agent flux is dependent upon the condition of the skin, the size and physical/chemical properties of the agent molecule, and the concentration gradient across the skin. Because of the low permeability of the skin to many active agents, transdermal delivery has had limited applications. This low permeability is attributed primarily to the stratum corneum, the outermost skin layer, which consists of flat, dead cells filled with keratin fibers (i.e., keratinocytes) surrounded by lipid bilayers. This highly-ordered structure of the lipid bilayers confers a relatively impermeable character to the stratum corneum.
  • Electrotransport uses an electrical potential, which results in the application of electric current to aid in the transport of the agent through a body surface, such as skin.
  • scarifiers generally included a plurality of tines or needles that were applied to the skin to and scratch or make small cuts in the area of application.
  • the vaccine was applied either topically on the skin, such as disclosed in U.S. Patent No. 5,487,726, or as a wetted liquid applied to the scarifier tines, such as disclosed in U.S. Patent Nos. 4,453,926, 4,109,655, and 3,136,314.
  • a serious disadvantage in using a scarifier to deliver an agent is the difficulty in determining the transdermal agent flux and the resulting dosage delivered. Also, due to the elastic, deforming and resilient nature of skin to deflect and resist puncturing, the tiny piercing elements often do not uniformly penetrate the skin and/or are wiped free of a liquid coating of an agent upon skin penetration.
  • the disclosed systems and apparatus employ piercing elements of various shapes, sizes and arrays to pierce the outermost layer (i.e., the stratum corneum) of the skin.
  • the piercing elements disclosed in these references generally extend perpendicularly from a thin, flat member, such as a pad or sheet.
  • the piercing elements in some of these devices are extremely small, some having a microprojection length of only about 25 - 400 microns and a microprojection thickness of only about 5 - 50 microns. These tiny piercing/cutting elements make correspondingly small microslits/microcuts in the stratum corneum for enhancing transdermal agent delivery therethrough.
  • the disclosed systems typically include a reservoir for holding the active agent and a delivery system that is adapted to transfer the agent from the reservoir through the stratum comeum, such as by hollow tines of the device itself.
  • a delivery system that is adapted to transfer the agent from the reservoir through the stratum comeum, such as by hollow tines of the device itself.
  • Illustrative is the device disclosed in PCT Pub. WO 93/17754, which has a liquid agent reservoir.
  • microprojection arrays When microprojection arrays are used to improve delivery or sampling of agent through the skin, consistent, complete, and repeatable penetration is desired.
  • Manual application of a skin patch having microprojections protruding from its skin-contacting side, often results in significant variation in puncture depth across the length and width of the patch.
  • manual application results in large variations in puncture depth between applications due to the manner in which the user applies the array a microprojection array to the stratum corneum with an automatic device, which provides in a consistent and repeatable manner, stratum comeum piercing, not only over the length and width of the microprotrusion array, but also from application of one microprojection array to the next.
  • Some known spring loaded applicator devices for delivery of lancets for body fluid (e.g., blood) sampling are described in PCT Pub. No. WO 99/26539 and WO 97/42886.
  • these devices are difficult to use because they require two- handed pre-setting of the applicator device prior to the application.
  • the known spring loaded lancet applicators require either two sections of the device to be pulled apart for pre-setting or require one part of the device to be pulled apart for presetting or require one part of the device to be twisted with respect to another part of the device for pre-setting. In both of these motions, a two-handed pre-setting operation is required. Many of the patients using these devices possess neither the strength, nor the manual dexterity to pre-set these known applicator devices.
  • a drawback of the applicator is thus that the applicator still requires a separate step of manually pre-setting the device prior to use. It would thus be desirable to provide an applicator that is eliminates the step of manually pre-setting the applicator prior to use.
  • the applicator for applying a microprojection array to a patient comprises (i) a housing having a first and second end; (ii) a cap that is adapted to move from a primary position to a pre-set position relative to the housing, the first end of the housing being adapted to receive the microprojection member; (iii) a piston slideably disposed within the housing for impacting the microprojection member against the stratum corneum, the piston being adapted to move from a pre-set position to an activated position in which the piston extends from the end of the housing opposite the cap; (iv) an impact spring in communication with the cap and the piston, the impact spring being adapted to provide and an impact force to the piston and bias the piston out of the first end of the housing toward an activated position proximate the stratum corneum, wherein the impact spring is energized when the cap and the
  • the impact spring has an impact (or stored) energy in the range of approximately 0.005 - 0.5 joules/cm 2 . More preferably, the impact spring 40 has a stored energy in the range of approximately 0.01 - 0.3 joules/cm 2 .
  • the impact spring has an impact velocity in the range of approximately 0.5 - 20 meters(m)/sec , more preferably, in the range of approximately 1.0 - 10 m/sec.
  • the piston has a surface area in range of approximately 0.1 - 20 cm 2 , more preferably, in the range of 1.0 - 10 cm 2 .
  • the microprojection member includes at least one biologically active agent.
  • the device for impacting a microprojection member against the stratum corneum of a patient comprises (i) a housing having a first and second end, the housing including a cap that is adapted to move from a primary position to a pre-set position relative to the housing; (ii) a retainer adapted to engage the housing proximate the second end, the retainer being further adapted to receive and position the microprojection member; (iii) a housing having a first and second end; (iv) a cap that is adapted to move from a primary position to a pre-set position relative to the housing, the first end of the housing being adapted to receive the microprojection member; (v) a piston slideably disposed within the housing for impacting the microprojection member against the stratum corneum, the piston being adapted to move from a pre-set position to an activated position; (vi) an impact spring in communication with the cap and the piston, the impact spring being adapted to
  • a transdermal delivery system for delivering a biologically active agent to a patient that comprises (i) a patch system, the patch system including a gel pack containing an agent formulation and a microprojection member having top and bottom surfaces, a plurality of openings that extend through the microprojection member and a plurality of stratum corneum-piercing microprojections that project from the bottom surface of the microprojection member, the microprojection member being adapted to receive the gel pack whereby the agent formulation flows through the microprojection member openings, and (ii) an applicator, the applicator including a housing having a first and second end, the first end of the housing being adapted to receive the microprojection member, a cap that is adapted to move from a primary position to a pre-set position relative to the housing, a piston slideably disposed within the housing for impacting the microprojection member against the stratum corneum, the piston being adapted to move from a pre-
  • the applicator includes a retainer adapted to engage the applicator housing proximate the second end, the retainer being further adapted to receive and position the microprojection member.
  • the agent formulation includes at least one biologically active agent.
  • the biologically active agent is selected from the group consisting of a leutinizing hormone releasing hormone (LHRH), LHRH analogs (such as goserelin, leuprolide, buserelin, triptorelin, gonadorelin, and napfarelin, menotropins (urofollitropin (FSH) and LH)), vasopressin, desmopressin, corticotropin (ACTH), ACTH analogs such as ACTH (1-24), calcitonin, parathyroid hormone (PTH), vasopressin, deamino [Val4, D-Arg8] arginine vasopressin, interferon alpha, interferon beta, interferon gamma, erythropoietin (EPO), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G), granulocyte colony stimulating factor (G-CSF), granul
  • the biologically active agent is selected from the group consisting of antigens in the form of proteins, polysaccharides, oligosaccharides, lipoproteins, weakened or killed viruses such as cytomegalovirus, hepatitis B virus, hepatitis C virus, human papillomavirus, rubella virus, and varicella zoster, weakened or killed bacteria such as bordetella pertussis, clostridium tetani, corynebacterium diphtheriae, group A streptococcus, legionella pneumophila, neisseria meningitides, pseudomonas aeruginosa, streptococcus pneumoniae, treponema pallidum, and vibrio cholerae and mixtures thereof.
  • viruses such as cytomegalovirus, hepatitis B virus, hepatitis C virus, human papillomavirus, rubella virus, and varicella zoster
  • the agent formulation includes at least one additional pharmaceutical agent selected from the group consisting of pathway patency modulators and vasoconstrictors.
  • FIGURE 1 is a front cross-sectional view of one embodiment of the applicator illustrating an initial configuration or primary position with a patch retainer attached to the applicator, according to the invention
  • FIGURE 2 is a front cross-sectional view of the retainer illustrating a pre-set position, according to the invention
  • FIGURE 3 is a front cross-sectional view of the retainer illustrating a an activated position with the piston proximate a skin site, according to the invention
  • FIGURE 4 is a side cross-sectional view of the applicator in the primary position shown in FIGURE 1;
  • FIGURE 5 is a side cross-sectional view of the applicator in the pre-set position shown in FIGURE 2;
  • FIGURE 6 is a side cross-sectional view of the applicator in the activated position shown in FIGURE 3;
  • FIGURE 7 is a front cross-sectional view of a patch retainer that is adapted to cooperate with the applicator shown in FIGURES 1 through 6, according to the invention;
  • FIGURE 8 is a perspective view of the patch retainer shown in FIGURE 7;
  • FIGURE 9 is a partial perspective view of one embodiment of a microprojection array.
  • transdermal means the delivery of an agent into and/or through the skin for local or systemic therapy.
  • transdermal flux means the rate of transdermal delivery.
  • biologically active agent refers to a composition of matter or mixture containing a drug which is pharmacologically effective when administered in a therapeutically effective amount.
  • active agents include, without limitation, leutinizing hormone releasing hormone (LHRH), LHRH analogs (such as goserelin, leuprolide, buserelin, triptorelin, gonadorelin, and napfarelin, menotropins (urofollitropin (FSH) and LH)), vasopressin, desmopressin, corticotrophin (ACTH), ACTH analogs such as ACTH (1-24), calcitonin, vasopressin, deamino [Val4, D-Arg8] arginine vasopressin, interferon alpha, interferon beta, interferon gamma, erythropoietin (EPO), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte
  • the noted biologically active agents can also be in various forms, such as free bases, acids, charged or uncharged molecules, components of molecular complexes or nonirritating, pharmacologically acceptable salts. Further, simple derivatives of the active agents (such as ethers, esters, amides, etc.), which are easily hydrolyzed at body pH, enzymes, etc., can be employed.
  • biologically active agent also refers to a composition of matter or mixture containing a "vaccine” or other immunologically active agent or an agent which is capable of triggering the production of an immunologically active agent, and which is directly or indirectly immunologically effective when administered in an immunologically effective amount.
  • vaccine refers to conventional and/or commercially available vaccines, including, but not limited to, flu vaccines, Lyme disease vaccine, rabies vaccine, measles vaccine, mumps vaccine, chicken pox vaccine, small pox vaccine, hepatitis vaccine, pertussis vaccine, and diphtheria vaccine, recombinant protein vaccines, DNA vaccines and therapeutic cancer vaccines.
  • vaccine thus includes, without limitation, antigens in the form of proteins, polysaccharides, oligosaccharides, lipoproteins, weakened or killed viruses such as cytomegalovirus, hepatitis B virus, hepatitis C virus, human papillomavirus, rubella virus, and varicella zoster, weakened or killed bacteria such as bordetella pertussis, clostridium tetani, corynebacterium diphtheriae, group A streptococcus, legionella pneumophila, neisseria meningitides, pseudomonas aeruginosa, streptococcus pneumoniae, treponema pallidum, and vibrio cholerae and mixtures thereof.
  • viruses such as cytomegalovirus, hepatitis B virus, hepatitis C virus, human papillomavirus, rubella virus, and varicella zoster
  • biologically effective amount or “biologically effective rate” shall be used when the biologically active agent is a pharmaceutically active agent and refers to the amount or rate of the pharmacologically active agent needed to effect the desired therapeutic, often beneficial, result.
  • biologically effective amount or “biologically effective rate” shall also be used when the biologically active agent is an immunologically active agent and refers to the amount or rate of the immunologically active agent needed to stimulate or initiate the desired immunologic, often beneficial result.
  • vasoconstrictor refers to a composition of matter or mixture that narrows the lumen of blood vessels and, hence, reduces peripheral blood flow.
  • suitable vasoconstrictors include, without limitation, amidephrine, cafaminol, cyclopentamine, deoxyepinephrine, epinephrine, felypressin, indanazoline, metizoline, midodrine, naphazoline, nordefrin, octodrine, orinpressin, oxymetazoline, phenylephrine, phenylethanolamine, phenylpropanolamine, propylhexedrine, pseudoephedrine, tetrahydrozoline, tramazoline, tuaminoheptane, tymazoline, vasopressin, xylometazoline and the mixtures thereof.
  • microprojections and “microprotrusions”, as used herein, refer to piercing elements that are adapted to pierce or cut through the stratum corneum into the underlying epidermis layer, or epidermis and dermis layers, of the skin of a living animal, particularly a mammal and more particularly a human.
  • the microprojections have a projection length less than 1000 microns. In a further embodiment, the microprojections have a projection length of less than 500 microns, more preferably, less than 250 microns.
  • the microprojections typically have a width and thickness of about 5 to 50 microns.
  • the microprojections may be formed in different shapes, such as needles, blades, pins, punches, and combinations thereof.
  • microprojection array refers to a plurality of microprojections arranged in an array for piercing the stratum corneum.
  • the microprojection array may be formed by etching or punching a plurality of microprojections from a thin sheet and folding or bending the microprojections out of the plane of the sheet to form a configuration, such as that shown in Fig. 5.
  • the microprojection array may also be formed in other known manners, such as by forming one or more strips having microprojections along an edge of each of the strip(s) as disclosed in U.S. Patent No. 6,050,988.
  • references to the area of the sheet or member and reference to some property per area of the sheet or member are referring to the area bounded by the outer circumference or border of the sheet.
  • the applicator of the present invention can be readily employed for repeatable impact application of an array of microprojections to the stratum comeum in conjunction with transdermal therapeutic agent delivery or sampling.
  • the applicator 10 is described for use with a certain type of microprojection array, it should be understood that the applicator can also be used with other types of stratum corneum micro-penetrating members.
  • the applicator of the invention is auto pre-setting and thus eliminates the step of manually pre-setting the applicator prior to use.
  • the applicator is also auto-triggering.
  • the applicator can thus be readily used by patients having neither the hand strength, nor the manual dexterity to pre-set other types of spring-loaded applicator devices.
  • the applicator of the invention additionally employs a triggering mechanism that is loaded outside of the diameter of the impact spring that biases the piston away from the device, allowing the use of smaller diameter springs made from smaller diameter wire, which can store equal or greater energy with the same travel while weighing less.
  • the reduced mass of the impact spring also permits a lower force to be used to compress the spring in order to achieve greater impact velocity.
  • the impact spring and the pre-setting spring have different inner and outer diameters and their positions in the applicator prevent the possibility of accidentally placing a spring in the wrong location.
  • the piston, inner cup and outer cup can also be keyed so they can only be assembled in a functional orientation.
  • the piston, inner cup and outer cup are also designed and configured to snap together to avoid the need for additional assembly steps, such as inserting screws, ultrasonic welding, adhesive bonding or solvent bonding.
  • the snaps also make disassembly of the applicator difficult, discouraging anyone from tampering with the mechanism.
  • the applicator 10 generally includes a housing 12, having an inner cup 14, and a piston 30 movable within the housing 12. As illustrated in Fig. 1, the housing 12 further includes an outer cup (or cap) 20 for actuating the applicator 10 to impact the stratum corneum with a patch 60 or microprojection array 64.
  • the applicator 10 further includes an impact spring 40 that is positioned inside the spring guide 22 that extends inwardly from the top 23 of the outer cup 20.
  • the impact spring 40 is also seated in the piston spring seat or recess 34. According to the invention, the impact spring 40 biases the piston 30 downward (in the direction denoted by arrow A) with respect to the applicator housing 12.
  • the piston 30 has a lower surface or face 32, which, according to the invention, can be substantially planar, slightly convex or configured to a body surface (i.e., a specific skin site).
  • a body surface i.e., a specific skin site.
  • the lower surface 32 of the piston 30 causes a microprojection array or a transdermal patch containing a microprojection array to impact and pierce the stratum corneum.
  • the piston face 32 preferably has a surface area in the range of approximately 0.1 - 20 cm 2 . More preferably, the piston face 32 has a surface area in the range of approximately 1 - 10 cm 2 .
  • the applicator 10 additionally includes a pre-setting spring 42 that is positioned around the impact spring.
  • the pre-setting spring 42 is also seated in the spring seat 16 disposed proximate the top of the inner cup 14.
  • the pre-setting spring 42 biases the outer cup 20 upward (in the direction denoted by arrow B) with respect to the inner cup 14 after actuation of the applicator 10.
  • the inner cup 14 further includes a piston stop 18, having a top 19a and bottom 19b surface that maintains the piston 30 in a pre-set position and restricts motion of the piston 30 there beyond in an upward direction.
  • the piston 30 includes at least one, more preferably, at least two, locking members 36 (i.e., first latching assembly) that are disposed proximate the end opposite the piston face 32.
  • the locking members 36 are adapted to contact the outer cup 20 locking member seat 24 after actuation of the applicator 10 (see Fig. 6) and raise the piston 30 to pre-set position, as illustrated in Fig. 4.
  • the piston 30 further includes at least one, more preferably, at least two, flexible release catches 38 (i.e., second latching assembly).
  • the release catches 38 are designed and adapted to communicate with (or be positioned on) the top 19a of the inner cup 14 piston stop 18. (see Figs. 1 and 2).
  • the release catches 38 are further adapted to flex inwardly and, hence, disengage from the stop 18 when the cup 20 and, hence, spring guide 22 moves from the primary position to the pre-set position (see Fig. 2).
  • Figs. 1 - 6 further illustrate a patch retainer 50 operatively secured to the applicator 10.
  • the retainer 50 preferably has a substantially annular shape with a first end 52 that is configured to engage the leading end 15 of the inner cup 14.
  • the second or leading end 54 of the retainer 50 provides a stratum corneum contacting surface.
  • the retainer 50 includes a patch seat 56 that is adapted to receive the patch 60.
  • the manner in which the patch 60 is mounted in the retainer 50 can vary (for example, the patch 60 may be positioned proximate the leading end 54 of the retainer 50), it is preferred that the patch 60 is mounted distal from the leading end 54, as illustrated in Fig. 8, in order to avoid inadvertent contact of the patch microprojections with other objects (e.g., the fingers of the user).
  • the patch 60 is connected by frangible sections of patch base material to an annular ring of patch material 62, which is adhered to the patch seat 56.
  • the patch 60 is separated from the retainer seat 56 by the downward force of the piston 30.
  • patch 60 may be releasably attached to the piston 30 or positioned on the skin beneath the piston 30.
  • the diameter of the wire, d should be maximized and the mean diameter of the spring should be minimized.
  • the impact spring 40 has a stored or impact energy in the range of approximately 0.005 - 0.5 joules/cm 2 , wherein the area (i.e., cm 2 ) refers to the piston face 32. More preferably, the impact spring 40 has a stored energy in the range of approximately 0.01 - 0.3 joules/cm 2 .
  • the impact spring 40 has an impact velocity in the range of 0.5 - 20 m/sec. More preferably, the impact spring 40 has a velocity in the range of 1 - 10 m/sec.
  • Figs. 1 and 4 there is shown the applicator 10 in a primary or ready position with the patch 60 positioned in the retainer 50. As illustrated in Fig. 1, in the primary position, the piston 30 is positioned against the piston stop 18 and the flexible release catches 38 are seated on the top 19a of the piston stop 18.
  • Fig. 2 and Fig. 4 which is a further cross-sectional view of the applicator 10 rotated approximately 90° with respect to the view shown in Fig. 2)
  • the impact 40 and pre-setting 42 springs compress (i.e., energize) until the spring guide 22 contacts the release catches 38, flexing the release catches 38 inward (in the direction denoted by arrow Ri and R 2 ) whereby the release catches 38 disengage from the piston stop 18 and the piston 30 moves downward to an activated position and impacts the skin site 5 (i.e., stratum comeum) with the patch 60 (see Figs. 3 and 6).
  • the force exerted on the cap 20 and, hence, skin site 5 i.e., hold-down force
  • the hold-down force is preferably less than 15 lbs.
  • the hold-down force is in the range of approximately 2 - 15 lbs.
  • the hold-down force is in the range of approximately 5 - 10 lbs., which substantially reduces and, in most instances, eliminates re-coil of the applicator 10.
  • the hold-down force causes the stratum comeum to be stretched by the leading end 54 of the retainer 50 so that the skin site 5 is under optimal tension at the time the patch 60 impacts the skin site 5.
  • the retainer 50 includes a flexible biasing ring that is disposed on the leading end 54 of the retainer 50 that further stretches the stratum corneum when the releasing force is applied to the applicator 10.
  • the pre-setting spring 42 when the piston 30 is in the activated position (wherein the piston 30 is proximate the leading end 54 of the retainer 50), the pre-setting spring 42 is compressed (or energized) and, hence, biases the applicator outer cup 20 in an upward direction.
  • the biasing force provided by the pre-setting spring 42 moves the outer cup 20 and piston 30, which is in communication therewith (see Fig. 6), back to the primary position illustrated in Figs. 1 and 6 when the downward force is removed from the outer cup 20.
  • the release catches 38 have a sloping face that communicates with the top 19a of the piston stop 18. According to this embodiment, when a user places the applicator against a skin site 5 and exerts a downward force, the impact 40 and pre-setting 42 springs compress and energize until a releasing force is achieved, whereby the release catches 38 disengage (i.e., slide off the piston stop 18) and the piston 30 moves downward to the activated position shown in Figs. 3 and 6.
  • the applicator 10 of the invention can be used with a patch 60 that generally includes a microprojection array 64, an agent reservoir, and a backing.
  • the applicator 10 can also be used with a microprojection array without an agent reservoir.
  • the microprojection array is used as a pretreatment member, which is followed by the application of an agent with a separate transdermal agent delivery or sampling device, such as disclosed in Co-Pending U.S. Application No. 60/514,387, which is incorporated by reference herein in its entirety.
  • the microprojection array may incorporate the agent as a coating on the microprojections, e.g., for delivering a vaccine intradermally, such as disclosed in U.S. Application Nos. 10/674,626 and 60/514,433, which are incorporated by reference herein in their entirety.
  • the applicator 10 can also be used for impacting other micro-piercing elements against the stratum corneum, for example those disclosed in U.S. Pat. No. 5,879,326 and PCT Pub. WO 99/29364, which are similarly incorporated by reference herein in their entirety.
  • the microprojection array 64 includes a plurality of microprojections 68 that extend downward from one surface of a sheet or plate 70.
  • the microprojections 68 are preferably sized and shaped to penetrate the stratum corneum of the epidermis when pressure is applied to the array 64 (or patch 60).
  • microprojections 68 are further adapted to form microslits in a body surface to increase the administration of a substance (e.g., hydrogel formulation) through the body surface.
  • body surface refers generally to the skin of an animal or human.
  • the microprojections 68 are generally formed from a single piece of sheet material and are sufficiently sharp and long to puncture the stratum corneum of the skin. [0102] In the illustrated embodiment, the sheet 70 is formed with an opening 69 between the microprojections 68 to enhance the movement of the active agent therethrough.
  • microprojection array 64 described above and other microprojection devices and arrays that can be employed within the scope of the invention are disclosed in U.S. Pat. Nos. 6,322,808, 6,230,051 Bl and Co-Pending U.S. Application No. 10/045,842, which are incorporated by reference herein in their entirety.
  • the applicator of the present invention can be used in connection with transdermal agent delivery, transdermal analyte (e.g., glucose) sampling, or both.
  • Transdermal delivery devices for use with the present invention include, but are not limited to, passive devices, negative pressure driven devices, osmotic devices, and reverse electrotransport devices.
  • the present invention provides an effective and efficient means for delivering biologically active agents to a patient.
  • the present invention provides many advantages, such as: • Self-setting • Auto-triggering • Lower hold-down or releasing force compared to prior art applicators • Easy assembly • Virtually tamper resistant

Abstract

An applicator for applying a microprojection member to the stratum corneum of a patient having a housing, a piston moveable within the housing and a cap adapted to activate the applicator. The applicator is self-setting and auto-triggering, which allows the applicator to be used by patient's having neither the strength, nor the manual dexterity to pre-set and activate other types of applicator devices.

Description

SELF-ACTUATING APPLICATOR FOR MICROPROJECTION ARRAY
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S Provisional Application No. 60/516,182, filed October 31, 2003.
FIELD OF THE PRESENT INVENTION [0002] The present invention relates to an apparatus and method for applying a penetrating member to the skin by impact, and more particularly, the invention relates to a self-setting, auto-trigging impact device to reproducibly penetrate the stratum corneum with a penetrating member, such as a microprotrusion array, for transdermal delivery or sampling of an agent.
BACKGROUND OF THE INVENTION [0003] Active agents (or drugs) are most conventionally administered either orally or by injection. Unfortunately, many agents are completely ineffective or have radically reduced efficacy when orally administered since they either are not absorbed or are adversely affected before entering the bloodstream and thus do not possess the desired activity. Further, orally administered agents typically do not take effect as quickly as injected agents. On the other hand, the direct injection of the agent into the bloodstream, while assuring no modification of the agent during administration, is a difficult, inconvenient, painful and uncomfortable procedure which sometimes results in poor patient compliance.
[0004] Hence, in principle, transdermal delivery provides for a method of administering active agents that would otherwise need to be delivered via hypodermic injection or intravenous infusion. Transdermal agent delivery offers improvements in both of these areas. Transdermal delivery, when compared to oral delivery, avoids the harsh environment of the digestive tract, bypasses gastrointestinal drug metabolism, reduces first-pass effects and avoids the possible deactivation by digestive and liver enzymes. [0005] The word "transdermal", as used herein, refers to delivery of an active agent (e.g., a therapeutic agent, such as a drug or an immunologically active agent, such as a vaccine) through the skin to the local tissue or systemic circulatory system without substantial cutting or penetration of the skin, such as cutting with a surgical knife or piercing the skin with a hypodermic needle.
[0006] Transdermal agent delivery systems generally rely on passive diffusion to administer the agent, while active transdermal agent delivery systems rely on an external energy source, including electricity (e.g., iontophoresis) and ultrasound (e.g., phonophoresis), to deliver the agent. Passive transdeπnal agent delivery systems, which are more common, typically include an agent reservoir containing a high concentration of the agent. The reservoir is adapted to contact the skin, which enables the agent to diffuse through the skin and into the body tissues or bloodstream of a patient.
[0007] As is well known in the art, transdermal agent flux is dependent upon the condition of the skin, the size and physical/chemical properties of the agent molecule, and the concentration gradient across the skin. Because of the low permeability of the skin to many active agents, transdermal delivery has had limited applications. This low permeability is attributed primarily to the stratum corneum, the outermost skin layer, which consists of flat, dead cells filled with keratin fibers (i.e., keratinocytes) surrounded by lipid bilayers. This highly-ordered structure of the lipid bilayers confers a relatively impermeable character to the stratum corneum.
[0008] One common method of increasing the passive transdermal diffusional agent flux involves pre-treating the skin with, or co-delivering with the drug, a skin permeation enhancer. A permeation enhancer, when applied to a body surface through which the agent is delivered, enhances the flux of the agent therethrough. However, the efficacy of these methods in enhancing transdermal protein flux has, in several instances, been limited. [0009] As stated, active transport systems use an external energy source to assist and, in most instances, enhance agent flux through the stratum comeum. One such enhancement for transdermal agent delivery is referred to as "electrotransport." Electrotransport uses an electrical potential, which results in the application of electric current to aid in the transport of the agent through a body surface, such as skin.
[0010] There also have been many techniques and systems developed to mechanically penetrate or disrupt the outermost skin layers thereby creating pathways into the skin in order to enhance the amount of agent being transdermally delivered. Early vaccination devices, known as scarifiers, generally included a plurality of tines or needles that were applied to the skin to and scratch or make small cuts in the area of application. The vaccine was applied either topically on the skin, such as disclosed in U.S. Patent No. 5,487,726, or as a wetted liquid applied to the scarifier tines, such as disclosed in U.S. Patent Nos. 4,453,926, 4,109,655, and 3,136,314.
[0011] There are, however, numerous disadvantages and drawbacks associated with scarifiers. A serious disadvantage in using a scarifier to deliver an agent is the difficulty in determining the transdermal agent flux and the resulting dosage delivered. Also, due to the elastic, deforming and resilient nature of skin to deflect and resist puncturing, the tiny piercing elements often do not uniformly penetrate the skin and/or are wiped free of a liquid coating of an agent upon skin penetration.
[0012] Additionally, due to the self-healing process of the skin, the punctures or slits made in the skin tend to close up after removal of the piercing elements from the stratum corneum. Thus, the elastic nature of the skin acts to remove the active agent liquid coating that has been applied to the tiny piercing elements upon penetration of these elements into the skin. Furthermore, the tiny slits formed by the piercing elements heal quickly after removal of the device, thus limiting the passage of the liquid agent solution through the passageways created by the piercing elements and in turn limiting the transdermal flux of such devices. [0013] Other systems and apparatus that employ tiny skin piercing elements to enhance transdermal drug delivery are disclosed in U.S. Patent Nos. 5,879,326, 3,814,097, 5,279,54, 5,250,023, 3,964,482, Reissue No. 25,637, and PCT Publication Nos. WO 96/37155, WO 96/37256, WO 96/17648, WO 97/03718, WO 98/11937, WO 98/00193, WO 97/48440, WO 97/48441, WO 97/48442, WO 98/00193, WO 99/64580, WO 98/28037, WO 98/29298, and WO 98/29365; all incorporated herein by reference in their entirety.
[0014] The disclosed systems and apparatus employ piercing elements of various shapes, sizes and arrays to pierce the outermost layer (i.e., the stratum corneum) of the skin. The piercing elements disclosed in these references generally extend perpendicularly from a thin, flat member, such as a pad or sheet. The piercing elements in some of these devices are extremely small, some having a microprojection length of only about 25 - 400 microns and a microprojection thickness of only about 5 - 50 microns. These tiny piercing/cutting elements make correspondingly small microslits/microcuts in the stratum corneum for enhancing transdermal agent delivery therethrough.
[0015] The disclosed systems typically include a reservoir for holding the active agent and a delivery system that is adapted to transfer the agent from the reservoir through the stratum comeum, such as by hollow tines of the device itself. Illustrative is the device disclosed in PCT Pub. WO 93/17754, which has a liquid agent reservoir.
[0016] As disclosed in U.S. Patent Application No. 10/045,842, which is fully incorporated by reference herein, it is also possible to have the active agent that is to be delivered coated on the microprojections or microprojection array instead of contained in a physical reservoir. This eliminates the necessity of a separate physical reservoir and developing a agent formulation or composition specifically for the reservoir.
[0017] When microprojection arrays are used to improve delivery or sampling of agent through the skin, consistent, complete, and repeatable penetration is desired. Manual application of a skin patch, having microprojections protruding from its skin-contacting side, often results in significant variation in puncture depth across the length and width of the patch. In addition, manual application results in large variations in puncture depth between applications due to the manner in which the user applies the array a microprojection array to the stratum corneum with an automatic device, which provides in a consistent and repeatable manner, stratum comeum piercing, not only over the length and width of the microprotrusion array, but also from application of one microprojection array to the next.
[0018] Some known spring loaded applicator devices for delivery of lancets for body fluid (e.g., blood) sampling are described in PCT Pub. No. WO 99/26539 and WO 97/42886. However, these devices are difficult to use because they require two- handed pre-setting of the applicator device prior to the application. In particular, the known spring loaded lancet applicators require either two sections of the device to be pulled apart for pre-setting or require one part of the device to be pulled apart for presetting or require one part of the device to be twisted with respect to another part of the device for pre-setting. In both of these motions, a two-handed pre-setting operation is required. Many of the patients using these devices possess neither the strength, nor the manual dexterity to pre-set these known applicator devices.
[0019] In U.S. Application No. 09/976,763 a further spring loaded applicator, which is adapted to apply a microprojection array, is disclosed. The noted applicator includes a pre-setting mechanism that allows one-handed pre-setting of the applicator.
[0020] A drawback of the applicator is thus that the applicator still requires a separate step of manually pre-setting the device prior to use. It would thus be desirable to provide an applicator that is eliminates the step of manually pre-setting the applicator prior to use.
[0021] It is therefore an object of the present invention to provide an applicator for applying a microprojection member or array to a patient that substantially reduces or eliminates the aforementioned drawbacks and disadvantages associated with prior art applicator devices. [0022] It is another object of the present invention to provide an auto pre-setting applicator that eliminates the step of manually pre-setting the applicator prior to use.
[0023] It is another object of the present invention to provide an auto pre-setting and auto triggering applicator that is adapted to apply a microprojection member or array to a patient.
[0024] It is another object of the present invention to provide an auto pre-setting and auto triggering applicator that applies microprojection arrays in a consistent and repeatable manner.
[0025] It is another object of the present invention to provide an auto pre-setting and auto triggering for applying a microprojection array that is compact in design.
[0026] It is another object of the present invention to provide an auto pre-setting and auto triggering applicator for applying a microprojection array that requires minimal components and has an extended useful life.
SUMMARY OF THE INVENTION [0027] In accordance with the above objects and those that will be mentioned and will become apparent below, the applicator for applying a microprojection array to a patient in accordance with this invention comprises (i) a housing having a first and second end; (ii) a cap that is adapted to move from a primary position to a pre-set position relative to the housing, the first end of the housing being adapted to receive the microprojection member; (iii) a piston slideably disposed within the housing for impacting the microprojection member against the stratum corneum, the piston being adapted to move from a pre-set position to an activated position in which the piston extends from the end of the housing opposite the cap; (iv) an impact spring in communication with the cap and the piston, the impact spring being adapted to provide and an impact force to the piston and bias the piston out of the first end of the housing toward an activated position proximate the stratum corneum, wherein the impact spring is energized when the cap and the piston are in the pre-set position; (v) a pre-setting spring in communication with the cap and the housing, the pre-setting spring being adapted to provide a pre-setting force to the cap and bias the cap from the pre-set position to the primary position, wherein the pre-setting spring is energized when the piston is in the activated position; (vi) a first latching assembly in communication with the cap and the piston, the first latching assembly being adapted to cooperate with the cap and the pre-setting spring to return the piston to the primary position when the cap is moved from the pre-set position to the primary position; (vii) a second latching assembly in communication with the housing and the piston to position the piston in the pre-set position; and (vii) a releasing member in communication with the cap, said releasing member being adapted to communicate with the second latching assembly when the cap is moved from the primary position to the pre-set position, wherein the impact spring is energized and the releasing member disengages, whereby the piston moves from the pre-set position to the activated position and forces the microprojection member into the stratum corneum.
[0028] Preferably, the impact spring has an impact (or stored) energy in the range of approximately 0.005 - 0.5 joules/cm2. More preferably, the impact spring 40 has a stored energy in the range of approximately 0.01 - 0.3 joules/cm2.
[0029] In one embodiment of the invention, the impact spring has an impact velocity in the range of approximately 0.5 - 20 meters(m)/sec , more preferably, in the range of approximately 1.0 - 10 m/sec.
[0030] In one embodiment of the invention, the piston has a surface area in range of approximately 0.1 - 20 cm2, more preferably, in the range of 1.0 - 10 cm2.
[0031] In a preferred embodiment of the invention, the microprojection member includes at least one biologically active agent.
[0032] In accordance with a further embodiment of the invention, the device for impacting a microprojection member against the stratum corneum of a patient comprises (i) a housing having a first and second end, the housing including a cap that is adapted to move from a primary position to a pre-set position relative to the housing; (ii) a retainer adapted to engage the housing proximate the second end, the retainer being further adapted to receive and position the microprojection member; (iii) a housing having a first and second end; (iv) a cap that is adapted to move from a primary position to a pre-set position relative to the housing, the first end of the housing being adapted to receive the microprojection member; (v) a piston slideably disposed within the housing for impacting the microprojection member against the stratum corneum, the piston being adapted to move from a pre-set position to an activated position; (vi) an impact spring in communication with the cap and the piston, the impact spring being adapted to provide and an impact force to the piston and bias the piston out of the first end of the housing toward an activated position proximate the stratum corneum, wherein the impact spring is energized when the cap and the piston are in the pre-set position; (vii) a pre-setting spring in communication with the cap and the housing, the pre-setting spring being adapted to provide a pre-setting force to the cap and bias the cap from the pre-set position to the primary position, wherein the pre-setting spring is energized when the piston is in the activated position; (viii) a first latching assembly in communication with the cap and the piston, the first latching assembly being adapted to cooperate with the cap and the pre-setting spring to return the piston to the primary position when the cap is moved from the pre-set position to the primary position; (ix) a second latching assembly in communication with the housing and the piston to position the piston in the pre-set position; and (x) a releasing member in communication with the cap, said releasing member being adapted to communicate with the second latching assembly when the cap is moved from the primary position to the pre-set position, wherein the impact spring is energized and the releasing member disengages, whereby the piston moves from the preset position to the activated position and forces the microprojection member into the stratum corneum.
[0033] In accordance with yet another embodiment of the invention, there is disclosed a transdermal delivery system for delivering a biologically active agent to a patient that comprises (i) a patch system, the patch system including a gel pack containing an agent formulation and a microprojection member having top and bottom surfaces, a plurality of openings that extend through the microprojection member and a plurality of stratum corneum-piercing microprojections that project from the bottom surface of the microprojection member, the microprojection member being adapted to receive the gel pack whereby the agent formulation flows through the microprojection member openings, and (ii) an applicator, the applicator including a housing having a first and second end, the first end of the housing being adapted to receive the microprojection member, a cap that is adapted to move from a primary position to a pre-set position relative to the housing, a piston slideably disposed within the housing for impacting the microprojection member against the stratum corneum, the piston being adapted to move from a pre-set position to an activated position, an impact spring in communication with the cap and the piston, the impact spring being adapted to provide and an impact force to the piston and bias the piston out of the first end of the housing toward an activated position proximate the stratum comeum, wherein the impact spring is energized when the cap and the piston are in the pre-set position, a pre-setting spring in communication with the cap and the housing, the pre-setting spring being adapted to provide a pre-setting force to the cap and bias the cap from the pre-set position to the primary position, wherein the pre-setting spring is energized when the piston is in the activated position, a first latching assembly in communication with the cap and the piston, the first latching assembly being adapted to cooperate with the cap and the pre-setting spring to return the piston to the primary position when the cap is moved from the pre-set position to the primary position, a second latching assembly in communication with the housing and the piston to position the piston in the pre-set position and a releasing member in communication with the cap, said releasing member being adapted to communicate with the second latching assembly when the cap is moved from the primary position to the pre-set position, wherein the impact spring is energized and the releasing member disengages, whereby the piston moves from the pre-set position to the activated position and forces the microprojection member into the stratum corneum.
[0034] Preferably, the applicator includes a retainer adapted to engage the applicator housing proximate the second end, the retainer being further adapted to receive and position the microprojection member.
[0035] In a preferred embodiment, the agent formulation includes at least one biologically active agent. [0036] In one embodiment of the invention, the biologically active agent is selected from the group consisting of a leutinizing hormone releasing hormone (LHRH), LHRH analogs (such as goserelin, leuprolide, buserelin, triptorelin, gonadorelin, and napfarelin, menotropins (urofollitropin (FSH) and LH)), vasopressin, desmopressin, corticotropin (ACTH), ACTH analogs such as ACTH (1-24), calcitonin, parathyroid hormone (PTH), vasopressin, deamino [Val4, D-Arg8] arginine vasopressin, interferon alpha, interferon beta, interferon gamma, erythropoietin (EPO), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), interleukin- 10 (IL-10), glucagon, growth hormone release hormone (GHRH), growth hormone release factor (GHRF), insulin, insultropin, calcitonin, octreotide, endorphin, TRN, NT-36 (chemical name: N-[[(s)-4-oxo-2-azetidinyl]carbonyl]-L-histidyl-L- prolinamide), liprecin, pituitary hormones (e.g., HGH, HMG, desmopressin acetate, etc), follicle luteoids, aANF, growth factors such as growth factor releasing factor (GFRF), bMSH, GH, somatostatin, bradykinin, somatotropin, platelet-derived growth factor releasing factor, asparaginase, bleomycin sulfate, chymopapain, cholecystokinin, chorionic gonadotropin, corticotropin (ACTH), erythropoietin, epoprostenol (platelet aggregation inhibitor), glucagon, HCG, hirulog, hyaluronidase, interferon, interleukins, menotropins (urofollitropin (FSH) and LH), oxytocin, streptokinase, tissue plasminogen activator, urokinase, vasopressin, desmopressin, ANP, ANP clearance inhibitors, angiotensin II antagonists, antidiuretic hormone agonists, bradykinn antagonists, ceredase, CSI's, calcitonin gene related peptide (CGRP), enkephalins, FAB fragments, IgE peptide suppressors, IGF-1, neurotrophic factors, colony stimulating factors, parathyroid hormone and agonists, parathyroid hormone antagonists, prostaglandin antagonists, pentigetide, protein C, protein S, renin inhibitors, thymosin alpha- 1, thrombolytics, TNF, vasopressin antagonists analogs, alpha- 1 antitrypsin (recombinant), TGF-beta, fondaparinux, ardeparin, dalteparin, defibrotide, enoxaparin, hirudin, nadroparin, reviparin, tinzaparin, pentosan polysulfate, oligonucleotides and oligonucleotide derivatives, such as formivirsen, alendronic acid, clodronic acid, etidronic acid, ibandronic acid, incadronic acid, pamidronic acid, risedronic acid, tiludronic acid, zoledronic acid, argatroban, RWJ 445167, RWJ-671818, and mixtures thereof. [0037] In a further embodiment of the invention, the biologically active agent is selected from the group consisting of antigens in the form of proteins, polysaccharides, oligosaccharides, lipoproteins, weakened or killed viruses such as cytomegalovirus, hepatitis B virus, hepatitis C virus, human papillomavirus, rubella virus, and varicella zoster, weakened or killed bacteria such as bordetella pertussis, clostridium tetani, corynebacterium diphtheriae, group A streptococcus, legionella pneumophila, neisseria meningitides, pseudomonas aeruginosa, streptococcus pneumoniae, treponema pallidum, and vibrio cholerae and mixtures thereof.
[0038] In another embodiment, the agent formulation includes at least one additional pharmaceutical agent selected from the group consisting of pathway patency modulators and vasoconstrictors.
BRIEF DESCRIPTION OF THE DRAWINGS [0039] Further features and advantages will become apparent from the following and more particular description of the preferred embodiments of the invention, as illustrated in the accompanying drawings, and in which like referenced characters generally refer to the same parts or elements throughout the views, and in which:
[0040] FIGURE 1 is a front cross-sectional view of one embodiment of the applicator illustrating an initial configuration or primary position with a patch retainer attached to the applicator, according to the invention;
[0041] FIGURE 2 is a front cross-sectional view of the retainer illustrating a pre-set position, according to the invention;
[0042] FIGURE 3 is a front cross-sectional view of the retainer illustrating a an activated position with the piston proximate a skin site, according to the invention;
[0043] FIGURE 4 is a side cross-sectional view of the applicator in the primary position shown in FIGURE 1; [0044] FIGURE 5 is a side cross-sectional view of the applicator in the pre-set position shown in FIGURE 2;
[0045] FIGURE 6 is a side cross-sectional view of the applicator in the activated position shown in FIGURE 3;
[0046] FIGURE 7 is a front cross-sectional view of a patch retainer that is adapted to cooperate with the applicator shown in FIGURES 1 through 6, according to the invention;
[00476] FIGURE 8 is a perspective view of the patch retainer shown in FIGURE 7; and
[0048] FIGURE 9 is a partial perspective view of one embodiment of a microprojection array.
DETAILED DESCRIPTION OF THE INVENTION [0049] Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified materials, methods or structures as such may, of course, vary. Thus, although a number of materials and methods similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.
[0050] It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only and is not intended to be limiting.
[0051] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one having ordinary skill in the art to which the invention pertains.
[0052] Further, all publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety. [0053] Finally, as used in this specification and the appended claims, the singular forms "a, "an" and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "a microprojection" includes two or more such microprojections and the like. Definitions [0054] The term "transdermal", as used herein, means the delivery of an agent into and/or through the skin for local or systemic therapy.
[0055] The term "transdermal flux", as used herein, means the rate of transdermal delivery.
[0056] The term "biologically active agent", as used herein, refers to a composition of matter or mixture containing a drug which is pharmacologically effective when administered in a therapeutically effective amount. Examples of such active agents include, without limitation, leutinizing hormone releasing hormone (LHRH), LHRH analogs (such as goserelin, leuprolide, buserelin, triptorelin, gonadorelin, and napfarelin, menotropins (urofollitropin (FSH) and LH)), vasopressin, desmopressin, corticotrophin (ACTH), ACTH analogs such as ACTH (1-24), calcitonin, vasopressin, deamino [Val4, D-Arg8] arginine vasopressin, interferon alpha, interferon beta, interferon gamma, erythropoietin (EPO), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), interleukin- 10 (D -10), glucagon, growth hormone releasing factor (GHRF), insulin, insulinotropin, calcitonin, octreotide, endorphin, TRN, NT-36 (chemical name: N-[[(s)-4-oxo-2-azetidinyl]carbonyl]-L- histidyl-L-prolinamide), liprecin, aANF, bMSH, somatostatin, bradykinin, somatofropin, platelet-derived growth factor releasing factor, chymopapain, cholecystokinin, chorionic gonadotropin, epoprostenol (platelet aggregation inhibitor), glucagon, hirulog, interferons, interleukins, menotropins (urofollitropin (FSH) and LH), oxytocin, streptokinase, tissue plasminogen activator, urokinase, ANP, ANP clearance inhibitors, angiotensin II antagonists, antidiuretic hormone agonists, bradykinin antagonists, ceredase, CSI's, calcitonin gene related peptide (CGRP), enkephalins, FAB fragments, IgE peptide suppressors, IGF-1, neurotrophic factors, colony stimulating factors, parathyroid hormone and agonists, parathyroid hormone antagonists, prostaglandin antagonists, pentigetide, protein C, protein S, renin inhibitors, thymosin alpha- 1, thrombolytics, TNF, vasopressin antagonists analogs, alpha- 1 antitrypsin (recombinant), TGF-beta, fondaparinux, ardeparin, dalteparin, defibrotide, enoxaparin, hirudin, nadroparin, reviparin, tinzaparin, pentosan polysulfate, oligonucleotides and oligonucleotide derivatives, such as formivirsen, alendronic acid, clodronic acid, etidronic acid, ibandronic acid, incadronic acid, pamidronic acid, risedronic acid, tiludronic acid, zoledronic acid, argatroban, RWJ 445167, RWJ-671818, and mixtures thereof.
[0057] The noted biologically active agents can also be in various forms, such as free bases, acids, charged or uncharged molecules, components of molecular complexes or nonirritating, pharmacologically acceptable salts. Further, simple derivatives of the active agents (such as ethers, esters, amides, etc.), which are easily hydrolyzed at body pH, enzymes, etc., can be employed.
[0058] The term "biologically active agent", as used herein, also refers to a composition of matter or mixture containing a "vaccine" or other immunologically active agent or an agent which is capable of triggering the production of an immunologically active agent, and which is directly or indirectly immunologically effective when administered in an immunologically effective amount.
[0059] The term "vaccine", as used herein, refers to conventional and/or commercially available vaccines, including, but not limited to, flu vaccines, Lyme disease vaccine, rabies vaccine, measles vaccine, mumps vaccine, chicken pox vaccine, small pox vaccine, hepatitis vaccine, pertussis vaccine, and diphtheria vaccine, recombinant protein vaccines, DNA vaccines and therapeutic cancer vaccines. The term "vaccine" thus includes, without limitation, antigens in the form of proteins, polysaccharides, oligosaccharides, lipoproteins, weakened or killed viruses such as cytomegalovirus, hepatitis B virus, hepatitis C virus, human papillomavirus, rubella virus, and varicella zoster, weakened or killed bacteria such as bordetella pertussis, clostridium tetani, corynebacterium diphtheriae, group A streptococcus, legionella pneumophila, neisseria meningitides, pseudomonas aeruginosa, streptococcus pneumoniae, treponema pallidum, and vibrio cholerae and mixtures thereof.
[0060] It is to be understood that more than one biologically active agent can be incorporated into an agent formulation or microprojection microprojection coating of, and that the use of the term "active agent" in no way excludes the use of two or more such active agents.
[0061] The term "biologically effective amount" or "biologically effective rate" shall be used when the biologically active agent is a pharmaceutically active agent and refers to the amount or rate of the pharmacologically active agent needed to effect the desired therapeutic, often beneficial, result.
[0062] The term "biologically effective amount" or "biologically effective rate" shall also be used when the biologically active agent is an immunologically active agent and refers to the amount or rate of the immunologically active agent needed to stimulate or initiate the desired immunologic, often beneficial result.
[0063] The term "vasoconstrictor", as used herein, refers to a composition of matter or mixture that narrows the lumen of blood vessels and, hence, reduces peripheral blood flow. Examples of suitable vasoconstrictors include, without limitation, amidephrine, cafaminol, cyclopentamine, deoxyepinephrine, epinephrine, felypressin, indanazoline, metizoline, midodrine, naphazoline, nordefrin, octodrine, orinpressin, oxymetazoline, phenylephrine, phenylethanolamine, phenylpropanolamine, propylhexedrine, pseudoephedrine, tetrahydrozoline, tramazoline, tuaminoheptane, tymazoline, vasopressin, xylometazoline and the mixtures thereof.
[0064] The terms "microprojections" and "microprotrusions", as used herein, refer to piercing elements that are adapted to pierce or cut through the stratum corneum into the underlying epidermis layer, or epidermis and dermis layers, of the skin of a living animal, particularly a mammal and more particularly a human. [0065] In one embodiment of the invention, the microprojections have a projection length less than 1000 microns. In a further embodiment, the microprojections have a projection length of less than 500 microns, more preferably, less than 250 microns. The microprojections typically have a width and thickness of about 5 to 50 microns. The microprojections may be formed in different shapes, such as needles, blades, pins, punches, and combinations thereof.
[0066] The term "microprojection array", as used herein, refers to a plurality of microprojections arranged in an array for piercing the stratum corneum. The microprojection array may be formed by etching or punching a plurality of microprojections from a thin sheet and folding or bending the microprojections out of the plane of the sheet to form a configuration, such as that shown in Fig. 5. The microprojection array may also be formed in other known manners, such as by forming one or more strips having microprojections along an edge of each of the strip(s) as disclosed in U.S. Patent No. 6,050,988.
[0067] References to the area of the sheet or member and reference to some property per area of the sheet or member are referring to the area bounded by the outer circumference or border of the sheet.
[0068] As will be appreciated by one having ordinary skill in the art, the applicator of the present invention can be readily employed for repeatable impact application of an array of microprojections to the stratum comeum in conjunction with transdermal therapeutic agent delivery or sampling. Although the applicator 10 is described for use with a certain type of microprojection array, it should be understood that the applicator can also be used with other types of stratum corneum micro-penetrating members.
[0069] As discussed in detail herein, the applicator of the invention is auto pre-setting and thus eliminates the step of manually pre-setting the applicator prior to use. The applicator is also auto-triggering. The applicator can thus be readily used by patients having neither the hand strength, nor the manual dexterity to pre-set other types of spring-loaded applicator devices. [0070] The applicator of the invention additionally employs a triggering mechanism that is loaded outside of the diameter of the impact spring that biases the piston away from the device, allowing the use of smaller diameter springs made from smaller diameter wire, which can store equal or greater energy with the same travel while weighing less. The reduced mass of the impact spring also permits a lower force to be used to compress the spring in order to achieve greater impact velocity.
[0071] Further, the impact spring and the pre-setting spring have different inner and outer diameters and their positions in the applicator prevent the possibility of accidentally placing a spring in the wrong location. The piston, inner cup and outer cup can also be keyed so they can only be assembled in a functional orientation.
[0072] The piston, inner cup and outer cup are also designed and configured to snap together to avoid the need for additional assembly steps, such as inserting screws, ultrasonic welding, adhesive bonding or solvent bonding. The snaps also make disassembly of the applicator difficult, discouraging anyone from tampering with the mechanism.
[0073] Referring now to Figs. 1-3, the applicator 10 generally includes a housing 12, having an inner cup 14, and a piston 30 movable within the housing 12. As illustrated in Fig. 1, the housing 12 further includes an outer cup (or cap) 20 for actuating the applicator 10 to impact the stratum corneum with a patch 60 or microprojection array 64.
[0074] The applicator 10 further includes an impact spring 40 that is positioned inside the spring guide 22 that extends inwardly from the top 23 of the outer cup 20. The impact spring 40 is also seated in the piston spring seat or recess 34. According to the invention, the impact spring 40 biases the piston 30 downward (in the direction denoted by arrow A) with respect to the applicator housing 12.
[0075] As illustrated in Fig. 2, the piston 30 has a lower surface or face 32, which, according to the invention, can be substantially planar, slightly convex or configured to a body surface (i.e., a specific skin site). As discussed in detail herein, when the applicator 10 is actuated, the lower surface 32 of the piston 30 causes a microprojection array or a transdermal patch containing a microprojection array to impact and pierce the stratum corneum.
[0076] According to the invention, the piston face 32 preferably has a surface area in the range of approximately 0.1 - 20 cm2. More preferably, the piston face 32 has a surface area in the range of approximately 1 - 10 cm2.
[0077] Referring back to Fig. 1, the applicator 10 additionally includes a pre-setting spring 42 that is positioned around the impact spring. The pre-setting spring 42 is also seated in the spring seat 16 disposed proximate the top of the inner cup 14. As discussed in detail herein, the pre-setting spring 42 biases the outer cup 20 upward (in the direction denoted by arrow B) with respect to the inner cup 14 after actuation of the applicator 10.
[0078] As illustrated in Fig. 1, the inner cup 14 further includes a piston stop 18, having a top 19a and bottom 19b surface that maintains the piston 30 in a pre-set position and restricts motion of the piston 30 there beyond in an upward direction.
[0079] Referring now to Fig. 4 (which is a further sectional view of the applicator 10 rotated approximately 90° with respect to the view shown in Fig. 1) the piston 30 includes at least one, more preferably, at least two, locking members 36 (i.e., first latching assembly) that are disposed proximate the end opposite the piston face 32. According to the invention, the locking members 36 are adapted to contact the outer cup 20 locking member seat 24 after actuation of the applicator 10 (see Fig. 6) and raise the piston 30 to pre-set position, as illustrated in Fig. 4.
[0080] As illustrated in Fig. 1, the piston 30 further includes at least one, more preferably, at least two, flexible release catches 38 (i.e., second latching assembly). According to the invention, the release catches 38 are designed and adapted to communicate with (or be positioned on) the top 19a of the inner cup 14 piston stop 18. (see Figs. 1 and 2). As discussed in detail below, the release catches 38 are further adapted to flex inwardly and, hence, disengage from the stop 18 when the cup 20 and, hence, spring guide 22 moves from the primary position to the pre-set position (see Fig. 2).
[0081] Figs. 1 - 6 further illustrate a patch retainer 50 operatively secured to the applicator 10. Referring now to Figs. 7 and 8, the retainer 50 preferably has a substantially annular shape with a first end 52 that is configured to engage the leading end 15 of the inner cup 14. The second or leading end 54 of the retainer 50 provides a stratum corneum contacting surface.
[0082] Referring now to Fig. 7, the retainer 50 includes a patch seat 56 that is adapted to receive the patch 60. Although the manner in which the patch 60 is mounted in the retainer 50 can vary (for example, the patch 60 may be positioned proximate the leading end 54 of the retainer 50), it is preferred that the patch 60 is mounted distal from the leading end 54, as illustrated in Fig. 8, in order to avoid inadvertent contact of the patch microprojections with other objects (e.g., the fingers of the user).
[0083] According to one example, the patch 60 is connected by frangible sections of patch base material to an annular ring of patch material 62, which is adhered to the patch seat 56. The patch 60 is separated from the retainer seat 56 by the downward force of the piston 30. Alternatively, patch 60 may be releasably attached to the piston 30 or positioned on the skin beneath the piston 30.
[0084] As indicated, two significant features of the applicator 10 are the locations of the impact spring 40 and pre-setting spring 42, and the use of a small diameter and, hence, low mass impact spring 40.
[0085] As is well known in the art, the mass (m) of a spring is a function of the density of the spring material (p), the diameter of the wire (d) and the length of the wire (L); m =/>πLd2/4 the length of the wire (L) being a function of the mean diameter of the spring (D), the length of the spring (s) and the pitch (P):
Figure imgf000022_0001
[0086] As is further well known in the art, the stiffness of the spring (k) is a function of the modulus of the spring material (E), the diameter of the wire (d), the mean diameter of the spring (D), the length of the spring (s) and the pitch (P): k = EPd4/8sD3
In order to maximize the stiffness-to-weight ratio of the impact spring, the diameter of the wire, d, should be maximized and the mean diameter of the spring should be minimized.
[0087] Further, the energy stored in the spring (PE) is a function of the stiffness of the spring (k) and the amount of compression in the spring at the start (x0) and end (xi) of its travel: PE = k(x1 2 - x0 2)/2
[0088] In accordance with the noted relationships and one embodiment of the invention, the impact spring 40 has a stored or impact energy in the range of approximately 0.005 - 0.5 joules/cm2, wherein the area (i.e., cm2) refers to the piston face 32. More preferably, the impact spring 40 has a stored energy in the range of approximately 0.01 - 0.3 joules/cm2.
[0089] According to the invention, in the illustrated embodiment, the impact spring 40 has an impact velocity in the range of 0.5 - 20 m/sec. More preferably, the impact spring 40 has a velocity in the range of 1 - 10 m/sec.
[0090] Referring now to the figures, the operation of the applicator 10 will be described in detail. Referring first to Figs. 1 and 4, there is shown the applicator 10 in a primary or ready position with the patch 60 positioned in the retainer 50. As illustrated in Fig. 1, in the primary position, the piston 30 is positioned against the piston stop 18 and the flexible release catches 38 are seated on the top 19a of the piston stop 18.
[0091] Referring now to Fig. 2 and Fig. 4 (which is a further cross-sectional view of the applicator 10 rotated approximately 90° with respect to the view shown in Fig. 2), when a user places the applicator 10 against a skin site 5 and exerts a downward force on the outer cup 20 (in a direction denoted by arrow B), the impact 40 and pre-setting 42 springs compress (i.e., energize) until the spring guide 22 contacts the release catches 38, flexing the release catches 38 inward (in the direction denoted by arrow Ri and R2) whereby the release catches 38 disengage from the piston stop 18 and the piston 30 moves downward to an activated position and impacts the skin site 5 (i.e., stratum comeum) with the patch 60 (see Figs. 3 and 6).
[0092] According to the invention, the force exerted on the cap 20 and, hence, skin site 5 (i.e., hold-down force) prior to the noted activation is preferably less than 15 lbs., more preferably, the hold-down force is in the range of approximately 2 - 15 lbs. Even more preferably, the hold-down force is in the range of approximately 5 - 10 lbs., which substantially reduces and, in most instances, eliminates re-coil of the applicator 10.
[0093] According to the invention, the hold-down force causes the stratum comeum to be stretched by the leading end 54 of the retainer 50 so that the skin site 5 is under optimal tension at the time the patch 60 impacts the skin site 5. In a further envisioned embodiment of the invention (not shown), the retainer 50 includes a flexible biasing ring that is disposed on the leading end 54 of the retainer 50 that further stretches the stratum corneum when the releasing force is applied to the applicator 10.
[0094] Referring now to Figs. 3 and 6, when the piston 30 is in the activated position (wherein the piston 30 is proximate the leading end 54 of the retainer 50), the pre-setting spring 42 is compressed (or energized) and, hence, biases the applicator outer cup 20 in an upward direction. The biasing force provided by the pre-setting spring 42 moves the outer cup 20 and piston 30, which is in communication therewith (see Fig. 6), back to the primary position illustrated in Figs. 1 and 6 when the downward force is removed from the outer cup 20.
[0095] In a further envisioned embodiment, not shown, the release catches 38 have a sloping face that communicates with the top 19a of the piston stop 18. According to this embodiment, when a user places the applicator against a skin site 5 and exerts a downward force, the impact 40 and pre-setting 42 springs compress and energize until a releasing force is achieved, whereby the release catches 38 disengage (i.e., slide off the piston stop 18) and the piston 30 moves downward to the activated position shown in Figs. 3 and 6.
[0096] The applicator 10 of the invention can be used with a patch 60 that generally includes a microprojection array 64, an agent reservoir, and a backing. However, the applicator 10 can also be used with a microprojection array without an agent reservoir. In this case, the microprojection array is used as a pretreatment member, which is followed by the application of an agent with a separate transdermal agent delivery or sampling device, such as disclosed in Co-Pending U.S. Application No. 60/514,387, which is incorporated by reference herein in its entirety.
[0097] Alternatively, the microprojection array may incorporate the agent as a coating on the microprojections, e.g., for delivering a vaccine intradermally, such as disclosed in U.S. Application Nos. 10/674,626 and 60/514,433, which are incorporated by reference herein in their entirety.
[0098] The applicator 10 can also be used for impacting other micro-piercing elements against the stratum corneum, for example those disclosed in U.S. Pat. No. 5,879,326 and PCT Pub. WO 99/29364, which are similarly incorporated by reference herein in their entirety.
[0099] Referring now to Fig. 9 there is shown one embodiment of a microprojection array 64 that can be employed within the scope of the present invention. As illustrated in Fig. 5, the microprojection array 64 includes a plurality of microprojections 68 that extend downward from one surface of a sheet or plate 70. The microprojections 68 are preferably sized and shaped to penetrate the stratum corneum of the epidermis when pressure is applied to the array 64 (or patch 60).
[0100] The microprojections 68 are further adapted to form microslits in a body surface to increase the administration of a substance (e.g., hydrogel formulation) through the body surface. The term "body surface", as used herein, refers generally to the skin of an animal or human.
[0101] The microprojections 68 are generally formed from a single piece of sheet material and are sufficiently sharp and long to puncture the stratum corneum of the skin. [0102] In the illustrated embodiment, the sheet 70 is formed with an opening 69 between the microprojections 68 to enhance the movement of the active agent therethrough.
[0103] Further details of the microprojection array 64 described above and other microprojection devices and arrays that can be employed within the scope of the invention are disclosed in U.S. Pat. Nos. 6,322,808, 6,230,051 Bl and Co-Pending U.S. Application No. 10/045,842, which are incorporated by reference herein in their entirety.
[0104] As will be appreciated by one having ordinary skill in the art, the applicator of the present invention can be used in connection with transdermal agent delivery, transdermal analyte (e.g., glucose) sampling, or both. Transdermal delivery devices for use with the present invention include, but are not limited to, passive devices, negative pressure driven devices, osmotic devices, and reverse electrotransport devices.
[0105] From the foregoing description, one of ordinary skill in the art can easily ascertain that the present invention, among other things, provides an effective and efficient means for delivering biologically active agents to a patient. [0106] As will be appreciated by one having ordinary skill in the art, the present invention provides many advantages, such as: • Self-setting • Auto-triggering • Lower hold-down or releasing force compared to prior art applicators • Easy assembly • Virtually tamper resistant
[0107] Without departing from the spirit and scope of this invention, one of ordinary skill can make various changes and modifications to the invention to adapt it to various usages and conditions. As such, these changes and modifications are properly, equitably, and intended to be, within the full range of equivalence of the following claims.

Claims

CLAIMS What is Claimed is: 1. A device for impacting a microprojection member against the stratum corneum of a patient, comprising: a housing having a first and second end, said first end of said housing being adapted to receive said microprojection member; a cap that is adapted to move from a primary position to a pre-set position relative to said housing; a piston slideably disposed within said housing for impacting said microprojection member against the stratum corneum, said piston being adapted to move from said pre-set position to an activated position; an impact spring in communication with said cap and said piston, said impact spring being adapted to provide and an impact force to said piston and bias said piston out of said first end of said housing toward an activated position proximate the stratum corneum, wherein said impact spring is energized when said cap and said piston are in said pre-set position; a pre-setting spring in communication with said cap and said housing, said presetting spring being adapted to provide a pre-setting force to said cap and bias said cap from said pre-set position to said primary position, wherein said pre-setting spring is energized when said piston is in said activated position; a first latching assembly in communication with said cap and said piston, said first latching assembly being adapted to cooperate with said cap and said pre-setting spring to return said piston to said primary position when said cap is moved from said pre-set position to said primary position; a second latching assembly in communication with said housing and said piston to position said piston in said pre-set position; and a releasing member in communication with said cap, said releasing member being adapted to communicate with said second latching assembly when said cap is moved from said primary position to said pre-set position, wherein said impact spring is energized and said second latching assembly disengages, whereby said piston moves from said pre-set position to said activated position and forces said microprojection member into the stratum corneum.
2. The device of Claim 1, wherein said impact spring has a stored energy in the range of approximately 0.005 - 0.5 joules/cm2.
3. The device of Claim 2, wherein said impact spring has a stored energy in the range of approximately 0.01 - 0.3 joules/cm2.
4. The device of Claim 1, wherein said impact spring has an impact velocity in the range of approximately 0.5 - 20 m/sec.
5. The device of Claim 4, wherein said impact spring has an impact velocity in the range of approximately 1.0 - 10 m/sec.
6. The device of Claim 1, wherein said piston includes a face, said face having a surface area in the range of approximately 0.1 - 20 cm2.
7. The device of Claim 6, wherein said face has a surface area in the range of approximately 1.0 - 10 cm2.
8. The device of Claim 1, wherein said microprojection member includes an agent formulation having at least one biologically active agent.
9. The device of Claim 1, wherein said second latching assembly is disposed on the outside of said impact spring.
10. The device of Claim 1, wherein said pre-setting spring is disposed on the outside of said impact spring.
11. A device for impacting a microprojection member against the stratum comeum of a patient, comprising: a housing having a first and second end; a retainer adapted to engage said housing proximate said second end, said retainer being further adapted to receive and position said microprojection member; a cap that is adapted to move from a primary position to a pre-set position relative to said housing; a piston slideably disposed within said housing for impacting said microprojection member against the stratum corneum, said piston being adapted to move from said pre-set position to an activated position; an impact spring in communication with said cap and said piston, said impact spring being adapted to provide and an impact force to said piston and bias said piston out of said first end of said housing toward an activated position proximate the stratum corneum, wherein said impact spring is energized when said cap and said piston are in said pre-set position; a pre-setting spring in communication with said cap and said housing, said presetting spring being adapted to provide a pre-setting force to said cap and bias said cap from said pre-set position to said primary position, wherein said pre-setting spring is energized when said piston is in said activated position; a first latching assembly in communication with said cap and said piston, said first latching assembly being adapted to cooperate with said cap and said pre-setting spring to return said piston to said primary position when said cap is moved from said pre-set position to said primary position; a second latching assembly in communication with said housing and said piston to position said piston in said pre-set position; and a releasing member in communication with said cap, said releasing member being adapted to communicate with said second latching assembly when said cap is moved from said primary position to said pre-set position, wherein said impact spring is energized and said second latching assembly disengages, whereby said piston moves from said pre-set position to said activated position and forces said microprojection member into the stratum corneum.
12. A transdermal delivery system for delivering a biologically active agent to a patient, comprising: a patch system, said patch system including a gel pack containing a hydrogel formulation and a microprojection member having top and bottom surfaces, a plurality of openings that extend through said microprojection member and a plurality of stratum comeum-piercing microprojections that project from said bottom surface of said microprojection member, said microprojection member being adapted to receive said gel pack whereby said hydrogel formulation flows through said microprojection member openings; and an applicator, said applicator including a housing having a first and second end, a cap that is adapted to move from a primary position to a pre-set position relative to said housing, said first end of said housing being adapted to receive said microprojection member, a piston slideably disposed within said housing for impacting said microprojection member against the stratum corneum, said piston being adapted to move from said pre-set position to an activated position proximate the stratum corneum, an impact spring in communication with said cap and said piston, said impact spring being adapted to provide an impact force to said piston and bias said piston out of said first end of said housing toward said activated position, wherein said impact spring is energized when said cap and said piston are in said pre-set position, a pre-setting spring in communication with said cap and said housing, said pre-setting spring being adapted to provide a pre-setting force to said cap and bias said cap from said pre-set position to said primary position, wherein said pre-setting spring is energized when said piston is in said activated position, a first latching assembly in communication with said cap and said piston, said first latching assembly being adapted to cooperate with said cap and said presetting spring to return said piston to said primary position when said cap is moved from said pre-set position to said primary position, a second latching assembly in communication with said housing and said piston to position said piston in said pre-set position, and a releasing member in communication with said cap, said releasing member being adapted to communicate with said second latching assembly when said cap is moved from said primary position to said pre-set position, wherein said impact spring is energized and said second latching assembly disengages, whereby said piston moves from said pre-set position to said activated position and forces said microprojection member into the stratum comeum.
13. The delivery system of Claim 12, wherein said hydrogel formulation includes at least one biologically active agent.
14. The delivery system of Claim 13, wherein said biologically active agent is selected from the group consisting of a leutinizing hormone releasing hormone (LHRH), LHRH analogs, vasopressin, desmopressin, corticotropin (ACTH), ACTH analogs, calcitonin, parathyroid hormone (PTH), vasopressin, deamino [Val4, D-Arg8] arginine vasopressin, interferon alpha, interferon beta, interferon gamma, erythropoietin (EPO), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), interleukin- 10 (IL-10), glucagon, growth hormone release hormone (GHRH), growth hormone release factor (GHRF), insulin, insultropin, calcitonin, octreotide, endorphin, TRN, N-[[(s)-4-oxo-2-azetidinyl]carbonyl]-L-histidyl- L-prolinamide, liprecin, pituitary hormones, follicle luteoids, aANF, growth factors, bMSH, GH, somatostatin, bradykinin, somatofropin, platelet-derived growth factor releasing factor, asparaginase, bleomycin sulfate, chymopapain, cholecystokinin, chorionic gonadotropin, corticotropin (ACTH), erythropoietin, epoprostenol (platelet aggregation inhibitor), glucagon, HCG, hirulog, hyaluronidase, interferon, interleukins, menotropins (urofollitropin (FSH) and LH), oxytocin, sfreptokinase, tissue plasminogen activator, urokinase, vasopressin, desmopressin, ANP, ANP clearance inhibitors, angiotensin II antagonists, antidiuretic hormone agonists, bradykinn antagonists, ceredase, CSI's, calcitonin gene related peptide (CGRP), enkephalins, FAB fragments, IgE peptide suppressors, IGF-1, neurotrophic factors, colony stimulating factors, parathyroid hormone (PTH) and agonists, parathyroid hormone antagonists, prostaglandin antagonists, pentigetide, protein C, protein S, renin inhibitors, thymosin alpha- 1, thrombolytics, TNF, vasopressin antagonists analogs, alpha- 1 antitrypsin (recombinant), TGF-beta, fondaparinux, ardeparin, dalteparin, defibrotide, enoxaparin, hirudin, nadroparin, reviparin, tinzaparin, pentosan polysulfate, oligonucleotides and oligonucleotide derivatives, alendronic acid, clodronic acid, etidronic acid, ibandronic acid, incadronic acid, pamidronic acid, risedronic acid, tiludronic acid, zoledronic acid, argatroban, RWJ 445167, RWJ-671818, and mixtures thereof.
15. The delivery system of Claim 13, wherein said biologically active agent is selected from the group consisting of antigens in the form of proteins, polysaccharides, oligosaccharides, lipoproteins, weakened or killed viruses such as cytomegalovirus, hepatitis B virus, hepatitis C virus, human papillomavirus, rubella virus, and varicella zoster, weakened or killed bacteria such as bordetella pertussis, clostridium tetani, corynebacterium diphtheriae, group A streptococcus, legionella pneumophila, neisseria meningitides, pseudomonas aeruginosa, streptococcus pneumoniae, treponema pallidum, and vibrio cholerae and mixtures thereof.
16. The delivery system of Claim 12, wherein said hydrogel formulation includes at least one pathway patency modulator.
17. The delivery system of Claim 12, wherein said hydrogel formulation includes at least one vasoconstrictor.
PCT/US2004/035052 2003-10-31 2004-10-21 Self-actuating applicator for microprojection array WO2005044333A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0415629-3A BRPI0415629A (en) 2003-10-31 2004-10-21 self-actuating applicator for microprojection assembly
AT04796104T ATE539687T1 (en) 2003-10-31 2004-10-21 SELF-ACTUATED APPLICATOR FOR A MICROPROJECTION ARRANGEMENT
AU2004287414A AU2004287414B2 (en) 2003-10-31 2004-10-21 Self-actuating applicator for microprojection array
CA002543641A CA2543641A1 (en) 2003-10-31 2004-10-21 Self-actuating applicator for microprojection array
EP04796104A EP1680154B1 (en) 2003-10-31 2004-10-21 Self-actuating applicator for microprojection array
JP2006538124A JP4682144B2 (en) 2003-10-31 2004-10-21 Self-actuating applicator for microprojection arrays
ES04796104T ES2377647T3 (en) 2003-10-31 2004-10-21 Self-acting applicator for microprojection ordering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51618203P 2003-10-31 2003-10-31
US60/516,182 2003-10-31

Publications (2)

Publication Number Publication Date
WO2005044333A2 true WO2005044333A2 (en) 2005-05-19
WO2005044333A3 WO2005044333A3 (en) 2006-06-01

Family

ID=34572872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/035052 WO2005044333A2 (en) 2003-10-31 2004-10-21 Self-actuating applicator for microprojection array

Country Status (13)

Country Link
US (2) US7097631B2 (en)
EP (1) EP1680154B1 (en)
JP (1) JP4682144B2 (en)
KR (1) KR20060099523A (en)
CN (1) CN100571643C (en)
AR (1) AR046696A1 (en)
AT (1) ATE539687T1 (en)
AU (1) AU2004287414B2 (en)
BR (1) BRPI0415629A (en)
CA (1) CA2543641A1 (en)
ES (1) ES2377647T3 (en)
TW (1) TW200633675A (en)
WO (1) WO2005044333A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020841A2 (en) * 2004-08-11 2006-02-23 Alza Corporation Apparatus and method for transdermal delivery of natriuretic peptides
WO2009047555A1 (en) * 2007-10-08 2009-04-16 Ocelus Limited Needleless device for delivery of an agent through a biological barrier
WO2012088154A1 (en) 2010-12-22 2012-06-28 Valeritas, Inc. Microneedle patch applicator
US8911422B2 (en) 2010-02-24 2014-12-16 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
EP2699252A4 (en) * 2011-04-22 2015-05-27 Radius Health Inc Method of drug delivery for pth, pthrp and related peptides
US10232158B2 (en) 2013-09-18 2019-03-19 Cosmed Pharmaceutical Co., Ltd. Microneedle patch application device and patch holder
US10385008B2 (en) 2017-01-05 2019-08-20 Radius Pharmaceuticals, Inc. Polymorphic forms of RAD1901-2HCL
US10441691B2 (en) 2014-01-23 2019-10-15 Renephra Limited Fluid extraction device, applicator device and associated methods
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10918846B2 (en) 2015-07-22 2021-02-16 Labo Juversa Co., Ltd. Impacting type applicator for microneedle patch and leading end member
US10946180B2 (en) 2010-05-04 2021-03-16 Corium, Inc. Applicators for microneedles
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
US11413258B2 (en) 2015-04-29 2022-08-16 Radius Pharmaceuticals, Inc. Methods for treating cancer
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US11458289B2 (en) 2017-10-17 2022-10-04 Kindeva Drug Delivery L.P. Applicator for applying a microneedle array to skin
US11565097B2 (en) 2013-03-15 2023-01-31 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use

Families Citing this family (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69719761T2 (en) * 1996-06-18 2003-12-18 Alza Corp DEVICE FOR IMPROVING THE TRANSDERMAL ADMINISTRATION OF MEDICINAL PRODUCTS OR THE DETECTION OF BODY LIQUIDS
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
NZ525295A (en) * 2000-10-13 2005-05-27 Alza Corp Microprotrusion member retainer for impact applicator
EP1341453B1 (en) * 2000-10-13 2009-04-15 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7419481B2 (en) * 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7108681B2 (en) * 2000-10-16 2006-09-19 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
IL155583A0 (en) * 2000-10-26 2003-11-23 Alza Corp Transdermal drug delivery devices having coated microprotrusions
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
WO2002074173A1 (en) * 2001-03-16 2002-09-26 Alza Corporation Method and apparatus for coating skin piercing microprojections
US20020193729A1 (en) * 2001-04-20 2002-12-19 Cormier Michel J.N. Microprojection array immunization patch and method
AU2002348683A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
ES2357887T3 (en) 2001-06-12 2011-05-03 Pelikan Technologies Inc. APPARATUS FOR IMPROVING THE BLOOD OBTAINING SUCCESS RATE FROM A CAPILLARY PUNCTURE.
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
EP1404232B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Blood sampling apparatus and method
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
WO2002100460A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Electric lancet actuator
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
GB0210397D0 (en) * 2002-05-07 2002-06-12 Ferring Bv Pharmaceutical formulations
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
DE602004013140T2 (en) 2003-05-08 2009-07-02 Novo Nordisk A/S INTERNAL NEEDLE INTAKE DEVICE
DE602004028231D1 (en) 2003-05-08 2010-09-02 Novo Nordisk As A SKIN-INJECTABLE INJECTION DEVICE WITH A SEPARATE ACTUATING PART FOR INTRODUCING THE NEEDLE
EP1475113A1 (en) * 2003-05-08 2004-11-10 Novo Nordisk A/S External needle inserter
ES2347248T3 (en) 2003-05-30 2010-10-27 Pelikan Technologies Inc. PROCEDURE AND APPLIANCE FOR FLUID INJECTION.
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
MXPA06000281A (en) * 2003-06-30 2006-07-03 Johnson & Johnson Formulations for coated microprojections containing non-volatile counterions.
US20050123507A1 (en) * 2003-06-30 2005-06-09 Mahmoud Ameri Formulations for coated microprojections having controlled solubility
EP1502613A1 (en) 2003-08-01 2005-02-02 Novo Nordisk A/S Needle device with retraction means
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US20050106226A1 (en) * 2003-10-24 2005-05-19 Cormier Michel J. Pretreatment method and system for enhancing transdermal drug delivery
WO2005044139A2 (en) * 2003-10-28 2005-05-19 Alza Corporation Method and apparatus for reducing the incidence of tobacco use
ATE539687T1 (en) 2003-10-31 2012-01-15 Alza Corp SELF-ACTUATED APPLICATOR FOR A MICROPROJECTION ARRANGEMENT
JP2007516781A (en) * 2003-12-29 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Medical device and kit including the medical device
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
GB0402131D0 (en) 2004-01-30 2004-03-03 Isis Innovation Delivery method
WO2005094526A2 (en) 2004-03-24 2005-10-13 Corium International, Inc. Transdermal delivery device
US8287516B2 (en) 2004-03-26 2012-10-16 Unomedical A/S Infusion set
EP1732626A1 (en) 2004-03-30 2006-12-20 Novo Nordisk A/S Actuator system comprising lever mechanism
KR20070011481A (en) * 2004-04-13 2007-01-24 알자 코포레이션 Apparatus and method for transdermal delivery of multiple vaccines
AU2005244734A1 (en) 2004-05-13 2005-12-01 Alza Corporation Apparatus and method for transdermal delivery of parathyroid hormone agents
US7591806B2 (en) * 2004-05-18 2009-09-22 Bai Xu High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
ES2650188T3 (en) * 2004-06-10 2018-01-17 3M Innovative Properties Company Device and patch application kit
US8062250B2 (en) 2004-08-10 2011-11-22 Unomedical A/S Cannula device
AU2005282401A1 (en) * 2004-09-08 2006-03-16 Alza Corporation Microprojection array with improved skin adhesion and compliance
WO2006055802A1 (en) 2004-11-18 2006-05-26 3M Innovative Properties Company Microneedle array applicator and retainer
WO2006055795A1 (en) 2004-11-18 2006-05-26 3M Innovative Properties Company Low-profile microneedle array applicator
EP1835848A4 (en) * 2004-12-30 2009-07-29 Pelikan Technologies Inc Method and apparatus for analyte measurement test time
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
WO2006077262A1 (en) 2005-01-24 2006-07-27 Novo Nordisk A/S Medical device with protected transcutaneous device
US7985199B2 (en) 2005-03-17 2011-07-26 Unomedical A/S Gateway system
WO2006108185A1 (en) 2005-04-07 2006-10-12 3M Innovative Properties Company System and method for tool feedback sensing
US8048017B2 (en) * 2005-05-18 2011-11-01 Bai Xu High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
US8043250B2 (en) * 2005-05-18 2011-10-25 Nanomed Devices, Inc. High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
WO2007002523A2 (en) 2005-06-24 2007-01-04 3M Innovative Properties Company Collapsible patch with microneedle array
CA2613111C (en) * 2005-06-27 2015-05-26 3M Innovative Properties Company Microneedle array applicator device and method of array application
PT1762259E (en) * 2005-09-12 2010-12-10 Unomedical As Inserter for an infusion set with a first and second spring units
JP2009507576A (en) * 2005-09-12 2009-02-26 アルザ コーポレイション Coatable transdermal delivery microprojection assembly
EP2077128B1 (en) 2005-12-23 2010-12-22 Unomedical A/S Injection Device
EP1988958B2 (en) 2006-02-28 2016-03-16 Unomedical A/S Inserter for infusion part
US9173992B2 (en) * 2006-03-13 2015-11-03 Novo Nordisk A/S Secure pairing of electronic devices using dual means of communication
WO2007104756A1 (en) * 2006-03-13 2007-09-20 Novo Nordisk A/S Medical system comprising dual purpose communication means
CN101466393A (en) * 2006-03-15 2009-06-24 阿尔扎公司 Method for transdermal delivery of parathyroid hormone agents to prevent or treat osteopenia
US9119945B2 (en) * 2006-04-20 2015-09-01 3M Innovative Properties Company Device for applying a microneedle array
US20070293816A1 (en) * 2006-04-25 2007-12-20 Alza Corporation Microprojection Array Application with Grouped Microprojections for High Drug Loading
WO2007127815A2 (en) * 2006-04-25 2007-11-08 Alza Corporation Microprojection array application with multilayered microprojection member for high drug loading
US9399094B2 (en) 2006-06-06 2016-07-26 Novo Nordisk A/S Assembly comprising skin-mountable device and packaging therefore
WO2007140783A2 (en) 2006-06-07 2007-12-13 Unomedical A/S Inserter for transcutaneous sensor
AU2007256563B2 (en) 2006-06-09 2012-09-27 Unomedical A/S Mounting pad
AU2007280850B9 (en) * 2006-08-02 2010-09-02 Unomedical A/S Cannula and delivery device
JP2009545342A (en) * 2006-08-02 2009-12-24 ウノメディカル アクティーゼルスカブ Insertion device
EP1917990A1 (en) 2006-10-31 2008-05-07 Unomedical A/S Infusion set
WO2008053481A1 (en) * 2006-11-01 2008-05-08 Svip 6 Llc Microneedle arrays
US20080214987A1 (en) * 2006-12-22 2008-09-04 Nanomed Devices, Inc. Microdevice And Method For Transdermal Delivery And Sampling Of Active Substances
US10525246B2 (en) 2006-12-22 2020-01-07 Nanomed Skincare, Inc. Microdevice and method for transdermal delivery and sampling of active substances
EP2121111B1 (en) 2007-01-22 2018-03-14 Corium International, Inc. Applicators for microneedle arrays
KR20090117749A (en) * 2007-02-02 2009-11-12 우노메디컬 에이/에스 Injection site for injecting medication
CA2676811A1 (en) * 2007-02-02 2008-08-07 Unomedical A/S Injection site for injecting medication
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
EP2146689B1 (en) 2007-04-16 2020-08-12 Corium, Inc. Solvent-cast microneedle arrays containing active
US9186480B2 (en) 2007-06-20 2015-11-17 Unomedical A/S Apparatus for making a catheter
EP2185224A1 (en) 2007-07-03 2010-05-19 Unomedical A/S Inserter having bistable equilibrium states
PT2173410E (en) 2007-07-10 2011-05-05 Unomedical As Inserter having two springs
NZ582226A (en) 2007-07-18 2011-12-22 Unomedical As Insertion device with a pivoting action from a first to a second position and longitudinal action to a third position in the direction of insertion.
CA2988753A1 (en) 2007-08-06 2009-02-12 Serenity Pharmaceuticals, Llc Methods and devices for desmopressin drug delivery
EP2200677A1 (en) * 2007-09-17 2010-06-30 ICU Medical, Inc. Insertion devices for infusion devices
JP5178132B2 (en) * 2007-10-11 2013-04-10 キヤノン株式会社 Image processing system and image processing method
EP2209500B1 (en) 2007-10-31 2015-07-22 Novo Nordisk A/S Non-porous material as sterilization barrier
EP2231257A4 (en) 2007-12-24 2013-11-06 Univ Queensland Coating method
CA2749347C (en) 2008-02-07 2018-03-27 The University Of Queensland Patch production
BRPI0907715A2 (en) 2008-02-13 2017-06-13 Unomedical As seal between a cannula part and a fluid path
EP2259816B1 (en) 2008-02-20 2015-10-21 Unomedical A/S Insertion device with horizontally moving part
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US20100286045A1 (en) 2008-05-21 2010-11-11 Bjarke Mirner Klein Methods comprising desmopressin
EP2296686B2 (en) * 2008-05-21 2017-11-01 Ferring B.V. Orodispersible desmopressin for increasing initial period of sleep undisturbed by nocturia
US11963995B2 (en) 2008-05-21 2024-04-23 Ferring B.V. Methods comprising desmopressin
CA2760680A1 (en) 2008-05-23 2009-11-26 The University Of Queensland Analyte detection by microneedle patch with analyte selective reagents
CA2727015A1 (en) * 2008-06-04 2009-12-10 Coda Therapeutics, Inc. Treatment of pain with gap junction modulation compounds
EP2329035A2 (en) * 2008-06-04 2011-06-08 Seventh Sense Biosystems, Inc. Compositions and methods for rapid one-step diagnosis
MX2011005735A (en) 2008-12-22 2011-06-21 Unomedical As Medical device comprising adhesive pad.
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20110105872A1 (en) * 2009-10-30 2011-05-05 Seventh Sense Biosystems, Inc. Systems and methods for application to skin and control of actuation, delivery, and/or perception thereof
EP2408369A1 (en) 2009-03-02 2012-01-25 Seventh Sense Biosystems, Inc. Devices and methods for the analysis of an extractable medium
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US9033898B2 (en) 2010-06-23 2015-05-19 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
WO2012018486A2 (en) 2010-07-26 2012-02-09 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
KR101030752B1 (en) * 2009-04-09 2011-04-26 한국생명공학연구원 A Micro Needle Unit Having Controlling Function of Fluid Delivery
WO2010123463A1 (en) * 2009-04-23 2010-10-28 National University Of Singapore An apparatus that includes nano-sized projections and a method for manufacture thereof
EP2429627B1 (en) * 2009-04-24 2017-06-14 Corium International, Inc. Methods for manufacturing microprojection arrays
EP2424611A4 (en) * 2009-05-01 2012-10-24 Nanbu Plastics Co Ltd Transdermal administration device
US9108026B2 (en) * 2009-07-09 2015-08-18 Cook Medical Technologies Llc Spring action medical device
BR112012002050A2 (en) 2009-07-30 2016-05-17 Unomedical As inserter device with part of horizontal movement.
KR101712226B1 (en) 2009-07-31 2017-03-03 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Hollow microneedle arrays
JP2013500805A (en) 2009-08-07 2013-01-10 ウノメディカル・アー/エス Dosing device having a sensor and one or more cannulas
CN102695500A (en) 2009-11-09 2012-09-26 聚光灯技术合伙有限责任公司 Polysaccharide based hydrogels
AU2010314994B2 (en) 2009-11-09 2016-10-06 Spotlight Technology Partners Llc Fragmented hydrogels
WO2011065972A2 (en) * 2009-11-24 2011-06-03 Seventh Sense Biosystems, Inc. Patient-enacted sampling technique
US20110172638A1 (en) * 2010-01-08 2011-07-14 Ratio, Inc. Drug delivery device including multi-functional cover
JP5806236B2 (en) * 2010-01-13 2015-11-10 セブンス センス バイオシステムズ,インコーポレーテッド Rapid delivery and / or collection of fluids
JP5826766B2 (en) * 2010-01-13 2015-12-02 セブンス センス バイオシステムズ,インコーポレーテッド Sampling device interface
JP2013523233A (en) 2010-03-30 2013-06-17 ウノメディカル アクティーゼルスカブ Medical device
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
PT2568806T (en) 2010-05-12 2016-08-05 Radius Health Inc Therapeutic regimens
US9943673B2 (en) 2010-07-14 2018-04-17 Vaxxas Pty Limited Patch applying apparatus
US20120016308A1 (en) 2010-07-16 2012-01-19 Seventh Sense Biosystems, Inc. Low-pressure packaging for fluid devices
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
EP2433663A1 (en) 2010-09-27 2012-03-28 Unomedical A/S Insertion system
ES2550319T3 (en) 2010-09-28 2015-11-06 Radius Health, Inc Selective androgen receptor modulators
EP2436412A1 (en) 2010-10-04 2012-04-04 Unomedical A/S A sprinkler cannula
EP2626107B1 (en) * 2010-10-07 2021-05-26 Hisamitsu Pharmaceutical Co., Inc. Applicator
US9017289B2 (en) * 2010-11-03 2015-04-28 Covidien Lp Transdermal fluid delivery device
US8668675B2 (en) 2010-11-03 2014-03-11 Flugen, Inc. Wearable drug delivery device having spring drive and sliding actuation mechanism
JP2012100783A (en) * 2010-11-08 2012-05-31 Nanbu Plastics Co Ltd Liquid medicine supply device
ES2565805T3 (en) 2010-11-09 2016-04-07 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
CN108744262A (en) * 2010-11-23 2018-11-06 普莱萨格生命科学公司 Treatment and composition for for physical delivery
US8814831B2 (en) * 2010-11-30 2014-08-26 Becton, Dickinson And Company Ballistic microneedle infusion device
EP2460553A1 (en) * 2010-12-02 2012-06-06 Debiotech S.A. Device for inserting needles
EP2701598A1 (en) 2011-04-29 2014-03-05 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
KR102013466B1 (en) 2011-04-29 2019-08-22 세븐쓰 센스 바이오시스템즈, 인크. Delivering and/or receiving fluids
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
JP2014516644A (en) 2011-04-29 2014-07-17 セブンス センス バイオシステムズ,インコーポレーテッド Devices and methods for collection and / or manipulation of blood spots or other body fluids
US20140207101A1 (en) * 2011-06-09 2014-07-24 3M Innovative Properties Company Microstructure device with removable microstructure patch
US9216252B2 (en) 2011-07-27 2015-12-22 Hisamitsu Pharmaceutical Co., Inc. Applicator
CA2847711C (en) 2011-09-07 2019-08-20 3M Innovative Properties Company Delivery system for hollow microneedle arrays
NL2007461C2 (en) * 2011-09-23 2013-03-26 Ambro B V System for transporting fluid across or into a biological barrier, device and capsule as part of the system.
CN103957962B (en) 2011-10-05 2017-07-07 犹诺医药有限公司 Insert for inserting multiple percutaneous parts simultaneously
JP6265740B2 (en) * 2011-10-06 2018-01-24 久光製薬株式会社 applicator
EP2765927B1 (en) 2011-10-12 2021-02-24 Vaxxas Pty Limited Delivery device
IN2014CN02643A (en) * 2011-10-12 2015-08-07 3M Innovative Properties Co
CA2851620A1 (en) * 2011-10-12 2013-04-18 3M Innovative Properties Company Integrated microneedle array delivery system
EP2583715A1 (en) 2011-10-19 2013-04-24 Unomedical A/S Infusion tube system and method for manufacture
US9440051B2 (en) 2011-10-27 2016-09-13 Unomedical A/S Inserter for a multiplicity of subcutaneous parts
SG11201401851UA (en) 2011-10-28 2014-05-29 Presage Biosciences Inc Methods for drug delivery
DE102011119055B4 (en) * 2011-11-16 2013-08-14 Lts Lohmann Therapie-Systeme Ag Cylinder-piston unit with adhesive disk II
ES2761255T3 (en) * 2012-04-05 2020-05-19 Hisamitsu Pharmaceutical Co Lancing device
DE202012006290U1 (en) * 2012-06-29 2013-09-30 Lukas Pregenzer incontinence implant
JP6091818B2 (en) * 2012-08-28 2017-03-08 コスメディ製薬株式会社 Microneedle patch administration device
WO2014058746A1 (en) * 2012-10-10 2014-04-17 3M Innovative Properties Company Force-controlled applicator for applying a microneedle device to skin
EP3932463A1 (en) * 2013-01-08 2022-01-05 Kindeva Drug Delivery L.P. Applicator for applying a microneedle device to skin
WO2014150285A2 (en) * 2013-03-15 2014-09-25 Corium International, Inc. Multiple impact microprojection applicators and methods of use
ES2761580T3 (en) 2013-03-15 2020-05-20 Corium Inc Microarrays for therapeutic agent delivery, methods of use and manufacturing methods
EP2968116A1 (en) 2013-03-15 2016-01-20 Corium International, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US20140350518A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Syringe extrusion accessory
US20140350516A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Mechanical syringe accessory
CN105283216B (en) 2013-05-31 2018-01-26 3M创新有限公司 Micropin injection device including being inverted actuator
CN105246541B (en) 2013-05-31 2018-01-16 3M创新有限公司 Microneedle injection equipment including double coverings
SG11201509810TA (en) 2013-05-31 2015-12-30 3M Innovative Properties Co Microneedle injection and infusion apparatus and method of using same
EP3027263A1 (en) 2013-07-30 2016-06-08 ZP Opco, Inc. Low-profile microneedle patch applicator
DE102013021058B4 (en) * 2013-12-18 2017-10-12 Gerresheimer Regensburg Gmbh Device for applying a needle array to biological tissue
CN106061546A (en) * 2014-02-10 2016-10-26 Lts勒曼治疗系统股份公司 Microneedle system and method for the production thereof
US10029048B2 (en) 2014-05-13 2018-07-24 Allergan, Inc. High force injection devices
US20160038434A1 (en) * 2014-08-01 2016-02-11 Innovative Drive Corporation Device and method for application of a transdermal membrane
US10226585B2 (en) 2014-10-01 2019-03-12 Allergan, Inc. Devices for injection and dosing
EP3253440B1 (en) 2015-02-02 2022-12-21 Vaxxas Pty Limited Microprojection array applicator
BR112017019272A2 (en) 2015-03-10 2018-05-02 Allergan Pharmaceuticals Holdings Ireland Unlimited Company multiple needle injector
US11103259B2 (en) 2015-09-18 2021-08-31 Vaxxas Pty Limited Microprojection arrays with microprojections having large surface area profiles
CN112089961B (en) * 2015-12-21 2022-08-09 美德阿利克斯株式会社 Microneedle patch applicator and housing therefor
WO2017143345A1 (en) 2016-02-19 2017-08-24 Zp Opco, Inc. Method of rapidly achieving therapeutic concentrations of triptans for treatment of migraines
CN109069816B (en) * 2016-03-16 2022-03-25 考司美德制药株式会社 Microneedle patch holder
AU2017246114B2 (en) 2016-04-08 2022-03-17 Allergan, Inc. Aspiration and injection device
CN105999259A (en) * 2016-05-11 2016-10-12 长春海基亚生物技术股份有限公司 Rabies vaccine needle-free injection system and application
EP3458141A1 (en) 2016-05-20 2019-03-27 Uprax Microsolutions B.V. System and method for applying microneedles
LT3474841T (en) 2016-06-22 2022-06-10 Ellipses Pharma Ltd Ar+ breast cancer treatment methods
WO2018111616A1 (en) * 2016-12-16 2018-06-21 Kimberly-Clark Worldwide, Inc. Application device for a fluid delivery apparatus and method of use
KR102297238B1 (en) 2016-12-20 2021-09-01 히사미쓰 세이야꾸 가부시키가이샤 applicator
US20190351207A1 (en) 2017-01-25 2019-11-21 Cosmed Pharmaceutical Co., Ltd. Microneedle patch applying device
USD867582S1 (en) 2017-03-24 2019-11-19 Allergan, Inc. Syringe device
JP6931217B2 (en) 2017-03-28 2021-09-01 コスメディ製薬株式会社 Applicator for water-soluble sheet-like preparation
DK3606760T3 (en) 2017-03-31 2023-11-06 Vaxxas Pty Ltd ARRANGEMENT AND PROCEDURE FOR COATING SURFACES
JP2018191783A (en) * 2017-05-15 2018-12-06 富士フイルム株式会社 Micro-needle array unit and container
WO2018227246A1 (en) 2017-06-13 2018-12-20 Vaxxas Pty Limited Quality control of substrate coatings
EP3661587A4 (en) 2017-08-04 2021-06-09 Vaxxas Pty Limited Compact high mechanical energy storage and low trigger force actuator for the delivery of microprojection array patches (map)
US10430138B2 (en) * 2017-08-10 2019-10-01 Canon Kabushiki Kaisha Communication apparatus
US11660264B2 (en) 2017-08-23 2023-05-30 Emergex USA Corporation Method of rapidly achieving therapeutic concentrations of triptans for treatment of migraines and cluster headaches
KR102340393B1 (en) 2017-08-23 2021-12-17 조사노 파마 코포레이션 A Method for Rapidly Achieving Therapeutic Concentrations of Zolmitriptan for the Treatment of Migraine and Cluster Headaches
JP7033886B2 (en) * 2017-11-07 2022-03-11 ニプロ株式会社 Puncture device
CA3089513A1 (en) 2018-01-24 2019-08-01 Cosmed Pharmaceutical Co., Ltd. Tight-binding device for micro-needle
US11660265B2 (en) 2018-06-28 2023-05-30 Emergex USA Corporation Method of rapidly achieving therapeutic concentrations of triptans for treatment of migraines and cluster headaches
JP7473486B2 (en) 2018-07-04 2024-04-23 ラジウス ファーマシューティカルズ,インコーポレイテッド Polymorphic forms of RAD1901-2HCL
JP7099189B2 (en) * 2018-08-30 2022-07-12 ニプロ株式会社 Microneedle applicator
CN112888474A (en) * 2018-08-30 2021-06-01 尼普洛株式会社 Microneedle applicator
JP7172293B2 (en) * 2018-08-30 2022-11-16 ニプロ株式会社 microneedle applicator
US11246997B2 (en) * 2018-09-25 2022-02-15 Palo Alto Research Center Incorporated Handheld filament extension atomizer for precision delivery of drugs and therapeutics
CN109364364B (en) * 2018-12-10 2021-06-22 徐爱梅 Dermatological medicine applying device
JP2020179168A (en) 2019-04-25 2020-11-05 コスメディ製薬株式会社 Applicator 2 for water soluble sheet-like preparation
EP3989824A4 (en) 2019-06-25 2023-07-05 William Ma Sheathed cutting device
CN111685867B (en) * 2020-06-22 2020-12-01 镇江恒生涓恩医疗器械有限公司 Multistage stable form ablation electrode
EP3974017A1 (en) * 2020-09-28 2022-03-30 Latch Medical A microneedle patch application system
US11654270B2 (en) 2021-09-28 2023-05-23 Biolinq Incorporated Microneedle enclosure and applicator device for microneedle array based continuous analyte monitoring device

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25637E (en) 1964-09-08 Means for vaccinating
US3136314A (en) 1960-08-01 1964-06-09 Kravitz Harvey Vaccinating devices
US3964482A (en) 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
BE795384A (en) 1972-02-14 1973-08-13 Ici Ltd DRESSINGS
OA05448A (en) 1975-10-16 1981-03-31 Manufrance Manufacture Francai Multi-penetrating vaccine device.
GB2064329B (en) * 1979-11-01 1983-06-22 Matburn Holdings Ltd Multiple puncture apparatus
FR2474856A1 (en) 1980-01-31 1981-08-07 Merieux Inst SCARIFIER DEVICE
US4553541A (en) * 1981-03-23 1985-11-19 Becton, Dickinson And Co. Automatic retractable lancet assembly
EP0429842B1 (en) 1989-10-27 1996-08-28 Korea Research Institute Of Chemical Technology Device for the transdermal administration of protein or peptide drug
US5279544A (en) 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
FR2696334B1 (en) * 1992-10-01 1994-12-02 Boudjema J Pascal Device for transplanting small diameter hair grafts.
US5439473A (en) * 1993-12-13 1995-08-08 Modulohm A/S Safety lancet
US5350392A (en) * 1994-02-03 1994-09-27 Miles Inc. Lancing device with automatic cocking
US5487726A (en) 1994-06-16 1996-01-30 Ryder International Corporation Vaccine applicator system
CA2205444A1 (en) 1994-12-09 1996-06-13 Novartis Ag Transdermal system
AU5740496A (en) 1995-05-22 1996-12-11 General Hospital Corporation, The Micromechanical device and method for enhancing delivery of compounds through the skin
AU5869796A (en) 1995-05-22 1996-12-11 Ned A. Godshall Micromechanical patch for enhancing the delivery of compound s through the skin
DE19525607A1 (en) 1995-07-14 1997-01-16 Boehringer Ingelheim Kg Transcorneal drug delivery system
AU3070397A (en) 1996-05-17 1997-12-05 Mercury Diagnostics Inc. Methods and apparatus for sampling body fluid
DE69719761T2 (en) 1996-06-18 2003-12-18 Alza Corp DEVICE FOR IMPROVING THE TRANSDERMAL ADMINISTRATION OF MEDICINAL PRODUCTS OR THE DETECTION OF BODY LIQUIDS
CA2259437C (en) 1996-07-03 2006-12-05 Altea Technologies, Inc. Multiple mechanical microporation of skin or mucosa
WO1998011937A1 (en) 1996-09-17 1998-03-26 Deka Products Limited Partnership System for delivery of drugs by transport
EP0957972B1 (en) 1996-12-20 2003-03-19 Alza Corporation Device and method for enhancing transdermal agent flux
DE19654391A1 (en) 1996-12-27 1998-07-02 Basf Ag Catalyst for the selective production of propylene from propane
GB2334005B (en) 1996-12-31 2001-02-07 Shell Internat Res Maatschhapp Spar platform with vertical slots
US5964718A (en) 1997-11-21 1999-10-12 Mercury Diagnostics, Inc. Body fluid sampling device
US6918901B1 (en) 1997-12-10 2005-07-19 Felix Theeuwes Device and method for enhancing transdermal agent flux
CN1206004C (en) 1997-12-11 2005-06-15 阿尔扎有限公司 Device for enhancing transdermal agent flux
ATE221400T1 (en) 1997-12-11 2002-08-15 Alza Corp DEVICE FOR INCREASE THE TRANSDERMAL FLOW OF ACTIVE INGREDIENTS
PT1037686E (en) 1997-12-11 2005-10-31 Alza Corp APPARATUS FOR POTENTIATING THE FLOW OF TRANSDERMMIC AGENT
WO1999064580A1 (en) 1998-06-10 1999-12-16 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US6611707B1 (en) * 1999-06-04 2003-08-26 Georgia Tech Research Corporation Microneedle drug delivery device
US6743211B1 (en) * 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6835184B1 (en) * 1999-09-24 2004-12-28 Becton, Dickinson And Company Method and device for abrading skin
US6248120B1 (en) * 2000-01-10 2001-06-19 P. Z. “HTL” Spolka Akcyjna Puncturing device
US6537242B1 (en) * 2000-06-06 2003-03-25 Becton, Dickinson And Company Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance
US6533949B1 (en) * 2000-08-28 2003-03-18 Nanopass Ltd. Microneedle structure and production method therefor
NZ525295A (en) 2000-10-13 2005-05-27 Alza Corp Microprotrusion member retainer for impact applicator
EP1341453B1 (en) 2000-10-13 2009-04-15 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7419481B2 (en) 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
CA2425537C (en) 2000-10-13 2009-09-08 Alza Corporation Microblade array impact applicator
IL155583A0 (en) * 2000-10-26 2003-11-23 Alza Corp Transdermal drug delivery devices having coated microprotrusions
WO2002074173A1 (en) 2001-03-16 2002-09-26 Alza Corporation Method and apparatus for coating skin piercing microprojections
WO2002085447A2 (en) 2001-04-20 2002-10-31 Alza Corporation Microprojection array having a beneficial agent containing coating
US7429258B2 (en) * 2001-10-26 2008-09-30 Massachusetts Institute Of Technology Microneedle transport device
EP1485317A2 (en) 2001-11-30 2004-12-15 Alza Corporation Methods and apparatuses for forming microprojection arrays
EP1465535B1 (en) 2001-12-20 2007-11-28 ALZA Corporation Skin-piercing microprojections having piercing depth control
AU2003209645A1 (en) * 2002-03-04 2003-09-16 Nano Pass Technologies Ltd. Devices and methods for transporting fluid across a biological barrier
US6945952B2 (en) * 2002-06-25 2005-09-20 Theraject, Inc. Solid solution perforator for drug delivery and other applications
CA2490545A1 (en) 2002-06-28 2004-01-08 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
AU2003251831B2 (en) * 2002-07-19 2009-06-11 3M Innovative Properties Company Microneedle devices and microneedle delivery apparatus
AR042815A1 (en) 2002-12-26 2005-07-06 Alza Corp ACTIVE AGENT SUPPLY DEVICE THAT HAS COMPOUND MEMBERS
US20050123507A1 (en) 2003-06-30 2005-06-09 Mahmoud Ameri Formulations for coated microprojections having controlled solubility
MXPA06000281A (en) 2003-06-30 2006-07-03 Johnson & Johnson Formulations for coated microprojections containing non-volatile counterions.
CN1897883A (en) 2003-10-28 2007-01-17 阿尔扎公司 Delivery of polymer conjugates of therapeutic peptides and proteins via coated microprojections
ATE539687T1 (en) 2003-10-31 2012-01-15 Alza Corp SELF-ACTUATED APPLICATOR FOR A MICROPROJECTION ARRANGEMENT
EP1682012A4 (en) 2003-11-13 2008-09-24 Alza Corp Composition and apparatus for transdermal delivery
AU2005244734A1 (en) 2004-05-13 2005-12-01 Alza Corporation Apparatus and method for transdermal delivery of parathyroid hormone agents
WO2006079019A2 (en) 2005-01-21 2006-07-27 Alza Corporation Therapeutic peptide formulations for coating microneedles with improved stabitity containing at least one counterion
CA2596075A1 (en) 2005-01-31 2006-08-10 Alza Corporation Coated microprojections having reduced variability and method for producing same
JP2008529750A (en) 2005-02-16 2008-08-07 アルザ コーポレイション Microprojection array with improved biocompatibility
CN101189031A (en) 2005-06-02 2008-05-28 阿尔扎公司 Method for terminal sterilization of transdermal delivery devices
CA2612307A1 (en) 2005-06-21 2007-01-04 Alza Corporation Method and device for coating a continuous strip of microprojection members

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP1680154A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020841A3 (en) * 2004-08-11 2007-08-16 Alza Corp Apparatus and method for transdermal delivery of natriuretic peptides
WO2006020841A2 (en) * 2004-08-11 2006-02-23 Alza Corporation Apparatus and method for transdermal delivery of natriuretic peptides
WO2009047555A1 (en) * 2007-10-08 2009-04-16 Ocelus Limited Needleless device for delivery of an agent through a biological barrier
US8911422B2 (en) 2010-02-24 2014-12-16 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
US10946180B2 (en) 2010-05-04 2021-03-16 Corium, Inc. Applicators for microneedles
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
WO2012088154A1 (en) 2010-12-22 2012-06-28 Valeritas, Inc. Microneedle patch applicator
US9155875B2 (en) 2010-12-22 2015-10-13 Valeritas, Inc. Microneedle patch applicator support
US9415198B2 (en) 2010-12-22 2016-08-16 Valeritas, Inc. Microneedle patch applicator system
EP2654582A4 (en) * 2010-12-22 2014-01-22 Valeritas Inc Microneedle patch applicator
EP2654582A1 (en) * 2010-12-22 2013-10-30 Valeritas, Inc. Microneedle patch applicator
EP2699252A4 (en) * 2011-04-22 2015-05-27 Radius Health Inc Method of drug delivery for pth, pthrp and related peptides
EP3332799A1 (en) * 2011-04-22 2018-06-13 Radius Health, Inc. Method of drug delivery for pth, pthrp and related peptides
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
US11565097B2 (en) 2013-03-15 2023-01-31 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
US10232158B2 (en) 2013-09-18 2019-03-19 Cosmed Pharmaceutical Co., Ltd. Microneedle patch application device and patch holder
US10441691B2 (en) 2014-01-23 2019-10-15 Renephra Limited Fluid extraction device, applicator device and associated methods
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US11413258B2 (en) 2015-04-29 2022-08-16 Radius Pharmaceuticals, Inc. Methods for treating cancer
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10918846B2 (en) 2015-07-22 2021-02-16 Labo Juversa Co., Ltd. Impacting type applicator for microneedle patch and leading end member
US10385008B2 (en) 2017-01-05 2019-08-20 Radius Pharmaceuticals, Inc. Polymorphic forms of RAD1901-2HCL
US11458289B2 (en) 2017-10-17 2022-10-04 Kindeva Drug Delivery L.P. Applicator for applying a microneedle array to skin

Also Published As

Publication number Publication date
US7097631B2 (en) 2006-08-29
ES2377647T3 (en) 2012-03-29
BRPI0415629A (en) 2006-12-12
CA2543641A1 (en) 2005-05-19
US9421351B2 (en) 2016-08-23
US20050096586A1 (en) 2005-05-05
EP1680154A2 (en) 2006-07-19
KR20060099523A (en) 2006-09-19
US20070027427A1 (en) 2007-02-01
EP1680154B1 (en) 2012-01-04
JP2007509706A (en) 2007-04-19
CN100571643C (en) 2009-12-23
CN1901840A (en) 2007-01-24
ATE539687T1 (en) 2012-01-15
TW200633675A (en) 2006-10-01
JP4682144B2 (en) 2011-05-11
AU2004287414A1 (en) 2005-05-19
WO2005044333A3 (en) 2006-06-01
AR046696A1 (en) 2005-12-21
EP1680154A4 (en) 2007-07-18
AU2004287414B2 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
AU2004287414B2 (en) Self-actuating applicator for microprojection array
US7582069B2 (en) Method and device for the delivery of a substance
US20050089554A1 (en) Apparatus and method for enhancing transdermal drug delivery
US20050106226A1 (en) Pretreatment method and system for enhancing transdermal drug delivery
US20070009587A1 (en) Method and device for coating a continuous strip of microprojection members
US20150038897A1 (en) Low-Profile Microneedle Patch Applicator
US20070293814A1 (en) Coatable transdermal delivery microprojection assembly
MXPA06004903A (en) Self-actuating applicator for microprojection array

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039547.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2543641

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004287414

Country of ref document: AU

Ref document number: 2006538124

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067008484

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/004903

Country of ref document: MX

Ref document number: 2004796104

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004287414

Country of ref document: AU

Date of ref document: 20041021

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004287414

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004796104

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067008484

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0415629

Country of ref document: BR