WO2005056039A1 - Self-assembling peptide amphiphiles and related methods for growth factor delivery - Google Patents

Self-assembling peptide amphiphiles and related methods for growth factor delivery Download PDF

Info

Publication number
WO2005056039A1
WO2005056039A1 PCT/US2004/040550 US2004040550W WO2005056039A1 WO 2005056039 A1 WO2005056039 A1 WO 2005056039A1 US 2004040550 W US2004040550 W US 2004040550W WO 2005056039 A1 WO2005056039 A1 WO 2005056039A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
compound
growth factor
binding
composition
Prior art date
Application number
PCT/US2004/040550
Other languages
French (fr)
Inventor
Samuel I. Stupp
Jack J. J. M. Donners
Gabriel A. Silva
Heather A. Behanna
Shawn G. Anthony
Original Assignee
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern University filed Critical Northwestern University
Priority to AT04817014T priority Critical patent/ATE541580T1/en
Priority to CA002549164A priority patent/CA2549164A1/en
Priority to JP2006542795A priority patent/JP4851939B2/en
Priority to MXPA06006388A priority patent/MXPA06006388A/en
Priority to NZ547671A priority patent/NZ547671A/en
Priority to EP04817014A priority patent/EP1696945B1/en
Priority to AU2004296181A priority patent/AU2004296181A1/en
Priority to ES04817014T priority patent/ES2380340T3/en
Publication of WO2005056039A1 publication Critical patent/WO2005056039A1/en
Priority to AU2011201593A priority patent/AU2011201593A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • an architecture or scaffold would be useful to retain the growth factor at such a site for release to the surrounding cells in a controlled fashion.
  • Materials designed molecularly for tissue regeneration are becoming of great interest in advanced medicine. Scaffolds of synthetic polymers, including polymers based on L-lactic or glycolic acid, and biopolymers including collagen, fibrin or alginate have been studied. Growth factors have been physically entrapped in hydrogels as such polymers, covalently linked or bound electrostatically to either anionic polymers or structures such as heparin. Drawbacks to these and related systems relate either to non-specificity of bound growth factors or required degradation of covalent bonds to achieve desired effect.
  • both natural and synthetic scaffolds have been modified to contain peptides found in extracellular proteins that promote receptor based interactions with cells and have been used to promote cell adhesion or differentiation.
  • Advances in self-assembly offer new opportunities in molecular design of biomaterials.
  • Amphiphilic molecular building blocks can be assembled in aqueous environments to form scaffolds with well defined and diverse
  • amphiphilic peptides have been reported in the literature, including amphiphilic peptides and peptides functionalized with hydrophobic components (e.g., alkyl tails) on one or both termini.
  • Amphiphilic peptides have been shown to form a variety of supramolecular structures like nanotapes, ribbons, fibers, and twisted ribbons. These structures originate from ⁇ -sheet formation among the amphiphilic molecules.
  • a special case is that of amphiphilic peptide block copolymers that form gels with properties strongly dependent on the secondary structure of the individual peptide blocks.
  • peptide amphiphiles with alkyl tails on one terminus include amphiphiles derived from peptide motifs found in collagen which result in the formation of triple helical units that form spheroidal or disc-like micellar structures depending on the tail length and number of tails. Another class has two tails, one per terminus. This class of amphiphiles displays amyloid-like behavior in that, upon increasing the concentration, they undergo a transition from a random coil to a ⁇ -sheet type conformation that leads to fibrillar structures.
  • PAs peptide amphiphiles
  • these PA molecules can self-assemble in an aqueous medium into nanofibers.
  • the alkyl chains are in the core of the fibers, with the epitopes displayed on the periphery for cell interaction.
  • Epitopes that have been incorporated into the PA molecules mimic extracellular matrix proteins and promote cell adhesion or differentiation through cell signaling. It has also been shown that two different PA molecules with different epitopes and complementary charge can be co-
  • amphiphilic peptide compounds comprising peptide components coupled at the N-terminus thereof to one or more of a range of epitope sequences capable of non-covalent interaction with one or more growth factors, such epitopes as can comprise and be derived from the recognition product of a phage display process. It is another object of the present invention to provide a composition comprising an assembly of one or more of the aforementioned amphiphilic peptide compounds for presentation of the epitope binding sequence(s) coupled
  • compositions as can comprise other amphiphilic peptide compounds absent such an epitope sequence. It can also be an object of this invention to provide one or more of the aforementioned compositions further comprising one or more growth factors corresponding to a coupled epitope sequence, such compositions capable of self-assembly for growth factor delivery and release. It is also an object of the present invention to provide one or more compositional assemblies of the aforementioned amphiphilic peptide compounds and use thereof to affect growth factor bioavailability and/or stem cell differentiation.
  • this invention can be directed to an amphiphilic peptide compound comprising a peptide component and a hydrophobic component, the peptide component comprising a growth factor recognition product of a phage display process.
  • One or more such recognition products can be coupled to or bonded directly with the peptide component at, about or proximate to the N-terminus of the peptide component, with the hydrophobic component coupled to or bonded directly with the peptide component at, about or proximate to the C-terminus thereof.
  • a recognition product can be selected from epitope sequences providing one or more binding interactions with a growth factor, such products/sequences and corresponding growth factors including but not limited to those discussed more fully below.
  • the compounds of this invention and/or peptide components thereof can be substantially linear or branched, such branched configurations and the
  • this invention can also be directed to compositions comprising a plurality of such amphiphilic peptide compounds, with the peptide component of each such compound having a net charge at a physiological pH.
  • compositions can further comprise a plurality of amphiphilic peptide compounds having a complementary net charge at a physiological pH, such compounds absent a growth factor recognition product, such that the amino acid sequence of such compounds is of shorter length or less in number than that corresponding to a compound comprising a recognition product.
  • micellar assemblies of such compounds in an appropriate medium, provide an enhanced presentation of one or more recognition products, extending beyond the general periphery of the micellar assembly. Such enhanced presentation can be used to affect and/or control the bioavailability of one or more growth factors.
  • compositions of this invention and methods relating thereto can be used in a stem cell environment for non- covalent interaction or binding with one or more growth factors, whether the growth factor is produced by the stem cell, or delivered to the cellular environment in conjunction with one or more of the aforementioned compositions.
  • the peptide amphiphiles of this invention can comprise a peptide component of varied length or sequence depending upon desired flexibility, charge and/or capacity of intermolecular interaction or binding.
  • hydrophobic component of such compounds can also be varied (e.g., ranging from about C 6 to greater than about C 22 alkyl or substituted alkyl, saturated or unsaturated, etc.), such components limited only by resulting amphiphilic character and affect on compositions or assemblies of such compounds.
  • One embodiment of the present invention is a composition that includes a mixture of peptide amphiphiles, each having a binding epitope, and filler peptide amphiphiles without a binding epitope.
  • the mixture is capable of forming self assembled nanofibers or other micelles which consist of the filler peptide amphiphiles and the self assembled peptide amphiphiles having the binding epitope.
  • the peptide amphiphiles in the composition have a alkyl tail portion, a beta sheet portion, and a charged portion.
  • the epitope on the peptide amphiphile having the binding epitope has a sequence derived by a phage display process and is longer than the filler peptide amphiphile.
  • Another embodiment of the present invention is a composition or system of self assembled nanofibers or other self assembled micelles including peptide amphiphiles having a binding epitope and filler peptide amphiphiles.
  • the peptide amphiphiles with the binding epitope preferably longer than the filler peptide amphiphiles.
  • the peptide amphiphiles with the binding epitope preferably protrude from the surface of the self assembled nanofiber or micelle.
  • compositions of self assembled nanofibers or micelles can comprise hydrogels that may further include a growth factor non-covalently bonded to peptide amphiphiles of the nanofiber having the bonding epitope.
  • growth factors may be added in vitro or may be those at the site of an injury of a patient in vivo.
  • the growth factors interacting with the self assembled peptide amphiphiles may include but are not limited to bone morphogenetic proteins, transforming growth factor vascular endothelial growth factor, neurotrophins, and mitogenic factors like FGF-2, Sonic hedgehog and Wnt-proteins.
  • the composition may include cells such as but not limited to stem cells inside the nanofiber hydrogels.
  • the growth factors non covalently interacting
  • MW ⁇ 1147726RDD:BLU 12/01/04 6 with the self assembled peptide amphiphiles are released to the surrounding tissue or cells through interaction with the extracellular receptors or by degradation of the nanofiber matrix.
  • other therapeutic compounds may be encapsulated in or bonded to the hydrogel. These compounds may include but are not limited to anti-inflamatories, chemotherapeutics, or combinations of these inside the nanofiber hydrogels.
  • the growth factors non covalently interacting with the self assembled peptide amphiphiles are released to the surrounding tissue or cells through interaction with the extracellular receptors or by degradation of the nanofiber matrix.
  • Nanofibers or micelles maybe formed by addition of multivalent ions, addition of complementary charged peptide amphiphiles, or by dehydration, or addition of an acid or base to the peptide amphiphiles. Where hydrogels are formed, preferably the micelles or nanofibers are formed by addition of multivalent ions or ions already present in cell media or bodily fluids.
  • the peptide amphiphile having the binding epitope has a sequence derived by a phage display process.
  • Another embodiment of the present invention is a method of treating a tissue which includes administering to a site on a patient in need of regenerating a tissue, nanofibers or other self assembled micelles including peptide amphiphiles with epitopes for non-covalently bonding to growth factors.
  • the nanofibers and their hydrogels may include cells such as but not limited to stem cells.
  • other therapeutic compounds may be encapsulated in or bonded to the hydrogel. These compounds may include but are not limited to anti-inflamatories, chemotherapeutics, or combinations of these.
  • the growth factors noncovalently bonded to self assembled
  • MW ⁇ 1147726RDD:BLU 12/01/04 7 structure are released to the site by interaction with the extracellular receptors or degradation of the matrix.
  • the self assembled micelles or nanofibers containing growth factors and/or stem cells are administered to a site on a patient having injuries such as but not limited to damaged bone, cartilage, spinal cord, brain tissue, nerves, or a combination of these.
  • Another embodiment of the present invention is a peptide amphiphile that includes an alkyl tail portion coupled to a first end of beta sheet forming peptide portion also having a second end.
  • An epitope peptide portion of the peptide amphiphile is coupled to the second end of the beta sheet forming peptide portion such that the epitope is available for non-covalent interaction with other molecules or proteins.
  • the epitope has a sequence that is derived by a phage display process.
  • the peptide amphiphile may alternatively include a charged portion peptide having two ends and coupled between the beta sheet forming portion second end and the epitope peptide portion.
  • Another embodiment of the present invention comprises an assembly or system for releasing growth factors to cells that includes a scaffold prepared from self assembled peptide amphiphiles, at least a portion of the peptide amphiphiles including peptide epitopes for non-covalently bonding with growth factors, and wherein the growth factor binding epitopes protrude above the nanofiber surface.
  • the amino acid sequence of the epitope is derived from a phage display process.
  • Such a scaffold may also include stem cells, and can be used in a method for growing tissue, regenerating tissue, or supporting the transplantation of tissue in a patient.
  • other therapeutic compounds may be encapsulated in or bonded to the hydrogel of the scaffold.
  • the method includes inserting a scaffold to a site on a patient or forming it in vivo.
  • the scaffold includes self assembled peptide amphiphiles having peptide epitopes for non-covalent bonding with growth factors and where the epitopes protrude above the nanofiber surface of the scaffold or
  • MW ⁇ 114772 6 RDD:BLU 12/01/04 are made by a phage display process, and releasing growth factors from the scaffold to the surrounding cells from said scaffold.
  • the described growth factor binding hydrogels have several applications in the field of regenerative and transplant medicine.
  • the compositions, methods of making, and methods of using them can readily be expanded to other epitopes on the peptide amphiphiles for other growth factors and hence to the regeneration of a wide variety of tissues or support of transplanted tissues in a patient.
  • the self assembled micelles of the present invention can be used for the regeneration of bone and cartilage.
  • this invention utilizes an extension of the mixed fiber approach to incorporate a PA that is capable of binding growth factors by selective non-covalent interactions.
  • a PA capable of binding growth factors by selective non-covalent interactions.
  • the initial concentration of growth factor will be either raised or decreased depending whether the localizing effect of binding or whether the effect of binding rendering the growth factors inactive is more dominant. In either case, release of growth factors can be sustained over a longer period.
  • a PA can be made such that the epitope is extending from the fiber surface.
  • the required amino acid sequence of the binding epitope can be determined using phage display.
  • growth factors chosen include bone morphogenetic protein-2 (BMP-2) and transforming growth factor ⁇ l (TGF- ⁇ l).
  • BMP-2 bone morphogenetic protein-2
  • TGF- ⁇ l transforming growth factor ⁇ l
  • MW ⁇ 1147726RDD B U 12/01/04 9 differentiation of smooth muscle cells.
  • the corresponding gels will be used to control the differentiation of mesenchymal stem cells.
  • Mesenchymal stem cells have been shown to differentiate in vitro and in vivo into a variety of lineages like bone, cartilage, fat, muscle cells and myocardium. The differentiation into the bone lineage under the influence of BMP-2 is shown below.
  • the gels are superior to the addition of growth factors to media in controlling the differentiation of mesenchymal stem cells into the expected osteogenic lineage.
  • the binding gels initially suppress the differentiation into all other lineages. This behaviour is thought to result from either reduced bio-availability of the growth factor or from a more gradual exposure of the cells to these growth factors in the binding gels.
  • filler PAs may be desired to vary the physical properties of the gels depending on its applications and other binding sequences might be desired to optimize binding strengths.
  • the approach demonstrated by this invention allows the incorporation of multiple signals by simple mixing of multiple binding PAs with a filler. Most likely, multiple growth factors will be required to further optimize the differentiation of stem cells. The differentiation of mesenchymal stem cells exposed to multiple growth factors is currently being investigated. Potentially, temporal release in the multiple growth factors systems can be achieved by selecting binders with different association constants for the growth factors.
  • Figure 1 illustrates representative PAs comprising epitope sequences and complementary PAs for use in assembly therewith.
  • the invention describes a system based on self-assembling peptide amphiphiles (PAs) that is capable of binding growth factors through specific non-covalent interactions.
  • PAs self-assembling peptide amphiphiles
  • Growth factors play an important role in cell signaling and are therefore promising factors for controlling the differentiation of stem cells, supporting the incorporation of transplanted tissue, and or specific molecular or physiological, or re-activating dormant biological processes in vivo which may lead to the regeneration of non- functional tissues. Growth factors are rapidly degraded in vivo and rapidly diffuse away from the injury site. Therefore, a scaffold is needed that retains the growth factor at the injury site and releases the growth factors to the surrounding cells in a controlled fashion. Self assembled peptide amphiphiles based hydrogels have been shown to be able to fulfill several functions of an extacellular matrix (ECM), i.e. promoting cell adhesion and controlling differentiation.
  • ECM extacellular matrix
  • the present invention concerns a modification of these ECM substitutes with peptide sequences that are capable of binding growth factors, which include but are not limited to bone morphogenetic protein-2 (BMP-2), transforming growth factor ⁇ l (TGF- ⁇ l), VEGF, and IL-6 in a specific fashion.
  • BMP-2 bone morphogenetic protein-2
  • TGF- ⁇ l transforming growth factor ⁇ l
  • VEGF vascular endothelial growth factor peptide sequences
  • TGF- ⁇ l transforming growth factor ⁇ l
  • VEGF transforming growth factor ⁇ l
  • IL-6 transforming growth factor ⁇ l
  • These ⁇ growth factor peptide sequences may be obtained through phage display techniques, coupled to peptide amphiphiles to form binding peptide amphiphiles.
  • the binding peptide amphiphiles and filler peptide amphiphiles maybe self assembled to form a hydrogel which can be molded into a shape and used as a scaffold for tissue repair.
  • the peptide amphiphiles of this invention can comprise an alkyl tail, a ⁇ -sheet forming peptide sequence, and a bio-active peptide sequence.
  • the first two blocks result in the formation of micellar fibers, such as but not limited to nanofibers, which under the proper conditions (neutralization of addition of multivalent ions) form hydrogels or other solvent filled wet gels.
  • the bioactive epitope is partially charged for solubility, but this charge can be varied over a wide range of sequences like integrin-binding sequences, neuro-active sequences etc.
  • peptide amphiphiles of complementary charge co-assemble to form mixed fibers.
  • This principle may be used to prepare nanofibers consisting of regular PAs and longer PAs with growth factor binding epitope sequences, in which the binding sequences are extending from the fiber surface.
  • the desired growth factor binding sequences are obtained through phage display using randomized peptide libraries, which leads to strong binding sequences using combinatorial selection processes. Release of the growth factors will be induced by degradation of the matrix, binding to an extracellular receptor, or a combination of these.
  • Existing technologies entrap the growth factors in hydrogels, link them covalently with polymeric tethers (WO 03/040336 and U.S. Pat. Pub. No.
  • the present invention is designed such that only the desired growth factor is
  • MW ⁇ 114772 6 RDD:BLU 12/01/04 12 complexed with a binding strength that is high enough to retain the growth factor in a bound state but is weak enough that it does not compete with binding to the extracellular receptors.
  • One aspect of the invention described herein is that it may be used for the derivation of peptide sequences that bind growth factors using phage display techniques and the subsequent preparation of peptide amphiphiles bearing these binding sequences.
  • Growth factors prepared by the phage technique may include the bone mophogenetic proteins, transforming growth factor ⁇ l, the neurotrophins, and the mitogenic factors FGF-2, Sonic Hedgehog and Wnt-3a.
  • growth factor proteins are coupled to shorter peptide amphiphile to form longer peptide amphiphiles bearing the growth factor epitope.
  • growth factor epitope bearing PAs, or binding peptide amphiphiles are co-assembled with shorter filler or complementary filler PAs to generate nanofibers with the binding epitopes extending from the surface, which can subsequently form hydrogels upon the addition of multivalent ions, or a change in pH.
  • the resulting hydrogels can then be used, either with cells, such as but not limited to stem cells, encapsulated inside the hydrogel or solely as a delivery vehicle, for tissue regeneration in vivo.
  • other therapeutic compounds may be encapsulated in or bonded to the hydrogel.
  • Phage display may be used to generate molecular probes against specific targets and for the analysis and manipulation of protein-ligand interactions. Phage display is used to determine the amino acid sequences, peptides, or proteins that will bind to the target molecules such as but not limited to amino acids, peptides, growth factors, enzymes, and various nucleic acids. Phage display may be performed on target molecules like growth factors physisorbed to microtiter well plates using a commercial library. Preferably the library consists of phages in which the N-terminus of the G3 coat protein has been extended with 1 to about 13 or more randomized amino acids in such a way that every possible combination of amino acids is present.
  • the library is
  • MW ⁇ 1147726RDD:BLU 12/01/04 13 exposed to the target molecules such as growth factors and subsequently non- specifically bound phages are eluted with a detergent solution.
  • this population is amplified in for example E. Coli and the process is repeated two more times with increasingly stringent elution conditions.
  • the final population is strongly enriched towards binding phages, and the DNA of several of the clones can be sequenced, allowing the identification of the amino acid sequence displayed on these phages.
  • an ELISA assay may be performed to estimate the relative binding strengths of the isolated clones.
  • Solid state synthesis is used to make the peptides for making the binding peptide amphiphiles using the identified amino acid sequences.
  • Peptide components in the filler PAs and the binding epitope peptide amphiphiles of the present invention may include naturally occurring amino acids and artificial amino acids. Incorporation of artificial amino acids such as beta or gamma amino acids and those containing non-natural side chains, and/or other similar monomers such as hydroxyacids are also contemplated, with the effect that the co ⁇ esponding component is peptide-like in this respect and self assemble to form micelles such as nanofibers.
  • peptide amphiphiles of the present invention can be synthesized using preparatory techniques well-known to those skilled in the art, including those disclosed in the aforementioned incorporated publication WO 03/054146 and modifications of those originally described by Hartgerink, et al. (See e.g., J.D. Hartgerink, E. Beniash and S.I. Stupp, Science 294, 1683-1688, 2001), which is also incorporated in its entirety by reference. Also contemplated in the practice of this invention are branched peptide amphiphiles with which the synthetic methods and epitopes of the present invention may be used.
  • Branched peptide amphiphile may be made by the using the methods and compostions as disclosed in the forementioned co-pending application filed concurrently herewith on December 6, 2004, the contents of which are incorporated herein by reference in their entirety. Such a branched peptide amphiphle with a binding epitope could be self assembled into a nanofiber.
  • the branched peptide amphiphle with a binding epitope could be self assembled into a nanofiber.
  • MV ⁇ 1147726RDD-BLU 12/01/04 14 peptide amphiphile would have an alkyl tail portion coupled to the first end of a beta sheet forming peptide portion and at a second end to an epitope peptide portion that includes one or more peptide branches.
  • the peptide includes branching amino acids and a charged peptide portion.
  • the branched epitope peptide portion may be coupled to a second end of the beta sheet forming peptide portion of the peptide amphiphile.
  • the binding epitope sequence for the branched peptide may be derived from a phage display process. The synthetic schemes set forth in these references may be applied to the present invention.
  • Peptide amphiphiles may be in their fully protonated form, partially protonated form, or as acid or basic addition salts.
  • peptide amphiphiles can be made by standard solid-phase peptide chemistry, as described in the aforementioned incorporated references or as provided herein. Modifications of these synthetic methods can be made as would be known to those skilled in the art and aware thereof, using known procedures and synthetic techniques or straight- forward modifications thereof depending upon a desired amphiphile composition or peptide sequence.
  • Filler peptides are preferably shorter in length than the peptide amphiphiles with the binding epitopes so that self assembled nanofibers from a combination of these peptide amphiphiles results in protrusion of the growth factor binding epitope from the surface of the nanofiber.
  • the complementary filler peptide amphiphiles have side groups from the amino acids which interact with those of the filler peptide via acid base or other types of bonding.
  • the peptide sequences derived from the phage display process may be used as a binding site or epitope on a peptide amphiphile for non-covalently bonding to peptides and molecules that include but are not limited to growth factors, enzymes, nucleic acids (RNA, DNA), and amino acids. While phage display is preferred for deriving the epitope sequences, other complementary methods for identifying and determining the sequence of binding epitopes cam be used, such as but not limited to yeast hybrid systems. These binding peptides or epitopes may be coupled to the free end of the beta sheet forming
  • a peptide amphiphile design can comprise a simple hydrophobic tail which serves to create the slender portion of the molecule's conical shape for self assembly of the peptide amphiphiles.
  • the hydrophobic tail is an alkyl chain that can be a variety of sizes but is preferably be greater than 6 carbon atoms in length.
  • the alkyl tail is covalently bonded to the beta sheet forming structural segment of the peptide amphiphile.
  • the beta sheet peptide structural segment may be used to covalently link the tail group to the phage peptide; or the charged peptide, spacer peptide, and phage peptide; or the charged peptide and phage peptide.
  • the beta sheet peptide structural segment is covalently bonded at one end to the tail and at its other end to an amino acid sequence of the various peptides. If cross-linking is desired, cysteine amino acids maybe utilized in any of the segments, but preferably in the structural beta sheet segment. If cross-linking is not desired, other hydrophobic amino acids such as but not limited to alanine, serine, or leucine may be used in this region (e.g. SLSL or AAAA as described in more detail herein).
  • This cysteine- free system may be more appropriate for in vivo biological applications to control the degradation rate of the nanofiber matrix.
  • the SLSL modification to the system may be expected to lead to a slower self assembly of the nano fibers which may be used to control in vivo assembly of scaffolds.
  • the bulky leucine side chains may require more time to pack into the fiber.
  • a slowed self-assembly may also have greater applications in a functional, in situ environment such as an operating room, where it may be advantageous to have delayed formation of the nano- fibers.
  • the structural beta sheet forming segment may also include a flexible linker composed of glycine or other amino acids. When the structural segment includes hydrophobic amino acids, it and the alkyl tail may be considered a hydrophobic segment. Where the structural segment includes hydrophilic amino acid, it and the hydrophilic head group may be considered as a hydrophilic segment.
  • the ⁇ -sheet forming unit preferably includes those hydrophobic amino acids which can interact to form beta sheets and which help form the overall conical shape of the peptide amphiphile.
  • the number of amino acid in this unit may be chosen to provide a peptide amphiphile that is longer than filler peptide amphiphiles used to form the nanofibers and provide accessibility to the peptide on the bonding peptide amphiphile. There may be from about 4 to about 10 amino acids in this segment and most preferably about 6 amino acids.
  • suitable amino acid may include but are not limited to glycine, alanine, valine, leucine, and isoleucine, and other non-naturally occurring amino acids which may used in a similar chemical and structural manner in the peptide amphiphile.
  • a charged segment is present in the binding peptide amphiphile which provides for solubility of the peptide amphiphile in an aqueous environment, and preferably at a site on a patient.
  • the charged peptide segment may include those amino acids and combinations thereof which provide this solubility and permit self assembly and is not limited to polar amino acids such as E or K and combinations of these for modifying the solubility of the peptide amphiphile.
  • This segment may be from about 2 to about 7 amino, and preferably there are about 3 or 4 amino acids in this segment.
  • This segment is attached at a first end to the structural peptide and it's second end used for bonding to the peptide derived from the phage display process.
  • a spacer group peptide may also be included into the peptide amphiphile.
  • the space may include amino acids such as but not limited to S and G, and the space may include from 1 to about 6 amino acids.
  • the peptide amphiphiles with the growth factor epitopes maybe self assembled at a site on a patient in vivo using ions present in bodily fluids and or added ions/reagents to promote self assembly.
  • a composition of suitable peptide amphiphiles with growth factor binding epitopes is poured into a mold and self assembly used to form a scaffold in the shape of a tissue or bone to be replaced or regenerated.
  • the molded scaffold may be inserted into the patient at the site in need of the repair or regenerative treatment.
  • the peptide amphiphiles with the growth factor binding epitopes may be formed into a support structure or matrix in a mold and used as a support in the patient for the transplanted tissue.
  • the peptide amphiphile nanofibers or scaffolds thereof may include cells such as but not limited to stem cells.
  • Other therapeutic compounds may be encapsulated in or bonded to the hydrogel.
  • These compounds may include but are not limited to anti imflamatories, chemotherapeutics, or combinations of these.
  • Co-assembly of peptide amphiphiles with growth factor binding epitopes with the shorter beta sheet structural peptide-charged peptide acid- terminated filler peptide amphiphiles may be used to prepare nanofibers and scaffolds of the present invention.
  • one or more peptide amphiphiles with different growth factor binding epitopes may be used, and a variety of filler peptide amphiphiles may be used to prepare the scaffolds and nanofibers of the present invention.
  • the amount of peptide amphiphile with growth factor binding epitopes compared to the filler peptides amphiphiles maybe varied without limitation in the preparation of the scaffolds and nanofibers of the present invention.
  • the self assembled micelles and nanofibers may be characterized by NOE and FT-IR spectroscopy, circular dichroism; nanofiber fiber networks can be visualized using transmission electron microscopy.
  • the peptide amphiphile with the binding epitope may be made by choice of a peptide sequences for the epitope that is capable of interacting with growth factors or other peptides such as but not limited to, amino acids, or nucleic acids, through non-covalent interaction.
  • the degree of non-covalent interaction between the growth factors or other peptides and the peptide amphiphiles with the binding epitopes is chosen such that the epitope does not compete with or has less binding affinity for the growth factors or other peptides as compared to extracellular receptors.
  • Passive release experiments may be used to characterize and subsequently modify the affinity of various nanofibers having growth factor binding epitopes.
  • This characterization may be performed on self assembled nanofiber gels containing growth factors in pre-blocked microtiter plates. These gels may be prepared by first mixing 2% solutions of PAs in the appropriate ratio, followed by a 1 : 1 dilution with TBS. Growth factors may then be added followed by the addition of 2 equivalents multivalent ions to induce gelation and self assembly. The supernatant may be assayed for its growth factor content to access the growth factor binding capability of such gels.
  • binding epitope of the peptide amphiphile strongly chemically bond to peptides, growth factors, enzymes, or nucleic acids or other molecules from a fluid or sample of cells.
  • binding peptide amphiphiles with suitable epitopes can be self assembled and immobilized on the surfaces to form sensor coatings or removal media.
  • Hydrogels formed from self assembly of these strongly binding peptide amphiphiles could be molded for insertion into a site on a patient or for use in a filtration system. The hydrogels could be used to remove target peptides like HGF or VEGF from a site such as a joint or tumor on a patient or from a fluid in a patient. Examples of the Invention
  • MW ⁇ 1147726RDD:B U 12/01/04 20 190 nm at a scan speed of 100 nm/min, a response time of 2 seconds and a band width of 1 nm and averaged over five scans.
  • Samples were prepared at a concentration of 0.1 mg/mL in water unless stated otherwise.
  • Acid-Base titrations. pKa titrations were preformed on PAs 1-4 in the range of pH 2-10 with a Fisher Accumet pH meter at a concentration of 3.5 mg/mL in 100 mM KCl.
  • PAs 1 and 2 were prepared by standard Fmoc solid-phase peptide techniques using a preloaded
  • N-Carbobenzyloxy-L-aspartic anhydride was reacted with dodecylamine, yielding fatty acid amino acid 5.
  • the CBz group was then removed by catalytic hydrogenation to yield 6, followed by Fmoc-protection of the amine.
  • This synthesis proceeds readily on a 5 gram scale.
  • Product 7 was then coupled to a rink resin using HBTU as a coupling reagent. Subsequently, the remaining amino acids were added to 8 using standard Fmoc solid phase techniques. Standard cleavage conditions yielded PAs with reverse structure as previously described. *H NMR and electrospray ionization mass spectrometry are consistent with the expected structures.
  • Example lb 2-amino-N-dodecyl-succinamic acid (6) In 100 mL ethanol, 100 mmol of 7 was dissolved and transferred to a reaction vessel containing Pd and C (10% by weight). The vessel was then placed under hydrogen (35 Torr) for 3 hours. The reaction mixture was filtered over celite, and the product obtained as a white solid after evaporation to dryness under reduced pressure. Yield 95%.
  • PAs 1-2 were prepared as described in ref. 3.
  • the standard rink resin was placed in a reaction vessel and deprotected three times with 30% piperidine in NMP, and then coupled to 2 eq. of 7 overnight. Coupling was repeated until a ninhyndrin test showed negative results.
  • PAs When dispersed in aqueous media in the presence of suitable stimuli, PAs typically self-assemble into high aspect ratio cylindrical nanofibers. Based on previous work, fibers consisting of either one PA molecule or a mix of two PA molecules would be expected to show secondary structures with ⁇ -sheet-like hydrogen bonding. It was anticipated that mixing of the negatively charged 2 or 4 with oppositely charged 1 or 3, respectively, would result in parallel ⁇ -sheet-like hydrogen-bonding arrangements, while mixing 1 or 2 with amine terminated oppositely charged 4 or 3, respectively, could result in antiparallel arrangements.
  • Example 3 At a concentration of 0.1 mM, the CD spectra of 2-4 revealed peptide segments with predominantly random coil character. This most likely results from electrostatic repulsion among the highly charged molecules. Upon a change of pH to neutralize the charges or upon addition of calcium ions, all PAs exhibited ⁇ -sheet signatures. In contrast, 1 exhibits a ⁇ -sheet signature
  • MW ⁇ 1147726RDD:BLU 12/01/04 25 under any pH. 1 may be less charged than the others, since the acid terminus can neutralize the charge of one of the lysine residues, giving the molecule a formal net charge of +2. This lower overall charge may reduce repulsion and allow ⁇ -sheet hydrogen bonding within the fibers to take place. Conversely, 4 would have a formal net charge of -2, as the amine terminus would neutralize the charge of one of the glutamic acid residues, allowing for the ⁇ -sheet interactions to occur. However, 4 still exhibited a disordered CD signature.
  • Example 4 pKa titrations of aggregates of molecules 1-4 were carried out at a concentration of 3 mM. All titrations were started at a pH where the molecules were already in their aggregated state in order to avoid kinetic effects due to self-assembly. Only the pKa titration of 3 showed sharp transitions, correlating to two apparent pKa's, one attributed to the deprotonation of the more solvent accessible amine terminus, and the other originating from one or more of the ⁇ lysine amines.
  • PA 1 mixed with the triple glutamic acid PAs 4 or 2 (1/4 or 1/2) exhibit similar behavior.
  • the 1/3 lysine mixture shows a ⁇ -sheet
  • the 2/4 glutamic acid mixture shows disordered conformation, possibly due to greater charge repulsion among the glutamic acid residues.
  • NOE nuclear overhauser
  • a representative NOESY of 2 and 3 (2/3) shows close contacts ( ⁇ 3A) observed between the Glu-H ⁇ protons of 2 and the Lys-H ⁇ and Val-H ⁇ protons of 3, respectively.
  • Several other possible intermolecular contacts were detected but could not be attributed unambiguously to 2/3 contacts. These results provide additional evidence that the two PA molecules are co-assembled within the same nanofiber.
  • Example 7 Once the successful co-assembly of the amphiphiles was established, the gelation behavior of the systems from both single and multiple PAs was investigated.
  • One- weight percent solutions of 1-4 were slightly opaque and could be gelled by the addition of acid (1,3) or base (2,4), respectively.
  • Example 8 Phage display is typically used to find receptor-blocking peptides, . e. sequences with high binding constants. To transfer a growth factor from the PA binding site to the cell receptor, an extremely high binding constant is not required and might even be unfavorable. Therefore, the 7-mer commercial phage library was elected over the 13-mer library, aiming at intermediate binding strengths. Growth factors were physisorbed onto 96-well plates and subsequently exposed to the phage library. After incubation at room
  • MWU 147726RDD:BLU 12/01/04 27 temperature for 60 minutes, the unbound phage was removed by rinsing with detergent solution. Bound phage was subsequently eluted by incubating with a growth factor solution for 60 minutes. The recovered phages were amplified for 4 h in E Coli at 37 °C and the panning was repeated two more times. In subsequent panning rounds, the stringency was increased by raising the detergent concentration and reducing the exposure time to the library. The final phage population was plated and the DNA of 10 clones of colonies containing only one phage type were sequenced. Next, ELISA screening was used to test for false positives and determine relative binding strengths of the selected clones.
  • Example 8a Phage display was performed with the Ph.D. 7 kit (New England Biosystems). Fifty microliters of diluted M13-phage library (containing 2 x 10 phages and all possible 7-mer sequences) were added to 96-well microtiter plates, which had been exposed to 50 ⁇ l 10 ⁇ g/ml growth factor (peprotech) solution for 18 h at 0 °C. The plates were blocked for 1 h then incubated at room temperature for 60 minutes with gentle agitation.
  • Unbound phage was removed by rinsing with TBS/Tween-20 (0.1% v/v Tween-20). Bound phage was subsequently eluted by incubating with 50 ⁇ l growth factor solution for 60 minutes. The presence of binding phage was determined by serial dilution of the phages and subsequent plating with E. Coli on agar plates. The number of plaques formed can be related to the number of phages in the original mixture. The phages were subsequently amplified for 4 h in E. Coli at 37 °C. In subsequent panning rounds, the concentration of Tween-20 was raised to 0.5% and the binding and elution times were decreased and increased, respectively, to increase the stringency of the selection process. After three rounds of panning, the recovered phage mixture is diluted and plated with bacteria on agar. Subsequently, plaques are isolated containing a single DNA sequence. After purification, ten clones were sequenced. Next, ELISA
  • MWU14772 ⁇ 5RDD:BLU 12/01/04 28 screening was used to eliminate false positives and determine relative binding strengths of the selected clones.
  • Each clone was incubated for 1 h on growth factor coated microtiter plates, the plates were rinsed with TBS/Tween-20 and subsequently HRP-conjugated anti-M13 antibody (Amersham Biosciences) was incubated for 1 h. After addition of ABTS, the absorbance at 450 nm was measured after 30 minutes to determine the relative binding strengths of the isolated clones. The strongest binder was subsequently selected.
  • Table 1 Binding sequences for BMP-2 and TGF- ⁇ l derived using phage display
  • the numeric coding illustrates the relative binding strengths of the selected clones in decreasing binding strength from highest (1) to lowest (4). All sequences bind significantly.
  • Example 9 Since the peptide sequences as displayed on the phage had a free N- terminus, it was not possible to use a typical synthesis route for the PAs. Therefore, an aspartic acid whose side chain was modified with dodecylamine was reacted with a Rink amide resin. (See, Scheme 2, above.) Subsequently, the remainder of the peptide could be synthesized using regular Fmoc-peptide synthesis techniques, yielding a PA with reverse polarity.
  • the elected peptide sequences were V 6 K 3 SG 3 YPVHPST (9) for BMP-2 and V 3 A 3 K 3 SG 3 LPLGNSH (10) for TGF- ⁇ l, respectively (Scheme 3).
  • the K 3 segment was chosen to co- assemble with the charged E 3 head groups of the filler 2.
  • the SG 3 sequence is a spacer unit and is the same spacer as was present on the phage. Binding constants of BMP-2 with, respectively, YPVHPST and KQALTOT were
  • Example 10 Co-assembly of PA 9 with the filler PA 2 could be demonstrated utilizing circular dichr oism (CD) spectroscopy.
  • CD circular dichr oism
  • the CD spectrum of the individual PA nanofibers at this concentration have predominantly random-coil character.
  • the CD-spectrum reflects a pure ⁇ -sheet, illustrating that the PAs co-assemble within one fiber rather than form individual homo-fibers consisting of only one PA molecule.
  • Co-assembly is energetically favored since tl e electrostatic repulsions, are reduced when tl e KKK and EEE part form a complex.
  • the binding epitopes were diluted to a 50: 1 (filler :binder) ratio to ensure recognition by the protein.
  • Gels were prepared by mixing 50 ⁇ l of pre-mixed PA (2% by weight) containing the desired amount of growth factor and 50 ⁇ l mesenchymal stem cell suspension (100,000 cells) on glass cover slips, followed by the addition of 10 ⁇ l 30 mg/ml CaCl 2 solution. The gels were allowed to solidify for 1.5 hours after which 1 ml of mesenchymal stem cell media was added. In this way, gels were prepared consisting either of 9/2 or 2 alone and containing 0, 1 or 50 ng/ml of BMP-2.
  • the cell pellet was re-suspended in 1 ml of media and 10 ⁇ l was used for cell counting.
  • the cell suspension was diluted with media to a concentration of 2,000,000 cells/ml.
  • PAs 1 and 3 were dissolved at a concentration of 2 wt%.
  • 50 ⁇ l of 1 was mixed with 1250 ⁇ l of 3.
  • the mixture was split in 3 portions of 410 ⁇ l and in addition 3 portions of 410 ⁇ l 3 (2wt%) was prepared.
  • 20 ⁇ l of 2 ⁇ g/ml BMP-2 (Peprotech) was added to one portion of 1/3 and 1 to a concentration of 100 ng/ml BMP-2.
  • the gels to which no BMP-2 was added show similar levels. Moreover, the endogenous BMP-2 levels produced by the cells themselves are enough to stimulate osteoblastic differentiation, but the capability of the binding gels to bind some of the BMP-2 lowers the amount of expressed osteocalcin slightly. The expression of osteocalcin could also be visualized with immunocytochemistry. In contrast, ⁇ -smooth muscle actin was not detected in gels containing 9, whereas it was expressed in the gels without the binder. However, it was expressed in either case after 3 weeks (figure 3b), but the expression in 9/2 gels was still slightly less than in the 2 gels and significantly lower than the controls. Furthermore, no desmin expression could be detected, which is the marker of terminally differentiated smooth muscle cells.
  • Example 12a Western Blot protocol After removal of the media, the gels were rinsed with 1 ml phosphate buffer saline and subsequently, the cells were lysed in 200 ⁇ l 2% sodium dodecyl sulfate, 0.08 M Tris, 10% glycerol. The three lysates were combined and protein concentrations were measured by mixing 10 ⁇ l lysate with 200 ⁇ l BCA protein assay reagent (Pierce) and reading the absorbance at 562 nm against a BSA standard series after 30 min. incubation at 37 °C.
  • BCA protein assay reagent Pieris
  • the membranes were blocked for 1 h in 5% non-fat milk (Bio-Rad) and probed for the respective markers at a 1 :500 dilution in 1% milk for 2 h using the monoclonal antibodies for osteocalcin (clone 190125, R&D systems) endoglin (clone 166709, R&D systems), adiponectin (clone 166126, R&D systems), ⁇ -smooth muscle actin (clone 1 A4, R&D systems) and polyclonal aggrecan (AF1220, R&D systems).
  • the membranes were rinsed 3x for 15 minutes with tris buffer saline/0.1% tween-20 (TTBS).
  • TGF- ⁇ l MWU147726RDD B U 12/01/04 35 presence of TGF- ⁇ l leads to differentiation into the smooth muscle and cartilage lineages. Collagen II expression is higher for the binding gels and seems to increase with increasing TGF- ⁇ l. Surprisingly, osteocalcin and collagen X are expressed, which indicates that maturation to the stage of hypertrophic chondrocytes occurs, which is unexpected at this early time point. Similarly, ⁇ -smooth muscle actin expression increases with TGF- ⁇ l concentration but is higher in the binding gels than in the nonbinding gels. It's even higher in the controls, but the expression levels of desmin show that these are mainly immature muscle cells.
  • VEGF vascular endothelial growth factor
  • FGF-2 basic fibroblast growth factor
  • NT-3 neurotrophin-3
  • laminin-5 * denotes the strongest binders:
  • this invention provides a synthetic strategy for peptide amphiphile molecules with free N-termini compatible with standard solid phase methodology. When mixed with free C- terminus PAs, these molecules self-assemble into nanofibers containing highly thermally stable ⁇ -sheet structures which appear to be more stable than co- assemblies of PAs with identical polarity. The new opportunity to create assemblies with free N-termini on their surfaces enables the design of bioactive nanofibers not accessible previously with nanostructures that expose the C- terminus of the peptide sequence.
  • peptide or protein sequences derived from a phage display process may be used to form binding peptide amphiphiles that bind and retain proteins other than growth factors.
  • Enzymes could be coupled to form binding peptide amphiphiles which can be self assembled and immobilized on the surfaces of nanofiber hydrogels. Such hydrogels may be used as a coating for sensor applications.
  • the binding interaction of the phage display derived peptide coupled to the peptide amphiphile could be selected to strongly bind peptides such as HGF (hepatocyte growth factor) or VEGF and treat various diseases and conditions
  • Hydrogels formed from self assembly of these binding peptide amphiphiles could be molded for insertion into a site on a patient or for use in a filtration system.
  • the hydrogels could be used to remove target peptides like HGF or VEGF from a site such as a joint or tumor on a patient or from a fluid in a patient.

Abstract

Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

Description

SELF-ASSEMBLLNG PEPTIDE AMPHIPHILES AND RELATED METHODS FOR GROWTH FACTOR DELIVERY This application claims priority benefit from application serial no. 60/527,504 filed December 5, 2003, the entirety of which is incorporated herein by reference. The United States government has certain rights to this invention pursuant to Grant No. DE-FG02-00ER54810 from the Department of Energy to Northwestern University. Background of Invention. Growth factors play an important role in cell specialization and are promising factors for controlling stem cell differentiation or reactivating dormant biological processes in vivo, both of which may lead to the regeneration of nonfunctional tissues. Growth factors are quickly degraded and rapidly diffuse away from a cellular site or injury. Accordingly, an architecture or scaffold would be useful to retain the growth factor at such a site for release to the surrounding cells in a controlled fashion. Materials designed molecularly for tissue regeneration are becoming of great interest in advanced medicine. Scaffolds of synthetic polymers, including polymers based on L-lactic or glycolic acid, and biopolymers including collagen, fibrin or alginate have been studied. Growth factors have been physically entrapped in hydrogels as such polymers, covalently linked or bound electrostatically to either anionic polymers or structures such as heparin. Drawbacks to these and related systems relate either to non-specificity of bound growth factors or required degradation of covalent bonds to achieve desired effect. More recently, both natural and synthetic scaffolds have been modified to contain peptides found in extracellular proteins that promote receptor based interactions with cells and have been used to promote cell adhesion or differentiation. Advances in self-assembly offer new opportunities in molecular design of biomaterials. Amphiphilic molecular building blocks can be assembled in aqueous environments to form scaffolds with well defined and diverse
MW\1147726RDD:BLU 12/01/04 chemical structures. Various classes of peptide-based amphiphiles have been reported in the literature, including amphiphilic peptides and peptides functionalized with hydrophobic components (e.g., alkyl tails) on one or both termini. Amphiphilic peptides have been shown to form a variety of supramolecular structures like nanotapes, ribbons, fibers, and twisted ribbons. These structures originate from β-sheet formation among the amphiphilic molecules. A special case is that of amphiphilic peptide block copolymers that form gels with properties strongly dependent on the secondary structure of the individual peptide blocks. An example of peptide amphiphiles with alkyl tails on one terminus include amphiphiles derived from peptide motifs found in collagen which result in the formation of triple helical units that form spheroidal or disc-like micellar structures depending on the tail length and number of tails. Another class has two tails, one per terminus. This class of amphiphiles displays amyloid-like behavior in that, upon increasing the concentration, they undergo a transition from a random coil to a β-sheet type conformation that leads to fibrillar structures. There are reports of purely peptidic nanostructures with antiparallel arrangements, and one report of two modified peptide amphiphiles that aggregate in an antiparallel arrangement driven by an unnatural alkylated quaternary ammonium salt. A class of peptide amphiphiles (PAs) is disclosed in one or both of two co-pending applications comprising a linear hydrophobic tail coupled to a peptide block that includes β-sheet forming segments, charged residues for solubility, and biological epitopes. The alkyl tail is attached to the N-terminus of the peptide, and the epitope segment is placed at the C-terminus. Upon application of a trigger such as a change in pH or ion concentration, these PA molecules can self-assemble in an aqueous medium into nanofibers. The alkyl chains are in the core of the fibers, with the epitopes displayed on the periphery for cell interaction. Epitopes that have been incorporated into the PA molecules mimic extracellular matrix proteins and promote cell adhesion or differentiation through cell signaling. It has also been shown that two different PA molecules with different epitopes and complementary charge can be co-
MW\1147726RDD:BLU 12/01/04 2 assembled into the same nanofiber. See, co-pending application serial number 10/368,517 filed February 18, 2003 (international publication number WO 03/070749) and application serial number 10/294,114 filed November 14, 2002 (international publication number WO 03/054146), each of which are incorporated herein by reference in their entirety. However, such PA compounds are typically prepared via solid phase synthesis with the peptide component generated from the C-terminus to the N-terminus. Coupling a hydrophobic component to the N-terminus provides a PA compound with either a free acid or amide group on the periphery of the resulting micellar nanofiber assembly as various epitope or peptide sequences often require a free N-terminus for bioactivity, such PA compounds would be ineffective for growth factor interaction. Summary of the Invention. In light of the foregoing, it is an object of the present invention to provide the amphiphilic peptide compounds, assembled compositions thereof and/or related methods for use thereof to affect bioavailability of a range of growth factors, thereby overcoming various deficiencies and shortcomings of the prior, including those outlined above. It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objectives, while one or more other aspects can meet certain other objectives. Each objective may not apply equally, in all its respects, to every aspect of this invention. As such, the following objects can be viewed in the alternative with respect to any one aspect of this invention. It is an object of the present invention to provide amphiphilic peptide compounds comprising peptide components coupled at the N-terminus thereof to one or more of a range of epitope sequences capable of non-covalent interaction with one or more growth factors, such epitopes as can comprise and be derived from the recognition product of a phage display process. It is another object of the present invention to provide a composition comprising an assembly of one or more of the aforementioned amphiphilic peptide compounds for presentation of the epitope binding sequence(s) coupled
MWU147726RDD BLU 12/01/04 3 thereto, such compositions as can comprise other amphiphilic peptide compounds absent such an epitope sequence. It can also be an object of this invention to provide one or more of the aforementioned compositions further comprising one or more growth factors corresponding to a coupled epitope sequence, such compositions capable of self-assembly for growth factor delivery and release. It is also an object of the present invention to provide one or more compositional assemblies of the aforementioned amphiphilic peptide compounds and use thereof to affect growth factor bioavailability and/or stem cell differentiation. Other objects, features, benefits and advantages of the present invention will be apparent from this summary and the following descriptions of certain embodiments, and will be readily apparent to those skilled in the art having of peptide composition and scaffolds or architectures for growth factor delivery. Such objects, features, benefits and advantages will be apparent from the above as taken into conjunction with the accompanying examples, data, figures and all reasonable inferences to be drawn therefrom, alone or in consideration with the references incorporated herein. In part, this invention can be directed to an amphiphilic peptide compound comprising a peptide component and a hydrophobic component, the peptide component comprising a growth factor recognition product of a phage display process. One or more such recognition products can be coupled to or bonded directly with the peptide component at, about or proximate to the N-terminus of the peptide component, with the hydrophobic component coupled to or bonded directly with the peptide component at, about or proximate to the C-terminus thereof. Such a recognition product can be selected from epitope sequences providing one or more binding interactions with a growth factor, such products/sequences and corresponding growth factors including but not limited to those discussed more fully below. The compounds of this invention and/or peptide components thereof can be substantially linear or branched, such branched configurations and the
MW\1147726RDD:BLU 12/01/04 4 preparation thereof as disclosed in co-pending application "Branched Peptide Amphiphiles, Related Epitope Compounds and Self- Assembled Structures Thereof," filed concurrently herewith, on December 6, 2004, the entirety of which is incorporated herein by reference. In part, this invention can also be directed to compositions comprising a plurality of such amphiphilic peptide compounds, with the peptide component of each such compound having a net charge at a physiological pH. Such compositions can further comprise a plurality of amphiphilic peptide compounds having a complementary net charge at a physiological pH, such compounds absent a growth factor recognition product, such that the amino acid sequence of such compounds is of shorter length or less in number than that corresponding to a compound comprising a recognition product. As a result, micellar assemblies of such compounds, in an appropriate medium, provide an enhanced presentation of one or more recognition products, extending beyond the general periphery of the micellar assembly. Such enhanced presentation can be used to affect and/or control the bioavailability of one or more growth factors. As such, various compositions of this invention and methods relating thereto can be used in a stem cell environment for non- covalent interaction or binding with one or more growth factors, whether the growth factor is produced by the stem cell, or delivered to the cellular environment in conjunction with one or more of the aforementioned compositions. Regardless of compositional use or application, the peptide amphiphiles of this invention can comprise a peptide component of varied length or sequence depending upon desired flexibility, charge and/or capacity of intermolecular interaction or binding. The hydrophobic component of such compounds can also be varied (e.g., ranging from about C6 to greater than about C22 alkyl or substituted alkyl, saturated or unsaturated, etc.), such components limited only by resulting amphiphilic character and affect on compositions or assemblies of such compounds.
MW\1147726RDD:BLU 12/01/04 One embodiment of the present invention is a composition that includes a mixture of peptide amphiphiles, each having a binding epitope, and filler peptide amphiphiles without a binding epitope. The mixture is capable of forming self assembled nanofibers or other micelles which consist of the filler peptide amphiphiles and the self assembled peptide amphiphiles having the binding epitope. The peptide amphiphiles in the composition have a alkyl tail portion, a beta sheet portion, and a charged portion. Preferably the epitope on the peptide amphiphile having the binding epitope has a sequence derived by a phage display process and is longer than the filler peptide amphiphile. Another embodiment of the present invention is a composition or system of self assembled nanofibers or other self assembled micelles including peptide amphiphiles having a binding epitope and filler peptide amphiphiles. The peptide amphiphiles with the binding epitope preferably longer than the filler peptide amphiphiles. In the self assembled structures the peptide amphiphiles with the binding epitope preferably protrude from the surface of the self assembled nanofiber or micelle. Preferably the peptide amphiphile with the binding epitope is capable of interacting with growth factors or other peptides, amino acids, or nucleic acids through non-covalent interaction, even more preferably the non-covalent interaction between the growth factors and the epitopes does not compete with binding of the growth factors to extracellular receptors. Compositions of self assembled nanofibers or micelles can comprise hydrogels that may further include a growth factor non-covalently bonded to peptide amphiphiles of the nanofiber having the bonding epitope. Such growth factors may be added in vitro or may be those at the site of an injury of a patient in vivo. The growth factors interacting with the self assembled peptide amphiphiles may include but are not limited to bone morphogenetic proteins, transforming growth factor vascular endothelial growth factor, neurotrophins, and mitogenic factors like FGF-2, Sonic hedgehog and Wnt-proteins. The composition may include cells such as but not limited to stem cells inside the nanofiber hydrogels. Preferably the growth factors non covalently interacting
MW\1147726RDD:BLU 12/01/04 6 with the self assembled peptide amphiphiles are released to the surrounding tissue or cells through interaction with the extracellular receptors or by degradation of the nanofiber matrix.. In addition to the cells, other therapeutic compounds may be encapsulated in or bonded to the hydrogel. These compounds may include but are not limited to anti-inflamatories, chemotherapeutics, or combinations of these inside the nanofiber hydrogels. Preferably the growth factors non covalently interacting with the self assembled peptide amphiphiles are released to the surrounding tissue or cells through interaction with the extracellular receptors or by degradation of the nanofiber matrix. Another embodiment of the present invention is a method of making self assembled peptide amphiphile nanofibers or micelles that includes self- assembling by mixing or combining peptide amphiphiles having a binding epitope with filler peptide amphiphiles, wherein said peptide amphiphiles with binding epitopes are longer in length than said filler peptide amphiphiles. Nanofibers or micelles maybe formed by addition of multivalent ions, addition of complementary charged peptide amphiphiles, or by dehydration, or addition of an acid or base to the peptide amphiphiles. Where hydrogels are formed, preferably the micelles or nanofibers are formed by addition of multivalent ions or ions already present in cell media or bodily fluids. Preferably the peptide amphiphile having the binding epitope has a sequence derived by a phage display process. Another embodiment of the present invention is a method of treating a tissue which includes administering to a site on a patient in need of regenerating a tissue, nanofibers or other self assembled micelles including peptide amphiphiles with epitopes for non-covalently bonding to growth factors. The nanofibers and their hydrogels may include cells such as but not limited to stem cells. In addition to cells, other therapeutic compounds may be encapsulated in or bonded to the hydrogel. These compounds may include but are not limited to anti-inflamatories, chemotherapeutics, or combinations of these. Preferably the growth factors noncovalently bonded to self assembled
MW\1147726RDD:BLU 12/01/04 7 structure are released to the site by interaction with the extracellular receptors or degradation of the matrix. Preferably the self assembled micelles or nanofibers containing growth factors and/or stem cells are administered to a site on a patient having injuries such as but not limited to damaged bone, cartilage, spinal cord, brain tissue, nerves, or a combination of these. Another embodiment of the present invention is a peptide amphiphile that includes an alkyl tail portion coupled to a first end of beta sheet forming peptide portion also having a second end. An epitope peptide portion of the peptide amphiphile is coupled to the second end of the beta sheet forming peptide portion such that the epitope is available for non-covalent interaction with other molecules or proteins. Preferably the epitope has a sequence that is derived by a phage display process. The peptide amphiphile may alternatively include a charged portion peptide having two ends and coupled between the beta sheet forming portion second end and the epitope peptide portion. Another embodiment of the present invention comprises an assembly or system for releasing growth factors to cells that includes a scaffold prepared from self assembled peptide amphiphiles, at least a portion of the peptide amphiphiles including peptide epitopes for non-covalently bonding with growth factors, and wherein the growth factor binding epitopes protrude above the nanofiber surface. The amino acid sequence of the epitope is derived from a phage display process. Such a scaffold, may also include stem cells, and can be used in a method for growing tissue, regenerating tissue, or supporting the transplantation of tissue in a patient. In addition to cells, other therapeutic compounds may be encapsulated in or bonded to the hydrogel of the scaffold. These compounds may include but are not limited to anti inflammatories, chemotherapeutics, or combinations of these. The method includes inserting a scaffold to a site on a patient or forming it in vivo. The scaffold includes self assembled peptide amphiphiles having peptide epitopes for non-covalent bonding with growth factors and where the epitopes protrude above the nanofiber surface of the scaffold or
MW\1147726RDD:BLU 12/01/04 are made by a phage display process, and releasing growth factors from the scaffold to the surrounding cells from said scaffold. The described growth factor binding hydrogels have several applications in the field of regenerative and transplant medicine. The compositions, methods of making, and methods of using them can readily be expanded to other epitopes on the peptide amphiphiles for other growth factors and hence to the regeneration of a wide variety of tissues or support of transplanted tissues in a patient. For example, since BMP-2 and TGF-βl play an important role in osteoblastic and chondrogenic differentiation of mesenchymal stem cells, respectively, the self assembled micelles of the present invention can be used for the regeneration of bone and cartilage. Second, BMP-2 also plays an important role in the formation of the brain and the dorsal spinal cord. Therefore, the gels can also be used in combination with neural stem cells for the regeneration of damaged spinal cord and/or to repair damaged brain areas in the case of stroke. As discussed above, In certain embodiments, this invention utilizes an extension of the mixed fiber approach to incorporate a PA that is capable of binding growth factors by selective non-covalent interactions. In this way, the bio- availability of the growth factors can be modulated by tuning the binding strength 'and number of binding sites. The initial concentration of growth factor will be either raised or decreased depending whether the localizing effect of binding or whether the effect of binding rendering the growth factors inactive is more dominant. In either case, release of growth factors can be sustained over a longer period. To promote binding epitope recognized by a growth factor, a PA can be made such that the epitope is extending from the fiber surface. The required amino acid sequence of the binding epitope can be determined using phage display. For purpose of illustration, growth factors chosen include bone morphogenetic protein-2 (BMP-2) and transforming growth factor βl (TGF-βl). BMP-2 is, amongst others, involved in the formation of bone and the development of the brain and the dorsal spinal cord, whereas TGF-βl is implicated in the formation of cartilage and the
MW\1147726RDD:B U 12/01/04 9 differentiation of smooth muscle cells. The corresponding gels will be used to control the differentiation of mesenchymal stem cells. Mesenchymal stem cells have been shown to differentiate in vitro and in vivo into a variety of lineages like bone, cartilage, fat, muscle cells and myocardium. The differentiation into the bone lineage under the influence of BMP-2 is shown below. The gels are superior to the addition of growth factors to media in controlling the differentiation of mesenchymal stem cells into the expected osteogenic lineage. Moreover, the binding gels initially suppress the differentiation into all other lineages. This behaviour is thought to result from either reduced bio-availability of the growth factor or from a more gradual exposure of the cells to these growth factors in the binding gels. Eventually, some α-smooth muscle expression is found in the binding gels as well. This suggests that prolonged exposure to BMP-2 or the absence of factors that drive differentiation to completion might have negative effects on homogeneity of the population. Finally, the endogeneously produced BMP-2 levels seem sufficient when the binding sequence is present to moderate its bioavailability. The successful co-assembly of the growth factor binding PAs with the regular filler PAs allows the creation of hydrogels that are capable to bind growth factors, retain them in the gels and modulate their bio-availability. More homogeneous populations of specialized cells are obtained initially when mesenchymal stem cells are differentiated in gels with binding PAs compared to those differentiated in the absence of binding PAs. Other filler PAs may be desired to vary the physical properties of the gels depending on its applications and other binding sequences might be desired to optimize binding strengths. In addition, the approach demonstrated by this invention allows the incorporation of multiple signals by simple mixing of multiple binding PAs with a filler. Most likely, multiple growth factors will be required to further optimize the differentiation of stem cells. The differentiation of mesenchymal stem cells exposed to multiple growth factors is currently being investigated. Potentially, temporal release in the multiple growth factors systems can be achieved by selecting binders with different association constants for the growth factors. In
MW\1147726RDD:B U 12/01/04 10 addition, in vivo studies of the systems described here are being performed. Finally, the methodology presented here can readily be extended to any growth factor or protein implicated in cell recruitment, specialization or maintenance, thereby making it a highly promising approach for regenerative medicine. Brief Description of the Drawing. Figure 1 illustrates representative PAs comprising epitope sequences and complementary PAs for use in assembly therewith. Detailed Description of Certain Embodiments. The invention describes a system based on self-assembling peptide amphiphiles (PAs) that is capable of binding growth factors through specific non-covalent interactions. Growth factors play an important role in cell signaling and are therefore promising factors for controlling the differentiation of stem cells, supporting the incorporation of transplanted tissue, and or specific molecular or physiological, or re-activating dormant biological processes in vivo which may lead to the regeneration of non- functional tissues. Growth factors are rapidly degraded in vivo and rapidly diffuse away from the injury site. Therefore, a scaffold is needed that retains the growth factor at the injury site and releases the growth factors to the surrounding cells in a controlled fashion. Self assembled peptide amphiphiles based hydrogels have been shown to be able to fulfill several functions of an extacellular matrix (ECM), i.e. promoting cell adhesion and controlling differentiation. The present invention concerns a modification of these ECM substitutes with peptide sequences that are capable of binding growth factors, which include but are not limited to bone morphogenetic protein-2 (BMP-2), transforming growth factor βl (TGF-βl), VEGF, and IL-6 in a specific fashion. These ι growth factor peptide sequences may be obtained through phage display techniques, coupled to peptide amphiphiles to form binding peptide amphiphiles. The binding peptide amphiphiles and filler peptide amphiphiles maybe self assembled to form a hydrogel which can be molded into a shape and used as a scaffold for tissue repair. Alternatively binding peptide amphiphiles and filler peptide amphiphiles may be introduced in vivo or in
MW\1147726RDD:BLU 12/01/04 1 1 vitro to a sample of cells or tissue and self assembled to a hydrogel in the sample. As discussed above, the peptide amphiphiles of this invention can comprise an alkyl tail, a β-sheet forming peptide sequence, and a bio-active peptide sequence. The first two blocks result in the formation of micellar fibers, such as but not limited to nanofibers, which under the proper conditions (neutralization of addition of multivalent ions) form hydrogels or other solvent filled wet gels. Preferably the bioactive epitope is partially charged for solubility, but this charge can be varied over a wide range of sequences like integrin-binding sequences, neuro-active sequences etc. Furthermore, peptide amphiphiles of complementary charge co-assemble to form mixed fibers. This principle may be used to prepare nanofibers consisting of regular PAs and longer PAs with growth factor binding epitope sequences, in which the binding sequences are extending from the fiber surface. The desired growth factor binding sequences are obtained through phage display using randomized peptide libraries, which leads to strong binding sequences using combinatorial selection processes. Release of the growth factors will be induced by degradation of the matrix, binding to an extracellular receptor, or a combination of these. Existing technologies entrap the growth factors in hydrogels, link them covalently with polymeric tethers (WO 03/040336 and U.S. Pat. Pub. No. 0020007217) or bind them electrostatically to either anionic polymers (WO 0/13710) or heparin ( WO 00/64481). The disadvantage of the tethered system is the complex preparation and the possibility that the growth factors cannot reach the extracellular receptors. Entrapped growth factors and the growth factors complexed to the anionic polymer are released relatively quick and control over sustained release is poor. For example, the growth factors bound to the anionic polymer are released within 8 hours. The heparin-binding system is non-specific (e.g. non-desired binding of factors present in the serum is possible) and is limited to a subset of growth factors. Advantageously, the present invention is designed such that only the desired growth factor is
MW\1147726RDD:BLU 12/01/04 12 complexed with a binding strength that is high enough to retain the growth factor in a bound state but is weak enough that it does not compete with binding to the extracellular receptors. One aspect of the invention described herein is that it may be used for the derivation of peptide sequences that bind growth factors using phage display techniques and the subsequent preparation of peptide amphiphiles bearing these binding sequences. Growth factors prepared by the phage technique may include the bone mophogenetic proteins, transforming growth factor βl, the neurotrophins, and the mitogenic factors FGF-2, Sonic Hedgehog and Wnt-3a. These growth factor proteins are coupled to shorter peptide amphiphile to form longer peptide amphiphiles bearing the growth factor epitope. These growth factor epitope bearing PAs, or binding peptide amphiphiles, are co-assembled with shorter filler or complementary filler PAs to generate nanofibers with the binding epitopes extending from the surface, which can subsequently form hydrogels upon the addition of multivalent ions, or a change in pH. The resulting hydrogels can then be used, either with cells, such as but not limited to stem cells, encapsulated inside the hydrogel or solely as a delivery vehicle, for tissue regeneration in vivo. In addition to cells, other therapeutic compounds may be encapsulated in or bonded to the hydrogel. These compounds may include but are not limited to anti-inflamatories, chemotherapeutics, or combinations of these. Phage display may be used to generate molecular probes against specific targets and for the analysis and manipulation of protein-ligand interactions. Phage display is used to determine the amino acid sequences, peptides, or proteins that will bind to the target molecules such as but not limited to amino acids, peptides, growth factors, enzymes, and various nucleic acids. Phage display may be performed on target molecules like growth factors physisorbed to microtiter well plates using a commercial library. Preferably the library consists of phages in which the N-terminus of the G3 coat protein has been extended with 1 to about 13 or more randomized amino acids in such a way that every possible combination of amino acids is present. The library is
MW\1147726RDD:BLU 12/01/04 13 exposed to the target molecules such as growth factors and subsequently non- specifically bound phages are eluted with a detergent solution. After retrieval of the bound phages, this population is amplified in for example E. Coli and the process is repeated two more times with increasingly stringent elution conditions. The final population is strongly enriched towards binding phages, and the DNA of several of the clones can be sequenced, allowing the identification of the amino acid sequence displayed on these phages. Subsequently, an ELISA assay may be performed to estimate the relative binding strengths of the isolated clones. Solid state synthesis is used to make the peptides for making the binding peptide amphiphiles using the identified amino acid sequences. Peptide components in the filler PAs and the binding epitope peptide amphiphiles of the present invention may include naturally occurring amino acids and artificial amino acids. Incorporation of artificial amino acids such as beta or gamma amino acids and those containing non-natural side chains, and/or other similar monomers such as hydroxyacids are also contemplated, with the effect that the coιτesponding component is peptide-like in this respect and self assemble to form micelles such as nanofibers. Various peptide amphiphiles of the present invention can be synthesized using preparatory techniques well-known to those skilled in the art, including those disclosed in the aforementioned incorporated publication WO 03/054146 and modifications of those originally described by Hartgerink, et al. (See e.g., J.D. Hartgerink, E. Beniash and S.I. Stupp, Science 294, 1683-1688, 2001), which is also incorporated in its entirety by reference. Also contemplated in the practice of this invention are branched peptide amphiphiles with which the synthetic methods and epitopes of the present invention may be used. Branched peptide amphiphile may be made by the using the methods and compostions as disclosed in the forementioned co-pending application filed concurrently herewith on December 6, 2004, the contents of which are incorporated herein by reference in their entirety. Such a branched peptide amphiphle with a binding epitope could be self assembled into a nanofiber. The branched
MVΛ1147726RDD-BLU 12/01/04 14 peptide amphiphile would have an alkyl tail portion coupled to the first end of a beta sheet forming peptide portion and at a second end to an epitope peptide portion that includes one or more peptide branches. The peptide includes branching amino acids and a charged peptide portion. The branched epitope peptide portion may be coupled to a second end of the beta sheet forming peptide portion of the peptide amphiphile. The binding epitope sequence for the branched peptide may be derived from a phage display process. The synthetic schemes set forth in these references may be applied to the present invention. Peptide amphiphiles may be in their fully protonated form, partially protonated form, or as acid or basic addition salts. Generally such peptide amphiphiles can be made by standard solid-phase peptide chemistry, as described in the aforementioned incorporated references or as provided herein. Modifications of these synthetic methods can be made as would be known to those skilled in the art and aware thereof, using known procedures and synthetic techniques or straight- forward modifications thereof depending upon a desired amphiphile composition or peptide sequence. Filler peptides, of the sort shown in Figure 1, are preferably shorter in length than the peptide amphiphiles with the binding epitopes so that self assembled nanofibers from a combination of these peptide amphiphiles results in protrusion of the growth factor binding epitope from the surface of the nanofiber. The complementary filler peptide amphiphiles have side groups from the amino acids which interact with those of the filler peptide via acid base or other types of bonding. The peptide sequences derived from the phage display process may be used as a binding site or epitope on a peptide amphiphile for non-covalently bonding to peptides and molecules that include but are not limited to growth factors, enzymes, nucleic acids (RNA, DNA), and amino acids. While phage display is preferred for deriving the epitope sequences, other complementary methods for identifying and determining the sequence of binding epitopes cam be used, such as but not limited to yeast hybrid systems. These binding peptides or epitopes may be coupled to the free end of the beta sheet forming
MW\1147726RDD:BLU 12/01/04 15 peptide, the free end of the charged peptide, or the free end of the spacer peptide. A peptide amphiphile design can comprise a simple hydrophobic tail which serves to create the slender portion of the molecule's conical shape for self assembly of the peptide amphiphiles. Preferably the hydrophobic tail is an alkyl chain that can be a variety of sizes but is preferably be greater than 6 carbon atoms in length. The alkyl tail is covalently bonded to the beta sheet forming structural segment of the peptide amphiphile. The beta sheet peptide structural segment may be used to covalently link the tail group to the phage peptide; or the charged peptide, spacer peptide, and phage peptide; or the charged peptide and phage peptide. The beta sheet peptide structural segment is covalently bonded at one end to the tail and at its other end to an amino acid sequence of the various peptides. If cross-linking is desired, cysteine amino acids maybe utilized in any of the segments, but preferably in the structural beta sheet segment. If cross-linking is not desired, other hydrophobic amino acids such as but not limited to alanine, serine, or leucine may be used in this region (e.g. SLSL or AAAA as described in more detail herein). This cysteine- free system may be more appropriate for in vivo biological applications to control the degradation rate of the nanofiber matrix. The SLSL modification to the system may be expected to lead to a slower self assembly of the nano fibers which may be used to control in vivo assembly of scaffolds. Without wishing to be bound by theory, it is believed that the bulky leucine side chains may require more time to pack into the fiber. A slowed self-assembly may also have greater applications in a functional, in situ environment such as an operating room, where it may be advantageous to have delayed formation of the nano- fibers. The structural beta sheet forming segment may also include a flexible linker composed of glycine or other amino acids. When the structural segment includes hydrophobic amino acids, it and the alkyl tail may be considered a hydrophobic segment. Where the structural segment includes hydrophilic amino acid, it and the hydrophilic head group may be considered as a hydrophilic segment.
MW\1147726RDD:BLU 12/01/04 16 The β-sheet forming unit preferably includes those hydrophobic amino acids which can interact to form beta sheets and which help form the overall conical shape of the peptide amphiphile. For the protruding peptide amphiphile, the number of amino acid in this unit may be chosen to provide a peptide amphiphile that is longer than filler peptide amphiphiles used to form the nanofibers and provide accessibility to the peptide on the bonding peptide amphiphile. There may be from about 4 to about 10 amino acids in this segment and most preferably about 6 amino acids. For a β-sheet forming segment suitable amino acid may include but are not limited to glycine, alanine, valine, leucine, and isoleucine, and other non-naturally occurring amino acids which may used in a similar chemical and structural manner in the peptide amphiphile. A charged segment is present in the binding peptide amphiphile which provides for solubility of the peptide amphiphile in an aqueous environment, and preferably at a site on a patient. The charged peptide segment may include those amino acids and combinations thereof which provide this solubility and permit self assembly and is not limited to polar amino acids such as E or K and combinations of these for modifying the solubility of the peptide amphiphile. There may be from about 2 to about 7 amino, and preferably there are about 3 or 4 amino acids in this segment. This segment is attached at a first end to the structural peptide and it's second end used for bonding to the peptide derived from the phage display process. A spacer group peptide may also be included into the peptide amphiphile. The space may include amino acids such as but not limited to S and G, and the space may include from 1 to about 6 amino acids. Where the displayed peptides on the phage have a free N-terminus, the classical synthetic scheme for peptide amphiphiles may be amended to provide a free N-terminus. This may be achieved by synthesizing an aspartic acid derivative with which the side chain can be functionalized with dodecyl amine. Coupling of this amino acid to the Wang-resin allowed the completion of the PA synthesis through classical solid state Fmoc-chemistry without further need to functionalize the N-terminus. The free PA may be obtained through treatment with 95%
MW\1147726RDD:BLU 12/01/04 17 TFA/2.5% water/2.5% triisopropylsilane. Residual TFA can be removed by dissolving the PA in 3 mM HC1, equilibrating for 1 hr at room temperature followed by lyophilization. The successful synthesis of these molecules maybe confirmed using electrospray mass spectrometry. The peptide amphiphiles with the growth factor epitopes maybe self assembled at a site on a patient in vivo using ions present in bodily fluids and or added ions/reagents to promote self assembly. Alternatively a composition of suitable peptide amphiphiles with growth factor binding epitopes is poured into a mold and self assembly used to form a scaffold in the shape of a tissue or bone to be replaced or regenerated. The molded scaffold may be inserted into the patient at the site in need of the repair or regenerative treatment. In the case of tissue transplant, the peptide amphiphiles with the growth factor binding epitopes may be formed into a support structure or matrix in a mold and used as a support in the patient for the transplanted tissue. The peptide amphiphile nanofibers or scaffolds thereof may include cells such as but not limited to stem cells. Other therapeutic compounds may be encapsulated in or bonded to the hydrogel. These compounds may include but are not limited to anti imflamatories, chemotherapeutics, or combinations of these. Co-assembly of peptide amphiphiles with growth factor binding epitopes with the shorter beta sheet structural peptide-charged peptide acid- terminated filler peptide amphiphiles may be used to prepare nanofibers and scaffolds of the present invention. Without limitation one or more peptide amphiphiles with different growth factor binding epitopes may be used, and a variety of filler peptide amphiphiles may be used to prepare the scaffolds and nanofibers of the present invention. The amount of peptide amphiphile with growth factor binding epitopes compared to the filler peptides amphiphiles maybe varied without limitation in the preparation of the scaffolds and nanofibers of the present invention. The self assembled micelles and nanofibers may be characterized by NOE and FT-IR spectroscopy, circular dichroism; nanofiber fiber networks can be visualized using transmission electron microscopy.
M \1147726RDD:BLU 12/01/04 18 The peptide amphiphile with the binding epitope may be made by choice of a peptide sequences for the epitope that is capable of interacting with growth factors or other peptides such as but not limited to, amino acids, or nucleic acids, through non-covalent interaction. The degree of non-covalent interaction between the growth factors or other peptides and the peptide amphiphiles with the binding epitopes is chosen such that the epitope does not compete with or has less binding affinity for the growth factors or other peptides as compared to extracellular receptors. Passive release experiments may be used to characterize and subsequently modify the affinity of various nanofibers having growth factor binding epitopes. This characterization may be performed on self assembled nanofiber gels containing growth factors in pre-blocked microtiter plates. These gels may be prepared by first mixing 2% solutions of PAs in the appropriate ratio, followed by a 1 : 1 dilution with TBS. Growth factors may then be added followed by the addition of 2 equivalents multivalent ions to induce gelation and self assembly. The supernatant may be assayed for its growth factor content to access the growth factor binding capability of such gels. While it is preferable for tissue growth and other treatments that the binding epitope have less affinity for various peptides than the extracellular receptors of nearby cells or tissues, it is contemplated that it may be desirable the binding epitope of the peptide amphiphile strongly chemically bond to peptides, growth factors, enzymes, or nucleic acids or other molecules from a fluid or sample of cells. In this case binding peptide amphiphiles with suitable epitopes can be self assembled and immobilized on the surfaces to form sensor coatings or removal media. Hydrogels formed from self assembly of these strongly binding peptide amphiphiles could be molded for insertion into a site on a patient or for use in a filtration system. The hydrogels could be used to remove target peptides like HGF or VEGF from a site such as a joint or tumor on a patient or from a fluid in a patient. Examples of the Invention
MW\1147726RDD:BLU 12/01/04 19 The following non-limiting examples and data illustrate various aspects and features relating to the compounds, compositions and/or methods of the present invention, including the synthesis of a range of amphiphilic peptide compounds, with or without epitope sequences capable of non-covalent interaction with growth factors, self-assembly of such compounds or compositions and the use thereof to affect growth factor bioavailability and stem cell differentiation. In comparison with the prior art, the present compounds, compositions and/or methods are surprising, unexpected and contrary thereto. While the utility of this invention is illustrated through the use of several compounds/compositions and assemblies, it will be understood by those skilled in the art that comparable results are obtainable with various other compounds, compositions and/or assemblies, as are commensurate with the scope of this invention. All resins and Fmoc-1-amino acids were obtained from Novabiochem (San Diego, CA). All reagents for solid phase synthesis were of synthesis grade and obtained from Applied Biosystems (Foster City, CA). All other reagents were obtained from Aldrich Chemical Co. (Milwaukee, WI) and were used as received. Solvents for solid phase peptide synthesis were acquired from Applied Biosystems and were peptide synthesis grade. Other solvents were obtained from Fisher Scientific and were used as received unless stated otherwise. PAs were synthesized using an Applied Biosystems 433A automated peptide synthesizer. NMR spectra were acquired on a Varian Inova 500 MHz spectrometer at room temperature. Electro Spray mass spectra were collected on a Micromass Quattro II Triple Quadrupole HPLC/MS/MS Mass Spectrometer. CD spectra were recorded on a Jasco J-715 spectropolarimeter with a Jasco PTC-348WI peltier-effect temperature controller. FT-IR spectra were run on a BioRad FTS-40 FT-IR machine, from 400-4000nm with a 2 cm"1 resolution. Circular Dichroism Spectroscopy. Quartz cells with a 0.1cm path length were used for all experiments. Each spectrum was recorded from 300 to
MW\1147726RDD:B U 12/01/04 20 190 nm at a scan speed of 100 nm/min, a response time of 2 seconds and a band width of 1 nm and averaged over five scans. Samples were prepared at a concentration of 0.1 mg/mL in water unless stated otherwise. Acid-Base titrations. pKa titrations were preformed on PAs 1-4 in the range of pH 2-10 with a Fisher Accumet pH meter at a concentration of 3.5 mg/mL in 100 mM KCl. For the acidic PAs 2 and 4, 0.1N KOH was added in l-5μL increments, starting at low pH, whereas for the basic PAs 1 and 3, 0.1N HC1 was added in l-5μL increments, starting at a high pH. NMRNOE spectroscopy. PAs 1-6 were dissolved in d6-DMSO at concentrations of 5 mg/mL. NOESY spectra were measured in D20 with a mixing time of 0.1 s and 128 scans at a concentration of 10 or 15 mg/mL of each PA, at a 1 : 1 molar ratio. For FT-IR studies, 2% by weight samples were lyophilized from water and then pressed into KBR pellets. Scheme 1. Chemical structures of peptide amphiphiles
» .
1 1 ! " 1 ' ϊ I ! |
1 I ' ϊ ' { I, I
Example 1 Four PAs, two with a triple lysine sequence (1,3) and two with a triple glutamic acid sequence (2,4), were prepared (Scheme 1). PAs 1 and 2 were prepared by standard Fmoc solid-phase peptide techniques using a preloaded
MWU147726RDD BLU 12/01/04 21 Wang resin followed by alkylation with palmitic acid with 2-(lH- benzotriazole- 1 -yl)- 1 , 1 ,3,3-tetramethyluronium hexafluorophosphate (HBTU) as a coupling reagent. The amphiphile was cleaved from the resin with a mixture of 95% trifluoro-acetic acid (TFA), 2.5% water and 2.5% tri- isopropylsilane (TIS). For the synthesis of peptide amphiphiles 3 and 4, amino acid 7 was synthesized according to Scheme 2. N-Carbobenzyloxy-L-aspartic anhydride was reacted with dodecylamine, yielding fatty acid amino acid 5. The CBz group was then removed by catalytic hydrogenation to yield 6, followed by Fmoc-protection of the amine. This synthesis proceeds readily on a 5 gram scale. Product 7 was then coupled to a rink resin using HBTU as a coupling reagent. Subsequently, the remaining amino acids were added to 8 using standard Fmoc solid phase techniques. Standard cleavage conditions yielded PAs with reverse structure as previously described. *H NMR and electrospray ionization mass spectrometry are consistent with the expected structures.
Scheme 2. Synthesis of fatty acid amino acid
Figure imgf000023_0001
t fΛCC OF*. O» > H:! Pi UK-nel ^ > % -tf-H j (i ,t >, O * *.HC
HBPj εA Pf "!
Figure imgf000023_0002
I .
Example la N-dodecyl-2-carbobenzyloxyamino-succinamic acid (5). N-Carbobenzyloxy-L-aspartic anhydride (lmmol) was dissolved in 50 mL
MWU 147726RDD BLU 12/01/04 22 methylene chloride, followed by the addition of 1.05 eq of dodecylamine and 1 .1 eq of triethylamine. The reaction was capped to prevent evaporation, and stirred for 12 hours. When no trace of starting material could be detected by thin layer chromatography (TLC) (CH2C12, 5% MeOH), the reaction was quenched with 20mL IN hydrochloric acid followed by extraction with chloroform (5x). The organic layer was dried over magnesium sulfate, and 7 was obtained as a white solid (yield 97%). 1H NMR (CDC13): δ 0.8 (t, J=8.5Hz, 3H, tail CH3), 1.18 (s, 18H C9H1S tail), 1.48 (br-s, 2H, CONHCH2), 2.68 (s, 2H,CONHCH2CH2), 3.15 (br-s, 2H, Asp Hβ), 4.49 (m, 1H, Asp Hα), 5.12 (s, 2H, PhCH20), 7.28 (s, 5Η, Ph). 13C (DMSO-D6) δ 14.6, 22.8, 29.4, 29.6, 29.7, 32.0, 52.2, 56.7, 66.1, 128.4, 129.0, 137.7, 156.5, 171.1, 172.5. ESI MS: m/z: 435.4 (MH+). Example lb 2-amino-N-dodecyl-succinamic acid (6). In 100 mL ethanol, 100 mmol of 7 was dissolved and transferred to a reaction vessel containing Pd and C (10% by weight). The vessel was then placed under hydrogen (35 Torr) for 3 hours. The reaction mixture was filtered over celite, and the product obtained as a white solid after evaporation to dryness under reduced pressure. Yield 95%.
JH NMR (CD3CN): δ 1.15 (m, 23H, aliphatic tail), 1.3 (hi, 2H, CONH2CH2CH2), 2.37 (br-s, 2Η, CONH2CH2), 3.55 (m, 3Η, Asp Hβ), 4.6 (m, lH, Asp Hα). ESI MS: m/z: 301.2 (MH+). Example lc N-dodecyl-2-Fmoc-amino-succinamic acid (7). Into 200mL of a water/dioxane (1:1 v:v) mixture, 6.6 mmol of 6 were dissolved with 1.3 mL (1.5 eq.) of triethylamine followed by 1 eq. of Fmoc-OSuccinimide (Fmoc- OSu). The reaction was monitored by TLC (CH2C12, 10% MeOH) and after 2- 3 hours, all of the Fmoc-OSu was consumed. The reaction was quenched with acid resulting in a white precipitate that was collected by filtration. Yield 85%.
MW\1147726RDD:BLU 12/01/04 23 1H NMR (d6-DMSO): δ 0.84 (t, J=8 Hz, 3H, terminal aliphatic CH3), 1.19 (s, 18H, aliphatic CH2), 1.34 (s, 2H, NH2CH2CH2), 2.61 (br-s, 2H, CONHC/J2), 3.08 (s, 2H, Asp Hβ), 4.24 (m, 3H, Asp Hα + FmocCH2CONH + FmocCH), 7.3 (t, J= 9Hz, IH, FmocH), 7.39 (t, J= 9Hz, IH, FmocH), 7.68 (d, J=8.5 Hz, IH, FmocH), 7.85 (d, J- 9 Hz, IH, FmocH). 13C (DMSO-D6) δ 14.6, 22.8, 29.4, 29.5, 29.7, 32.0, 46.1, 47.3, 52.2, 6.7, 120.8, 126.0, 127.7, 128.3, 141.5, 144.5, 156.5, 171.1, 172.5. ESI MS: m/z 524 (MH+). Example Id PA synthesis and purification. PAs 1-2 were prepared as described in ref. 3. For PA's 3-6, the standard rink resin was placed in a reaction vessel and deprotected three times with 30% piperidine in NMP, and then coupled to 2 eq. of 7 overnight. Coupling was repeated until a ninhyndrin test showed negative results. This modified resin 8 was then loaded onto the automated synthesizer, and peptide synthesis proceeded as for PAs 1-2. When the automated synthesis was complete, the PA was cleaved from the resin as described in ref. 3. Example le C15H3 ! CONHVal-Val-Val- Ala-Ala- Ala-Lys-Lys-Lys-COOH ( 1) lK NMR (d6DMSO): δ 0.80- 0.84 (m, 21H, VaL + tail CH3), 1.22 (br-s, 28H, CM aliphatic tail), 1.36 (m, 6H, Ala Hβ), 1.51 (m, 11H, Lys Hγ + tail CH2CH2CONH), 1.62 (m, 6H, Lys Hβ), 1.91 (m, 9H,Val Hβ + Lys Hδ), 2.16 (m, 2H, tail CHaCONH), 2.73 (s, 6H, Lys Hε), 4.10-4.23 (m, 9H, Hα), 7.6 - 8.1 (Amide NH). ESI MS (MeOH:H20 1 : 1 v:v): m/z = 1151 (MH+). Example If C15H31CONHVal-Val-Val-Ala-Ala-Ala-Glu-Glu-Glu-COOH (2) 1H NMR (d6DMSO): δ 0.81 (br-s, 21H, VaL + tail CH3), 1.21 (br-s, 31H, C14 aliphatic tail), 1.45 (s, 2H, Ala Hβ), 1.75 (m, 6H Glu Hβ), 1.94 (m, 9H, Valβ + Glu Hβ), 2.24 (s, 6H, Glu Hγ), 4.2 (s, 9H, Hα), 7.6-8.1 (Amide NH). ESI MS (MeOH:H20 1 : 1 v:v): m/z = 1177 (MNa+).
MW\1147726RDD:B U 12/01/04 24 Example lg Asp(CONHC12)-Val-Val-Val-Val-Val-Val-Lys-Lys-Lys-NH2 (3) 1H NMR (d6DMSO): δ 0.82 (br-s, 39H, Val Hγ + tail CH3), 1.22 (br-s, 20H, Cio aliphatic tail), 1.34-1.53 (m, 6H, Lys Hγ), 1.69 (m, 6H, Lys Hβ), 1.93 (m, 12H, Lys Hδ + Val Hβ), 2.74 (m, 2H, tail CH2NH), 2.98 (br-s, 6H, Lys Hε), 4.09-4.44 (m, 9H, Hα), 7.02-8.25 (Amide NH). ESI MS (MeOH:H20 1: 1 v:v): m/z = 1279 (MH+). Example lh Asp(CONHC12)-Val-Val-Val-Ala-Ala-Ala-Glu-Glu-Glu-NH2 (4) 1H NMR (d6DMSO): δ 0.82 (br-s, 21H, Val Hγ + aliphatic tail CH3), 1.22 (s, 20H, tail C10), 1.32 (m, 9H, Ala Hβ), 1.74 (m, 3H, Glu Hβ), 1.94 (m, 6H, Glu Hβ + Val Hβ), 2.25 (m, 6H, Glu Hγ), 2.97 (d, J= 6 Hz, 2H, tail CH2CH2CONH), 4.10-4.44 (m, 9H, Hα), 7.23-8.2 (Amide NH). ESI MS (MeOH:H20 1:1 v:v): m/z = 1197 (MET"). Example 2 When dispersed in aqueous media in the presence of suitable stimuli, PAs typically self-assemble into high aspect ratio cylindrical nanofibers. Based on previous work, fibers consisting of either one PA molecule or a mix of two PA molecules would be expected to show secondary structures with β-sheet-like hydrogen bonding. It was anticipated that mixing of the negatively charged 2 or 4 with oppositely charged 1 or 3, respectively, would result in parallel β-sheet-like hydrogen-bonding arrangements, while mixing 1 or 2 with amine terminated oppositely charged 4 or 3, respectively, could result in antiparallel arrangements. Example 3 At a concentration of 0.1 mM, the CD spectra of 2-4 revealed peptide segments with predominantly random coil character. This most likely results from electrostatic repulsion among the highly charged molecules. Upon a change of pH to neutralize the charges or upon addition of calcium ions, all PAs exhibited β-sheet signatures. In contrast, 1 exhibits a β-sheet signature
MW\1147726RDD:BLU 12/01/04 25 under any pH. 1 may be less charged than the others, since the acid terminus can neutralize the charge of one of the lysine residues, giving the molecule a formal net charge of +2. This lower overall charge may reduce repulsion and allow β-sheet hydrogen bonding within the fibers to take place. Conversely, 4 would have a formal net charge of -2, as the amine terminus would neutralize the charge of one of the glutamic acid residues, allowing for the β-sheet interactions to occur. However, 4 still exhibited a disordered CD signature. To resolve this apparent contradiction, the actual charge state of and apparent pKa of the aggregates at pH 7 was determined to better understand the driving forces for self-assembly of these various systems. Example 4 pKa titrations of aggregates of molecules 1-4 were carried out at a concentration of 3 mM. All titrations were started at a pH where the molecules were already in their aggregated state in order to avoid kinetic effects due to self-assembly. Only the pKa titration of 3 showed sharp transitions, correlating to two apparent pKa's, one attributed to the deprotonation of the more solvent accessible amine terminus, and the other originating from one or more of the ε lysine amines. Aggregates of PAs 1, 2 and 4 show complex curves with transitions occurring over wide ranges, implying that the protonation/deprotonation of these supramolecular objects occurs slowly, with variations of acidity due to the local microenvironments within the nanofibers. It is clear from these results that aggregation changes the apparent pKas of the acid and amine groups, consistent with recent reports in the literature. Example 5 Co- assembly of charge complementary PA molecules should lead to fibers containing a mix of the two components with β-sheet hydrogen bonding arrangements. When 2 is mixed with the triple lysine amphiphiles 3 or 1 (abbreviated as 2/3 or 2/1), the CD-spectrum obtained corresponds to a pure β-sheet. The fact that the observed β-sheet signature is not merely a superposition of individual CD spectra of the two components strongly suggests the formation of mixed nanofibers in which two molecules form a
MW\1147726RDD:BLU 12/01/04 26 single aggregate structure. PA 1 mixed with the triple glutamic acid PAs 4 or 2 (1/4 or 1/2) exhibit similar behavior. When mixing two PAs of similar charge, the 1/3 lysine mixture shows a β-sheet, whereas the 2/4 glutamic acid mixture shows disordered conformation, possibly due to greater charge repulsion among the glutamic acid residues. Example 6 In order to further demonstrate co-assembly of the molecules within the fibers, nuclear overhauser (NOE) spectroscopy was performed on a 1.5% by weight gel made up of the charge complementary PAs. A representative NOESY of 2 and 3 (2/3) shows close contacts (<3A) observed between the Glu-Hβ protons of 2 and the Lys-Hε and Val-Hδ protons of 3, respectively. Several other possible intermolecular contacts were detected but could not be attributed unambiguously to 2/3 contacts. These results provide additional evidence that the two PA molecules are co-assembled within the same nanofiber. Example 7 Once the successful co-assembly of the amphiphiles was established, the gelation behavior of the systems from both single and multiple PAs was investigated. One- weight percent solutions of 1-4 were slightly opaque and could be gelled by the addition of acid (1,3) or base (2,4), respectively. Transmission electron microscopy reveals the formation of nanofibers with average diameters of 6.5 nm and average lengths of several hundred nanometers, similar to those observed previously in other PAs. Example 8 Phage display is typically used to find receptor-blocking peptides, . e. sequences with high binding constants. To transfer a growth factor from the PA binding site to the cell receptor, an extremely high binding constant is not required and might even be unfavorable. Therefore, the 7-mer commercial phage library was elected over the 13-mer library, aiming at intermediate binding strengths. Growth factors were physisorbed onto 96-well plates and subsequently exposed to the phage library. After incubation at room
MWU 147726RDD:BLU 12/01/04 27 temperature for 60 minutes, the unbound phage was removed by rinsing with detergent solution. Bound phage was subsequently eluted by incubating with a growth factor solution for 60 minutes. The recovered phages were amplified for 4 h in E Coli at 37 °C and the panning was repeated two more times. In subsequent panning rounds, the stringency was increased by raising the detergent concentration and reducing the exposure time to the library. The final phage population was plated and the DNA of 10 clones of colonies containing only one phage type were sequenced. Next, ELISA screening was used to test for false positives and determine relative binding strengths of the selected clones. Utilizing this protocol, the best binding epitope for rh-BMP-2 was found to be YPVHPST and for rh-TGF-βl LPLGNSH. (See Table 1, below.) Example 8a Phage display was performed with the Ph.D. 7 kit (New England Biosystems). Fifty microliters of diluted M13-phage library (containing 2 x 10 phages and all possible 7-mer sequences) were added to 96-well microtiter plates, which had been exposed to 50 μl 10 μg/ml growth factor (peprotech) solution for 18 h at 0 °C. The plates were blocked for 1 h then incubated at room temperature for 60 minutes with gentle agitation. Unbound phage was removed by rinsing with TBS/Tween-20 (0.1% v/v Tween-20). Bound phage was subsequently eluted by incubating with 50 μl growth factor solution for 60 minutes. The presence of binding phage was determined by serial dilution of the phages and subsequent plating with E. Coli on agar plates. The number of plaques formed can be related to the number of phages in the original mixture. The phages were subsequently amplified for 4 h in E. Coli at 37 °C. In subsequent panning rounds, the concentration of Tween-20 was raised to 0.5% and the binding and elution times were decreased and increased, respectively, to increase the stringency of the selection process. After three rounds of panning, the recovered phage mixture is diluted and plated with bacteria on agar. Subsequently, plaques are isolated containing a single DNA sequence. After purification, ten clones were sequenced. Next, ELISA
MWU14772<5RDD:BLU 12/01/04 28 screening was used to eliminate false positives and determine relative binding strengths of the selected clones. Each clone was incubated for 1 h on growth factor coated microtiter plates, the plates were rinsed with TBS/Tween-20 and subsequently HRP-conjugated anti-M13 antibody (Amersham Biosciences) was incubated for 1 h. After addition of ABTS, the absorbance at 450 nm was measured after 30 minutes to determine the relative binding strengths of the isolated clones. The strongest binder was subsequently selected. Table 1 : Binding sequences for BMP-2 and TGF-βl derived using phage display
Figure imgf000030_0001
The numeric coding illustrates the relative binding strengths of the selected clones in decreasing binding strength from highest (1) to lowest (4). All sequences bind significantly. Example 9 Since the peptide sequences as displayed on the phage had a free N- terminus, it was not possible to use a typical synthesis route for the PAs. Therefore, an aspartic acid whose side chain was modified with dodecylamine was reacted with a Rink amide resin. (See, Scheme 2, above.) Subsequently, the remainder of the peptide could be synthesized using regular Fmoc-peptide synthesis techniques, yielding a PA with reverse polarity. The elected peptide sequences were V6K3SG3 YPVHPST (9) for BMP-2 and V3A3K3SG3LPLGNSH (10) for TGF-βl, respectively (Scheme 3). The K3 segment was chosen to co- assemble with the charged E3 head groups of the filler 2. The SG3 sequence is a spacer unit and is the same spacer as was present on the phage. Binding constants of BMP-2 with, respectively, YPVHPST and KQALTOT were
MW\1147726RDD:BLU 12/01/04 29 Ka=1.9 ± 0.9 106 M_1 and 2.1 ± 0.85 105 M1 as determined by fluorescence depolarization, illustrating the tunability of binding strength. Example 9a Asp(CONHC12)-Val-Val-Val-Val-Val-Val-Lys-Lys-Lys-Ser-Gly-Gly- Gly-Tyr-Pro-Val-His-Pro- Ser-Thr (9) 1H NMR (d6DMSO): δ 0.82 (br-s, 39H, Val Hγ + tail CH3), 1.22 (br-s, 20H, C10 aliphatic tail), 1.53 (m, 6H, Lys Hγ), 1.69 (m, 6H, Lys Hβ), 1.93 (m, 16H, Lys Hδ + Val Hβ + Pro Hγ), 2.37 (m, 4H, Pro Hβ), 2.74 (br-s, 6H, Lys Hε), 2.98 (m, 2H, tail CH2NH), 3.45 (m, 8H, Pro Hδ + His Hβ + Tyr Hβ), 3.72 (m, 3H, Thr Hα + Thr Hβ), 4.1-4.6 (m, 13H, Hα + Ser Hβ), 6.81 (m, 5H, Tyr Aromatic Hs + His H), 7.02-8.25 (Amide NH + His H). ESI MS (H20): 773.9 (M + 3H)+3. Example 9b Asp(CONHC12)-Val-Val-Val-Ala-Ala-Ala-Lys-Lys-Lys-Ser-Gly-Gly- Gly-Leu-Pro-Leu-Gly-Gln-Ser-His-NH2 ( 10) 1H NMR (d6DMSO): δ 0.82 (br-s, 21H, Val Hγ + aliphatic tail CH3), 1.22 (br-s, 20H, tail C10), 1.32 (m, 9H, Ala Hβ), 1.53 (m, 6H, Lys Hγ), 1.64 (m, 6H, Lys Hβ), 1.84 (m, 4H, Leu Hβ), 1.93 (m, 16H, Lys Hδ + Val Hβ + Pro Hγ), 2.37 (m, 2H, Pro Hβ), 2.74 (br-s, 6H, Lys Hε), 2.97 (m, 2H, tail CHzCLLCONH), 3.45 (m, 4H, Pro Hδ + His Hβ), 3.72 (m, 3H, His Hα + Ser Hβ), 4.10-4.61 (m, 9H, Hα), 6.81 (m, 2H, His H), 7.02-8.25 (Amide NH + His H). ESI MS (MeOH:H20 1:1 v:v): m/z = 1086.7 (M + H)+2.
MW\114772δRDD:BLU 12/01/04 30 Scheme 3:
Figure imgf000032_0001
Example 10 Co-assembly of PA 9 with the filler PA 2 could be demonstrated utilizing circular dichr oism (CD) spectroscopy. At a concentration of . 0.13 mM, the CD spectrum of the individual PA nanofibers at this concentration have predominantly random-coil character. When mixed togetlier, however, the CD-spectrum reflects a pure β-sheet, illustrating that the PAs co-assemble within one fiber rather than form individual homo-fibers consisting of only one PA molecule. Co-assembly is energetically favored since tl e electrostatic repulsions, are reduced when tl e KKK and EEE part form a complex. Additional evidence for co-assembly was obtained using Nuclear Overhauser Effect spectroscopy on 1.5 wt% solutions. Close contacts (< 3 A) ■ were observed between tl e E and Kε protons and between tlie Eβ and Vδ protons and. this distance would be significantly larger between homo-fibers. Other possible intermolecular contacts could not be attributed unambiguously. Finally, Fourier Transform infrared spectroscopy on lyophilized samples and 1 wt% solutions showed the presence of the 1630 cm"1 peak typical of β-sheets. Similar results were obtained for 10/2 mixtures. Annealing of the samples for 24 h at 37 °C led to a significant increase in the strength of the CD effect. This increase is attributed to an increase in the size of the domain of perfectly coupled chromophores. Presumably, the initial mixing leads to the kinetic entrapment of a non-perfect mixed system and the annealing allows for the subsequent reorganization of amphiphiles to the thermodynamically most stable state. Even prolonged heating at 80 °C, well above the expected melting temperatures for the hydrogen bonding network and the aliphatic tails, did not lead to any noticeable loss of supramolecular chirality, illustrating the high stability of the nanofibers. Example 11 In order to test the physiological significance of this approach, mesenchymal stem cells were cultured in gels containing different levels of growth factors. For these cell experiments, the binding epitopes were diluted to a 50: 1 (filler :binder) ratio to ensure recognition by the protein. Gels were prepared by mixing 50 μl of pre-mixed PA (2% by weight) containing the desired amount of growth factor and 50 μl mesenchymal stem cell suspension (100,000 cells) on glass cover slips, followed by the addition of 10 μl 30 mg/ml CaCl2 solution. The gels were allowed to solidify for 1.5 hours after which 1 ml of mesenchymal stem cell media was added. In this way, gels were prepared consisting either of 9/2 or 2 alone and containing 0, 1 or 50 ng/ml of BMP-2. As a further control, 10,000 stem cells were plated on glass cover slips with BMP-2 added to the media in identical concentrations. The media was refreshed every fourth day and triplicate samples were isolated after 7 and 21 days of culture. Subsequently, the protein expression of lineage-specific markers osteocalcin (osteoblast), adiponectin (adipocytes), collagen II and aggrecan (chondrocytes) and α-smooth muscle actin and desmin (smooth muscle cells) was assessed by western blot.
MW\1147726RDD:BLU 12/01/04 32 Example 11a Protocol for cell experiments: Human mesenchymal stem cells (Cambrex technologies) were plated at a density of 5,000 cells/cm2 in four T75 culture flasks in 15 ml of mesenchymal stem cell media (Cambrex Technologies) and incubated at 37 °C, 5% C02, 90% humidity. At 90% confiuency, the cells were trypsinized with 2.5 ml 0.25% trypsin/EDTA for 5 minutes. Subsequently, 8 ml of media was added to quench the protease activity. The cell suspensions were combined and centrifuged at 850 rpm for 8 minutes. The cell pellet was re-suspended in 1 ml of media and 10 μl was used for cell counting. The cell suspension was diluted with media to a concentration of 2,000,000 cells/ml. PAs 1 and 3 were dissolved at a concentration of 2 wt%. Subsequently, 50 μl of 1 was mixed with 1250 μl of 3. The mixture was split in 3 portions of 410 μl and in addition 3 portions of 410 μl 3 (2wt%) was prepared. Then, 20 μl of 2μg/ml BMP-2 (Peprotech) was added to one portion of 1/3 and 1 to a concentration of 100 ng/ml BMP-2. Similarly, 41 μl of 20 ng/ml BMP-2 was added to a final concentration of 2 ng/ml BMP-2. Gels were prepared in triplo by mixing 50 μl PA solution with 50 μl cell suspension on a microscope glass cover slip. Then, 10 μl 30 mg/ml CaCl2 was added and the gels were allowed to solidify at 37 °C, 5% C0 , 90% humidity for 90 minutes. The resulting concentrations are 1 wt% PA and 0, 1 or 50 ng/ml in BMP-2. Next, 1 ml media was added. Controls with growth factor in solution were prepared by placing 5 μl cell suspension on a glass cover slip followed by the addition of 1 ml of media. Then, 25 μl 2 μg/ml BMP-2 and 0.5 μl 2 μg/ml BMP-2 were added to obtain BMP-2 concentrations of 50 ng/ml and 1 ng/ml in solution, respectively. Half the media was refreshed every fourth day Example 12 Cell viability assays showed that the viability of the cells was > 95% in all the gels after 3 weeks of culture. Expression of endoglin could not be detected by western blot at either time point, indicating that all cells had started
MW\1147726RDD:BLU 12/01/04 33 to differentiate. No expression of adiponectin and aggrecan could be detected at any point either. The expression of osteocalcin showed a marked difference between the gels and the controls. Whereas no osteocalcin could be detected in the controls, all gels expressed significant levels of osteocalcin at 7 days already rather than the usual 2-3 weeks (figure 3a), but did not increase significantly at the 3 week time point (figure 3b). The comparable expression levels at 1 and 3 weeks then imply that the expression levels of osteocalcin are constant during the culture period. Surprisingly, the expression seems to be independent on the concentrations of BMP-2 and the ratio is 1:2 between binding and no binding PA-containing gels. Moreover, the gels to which no BMP-2 was added show similar levels. Apparently, the endogenous BMP-2 levels produced by the cells themselves are enough to stimulate osteoblastic differentiation, but the capability of the binding gels to bind some of the BMP-2 lowers the amount of expressed osteocalcin slightly. The expression of osteocalcin could also be visualized with immunocytochemistry. In contrast, α-smooth muscle actin was not detected in gels containing 9, whereas it was expressed in the gels without the binder. However, it was expressed in either case after 3 weeks (figure 3b), but the expression in 9/2 gels was still slightly less than in the 2 gels and significantly lower than the controls. Furthermore, no desmin expression could be detected, which is the marker of terminally differentiated smooth muscle cells. Example 12a Western Blot protocol: After removal of the media, the gels were rinsed with 1 ml phosphate buffer saline and subsequently, the cells were lysed in 200 μl 2% sodium dodecyl sulfate, 0.08 M Tris, 10% glycerol. The three lysates were combined and protein concentrations were measured by mixing 10 μl lysate with 200 μl BCA protein assay reagent (Pierce) and reading the absorbance at 562 nm against a BSA standard series after 30 min. incubation at 37 °C. Subsequently, 10 μg of protein, 3 μl β-mercapto-ethanol, 3 μl bromophenolblue were mixed and water was added to a total volume of 36 μl. The mixture was boiled for 5 minutes and loaded onto either a 4% (endoglin,
MW\1147726RDD:BLU 12/01/04 34 aggrecan) or a 10-20% (osteocalcin, α-smooth muscle actin, adiponectin, desmin) Novex tris(glycine) gel (Invitrogen). The gels were run for 90 minutes in tris(glycine) running buffer (Invitrogen) at a constant voltage of 130 V. Then, the proteins were transferred to a nitrocellulose membrane (Bio-Rad) at a constant current of 190 mA for 90-120 minutes. The membranes were blocked for 1 h in 5% non-fat milk (Bio-Rad) and probed for the respective markers at a 1 :500 dilution in 1% milk for 2 h using the monoclonal antibodies for osteocalcin (clone 190125, R&D systems) endoglin (clone 166709, R&D systems), adiponectin (clone 166126, R&D systems), α-smooth muscle actin (clone 1 A4, R&D systems) and polyclonal aggrecan (AF1220, R&D systems). The membranes were rinsed 3x for 15 minutes with tris buffer saline/0.1% tween-20 (TTBS). Then, secondary antibodies were equilibrated for 1 h at a 1 :3,000 dilution in 1% milk followed by 3 rinsing steps with TTBS. The membranes were developed by 1 minute equilibration with ECL western blot analysis solution (Amersham Biosciences) and exposed to ECL hyperfilm (Amersham Biosciences). Example 12b Cells were fixed for 20 mins with 2% paranormal dehyde/0.2% glutaraldehyde/0.2M sodium calcodylate at 4°C. After rinsing with PBS (2x), the samples were incubated for 5 mins with 0.1% Triton-X in PBS. Subsequently, the samples were rinsed with PBS (2x). Next, human osteocalcin monoclonal antibody (R&D systems, 1 :200) in 1% BSA/PBS was added and the samples were incubated overnight at 4 °C. After triple rinsing with PBS, FITC-conjugated secondary antibody in 1% BSA/PBS was added and incubated for 2h. The samples were visualized after triple PBS rinsing on a Nikon Eclipse TE2000 microscope at lOx magnification. Example 13 A series of experiments were performed as for PA 10, binding TGF-βl, BMP-2 experiments, except that the highest TGF-βl concentration is 20 ng/ml rather than 50 ng/ml. Samples were isolated after 10 days. Culturing in the
MWU147726RDD B U 12/01/04 35 presence of TGF-βl leads to differentiation into the smooth muscle and cartilage lineages. Collagen II expression is higher for the binding gels and seems to increase with increasing TGF-βl. Surprisingly, osteocalcin and collagen X are expressed, which indicates that maturation to the stage of hypertrophic chondrocytes occurs, which is unexpected at this early time point. Similarly, α-smooth muscle actin expression increases with TGF-βl concentration but is higher in the binding gels than in the nonbinding gels. It's even higher in the controls, but the expression levels of desmin show that these are mainly immature muscle cells. Example 14 Numerous binding sequences were determined for vascular endothelial growth factor (VEGF), both with 7- and 12-mer phage display kit, basic fibroblast growth factor (FGF-2), neurotrophin-3 (NT-3) and laminin-5; * denotes the strongest binders:
Figure imgf000037_0001
FGF-2 PMHHHKH AQVRSGD KHPPTNW AMLSHLS DFIQPYQ VYWSRIE AMPQRPL HSRHFHH RMTQVPL LSTPPLR
MW\114772όRDD:BLU 12/01/04 36 NT-3
HTTEILH
PSNYQTS
SYFPSSA
EARQSYS
DEPQKAH
TLGLGLH
YMRRSLS
WLYLPL
Laminin-5
SKLNTKS
PTYHHRH
LRHKSLH
RYHPHLH*
GRYHHYLH As illustrated by the preceding examples, this invention provides a synthetic strategy for peptide amphiphile molecules with free N-termini compatible with standard solid phase methodology. When mixed with free C- terminus PAs, these molecules self-assemble into nanofibers containing highly thermally stable β-sheet structures which appear to be more stable than co- assemblies of PAs with identical polarity. The new opportunity to create assemblies with free N-termini on their surfaces enables the design of bioactive nanofibers not accessible previously with nanostructures that expose the C- terminus of the peptide sequence. Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible. For example peptide or protein sequences derived from a phage display process may be used to form binding peptide amphiphiles that bind and retain proteins other than growth factors. Enzymes could be coupled to form binding peptide amphiphiles which can be self assembled and immobilized on the surfaces of nanofiber hydrogels. Such hydrogels may be used as a coating for sensor applications. Alternatively, the binding interaction of the phage display derived peptide coupled to the peptide amphiphile could be selected to strongly bind peptides such as HGF (hepatocyte growth factor) or VEGF and treat various diseases and conditions
MW\1147726RDD:BLU 12/01/04 37 by removing them. Hydrogels formed from self assembly of these binding peptide amphiphiles could be molded for insertion into a site on a patient or for use in a filtration system. The hydrogels could be used to remove target peptides like HGF or VEGF from a site such as a joint or tumor on a patient or from a fluid in a patient.
MW\1147726RDD BLU 12/01/04 38

Claims

We claim: 1. An amphiphilic peptide compound comprising a peptide component and a hydrophobic component, said peptide component comprising a growth factor recognition product of a phage display process, said recognition product coupled to said peptide component at about the N-terminus thereof, said hydrophobic component coupled to said peptide component at about the C-terminus thereof. 2. The compound of claim 1 wherein said recognition product is selected from epitope sequences providing binding interactions with growth factors BMP-2, TGF-βl, VEGF, FGF-2, NT-3 and laminin-5. 3. The compound of claim 2 wherein said binding epitope sequence comprises YPVHPST. 4. The compound of claim 3 wherein said sequence is in a non- covalent binding interaction with growth factor BMP-2. 5. The compound of claim 2 wherein said binding epitope sequence comprises LPLGNSH. 6. The compound of claim 5 wherein said sequence is in a non- covalent binding interaction with growth factor TGF-βl. 7. The compound of claim 1 wherein said peptide component has a net charge at a physiological pH. 8. The compound of claim 7 comprising residues selected from alanine, glycine, leucine, cysteine, valine and serine. 9. The compound of claim 2 wherein said hydrophobic component comprises an alkyl moiety ranging from about C6 to about C22. 10. The compound of claim 1 wherein said peptide component is substantially linear. 11. The peptide composition comprising a plurality of a first amphiphilic peptide compound, each said compound comprising a growth factor recognition product of a phage display process coupled to a peptide component of said compound, said peptide component having a net charge at a physiological pH and coupled to a hydrophobic component at about the
MW\1147726RDD:BLU 12/01/04 39 C-terminus thereof. 12. The composition of claim 11 further comprising a plurality of a second amphiphilic peptide compound, each said compound absent a growth factor recognition product and having a net charge at a physiological pH complementary to said net charge of said first compound. 13. The composition of claim 12 wherein the amino acid sequence of the peptide component of said second compound has a length shorter than the length of said first compound peptide amino acid sequence. 14. The composition of claim 13 comprising a micellar assembly in an aqueous medium. 15. The composition of claim 14 comprising at least one growth factor non-covalently interacting therewith. 16. The composition of claim 15 wherein said growth factor is selected from BMP-2, TGF-βl, VEGF, FGF-2, NT-3, laminin-5 and combinations thereof. 17. The composition of claim 16 contacting a stem cell. 18. The composition of claim 11 further comprising a plurality of a second amphiphilic peptide compound, said compound comprising a peptide amino acid sequence having a length shorter than the length of said first compound peptide amino acid sequence, said second compound absent a growth factor recognition product and having a net charge at a physiological pH complementary to said net charge of said first compound. 19. The composition of claim 18 comprising a micellar assembly in an aqueous medium. 20. The composition of claim 19 contacting stem cells and comprising a growth factor non-covalently interacting with said composition. 21. A method of using an amphiphilic peptide compound to affect bioavailability of a growth factor, said method comprising: providing a micellar assembly comprising a plurality of a first amphiphilic compound, each said compound comprising a growth factor recognition product of a phage display process coupled to a peptide component
MW\1147726RDD:BLU 12/01/04 40 of said first compound, said peptide component having a net charge at a physiological pH and coupled to a hydrophobic component at about the C-terminus thereof, and a plurality of a second amphiphilic peptide compound comprising a peptide amino acid sequence having a length shorter than the length of first compound peptide sequence, said second compound absent a growth factor recognition product and having a net charge at a physiological pH complementary to the net charge of said first compound; and contacting a stem cell with said assembly. 22. The method of claim 21 wherein said growth factor is produced by said stem cell. 23. The method of claim 21 wherein said growth factor is selected from BMP-2, TGF-βl, VEGF, FGF-2, NT-3, laminin-5 and combinations thereof. 24. The method of claim 23 wherein said recognition product is selected from epitope sequences providing non-covalent interaction with one of growth factors BMP-2 and TGF-βl. 25. The method of claim 24 wherein said epitope sequence comprises YPVHPST non-covalently interacting with growth factor BMP-2. 26. The method of claim 24 wherein said epitope sequence comprises LPLGNSH non-covalently interacting with growth factor TGF-βl . 27. The method of claim 21 wherein said contact is sufficient for stem cell differentiation. 28. The method of claim 27 wherein said assembly comprises growth factor BMP-2 and said recognition product comprises an epitope sequence non- covalently interacting with said growth factor. 29. The method of claim 28 wherein said stem cell is a mesenchymal stem cell. 30. The method of claim 29 wherein said stem cell differentiates into bone cells.
MW\1147726RDD:BLU 12/01/04 41
PCT/US2004/040550 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery WO2005056039A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AT04817014T ATE541580T1 (en) 2003-12-05 2004-12-06 SELF-ASSEMBLING PEPTIDE AMPHIPHILES AND RELEVANT METHODS FOR GROWTH FACTOR DELIVERY
CA002549164A CA2549164A1 (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery
JP2006542795A JP4851939B2 (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery
MXPA06006388A MXPA06006388A (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery.
NZ547671A NZ547671A (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery
EP04817014A EP1696945B1 (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery
AU2004296181A AU2004296181A1 (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery
ES04817014T ES2380340T3 (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for the administration of growth factors
AU2011201593A AU2011201593A1 (en) 2003-12-05 2011-04-08 Self-assembling peptide amphiphiles and related methods for growth factor delivery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52750403P 2003-12-05 2003-12-05
US60/527,504 2003-12-05

Publications (1)

Publication Number Publication Date
WO2005056039A1 true WO2005056039A1 (en) 2005-06-23

Family

ID=34676751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/040550 WO2005056039A1 (en) 2003-12-05 2004-12-06 Self-assembling peptide amphiphiles and related methods for growth factor delivery

Country Status (12)

Country Link
US (3) US7544661B2 (en)
EP (2) EP2314305A3 (en)
JP (2) JP4851939B2 (en)
KR (1) KR20070004560A (en)
CN (2) CN1905892A (en)
AT (1) ATE541580T1 (en)
AU (2) AU2004296181A1 (en)
CA (1) CA2549164A1 (en)
ES (1) ES2380340T3 (en)
MX (1) MXPA06006388A (en)
NZ (1) NZ547671A (en)
WO (1) WO2005056039A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079036A2 (en) 2005-01-21 2006-07-27 Northwestern University Methods and compositions for encapsulation of cells
EP1696944A2 (en) * 2003-12-05 2006-09-06 Northwestern University Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
US7371719B2 (en) 2002-02-15 2008-05-13 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US7390526B2 (en) 2003-02-11 2008-06-24 Northwestern University Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon
US7491690B2 (en) 2001-11-14 2009-02-17 Northwestern University Self-assembly and mineralization of peptide-amphiphile nanofibers
CN100475836C (en) * 2005-12-09 2009-04-08 中国人民解放军军事医学科学院野战输血研究所 Mesenchymal stem cell affinity peptide screening and use
US7534761B1 (en) 2002-08-21 2009-05-19 North Western University Charged peptide-amphiphile solutions and self-assembled peptide nanofiber networks formed therefrom
US7544661B2 (en) 2003-12-05 2009-06-09 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
US7554021B2 (en) 2002-11-12 2009-06-30 Northwestern University Composition and method for self-assembly and mineralization of peptide amphiphiles
US7683025B2 (en) 2002-11-14 2010-03-23 Northwestern University Synthesis and self-assembly of ABC triblock bola peptide amphiphiles
US7851445B2 (en) 2005-03-04 2010-12-14 Northwestern University Angiogenic heparin-binding epitopes, peptide amphiphiles, self-assembled compositions and related methods of use
US20100322979A1 (en) * 2009-06-22 2010-12-23 University Of South Carolina Peptidomimetic Resorbable Peptide-Polymer Hybrid Polyester Nanoparticles
WO2011002258A2 (en) * 2009-07-02 2011-01-06 한양대학교 산학협력단 Arginine-based amphiphilic peptide micelle
US8076295B2 (en) 2007-04-17 2011-12-13 Nanotope, Inc. Peptide amphiphiles having improved solubility and methods of using same
US8450271B2 (en) 2009-04-13 2013-05-28 Northwestern University Peptide-based scaffolds for cartilage regeneration and methods for their use
US8834840B1 (en) 2006-10-04 2014-09-16 Northwestern University Magnetic resonance imaging of self-assembled biomaterial scaffolds
WO2014140894A3 (en) * 2013-03-15 2015-02-19 Bioven 3 Limited Self-assembling synthetic proteins
DE102015000363A1 (en) 2015-01-20 2016-07-21 Emc Microcollections Gmbh New modular functionalizable peptide hydrogels
US10494402B2 (en) 2012-11-25 2019-12-03 The Regents Of The University Of California Peptides that stimulate subcutaneous adipogenesis
US10675351B2 (en) 2010-09-24 2020-06-09 The Brigham And Women's Hospital, Inc. Nanostructured gels capable of controlled release of encapsulated agents
US10844102B2 (en) 2014-05-28 2020-11-24 The Regents Of The University Of California Peptides, compositions, and methods for stimulating subcutaneous adipogenesis
US10881745B2 (en) 2017-05-08 2021-01-05 Alivio Therapeutics, Inc. Formulation of nanostructured gels for increased agent loading and adhesion
US11020410B2 (en) 2017-02-03 2021-06-01 The Brigham And Women's Hospital, Inc. Self-assembled gels formed with anti-retroviral drugs, prodrugs thereof, and pharmaceutical uses thereof
US11458153B2 (en) 2008-09-17 2022-10-04 The City University Of New York, Represented By The Research Foundation Of The City University Of New York Drug delivery composition comprising a self-assembled gelator
US11839605B2 (en) 2018-10-11 2023-12-12 Alivio Therapeutics, Inc. Non-injectable hydrogel formulations for smart release

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106359A2 (en) * 2002-09-23 2004-12-09 Northwestern University Self-assembled peptide-amphiphiles & self-assembled peptide nanofiber networks presenting multiple signals
US7923109B2 (en) 2004-01-05 2011-04-12 Board Of Regents, The University Of Texas System Inorganic nanowires
US9162005B2 (en) * 2005-04-25 2015-10-20 Arch Biosurgery, Inc. Compositions for prevention of adhesions and other barrier applications
WO2007000979A1 (en) * 2005-06-27 2007-01-04 Menicon Co., Ltd. Self-assembling peptide and gel produced from the same
US7807624B2 (en) * 2006-01-11 2010-10-05 Affinergy, Inc. Methods and compositions for promoting attachment of cells of endothelial cell lineage to medical devices
US20100215722A1 (en) * 2006-02-28 2010-08-26 Vishal Bhasin Tissue Regeneration II
FR2919188B1 (en) * 2007-07-27 2010-02-26 Proteins & Peptides Man COMPLEXES BETWEEN AN AMPHIPHILIC POLYMER AND A OSTEOGENIC PROTEIN BELONGING TO THE BMPS FAMILY
US20090098652A1 (en) * 2007-08-17 2009-04-16 Northwestern University Self assembling peptide systems and methods
AU2009237414A1 (en) * 2008-04-14 2009-10-22 Adocia Osteogenic composition including a complex growth factor/amphiphilic polymer, a soluble cation salt, and an organic substrate
WO2009127939A1 (en) * 2008-04-14 2009-10-22 Adocia Osteogenic composition including growth factor, soluble cation salt, and organic substrate
US8876864B2 (en) 2008-06-24 2014-11-04 Bioactive Surgical, Inc Surgical sutures incorporated with stem cells or other bioactive materials
WO2010017459A1 (en) 2008-08-07 2010-02-11 Bioactive Surgical, Inc> Stem cell capture and immobilization coatings for medical devices and implants
WO2010111652A2 (en) * 2009-03-27 2010-09-30 Kansas State University Research Foundation Branched amphipathic oligo-peptides that self-assemble into vesicles
KR101220162B1 (en) * 2009-07-02 2013-01-14 한양대학교 산학협력단 Arginine―based amphiphilic peptide micelle
EP2552938B1 (en) * 2010-03-31 2016-03-02 Agency for Science, Technology And Research Amphiphilic linear peptide/peptoid and hydrogel comprising the same
US8940858B2 (en) * 2010-05-17 2015-01-27 Northwestern University Fibrous microcapsules and methods of assembly and use thereof
GB201011602D0 (en) * 2010-07-09 2010-08-25 Univ London Pharmacy Delivery of hydrophilic peptides
CA2809847A1 (en) * 2010-09-01 2012-03-08 The Regents Of The University Of California Cell culture screen for agents that control adipogenesis and myofibroblast differentiation
US8546338B2 (en) 2010-12-08 2013-10-01 Johnson & Johnson Consumer Companies, Inc. Self-assembling hydrogels based on dicephalic peptide amphiphiles
WO2012149515A2 (en) * 2011-04-29 2012-11-01 Northwestern University Novel vegf mimetic peptide-based scaffolds for therapeutic angiogenesis and methods for their use
US9241891B2 (en) 2012-10-30 2016-01-26 The Procter & Gamble Company Personal care compositions comprising self-assembling peptides
US9169294B2 (en) * 2013-03-11 2015-10-27 Northwestern University Anti-angiogenic molecules, nanostructures and uses thereof
CA2921505C (en) 2013-08-22 2018-05-22 Arch Biosurgery, Inc. Implantable meshes for controlling the movement of fluids
US9517275B2 (en) 2013-09-30 2016-12-13 Northwestern University Targeted therapy for the prevention of restenosis in the cardiovascular system
WO2015080670A1 (en) * 2013-11-30 2015-06-04 Agency For Science, Technology And Research Novel ultrashort hydrophobic peptides that self-assemble into nanofibrous hydrogels and their uses
US20160159869A1 (en) * 2014-12-09 2016-06-09 Northwestern University Bmp-2-binding peptide amphiphile nanofibers
WO2016168302A1 (en) * 2015-04-14 2016-10-20 Northwestern University Supramolecular glyconanostructures
US20170051016A1 (en) 2015-08-17 2017-02-23 Northwestern University Anti-inflammatory nanofibers
EP3362079B1 (en) 2015-10-14 2022-04-06 Northwestern University Nanofiber paste for growth factor delivery and bone regeneration
WO2018093449A1 (en) * 2016-09-09 2018-05-24 Research Foundation Of The City University Of New York Self-assembling peptide polymer
US10738294B2 (en) 2016-09-26 2020-08-11 Northwestern University Tissue factor (TF)—targeted nanotherapy
US10738338B2 (en) 2016-10-18 2020-08-11 The Research Foundation for the State University Method and composition for biocatalytic protein-oligonucleotide conjugation and protein-oligonucleotide conjugate
SG11201903382SA (en) 2016-10-21 2019-05-30 Univ Northwestern Anti-microbial supramolecular structures
US10818377B2 (en) 2016-11-16 2020-10-27 University Of Washington Computational design of self-assembling cyclic protein homo-oligomers
CN106749522B (en) * 2016-11-23 2023-11-14 华东理工大学 Anti-cancer polypeptide containing polyhistidine and preparation and application thereof
WO2018101826A1 (en) 2016-11-30 2018-06-07 Universiteit Twente Functionalization of biopolymers with growth factor-binding peptides
US11174288B2 (en) * 2016-12-06 2021-11-16 Northeastern University Heparin-binding cationic peptide self-assembling peptide amphiphiles useful against drug-resistant bacteria
US10584146B2 (en) 2016-12-07 2020-03-10 Uchicago Argonne, Llc Heme peptide materials for anti-inflammatory regenerative nanobiomedicine
CN108070021B (en) * 2017-12-27 2021-06-15 中南民族大学 Small molecular peptide capable of being assembled into highly ordered nanofiber and method for assembling and constructing highly ordered nanofiber
WO2019195741A1 (en) * 2018-04-06 2019-10-10 Northwestern University Bdnf mimetic peptide amphiphiles
WO2020236978A1 (en) * 2019-05-20 2020-11-26 Convalesce Inc. Hydrogels, methods of making, and methods of use
CN110283231B (en) * 2019-06-03 2021-04-27 中南民族大学 Preparation and application of novel lyotropic liquid crystal based on amphiphilic oligopeptide self-assembly
US20240010683A1 (en) * 2020-11-06 2024-01-11 The Medical College Of Wisconsin, Inc. Peptide Inhibitors of Human Mitochondrial Fission Protein 1 and Methods of Use
WO2023010082A1 (en) * 2021-07-29 2023-02-02 Northwestern University SELF-ASSEMBLING PEPTIDE AMPHIPHILES DISPLAYING A TRANSFORMING GROWTH FACTOR BETA 1 (TGF-β1) MIMETIC EPITOPE
CA3229054A1 (en) * 2021-08-09 2023-02-16 Gel4Med, Inc. Self-assembling amphiphilic peptide hydrogels for treatment of nerve injury

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062969A2 (en) * 2001-02-06 2002-08-15 Massachusetts Institute Of Technology Cellular reprogramming in peptide hydrogel and uses thereof
US20020160471A1 (en) * 2001-02-06 2002-10-31 John Kisiday Peptide scaffold encapsulation of tissue cells and uses thereof

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554101A (en) * 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
US5130123A (en) * 1981-03-04 1992-07-14 The University Of Melbourne Dentifrice
US4930077A (en) * 1987-04-06 1990-05-29 Fan David P Information processing expert system for text analysis and predicting public opinion based information available to the public
US5128319A (en) 1987-08-28 1992-07-07 Board Of Regents, The University Of Texas System Prophylaxis and therapy of acquired immunodeficiency syndrome
GB8812214D0 (en) 1988-05-24 1988-06-29 Hoffmann La Roche Use of peptide from circumsporozoite protein of p falciparum as universally recognized t-cell epitope
US5110604A (en) 1988-06-30 1992-05-05 Collagen Corporation Processes for producing collagen matrixes and methods of using same
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
JPH0399096A (en) 1989-09-11 1991-04-24 Agency Of Ind Science & Technol Length control of short fiber-type helical molecule associated form
DE4026978A1 (en) * 1990-08-25 1992-02-27 Bayer Ag Coated substrates for electro=optical applications, etc.
DK0585368T3 (en) 1991-04-25 1998-03-16 Univ Brown Res Found Implantable biocompatible immuno-insulating vehicle for delivery of selected therapeutic products
WO1993022343A1 (en) 1992-05-01 1993-11-11 The Rockfeller University Multiple antigen peptide system having adjuvant properties and vaccines prepared therefrom
GB9215780D0 (en) 1992-07-24 1992-09-09 Univ London Pharmacy Peptide compounds
US5955343A (en) * 1992-12-28 1999-09-21 Massachusetts Institute Of Technology Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor
US5670483A (en) * 1992-12-28 1997-09-23 Massachusetts Insititute Of Technology Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor
SE9402531L (en) 1994-07-19 1996-01-20 Medicarb Ab wound healing agent
US5843780A (en) * 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US6410690B1 (en) 1995-06-07 2002-06-25 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US6201065B1 (en) * 1995-07-28 2001-03-13 Focal, Inc. Multiblock biodegradable hydrogels for drug delivery and tissue treatment
US5622699A (en) * 1995-09-11 1997-04-22 La Jolla Cancer Research Foundation Method of identifying molecules that home to a selected organ in vivo
FR2739860B1 (en) 1995-10-17 1998-01-02 Coletica AMPHIPHILIC COMPLEXES, PROCESS FOR THEIR PREPARATION AND COMPOSITIONS CONTAINING THE SAME
SE9504347D0 (en) 1995-12-01 1995-12-01 Boerje Sellergren Surface modification technique
US6051272A (en) * 1996-03-15 2000-04-18 The Board Of Trustees Of The University Of Illinois Method for synthesizing organoapatites on to surgical metal alloys
US5733868A (en) * 1996-04-16 1998-03-31 Depuy Orthopaedics, Inc. Poly(amino acid) adhesive tissue grafts
JP3862760B2 (en) 1996-06-12 2006-12-27 トレスパファン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Transparent barrier coating showing low film interference
US6085206A (en) * 1996-06-20 2000-07-04 Microsoft Corporation Method and system for verifying accuracy of spelling and grammatical composition of a document
US5993541A (en) * 1996-07-31 1999-11-30 Geo Centers Inc Process for nucleation of ceramics and product thereof
US6096863A (en) * 1996-08-23 2000-08-01 Regents Of The University Of Minnesota Self-assembling amphiphiles for construction of peptide secondary structures
US6458924B2 (en) 1996-08-30 2002-10-01 Novo Nordisk A/S Derivatives of GLP-1 analogs
NZ336720A (en) 1997-01-22 2001-06-29 Univ Texas A coagulation-deficient tissue factor (TF) compound [e.g. IgG-H6-N'-cys-tTF219] that is at least 100 times less active than the native form and its use against vascular tumour
US6331406B1 (en) * 1997-03-31 2001-12-18 The John Hopkins University School Of Medicine Human enbryonic germ cell and methods of use
AU7245598A (en) 1997-04-03 1998-10-22 California Institute Of Technology Enzyme-mediated modification of fibrin for tissue engineering
US6181909B1 (en) * 1997-07-22 2001-01-30 Educational Testing Service System and method for computer-based automatic essay scoring
US6269368B1 (en) * 1997-10-17 2001-07-31 Textwise Llc Information retrieval using dynamic evidence combination
ATE478135T1 (en) * 1997-12-02 2010-09-15 Artecel Sciences Inc DIFFERENTIATION IN OSTEOBLASTS OF ADIIO TISSUE-STROMAL CELLS AND THEIR USES
GB9801061D0 (en) 1998-01-20 1998-03-18 Univ Nottingham Patterning technique
SE519827C2 (en) 1998-03-30 2003-04-15 Viranative Ab Nutritional medium containing methionine and its use
US6548048B1 (en) 1998-04-28 2003-04-15 Amersham Health As Lipopeptide stabilized microbubbles as diagnostic/therapeutic agents
GB9809084D0 (en) 1998-04-28 1998-06-24 Nycomed Imaging As Improvements in or relating to diagnostic/therapeutic agents
US7601685B2 (en) 1998-08-27 2009-10-13 Eidgenossische Technische Hochschule Zurich Growth factor modified protein matrices for tissue engineering
JP2002524425A (en) 1998-09-04 2002-08-06 サイオス インコーポレイテッド Hydrogel compositions for sustained release administration of growth factors
ATE235928T1 (en) 1998-09-15 2003-04-15 Isotis Nv COATING PROCESS OF MEDICAL IMPLANTS
US6114038A (en) 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
ATE514729T1 (en) 1999-02-01 2011-07-15 Eidgenoess Tech Hochschule BIOMATERIALS ADDED BY NUCLEOPHILIC REACTION ON CONJUGATE UNSATURATED GROUPS
EP1156816A4 (en) 1999-02-02 2004-12-29 Univ Jefferson Peptides modulating activities of heparin, other glycosaminoglycans or proteoglycans
BR0008714A (en) 1999-03-02 2002-01-02 Univ Massachusetts Public Inst Embryonic or stem cell lines produced by cross-species nuclear transplant
US6473730B1 (en) * 1999-04-12 2002-10-29 The Trustees Of Columbia University In The City Of New York Method and system for topical segmentation, segment significance and segment function
ES2255257T3 (en) 1999-04-22 2006-06-16 Eidgenossische Technische Hochschule (Eth) CONTROLLED RELEASE OF GROWTH FACTORS FROM MATRICES CONTAINING HEPARINE.
US20090087878A9 (en) 1999-05-06 2009-04-02 La Rosa Thomas J Nucleic acid molecules associated with plants
IL147179A0 (en) 1999-06-30 2002-08-14 Advanced Cell Tech Inc Cytoplasmic transfer to de-differentiate recipient cells
US6444723B1 (en) * 1999-11-10 2002-09-03 The United States Of America As Represented By The Secretary Of Commerce Crosslinked micellar gel composition
JP2003518379A (en) * 1999-12-28 2003-06-10 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Process for ex vivo formation of mammalian bone and its use
US20040018969A1 (en) * 2000-01-31 2004-01-29 Rosen Craig A. Nucleic acids, proteins, and antibodies
CA2394039A1 (en) * 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
ES2206407T3 (en) 2000-02-04 2004-05-16 Chienna B.V. PROTEIN COATING.
US6689165B2 (en) 2000-03-31 2004-02-10 Board Of Supervisors Of Louisana State University And Agricultural And Mechanical College Surface modifications for enhanced epithelialization
BR0110679A (en) 2000-04-28 2004-04-20 Univ Dublin Amphophilic macrocyclic derivatives and their analogs
AU2001261505A1 (en) * 2000-05-11 2001-11-20 University Of Southern California Machine translation techniques
DE60142840D1 (en) * 2000-09-08 2010-09-30 Univ Texas BY PHAGENDISPLAY IDENTIFIED TARGET PEPTIDES OF HUMANS AND MOUSE
EP1355965B1 (en) * 2000-10-19 2012-09-19 Ecole Polytechnique Fédérale de Lausanne (EPFL) Method of synthesizing block copolymers for multifunctional self-assembled systems
ES2282163T3 (en) * 2000-11-06 2007-10-16 Thrasos, Inc. SCRUTINY METHODS OF MINEETICS OF MORPHOGENETICS OSEA.
GB2388699A (en) * 2001-01-23 2003-11-19 Educational Testing Service Methods for automated essay analysis
WO2003006043A1 (en) * 2001-07-10 2003-01-23 Massachusetts Institute Of Technology Surfactant peptide nanostructures, and uses thereof
WO2003040336A2 (en) 2001-11-06 2003-05-15 The General Hospital Corportation Stem and progenitor cell capture for tissue regeneration
US7491690B2 (en) * 2001-11-14 2009-02-17 Northwestern University Self-assembly and mineralization of peptide-amphiphile nanofibers
WO2003070749A2 (en) * 2002-02-15 2003-08-28 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
AU2003222167A1 (en) * 2002-04-02 2003-10-20 Northwestern University Peptide amphiphile solutions and self assembled peptide nanofiber networks
US6890654B2 (en) * 2002-04-18 2005-05-10 Northwestern University Encapsulation of nanotubes via self-assembled nanostructures
JP2005185101A (en) 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF
AU2003279912A1 (en) 2002-06-27 2004-01-19 Northwestern University Peptide rod amphiphiles and self-assembly of same
WO2004024778A2 (en) 2002-07-23 2004-03-25 Northwestern University Self-assembled hybrid compositions and method of making, using and ordering same
WO2004018628A2 (en) 2002-08-21 2004-03-04 Northwestern University Charged peptide-amphiphile solutions & self-assembled peptide nanofiber networks formed therefrom
WO2004106359A2 (en) 2002-09-23 2004-12-09 Northwestern University Self-assembled peptide-amphiphiles & self-assembled peptide nanofiber networks presenting multiple signals
US7135027B2 (en) 2002-10-04 2006-11-14 Baxter International, Inc. Devices and methods for mixing and extruding medically useful compositions
WO2005003292A2 (en) 2002-11-12 2005-01-13 Northwestern University Composition and method for self-assembly and mineralization of peptide amphiphiles
US7554021B2 (en) 2002-11-12 2009-06-30 Northwestern University Composition and method for self-assembly and mineralization of peptide amphiphiles
AU2003298647A1 (en) 2002-11-14 2004-06-15 Claussen, Randal, C. Synthesis and self-assembly of abc triblock bola peptide
CN100364672C (en) 2003-02-11 2008-01-30 西北大学 Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon
AU2004210853A1 (en) * 2003-02-11 2004-08-26 Northwestern University Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon
GB0303362D0 (en) 2003-02-13 2003-03-19 Enact Pharma Plc Tissue regeneration
US7259140B2 (en) 2003-03-28 2007-08-21 Thomas Jefferson University Heparin-binding peptides and uses thereof
WO2004091370A2 (en) 2003-04-10 2004-10-28 The Trustees Of Boston University Method for stimulating angiogenesis and wound healing
MXPA06006387A (en) * 2003-12-05 2006-09-04 Univ Northwestern Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof.
CN1905892A (en) 2003-12-05 2007-01-31 西北大学 Self-assembling peptide amphiphiles and related methods for growth factor delivery
US20050214257A1 (en) 2003-12-23 2005-09-29 Northwestern University Compositions and methods for controlling stem cell and tumor cell differentiation, growth, and formation
EP2266586A1 (en) 2004-03-23 2010-12-29 Lifeline Nutraceuticals Corporation Compositions and method for alleviating inflammation and oxidative stress in a mammal
US20060188555A1 (en) 2005-01-21 2006-08-24 Micheal Cormier Therapeutic peptide formulations with improved stability
US20060247165A1 (en) * 2005-01-21 2006-11-02 Stupp Samuel I Methods and compositions for encapsulation of cells
MX2007010771A (en) 2005-03-04 2008-03-10 Univ Northwestern Angiogenic heparin binding peptide amphiphiles.
EP1919944B1 (en) 2005-08-15 2011-03-23 Vegenics Pty Ltd Modified vegf and pdgf with improved angiogenic properties
CN1915438A (en) 2006-07-27 2007-02-21 华中科技大学同济医学院附属协和医院 New type bracket material for tissue engineering of polypeptide nerve, preparation method and application
US8114835B2 (en) * 2006-11-09 2012-02-14 Northwestern University Self-assembling peptide amphiphiles for tissue engineering
US8114834B2 (en) * 2006-11-09 2012-02-14 Northwestern University Self-assembling peptide amphiphiles
US8772228B2 (en) * 2007-02-14 2014-07-08 Northwestern University Aligned nanofibers and related methods of use
US8076295B2 (en) 2007-04-17 2011-12-13 Nanotope, Inc. Peptide amphiphiles having improved solubility and methods of using same
US20090098652A1 (en) * 2007-08-17 2009-04-16 Northwestern University Self assembling peptide systems and methods
EP2419116A1 (en) 2009-04-13 2012-02-22 North Western University Novel peptide-based scaffolds for cartilage regeneration and methods for their use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062969A2 (en) * 2001-02-06 2002-08-15 Massachusetts Institute Of Technology Cellular reprogramming in peptide hydrogel and uses thereof
US20020160471A1 (en) * 2001-02-06 2002-10-31 John Kisiday Peptide scaffold encapsulation of tissue cells and uses thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTHONY S.G. ET AL: "Self assembling nanofiber matrix for bone regeneration", ABSTRACTS OF PAPERS, 227TH ACS NATIONAL MEETING, AMERICAN CHEMICAL SOCIETY BIOT-340, 28 March 2004 (2004-03-28) - 1 April 2004 (2004-04-01), ANAHEIM CA, XP002986074 *
ANTHONY S.G.: "Injectable Biomaterials for Bone Tissue Engineering", 2003, pages 1 - 12, XP002986075 *
DONNERS J.J.M. ET AL: "Growth factor binding self-assembling nanofiber networks for tissue regeneration", ABSTRACTS OF PAPERS, 227TH ACS NATIONAL MEETING, AMERICAN CHEMICAL SOCIETY BIOT-23, 28 March 2004 (2004-03-28) - 1 April 2004 (2004-04-01), ANAHEIM CA, XP002986073 *
WANG L-F AND YU M.: "Epitope Identification and Discovery Using Phage Display Libraries: Applications in Vaccine Development and Diagnostics", CURRENT DRUG TARGETS, vol. 5, no. 1, 2004, pages 1 - 15, XP002986076 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491690B2 (en) 2001-11-14 2009-02-17 Northwestern University Self-assembly and mineralization of peptide-amphiphile nanofibers
US7838491B2 (en) 2001-11-14 2010-11-23 Northwestern University Self-assembly and mineralization of peptide-amphiphile nanofibers
US8063014B2 (en) 2002-02-15 2011-11-22 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US7371719B2 (en) 2002-02-15 2008-05-13 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US7745708B2 (en) 2002-02-15 2010-06-29 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US7534761B1 (en) 2002-08-21 2009-05-19 North Western University Charged peptide-amphiphile solutions and self-assembled peptide nanofiber networks formed therefrom
US8124583B2 (en) 2002-11-12 2012-02-28 Northwestern University Composition and method for self-assembly and mineralization of peptide-amphiphiles
US7554021B2 (en) 2002-11-12 2009-06-30 Northwestern University Composition and method for self-assembly and mineralization of peptide amphiphiles
US7683025B2 (en) 2002-11-14 2010-03-23 Northwestern University Synthesis and self-assembly of ABC triblock bola peptide amphiphiles
US7390526B2 (en) 2003-02-11 2008-06-24 Northwestern University Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon
EP1696944A2 (en) * 2003-12-05 2006-09-06 Northwestern University Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
US7452679B2 (en) 2003-12-05 2008-11-18 Northwestern University Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
US7544661B2 (en) 2003-12-05 2009-06-09 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
EP1696944A4 (en) * 2003-12-05 2008-11-05 Univ Northwestern Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
US8580923B2 (en) 2003-12-05 2013-11-12 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
US8138140B2 (en) 2003-12-05 2012-03-20 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
WO2006079036A2 (en) 2005-01-21 2006-07-27 Northwestern University Methods and compositions for encapsulation of cells
US7851445B2 (en) 2005-03-04 2010-12-14 Northwestern University Angiogenic heparin-binding epitopes, peptide amphiphiles, self-assembled compositions and related methods of use
CN100475836C (en) * 2005-12-09 2009-04-08 中国人民解放军军事医学科学院野战输血研究所 Mesenchymal stem cell affinity peptide screening and use
US8834840B1 (en) 2006-10-04 2014-09-16 Northwestern University Magnetic resonance imaging of self-assembled biomaterial scaffolds
US8076295B2 (en) 2007-04-17 2011-12-13 Nanotope, Inc. Peptide amphiphiles having improved solubility and methods of using same
US11458153B2 (en) 2008-09-17 2022-10-04 The City University Of New York, Represented By The Research Foundation Of The City University Of New York Drug delivery composition comprising a self-assembled gelator
US8450271B2 (en) 2009-04-13 2013-05-28 Northwestern University Peptide-based scaffolds for cartilage regeneration and methods for their use
US20100322979A1 (en) * 2009-06-22 2010-12-23 University Of South Carolina Peptidomimetic Resorbable Peptide-Polymer Hybrid Polyester Nanoparticles
WO2011002258A3 (en) * 2009-07-02 2011-05-26 한양대학교 산학협력단 Arginine-based amphiphilic peptide micelle
WO2011002258A2 (en) * 2009-07-02 2011-01-06 한양대학교 산학협력단 Arginine-based amphiphilic peptide micelle
US10675351B2 (en) 2010-09-24 2020-06-09 The Brigham And Women's Hospital, Inc. Nanostructured gels capable of controlled release of encapsulated agents
EP3412279B1 (en) * 2010-09-24 2021-02-17 The Brigham and Women's Hospital, Inc. Nanostructured gels capable of controlled release of encapsulated agents
US11672864B2 (en) 2010-09-24 2023-06-13 The Brigham And Women's Hospital, Inc. Nanostructured gels capable of controlled release of encapsulated agents
EP4079292A1 (en) * 2010-09-24 2022-10-26 The Brigham and Women's Hospital, Inc. Nanostructured gels capable of controlled release of encapsulated agents
US10766927B2 (en) 2012-11-25 2020-09-08 The Regents Of The University Of California Peptides that stimulate subcutaneous adipogenesis
US10494402B2 (en) 2012-11-25 2019-12-03 The Regents Of The University Of California Peptides that stimulate subcutaneous adipogenesis
US11419923B2 (en) 2013-03-15 2022-08-23 In3Bio Ltd. Self-assembling synthetic proteins
WO2014140894A3 (en) * 2013-03-15 2015-02-19 Bioven 3 Limited Self-assembling synthetic proteins
US10736948B2 (en) 2013-03-15 2020-08-11 In3Bio Ltd. Epidermal growth factor fusion proteins with mutant cholera toxin B subunits
US10844102B2 (en) 2014-05-28 2020-11-24 The Regents Of The University Of California Peptides, compositions, and methods for stimulating subcutaneous adipogenesis
DE102015000363A1 (en) 2015-01-20 2016-07-21 Emc Microcollections Gmbh New modular functionalizable peptide hydrogels
US11020410B2 (en) 2017-02-03 2021-06-01 The Brigham And Women's Hospital, Inc. Self-assembled gels formed with anti-retroviral drugs, prodrugs thereof, and pharmaceutical uses thereof
US10881745B2 (en) 2017-05-08 2021-01-05 Alivio Therapeutics, Inc. Formulation of nanostructured gels for increased agent loading and adhesion
US11839605B2 (en) 2018-10-11 2023-12-12 Alivio Therapeutics, Inc. Non-injectable hydrogel formulations for smart release

Also Published As

Publication number Publication date
US20120264912A1 (en) 2012-10-18
EP1696945B1 (en) 2012-01-18
EP1696945A4 (en) 2007-03-21
NZ547671A (en) 2009-10-30
KR20070004560A (en) 2007-01-09
ES2380340T3 (en) 2012-05-10
AU2004296181A1 (en) 2005-06-23
US8580923B2 (en) 2013-11-12
JP2007513174A (en) 2007-05-24
US7544661B2 (en) 2009-06-09
CA2549164A1 (en) 2005-06-23
US20090269847A1 (en) 2009-10-29
EP1696945A1 (en) 2006-09-06
JP4851939B2 (en) 2012-01-11
US20050209145A1 (en) 2005-09-22
EP2314305A3 (en) 2011-08-10
CN102225964A (en) 2011-10-26
ATE541580T1 (en) 2012-02-15
EP2314305A2 (en) 2011-04-27
CN1905892A (en) 2007-01-31
MXPA06006388A (en) 2006-09-04
AU2011201593A1 (en) 2011-04-28
US8138140B2 (en) 2012-03-20
JP2012006951A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
US8138140B2 (en) Self-assembling peptide amphiphiles and related methods for growth factor delivery
US7452679B2 (en) Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
US7851445B2 (en) Angiogenic heparin-binding epitopes, peptide amphiphiles, self-assembled compositions and related methods of use
Hernandez-Gordillo et al. Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds
US8076295B2 (en) Peptide amphiphiles having improved solubility and methods of using same
Kumar et al. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering
US20140079753A1 (en) Bmp binding peptides
WO2012158169A1 (en) Methods and compositions for tissue repair
WO2004003561A1 (en) Peptide rod amphiphiles and self-assembly of same
Smeenk et al. Peptide-containing block copolymers: Synthesis and potential applications of bio-mimetic materials
WO2023127888A1 (en) Novel peptides
Leon et al. Protein Analogous Micelles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 547671

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2549164

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1978/CHENP/2006

Country of ref document: IN

Ref document number: 2006542795

Country of ref document: JP

Ref document number: PA/a/2006/006388

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004817014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004296181

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067013464

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004296181

Country of ref document: AU

Date of ref document: 20041206

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004296181

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200480040497.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004817014

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067013464

Country of ref document: KR