WO2005047208A2 - Fibre used as a component of a composite material, composite material and method for the production of said type of fibre - Google Patents

Fibre used as a component of a composite material, composite material and method for the production of said type of fibre Download PDF

Info

Publication number
WO2005047208A2
WO2005047208A2 PCT/EP2004/011942 EP2004011942W WO2005047208A2 WO 2005047208 A2 WO2005047208 A2 WO 2005047208A2 EP 2004011942 W EP2004011942 W EP 2004011942W WO 2005047208 A2 WO2005047208 A2 WO 2005047208A2
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite material
fibers
shape
basic matrix
Prior art date
Application number
PCT/EP2004/011942
Other languages
German (de)
French (fr)
Other versions
WO2005047208A3 (en
Inventor
Volker Gallatz
Meinhardt Hirsch
Original Assignee
Volker Gallatz
Meinhardt Hirsch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volker Gallatz, Meinhardt Hirsch filed Critical Volker Gallatz
Publication of WO2005047208A2 publication Critical patent/WO2005047208A2/en
Publication of WO2005047208A3 publication Critical patent/WO2005047208A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/16Cutting or severing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers

Definitions

  • the invention relates to a fiber for use as a component of a composite material as well as such a composite material and a manufacturing method for such a fiber.
  • molded plastic parts with improved performance properties are produced by using a polymer plastic such as polyamide or epoxy resin with a fiber insert.
  • Glass fibers or carbon fibers are customarily used as fibers, the fibers being produced by simply cutting off a continuous fiber and consequently having a cylindrical shape, in particular a circular cylindrical shape.
  • particularly good properties can be achieved by using relatively long fibers with a fiber length of several cm to several meters.
  • fiber fabrics are also used.
  • the manufacturing and use properties of the known fiber composite materials are not optimal for some applications.
  • the area of application is limited by the maximum processing and, above all, operating temperature, which is generally predetermined by the polymer plastic.
  • the object of the invention is therefore to provide a fiber for use as a component of a composite material and such a composite material which overcome the disadvantages of the prior art.
  • an associated manufacturing process for the fiber according to the invention is to be provided.
  • the fiber has at least a portion of a non-ferrous metal, amorphous or ceramic material.
  • a fiber which has at least a portion of a metal with a melting point of more than 2000 ° C, in particular more than 2500 ° C, and preferably more than 3000 ° C, for example osmium or rhenium, and their alloys.
  • the fiber can also consist entirely of such metals or their alloys.
  • the fiber can also consist entirely of a ceramic material or consist of an all-ceramic or a ceramic material having a ceramic component, including sintered Fibers, or have only a ceramic portion, for example a ceramic coating of a fiber core made of plastic, metal, glass or the like.
  • Portions of an amorphous material such as glass or suitable metal oxide polymers can also be used.
  • the combination of ceramic and metal oxides is particularly advantageous.
  • the fiber materials according to the invention enable high tensile, compressive and / or flexural strengths to be achieved with high temperature resistance and / or high chemical resistance, in particular oxidation resistance. Combinations of ceramic and amorphous materials for the fiber are also possible.
  • the at least one further component of the fiber which is present in addition to the ceramic or amorphous component which is resistant to high temperatures can, but does not have to, be resistant to high temperatures.
  • a ceramic component of the fiber is preferably in particular a ceramic material which is resistant to high temperatures and which ensures high chemical resistance both when the molded body is manufactured and when the molded body is used later.
  • a ceramic material which is resistant to high temperatures and which ensures high chemical resistance both when the molded body is manufactured and when the molded body is used later.
  • aluminum oxide, aluminum nitride, boron nitride or silicon carbide are suitable as fiber materials.
  • the fibers can be formed at least in sections as hollow bodies, in particular have a hollow shape overall, or can be solid.
  • the fibers have a shape that deviates from the cylindrical or rod shape.
  • a cylinder is to be understood as a geometric body in which two parallel, flat and congruent base areas are connected to one another by a jacket with a straight longitudinal axis.
  • Form the base area can be arbitrary, in particular circular, elliptical, regular or irregular triangular or polygonal, with or without rounded edges, sickle-shaped or ring-shaped to form a hollow fiber.
  • both sectionally thickened and / or thinned fibers are possible, as are fibers which have a shape deviating from the cylindrical rod shape, in particular curved, curved, twisted, spiral, wavy, circular, elliptical, triangular or polygonal or the like.
  • the fibers can essentially have a two-dimensional dimension or even a three-dimensional dimension.
  • Combinations of differently shaped fibers are also possible, right up to the formation of two- or three-dimensional structures which are formed from one or more fibers of different or matching fiber shape, the individual fibers being able to be regularly or irregularly linked, hooked, intertwined or the like.
  • At least a first section of the fiber in particular an end section, has a cross-sectional contour that is different in size and / or shape and / or orientation than a further section of the fiber.
  • Both fiber ends are preferably essentially identical, in particular symmetrical to a central section of the fiber. The formation of such a section ensures a positive connection of the fiber with the matrix surrounding the fiber.
  • Such a positive connection can transmit significantly greater forces than the usual frictional connection between fiber and matrix, in particular compared to the known fibers with a smooth surface, and therefore leads to a higher resilience of the molded articles produced.
  • the section with a different cross-sectional contour in particular the end section, can have a star shape, pyramid shape, polygon shape, spherical shape, disk shape, ellipsoid shape, hook shape, bone shape, hedgehog shape, eyelet shape or combinations of these shapes.
  • Further fiber shapes or shapes of the sections with a different cross-sectional shape are herringbone shape and leaf rib shape, in particular shapes in which at least one fiber needle branches off from a central fiber at an acute angle, preferably several fiber needles branch off one behind the other in the longitudinal direction.
  • the fiber needles can all lie in one plane, so that the fiber is essentially a two-dimensional body, or project in different spatial directions from the central fiber, so that the fiber is a three-dimensional body.
  • the fiber can also have grooves or annular notches at regular or irregular intervals, which are spaced apart or connected to one another in the longitudinal or circumferential direction of the fiber.
  • Such grooves or annular notches preferably run transversely to the longitudinal extent of the fiber, in order thereby to improve the form-locking of the fiber with the surrounding matrix.
  • the fiber has an end section with an irregular geometric shape.
  • the irregular shape of the end section is preferably formed during the manufacture of the fiber, in particular by laser separation of the fiber from a continuous fiber.
  • the absorption of the laser radiation leads to very rapid local heating and thus to a melting or blasting off of the fiber from the continuous fiber.
  • the very rapid heating and the subsequent rapid cooling result, for example, in end sections with tines and tips oriented on all sides, which ensure particularly good interlocking with the surrounding matrix.
  • the fibers have a longitudinal extension between 0.01 and 30 mm, in particular between 0.05 and 5 mm, and preferably between 0.1 and 2 mm.
  • the thickness or the diameter of the fibers is less than 50% of the fiber length, in particular less than 20%, and for many applications, in particular for fiber lengths of less than 5 mm, about 10%.
  • These relatively short fibers allow the molded articles to be produced to have a large degree of freedom, while at the same time making the molded articles highly mechanically resilient.
  • the following fiber dimensions length / thickness are particularly advantageous for different applications: 0.01 mm / 0.001 mm, 0.1 mm / 0.01 mm or 30 mm / 0.1 mm.
  • the fiber is curved and, as a result, the fiber length is greater than the longitudinal extent of the curved fiber.
  • the invention also relates to a composite material which, as a further component, in addition to the fiber, has a basic matrix in which the fibers are embedded.
  • a composite material is to be understood as a material made from different materials that are firmly bonded to one another.
  • the basic matrix can have, for example, a powder, in particular a ceramic powder, a metallic powder or a powder mixture of different materials, or a preceramic polymer.
  • the basic matrix can also have a material in liquid form, in particular a molten metal or metal alloy.
  • Other possible materials for the basic matrix are, for example, plastics, metal oxide polymers and flexible ceramics.
  • the combination of fibers according to the invention with a basic matrix leads to high-strength, high-temperature-resistant molded articles with great freedom of form at the same time.
  • the base matrix can at least partially have a preceramic polymer, which can also be referred to as a ceramic adhesive, since it bonds the fibers added to form the shaped body during curing, and which preferably has a very low viscosity in the uncured state.
  • the composite material can be processed, for example, by spraying.
  • the base matrix preferably also has a ceramic powder.
  • the composite material is preferably used to produce a shaped body from a liquid or free-flowing solid phase into a transferred compact solid phase, for example by cooling a liquid metal, hardening a hardenable mass, sintering, including self-expanding sintering (Seif Heating Sintering or Self-Propagating High-Temperature Synthesis), explosion sintering and hydroth mixes sintering, injection molding, crosslinking, or microwave sintering.
  • sintering including self-expanding sintering (Seif Heating Sintering or Self-Propagating High-Temperature Synthesis), explosion sintering and hydroth mixes sintering, injection molding, crosslinking, or microwave sintering.
  • the base matrix is, for example, dimensionally stable at temperatures above 800 ° C., in particular above 1200 ° C., and preferably above 1600 ° C.
  • the basic matrix can be equipped in such a way that a ceramic which, for example, contains aluminum oxide, aluminum nitride or silicon carbide forms after hardening.
  • the ceramic part in the hardened basic matrix is usually dependent on the hardening temperature.
  • the basic matrix preferably has a ceramic proportion of more than 50%, in particular more than 65%, and preferably more than 75%.
  • a preceramic polymer with ceramic fibers with a longitudinal extension of less than 10 mm, in particular less than 5 mm, and preferably less than 2 mm, which enables the production of moldings with great freedom of shape and at the same time high mechanical strength and high temperature resistance.
  • the base matrix After curing, the base matrix preferably has a density between 1 and 8 g / cm 3 , in particular between 1.5 and 6 g / cm 3 , and preferably between 2 and 4 g cm 3 .
  • the porosity of the moldings produced can be adjusted in a wide range up to helium tightness.
  • the volume fraction of the basic matrix is at least 50%, preferably more than 65%, based on the total volume of the curable composition.
  • the remaining constituent of the curable composition is essentially formed by the fibers and / or further ceramic constituents, in particular in powder form.
  • the short fibers are preferably arranged irregularly and without a preferred orientation in the shaped body, so that improved mechanical properties and increased strength of the shaped body result in all spatial directions.
  • the invention also relates to a method for producing a fiber according to the invention, the fibers being separated from an endless fiber by radiation absorption, in particular by absorption of laser radiation.
  • a pulsed laser can be used, the pulse frequency and the feed speed of the continuous fiber are matched to the desired fiber length.
  • a continuous wave laser can also be used, the laser beam of which can be deflected by a mirror and can, for example, sweep over a plurality of continuous fibers in succession in order to separate one fiber there.
  • Further possible manufacturing methods according to the invention are the vapor deposition of moldings or fibers, which consist of relatively low-melting materials, with ceramics, metals and / or high-melting metal alloys.
  • FIGS 1 to 16 show possible embodiments of the fiber according to the invention.
  • the fibers according to the invention shown in FIGS. 1 to 8 have an essentially homogeneous cross-sectional area along the fiber length, in particular no thickening or thinning at the fiber ends. For all these fibers, the fiber length is greater than the length of the fiber.
  • Fig. 1 shows a fiber with a wavy shape in the side view shown.
  • the waveform can also be sinusoidal, in particular the shape of the waves, their amplitude and period length can be adapted to the application. In a plan view, not shown, this fiber appears straight.
  • Fig. 2 shows a fiber with a triangular shape in the side view shown.
  • the triangular shape can also be sawtooth-shaped, in particular, the angle enclosed by the triangular legs and / or the leg length can be adapted to the application.
  • This fiber also appears straight in a plan view, not shown.
  • FIG. 3 shows a spiral fiber with a cylindrical outer surface
  • FIG. 4 shows a spiral fiber with a conical outer surface
  • FIG. 5 shows a clasp-like, not closed elliptical fiber
  • FIG. 6 shows a corresponding, but essentially circular fiber
  • FIG. 7 shows a corresponding, but essentially triangular fiber
  • FIG. 8 shows a corresponding, but essentially square fiber.
  • the fibers according to the invention shown in FIGS. 9 to 16 have thickenings at their end sections, preferably symmetrically to a central section of the fiber.
  • FIG. 9 shows a fiber which at its ends has sections with an irregular geometric shape and numerous peaks of different orientation and longitudinal extension, which are formed by brief, strong energy input.
  • the left end of the fiber in the illustration is essentially regular, in particular uniform, with regard to the spatial distribution of the tips and their length.
  • the right end of the fiber in the illustration is irregular. Deviating from the illustration in FIG. 9, the fiber can also be designed regularly or irregularly at both ends.
  • Fig. 10 shows a fiber with truncated pyramid shaped end portions.
  • the left end of the fiber in the illustration has a flat end face.
  • the right end of the fiber in the illustration on the other hand, has an end face that is not flat, but in particular pyramid-shaped; in addition, the end section merges smoothly into the middle section of the fiber.
  • Fig. 1 1 shows a fiber with polygon-shaped or prismatic end sections.
  • Figure 12 shows a fiber with spherical end portions.
  • FIG. 13 shows a fiber with disk-shaped or even perforated disk-shaped end sections.
  • FIG. 14 shows a fiber with herringbone-like or leaf-rib-like branches both in the middle section and in the end section.
  • 16 shows a fiber with spherical thickenings at regular intervals along the longitudinal extent, wherein the diameter of the end-side spherical thickenings can be smaller, equal to or larger than the diameter of the spherical thickenings in the middle section.
  • the basic shape of the fibers according to the invention can be circular, triangular, quadrangular and in particular square, elliptical or the like in cross section.
  • a polygonal or different basic shape of the fiber is also possible, which is torsion-like is twisted and thereby the orientation of the cross-sectional contour changes continuously along the length of the fiber.

Abstract

The invention relates to a fibre which is used as a component of a composite material. The fibre contains at least one part non-ferrous metallic, amorphic or ceramic material, in particular, at least one part ceramic material which is resistant to high temperatures. The shape of said fibre is different from the shape of a cylinder. The invention also relates to said type of composite material and a method for the production thereof.

Description

Volker Gallatz Horber Straße 8, 72186 Empfingen Volker Gallatz Horber Strasse 8, 72186 Receiving
Faser zur Verwendung als eine Komponente eines Kompositwerkstoffes sowie ein solcher Kompositwerkstoff und ein Herstellverfahren für eine solche FaserFiber for use as a component of a composite material and such a composite material and a manufacturing method for such a fiber
Die Erfindung betrifft eine Faser zur Verwendung als eine Komponente eines Kompositwerkstoffes sowie ein solcher Kompositwerkstoff und ein Herstellverfahren für eine solche Faser.The invention relates to a fiber for use as a component of a composite material as well as such a composite material and a manufacturing method for such a fiber.
Aus dem Stand der Technik sind zahlreiche Anwendungen für sogenannte Kompositwerkstoffe und insbesondere Faserverbundwerkstoffe bekannt. So werden beispielsweise Kunststoffformteile mit verbesserten Gebrauchseigenschaften durch Verwenden eines Polymerkunststoffes wie beispielsweise Polyamid oder Epoxidharz mit einer Fasereinlagerung hergestellt. Als Fasern werden üblich Glasfasern oder Kohlefasern verwendet, wobei die Fasern durch einfaches Abschneiden von einer Endlosfaser hergestellt werden und mithin eine Zylinderform aufweisen, insbesondere eine Kreiszylinderform. Besonders gute Eigenschaften lassen sich nach dem Stand der Technik durch die Verwendung von relativ langen Fasern mit einer Faserlänge von mehreren cm bis mehreren Metern erzielen. Teilweise kommen auch Fasergewebe zum Einsatz. Trotz der durch die Verwendung einer Fasereinlagerung erzielten Verbesserungen sind die Herstell- und Gebrauchseigenschaften der bekannten Faserverbundwerkstoffe für einige Anwendungsfälle nicht optimal. Darüber hinaus ist der Einsatzbereich durch die in der Regel von dem Polymerkunststoff vorgegebene maximale Verarbeitungs- und vorallem Betriebstemperatur begrenzt.Numerous applications for so-called composite materials and in particular fiber composite materials are known from the prior art. For example, molded plastic parts with improved performance properties are produced by using a polymer plastic such as polyamide or epoxy resin with a fiber insert. Glass fibers or carbon fibers are customarily used as fibers, the fibers being produced by simply cutting off a continuous fiber and consequently having a cylindrical shape, in particular a circular cylindrical shape. According to the prior art, particularly good properties can be achieved by using relatively long fibers with a fiber length of several cm to several meters. In some cases, fiber fabrics are also used. Despite the improvements achieved through the use of fiber storage, the manufacturing and use properties of the known fiber composite materials are not optimal for some applications. In addition, the area of application is limited by the maximum processing and, above all, operating temperature, which is generally predetermined by the polymer plastic.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Faser zur Verwendung als eine Komponente eines Kompositwerkstoffes sowie einen solchen Kompositwerkstoff bereitzustellen, welche die Nachteile des Standes der Technik überwinden. Darüber hinaus soll ein zugehöriges Herstellverfahren für die erfindungsgemäße Faser bereitgestellt werden.The object of the invention is therefore to provide a fiber for use as a component of a composite material and such a composite material which overcome the disadvantages of the prior art. In addition, an associated manufacturing process for the fiber according to the invention is to be provided.
Diese Aufgabe ist durch die im Anspruch 1 bestimmte Faser sowie durch den im neben geordneten Anspruch bestimmten Kompositwerkstoff gelöst; das zugehörige Herstellverfahren für die Faser ist in dem entsprechenden nebengeordneten Verfahrensanspruch bestimmt. Besondere Ausführungsarten der Erfindung sind in den Unteransprüchen bestimmt.This object is achieved by the fiber defined in claim 1 and by the composite material defined in the subordinate claim; the associated manufacturing process for the fiber is determined in the corresponding subordinate process claim. Particular embodiments of the invention are defined in the subclaims.
Erfindungsgemäß weist die Faser mindestens einen Anteil aus einem nichteisenmetallischen, amorphen oder keramischen Werkstoff auf. Erfindungsgemäß ist auch eine Faser, die mindestens einen Anteil eines Metalls mit einem Schmelzpunkt von mehr als 2000 °C, insbesondere mehr als 2500 °C, und vorzugsweise mehr als 3000 °C aufweist, beispielsweise Osmium oder Rhenium, sowie deren Legierungen. Die Faser kann auch vollständig aus solchen Metallen oder deren Legierungen bestehen. Die Faser kann auch vollständig aus einem keramischen Werkstoff bestehen, oder aus einem vollkeramischen oder einen keramischen Anteil aufweisenden Kompositwerkstoff bestehen, einschließlich gesinterter Fasern, oder nur einen keramischen Anteil aufweisen, beispielsweise eine keramische Beschichtung eines Faserkerns aus Kunststoff, Metall, Glas oder dergleichen. Es können auch Anteile aus einem amorphen Werkstoff wie beispielsweise Glas eingesetzt werden oder geeignete Metalloxidpolymere. Insbesondere die Kombination aus Keramik und Metalloxiden ist vorteilhaft. Durch die erfindungsgemäßen Faserwerkstoffe lassen sich hohe Zug-, Druck- und/oder Biegefestigkeiten erzielen bei gleichzeitig hoher Temperaturbelastbarkeit und/oder hoher chemischer Resistenz, insbesondere Oxidationsbeständigkeit. Es sind auch Kombinationen von keramischen und amorphen Werkstoffen für die Faser möglich. Der neben dem hochtemperaturfesten keramischen oder amorphen Bestandteil vorhandene, mindestens eine weitere Bestandteil der Faser kann, muss aber nicht, hochtemperaturfest sein.According to the invention, the fiber has at least a portion of a non-ferrous metal, amorphous or ceramic material. According to the invention is also a fiber which has at least a portion of a metal with a melting point of more than 2000 ° C, in particular more than 2500 ° C, and preferably more than 3000 ° C, for example osmium or rhenium, and their alloys. The fiber can also consist entirely of such metals or their alloys. The fiber can also consist entirely of a ceramic material or consist of an all-ceramic or a ceramic material having a ceramic component, including sintered Fibers, or have only a ceramic portion, for example a ceramic coating of a fiber core made of plastic, metal, glass or the like. Portions of an amorphous material such as glass or suitable metal oxide polymers can also be used. The combination of ceramic and metal oxides is particularly advantageous. The fiber materials according to the invention enable high tensile, compressive and / or flexural strengths to be achieved with high temperature resistance and / or high chemical resistance, in particular oxidation resistance. Combinations of ceramic and amorphous materials for the fiber are also possible. The at least one further component of the fiber which is present in addition to the ceramic or amorphous component which is resistant to high temperatures can, but does not have to, be resistant to high temperatures.
Vorzugsweise kommt als keramischer Anteil der Faser insbesondere ein hochtemperaturfester keramischer Werkstoff in Betracht, der eine hohe chemische Beständigkeit sowohl beim Herstellen des Formkörpers als auch beim späteren Gebrauch des Formkörpers gewährleistet. Als Faserwerkstoff kommt beispielsweise Aluminiumoxyd, Aluminiumnitrid, Bornitrid oder Siliciumcarbid in Frage.A ceramic component of the fiber is preferably in particular a ceramic material which is resistant to high temperatures and which ensures high chemical resistance both when the molded body is manufactured and when the molded body is used later. For example, aluminum oxide, aluminum nitride, boron nitride or silicon carbide are suitable as fiber materials.
Die Fasern können mindestens abschnittsweise als Hohlkörper ausgebildet sein, insbesondere insgesamt eine Hohlform aufweisen, oder massiv ausgebildet sein.The fibers can be formed at least in sections as hollow bodies, in particular have a hollow shape overall, or can be solid.
Die Fasern weisen eine von der Zylinderform oder Stabform abweichende Form auf. Als Zylinder ist dabei ein geometrischer Körper zu verstehen, bei dem zwei parallele, ebene und kongruente Grundflächen durch einen Mantel mit geradliniger Längsachse miteinander verbunden sind. Die Form der Grundfläche kann dabei beliebig sein, insbesondere kreisförmig, ellipsenförmig, regelmäßig oder unregelmäßig drei- oder vieleckig, mit oder ohne abgerundete Kanten, sichelförmig oder ringförmig unter Ausbildung einer Hohlfaser.The fibers have a shape that deviates from the cylindrical or rod shape. A cylinder is to be understood as a geometric body in which two parallel, flat and congruent base areas are connected to one another by a jacket with a straight longitudinal axis. Form the base area can be arbitrary, in particular circular, elliptical, regular or irregular triangular or polygonal, with or without rounded edges, sickle-shaped or ring-shaped to form a hollow fiber.
Erfindungsgemäß sind sowohl abschnittsweise verdickte und/oder verdünnte Fasern möglich als auch Fasern, die eine von der zylindrischen Stabform abweichende Form aufweisen, insbesondere gebogen, gekrümmt, gedreht, spiralförmig, wellenförmig, kreisförmig, ellipsenförmig, dreieck- oder vieleckförmig oder dergleichen sind. Die Fasern können im wesentlichen eine zweidimensionale Ausdehnung oder sogar eine dreidimensionale Ausdehnung aufweisen. Es sind auch Kombinationen unterschiedlich geformter Fasern möglich bis hin zur Bildung zwei- oder dreidimensionaler Strukturen, die aus einer oder mehreren Fasern unterschiedlicher oder übereinstimmender Faserform gebildet sind, wobei die einzelnen Fasern miteinander regelmäßig oder unregelmäßig verkettet, verhakt, ineinandergeschlungen oder dergleichen sein können.According to the invention, both sectionally thickened and / or thinned fibers are possible, as are fibers which have a shape deviating from the cylindrical rod shape, in particular curved, curved, twisted, spiral, wavy, circular, elliptical, triangular or polygonal or the like. The fibers can essentially have a two-dimensional dimension or even a three-dimensional dimension. Combinations of differently shaped fibers are also possible, right up to the formation of two- or three-dimensional structures which are formed from one or more fibers of different or matching fiber shape, the individual fibers being able to be regularly or irregularly linked, hooked, intertwined or the like.
Vorzugsweise weist mindestens ein erster Abschnitt der Faser, insbesondere ein Endabschnitt, eine gegenüber einem weiteren Abschnitt der Faser hinsichtlich Größe und/oder Form und/oder Orientierung unterschiedliche Querschnittskontur auf. Vorzugsweise sind beide Faserenden im Wesentlichen identisch ausgebildet, insbesondere symmetrisch zu einem Mittelabschnitt der Faser. Durch die Ausbildung eines solchen Abschnittes wird eine formschlüssige Verbindung der Faser mit der die Faser umgebenden Matrix gewährleistet. Eine solche formschlüssige Verbindung kann gegenüber der üblichen reibschlüssigen Verbindung zwischen Faser und Matrix, insbesondere gegenüber den bekannten Fasern mit glatter Oberfläche, deutlich größere Kräfte übertragen und führt daher zu einer höheren Belastbarkeit der hergestellten Formkörper. Der Abschnitt abweichender Querschnittskontur, insbesondere der Endabschnitt, kann dabei Sternform, Pyramidenform, Polygonform, Kugelform, Scheibenform, Ellipsoidform, Hakenform, Knochenform, Igelform, Ösenform oder Kombinationen dieser Formen aufweisen. Weitere Faserformen oder Formen der Abschnitte mit abweichender Querschnittsform sind Fischgrätenform und Blattrippenform, insbesondere Formen, bei denen von einer Zentralfaser mindestens eine Fasernadel in einem spitzen Winkel abzweigt, vorzugsweise in Längsrichtung hintereinander mehrere Fasernadeln abzweigen. Die Fasernadeln können dabei alle in einer Ebene liegen, so das die Faser im wesentlichen ein zweidimensionaler Körper ist, oder in verschiedenen Raumrichtungen von der Zentralfaser abstehen, so das die Faser ein dreidimensionaler Körper ist.Preferably, at least a first section of the fiber, in particular an end section, has a cross-sectional contour that is different in size and / or shape and / or orientation than a further section of the fiber. Both fiber ends are preferably essentially identical, in particular symmetrical to a central section of the fiber. The formation of such a section ensures a positive connection of the fiber with the matrix surrounding the fiber. Such a positive connection can transmit significantly greater forces than the usual frictional connection between fiber and matrix, in particular compared to the known fibers with a smooth surface, and therefore leads to a higher resilience of the molded articles produced. The section with a different cross-sectional contour, in particular the end section, can have a star shape, pyramid shape, polygon shape, spherical shape, disk shape, ellipsoid shape, hook shape, bone shape, hedgehog shape, eyelet shape or combinations of these shapes. Further fiber shapes or shapes of the sections with a different cross-sectional shape are herringbone shape and leaf rib shape, in particular shapes in which at least one fiber needle branches off from a central fiber at an acute angle, preferably several fiber needles branch off one behind the other in the longitudinal direction. The fiber needles can all lie in one plane, so that the fiber is essentially a two-dimensional body, or project in different spatial directions from the central fiber, so that the fiber is a three-dimensional body.
• Außerdem ist von Vorteil, dass bei Verwendung der erfindungsgemäßen Fasern bei einem aus dem Kompositwerkstoff hergestellten Formkörper in allen Raumrichtungen gleich gute mechanische Festigkeiten erreichbar sind, d.h. die Erfindung kann eine Isotropie der mechanischen Eigenschaften der hergestellten Formkörper gewährleisten.It is also advantageous that when using the fibers according to the invention, mechanical strengths that are equally good can be achieved in all spatial directions when a molded body is produced from the composite material, i.e. the invention can ensure an isotropy of the mechanical properties of the molded articles produced.
Darüber hinaus kann die Faser auch in regelmäßigen oder unregelmäßigen Abständen Nuten oder ringförmige Einkerbungen aufweisen, die in Längsoder Umfangsrichtung der Faser voneinander beabstandet oder miteinander verbunden sind. Vorzugsweise verlaufen derartige Nuten oder ringförmige Kerben quer zur Längserstreckung der Faser, um dadurch den Formschluss der Faser mit der umgebenden Matrix zu verbessern.In addition, the fiber can also have grooves or annular notches at regular or irregular intervals, which are spaced apart or connected to one another in the longitudinal or circumferential direction of the fiber. Such grooves or annular notches preferably run transversely to the longitudinal extent of the fiber, in order thereby to improve the form-locking of the fiber with the surrounding matrix.
In einer besonderen Ausführungsart der Erfindung weist die Faser einen Endabschnitt mit einer unregelmäßigen geometrischen Form auf. Durch die Unregelmäßigkeit entsteht beispielsweise eine in hohem Maße formschlüssige, eine große Oberfläche aufweisende Verbindungsfläche zwischen der Faser und der umgebenden Matrix. Vorzugsweise wird die unregelmäßige Form des Endabschnittes beim Herstellen der Faser gebildet, insbesondere durch Lasertrennen der Faser von einer Endlosfaser. Durch die Absorption der Laserstrahlung kommt es zu einem sehr schnellen lokalen Erhitzen und damit zu einem Abschmelzen oder Absprengen der Faser von der Endlosfaser. Durch das sehr schnelle Erhitzen und das anschließende schnelle Abkühlen entstehen beispielsweise Endabschnitte mit allseitig ausgerichteten Zacken und Spitzen, die einen besonders guten Formschluss mit der umgebenden Matrix gewährleisten.In a special embodiment of the invention, the fiber has an end section with an irregular geometric shape. Through the Irregularity, for example, creates a highly form-fitting, large-surface connection surface between the fiber and the surrounding matrix. The irregular shape of the end section is preferably formed during the manufacture of the fiber, in particular by laser separation of the fiber from a continuous fiber. The absorption of the laser radiation leads to very rapid local heating and thus to a melting or blasting off of the fiber from the continuous fiber. The very rapid heating and the subsequent rapid cooling result, for example, in end sections with tines and tips oriented on all sides, which ensure particularly good interlocking with the surrounding matrix.
In einer besonderen Ausführungsart der Erfindung weisen die Fasern eine Längserstreckung zwischen 0,01 und 30 mm auf, insbesondere zwischen 0,05 und 5 mm, und vorzugsweise zwischen 0,1 und 2 mm. Die Dicke oder der Durchmesser der Fasern beträgt erfindungsgemäß weniger als 50 % der Faserlänge, insbesondere weniger als 20 %, und für viele Anwendungen insbesondere bei Faserlängen unter 5 mm etwa 10 %. Diese relativ kurzen Fasern erlauben eine große Formfreiheit der herzustellenden Formkörper bei gleichzeitig hoher mechanischer Belastbarkeit der hergestellten Formkörper. Für verschiedene Anwendungen sind folgende Faserabmessungen Länge/Dicke besonders vorteilhaft: 0,01 mm/0,001 mm, 0,1 mm/0,01 mm oder 30 mm/0,1 mm.In a special embodiment of the invention, the fibers have a longitudinal extension between 0.01 and 30 mm, in particular between 0.05 and 5 mm, and preferably between 0.1 and 2 mm. According to the invention, the thickness or the diameter of the fibers is less than 50% of the fiber length, in particular less than 20%, and for many applications, in particular for fiber lengths of less than 5 mm, about 10%. These relatively short fibers allow the molded articles to be produced to have a large degree of freedom, while at the same time making the molded articles highly mechanically resilient. The following fiber dimensions length / thickness are particularly advantageous for different applications: 0.01 mm / 0.001 mm, 0.1 mm / 0.01 mm or 30 mm / 0.1 mm.
In einer besonderen Ausführungsart ist die Faser gekrümmt und dadurch die Faserlänge größer als die Längserstreckung der gekrümmten Faser. Dadurch ergibt sich mit hinsichtlich ihrer Längserstreckung relativ kurzen Fasern dennoch eine große Oberfläche der Fasern und damit eine hohe Verbindungswirkung zwischen den Fasern und der umgebenden Matrix. Die Erfindung betrifft auch einen Kompositwerkstoff, der als weitere Komponente neben der Faser eine Grundmatrix aufweist, in welche die Fasern eingebettet sind. Als Kompositwerkstoff oder auch Verbundwerkstoff ist ein aus verschiedenen, miteinander fest verbundenen Materialien hergestellter Werkstoff zu verstehen.In a special embodiment, the fiber is curved and, as a result, the fiber length is greater than the longitudinal extent of the curved fiber. As a result, with fibers that are relatively short in terms of their longitudinal extension, there is nevertheless a large surface area of the fibers and thus a high connection effect between the fibers and the surrounding matrix. The invention also relates to a composite material which, as a further component, in addition to the fiber, has a basic matrix in which the fibers are embedded. A composite material is to be understood as a material made from different materials that are firmly bonded to one another.
Die Grundmatrix kann beispielsweise ein Pulver aufweisen, insbesondere ein keramisches Pulver, ein metallisches Pulver oder eine Pulvermischung aus unterschiedlichen Werkstoffen, oder ein prekeramisches Polymer. Alternativ oder ergänzend kann die Grundmatrix auch einen Werkstoff in flüssiger Form aufweisen, insbesondere ein aufgeschmolzenes Metall oder Metalllegierungen. Weitere mögliche Werkstoffe für die Grundmatrix sind beispielsweise Kunststoffe, Metalloxidpolymere und biegsame Keramiken.The basic matrix can have, for example, a powder, in particular a ceramic powder, a metallic powder or a powder mixture of different materials, or a preceramic polymer. Alternatively or additionally, the basic matrix can also have a material in liquid form, in particular a molten metal or metal alloy. Other possible materials for the basic matrix are, for example, plastics, metal oxide polymers and flexible ceramics.
Die Kombination aus erfindungsgemäßen Fasern mit einer Grundmatrix führt zu hochfesten, hochtemperaturbeständigen Formkörpern bei gleichzeitig großer Formenfreiheit. Die Grundmatrix kann mindestens teilweise ein prekeramisches Polymer aufweisen, das auch als keramischer Klebstoff bezeichnet werden kann, da es beim Aushärten die hinzugefügten Fasern unter Bildung des Formkörpers miteinander verbindet, und das im nicht ausgehärteten Zustand vorzugsweise eine sehr geringe Viskosität aufweist. Dadurch kann der Kompositwerkstoff beispielsweise durch Spritzen verarbeitet werden. Vorzugsweise weist die Grundmatrix neben dem p rekeramischen Polymer und den Fasern auch noch ein Keramikpulver auf.The combination of fibers according to the invention with a basic matrix leads to high-strength, high-temperature-resistant molded articles with great freedom of form at the same time. The base matrix can at least partially have a preceramic polymer, which can also be referred to as a ceramic adhesive, since it bonds the fibers added to form the shaped body during curing, and which preferably has a very low viscosity in the uncured state. As a result, the composite material can be processed, for example, by spraying. In addition to the ceramic polymer and the fibers, the base matrix preferably also has a ceramic powder.
Vorzugsweise wird der Kompositwerkstoff zum Herstellen eines Formkörpers von einer flüssigen oder rieselfähigen festen Phase in eine kompakte feste Phase überführt, beispielsweise durch Abkühlen eines flüssigen Metalls, Aushärten einer aushärtbaren Masse, Sintern, einschließlich selbstausbreitendes Sintern (Seif Heating Sintering oder Self-Propagating High-Temperature Synthesis), Explosionssintern und hydroth ermisch es Sintern, Spritzgießen, Vernetzen, oder Mikrowellensintern.The composite material is preferably used to produce a shaped body from a liquid or free-flowing solid phase into a transferred compact solid phase, for example by cooling a liquid metal, hardening a hardenable mass, sintering, including self-expanding sintering (Seif Heating Sintering or Self-Propagating High-Temperature Synthesis), explosion sintering and hydroth mixes sintering, injection molding, crosslinking, or microwave sintering.
Nach dem Aushärten ist die Grundmatrix beispielsweise formbeständig bei Temperaturen oberhalb 800 °C, insbesondere oberhalb 1200 °C, und vorzugsweise oberhalb 1600 °C. Die Grundmatrix kann dabei so ausgestattet sein, dass sich nach dem Aushärten eine Keramik bildet, die beispielsweise Aluminiumoxyd, Aluminiumnitrid oder Siliciumcarbid enthält. Der Keramikanteil in der ausgehärteten Grundmatrix ist in der Regel abhängig von der Aushärttemperatur. Vorzugsweise weist die Grundmatrix nach dem Aushärten einen Keramikanteil von mehr als 50 % auf, insbesondere mehr als 65 %, und vorzugsweise mehr als 75 %.After curing, the base matrix is, for example, dimensionally stable at temperatures above 800 ° C., in particular above 1200 ° C., and preferably above 1600 ° C. The basic matrix can be equipped in such a way that a ceramic which, for example, contains aluminum oxide, aluminum nitride or silicon carbide forms after hardening. The ceramic part in the hardened basic matrix is usually dependent on the hardening temperature. After curing, the basic matrix preferably has a ceramic proportion of more than 50%, in particular more than 65%, and preferably more than 75%.
Gerade die Kombination eines prekeramischen Polymers mit keramischen Fasern mit einer Längserstreckung von weniger als 10 mm, insbesondere weniger als 5 mm, und vorzugsweise weniger als 2 mm, ermöglicht die Herstellung von Formkörpern mit großer Formenfreiheit und gleichzeitig hoher mechanischer Belastbarkeit und hoher Temperaturbelastbarkeit.It is precisely the combination of a preceramic polymer with ceramic fibers with a longitudinal extension of less than 10 mm, in particular less than 5 mm, and preferably less than 2 mm, which enables the production of moldings with great freedom of shape and at the same time high mechanical strength and high temperature resistance.
Vorzugsweise weist die Grundmatrix nach dem Aushärten eine Dichte zwischen 1 und 8 g/cm3 auf, insbesondere zwischen 1,5 und 6 g/cm3, und vorzugsweise zwischen 2 und 4 g cm3. Die Porosität der hergestellten Formkörper kann in weiten Bereichen eingestellt werden bis hin zur Heliumdichtheit. Der Volumenanteil der Grundmatrix beträgt bezogen auf das Gesamtvolumen der aushärtbaren Masse mindestens 50 %, vorzugsweise mehr als 65 %. Der übrige Bestandteil der aushärtbaren Masse wird im Wesentlichen durch die Fasern und/oder weitere keramische Bestandteile, insbesondere in Pulverform, gebildet.After curing, the base matrix preferably has a density between 1 and 8 g / cm 3 , in particular between 1.5 and 6 g / cm 3 , and preferably between 2 and 4 g cm 3 . The porosity of the moldings produced can be adjusted in a wide range up to helium tightness. The volume fraction of the basic matrix is at least 50%, preferably more than 65%, based on the total volume of the curable composition. The remaining constituent of the curable composition is essentially formed by the fibers and / or further ceramic constituents, in particular in powder form.
Durch die Verwendung von verhältnismäßig kurzen Fasern, die eine von einer geradlinigen Zylinderform abweichende Form aufweisen, insbesondere mit verdickten oder verdünnten Faserabschnitten und/oder gekrümmter Faserform, können bei gleichzeitiger Produktionsvereinfachung mechanische Eigenschaften der hergestellten Formkörper erreicht werden, wie sie bisher nur mit langen Fasern erreichbar waren, ohne dass die diesbezüglichen Nachteile in Kauf genommen werden müssen. Vorzugsweise sind die kurzen Fasern unregelmäßig und ohne Vorzugsorientierung in dem Formkörper angeordnet, so dass sich in allen Raumrichtungen verbesserte mechanische Eigenschaften und erhöhte Festigkeiten des Formkörpers ergeben.Through the use of relatively short fibers, which have a shape deviating from a straight cylindrical shape, in particular with thickened or thinned fiber sections and / or curved fiber shape, mechanical properties of the molded bodies produced can be achieved, while at the same time simplifying production, as previously only possible with long fibers without having to accept the disadvantages in this regard. The short fibers are preferably arranged irregularly and without a preferred orientation in the shaped body, so that improved mechanical properties and increased strength of the shaped body result in all spatial directions.
Die Erfindung betrifft auch ein Verfahren zum Herstellen einer erfindungsgemäßen Faser, wobei die Fasern durch Strahlungsabsorption, insbesondere durch Absorption von Laserstrahlung, von einer Endlosfaser abgetrennt werden. Hierzu kann beispielsweise ein gepulster Laser eingesetzt werden, dessen Pulsfrequenz und die Vorschubgeschwindigkeit der Endlosfaser auf die gewünschte Faserlänge abgestimmt ist. Alternativ hierzu kann auch ein Dauerstrichlaser eingesetzt werden, dessen Laserstrahl durch einen Spiegel ablenkbar ist und beispielsweise nacheinander mehrere Endlosfasern überstreichen kann, um dort jeweils eine Faser abzutrennen. Weitere mögliche erfindungsgemäße Herstellverfahren sind das Bedampfen von Formkörpern oder Fasern, die aus verhältnismäßig niedrigschmelzenden Werkstoffen bestehen, mit Keramiken, Metallen und/oder hochschmelzenden Metalllegierungen.The invention also relates to a method for producing a fiber according to the invention, the fibers being separated from an endless fiber by radiation absorption, in particular by absorption of laser radiation. For this purpose, for example, a pulsed laser can be used, the pulse frequency and the feed speed of the continuous fiber are matched to the desired fiber length. As an alternative to this, a continuous wave laser can also be used, the laser beam of which can be deflected by a mirror and can, for example, sweep over a plurality of continuous fibers in succession in order to separate one fiber there. Further possible manufacturing methods according to the invention are the vapor deposition of moldings or fibers, which consist of relatively low-melting materials, with ceramics, metals and / or high-melting metal alloys.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnungen mehrere Ausführungsbeispiele im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.Further advantages, features and details of the invention emerge from the subclaims and the following description, in which several exemplary embodiments are described in detail with reference to the drawings. The features mentioned in the claims and in the description can each be essential to the invention individually or in any combination.
Die Figuren 1 bis 16 zeigen mögliche Ausführungsarten der erfindungsgemäßen Faser.Figures 1 to 16 show possible embodiments of the fiber according to the invention.
Die in den Fig. 1 bis 8 dargestellten erfindungsgemäßen Fasern weisen eine im Wesentlichen homogene Querschnittsfläche entlang der Faserlänge auf, insbesondere keine Verdickungen oder Verdünnungen an den Faserenden. Bei allen diesen Fasern ist die Faserlänge größer als die Längserstreckung der Faser.The fibers according to the invention shown in FIGS. 1 to 8 have an essentially homogeneous cross-sectional area along the fiber length, in particular no thickening or thinning at the fiber ends. For all these fibers, the fiber length is greater than the length of the fiber.
Die Fig. 1 zeigt eine Faser mit einer in der dargestellten Seitenansicht welligen Form. Die Wellenform kann auch sinusförmig sein, insbesondere kann die Ausprägung der Wellen, deren Amplitude und Periodenlänge an den Anwendungsfall angepaßt sein. In einer nicht dargestellten Draufsicht erscheint diese Faser geradlinig.Fig. 1 shows a fiber with a wavy shape in the side view shown. The waveform can also be sinusoidal, in particular the shape of the waves, their amplitude and period length can be adapted to the application. In a plan view, not shown, this fiber appears straight.
Die Fig. 2 zeigt eine Faser mit einer in der dargestellten Seitenansicht dreieckförmigen Form. Die Dreiecksform kann auch sägezahnförmig sein, insbesondere kann der von den Dreiecksschenkeln eingeschlossene Winkel und/oder die Schenkellänge an den Anwendungsfall angepaßt sein. Auch diese Faser erscheint in einer nicht dargestellten Draufsicht geradlinig.Fig. 2 shows a fiber with a triangular shape in the side view shown. The triangular shape can also be sawtooth-shaped, in particular, the angle enclosed by the triangular legs and / or the leg length can be adapted to the application. This fiber also appears straight in a plan view, not shown.
Die Fig. 3 zeigt eine spiralförmige Faser mit zylindrischer Mantelfläche, während die Fig. 4 eine spiralförmige Faser mit kegelförmiger Mantelfläche zeigt.FIG. 3 shows a spiral fiber with a cylindrical outer surface, while FIG. 4 shows a spiral fiber with a conical outer surface.
Die Fig. 5 zeigt eine spangenartige, nicht geschlossene ellipsenförmige Faser, die Fig. 6 eine entsprechende, aber im Wesentlichen kreisförmige Faser, die Fig. 7 eine entsprechende, aber im Wesentlichen dreieckförmige Faser, und die Fig. 8 eine entsprechende, aber im Wesentliche viereckförmige Faser.FIG. 5 shows a clasp-like, not closed elliptical fiber, FIG. 6 shows a corresponding, but essentially circular fiber, FIG. 7 shows a corresponding, but essentially triangular fiber, and FIG. 8 shows a corresponding, but essentially square fiber.
Die in den Fig. 9 bis 16 dargestellten erfindungsgemäßen Fasern weisen an ihren Endabschnitten Verdickungen auf, vorzugsweise symmetrisch zu einem mittleren Abschnitt der Faser.The fibers according to the invention shown in FIGS. 9 to 16 have thickenings at their end sections, preferably symmetrically to a central section of the fiber.
Die Fig. 9 zeigt eine Faser, die an ihren Enden durch kurzzeitigen starken Energieeintrag entstandene Abschnitte mit unregelmäßiger geometrischer Form und zahlreichen Spitzen unterschiedlicher Orientierung und Längserstreckung aufweist. Das in der Darstellung linke Faserende ist dabei hinsichtlich der räumlichen Verteilung der Spitzen und deren Länge im wesentlichen regelmäßig ausgebildet, insbesondere gleichmäßig ausgebildet. Das in der Darstellung rechte Faserende ist dagegen unregelmäßig ausgebildet. Abweichend von der Darstellung der Fig. 9 kann die Faser auch an beiden Enden regelmäßig oder unregelmäßig ausgebildet sein. Die Fig. 10 zeigt eine Faser mit pyramidenstumpfförmigen Endabschnitten. Das in der Darstellung linke Faserende weist dabei eine plane Stirnfläche auf. Das in der Darstellung rechte Faserende weist dagegen eine Stirnfläche auf, die nicht plan ist, sondern insbesondere pyramidenförmig; außerdem geht der Endabschnitt stufenlos in den mittleren Abschnitt der Faser über.FIG. 9 shows a fiber which at its ends has sections with an irregular geometric shape and numerous peaks of different orientation and longitudinal extension, which are formed by brief, strong energy input. The left end of the fiber in the illustration is essentially regular, in particular uniform, with regard to the spatial distribution of the tips and their length. The right end of the fiber in the illustration, however, is irregular. Deviating from the illustration in FIG. 9, the fiber can also be designed regularly or irregularly at both ends. Fig. 10 shows a fiber with truncated pyramid shaped end portions. The left end of the fiber in the illustration has a flat end face. The right end of the fiber in the illustration, on the other hand, has an end face that is not flat, but in particular pyramid-shaped; in addition, the end section merges smoothly into the middle section of the fiber.
Die Fig. 1 1 zeigt eine Faser mit polygonkubusförmigen oder prismenförmigen Endabschnitten.Fig. 1 1 shows a fiber with polygon-shaped or prismatic end sections.
Die Fig. 12 zeigt eine Faser mit kugelförmigen Endabschnitten.Figure 12 shows a fiber with spherical end portions.
Die Fig. 13 zeigt eine Faser mit scheibenförmigen oder sogar lochscheibenförmigen Endabschnitten.13 shows a fiber with disk-shaped or even perforated disk-shaped end sections.
Die Fig. 14 zeigt eine Faser mit fischgrätartigen oder blattrippenartigen Verzweigungen sowohl im mittleren Abschnitt als auch im Endabschnitt.FIG. 14 shows a fiber with herringbone-like or leaf-rib-like branches both in the middle section and in the end section.
Die Fig. 15 zeigt eine gekröpfte Faser mit V-förmigem Mittelabschnitt.15 shows a cranked fiber with a V-shaped central section.
Die Fig. 16 zeigt eine Faser mit kugelförmigen Verdickungen in regelmäßigen Abständen entlang der Längserstreckung, wobei der Durchmesser der endseitigen kugelförmigen Verdickungen kleiner, gleich oder größer als der Durchmesser der kugelförmigen Verdickungen im Mittelabschnitt sein kann.16 shows a fiber with spherical thickenings at regular intervals along the longitudinal extent, wherein the diameter of the end-side spherical thickenings can be smaller, equal to or larger than the diameter of the spherical thickenings in the middle section.
Die Grundform der erfindungsgemäßen Fasern kann dabei im Querschnitt kreisförmig, dreieckförmig, viereckförmig und insbesondere quadratisch, ellipsenförmig oder dergleichen sein. Möglich ist auch eine vielkantige oder von der Kreisform abweichende Grundform der Faser, die torsionsartig verdreht ist und sich dadurch die Orientierung der Querschnittskontur entlang der Länge der Faser kontinuierlich verändert. The basic shape of the fibers according to the invention can be circular, triangular, quadrangular and in particular square, elliptical or the like in cross section. A polygonal or different basic shape of the fiber is also possible, which is torsion-like is twisted and thereby the orientation of the cross-sectional contour changes continuously along the length of the fiber.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Faser zur Verwendung als eine Komponente eines Kompositwerkstoffes, wobei die Faser mindestens einen Anteil aus einem nichteisenmetallischen, amorphen oder keramischen Werkstoff aufweist, insbesondere mindestens einen Anteil aus einem hochtemperaturfesten keramischen Werkstoff aufweist, und wobei die Faser eine von der Zylinderform abweichende Form aufweist.1. fiber for use as a component of a composite material, the fiber having at least a portion of a non-ferrous metal, amorphous or ceramic material, in particular at least a portion of a high-temperature-resistant ceramic material, and wherein the fiber has a shape deviating from the cylindrical shape.
2. Faser nach Anspruch 1 , dadurch gekennzeichnet, dass mindestens ein erster Abschnitt der Faser, insbesondere ein Endabschnitt der Faser, eine gegenüber einem weiteren Abschnitt der Faser hinsichtlich Größe und/oder Form und/oder Orientierung unterschiedliche Querschnittskontur aufweist.2. Fiber according to claim 1, characterized in that at least a first section of the fiber, in particular an end section of the fiber, has a different cross-sectional contour with respect to size and / or shape and / or orientation compared to a further section of the fiber.
3. Faser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Faser einen Endabschnitt mit einer unregelmäßigen geometrischen Form aufweist, insbesondere dass die unregelmäßige geometrische Form des Endabschnitts beim Herstellen der Faser durch Abtrennen von einer Endlosfaser gebildet ist, vorzugsweise durch Lasertrennen von der Endlosfaser.3. Fiber according to claim 1 or 2, characterized in that the fiber has an end portion with an irregular geometric shape, in particular that the irregular geometric shape of the end portion in the manufacture of the fiber is formed by cutting from a continuous fiber, preferably by laser cutting from the continuous fiber ,
4. Faser nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Längserstreckung der Faser zwischen 0,01 mm und 30 mm beträgt, insbesondere zwischen 0,05 mm und 5 mm, und vorzugsweise zwischen 0,1 mm und 2 mm. 4. Fiber according to one of claims 1 to 3, characterized in that the longitudinal extension of the fiber is between 0.01 mm and 30 mm, in particular between 0.05 mm and 5 mm, and preferably between 0.1 mm and 2 mm.
5. Faser nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Faser gekrümmt ist und dadurch die Faserlänge größer ist als die Längserstreckung der gekrümmten Faser.5. Fiber according to one of claims 1 to 4, characterized in that the fiber is curved and thereby the fiber length is greater than the longitudinal extent of the curved fiber.
6. Verfahren zum Herstellen einer Faser nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Fasern durch Strahlungsabsorption, insbesondere durch Absorption von Laserstrahlung, von einer Endlosfaser abgetrennt werden.6. A method for producing a fiber according to any one of claims 1 to 5, characterized in that the fibers are separated from an endless fiber by radiation absorption, in particular by absorption of laser radiation.
7. Kompositwerkstoff aufweisend eine Grundmatrix und Fasern, wobei die Faser mindestens einen Anteil aus einem nichteisenmetallischen, amorphen oder keramischen Werkstoff aufweist, insbesondere mindestens einen Anteil aus einem hochtemperaturfesten keramischen Werkstoff aufweist, und wobei die Faser eine von der Zylinderform abweichende Form aufweist.7. Composite material comprising a basic matrix and fibers, the fiber having at least a portion made of a non-ferrous metallic, amorphous or ceramic material, in particular having at least a portion made of a high-temperature-resistant ceramic material, and wherein the fiber has a shape deviating from the cylindrical shape.
8. Kompositwerkstoff nach Anspruch 7, dadurch gekennzeichnet, dass mindestens ein erster Abschnitt der Fasern, insbesondere ein Endabschnitt der Fasern, eine gegenüber einem weiteren Abschnitt der Fasern hinsichtlich Größe und/oder Form und/oder Orientierung unterschiedliche Querschnittskontur aufweist.8. Composite material according to claim 7, characterized in that at least a first section of the fibers, in particular an end section of the fibers, has a different cross-sectional contour with respect to size and / or shape and / or orientation compared to a further section of the fibers.
9. Kompositwerkstoff nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Grundmatrix durch Abkühlen, Ausheizen, Vernetzen oder Sintern aushärtbar ist.9. Composite material according to claim 7 or 8, characterized in that the basic matrix can be hardened by cooling, heating, crosslinking or sintering.
10. Kompositwerkstoff nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Grundmatrix beim Aushärten eine Keramik bildet. 10. Composite material according to one of claims 7 to 9, characterized in that the basic matrix forms a ceramic during curing.
1 1. Kompositwerkstoff nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Grundmatrix nach dem Aushärten einen Keramikanteil von mehr als 50 % aufweist, insbesondere mehr als 65 % aufweist, und vorzugsweise mehr als 75 % aufweist.1 1. Composite material according to one of claims 7 to 10, characterized in that the basic matrix after curing has a ceramic content of more than 50%, in particular more than 65%, and preferably has more than 75%.
12. Kompositwerkstoff nach einem der Ansprüche 7 bis 1 1, dadurch gekennzeichnet, dass die Grundmatrix nach dem Aushärten formbeständig ist bei Temperaturen oberhalb 800 °C, insbesondere oberhalb 1200 °C, und vorzugsweise oberhalb 1600 °C.12. Composite material according to one of claims 7 to 1 1, characterized in that the basic matrix is dimensionally stable after curing at temperatures above 800 ° C, in particular above 1200 ° C, and preferably above 1600 ° C.
13. Kompositwerkstoff nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die Grundmatrix nach dem Aushärten eine Dichte zwischen 1 und 8 g/cm3 aufweist, insbesondere zwischen 1 ,5 und 6 g/cm3 aufweist, und vorzugsweise zwischen 2 und 4 g/cm3 aufweist.13. Composite material according to one of claims 7 to 12, characterized in that the basic matrix after curing has a density between 1 and 8 g / cm 3 , in particular between 1, 5 and 6 g / cm 3 , and preferably between 2 and 4 g / cm 3 .
14. Kompositwerkstoff nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die Grundmatrix vor dem Aushärten bei Raumtemperatur niedrigviskos ist, insbesondere eine Viskosität von weniger als 300 cps aufweist, vorzugsweise eine Viskosität zwischen 100 und 200 cps.14. Composite material according to one of claims 7 to 13, characterized in that the basic matrix is low-viscosity before curing at room temperature, in particular has a viscosity of less than 300 cps, preferably a viscosity between 100 and 200 cps.
15. Kompositwerkstoff nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass der Gewichtsanteil der Grundmatrix mindestens 50 % beträgt, bezogen auf das Gesamtgewicht der aushärtbaren Masse, insbesondere mehr als 65 %, und vorzugsweise mehr als 75 %. 15. Composite material according to one of claims 7 to 14, characterized in that the proportion by weight of the base matrix is at least 50%, based on the total weight of the curable composition, in particular more than 65%, and preferably more than 75%.
PCT/EP2004/011942 2003-11-06 2004-10-22 Fibre used as a component of a composite material, composite material and method for the production of said type of fibre WO2005047208A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352709.5 2003-11-06
DE10352709A DE10352709A1 (en) 2003-11-06 2003-11-06 Fiber for use as a component of a composite material and such a composite material and a production method for such a fiber

Publications (2)

Publication Number Publication Date
WO2005047208A2 true WO2005047208A2 (en) 2005-05-26
WO2005047208A3 WO2005047208A3 (en) 2005-07-21

Family

ID=34584991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011942 WO2005047208A2 (en) 2003-11-06 2004-10-22 Fibre used as a component of a composite material, composite material and method for the production of said type of fibre

Country Status (2)

Country Link
DE (1) DE10352709A1 (en)
WO (1) WO2005047208A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020118157A1 (en) 2020-07-09 2022-01-13 Universität Kassel Fibrous element for addition to a hardenable matrix

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145199A (en) * 1976-11-26 1979-03-20 Owens-Corning Fiberglas Corporation Method and apparatus for forming kinky fibers from heat-softenable material
US4348458A (en) * 1980-09-08 1982-09-07 Monsanto Company Coiled inorganic monolithic hollow fibers
US4703898A (en) * 1986-03-04 1987-11-03 Research Development Corporation Of Japan Method for producing ultra fine and short metal fibers
US4764488A (en) * 1985-09-24 1988-08-16 Kabushiki Kaisha Kobe Seiko Sho High toughness ceramic composites consisting of ceramic body reinforced with metal fiber
GB2233971A (en) * 1989-06-28 1991-01-23 Central Glass Co Ltd Carbonaceous fibres having coil-like filaments and method of producing same
US5182166A (en) * 1991-05-01 1993-01-26 Burton Ralph A Wear-resistant composite structure of vitreous carbon containing convoluted fibers
US5486497A (en) * 1993-02-08 1996-01-23 Taimei Kagaku Kogyo Kabushiki Kaisha Ceramic fiber yarn, and a method of and a spinning machine for making the same
US5895715A (en) * 1996-02-29 1999-04-20 Owens Corning Fiberglas Technology, Inc. Method of making shaped fibers
WO1999041440A1 (en) * 1998-02-13 1999-08-19 The Regents Of The University Of California Reinforced composites including bone-shaped short fibers
US5983676A (en) * 1998-05-18 1999-11-16 Lear Corporation Laser fiber chopper
WO2002057035A1 (en) * 2000-12-13 2002-07-25 N.V. Bekaert S.A. Short metal fibers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180615A (en) * 1982-04-10 1983-10-22 Morinobu Endo Preparation of carbon fiber by vapor phase method
JP2724617B2 (en) * 1988-07-07 1998-03-09 東海カーボン株式会社 Porous metal material
US5094906A (en) * 1988-08-15 1992-03-10 Exxon Research And Engineering Company Ceramic microtubular materials and method of making same
GB9122997D0 (en) * 1991-10-30 1991-12-18 Curran Dennis J G Ceramic fibres
JP3300495B2 (en) * 1992-10-14 2002-07-08 大明化学工業株式会社 Ceramic fiber bundle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145199A (en) * 1976-11-26 1979-03-20 Owens-Corning Fiberglas Corporation Method and apparatus for forming kinky fibers from heat-softenable material
US4348458A (en) * 1980-09-08 1982-09-07 Monsanto Company Coiled inorganic monolithic hollow fibers
US4764488A (en) * 1985-09-24 1988-08-16 Kabushiki Kaisha Kobe Seiko Sho High toughness ceramic composites consisting of ceramic body reinforced with metal fiber
US4703898A (en) * 1986-03-04 1987-11-03 Research Development Corporation Of Japan Method for producing ultra fine and short metal fibers
GB2233971A (en) * 1989-06-28 1991-01-23 Central Glass Co Ltd Carbonaceous fibres having coil-like filaments and method of producing same
US5182166A (en) * 1991-05-01 1993-01-26 Burton Ralph A Wear-resistant composite structure of vitreous carbon containing convoluted fibers
US5486497A (en) * 1993-02-08 1996-01-23 Taimei Kagaku Kogyo Kabushiki Kaisha Ceramic fiber yarn, and a method of and a spinning machine for making the same
US5895715A (en) * 1996-02-29 1999-04-20 Owens Corning Fiberglas Technology, Inc. Method of making shaped fibers
WO1999041440A1 (en) * 1998-02-13 1999-08-19 The Regents Of The University Of California Reinforced composites including bone-shaped short fibers
US5983676A (en) * 1998-05-18 1999-11-16 Lear Corporation Laser fiber chopper
WO2002057035A1 (en) * 2000-12-13 2002-07-25 N.V. Bekaert S.A. Short metal fibers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN Y ET AL: "Growth and characterization of dumbbell-shaped MgO nanowhiskers" CERAMICS INTERNATIONAL, ELSEVIER APPLIED SCIENCE PUBL, BARKING, ESSEX, GB, Bd. 29, Nr. 6, 2003, Seiten 663-666, XP004436557 ISSN: 0272-8842 *
PATENT ABSTRACTS OF JAPAN Bd. 008, Nr. 015 (C-206), 21. Januar 1984 (1984-01-21) -& JP 58 180615 A (MORINOBU ENDOU; others: 02), 22. Oktober 1983 (1983-10-22) *
PATENT ABSTRACTS OF JAPAN Bd. 014, Nr. 440 (M-1028), 20. September 1990 (1990-09-20) -& JP 02 175803 A (TOYO CARBON KK), 9. Juli 1990 (1990-07-09) *
YUNTIAN T. ZHU AND IRENE J. BEYERLEIN: "Bone-shaped short fiber composites - an overview" MATERIALS SCIENCE AND ENGINEERING, Bd. a326, 2002, Seiten 208-227, XP002323248 *

Also Published As

Publication number Publication date
WO2005047208A3 (en) 2005-07-21
DE10352709A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
EP1745757B1 (en) Root canal instrument with an abrasive coating and method for the manufacture thereof
EP1929099B1 (en) Bi-component synthetic fibres for application in cement-bonded building materials
DE3318832C2 (en)
WO1999028272A2 (en) Ceramic network, method for the production and utilization thereof
EP1314907B1 (en) Fiber reinforced composite ceramic friction body
WO2012072428A1 (en) Surface-structured metallic glasses and process for the production thereof
DE2059179C3 (en) Process for the production of a fiber-reinforced molded body and application of the process for the production of special molded bodies
EP0703029A1 (en) Process for preparing interlocking metal parts
WO2016008570A1 (en) Method for producing a plate electrode
DE10009432C1 (en) Brush for a brush seal
EP2870304B1 (en) Fibre-reinforced mineral building material
EP1370381B1 (en) Sintered, highly porous body and method for the production thereof
EP0976945A1 (en) Method for manufacturing a fiber reinforced friction element
WO2005047208A2 (en) Fibre used as a component of a composite material, composite material and method for the production of said type of fibre
DE102015216749A1 (en) Additive production of a molded article
DE202018105222U1 (en) abrasives
EP1771700A2 (en) Beam control surface and method for the production of a beam control surface
WO2012136690A1 (en) Method for producing a resistance heating element, and resistance heating element
DE2161453A1 (en) Friction coating - for brakes and clutches
DE102020107743A1 (en) Hybrid fiber and process for making it
DE102013215381A1 (en) Method for producing a composite component, composite component and wind energy plant
EP3704397A1 (en) Component for absorbing impact force
DE102017128546A1 (en) Refractory container made of a ceramic material, green compact for such a container, method for producing a refractory container made of a ceramic material and a green compact provided therefor
EP0291667A2 (en) Composite powder from metallic or ceramic whiskers
DE19962831A1 (en) Telescope has a tube made of a carbon/carbon-silicon carbide material having a thermal expansion coefficient which fits the thermal expansion coefficient of the material of the mirror body of the primary mirror

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase