WO2005055601A1 - Methods and apparatus to detect an operating state of a display - Google Patents

Methods and apparatus to detect an operating state of a display Download PDF

Info

Publication number
WO2005055601A1
WO2005055601A1 PCT/US2003/030355 US0330355W WO2005055601A1 WO 2005055601 A1 WO2005055601 A1 WO 2005055601A1 US 0330355 W US0330355 W US 0330355W WO 2005055601 A1 WO2005055601 A1 WO 2005055601A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
optical fiber
light source
operating state
signal
Prior art date
Application number
PCT/US2003/030355
Other languages
French (fr)
Inventor
Karin A. Johnson
Original Assignee
Nielsen Media Research, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nielsen Media Research, Inc. filed Critical Nielsen Media Research, Inc.
Priority to AU2003276971A priority Critical patent/AU2003276971A1/en
Priority to PCT/US2003/030355 priority patent/WO2005055601A1/en
Priority to TW093128396A priority patent/TW200513842A/en
Publication of WO2005055601A1 publication Critical patent/WO2005055601A1/en
Priority to US11/388,262 priority patent/US9027043B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44213Monitoring of end-user related data
    • H04N21/44222Analytics of user selections, e.g. selection of programs or purchase activity
    • H04N21/44224Monitoring of user activity on external systems, e.g. Internet browsing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/29Arrangements for monitoring broadcast services or broadcast-related services
    • H04H60/32Arrangements for monitoring conditions of receiving stations, e.g. malfunction or breakdown of receiving stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/251Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • H04N21/252Processing of multiple end-users' preferences to derive collaborative data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/258Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
    • H04N21/25866Management of end-user data
    • H04N21/25891Management of end-user data being end-user preferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/422Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS]
    • H04N21/4223Cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6582Data stored in the client, e.g. viewing habits, hardware capabilities, credit card number
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/812Monomedia components thereof involving advertisement data

Definitions

  • the present disclosure relates generally to audience measurement, and more particularly, to methods and apparatus to detect an operating state of a display.
  • Determining the size and demographics of a television viewing audience helps television program producers improve their television programming and determine a price to be charged for advertising that is broadcasted during such programming.
  • accurate television viewing demographics allows advertisers to target audiences of a desired size and/or audiences comprised of members having a set of common, desired characteristics (e.g., income level, lifestyles, interests, etc.).
  • an audience measurement company may enlist a number of television viewers to cooperate in an audience measurement study for a predefined length of time.
  • the viewing habits of these enlisted viewers, as well as demographic data about these enlisted viewers, are collected using automated and/or manual collection methods.
  • the collected data is subsequently used to generate a variety of informational statistics related to television viewing audiences including, for example, audience sizes, audience demographics, audience preferences, the total number of hours of television viewing per household and/or per region, etc.
  • the configurations of automated data collection systems vary depending on the equipment used to receive, process, and display television signals in each home being monitored.
  • homes that receive cable television signals and/or satellite television signals typically include a set top box (STB) to receive television signals from a cable and/or satellite television provider.
  • STB set top box
  • Television systems configured in this manner are typically monitored using hardware, firmware, and/or software to interface with the STB to extract or to generate signal information therefrom.
  • Such hardware, firmware, and/or software may be adapted to perform a variety of monitoring tasks including, for example, detecting the channel tuning status of a tuning device disposed in the STB, extracting program identification codes embedded in television signals received at the STB, generating signatures characteristic of television signals received at the STB, etc.
  • the STB may be powered independent of the television set.
  • the STB may be turned on (i.e., powered up) and continue to supply television signals to the television set even when the television set is turned off.
  • monitoring of television systems having independently powered devices typically involves an additional device or method to determine the operational status of the television set to ensure that the collected data reflects information about television signals that were merely supplied to the television set, which may or may not be turned on.
  • techniques to determine the operational status of the television set many of these techniques are invasive to the television set and increases unnecessary risk in damaging the television set during installation of the circuitry to determine the operational status. Further some of these techniques involve monitoring the consumption of power by the television set. Unfortunately, the consumption of power by the television set does not necessarily indicate that the television screen is operational. Other techniques to determine the operational status of the television set are complex and tend to be costly to implement.
  • FIG. 1 is a block diagram representation of an example television system.
  • FIG. 2 is a block diagram representation of an example display monitoring system.
  • FIG. 3 is a flow diagram representation to detect an operating state of a display.
  • an example broadcast system 100 including a service provider 110, a television 120, a remote control device 125, and a set top box (STB) 130 is metered using an audience measurement system.
  • the components of the system 100 may be coupled in any well known manner.
  • the television 120 e.g., a cathode ray tube (CRT) television, a liquid crystal display (LCD) television, etc.
  • CTR cathode ray tube
  • LCD liquid crystal display
  • the viewing area 150 includes the area in which the television 120 is located and from which the television 120 may be viewed by one or more household members 160 located in the viewing area 150.
  • a metering device 135 is configured to monitor the STB 130 and to collect viewing data to determine the viewing habits of the household members 160.
  • the television 120 and the STB 130 may be powered independently such that the STB 130 may be configured to remain turned on at all times while the television 120 may be turned on or off depending on whether one or more of the household members 160 decides to watch television.
  • the broadcast system 100 may also include a display monitoring device 140 configured to detect an operating state of the television 120 (i.e., on or off) and to generate data indicative of the operating state. The generated data of the operating state may then be used, for example, to supplement the data collected by the metering device 135 and/or to control the collection of data by the metering device 135.
  • television operating state data may be used to determine whether data collected by the metering device 135 corresponds to television signals that were not only supplied to the television 120 but to television signals that were actually displayed by the television 120.
  • the television operating state data generated by the display monitoring device 140 may be used to control the operation of the metering device 135.
  • the display monitoring device 140 may generate a control signal that causes the metering device 135 to begin collecting metering data in response to detecting that the television 120 is turned on.
  • the display monitoring device 140 may also generate a control signal that causes the metering device 135 to stop collecting metering data in response to detecting that the television 120 is turned off.
  • the display monitoring device 140 optimizes the amount of data collected by the metering device 135, which in turn, allows for a reduction in the amount of memory required to store metering data. Such reduction in memory may be substantial especially for systems that employ metering devices configured to generate data intensive signatures characterizing the television content.
  • the display monitoring device 140 may also be configured to determine the total number of hours of television watched by the household members 160. As described in detail below, the display monitoring device 140 may generate time stamps corresponding to the times at which the television 120 is turned on (i.e., begins to display content) and/or the times at which the television 120 is turned off (i.e., stops displaying content). Alternatively, the display monitoring device 140 may be configured to provide the television operating state data to the metering device 135, which in turn, generates time stamps associated with the data so that the total number of hours of television watched may be calculated merefrom. Further, the display monitoring device 140 may provide the television operating state data to the central data collection facility 180 either directly or via the metering device 135.
  • the display monitoring device 140 may include a communication device (one shown as 270 in FIG. 2) such as a wired or wireless telephone communication circuit, a cable modem, etc.
  • the data collection facility 180 is configured to process and/or store data received from the display monitoring device 140 and/or the metering device to produce television viewing information.
  • the service provider 110 may be implemented by any television service provider such as, for example, a cable television service provider 112, a radio frequency (RF) television service provider 114, and/or a satellite television service provider 116.
  • the television 120 receives a plurality of television signals transmitted via a plurality of channels by the service provider 110 and may be adapted to process and display television signals provided in any format such as a National Television Standards Committee (NTSC) television signal format, a high definition television (HDTV) signal format, an Advanced Television Systems Committee (ATSC) television signal format, a phase alteration line (PAL) television signal format, a digital video broadcasting (DVB) television signal format, an Association of Radio Industries and Businesses (ARIB) television signal format, etc.
  • NSC National Television Standards Committee
  • HDTV high definition television
  • ATSC Advanced Television Systems Committee
  • PAL phase alteration line
  • DVD digital video broadcasting
  • ARIB Association of Radio Industries and Businesses
  • the user-operated remote control device 125 allows a user to cause the television 120 to tune to and receive signals transmitted on a desired channel, and to cause the television 120 to process and present the programming content contained in the signals transmitted on the desired channel.
  • the processing performed by the television 120 may include, for example, extracting a video and/or an audio component delivered via the received signal, causing the video component to be displayed on a screen/display associated with the television 120, and causing the audio component to be emitted by speakers associated with the television 120.
  • the programming content contained in the television signal may include, for example, a television program, a movie, an advertisement, a video game, and/or a preview of other programming content that is currently offered or will be offered in the future by the service provider 110.
  • FIG. 1 While the components shown in FIG. 1 are depicted as separate structures within the television system 100, the functions performed by some of these structures may be integrated within a single unit or may be implemented using two or more separate components.
  • the television 120, the STB 130 and the metering device 135 are depicted as separate structures, persons of ordinary skill in the art will readily appreciate that the television 120, the STB 130, and/or the metering device 135 may be integrated into a single unit.
  • the STB 130, the metering device 135 and/or the display monitoring device 140 may also be integrated into a single unit.
  • the television 120, the STB 130, the metering device 135, and the display monitoring device 140 may all be integrated into a single unit.
  • the illustrated display monitoring system 200 includes a display 220 (a television, a monitor, and/or other media output device) and a display momtoring device 240.
  • the display 220 may be implemented by any desired type of display such as a liquid crystal (LCD), and a plasma display.
  • the display 220 includes a screen 222 and a light energy source 224.
  • the light energy source 224 emits light energy for projecting images on the screen 222 when power is applied to the display 220 (i.e., the display 220 is turned on).
  • the light energy source 224 is turned off when no power is applied to the display 220 or when the display 220 enters a standby state, a sleep state, and/or a power save state (i.e., power is applied to the display 220 but the screen 222 is blank).
  • the display monitoring device 240 is optically coupled to the light energy source 224 of the display 220 via an optical fiber 230 (e.g., plastic or glass).
  • the display monitoring device 240 includes an optical-to-electrical converter 242, a signal processing circuit 244, and a logic circuit 246.
  • the optical-to-electrical converter 242 may be a photodetector, a photodiode and/or any suitable light-sensitive semiconductor junction device configured to convert light energy emitted by the light energy source 224 via the optical fiber 230 into an electrical signal.
  • the electrical signal is provided to the signal processing circuit 244 and the logic circuit 246.
  • the signal processing circuit 244 amplifies the electrical signal to a particular voltage level and filters noise and/or other extraneous signals from the electrical signal so that the logic circuit 246 may generate an output signal indicative of an operating state of the display 220 based on the electrical signal as described in detail below. [0017]
  • the logic circuit 246 receives the electrical signal from the signal processing circuit 244, the logic circuit 246 generates an output signal indicative of an operating state of the display 220.
  • the output signal indicates either an on state or an off state of the display 220.
  • the logic circuit 246 may generate a HIGH signal (i.e., a logic "1") to indicate that the display 220 is turned on (i.e., light energy to project images on the screen 222 is detected).
  • a processor 250 may use the output signal indicative of the operating state of the display 220 to track when and how long the display 220 is turned on or off. For example, the processor 250 may generate a time stamp corresponding to the time when the processor 250 receives a HIGH signal as the output signal. The processor 250 may generate another time stamp when the processor 250 receives a LOW signal as the output signal. The processor 250 is operatively coupled to a memory 260 to store the on/off information.
  • the memory 260 may be implemented by any type of memory such as a volatile memory (e.g., random access memory (RAM)), a nonvolatile memory (e.g., flash memory) or other mass storage device (e.g., a floppy disk, a CD, and a DVD).
  • RAM random access memory
  • nonvolatile memory e.g., flash memory
  • mass storage device e.g., a floppy disk, a CD, and a DVD.
  • the processor 250 may automatically provide operating information (e.g., when the display 220 was turned on or off) to the data collection facility 180 via a communication device 270 (e.g., a wired or wireless telephone communication circuit, a cable modem, etc.).
  • a communication device 270 e.g., a wired or wireless telephone communication circuit, a cable modem, etc.
  • the data collection facility 180 is configured to produce television viewing data.
  • the data collection facility 180 may use the on/off information to determine a total number of hours that the household members 160 watch television.
  • the components shown in FIG. 2 are depicted as separate structures within the display monitoring system 200, the functions performed by some of these structures may be integrated within a single unit or may be implemented using two or more separate components.
  • the display monitoring device 240 and the processor 250 are depicted as separate structures, persons of ordinary skill in the art will readily appreciate that the display monitoring device 240 and the processor 250 may be integrated into a single unit.
  • the processor 250 may be configured to generate the output signal indicative of the operating state of the display 220 based on the electrical signal from the signal processing circuit 244.
  • the memory 260 may also be integrated into the display monitoring device 240.
  • FIG. 3 An example method which may be executed to detect an operating state of a display is illustrated in FIG. 3. Persons of ordinary skill in the art will appreciate that the method can be implemented in any of many different ways. Further, although a particular order of actions is illustrated in FIG. 3, persons of ordinary skill in the art will appreciate that these actions can be performed in other temporal sequences.
  • the flow chart 300 is merely provided as an example of one way to use the display monitoring device 240 to detect an operating state of the display 220.
  • the optical fiber 230 is optically coupled to the light energy source 224 associated with the display 220 (block 310).
  • the light energy source 224 is configured to emit light energy for projecting images on the screen 222 of the display 220.
  • the display monitoring device 240 monitors for light energy from the light energy source 224 via the optical fiber 230 (block 320).
  • the optical-to- electrical converter 242 converts light energy from the light energy source 224 to an electrical signal (block 330).
  • the signal processing circuit 244 amplifies the electrical signal to a particular voltage level and filters extraneous signals (e.g., noise) from the electrical signal so that the electrical signal may be processed by the logic circuit 246 (block 340).
  • the logic circuit 246 Based on the amplified and filtered electrical signal, the logic circuit 246 generates an output signal indicative of an operating state of the display (block 350). In particular, the output signal is indicative of wither the display 220 is in an on state or an off state. For example, the logic circuit 246 may generate a HIGH signal (i.e., a logic "1") to indicate that the display 220 is turned on. Alternatively, the logic circuit 246 may generate a LOW signal (i.e., a logic "0") to indicate that the display 220 is turned off including a standby state where the screen 222 is blank.
  • a HIGH signal i.e., a logic "1"
  • a LOW signal i.e., a logic "0
  • the processor 250 may generate a time stamp (block 360). For example, when the processor 250 first detects a HIGH signal from the logic circuit 246, the processor 250 generates a time stamp and stores data indicating that the display 220 entered an on state at the time indicated by the time stamp. When the processor 250 detects a LOW signal from the logic circuit 246, it generates a time stamp and stores data indicating that the display 220 entered an off state at the time indicated by the time stamp.
  • This operating information (e.g., when the display 210 was turned on or off) may be provided to the data collection facility 180 and/or provided to the metering device 135 that subsequently transmits the operating information to the data collection facility 180.
  • the operating information may be used to produce television audience statistics. As noted above, the operating information may be used to determine a number of hours of that the household members 160 watch television. Further, as noted above, the operating information may also be used to reduce and/or to filter out data that is collected by the metering device 135. The data collection facility 180 may also use the operating information to separate the viewing data corresponding to programming content that were actually displayed from the viewing data corresponding to programming content that were merely provided to the television 120 when the television 120 was turned off. [0023] While the methods and apparatus disclosed herein are particularly well suited for use with an LCD, the teachings of the disclosure may be applied to detect an operating state of other types of displays. For example, the methods and apparatus disclosed herein may detect an operating state of a plasma display.
  • the methods and apparatus disclosed herein may detect an operating state of a computer monitor, a projector screen, and/or other media output device. Thus, the methods and apparatus disclosed herein may collect data associated with Internet usage and/or other display of media via a computer.

Abstract

Methods and apparatus to detect an operating state of a display are disclosed. An example device to detect an operating state of a display includes an optical fiber (230), an optical-to-electrical converter (242), and a logic circuit (246). The optical fiber (230) is optically coupled to a light source (224) of the display. The light energy source is configured to emit light. The optical-to-electrical converter (242) is coupled to the light source (224) via the optical fiber (230) and configured to convert light from the light source (224) into an electrical signal. The logic circuit (246) is coupled to the optical-to-electrical converter (242) and configured to generate an output signal indicative of the operating state of the display based on the electrical signal.

Description

METHODS AND APPARATUS TO DETECT AN OPERATING STATE OF A DISPLAY TECHNICAL FIELD
[0001] The present disclosure relates generally to audience measurement, and more particularly, to methods and apparatus to detect an operating state of a display.
BACKGROUND
[0002] Determining the size and demographics of a television viewing audience helps television program producers improve their television programming and determine a price to be charged for advertising that is broadcasted during such programming. In addition, accurate television viewing demographics allows advertisers to target audiences of a desired size and/or audiences comprised of members having a set of common, desired characteristics (e.g., income level, lifestyles, interests, etc.).
[0003] In order to collect these demographics, an audience measurement company may enlist a number of television viewers to cooperate in an audience measurement study for a predefined length of time. The viewing habits of these enlisted viewers, as well as demographic data about these enlisted viewers, are collected using automated and/or manual collection methods. The collected data is subsequently used to generate a variety of informational statistics related to television viewing audiences including, for example, audience sizes, audience demographics, audience preferences, the total number of hours of television viewing per household and/or per region, etc.
[0004] The configurations of automated data collection systems vary depending on the equipment used to receive, process, and display television signals in each home being monitored. For example, homes that receive cable television signals and/or satellite television signals typically include a set top box (STB) to receive television signals from a cable and/or satellite television provider. Television systems configured in this manner are typically monitored using hardware, firmware, and/or software to interface with the STB to extract or to generate signal information therefrom. Such hardware, firmware, and/or software may be adapted to perform a variety of monitoring tasks including, for example, detecting the channel tuning status of a tuning device disposed in the STB, extracting program identification codes embedded in television signals received at the STB, generating signatures characteristic of television signals received at the STB, etc. However, many television systems that include an STB are configured such that the STB may be powered independent of the television set. As a result, the STB may be turned on (i.e., powered up) and continue to supply television signals to the television set even when the television set is turned off. Thus, monitoring of television systems having independently powered devices typically involves an additional device or method to determine the operational status of the television set to ensure that the collected data reflects information about television signals that were merely supplied to the television set, which may or may not be turned on. Although there are a variety of techniques to determine the operational status of the television set, many of these techniques are invasive to the television set and increases unnecessary risk in damaging the television set during installation of the circuitry to determine the operational status. Further some of these techniques involve monitoring the consumption of power by the television set. Unfortunately, the consumption of power by the television set does not necessarily indicate that the television screen is operational. Other techniques to determine the operational status of the television set are complex and tend to be costly to implement.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] FIG. 1 is a block diagram representation of an example television system. [0006] FIG. 2 is a block diagram representation of an example display monitoring system.
[0007] FIG. 3 is a flow diagram representation to detect an operating state of a display.
DETAILED DESCRIPTION
[0008] Although the following discloses example systems including, among other components, software executed on hardware, it should be noted that such systems are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the disclosed hardware and software components could be embodied exclusively in dedicated hardware, exclusively in software, exclusively in firmware or in some combination of hardware, software, and/or firmware. [0009] In addition, while the following disclosure discusses example television systems, it should be understood that the disclosed system is readily applicable to many other media systems. Accordingly, while the following describes example systems and processes, persons of ordinary skill in the art will readily appreciate that the disclosed examples are not the only way to implement such systems. [0010] In the example of FIG. 1, an example broadcast system 100 including a service provider 110, a television 120, a remote control device 125, and a set top box (STB) 130 is metered using an audience measurement system. The components of the system 100 may be coupled in any well known manner. In the illustrated example, the television 120 (e.g., a cathode ray tube (CRT) television, a liquid crystal display (LCD) television, etc.) is positioned in a viewing area 150 located within a house occupied by one or more people, referred to as household members 160, all of whom have agreed to participate in an audience measurement research study. The viewing area 150 includes the area in which the television 120 is located and from which the television 120 may be viewed by one or more household members 160 located in the viewing area 150. In the illustrated example, a metering device 135 is configured to monitor the STB 130 and to collect viewing data to determine the viewing habits of the household members 160. The television 120 and the STB 130 may be powered independently such that the STB 130 may be configured to remain turned on at all times while the television 120 may be turned on or off depending on whether one or more of the household members 160 decides to watch television. Accordingly, the broadcast system 100 may also include a display monitoring device 140 configured to detect an operating state of the television 120 (i.e., on or off) and to generate data indicative of the operating state. The generated data of the operating state may then be used, for example, to supplement the data collected by the metering device 135 and/or to control the collection of data by the metering device 135. For example, television operating state data may be used to determine whether data collected by the metering device 135 corresponds to television signals that were not only supplied to the television 120 but to television signals that were actually displayed by the television 120. In another example, the television operating state data generated by the display monitoring device 140 may be used to control the operation of the metering device 135. In particular, the display monitoring device 140 may generate a control signal that causes the metering device 135 to begin collecting metering data in response to detecting that the television 120 is turned on. The display monitoring device 140 may also generate a control signal that causes the metering device 135 to stop collecting metering data in response to detecting that the television 120 is turned off. Thus, the display monitoring device 140 optimizes the amount of data collected by the metering device 135, which in turn, allows for a reduction in the amount of memory required to store metering data. Such reduction in memory may be substantial especially for systems that employ metering devices configured to generate data intensive signatures characterizing the television content.
[0011] The display monitoring device 140 may also be configured to determine the total number of hours of television watched by the household members 160. As described in detail below, the display monitoring device 140 may generate time stamps corresponding to the times at which the television 120 is turned on (i.e., begins to display content) and/or the times at which the television 120 is turned off (i.e., stops displaying content). Alternatively, the display monitoring device 140 may be configured to provide the television operating state data to the metering device 135, which in turn, generates time stamps associated with the data so that the total number of hours of television watched may be calculated merefrom. Further, the display monitoring device 140 may provide the television operating state data to the central data collection facility 180 either directly or via the metering device 135. If the display monitoring device 140 directly provides the television operating state data to the data collection facility 180 then the display monitoring device 140 may include a communication device (one shown as 270 in FIG. 2) such as a wired or wireless telephone communication circuit, a cable modem, etc. The data collection facility 180 is configured to process and/or store data received from the display monitoring device 140 and/or the metering device to produce television viewing information.
[0012] The service provider 110 may be implemented by any television service provider such as, for example, a cable television service provider 112, a radio frequency (RF) television service provider 114, and/or a satellite television service provider 116. The television 120 receives a plurality of television signals transmitted via a plurality of channels by the service provider 110 and may be adapted to process and display television signals provided in any format such as a National Television Standards Committee (NTSC) television signal format, a high definition television (HDTV) signal format, an Advanced Television Systems Committee (ATSC) television signal format, a phase alteration line (PAL) television signal format, a digital video broadcasting (DVB) television signal format, an Association of Radio Industries and Businesses (ARIB) television signal format, etc.
[0013] The user-operated remote control device 125 allows a user to cause the television 120 to tune to and receive signals transmitted on a desired channel, and to cause the television 120 to process and present the programming content contained in the signals transmitted on the desired channel. The processing performed by the television 120 may include, for example, extracting a video and/or an audio component delivered via the received signal, causing the video component to be displayed on a screen/display associated with the television 120, and causing the audio component to be emitted by speakers associated with the television 120. The programming content contained in the television signal may include, for example, a television program, a movie, an advertisement, a video game, and/or a preview of other programming content that is currently offered or will be offered in the future by the service provider 110. [0014] While the components shown in FIG. 1 are depicted as separate structures within the television system 100, the functions performed by some of these structures may be integrated within a single unit or may be implemented using two or more separate components. For example, although the television 120, the STB 130 and the metering device 135 are depicted as separate structures, persons of ordinary skill in the art will readily appreciate that the television 120, the STB 130, and/or the metering device 135 may be integrated into a single unit. In another example, the STB 130, the metering device 135 and/or the display monitoring device 140 may also be integrated into a single unit. In fact, the television 120, the STB 130, the metering device 135, and the display monitoring device 140 may all be integrated into a single unit. [0015] In the example of FIG. 2, the illustrated display monitoring system 200 includes a display 220 (a television, a monitor, and/or other media output device) and a display momtoring device 240. The display 220 may be implemented by any desired type of display such as a liquid crystal (LCD), and a plasma display. The display 220 includes a screen 222 and a light energy source 224. The light energy source 224 emits light energy for projecting images on the screen 222 when power is applied to the display 220 (i.e., the display 220 is turned on). The light energy source 224 is turned off when no power is applied to the display 220 or when the display 220 enters a standby state, a sleep state, and/or a power save state (i.e., power is applied to the display 220 but the screen 222 is blank).
[0016] The display monitoring device 240 is optically coupled to the light energy source 224 of the display 220 via an optical fiber 230 (e.g., plastic or glass). In particular, the display monitoring device 240 includes an optical-to-electrical converter 242, a signal processing circuit 244, and a logic circuit 246. The optical-to-electrical converter 242 may be a photodetector, a photodiode and/or any suitable light-sensitive semiconductor junction device configured to convert light energy emitted by the light energy source 224 via the optical fiber 230 into an electrical signal. The electrical signal is provided to the signal processing circuit 244 and the logic circuit 246. The signal processing circuit 244 amplifies the electrical signal to a particular voltage level and filters noise and/or other extraneous signals from the electrical signal so that the logic circuit 246 may generate an output signal indicative of an operating state of the display 220 based on the electrical signal as described in detail below. [0017] When the logic circuit 246 receives the electrical signal from the signal processing circuit 244, the logic circuit 246 generates an output signal indicative of an operating state of the display 220. In particular, the output signal indicates either an on state or an off state of the display 220. For example, the logic circuit 246 may generate a HIGH signal (i.e., a logic "1") to indicate that the display 220 is turned on (i.e., light energy to project images on the screen 222 is detected). In contrast, the logic circuit 246 may generate a LOW signal (i.e., a logic "0") to indicate that the display 220 is turned off (i.e., no light energy to project images on the screen 222 is detected). [0018] A processor 250 may use the output signal indicative of the operating state of the display 220 to track when and how long the display 220 is turned on or off. For example, the processor 250 may generate a time stamp corresponding to the time when the processor 250 receives a HIGH signal as the output signal. The processor 250 may generate another time stamp when the processor 250 receives a LOW signal as the output signal. The processor 250 is operatively coupled to a memory 260 to store the on/off information. The memory 260 may be implemented by any type of memory such as a volatile memory (e.g., random access memory (RAM)), a nonvolatile memory (e.g., flash memory) or other mass storage device (e.g., a floppy disk, a CD, and a DVD). Based on the time stamps corresponding to the output signals from the logic circuit 246, the processor 250 may automatically provide operating information (e.g., when the display 220 was turned on or off) to the data collection facility 180 via a communication device 270 (e.g., a wired or wireless telephone communication circuit, a cable modem, etc.). As noted above, the data collection facility 180 is configured to produce television viewing data. For example, the data collection facility 180 may use the on/off information to determine a total number of hours that the household members 160 watch television. [0019] While the components shown in FIG. 2 are depicted as separate structures within the display monitoring system 200, the functions performed by some of these structures may be integrated within a single unit or may be implemented using two or more separate components. For example, although the display monitoring device 240 and the processor 250 are depicted as separate structures, persons of ordinary skill in the art will readily appreciate that the display monitoring device 240 and the processor 250 may be integrated into a single unit. Further, the processor 250 may be configured to generate the output signal indicative of the operating state of the display 220 based on the electrical signal from the signal processing circuit 244. The memory 260 may also be integrated into the display monitoring device 240.
[0020] An example method which may be executed to detect an operating state of a display is illustrated in FIG. 3. Persons of ordinary skill in the art will appreciate that the method can be implemented in any of many different ways. Further, although a particular order of actions is illustrated in FIG. 3, persons of ordinary skill in the art will appreciate that these actions can be performed in other temporal sequences. The flow chart 300 is merely provided as an example of one way to use the display monitoring device 240 to detect an operating state of the display 220.
[0021] In the example of FIG. 3, the optical fiber 230 is optically coupled to the light energy source 224 associated with the display 220 (block 310). As noted above, the light energy source 224 is configured to emit light energy for projecting images on the screen 222 of the display 220. The display monitoring device 240 monitors for light energy from the light energy source 224 via the optical fiber 230 (block 320). The optical-to- electrical converter 242 converts light energy from the light energy source 224 to an electrical signal (block 330). The signal processing circuit 244 amplifies the electrical signal to a particular voltage level and filters extraneous signals (e.g., noise) from the electrical signal so that the electrical signal may be processed by the logic circuit 246 (block 340). Based on the amplified and filtered electrical signal, the logic circuit 246 generates an output signal indicative of an operating state of the display (block 350). In particular, the output signal is indicative of wither the display 220 is in an on state or an off state. For example, the logic circuit 246 may generate a HIGH signal (i.e., a logic "1") to indicate that the display 220 is turned on. Alternatively, the logic circuit 246 may generate a LOW signal (i.e., a logic "0") to indicate that the display 220 is turned off including a standby state where the screen 222 is blank.
[0022] Whenever there is a change in the state of the output signal from the logic circuit 246, the processor 250 may generate a time stamp (block 360). For example, when the processor 250 first detects a HIGH signal from the logic circuit 246, the processor 250 generates a time stamp and stores data indicating that the display 220 entered an on state at the time indicated by the time stamp. When the processor 250 detects a LOW signal from the logic circuit 246, it generates a time stamp and stores data indicating that the display 220 entered an off state at the time indicated by the time stamp. This operating information (e.g., when the display 210 was turned on or off) may be provided to the data collection facility 180 and/or provided to the metering device 135 that subsequently transmits the operating information to the data collection facility 180. The operating information may be used to produce television audience statistics. As noted above, the operating information may be used to determine a number of hours of that the household members 160 watch television. Further, as noted above, the operating information may also be used to reduce and/or to filter out data that is collected by the metering device 135. The data collection facility 180 may also use the operating information to separate the viewing data corresponding to programming content that were actually displayed from the viewing data corresponding to programming content that were merely provided to the television 120 when the television 120 was turned off. [0023] While the methods and apparatus disclosed herein are particularly well suited for use with an LCD, the teachings of the disclosure may be applied to detect an operating state of other types of displays. For example, the methods and apparatus disclosed herein may detect an operating state of a plasma display. In addition to a television, the methods and apparatus disclosed herein may detect an operating state of a computer monitor, a projector screen, and/or other media output device. Thus, the methods and apparatus disclosed herein may collect data associated with Internet usage and/or other display of media via a computer.
[0024] Although certain example methods, apparatus, and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus, and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.

Claims

What is claimed is: 1. A device to detect an operating state of a display, the device comprising: an optical fiber optically coupled to a light source of the display, the light source being configured to emit light; an optical-to-electrical converter coupled to the light source via the optical fiber, the optical-to-electrical converter being configured to convert light from the light source into an electrical signal; and a logic circuit coupled to the optical-to-electrical converter, the logic circuit being configured to generate an output signal indicative of the operating state of the display based on the electrical signal.
2. The device as defined in claim 1, wherein the optical fiber comprises at least one of a plastic optical fiber and a glass optical fiber.
3. The device as defined in claim 1, the display is one of a liquid crystal display (LCD), and a plasma display.
4. The device as defined in claim 1, wherein the optical-to-electrical converter comprises at least one of a photodetector, a photodiode, and a light-sensitive semiconductor junction device.
5. The device as defined in claim 1 , wherein the operating state of the display comprises at least one of an on state and an off state.
6. The device as defined in claim 1, wherein the output signal comprises at least one of a high signal and a low signal.
7. The device as defined in claim 1 further comprising a signal processing circuit coupled to the optical-to-electrical converter and the processor, the signal processing circuit configured to amplify and to filter the electrical signal.
8. The device as defined in claim 1 further comprising a processor coupled to the logic circuit, the processor being configured to associate a time stamp with the output signal from the logic circuit and to provide operating information associated with the display to a data collection facility.
9. The device as defined in claim 1 is integrated into a set top box (STB).
10. A system to detect an operating state of a display comprising: a display having a light source configured to emit light; and a display momtoring device optically coupled to a light source of the display via an optical fiber, the display monitoring device being configured to convert light from the light source into an electrical signal indicative of the operating state of the display.
11. A system as defined in claim 10, wherein the operating state of the display comprises at least one of an on state and an off state.
12. A system as defined in claim 10, wherein the optical fiber comprises at least one of a plastic optical fiber and a glass optical fiber.
13. A system as defined in claim 10, wherein the display is one of a liquid crystal display (LCD), a plasma display, and a cathode ray tube (CRT) display.
14. A system as defined in claim 10, wherein the display monitoring device comprises an optical-to-electrical converter optically coupled to the light source via the optical fiber, the optical-to-electrical converter being configured to convert light from the light source into an electrical signal.
15. A system as defined in claim 14, wherein the display monitoring device comprises a logic circuit coupled to the optical-to-electrical converter, the logic circuit being configured to generate an output signal indicative of the operating state of the display based on the electrical signal.
16. A system as defined in claim 15, wherein the output signal comprises at least one of a high signal and a low signal.
17. A system as defined in claim 15 further comprising a processor coupled to the logic circuit, the processor being configured to associate a time stamp with the output signal from the logic circuit and to provide operating information associated with the display to a data collection facility.
18. A system as defined in claim 14, wherein the display monitoring device comprises a signal processing circuit coupled to the optical-to-electrical converter and the processor, the signal processing circuit configured to amplify and to filter the electrical signal.
19. A system as defined in claim 10, wherein the display monitoring device is integrated into a set top box (STB).
20. A method to detect an operating state of a display comprising: optically coupling an optical fiber to a light source associated with the display, the light source being configured to emit light; converting light from the light source to an electrical signal; and generating an output signal indicative of the operating state of the display based on the electrical signal.
21. A method as defined in claim 20, wherein optically coupling the optical fiber to the light source associated with the display comprises optically coupling one of a plastic optical fiber and a glass optical fiber to the light source associated with the display.
22. A method as defined in claim 20, wherein the display is one of a liquid crystal display (LCD), and plasma display.
23. A method as defined in claim 20, wherein generating the output signal indicative of the operating state of the display comprises amplifying and filtering the electrical signal.
24. A method as defined in claim 20, wherein the output signal is indicative of at least one of an on state and an off state of the display.
25. A method as defined in claim 20 further comprising associating a time stamp with the output signal.
26. A method as defined in claim 20 further comprising providing operating information associated with the display to a data collection facility.
PCT/US2003/030355 2003-09-25 2003-09-25 Methods and apparatus to detect an operating state of a display WO2005055601A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003276971A AU2003276971A1 (en) 2003-09-25 2003-09-25 Methods and apparatus to detect an operating state of a display
PCT/US2003/030355 WO2005055601A1 (en) 2003-09-25 2003-09-25 Methods and apparatus to detect an operating state of a display
TW093128396A TW200513842A (en) 2003-09-25 2004-09-20 Methods and apparatus to detect an operating state of a display
US11/388,262 US9027043B2 (en) 2003-09-25 2006-03-24 Methods and apparatus to detect an operating state of a display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/030355 WO2005055601A1 (en) 2003-09-25 2003-09-25 Methods and apparatus to detect an operating state of a display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/388,262 Continuation US9027043B2 (en) 2003-09-25 2006-03-24 Methods and apparatus to detect an operating state of a display

Publications (1)

Publication Number Publication Date
WO2005055601A1 true WO2005055601A1 (en) 2005-06-16

Family

ID=34651894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/030355 WO2005055601A1 (en) 2003-09-25 2003-09-25 Methods and apparatus to detect an operating state of a display

Country Status (3)

Country Link
AU (1) AU2003276971A1 (en)
TW (1) TW200513842A (en)
WO (1) WO2005055601A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712114B2 (en) 2004-08-09 2010-05-04 The Nielsen Company (Us), Llc Methods and apparatus to monitor audio/visual content from various sources
US7882514B2 (en) 2005-08-16 2011-02-01 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US8156517B2 (en) 2008-12-30 2012-04-10 The Nielsen Company (U.S.), Llc Methods and apparatus to enforce a power off state of an audience measurement device during shipping
US8180712B2 (en) 2008-09-30 2012-05-15 The Nielsen Company (Us), Llc Methods and apparatus for determining whether a media presentation device is in an on state or an off state
US8375404B2 (en) 2008-12-30 2013-02-12 The Nielsen Company (Us), Llc Methods and apparatus to enforce a power off state of an audience measurement device during shipping
US8793717B2 (en) 2008-10-31 2014-07-29 The Nielsen Company (Us), Llc Probabilistic methods and apparatus to determine the state of a media device
US9027043B2 (en) 2003-09-25 2015-05-05 The Nielsen Company (Us), Llc Methods and apparatus to detect an operating state of a display
US9692535B2 (en) 2012-02-20 2017-06-27 The Nielsen Company (Us), Llc Methods and apparatus for automatic TV on/off detection
US9791448B2 (en) 2012-03-27 2017-10-17 The Nottingham Trent University Breast cancer assay
US9832496B2 (en) 2011-12-19 2017-11-28 The Nielsen Company (Us), Llc Methods and apparatus for crediting a media presentation device
US9924224B2 (en) 2015-04-03 2018-03-20 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058829A (en) * 1976-08-13 1977-11-15 Control Data Corporation TV monitor
US5963844A (en) * 1996-09-18 1999-10-05 At&T Corp. Hybrid fiber-coax system having at least one digital fiber node and increased upstream bandwidth
US20020083435A1 (en) * 2000-08-31 2002-06-27 Blasko John P. Method and system for addressing targeted advertisements using detection of operational status of display device
US6529212B2 (en) * 1997-11-14 2003-03-04 Eastman Kodak Company Automatic luminance and contrast adjustment as functions of ambient/surround luminance for display device
US20030046685A1 (en) * 2001-08-22 2003-03-06 Venugopal Srinivasan Television proximity sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058829A (en) * 1976-08-13 1977-11-15 Control Data Corporation TV monitor
US5963844A (en) * 1996-09-18 1999-10-05 At&T Corp. Hybrid fiber-coax system having at least one digital fiber node and increased upstream bandwidth
US6529212B2 (en) * 1997-11-14 2003-03-04 Eastman Kodak Company Automatic luminance and contrast adjustment as functions of ambient/surround luminance for display device
US20020083435A1 (en) * 2000-08-31 2002-06-27 Blasko John P. Method and system for addressing targeted advertisements using detection of operational status of display device
US20030046685A1 (en) * 2001-08-22 2003-03-06 Venugopal Srinivasan Television proximity sensor

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9027043B2 (en) 2003-09-25 2015-05-05 The Nielsen Company (Us), Llc Methods and apparatus to detect an operating state of a display
US8683504B2 (en) 2004-08-09 2014-03-25 The Nielsen Company (Us), Llc. Methods and apparatus to monitor audio/visual content from various sources
US7712114B2 (en) 2004-08-09 2010-05-04 The Nielsen Company (Us), Llc Methods and apparatus to monitor audio/visual content from various sources
US8108888B2 (en) 2004-08-09 2012-01-31 The Nielsen Company (Us), Llc Methods and apparatus to monitor audio/visual content from various sources
US9301007B2 (en) 2004-08-09 2016-03-29 The Nielsen Company (Us), Llc Methods and apparatus to monitor audio/visual content from various sources
US9015743B2 (en) 2004-08-09 2015-04-21 The Nielsen Company (Us), Llc Methods and apparatus to monitor audio/visual content from various sources
US8526626B2 (en) 2005-08-16 2013-09-03 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US11831863B2 (en) 2005-08-16 2023-11-28 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US10506226B2 (en) 2005-08-16 2019-12-10 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US10306221B2 (en) 2005-08-16 2019-05-28 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US10911749B2 (en) 2005-08-16 2021-02-02 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US10110889B2 (en) 2005-08-16 2018-10-23 The Nielsen Company (Us), Llc Display device ON/OFF detection methods and apparatus
US9961342B2 (en) 2005-08-16 2018-05-01 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US7882514B2 (en) 2005-08-16 2011-02-01 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US11546579B2 (en) 2005-08-16 2023-01-03 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US9420334B2 (en) 2005-08-16 2016-08-16 The Nielsen Company (Us), Llc Display device on/off detection methods and apparatus
US8180712B2 (en) 2008-09-30 2012-05-15 The Nielsen Company (Us), Llc Methods and apparatus for determining whether a media presentation device is in an on state or an off state
US9312973B2 (en) 2008-09-30 2016-04-12 The Nielsen Company (Us), Llc Methods and apparatus for determining whether a media presentation device is in an on state or an off state using fuzzy scores and signature matches
US11055621B2 (en) 2008-09-30 2021-07-06 The Nielsen Company (Us), Llc Methods and apparatus for determining whether a media presentation device is in an on state or an off state
US10528881B2 (en) 2008-09-30 2020-01-07 The Nielsen Company (Us), Llc Methods and apparatus for determining whether a media presentation device is in an on state or an off state
US9294813B2 (en) 2008-10-31 2016-03-22 The Nielsen Company (Us), Llc Probabilistic methods and apparatus to determine the state of a media device
US8793717B2 (en) 2008-10-31 2014-07-29 The Nielsen Company (Us), Llc Probabilistic methods and apparatus to determine the state of a media device
US8156517B2 (en) 2008-12-30 2012-04-10 The Nielsen Company (U.S.), Llc Methods and apparatus to enforce a power off state of an audience measurement device during shipping
US8375404B2 (en) 2008-12-30 2013-02-12 The Nielsen Company (Us), Llc Methods and apparatus to enforce a power off state of an audience measurement device during shipping
US8799937B2 (en) 2008-12-30 2014-08-05 The Nielsen Company (Us), Llc Methods and apparatus to enforce a power off state of an audience measurement device during shipping
US9832496B2 (en) 2011-12-19 2017-11-28 The Nielsen Company (Us), Llc Methods and apparatus for crediting a media presentation device
US10687098B2 (en) 2011-12-19 2020-06-16 The Nielsen Company (Us), Llc Methods and apparatus for crediting a media presentation device
US10924788B2 (en) 2011-12-19 2021-02-16 The Nielsen Company (Us), Llc Methods and apparatus for crediting a media presentation device
US11223861B2 (en) 2011-12-19 2022-01-11 The Nielsen Company (Us), Llc Methods and apparatus for crediting a media presentation device
US11570495B2 (en) 2011-12-19 2023-01-31 The Nielsen Company (Us), Llc Methods and apparatus for crediting a media presentation device
US11956486B2 (en) 2011-12-19 2024-04-09 The Nielsen Company (Us), Llc Methods and apparatus for crediting a media presentation device
US10205939B2 (en) 2012-02-20 2019-02-12 The Nielsen Company (Us), Llc Methods and apparatus for automatic TV on/off detection
US9692535B2 (en) 2012-02-20 2017-06-27 The Nielsen Company (Us), Llc Methods and apparatus for automatic TV on/off detection
US9791448B2 (en) 2012-03-27 2017-10-17 The Nottingham Trent University Breast cancer assay
US10735809B2 (en) 2015-04-03 2020-08-04 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device
US9924224B2 (en) 2015-04-03 2018-03-20 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device
US11363335B2 (en) 2015-04-03 2022-06-14 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device
US11678013B2 (en) 2015-04-03 2023-06-13 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device

Also Published As

Publication number Publication date
TW200513842A (en) 2005-04-16
AU2003276971A1 (en) 2005-06-24

Similar Documents

Publication Publication Date Title
US9027043B2 (en) Methods and apparatus to detect an operating state of a display
US7786987B2 (en) Methods and apparatus to detect an operating state of a display based on visible light
US9392227B2 (en) Methods and apparatus to export tuning data collected in a receiving device
US7703114B2 (en) Television system targeted advertising
US7584484B2 (en) Methods and apparatus for collecting media consumption data based on usage information
AU2006325808B2 (en) Systems and methods to wirelessly meter audio/visual devices
US20070180459A1 (en) Methods and apparatus to identify viewing information
US8006258B2 (en) Methods and apparatus for media source identification and time shifted media consumption measurements
US8065697B2 (en) Methods and apparatus to determine audience viewing of recorded programs
US8505042B2 (en) Methods and apparatus for identifying viewing information associated with a digital media device
US9015740B2 (en) Systems and methods to wirelessly meter audio/visual devices
WO2005055601A1 (en) Methods and apparatus to detect an operating state of a display
WO2005041166A1 (en) Methods and apparatus to detect an operating state of a display based on visible light
CA2571088C (en) Methods and apparatus to verify consumption of programming content
CA2611488C (en) Methods and apparatus for collecting media consumption data based on usage information
US20120154351A1 (en) Methods and apparatus to detect an operating state of a display based on visible light
AU2011213735B2 (en) Methods and Apparatus to Determine Audience Viewing of Recorded Programs
KR200176584Y1 (en) Apparatus for displaying a sort of an announcement screening television
US20090254940A1 (en) Systems and methods for directing customers toward helpful information
WO2005117425A1 (en) Methods and apparatus to generate on-screen text

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11388262

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11388262

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP