WO2005063980A1 - METHOD OF ENZYMATICALLY CONSTRUCTING RNAi LIBRARY - Google Patents

METHOD OF ENZYMATICALLY CONSTRUCTING RNAi LIBRARY Download PDF

Info

Publication number
WO2005063980A1
WO2005063980A1 PCT/JP2004/019612 JP2004019612W WO2005063980A1 WO 2005063980 A1 WO2005063980 A1 WO 2005063980A1 JP 2004019612 W JP2004019612 W JP 2004019612W WO 2005063980 A1 WO2005063980 A1 WO 2005063980A1
Authority
WO
WIPO (PCT)
Prior art keywords
rnai
dna
library
adapter
gene
Prior art date
Application number
PCT/JP2004/019612
Other languages
French (fr)
Japanese (ja)
Other versions
WO2005063980A8 (en
Inventor
Kenzo Hirose
Daisuke Shirane
Kohtaroh Sugao
Shigeyuki Namiki
Masamitsu Iino
Original Assignee
Toudai Tlo, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toudai Tlo, Ltd. filed Critical Toudai Tlo, Ltd.
Priority to JP2005516704A priority Critical patent/JP4747245B2/en
Publication of WO2005063980A1 publication Critical patent/WO2005063980A1/en
Publication of WO2005063980A8 publication Critical patent/WO2005063980A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Definitions

  • the present invention relates to a method for constructing an RNAi library based on a DNA expression vector, and particularly to a method for enzymatically constructing a systematic library for a target sequence.
  • the present invention relates to a screening method for selecting an appropriate iRNA expression construct capable of silencing a target gene or the like using the above-described RNAi library constructed enzymatically.
  • Non-Patent Documents 1-5 A reverse genetics approach that determines the function of each gene by functional loss using the large amount of genome data currently available (Non-Patent Documents 1-5) has It has become an important technique to fully elucidate the relationship. Techniques for implementing the reverse genetics approach include the creation of knockout animals by gene targeting or antisense techniques.
  • Non-Patent Document 6 Gene targeting technology by homologous recombination (Non-Patent Document 6) is widely used to determine the functions of various genes. However, the process is labor intensive and cannot be applied simply and widely. Also, antisense oligonucleotides can be used more conveniently, but their introduction often results in toxicity, instability, and non-specific effects (Non-Patent Document 7).
  • RNA interference a gene suppression phenomenon induced by double-stranded RNA
  • Non-Patent Document 8 RNA interference
  • Non-Patent Document 8 RNA interference
  • Non-Patent Document 10 RNA interference has also been applied to genome-wide reverse genetics in C. elegans (Non-Patent Document 10).
  • the use of RNAi was initially limited to invertebrates because long (> 30 nucleotides) double-stranded RNAs in higher vertebrates induced harmful interferon responses!
  • RNAi short interfering RNA
  • Strand RNA force was overcome by the finding that RNAi is induced in mammals without causing adverse events (Non-Patent Document 11).
  • Transient oligo siRNA effects are overcome by the development of DNA vectors that express siRNAs or short-chain, hairpin-shaped double-stranded RNAs (shRNAs) in cells that mimic siRNAs. (Non-Patent Documents 12-17).
  • Non-Patent Document 2 Adams, M.D. et al. The genome sequence of Drosophila
  • Patent Document 3 Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome.Nature 420, 520-562 (2002).
  • Patent Document 4 Lander, E.S. et al. Initial sequencing and analysis of the human genome.Nature 409, 860—921 (2001).
  • Non-Patent Document 5 Venter, J.C. et al. The sequence of the human genome.Science 291, 1304-1351 (2001).
  • Non-Patent Document 6 Capecchi, M.R.The new mouse genetics: altering the genome by gene targeting.Trends Genet. 5, 70-76 (1989).
  • Patent Document 7 Opalinska, J.B. & Gewirtz, A.M.Nucleic-acid therapeutics: basic principles and recent applications.Nat. Rev. Drug Discov. 1, 503-514 (2002).
  • Non-Patent Document 8 Fire, A. et al. Potent and specific genetic interference by
  • Patent Document 10 Kamath, R.S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans.Methods 30, 313-321 (2003).
  • Non-patent literature ll Elbashir, SM et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature 411, 494-498 (2001).
  • Patent Document 12 Brummelkamp, TR, Bernards, R. & Agami, R.A system for stable expression of short interfering RNAs in mammalian cells.Science 296, 550-553 (2002).
  • Patent Document 13 Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3 overhangs efficiently suppress targeted gene expression in mammalian cells.Nat. Biotechnol. 20, 497-500 (2002).
  • Non-Patent Document 14 Yu, JY, DeRuiter, SL & Turner, DL RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells.Proc.Natl.Acad.Sci. USA 99, 6047-6052 (2002).
  • Non-Patent Document 15 Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc. Natl. Acad. Sci. USA 99, 5515—5520 (2002).
  • Non-Patent Document 16 Lee, NS et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.Nat.Biotechnol. 20, 500-505 (2002) .
  • Non-Patent Document 17 Paul, CP., Good, PD, Winer, I. & Engelke, DR Effective expression of small interfering RNA in human cells.Nat. Biotechnol. 20, 505—508 (2002).
  • RNAi is also considered to be specific. Depending on the designed sequence, a phenomenon called “off-target effect” that suppresses specific genes other than the target has also been detected. Therefore, in order to avoid off-target effects, it has become important to design siRNA or shRNA for which sequence in the target gene.
  • the present invention relates to a library of shRNA expression constructs capable of systematic screening.
  • An object of the present invention is to provide a production method and a screening method capable of selecting an expression construct having a desired silencing activity using the library.
  • EPRIL enzyme production of RNAi libraries. That is, a target gene or the like is randomly cut, and adapters are connected to both ends of the random fragment. When one of the adapters has a hairpin structure, a fragment having a hairpin structure with a random fragment at the center is obtained. By extending the fragment converted into the hairpin structure with a polymerase having strand displacing activity, an iRNA expression construct capable of mainly expressing a hairpin double-stranded RNA is produced.
  • the present inventors fused a target gene with a reporter gene to select a target gene for silencing using the reporter gene silencing as an index. Further, the present inventors also provided a thymidine kinase gene which is a negative selection marker. Using this technique, a technology was developed that enables selection of an shRNA expression construct having the most effective silencing activity from the RNAi library. Furthermore, the present inventors have also shown that the library production method of the present invention can be applied to directly producing an RNAi library from a cDNA library. That is, the present invention is as described below.
  • a method for producing a desired target DNA polymerase RNAi library comprising the following steps (1) and (3).
  • a method for producing an RNAi library comprising the step of: causing a hairpin-type DNA fragment to undergo primer extension using a polymerase having Strand-displacing activity to generate an iRNA expression construct encoding interference RNA.
  • step (2) a step of connecting a double-stranded stump type adapter to the other end of the DAN fragment
  • Either the double-stranded stump type adapter or the hairpin type adapter is provided with a restriction enzyme recognition site of an outside cutter,
  • the adapter having the restriction enzyme recognition site is connected to the DNA fragment first, and the other adapter is connected to the end formed by adjusting the length of the DNA fragment by the restriction enzyme of the outside cutter.
  • RNAi library 8. The method for producing an RNAi library according to any one of the above items 17, wherein the target DNA is any one of a cDNA of a specific gene, a cDNA library, and a cDNA after subtraction.
  • RNAi library is any one of a polymerase polymerase having a strand—displacing activity and a Vent polymerase.
  • RNAi library produced by the method according to any one of 1 to 12 above.
  • RNAi library produced by the method described in any of 1 to 12 above
  • a method for screening an siRNA expression construct having a desired RNAi activity comprising introducing the RNAi library into a cell expressing a target DNA,
  • a screening method wherein in the step of measuring the expression of the target DNA, the expression of the target DNA is measured using the activity of the reporter protein as an index.
  • any of the adapters is provided with a restriction enzyme recognition site for an outside cutter.
  • FIG. 1 is a diagram showing an outline of EPRIL.
  • A Illustrated protocol for enzymatic induction of cDNA into an shRNA expression library.
  • B PAGE of DNAs during enzymatic induction.
  • M 25 bp ladder-shaped DNA marker.
  • Lanes 1, 2, and 3 show the ligation of the first adapter and the product after Mmel digestion, the adapter 2-ligation fragment, and the fragment after the polymerase reaction. For each lane, the product is indicated by the arrowhead.
  • FIG. 2 is a diagram showing silencing of GFP expression by an RNAi library prepared from cDNA encoding GFP.
  • A Histogram showing the distribution of RNAi efficiency. Bars represent the number of shRNA expression constructs. Circles indicate the normalized cumulative frequency.
  • B Depending on the value of the fold reduction The fractional amounts of shRNA expression constructs with greater efficiency indicated are plotted against fold reduction.
  • C Location and efficiency of individual shRNA expression constructs. The vertical axis represents the relative decrease and the horizontal axis represents the position of the GFP sequence. Each short horizontal bar represents the location and its RNAi efficiency.
  • the orientation of the shRNA expression constructs is likewise indicated by the color of the bars, and the gray and black bars indicate shRNA expression constructs in which the guide sequence is 5 'and 3' to the inverted repeat sequence, respectively.
  • (d) Plot the mean of the relative reduction for each position of the GFP sequence (mean value SD). The numbers in parentheses indicate the number of data for each group.
  • FIG. 3 shows RNAi efficiency profiles obtained by various transduction operations.
  • FIG. (A) Estimated RNAi efficiency based on GFP fluorescence intensity. The relative decrease in GFP fluorescence intensity is shown. Square boxes represent the IPR coding regions, and dots represent the respective shRNA expression
  • shRNA expression constructs Indicates the location of the target of the construct. Data on shRNA expression constructs, SI2A5 and SI3G6, are provided.
  • No shRNA expression construct control
  • GFP-silencing shRNA expression vector shGFP
  • shRNA expression constructs targeting IPR SI2A5 and SI3G6
  • Figure 4 shows the intracellular calcium response of A7r5 cells induced by nosopletsusin without transduction of the construct and with the introduction of SI2A5 or SI3G6. Bar indicates application of AVP.
  • FIG. 5 shows a thymidine kinase-based system for efficient RNAi construct selection.
  • A Selection strategy scheme. The upper figure shows the selectable marker gene construct. TK-puro indicates mRNA encoding a fusion protein of thymidine kinase and puromycin N-acetyltransferase. GCV is converted to a toxic derivative of GCV (GCV-ppp), which leads to cell death.
  • GCV-ppp toxic derivative of GCV
  • the dashed curve represents the GFP fluorescence distribution without transduction of the shRNA expression construct.
  • (c) Analysis of individual RNAi library clones with or without GCV selection! Individual clones were classified into four categories according to their RNAi efficiency; weak (fold reduction value of 1.5), moderate (1.5-2.5), strong (2.5-4.5) and very strong (> 4.5). The normalized population represents the number of clones in each classification normalized to the total number of clones (n 121 and 101 for clones with and without GCV selection, respectively).
  • RNAi library produced by the present invention is a library applicable to the genetics of mammals, plants, insects, yeasts and the like. Therefore, in the present specification, "iRNA” is applied to mammalian cells and the like, and is referred to as “short, double-stranded RNA (generally referred to as” siRNA "). ), Short hairpin-type double-stranded RNA (generally referred to as “shRNA” and this term is used synonymously in this document) and siRNA applied to gene suppression of nematodes, insects, plants, yeasts, etc. Compared to the above, it is used to include double-stranded RNA.
  • the method for producing an RNAi library of the present invention firstly includes a step of randomly cutting target DNA into fragments.
  • the target DNA may be a specific gene, a plurality of genes, a group of genes contained in an individual, a genomic or cDNA library, or the like.
  • the “gene” may be a genomic sequence containing introns, or may be a cDNA or the like.
  • the species from which these genes and libraries are derived are not limited to mammals such as humans, plants, insects, bacteria and the like as described above.
  • a desired target DNA is prepared and randomly fragmented.
  • Fragment The length may be at least a length encoding an RNA capable of inducing RNAi, for example, ten or more bp or more.
  • the appropriate length depends on the cell type for which silencing is to be induced. For example, in a mammalian cell, it can be 19 to 400 bp, preferably 19 to 200 bp, more preferably 19 to 50 bp.
  • the enzyme that can be used in this step has a length corresponding to the cell type that induced the silencing!
  • enzymes that can be used include, but are not limited to, DNasel and restriction enzymes that can be used for shotgun clawing, such as CvilJI, HaeIII, Rsal, Alul, and Hpal.
  • the above-mentioned DNA fragment force is used to generate a hairpin-type DNA using a hairpin-shaped oligonucleotide adapter (hereinafter referred to as "hairpin-type adapter").
  • the “hairpin-type adapter” functions as a linker connecting at least one end of the double-stranded DNA fragment into a hairpin shape, and finally obtains iRNA expression by this method. It encodes an RNA linker that connects the antisense RNA strand to a hairpin.
  • the hairpin-type adapter can be of any length, for example, 5-50 base, preferably 6-20 base, as long as it is effective for inducing RNA interference.
  • a hairpin type adapter having the length shown here or more.
  • the length can be adjusted to the appropriate length when the iRNA expression construct is generated.
  • the design should be such that the long hairpin RNA portion can be trimmed in cells to produce siRNAs of appropriate length.
  • the sequence of the hairpin-type adapter may be any of artificial sequences and microRNA-derived sequences.
  • the hairpin type adapter is preferably made of DNA, but may be made of RNA.
  • the hairpin-type adapter When a hairpin-type adapter is added to the random DNA fragment, the hairpin-type adapter generally binds to both ends of the DNA fragment unless the terminal structure of the DNA fragment is controlled. If the adapter binds to both ends of the DNA fragment, the operation of the primer extension described later will be hindered. Therefore, only one end of the double-stranded DNA In order to form a hairpin-type DNA to which the adapter is bound, a hairpin-type adapter is bound to both ends of the DNA fragment to cut the double-stranded portion of the circularly ligated DNA fragment to generate two hairpin-type DNAs. It is possible to do.
  • such a DNA fragment having a circular shape can be cut by using a restriction enzyme that randomly cuts a double-stranded region derived from a DNA fragment.
  • a restriction enzyme recognition site for an outside cutter is provided inside the hairpin adapter, and the double-stranded DNA region is ligated with this restriction enzyme. It is preferable to use a cutting method.
  • the restriction enzyme of the outside cutter is preferably an enzyme that cuts a site at least 19 bp or more away from the recognition site.
  • An example of such an enzyme is Mmel.
  • Mmel breaks the double strand 20 or 21 bases away from the recognition site. Therefore, by providing an Mmel recognition site at the end of the hairpin-type adapter, the DNA fragment to which this hairpin-type adapter is connected is connected to one end of the 20-21 base DNA fragment by Mmel digestion. Hairpin-shaped DNA is generated.
  • Mmel is a preferred restriction enzyme that produces a hairpin-type DNA encoding an effective length of iRNA that silences the target gene in mammalian cells.
  • an enzyme that cuts a position 20 to 21 bases away from the recognition site is effective in this step.
  • the length of the DNA fragment encoding the iRNA can be adjusted by adjusting the position of the restriction enzyme recognition site in the adapter length adapter. Can be adjusted as desired.
  • This trimming method is based on whether the adapter is DNA-based or RNA-based. It depends on whether it is a base. If the adapter is DNA-based, provide an optional restriction enzyme recognition site or cleavage site for trimming within the adapter, digest with this restriction enzyme, and then reconnect by ligation. Thus, the length of the adapter can be adjusted.
  • the restriction enzyme for trimming may be any restriction enzyme capable of shortening the length of the adapter, which is particularly limited. As shown in Examples described later, Bcgl, which performs bidirectional cleavage from a recognition site, can be given as an example of a restriction enzyme.
  • the inside of the adapter can be cut at two places with one restriction enzyme, Bcgl, so that trimming can be performed easily. It is of course possible to adjust the length of the adapter by combining two restriction enzymes.
  • an RNA-based adapter is used, an RNA / DNA hybrididoni heavy chain is formed in the adapter region by the primer extension described below. Trimming of the RNA / DNA hybrid region can be performed by first quenching the RNA chain with RNaseH, and then digesting the ssDNA with an enzyme that digests single-stranded DNA (ssDNA enzyme).
  • an iRNA expression construct is generated using a hairpin-type DNA formed by adding a hairpin-type adapter to the DNA fragment.
  • an iRNA expression construct in which a complementary sequence is head-til-bonded with an adapter interposed is generated.
  • an iRNA expression construct may be generated by the above-mentioned primer extension while the hairpin-type DNA generated in the above step is left as it is, but preferably, the adapter of the hairpin-type DNA is connected before performing the primer extension. It is preferable to protect the other end with another adapter.
  • an adapter to be connected for end protection is a DNA adapter having a truncated structure at both ends (hereinafter referred to as a “double-stranded truncated adapter” for convenience).
  • “Or” Stump type adapter” ".
  • the sequence of this adapter is not particularly limited.
  • the length is, for example, 5 to 100 bases, preferably 20 to 40 bases in consideration of the cost of synthesizing the adapter. However, even if the length is longer than this, naturally the protection of the DNA end can be achieved. Therefore, there is basically no upper limit of the length as long as it does not hinder the experimental operation.
  • the stump-type adapter 1 is added for the purpose of protecting a DNA fragment, it is preferable that the adapter be removed after the primer extension is completed. Ply to be described in detail
  • the stump-type adapter is provided with a restriction enzyme site for excision or a cleavage site. There are no particular restrictions on the restriction enzymes that can excise the stump-shaped adapter V. It is preferable to use it. For example, Bpml cuts a position at a certain distance from a recognition site, as shown in an example described later.
  • the stump-shaped adapter is almost removed from the iRNA expression construct,
  • the adapter sequence is completely removed by further digesting the remaining sticky ends with an enzyme having ssDNA digestion activity.
  • the truncated adapter sequence is added to both ends of the iRNA expression construct. By cutting both ends with different restriction enzymes, it is possible to control the direction of connection to a vector described later. As shown in the examples below, one truncated adapter is excised with B pml and the other with Bbsl to remove the truncated adapters at both ends and to control the structure of both ends of the iRNA expression construct. It is possible to design a stump type adapter to obtain.
  • the hairpin DNA to which the stump-type adapter is connected is subjected to primer extension using a primer capable of aligning with the end of the adapter and a polymerase having a strand-displacing activity.
  • the polymerase used here should have at least a strand displacing activity, but it is preferable that the polymerase be heat-resistant in order to perform this operation using a PCR device.
  • Klenow Fragment and phi29 are examples of polymerases having a strand-displacing activity
  • Bst polymerase and Vent polymerase are examples of those having a thermophilic property.
  • the extension conditions can be appropriately determined depending on the polymerase used. For example, the conditions when Bst polymerase is used are described in an example described later.
  • the hairpin-type adapter is RNA-based, it is necessary to use an enzyme having a reverse transcription activity in addition to the above strand-displacing activity.
  • a truncated adapter is provided at both ends.
  • a double-stranded DNA having a structure in which DNA fragments derived from the target DNA are head-tilled with a hairpin-shaped adapter is formed between the sequences.
  • An unnecessary truncated adapter sequence at the end is removed from this structure to generate an iRNA expression construct.
  • Unnecessary truncated adapter sequences can be removed by cutting with a restriction enzyme that recognizes the site provided on the truncated adapter. When the truncated adapter is trimmed by the restriction enzyme, a huge iRNA expression construct is generated.
  • the desired fragment may be purified in the process until the iRNA expression construct is produced, each time an adapter is added or digested with a restriction enzyme, or at the final stage of purification of the iRNA expression construct. It is preferable to remove excess adapters and fragments to be removed with a restriction enzyme from the reaction system.
  • a method of extracting a fragment having a desired or expected length from the gel after electrophoresis, or a method of purifying the fragment using a tag or the like can be mentioned.
  • the iRNA expression construct thus produced is connected to a vector to construct an RNAi library.
  • the vector can be selected depending on the cell type to which the present library is to be applied, but preferably an expression vector having a plasmid backbone that can be amplified in a bacterium such as Escherichia coli can be suitably used.
  • a plasmid backbone that can be amplified in Escherichia coli and the like include M13-based vectors, pUC-based vectors, pBR322, pBluescript, and pCR-Script.
  • a bacterial plasmid can be amplified in a large amount, it is easy to prepare a large amount of a library, and it is convenient when performing a treatment such as trimming of a hairpin type adapter sequence. It is preferable to carry a drug selection marker such as Amp, an auxotrophic gene, and the like, as necessary, on the bacterial plasmid.
  • RNA polymerase III driven promo examples include a mouse U6 gene-derived promoter, a tRNA promoter, an adenovirus VA1 promoter, a 5S rRNA promoter, a 7SK RNA promoter, a 7SL RNA promoter, and an HI RNA promoter.
  • a retrovirus expression cassette To integrate the iRNA expression construct into the chromosome and stably express iRNA, it is preferable to use a retrovirus expression cassette and incorporate the iRNA expression construct into this cassette.
  • An example using a retrovirus expression cassette will be described in Examples described later.
  • a vector depending on the host cell may be selected.
  • expression vectors derived from insect cells such as mammalian-derived expression vectors, for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res.
  • RNAi libraries Bac-to-BAC baculovairus expression system (manufactured by Gibco BRL), plant-derived expression vectors such as pBacPAK8, and animal virus-derived expression vectors such as ⁇ 1 and pMH2, for example, pHSV, pMV, pAdexLcw
  • a retrovirus-derived expression vector for example, pZIPneo, etc.
  • yeast-derived expression vector for example, ⁇ Pichia Expression KitJ (manufactured by Invitrogen), pNVll, SP-Q01, etc.
  • pPL608, pKTH50 etc.
  • the huge iRNA expression constructs described above are inserted into individual vectors to generate an RNAi library.
  • RNAi library generated here can be directly used for forward and reverse genetics.
  • an oligo-RNAi library is synthesized from the RNAi library of the present invention using an in vitro transcription system, and this oligo-RNAi library is generated and then used for research on forward and reverse genetics. Is also good.
  • the present invention provides a screening method for selecting a clone having an iRNA expression construct capable of suppressing the expression of a target gene as described above in the RNAi library.
  • the screening method of the present invention comprises a step of introducing an RNAi library prepared from a target DNA by the above method into cells expressing the target DNA, and a step of measuring the expression of the target DNA. included.
  • the method for introducing an RNAi library into cells expressing the target DNA is as follows.
  • One can be appropriately selected depending on the vector used when constructing one.
  • an RNAi library is introduced into cells due to the infectivity of the virus.
  • a method using catonic ribosome DOTAP manufactured by Boehringer Mannheim
  • electoral poration lipofection
  • lipofection gene gun
  • calcium phosphate DEAE dextran, etc. ! / You can.
  • Expression of the target DNA may be measured based on the expression level of the protein using an antibody against the target DNA. If the activity of a specific gene has been identified, the measurement may be performed. You may measure based on activity. For example, if it is known that the downstream gene is regulated as the activity of the target DNA, the expression of the target DNA is indirectly measured by measuring the expression of the downstream gene. Is also good.
  • a transformant in which a fusion gene in which a reporter gene is connected to the target DNA is prepared is prepared. It is preferable to conduct screening.
  • an enzyme such as a fluorescent protein (luciferase, GFP, CFP, YFP, RFP, etc.), aminoglycoside transferase (APH), thymidine kinase (TK), dihydrofolate reductase (dhfr) is used.
  • a fluorescent protein luciferase, GFP, CFP, YFP, RFP, etc.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • dhfr dihydrofolate reductase
  • a fusion gene in which the target DNA is fused with a reporter gene, it is possible to easily measure the silencing activity of each clone of the RNAi library with respect to the target DNA using the reporter activity as an index.
  • the silencing activity of each clone in the RNAi library can be measured based on the decrease in the expression of the fluorescent protein.
  • a negative selection marker such as TK
  • the clones having no silencing activity in the RNAi library cannot suppress the TK activity, and the cells are killed by the addition of ganciclovir.
  • TK activity is suppressed and The cells can survive even with the luster.
  • a negative selection marker is used as a reporter in this manner, only the cells into which the clones having silencing activity have been introduced selectively survive, so that clones having the iRNA expression constructs having silencing activity efficiently can be obtained. can get.
  • the present invention provides an RNAi library kit for performing the above-described method for enzymatically constructing an RNAi library.
  • the kit can include the above-described hairpin-type adapter, stump-type adapter 1, primers and enzymes for primer extension, enzymes used for trimming if necessary, enzymes for purifying random DNA fragments, and the like.
  • a vector for inserting the iRNA expression construct can be included.
  • a protocol for performing the above-described method for enzymatically constructing an RNAi library may be attached.
  • EPRIL involves several steps of enzymatic treatment to create a target cDNAs shrimp expression vector library (Figure la).
  • double-stranded DNAs are fragmented almost randomly with DNasel (Anderson, S. Nucleic Acids Res. 9, 3015-3027 (1981)).
  • a hairpin-shaped adapter containing the recognition sequence of Mmel is ligated to the fragment.
  • Mmel has been reported to cleave the upper and lower strands at sites 20 and 18 bases away from the recognition sequence, respectively (Boyd, AC et al. Nucleic Acids Res. 14, 5255-5274 (1986)). ), The inventors have found that Mmel also cleaves DNA at bases 21 and 19.
  • Mmel digestion yields short 3'-overhanging DNA fragments with sequences 20 or 21 bases in length from the target cDNAs.
  • Polyacrylamide gel electrophoresis Shows Mmel digested DNA as a -40 bp band (FIG. Lb).
  • a second adapter is ligated to the resulting fragment. This adapter has two degenerate bases at the 3 'end of one strand so that the 3' overhang of the Mmel digest is plugged.
  • a primer extension reaction is performed to convert the single-stranded hairpin DNA into a double-stranded DNA with inverted repeats connected via a loop sequence ( Figure 1). .
  • the primer extension product is digested with an appropriate restriction endonuclease to remove extra sequences outside the inverted repeat sequence and inserted into the plasmid vector described below. Recircularization is performed after removing extraneous sequences in the long loop flanked by inverted repeats with an appropriate restriction end nuclease.
  • RNAid For library construction and shRNA expression, we used a plasmid with a retroviral vector containing a mouse U6 gene capella RNA polymerase III driven promoter. Using a retroviral vector to introduce the shRNA expression cassette ensures a stable RNAi effect (Paddison, P.J. & Hannon, G.J. Cancer Cell 2, 17-23 (2002)).
  • the first adapter can be ligated to both ends of the DNasel digested fragment, so that shRNAs with two different orientations should be obtained.
  • Guide sequences that are complementary to the mRNA sequence are about the same frequency on the 5 'or 3' side of the shRNA (54.6% vs. 45.4%, p> 0.1).
  • Analysis of the target sequence indicated that different shRNA expression constructs were generated with different partial forces of the target gene; the complete 720 For the entire bp GFP coding sequence, 96.3% of the total was covered by 157 non-overlapping shRNA expression constructs from 251 independent clones.
  • EPRIL enables high-throughput production of vast arrays of shRNA expression constructs from cDNA of interest.
  • Retroviruses with shRNA expression constructs are produced from individual plasmids in a 96-well plate format, allowing the present inventors to simultaneously obtain a vast array of independent viruses.
  • Jurkat T cells expressing GFP were also infected with the virus in the same format.
  • GFP expression levels in infected cells were determined by flow cytometry to quantify RNAi efficiency.
  • RNAi efficiency There was considerable variation in RNAi efficiency depending on the shRNA expression construct.
  • the present inventors analyzed the distribution of RNAi efficiency in the measurement results of 262 non-overlapping constructs (FIG. 2a). Approximately 56% of the constructs had low RNAi activity (less than 1.5-fold reduction).
  • RNAi efficiency was such that 10 representative constructs examined showed that HEK293 or HeLa Since the cells showed a similar efficiency profile in some cases (data are shown,,,), they were independent of the cell type.
  • Direct transfection of the minimal plasmid or PCR amplified shRNA expression cassette yielded a profile similar to retroviral transduction (FIG. 3a), excluding the effects of differences in viral titers.
  • the RNAi profile of the in vitro transcribed shRNA by direct transfection correlated well with the DNA-based expression profile (FIG. 3b). Similar results were obtained when shRNAs transcribed in vitro were previously digested with Dicer. These results indicate that the factors that determine the RNAi efficiency profile are downstream of the transcription and Dicer 1-processing steps.
  • the present inventors encode inositol type 1,4,5-triphosphate receptor type 1 (Mignery, GA et al. J. Biol. Chem. 265, 12679-12685 (1990)) (IPR) as a target. DNA was used. GFP
  • T cells were generated. Degradation of the target mRNA by the shRNA expression construct can be assessed by monitoring the decrease in GFP fluorescence (Kumar, R et al. Genome Res. 13, 2333-2340 (2003)). ShRNA expression constructs targeting IPR also have altered RNAi efficiency.
  • FIG. 4 We selected two shRNA expression constructs, SI2A5 and SI3G6, among the most effective constructs and these clones were expressed endogenously in the vascular smooth muscle cell line A7r5. We examined whether IPR can induce effective RNAi for IPR (De
  • the present inventors have developed a novel intracellular selection scheme based on a special selectable marker gene for efficient positive selection of shRNA expression constructs (Figure 5a).
  • the marker gene is also a component of the two head-til junctions; the first encodes a fusion protein consisting of thymidine kinase and puromycin N-acetyltransferase (Chen, YT & Bradley, A. Genesis 28). , 31-35 (2000)), the latter encoding the target mRNA.
  • GCV ganciclovir
  • thymidine kinase Chen, YT & Bradley, A. Genesis 28, 31-35 (2000). Cells are killed. When cells are transduced with shRNAs having effective RNAi activity for the target gene, the cells will escape cell death by silencing thymidine kinase expression.
  • the present inventors constructed such a marker-gene using GFP as a target, introduced this into Jurkat T cells, and performed puromycin selection.
  • the inventors generated shRNA-expressing retroviruses as a mixture from a shRNAi library targeting GFP, and infected marker gene expressing cells with these retroviruses.
  • the infected cells were treated with GCV for 48 hours to cultivate GCV-resistant cells.
  • We recovered the shRNA expression constructs by PCR amplification of viable cells and reconstructed them into retroviral expression vectors to obtain the selected library.
  • To determine whether GCV selection actually enriched the effective shRNA expression constructs Jurkat T cells expressing GFP were infected with a virus mixture prepared from the reconstructed library.
  • RNAi library 1 RNAi library 1
  • EPRIL offers the opportunity to construct shRNAi libraries from complex mixtures of cDNAs, such as cDNA libraries, rather than from a single cDNA source. Such shRNAi libraries should be extremely valuable for comprehensively searching for genes involved in specific cellular functions. Therefore, the present inventors have investigated whether or not the present technology can be realized for such a purpose.
  • EPRIL was performed on a cDNA library prepared from mouse bone marrow progenitor cells FL5.12 cells and the mRNA level of which was also expressed to prepare a shRNAi library. Sequencing of randomly selected clones revealed that 215 of the 240 obtained sequences contained inverted repeats (Table 1).
  • inverted repeats from 35 clones contained sequences with more than 10 bases of poly A or T, probably from the poly A tail of mRNAs. Therefore, a BLAST search was performed on the remaining 180 clones.
  • the sequence of 165 clones matched the cDNA sequence and / or ESTs (Table 2).
  • the present inventors classified these clones derived from gene transcripts according to the gene cluster (Build 126) and found that 146 out of 165 clones belonged to at least one of the gene clusters. . Among these, some clones corresponded to the same cluster, suggesting that these clones were derived from the same gene.
  • RNAi library exhibits an initial expression profile.
  • 53% corresponded to the coding region
  • 44% corresponded to the 3'-untranslated region
  • 3% corresponded to the 5'-untranslated region.
  • Reverse repeat sequence containing a sequence of 10 or more bases of adenine or thymine b Sequence that matches genomic DNA sequence but does not match cDNA / ESTs sequence
  • Jurkat T cells were cultured in RPMI 1640 medium (Invitrogen) containing 10% fetal calf serum (FCS), penicillin and streptomycin.
  • FCS fetal calf serum
  • GP293, HEK293, A7r5, and HeLa cells were prepared from Dulbecco's modified Eagle's medium containing 10% FCS ( (Sigma or Invitrogen).
  • FL5.12 cells (donated by Dr. Inaba, Hiroshima University) were maintained in RPMI 1640 (Sigma) containing 10% FCS and 1 ng / ml IL-3 (Wako, Japan).
  • All plasmids including the plasmid pNAMA-U6 with the shRNA expression retroviral vector, were constructed using standard molecular biology techniques. Briefly, the U6 promoter and termination signal-encoding DNA obtained by PCR amplification from pSilencerl.O-U6 (Ambion) were transferred from a pMX retrovirus vector (donated by Dr. Kitamura, University of Tokyo). It was inserted into the Nhel site of a plasmid having a 3 'LTR. Primer pair, 5'-CGCGGATCCGAATGCTTTTTTTAATTCCTGCAGCCCG-3 '(SEQ ID NO: 1) and 5'
  • PCR amplification was further performed on the plasmid to form a Bbsl / Bsml site for inserting an shRNA-encoding DNA fragment, thereby obtaining pBsk-U63-3LTR.
  • pNAMA-U6 a Hindlll / Sall fragment having a 3 'LTR containing a U6 promoter at the Nhel site was
  • Plasmid pMS240-PNS was also constructed with a PCR amplified fragment encoding thymidine kinase and puromycin acetyltransferase.
  • a DNA fragment containing the thymidine kinase and puromycin N-acetyltransferase genes was subcloned into a self-inactivating retroviral vector pMS240 to produce pMS240-PNS.
  • pMS240-PNS has a BamHI / Notl site for cloning a DNA fragment encoding the target gene.
  • a pd2EGFP-I (Clontech) GFP coding fragment was inserted at that site.
  • DNA was prepared from pd2EGFP-1 and inserted into pMX. Coding IPR from pBS-IPR
  • the DNA to be loaded was inserted into a site downstream of d3EGFP.
  • a BamHI / Notl DNA fragment encoding GFP was obtained from pEGFP-1 (Clontech).
  • IPR rat 1 type IP
  • a fragment encoding the entire coding region of R was prepared by EcoRI / Notl digestion of pBS-IPR1.
  • a double-stranded cDNA library was prepared from mRNA prepared from FL5.12 cells using the Super SMART PCR cDNA synthesis kit (Clontech), -Used directly for further induction without aging.
  • EPRIL was applied using these DNA fragments according to a six-step protocol as follows:
  • DNA fragments were prepared using 1 mM MgCl, 0.1 mg / ml BSA ⁇ and 50 mM Tris-HCl (pH 7.5).
  • the digests were ligated with T4 DNA ligase (DNA Ligation Kit version 2, Takara, Japan) to hairpin-shaped oligonucleotides, adapters 1, 5, column number: 3).
  • the hairpin-shaped adapter 1 was purified by native PAGE from chemically synthesized oligonucleotides before use.
  • the nick between the 5 'end of Adapter 1 and the 3' end of the digested DNA was 0.1 mM NAD, 1.2 mM EDTA, 10 mM (NH4) after treatment with 1.0 or 1.25 U / 1 T4 polynucleotide kinase. ) SO, 4 mM MgCl
  • Adapter 2 was ligated to the Mmel-cleaved DNA fragment from step 2 using DNA ligase. After purification by PAGE, nicks on the adapter 2-ligation fragment were repaired by treatment with T4 polynucleotide kinase (Takara, Japan) and T4 DNA ligase.
  • step 3 the product from step 3 was subjected to a primer extension reaction, along with the primer oligonucleotide, 5'-GACTCACGGTCTGGAGGGCCGAA-3 '(SEQ ID NO: 6), 0.1% triton X-100, 0.2 mM dNTPs, 10 mM KC1, 10 mM (NH) SO
  • reaction mixture After incubating at 94 ° C for 135 seconds in a reaction buffer containing 20 mM Tris-HCl (pH 8.8), the mixture was cooled to 62 ° C. Next, 0.02 U / ⁇ l Bst DNA polymerase large fragment (NEB) was added to the reaction mixture to initiate the primer extension reaction. The reaction was performed at 65 ° C for 300 seconds and stopped by cooling to 4 ° C. Reaction products were purified by PAGE.
  • NEB Bst DNA polymerase large fragment
  • the product from step 4 was digested with Bpml, blunt-ended with tarenou fragments (Takara, Japan) and then digested with Bbsl.
  • pNAMA-U6 was digested with Bsml, similarly blunt-ended and digested with Bbsl, followed by treatment with bacterial alkaline phosphatase (Takara, Japan).
  • the digested fragments were gel purified and ligated at a molar ratio of about 3: 1. After purification of the ligation mixture, it was introduced into ElectroMAX DH5a-E competent cells (Invitrogen) by electroporation.
  • Transform cells into 100 g / ml The cells were seeded on a 500 cm 2 LB agar plate containing sylin. After overnight incubation, turf-grown bacteria were collected with a spatula, and plasmid DNA was prepared using a plasmid purification kit (plasmid MIDI kit, Qiagen).
  • the plasmid purified from step 5 was digested with Bcgl, blunt-ended with T4 DNA polymerase, and circularized again by self-ligation. This procedure removes most of the sequence from adapter 1 Short linker sequence, 5 '
  • ElectroMAX DH5a-E competent cells were transformed with the recirculated plasmid and selected on LB-agar plates containing 100 ⁇ g / ml carbecillin. After overnight culture on the plate, a plasmid library stock was obtained.
  • shRNA expression constructs were recovered by PCR amplification from 100 ng of genomic DNA also prepared from transduced FL5.12 cells.
  • Vent DNA polymerase NEB
  • PCR amplified DNA was digested with Notl and A11II and subcloned into pBsk-3LTR.
  • the DNA encoding the 3 'LTR containing the recovered shRNA expression construct was excised with Hindlll and Notl and subcloned into pda5LTR-DsRed2-M4.
  • the resulting plasmid is structurally identical to pNAMA-U6 and can be packaged to produce a retrovirus with the recovered shRNA expression construct.
  • shRNAs were synthesized by using in vitro transcription based on the T7 promoter.
  • type I two chemically synthesized oligonucleotides, a T7 promoter-encoding oligonucleotide, 5'-taatacgactcactataG-3 '(SEQ ID NO: 10) And shRNA-encoded oligonucleotide 5, -AAAN GTCGGACAAN '
  • the corresponding sequence is shown, lower case letters indicate nucleotides complementary to the T7-promoter-encoding oligonucleotide) were incubated at 94 ° C for 135 seconds and then annealed at 45 ° C for 30 seconds. Next, the annealed oligonucleotide was converted to double-stranded DNA type II by an extension reaction at 50 ° C. for 600 seconds using a large fragment of Bst DNA polymerase (0.08 U / 1). The shRNA was also purified using the CUGA7 in vitro transcription kit (Futtsubon Gene, Japan) according to the manufacturer's protocol.
  • shRNA was purified using a gel filtration spin column (Microspin G-25, Amersham Bioeciences).
  • a gel filtration spin column Mospin G-25, Amersham Bioeciences.
  • shRNA was treated with recombinant human Dicer (Gene Therapy Systems) according to the manufacturer's protocol.
  • TTGTAGTTGCCGTCGTCCTT (shGFP20) (SEQ ID NO: 22).
  • the N 'sequence was complementary to the N sequence.
  • retrovirus generation and transduction with shRNA expression constructs was performed in a 96-well plate format.
  • the plasmid is QIA ⁇ Prepared in 96-well plate format using the E96 Ultra Plasmid Kit (Qiagen) according to the manufacturer's protocol.
  • E96 Ultra Plasmid Kit Qiagen
  • GP293 packaging cell line Clontech
  • 200 ng of retrowinores setter plasmid and 17 ng of VSG-G encoding plasmid were placed in a 96-well plate using Lipofectamine 2000 (Invitrogen) for each well.
  • Transfetat Two days after transfection, a culture medium containing the retrovirus was obtained.
  • Retroviral transduction was performed by adding 50 ⁇ l of medium containing retrovirus particles to 1 ⁇ 13 ⁇ 41: cell suspension (1.0 10 5 cells / 1 ⁇ 21) 501.
  • DNA is purified by plasmid MIDI kit and propagated in a 10 cm culture dish by transfection with 24 ⁇ g of retrowinoresetter plasmid and 2 ⁇ g of VSG-G encoding plasmid.
  • Retrovirus packaging was performed on GP293. If necessary, the retroviral particles were concentrated by centrifugation at ⁇ , and then resuspended in an appropriate culture medium.
  • Relative GFP expression levels are based on fluorescence intensity analyzed using a FAC Scan Flow Cytometer (BD)! / Estimated.
  • the fold reduction of GFP fluorescence was used as a measure of RNAi efficiency.
  • a series of internal control shRNA expression constructs were included in each 96-well plate to correct for batch-to-batch differences in RNAi efficiency due to variations in retrofilska titer.
  • A7r5 cells were infected with the retrovirus carrying the shRNA expression construct. Four days later, the cells were collected by trypsinization, soluble, and subjected to SDS-PAGE. After transferring the SDS-PAGE product to the PVDF membrane, the protein corresponding to the IPR is transferred to the primary antibody and the secondary antibody.
  • the antibodies were Eg IgG anti-type I IPR (Alomone) and HRP-conjugated antibody, respectively.
  • A7r5 cells seeded on a cover glass were infected with shRNA-expressing retrovirus, and 4 days after infection, the Ca 2+ indicator Fura-2 was loaded. Changes in intracellular Ca 2+ concentration were determined by inversion with a CCD camera (Photometries) as described previously (Hirose, K. et al. Science 284, 1527-1530 (1999)). The evaluation was performed by fluorescence measurement based on ratio measurement in a microscope. Cells were stimulated by caloricizing 1 ⁇ arginine vasopressin (AVP) in the presence of the L-type Ca 2+ channel inhibitor -cardipine (10 ⁇ ).
  • AVP arginine vasopressin
  • EPRIL a technology capable of enzymatically deriving a shRNA expression library from cDNA type I polymerase.
  • the library can provide a vast array of candidate shRNA expression constructs for various regions on the cDNA.
  • Combining EPRIL with a no-throughput screening and intracellular selection scheme provides a generic platform for generating the best shRNA expression construct sizes and collections for any gene. Such collections will generally make a significant contribution to RNAi-based high-throughput reverse genetics in mammals.
  • EPRIL allows large cDNA libraries consisting of complex mixtures of cDNAs
  • an shRNAi library can be created. We estimated that the library contained 3 ⁇ 10 5 —4 ⁇ 10 6 independent cDNA-derived shRNA expression constructs. Therefore, the methods of the present invention provide a measure of absolute phenotype, such as cell morphology, adhesion, cell death, RNAi-based forward genetics could be performed where genes can be identified by selection based on the expression levels of key molecules and other functional indicators.
  • the shRNA sequence can perfectly match 20 and 21-base long tags with random sequences (Saha, S. et al. Nat. Biotechnol. 20, 508-512 (2002)) probability 9.1 X 10 13 Contact and 2.3 X 10- 13 are, since sufficiently small again considering the size one 3 X 10 9 bp of mouse or human genome, can serve as a reliable tags for gene identification.
  • RNAi library of the present invention Forward genetics using the RNAi library of the present invention may be applied at the animal level. Because lentivirus-mediated transduction can generate mice with shRNA expression constructs (Rubinson, DA et al. Nat. Genet. 33, 401-406 (2003)), we target different genes. The shRNA expression construct can efficiently produce a huge array of mutant animals. Systematic screening based on phenotype allows easy identification of genes involved in a particular phenotype. This feature contrasts with that of a large-scale mutagenesis project that is ongoing in mice using ethylnitrosoperrea (ENU) (Kile, BT et al. Nature 425, 81-86 (2003)). .
  • ENU ethylnitrosoperrea
  • ENU-mutagenesis efficiently produces mutant animals, but requires a tedious and tedious process to determine the locus.
  • variations in the RNAi efficiency of shRNA expression constructs can lead to the discovery of unique phenotypes due to varying degrees of gene silencing.
  • EPRIL provides a new style of forward genetics in mammals and, together with its role in RNAi-based reverse genetics, will contribute significantly to elucidating the relationship between genes and functions at the whole genome level. Will.

Abstract

It is intended to provide a method of enzymatically preparing a systematic RNAi library from a target DNA. According to this method, a target DNA can be prepared not only from the cDNA or genomic sequence of a specific gene but also from a cDNA library. It is also intended to provide a screening method whereby a clone carrying an iRNA expression construct having a desired silencing activity can be selected from an RNAi library. In this screening, more efficient selection can be made by fusing a reporter gene or a negative selection marker with a target DNA.

Description

明 細 書  Specification
RNAiライブラリーの酵素的構築方法  Enzymatic construction of RNAi library
技術分野  Technical field
[0001] 本発明は、 DNA発現ベクターに基づいた RNAiライブラリーの構築方法に関し、特 に、標的配列に対する系統的なライブラリーを酵素的に構築する方法に関する。 本発明は、上記酵素的に構築された RNAiライブラリーを用いて、標的遺伝子等を サイレンシングし得る適切な iRNA発現構築物を選択するためのスクリーニング方法に 関する。  The present invention relates to a method for constructing an RNAi library based on a DNA expression vector, and particularly to a method for enzymatically constructing a systematic library for a target sequence. The present invention relates to a screening method for selecting an appropriate iRNA expression construct capable of silencing a target gene or the like using the above-described RNAi library constructed enzymatically.
背景技術  Background art
[0002] 現在、利用可能な大量のゲノムデータ (非特許文献 1-5)を利用して、機能欠失によ つてそれぞれの遺伝子の機能を決定するリバース遺伝学アプローチは、遺伝子と機 能との関係を完全に解明するために重要な技術となっている。リバース遺伝学ァプロ ーチを実施するための技術として、遺伝子ターゲッティングによるノックアウト動物の 創生、あるいはアンチセンス技法とがある。  [0002] A reverse genetics approach that determines the function of each gene by functional loss using the large amount of genome data currently available (Non-Patent Documents 1-5) has It has become an important technique to fully elucidate the relationship. Techniques for implementing the reverse genetics approach include the creation of knockout animals by gene targeting or antisense techniques.
相同的組換えによる遺伝子ターゲティング技術 (非特許文献 6)は、種々の遺伝子 の機能を決定するために広く用いられている。しかし、そのプロセスは労力を要する ために、簡便かつ広い用途に応用することができない。また、アンチセンスオリゴヌク レオチドはより簡便に用いることができるが、その導入はしばしば毒性、不安定性、お よび非特異的作用をもたらす (非特許文献 7)。  Gene targeting technology by homologous recombination (Non-Patent Document 6) is widely used to determine the functions of various genes. However, the process is labor intensive and cannot be applied simply and widely. Also, antisense oligonucleotides can be used more conveniently, but their introduction often results in toxicity, instability, and non-specific effects (Non-Patent Document 7).
一方、二本鎖 RNAによって誘発される遺伝子抑制現象である RNA干渉 (RNAi) (非 特許文献 8)は、通常特異的であること、その上、広範囲の生物において前例のない 迅速さで遺伝子抑制体を得ることができることから遺伝子ターゲッティング技術やアン チセンス技術に代わる魅力的な方法となっている(非特許文献 7,9)。 RNAiは、線虫( C. elegans)におけるゲノムワイドなリバース遺伝学にも適用されている(非特許文献 10)。しかし、高等脊椎動物では長い(> 30ヌクレオチド)二本鎖 RNAsが有害なインタ 一フエロン反応を誘発することから、当初 RNAiの使用は無脊椎動物に限定されて!ヽ た。この問題は、短鎖干渉 RNA(siRNA)と呼ばれる短い(21— 23ヌクレオチド)の二本 鎖 RNA力 哺乳類において有害事象を引き起こすことなく RNAiを誘導するという知見 によって克服された (非特許文献 11)。オリゴ siRNA効果が一過性であると 、う特性は 、 siRNAまたは siRNAを模倣した短!、ヘアピン構造の二重鎖 RNA (shRNA)を細胞内 で発現させる DNAベクターが開発されたことによって克服されている(非特許文献 12-17)。 On the other hand, RNA interference (RNAi), a gene suppression phenomenon induced by double-stranded RNA (Non-Patent Document 8), is usually specific, and moreover, gene suppression is unprecedented in a wide range of organisms. The ability to obtain a body makes it an attractive alternative to gene targeting and antisense technologies (Non-Patent Documents 7, 9). RNAi has also been applied to genome-wide reverse genetics in C. elegans (Non-Patent Document 10). However, the use of RNAi was initially limited to invertebrates because long (> 30 nucleotides) double-stranded RNAs in higher vertebrates induced harmful interferon responses! The problem is a short (21-23 nucleotide) double strand called short interfering RNA (siRNA). Strand RNA force was overcome by the finding that RNAi is induced in mammals without causing adverse events (Non-Patent Document 11). Transient oligo siRNA effects are overcome by the development of DNA vectors that express siRNAs or short-chain, hairpin-shaped double-stranded RNAs (shRNAs) in cells that mimic siRNAs. (Non-Patent Documents 12-17).
特干文献 1: Consortium, T.C.e.S. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018 (1998).  Special Reference 1: Consortium, T.C.e.S. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018 (1998).
非特許文献 2 : Adams, M.D. et al. The genome sequence of Drosophila Non-Patent Document 2: Adams, M.D. et al. The genome sequence of Drosophila
melanogaster. Science 287, 2185—2195 (2000). melanogaster. Science 287, 2185-2195 (2000).
特許文献 3 :Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562 (2002).  Patent Document 3: Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome.Nature 420, 520-562 (2002).
特許文献 4 : Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860—921 (2001).  Patent Document 4: Lander, E.S. et al. Initial sequencing and analysis of the human genome.Nature 409, 860—921 (2001).
非特許文献 5 : Venter, J.C. et al. The sequence of the human genome. Science 291, 1304-1351 (2001). Non-Patent Document 5: Venter, J.C. et al. The sequence of the human genome.Science 291, 1304-1351 (2001).
非特許文献 6 : Capecchi, M.R. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70-76 (1989). Non-Patent Document 6: Capecchi, M.R.The new mouse genetics: altering the genome by gene targeting.Trends Genet. 5, 70-76 (1989).
特許文献 7 : Opalinska, J.B. & Gewirtz, A.M. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. 1, 503-514 (2002).  Patent Document 7: Opalinska, J.B. & Gewirtz, A.M.Nucleic-acid therapeutics: basic principles and recent applications.Nat. Rev. Drug Discov. 1, 503-514 (2002).
非特許文献 8: Fire, A. et al. Potent and specific genetic interference by Non-Patent Document 8: Fire, A. et al. Potent and specific genetic interference by
double-stranded RNA in Caenorhabditis elegans. Nature 391, 806 - 811 (1998). 非特許文献 9 : Dykxhoorn, D.M., Novina, CD. & Sharp, P.A. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457—467 (2003). Double-stranded RNA in Caenorhabditis elegans.Nature 391, 806-811 (1998) .Non-Patent Document 9: Dykxhoorn, DM, Novina, CD. & Sharp, PA Killing the messenger: short RNAs that silence gene expression.Nat. Rev. Mol. Cell Biol. 4, 457-467 (2003).
特許文献 10 : Kamath, R.S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313—321 (2003).  Patent Document 10: Kamath, R.S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans.Methods 30, 313-321 (2003).
非特許文献 l l : Elbashir, S.M. et al. Duplexes of 21- nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494—498 (2001). 特許文献 12 : Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550—553 (2002). Non-patent literature ll: Elbashir, SM et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature 411, 494-498 (2001). Patent Document 12: Brummelkamp, TR, Bernards, R. & Agami, R.A system for stable expression of short interfering RNAs in mammalian cells.Science 296, 550-553 (2002).
特許文献 13 : Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3 overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497—500 (2002).  Patent Document 13: Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3 overhangs efficiently suppress targeted gene expression in mammalian cells.Nat. Biotechnol. 20, 497-500 (2002).
非特許文献 14 :Yu, J.Y., DeRuiter, S.L. & Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047-6052 (2002).  Non-Patent Document 14: Yu, JY, DeRuiter, SL & Turner, DL RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells.Proc.Natl.Acad.Sci. USA 99, 6047-6052 (2002).
非特許文献 15 : Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515—5520 (2002).  Non-Patent Document 15: Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc. Natl. Acad. Sci. USA 99, 5515—5520 (2002).
非特許文献 16 : Lee, N.S. et al. Expression of small interfering RNAs targeted against HIV- 1 rev transcripts in human cells. Nat. Biotechnol. 20, 500-505 (2002). 非特許文献 17 : Paul, CP., Good, P.D., Winer, I. & Engelke, D.R. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505—508 (2002).  Non-Patent Document 16: Lee, NS et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.Nat.Biotechnol. 20, 500-505 (2002) .Non-Patent Document 17: Paul, CP., Good, PD, Winer, I. & Engelke, DR Effective expression of small interfering RNA in human cells.Nat. Biotechnol. 20, 505—508 (2002).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] RNAi技法の開発にもかかわらず、有効な遺伝子サイレンシング活性を有する [0003] Despite the development of RNAi technology, it has effective gene silencing activity
siRNA/shRNA発現構築物をデザインするための一般的な法則はまだなぐこのため 、適した構築物が同定されるまでには時間と費用を要する。  There is still no general rule for designing siRNA / shRNA expression constructs, so it takes time and money to identify suitable constructs.
また、 RNAiは特異的であると考えられた力 デザインした配列によっては「オフターゲ ットエフェクト」という標的以外の特定の遺伝子を抑制する現象も検出されている。そ のため、オフターゲットエフェクトを回避するためには、標的遺伝子内のいずれの配 列に対する siRNAまたは shRNAをデザインするかが重要になってきている。  RNAi is also considered to be specific. Depending on the designed sequence, a phenomenon called “off-target effect” that suppresses specific genes other than the target has also been detected. Therefore, in order to avoid off-target effects, it has become important to design siRNA or shRNA for which sequence in the target gene.
課題を解決するための手段  Means for solving the problem
[0004] 本発明は、系統的なスクリーニングを行い得る shRNA発現構築物のライブラリーの 製造方法およびこのライブラリーを用いて所望のサイレンシング活性を有する発現構 築物を選択し得るスクリーニング方法を提供することを目的とする。この目的のために 、本願発明者らは、 EPRIL (RNAiライブラリーの酵素的作製)と呼ばれる技術を開発し た。すなわち、標的とする遺伝子等をランダムに切断して、このランダム断片の両端 にアダプターを接続する。このうち、いずれか一方のアダプターをヘアピン構造とす ることによりランダム断片を中央に備えたヘアピン型構造を有する断片となる。このへ ァピン型構造に変換された断片をストランドディスプレイス活性を有するポリメラーゼ で伸長させることにより、主としてヘアピン型二重鎖 RNAを発現し得る iRNA発現構築 物が製造される。 [0004] The present invention relates to a library of shRNA expression constructs capable of systematic screening. An object of the present invention is to provide a production method and a screening method capable of selecting an expression construct having a desired silencing activity using the library. To this end, the present inventors have developed a technique called EPRIL (enzymatic production of RNAi libraries). That is, a target gene or the like is randomly cut, and adapters are connected to both ends of the random fragment. When one of the adapters has a hairpin structure, a fragment having a hairpin structure with a random fragment at the center is obtained. By extending the fragment converted into the hairpin structure with a polymerase having strand displacing activity, an iRNA expression construct capable of mainly expressing a hairpin double-stranded RNA is produced.
また、本発明者らは標的遺伝子をレポーター遺伝子と融合させて、標的遺伝子の サイレンシングをレポーター遺伝子のサイレンシングを指標に選択し得るスクリーニン グ系、さらには、ネガティブ選択マーカーであるチミジンキナーゼ遺伝子を用いて、前 記 RNAiライブラリ一力ゝら最も有効なサイレンシング活性を有する shRNA発現構築物を 選択し得る技術を開発した。さらに本発明者らは、本発明のライブラリー作製方法が cDNAライブラリ一力ゝら直接 RNAiライブラリーを作製することに応用できることも示した 。すなわち、本発明は以下に示す通りである。  In addition, the present inventors fused a target gene with a reporter gene to select a target gene for silencing using the reporter gene silencing as an index. Further, the present inventors also provided a thymidine kinase gene which is a negative selection marker. Using this technique, a technology was developed that enables selection of an shRNA expression construct having the most effective silencing activity from the RNAi library. Furthermore, the present inventors have also shown that the library production method of the present invention can be applied to directly producing an RNAi library from a cDNA library. That is, the present invention is as described below.
1. 以下の(1)一 (3)の工程を含む、所望の標的 DNAカゝら RNAiライブラリーを製造 する方法。  1. A method for producing a desired target DNA polymerase RNAi library, comprising the following steps (1) and (3).
(1)標的 DNAをランダムに切断し、 DNA断片を生成する工程、  (1) randomly cutting the target DNA to generate a DNA fragment,
(2)ヘアピン型アダプターを、前記 DNA断片の一端に接続して、ヘアピン型の DNA 断片を生成する工程、  (2) connecting a hairpin-type adapter to one end of the DNA fragment to generate a hairpin-type DNA fragment;
(3)ヘアピン型の DNA断片を Strand— displacing活性を有するポリメラーゼを用いてプ ライマーエクステンションを実行させ、インターフェアレンス RNAをコードした iRNA発 現構築物を生成させる工程を含む、 RNAiライブラリー製造方法。  (3) A method for producing an RNAi library, comprising the step of: causing a hairpin-type DNA fragment to undergo primer extension using a polymerase having Strand-displacing activity to generate an iRNA expression construct encoding interference RNA.
2. 前記(2)工程の前または後に DAN断片の他端に二重鎖断端型アダプターを接 続する工程が含まれ、  2. before or after the step (2), a step of connecting a double-stranded stump type adapter to the other end of the DAN fragment,
前記二重鎖断端型アダプターまたは前記ヘアピン型アダプターのいずれか一方に アウトサイドカッターの制限酵素認識サイトが備えられ、 前記制限酵素認識サイトを備えたアダプターが先に、前記 DNA断片に接続され、前 記アウトサイドカッターの制限酵素により DNA断片の長さが整えられて形成された端 にもう一方のアダプターが接続される、上記 1記載の方法。 Either the double-stranded stump type adapter or the hairpin type adapter is provided with a restriction enzyme recognition site of an outside cutter, The adapter having the restriction enzyme recognition site is connected to the DNA fragment first, and the other adapter is connected to the end formed by adjusting the length of the DNA fragment by the restriction enzyme of the outside cutter. The method according to 1 above.
3. ヘアピン型アダプターにアウトサイドカッターの制限酵素認識サイトが備えられ ている、上記 2記載の方法。  3. The method according to the above 2, wherein the hairpin-type adapter is provided with a restriction enzyme recognition site for an outside cutter.
4. 二重鎖断端型アダプターにアウトサイドカッターの制限酵素認識サイトが備えら れている、上記 2記載の方法。  4. The method according to the above 2, wherein the double-stranded stump-type adapter is provided with a restriction enzyme recognition site for an outside cutter.
5. プライマーエクステンション後に iRNA発現構築物を発現ベクターに接続するェ 程をさらに含む、上記 1記載の RNAiライブラリーの製造方法。  5. The method for producing an RNAi library according to the above 1, further comprising a step of connecting the iRNA expression construct to the expression vector after the primer extension.
6.発現ベクターが哺乳動物内で機能し得る、上記 5記載の RNAiライブラリーの製 造方法。  6. The method for producing an RNAi library according to the above item 5, wherein the expression vector can function in a mammal.
7.発現ベクターが宿主染色体内への組込み活性を有する、上記 5又は上記 6記載 の RNAiライブラリーの製造方法。  7. The method for producing an RNAi library according to the above 5 or 6, wherein the expression vector has an integration activity into a host chromosome.
8.標的 DNAが、特定の遺伝子の cDNA、 cDNAライブラリー、またはサブトラクシヨン 後の cDNAのいずれかである、上記 1一 7のいずれかに記載の RNAiライブラリーの製 造方法。  8. The method for producing an RNAi library according to any one of the above items 17, wherein the target DNA is any one of a cDNA of a specific gene, a cDNA library, and a cDNA after subtraction.
9.前記(1)工程において、ショットガンクローユングに使用し得る DNA消化酵素を 用いて標的 DNAが断片化される、上記 1記載の RNAiライブラリーの製造方法。  9. The method for producing an RNAi library according to the above item 1, wherein in the step (1), the target DNA is fragmented using a DNA digestive enzyme that can be used for shotgun closing.
10. アウトサイドカッターの制限酵素が、少なくとも第一のアダプター内の認識サイ トから 19bp以上はなれた位置を切断する、上記 1一 9のいずれかに記載の RNAiライ ブラリーの製造方法。  10. The method for producing an RNAi library according to any one of the above items 19, wherein the restriction enzyme of the outside cutter cuts at least 19 bp away from the recognition site in the first adapter.
11. Strand-displacing活性を有するポリメラーゼが耐熱性である、上記 1から 10の V、ずれかに記載の RNAiライブラリーの製造方法。  11. The method for producing an RNAi library according to any one of the above 1 to 10, wherein the polymerase having a strand-displacing activity is heat-resistant.
12. Strand— displacing活性を有するポリメラーゼカ ¾stポリメラーゼまたは Ventポリメ ラーゼのいずれかである、上記 1から 11のいずれかに記載の RNAiライブラリーの製 造方法。  12. The method for producing an RNAi library according to any one of 1 to 11 above, wherein the RNAi library is any one of a polymerase polymerase having a strand—displacing activity and a Vent polymerase.
13.上記 1から 12のいずれかに記載の方法により製造された RNAiライブラリー。 13. An RNAi library produced by the method according to any one of 1 to 12 above.
14. 上記 1から 12のいずれかに記載の方法により製造された RNAiライブラリーから 所望の RNAi活性を有する siRNA発現構築物をスクリーニングする方法であって、 標的 DNAが発現している細胞に前記 RNAiライブラリーを導入する工程、 14. From the RNAi library produced by the method described in any of 1 to 12 above A method for screening an siRNA expression construct having a desired RNAi activity, comprising introducing the RNAi library into a cell expressing a target DNA,
標的 DNAの発現を測定する工程、を含むスクリーニング方法。 Measuring the expression of the target DNA.
15.上記 14記載のスクリーニング方法において、  15. In the screening method according to 14 above,
標的 DNAをレポーター遺伝子と融合させた融合遺伝子として、 As a fusion gene obtained by fusing target DNA with a reporter gene,
標的 DNAの発現を測定する工程では、前記レポータータンパク質の活性を指標に標 的 DNAの発現が測定される、スクリーニング方法。 A screening method, wherein in the step of measuring the expression of the target DNA, the expression of the target DNA is measured using the activity of the reporter protein as an index.
16.上記 1から 12のいずれかに記載の方法により製造された RNAiライブラリーから 所望の RNAi活性を有する siRNA発現構築物をスクリーニングする方法であって、 標的 DNAとネガティブ選択マーカー遺伝子とを融合させた融合遺伝子が発現してい る細胞に前記 RNAiライブラリーを導入する工程、  16.A method for screening an siRNA expression construct having a desired RNAi activity from the RNAi library produced by the method according to any one of the above 1 to 12, wherein the target DNA is fused with a negative selection marker gene. Introducing the RNAi library into cells expressing the fusion gene,
ネガティブ選択マーカーによる選択を実行し RNAi効果があった細胞のみを選択す る工程とを、スクリーニング方法。  Performing a selection with a negative selectable marker to select only cells having an RNAi effect.
17. RNAiライブラリーを製造するためのシステムであって、  17. A system for producing an RNAi library,
ヘアピン型アダプターと、二重鎖断端型アダプターとを含み、 Including a hairpin type adapter and a double-stranded stump type adapter,
前記アダプターのいずれかにアウトサイドカッターの制限酵素認識サイトが備えられ ている、システム。 A system, wherein any of the adapters is provided with a restriction enzyme recognition site for an outside cutter.
18.さらに、アウトサイドカッターの制限酵素および Zまたは Strand— displacing性を 有するポリメラーゼを備えた、上記 17記載のシステム。  18. The system according to the above 17, further comprising an outside cutter restriction enzyme and a polymerase having Z or Strand-displacing properties.
図面の簡単な説明 Brief Description of Drawings
[図 1]EPRILの概要を示す図である。(a) shRNA発現ライブラリへの cDNAの酵素的誘 導の図示プロトコール。(b)酵素的誘導の過程における DNAsの PAGE。 M、 25 bpの 梯子状 DNAマーカー。レーン 1、 2および 3は、第一のアダプターのライゲーシヨンおよ び Mmel消化後の産物、アダプター 2-ライゲーシヨン断片、ならびにポリメラーゼ反応 後の断片を示す。それぞれのレーンに関して、産物を矢印の先で示す。 FIG. 1 is a diagram showing an outline of EPRIL. (A) Illustrated protocol for enzymatic induction of cDNA into an shRNA expression library. (B) PAGE of DNAs during enzymatic induction. M, 25 bp ladder-shaped DNA marker. Lanes 1, 2, and 3 show the ligation of the first adapter and the product after Mmel digestion, the adapter 2-ligation fragment, and the fragment after the polymerase reaction. For each lane, the product is indicated by the arrowhead.
[図 2]GFPをコードする cDNAから調製した RNAiライブラリによる GFP発現のサイレンシ ングを示す図である。 (a) RNAi効率の分布を示すヒストグラム。バーは、 shRNA発現 構築物の数を表す。丸は、標準化した累積頻度を示す。 (b)減少倍数の値によって 示されるより大き ヽ効率を有する shRNA発現構築物の分画毎の量を、減少倍数に対 してプロットする。(c)個々の shRNA発現構築物の位置および効率。垂直方向の軸は 、相対的な減少を表し、水平方向の軸は GFP配列の位置を表す。それぞれの短い水 平方向のバーは、位置およびその RNAi効率を表す。 shRNA発現構築物の方向も同 様にバーの色で示し、灰色および黒のバーはそれぞれ、ガイド配列が逆方向反復配 列の 5'および 3'側に存在する shRNA発現構築物を示す。 (d) GFP配列のそれぞれの 位置に関して相対減少の平均値をプロットする(平均値士 SD)。括弧内の数は、それ ぞれの群に関するデータの数を示す。 FIG. 2 is a diagram showing silencing of GFP expression by an RNAi library prepared from cDNA encoding GFP. (A) Histogram showing the distribution of RNAi efficiency. Bars represent the number of shRNA expression constructs. Circles indicate the normalized cumulative frequency. (B) Depending on the value of the fold reduction The fractional amounts of shRNA expression constructs with greater efficiency indicated are plotted against fold reduction. (C) Location and efficiency of individual shRNA expression constructs. The vertical axis represents the relative decrease and the horizontal axis represents the position of the GFP sequence. Each short horizontal bar represents the location and its RNAi efficiency. The orientation of the shRNA expression constructs is likewise indicated by the color of the bars, and the gray and black bars indicate shRNA expression constructs in which the guide sequence is 5 'and 3' to the inverted repeat sequence, respectively. (d) Plot the mean of the relative reduction for each position of the GFP sequence (mean value SD). The numbers in parentheses indicate the number of data for each group.
[図 3]様々な形質導入操作による RNAi効率プロフィールを示す図である。 (a)プラスミ ド (左の垂直軸、黒丸)または PCR増幅発現カセット (右の垂直軸、灰色の丸)のトラン スフエクシヨンによる GFPサイレンシングの効率を、レトロウイルス形質導入による効率 と比較する (水平軸)。(b)ダイサー消化を行った (灰色の丸)および行わなかった (黒 丸)場合のインビトロ転写 shRNAのトランスフエクシヨンによる GFPサイレンシングの効 率を、プラスミドトランスフエクシヨンによる効率に対してプロットする(水平軸)。  FIG. 3 shows RNAi efficiency profiles obtained by various transduction operations. (a) Compare the efficiency of GFP silencing by transfection of plasmid (left vertical axis, solid circle) or PCR amplified expression cassette (right vertical axis, gray circle) with retroviral transduction (horizontal). axis). (B) Efficiency of GFP silencing by in vitro transcribed shRNA transfection with Dicer digestion (grey circles) and without (black circles) is plotted against efficiency by plasmid transfection. (Horizontal axis).
[図 4]IP R cDNAに由来する RNAiライブラリによる 1型 IP R発現のサイレンシングを示[Figure 4] Silencing of type 1 IPR expression by an RNAi library derived from IPR cDNA
3 3 3 3
す図である。 (a) GFP蛍光強度に基づいて推定した RNAi効率。 GFP蛍光強度の相対 的減少値を示す。四角の枠は、 IP Rコード領域を表し、点は、それぞれの shRNA発現 FIG. (A) Estimated RNAi efficiency based on GFP fluorescence intensity. The relative decrease in GFP fluorescence intensity is shown. Square boxes represent the IPR coding regions, and dots represent the respective shRNA expression
3  Three
構築物の標的の位置を示す。 shRNA発現構築物、 SI2A5および SI3G6に関するデー タを記す。 (b) shRNA発現構築物を有しな ヽ(対照)、 GFP-サイレンシング shRNA発 現ベクター(shGFP)を有する、または IP Rを標的とする shRNA発現構築物(SI2A5お Indicates the location of the target of the construct. Data on shRNA expression constructs, SI2A5 and SI3G6, are provided. (b) No shRNA expression construct (control), GFP-silencing shRNA expression vector (shGFP), or shRNA expression constructs targeting IPR (SI2A5 and
3  Three
よび SI3G6)を有する、レトロウイルスを感染させた A7r5細胞のウェスタンブロッテイン グ。ァクチンは、ローデイング対照としての役割を有する。編集した標準化 IP R発現レ Western blotting of A7r5 cells infected with a retrovirus, which have A3r6 and SI3G6). Actin has a role as a loading control. Edited standardized IPR expression level
3 ベルを下のパネルに示す(平均値土 SEM、 n = 3)。 (c) IP Rターゲティング shRNA発現  Three bells are shown in the lower panel (mean SEM, n = 3). (C) IPR targeting shRNA expression
3  Three
構築物を形質導入しない場合、および SI2A5または SI3G6を導入した場合の、ノ ソプ レツシンによって誘発した A7r5細胞の細胞内カルシウム反応を示す。バーは AVPの 適用を示す。 Figure 4 shows the intracellular calcium response of A7r5 cells induced by nosopletsusin without transduction of the construct and with the introduction of SI2A5 or SI3G6. Bar indicates application of AVP.
[図 5]効率的な RNAi構築物の選択に関するチミジンキナーゼに基づく系を示す図で ある。(a)選択戦略のスキーム。上の図は、選択マーカー遺伝子構築物を示す。 TK-puroは、チミジンキナーゼとピューロマイシン N-ァセチルトランスフェラーゼとの 融合タンパク質をコードする mRNAを示す。 GCVは、 GCVの毒性誘導体(GCV-ppp) に変換されて、細胞死に至る。(b) GSV選択後(左のパネル)および選択を行わない 場合 (右のパネル)の RNAiライブラリにおける再構成された shRNA発現構築物の混合 物による RNAi効果。右のパネルの連続曲線は、親 shRNAライブラリのデータを表す。 破線の曲線は、 shRNA発現構築物の形質導入を行わない GFP蛍光分布を表す。 (c) GCV選択を行ったまたは行わな!/、個々の RNAiライブラリクローンの分析。個々のクロ ーンを、その RNAi効率に従って四つに分類した;弱い (減少倍率値く 1.5)、中等度( 1.5— 2.5)、強い(2.5— 4.5)および非常に強い(〉4.5)。標準化した集団は、クローン の総数に対して標準化したそれぞれの分類におけるクローンの数を表す (GCV選択 を行ったおよび行っていないクローンに関してそれぞれ、 n= 121および 101)。 FIG. 5 shows a thymidine kinase-based system for efficient RNAi construct selection. (A) Selection strategy scheme. The upper figure shows the selectable marker gene construct. TK-puro indicates mRNA encoding a fusion protein of thymidine kinase and puromycin N-acetyltransferase. GCV is converted to a toxic derivative of GCV (GCV-ppp), which leads to cell death. (B) RNAi effect of a mixture of reconstituted shRNA expression constructs in an RNAi library after GSV selection (left panel) and without selection (right panel). The continuous curve in the right panel represents data from the parent shRNA library. The dashed curve represents the GFP fluorescence distribution without transduction of the shRNA expression construct. (c) Analysis of individual RNAi library clones with or without GCV selection! Individual clones were classified into four categories according to their RNAi efficiency; weak (fold reduction value of 1.5), moderate (1.5-2.5), strong (2.5-4.5) and very strong (> 4.5). The normalized population represents the number of clones in each classification normalized to the total number of clones (n = 121 and 101 for clones with and without GCV selection, respectively).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0007] siRNA発現構築物 [0007] siRNA expression construct
本発明により、所望の標的 DNAから RNAiライブラリーを製造する方法が提供された 。本発明で製造される RNAiライブラリ一は、哺乳動物、植物、昆虫、酵母などの遺伝 学に応用し得るライブラリーである。従って、本書において「iRNA」は、哺乳動物細胞 などの応用されて 、る短 、二重鎖 RNA (—般に「siRNA」と呼ばれ、本書にお!、て同 義で siRNAの語を用いる)、短いヘアピン型の二重鎖 RNA (これを一般に「shRNA」と いい、本書においてもこの語を同義で用いる)および線虫、昆虫、植物、酵母などの 遺伝子抑制に応用されて 、る siRNAなどと比べて長 、二重鎖 RNAを含む意味で用い る。  According to the present invention, a method for producing an RNAi library from a desired target DNA has been provided. The RNAi library produced by the present invention is a library applicable to the genetics of mammals, plants, insects, yeasts and the like. Therefore, in the present specification, "iRNA" is applied to mammalian cells and the like, and is referred to as "short, double-stranded RNA (generally referred to as" siRNA "). ), Short hairpin-type double-stranded RNA (generally referred to as “shRNA” and this term is used synonymously in this document) and siRNA applied to gene suppression of nematodes, insects, plants, yeasts, etc. Compared to the above, it is used to include double-stranded RNA.
本発明の RNAiライブラリー製造方法では、第一に、標的 DNAをランダムに断片に 切断する工程が含まれる。ここで、標的 DNAは、特定の遺伝子、複数の遺伝子、個 体に含まれる遺伝子群、ゲノムあるいは cDNAライブラリーなどであってもよい。また、 ここで「遺伝子」はイントロンを含むゲノム配列であってもよぐまた、 cDNAなどであつ てもよい。これら遺伝子、ライブラリーなどが由来する種は、上述したようにヒトなどの 哺乳動物、植物、昆虫、細菌など制限はない。  The method for producing an RNAi library of the present invention firstly includes a step of randomly cutting target DNA into fragments. Here, the target DNA may be a specific gene, a plurality of genes, a group of genes contained in an individual, a genomic or cDNA library, or the like. Here, the “gene” may be a genomic sequence containing introns, or may be a cDNA or the like. The species from which these genes and libraries are derived are not limited to mammals such as humans, plants, insects, bacteria and the like as described above.
[0008] この第一の工程では、所望の標的 DNAを準備し、ランダムに断片化する。断片化す る長さは、少なくとも RNAiを誘導し得る RNAをコードした長さ、例えば、十数 bp以上で あればよい。適切な長さはサイレンシングを誘導したい細胞種により異なる。例えば、 哺乳動物細胞では 19一 400bp、好ましく 19一 200bp、より好ましくは 19一 50bpとするこ とができる。一方、植物や真菌などでは、例えば、 500bp程度の長い iRNAでも遺伝子 のサイレンシングを誘導し得る。したがって、本工程で使用し得る酵素は、上記サイレ ンシングを誘導した 、細胞種に応じた長さある!/、はそれ以上の断片を生成し得るも のであればよぐまた切断に用いる酵素の種類も制限はない。使用し得る酵素の例を 挙げれば、 DNaselやショットガンクローユングに使用し得る制限酵素、例えば、 CvilJI 、 HaeIII、 Rsal、 Alul、 Hpalなどが挙げられる力 これらに限定されるものではない。 [0008] In the first step, a desired target DNA is prepared and randomly fragmented. Fragment The length may be at least a length encoding an RNA capable of inducing RNAi, for example, ten or more bp or more. The appropriate length depends on the cell type for which silencing is to be induced. For example, in a mammalian cell, it can be 19 to 400 bp, preferably 19 to 200 bp, more preferably 19 to 50 bp. On the other hand, in plants and fungi, gene silencing can be induced even with long iRNAs of, for example, about 500 bp. Therefore, the enzyme that can be used in this step has a length corresponding to the cell type that induced the silencing! /, If it can produce a fragment larger than that, There are no restrictions on the type. Examples of enzymes that can be used include, but are not limited to, DNasel and restriction enzymes that can be used for shotgun clawing, such as CvilJI, HaeIII, Rsal, Alul, and Hpal.
[0009] 第二の工程は、ヘアピン形状のオリゴヌクレオチド力 なるアダプター(以下、「ヘア ピン型アダプター」と!、う)を用いて、上記 DNA断片力もヘアピン型 DNAを生成する。 ここで「ヘアピン型アダプター」は、上記二重鎖 DNA断片の少なくとも一端をヘアピン 形状につなぐリンカ一として機能するとともに、最終的に本方法で得られる iRNA発現 構築物力 発現される iRNAのセンス RNA鎖とアンチセンス RNA鎖とをヘアピン形状 につなぐ RNAリンカ一をコードする。ヘアピン型アダプタ一は、 RNA干渉を誘導する ための効果的な長さであればよぐ例えば、 5— 50base、好ましくは 6— 20baseとするこ とができる。ただし、ここに示す長さ以上のヘアピン型アダプターを用いることもできる 。後述する iRNA発現構築物を構築する過程でトリミングして長さを調整することにより 、 iRNA発現構築物が生成された際に上記適切な長さに調節することもできる。また、 ヘアピン部分に tRNAをコードさせたり、ハンマーヘッドリボザィムなどと組み合わせる ことにより、細胞内で長いヘアピン RNA部分がトリミングされて適切な長さの siRNA等 を生成し得るようにデザインすることもできる。ヘアピン型アダプターの配列は、特に 限定はなぐ人工的な配列、マイクロ RNA由来の配列のいずれであってもよい。また、 ヘアピン型アダプタ一は、 DNAで構成することが好ましいが、 RNAで構成してもよい。  [0009] In the second step, the above-mentioned DNA fragment force is used to generate a hairpin-type DNA using a hairpin-shaped oligonucleotide adapter (hereinafter referred to as "hairpin-type adapter"). Here, the “hairpin-type adapter” functions as a linker connecting at least one end of the double-stranded DNA fragment into a hairpin shape, and finally obtains iRNA expression by this method. It encodes an RNA linker that connects the antisense RNA strand to a hairpin. The hairpin-type adapter can be of any length, for example, 5-50 base, preferably 6-20 base, as long as it is effective for inducing RNA interference. However, it is also possible to use a hairpin type adapter having the length shown here or more. By adjusting the length by trimming in the process of constructing an iRNA expression construct described below, the length can be adjusted to the appropriate length when the iRNA expression construct is generated. In addition, by designing the hairpin portion to encode tRNA or combining it with a hammerhead ribozyme, the design should be such that the long hairpin RNA portion can be trimmed in cells to produce siRNAs of appropriate length. You can also. The sequence of the hairpin-type adapter may be any of artificial sequences and microRNA-derived sequences. The hairpin type adapter is preferably made of DNA, but may be made of RNA.
[0010] 上記ランダム DNA断片にヘアピン型アダプターを付加する場合、 DNA断片の末端 構造を制御しなければ、一般に、 DNA断片の両端にヘアピン型アダプターが結合す ることになる。 DNA断片の両端にアダプターが結合すると後述するプライマーェクス テンションの操作に支障が生じる。そのため、二重鎖 DNAの一端のみにヘアピン型ァ ダプターが結合したヘアピン型 DNAを形成させるためには、 DNA断片の両端にヘア ピン型アダプターが結合し環状ィ匕した DNA断片の二重鎖部分を切断して、二つのへ ァピン型 DNAを生成することが考えられる。こうした環状ィ匕した DNA断片力もヘアピン 型 DNAを生成するためには、 DNA断片に由来する二重鎖領域をランダムに切断する 制限酵素を用いて切断することが一例として挙げられる。しかしヘアピン型 DNAの生 成効率およびヘアピン型 DNAの長さの制御を行うためには、ヘアピン型アダプター の内部にアウトサイドカッターの制限酵素認識サイトを備え、二重鎖 DNA領域をこの 制限酵素により切断する手法を用いることが好ましい。ヘアピン型 DNAの二重鎖 [0010] When a hairpin-type adapter is added to the random DNA fragment, the hairpin-type adapter generally binds to both ends of the DNA fragment unless the terminal structure of the DNA fragment is controlled. If the adapter binds to both ends of the DNA fragment, the operation of the primer extension described later will be hindered. Therefore, only one end of the double-stranded DNA In order to form a hairpin-type DNA to which the adapter is bound, a hairpin-type adapter is bound to both ends of the DNA fragment to cut the double-stranded portion of the circularly ligated DNA fragment to generate two hairpin-type DNAs. It is possible to do. In order to generate a hairpin-shaped DNA, such a DNA fragment having a circular shape can be cut by using a restriction enzyme that randomly cuts a double-stranded region derived from a DNA fragment. However, in order to control the efficiency of hairpin DNA production and the length of hairpin DNA, a restriction enzyme recognition site for an outside cutter is provided inside the hairpin adapter, and the double-stranded DNA region is ligated with this restriction enzyme. It is preferable to use a cutting method. Hairpin type DNA double strand
DNA領域の長さの制御に関して、哺乳動物では 19一 21bp程度の二重鎖 RNAが効果 的な RNA干渉を誘導し得るとされて ヽることから、哺乳動物に適用する RNAiライブラリ 一の調製を行う場合にはアウトサイドカッターの制限酵素は、認識サイトから少なくと も 19bp以上離れた部位を切断する酵素であることが好ましい。このような酵素として は、一例を示せば、 Mmelが挙げられる。例えば、 Mmelは認識サイトから 20または 21 塩基離れた部位の二本鎖を切断する。したがって、ヘアピン型アダプターの端部に Mmelの認識サイトを備えることにより、このヘアピン型アダプターが接続している DNA 断片は、 Mmel消化により、 20— 21塩基の DNA断片の一端にヘアピン型アダプターが 接続されたヘアピン型 DNAが生成される。したがって、 Mmelは、哺乳動物細胞内で 標的遺伝子をサイレンシングさせる効果的な長さの iRNAをコードしたヘアピン型 DNA を生成する好ましい制限酵素といえる。 Mmel以外にも Mmelと同様に認識サイトから 20— 21塩基離れた位置を切断する酵素は本工程において有効である。また、 20— 21塩基以上はなれた部位を切断する制限酵素の場合には、アダプターの長さゃァ ダブター内の制限酵素認識サイトの配置を調整することにより、 iRNAをコードした DNA断片の長さを所望に調整し得る。 Regarding the control of the length of the DNA region, since it is said that a double-stranded RNA of about 19 to 21 bp can induce effective RNA interference in mammals, it is necessary to prepare an RNAi library to be applied to mammals. In this case, the restriction enzyme of the outside cutter is preferably an enzyme that cuts a site at least 19 bp or more away from the recognition site. An example of such an enzyme is Mmel. For example, Mmel breaks the double strand 20 or 21 bases away from the recognition site. Therefore, by providing an Mmel recognition site at the end of the hairpin-type adapter, the DNA fragment to which this hairpin-type adapter is connected is connected to one end of the 20-21 base DNA fragment by Mmel digestion. Hairpin-shaped DNA is generated. Thus, Mmel is a preferred restriction enzyme that produces a hairpin-type DNA encoding an effective length of iRNA that silences the target gene in mammalian cells. In addition to Mmel, similarly to Mmel, an enzyme that cuts a position 20 to 21 bases away from the recognition site is effective in this step. In the case of a restriction enzyme that cuts a site separated by 20-21 bases or more, the length of the DNA fragment encoding the iRNA can be adjusted by adjusting the position of the restriction enzyme recognition site in the adapter length adapter. Can be adjusted as desired.
上記にぉ 、て長 、ヘアピン型アダプターを用いた場合には iRNA発現構築物生成 過程のいずれかの過程でトリミングすることを説明した力 このトリミングの手法は、ァ ダプターが DNAベースであるか、 RNAベースであるかにより異なる。アダプターが DNAベースの場合には、アダプター内に任意のトリミング用の制限酵素認識サイトや 切断サイトを設け、この制限酵素で消化、その後、ライゲーシヨンにより再接続するこ とにより、アダプターの長さを調整することができる。このトリミング用の制限酵素は特 に限定はなぐアダプターの長さを短くし得る制限酵素であればよい。後述する実施 例に示すように、認識サイトから双方向に切断を行う Bcglを制限酵素の一例としてあ げることができる。アダプター内に Bcglの認識サイトを備えることにより、一つの制限 酵素 Bcglでアダプター内を二箇所切断することができるため、簡便にトリミングを行う ことができる。また二つの制限酵素を組合わせて、アダプターの長さを調節することも もちろん可能である。 RNAベースのアダプターを用いた場合には、後述するプライマ 一エクステンションによりアダプターの領域は RNA/DNAノヽイブリツドニ重鎖が形成さ れる。こうした RNA/DNAノヽイブリツド領域のトリミングは、先ず、 RNaseHで RNA鎖を消 化し、その後一本鎖 DNAを消化する酵素(ssDNA酵素)により ssDNAを消化すること により、トリミングを行うことができる。 As described above, the ability to perform trimming in any of the processes of generating an iRNA expression construct when a hairpin-type adapter is used. This trimming method is based on whether the adapter is DNA-based or RNA-based. It depends on whether it is a base. If the adapter is DNA-based, provide an optional restriction enzyme recognition site or cleavage site for trimming within the adapter, digest with this restriction enzyme, and then reconnect by ligation. Thus, the length of the adapter can be adjusted. The restriction enzyme for trimming may be any restriction enzyme capable of shortening the length of the adapter, which is particularly limited. As shown in Examples described later, Bcgl, which performs bidirectional cleavage from a recognition site, can be given as an example of a restriction enzyme. By providing a recognition site for Bcgl in the adapter, the inside of the adapter can be cut at two places with one restriction enzyme, Bcgl, so that trimming can be performed easily. It is of course possible to adjust the length of the adapter by combining two restriction enzymes. When an RNA-based adapter is used, an RNA / DNA hybrididoni heavy chain is formed in the adapter region by the primer extension described below. Trimming of the RNA / DNA hybrid region can be performed by first quenching the RNA chain with RNaseH, and then digesting the ssDNA with an enzyme that digests single-stranded DNA (ssDNA enzyme).
[0012] 第三の工程は、上記 DNA断片にヘアピン型アダプターが付加されて形成されたへ ァピン型 DNAを用いて iRNA発現構築物を生成する。上記ヘアピン型 DNAの二重鎖 を Strand— displacing活性を有するポリメラーゼを用いてプライマーエクステンションさ せることにより、相補的な配列がアダプターを挟んでヘッド ティル結合した iRNA発 現構築物が生成される。ここで、上記工程で生成されたヘアピン型 DNAをそのままで 、上記プライマーエクステンションにより iRNA発現構築物を生成してもよいが、好まし くはプライマーエクステンションを実行する前に、ヘアピン型 DNAのアダプターが接 続されて ヽな 、他端を別のアダプターで保護することが好ま ヽ。ここで末端保護用 に接続するアダプタ一としては、後にプライマーエクステンション操作に支障を与えな ぃ両末端が断端構造を備えた DNAアダプター(以下、便宜的に「二重鎖断端型ァダ プター」または「断端型アダプター」と 、う)を用いる。このアダプターの配列は特に限 定はない。また長さは、アダプターを合成するコスト等を考慮すれば、例えば 5— 100base、好ましくは 20— 40baseである。しかしこれ以上の長さであっても当然に DNA 末端の保護が図れることから、実験操作に支障がない範囲であれば基本的に長さの 上限に制限はない。 [0012] In the third step, an iRNA expression construct is generated using a hairpin-type DNA formed by adding a hairpin-type adapter to the DNA fragment. By primer extension of the hairpin-type DNA duplex using a polymerase having a strand-displacing activity, an iRNA expression construct in which a complementary sequence is head-til-bonded with an adapter interposed is generated. Here, an iRNA expression construct may be generated by the above-mentioned primer extension while the hairpin-type DNA generated in the above step is left as it is, but preferably, the adapter of the hairpin-type DNA is connected before performing the primer extension. It is preferable to protect the other end with another adapter. Here, an adapter to be connected for end protection is a DNA adapter having a truncated structure at both ends (hereinafter referred to as a “double-stranded truncated adapter” for convenience). "Or" Stump type adapter ". The sequence of this adapter is not particularly limited. The length is, for example, 5 to 100 bases, preferably 20 to 40 bases in consideration of the cost of synthesizing the adapter. However, even if the length is longer than this, naturally the protection of the DNA end can be achieved. Therefore, there is basically no upper limit of the length as long as it does not hinder the experimental operation.
[0013] また、断端型アダプタ一は DNA断片の保護目的で付加されて 、ることから、プライ マーエクステンションが完了した後に除去されることが好ましい。後に詳述するプライ マーエクステンション後の断端型アダプターの除去を容易にするためには、断端型ァ ダブターに切り出しのための制限酵素サイトある 、は切断サイトが備えられて 、ること が好ましい。この断端型アダプターの切り出しを行い得る制限酵素は特に制限はな V、が、断端型アダプター配列をプライマーエクステンションにより得られる iRNA発現 構築物上に残存させないためには、アウトサイトカッターの制限酵素を用いることが好 ましい。例えば、後述する実施例に示すように Bpmlは認識サイトから一定距離の位置 を切断する。したがって、この切断部位を DNA断片と断端型アダプターとの境界とな るように Bpml認識サイトを断端型アダプター内に設計することにより、 iRNA発現構築 物上から断端型アダプターをほぼ取り除き、残された粘着末端をさらに ssDNA消化活 性を有する酵素で消化することにより完全にアダプター配列が除去される。また、この 断端型アダプター配列は iRNA発現構築物の両端に付加されて ヽるが、この両端を 異なる制限酵素で切断することにより、後述するベクターへの接続方向を制御するこ とも可能となる。後述する実施例で一例を示すように、一方の断端型アダプターを B pmlにより、他方を Bbslにより切除して両端の断端型アダプターを除去するとともに iRNA発現構築物の両末端の構造を制御し得るように断端型アダプターを設計するこ とがでさる。 [0013] In addition, since the stump-type adapter 1 is added for the purpose of protecting a DNA fragment, it is preferable that the adapter be removed after the primer extension is completed. Ply to be described in detail In order to facilitate removal of the stump-type adapter after mer-extension, it is preferable that the stump-type adapter is provided with a restriction enzyme site for excision or a cleavage site. There are no particular restrictions on the restriction enzymes that can excise the stump-shaped adapter V. It is preferable to use it. For example, Bpml cuts a position at a certain distance from a recognition site, as shown in an example described later. Therefore, by designing the Bpml recognition site in the stump-shaped adapter so that this cleavage site becomes the boundary between the DNA fragment and the stump-shaped adapter, the stump-shaped adapter is almost removed from the iRNA expression construct, The adapter sequence is completely removed by further digesting the remaining sticky ends with an enzyme having ssDNA digestion activity. The truncated adapter sequence is added to both ends of the iRNA expression construct. By cutting both ends with different restriction enzymes, it is possible to control the direction of connection to a vector described later. As shown in the examples below, one truncated adapter is excised with B pml and the other with Bbsl to remove the truncated adapters at both ends and to control the structure of both ends of the iRNA expression construct. It is possible to design a stump type adapter to obtain.
[0014] 上記断端型アダプターが接続されたヘアピン型 DNAは、アダプターの末端にァ- 一リングし得るプライマーおよび Strand— displacing活性を有するポリメラーゼを用いて プライマーエクステンションが実施される。ここで用いるポリメラーゼは、最低限 Strand displacing活性を備えて 、ればよ 、が、 PCR装置を利用してこの操作を実行するた めには耐熱性であることが好まし 、。 Strand— displacing活性を有するポリメラーゼとし ては、 Klenow Fragment, phi29など、さらに而熱性を備えたものとしては、 Bstポリメラ ーゼ、 Ventポリメラーゼなどが挙げられる。また、エクステンションの条件は、使用する ポリメラーゼにより適宜決定できる。例えば、 Bstポリメラーゼを用いた場合の条件に ついては、後述する実施例に一例を示す。また、ヘアピン型アダプターが RNAベー スである場合には、上記 Strand— displacing活性の他にも、逆転写活性を有する酵素 を用いる必要がある。  The hairpin DNA to which the stump-type adapter is connected is subjected to primer extension using a primer capable of aligning with the end of the adapter and a polymerase having a strand-displacing activity. The polymerase used here should have at least a strand displacing activity, but it is preferable that the polymerase be heat-resistant in order to perform this operation using a PCR device. Klenow Fragment and phi29 are examples of polymerases having a strand-displacing activity, and Bst polymerase and Vent polymerase are examples of those having a thermophilic property. The extension conditions can be appropriately determined depending on the polymerase used. For example, the conditions when Bst polymerase is used are described in an example described later. When the hairpin-type adapter is RNA-based, it is necessary to use an enzyme having a reverse transcription activity in addition to the above strand-displacing activity.
[0015] 上記プライマーエクステンションを実施することにより、両末端に断端型アダプター 配列を備え、その間に、ヘアピン型アダプターを挟んで標的 DNAに由来する DNA断 片がヘッド ティル結合した構造を有する二重鎖 DNAが形成される。この構造から末 端の不要な断端型アダプター配列を除去して、 iRNA発現構築物を生成する。不要 な末端の断端型アダプター配列の除去は、断端型アダプター上に設けられたサイト を認識する制限酵素で切断する。制限酵素により断端型アダプターがトリミングされ ると、膨大な iRNA発現構築物が生成される。 [0015] By performing the above primer extension, a truncated adapter is provided at both ends. A double-stranded DNA having a structure in which DNA fragments derived from the target DNA are head-tilled with a hairpin-shaped adapter is formed between the sequences. An unnecessary truncated adapter sequence at the end is removed from this structure to generate an iRNA expression construct. Unnecessary truncated adapter sequences can be removed by cutting with a restriction enzyme that recognizes the site provided on the truncated adapter. When the truncated adapter is trimmed by the restriction enzyme, a huge iRNA expression construct is generated.
[0016] なお、 iRNA発現構築物が生成されるまでの過程、アダプターの付加や制限酵素で 消化した毎に、または iRNA発現構築物が精製された最終の段階で目的とするフラグ メントの精製を行って過剰なアダプターや、制限酵素で除去したいフラグメントを反応 系から取り除くことが好ましい。精製の一例としては、電気泳動後のゲルから目的とす る長さあるいは予想される長さの断片を抽出する方法あるいはタグなどを利用して目 的のフラグメントを精製する方法が挙げられる。  [0016] The desired fragment may be purified in the process until the iRNA expression construct is produced, each time an adapter is added or digested with a restriction enzyme, or at the final stage of purification of the iRNA expression construct. It is preferable to remove excess adapters and fragments to be removed with a restriction enzyme from the reaction system. As an example of the purification, a method of extracting a fragment having a desired or expected length from the gel after electrophoresis, or a method of purifying the fragment using a tag or the like can be mentioned.
上記実施形態では、標的 DNAの断片化後、先に、ヘアピン型アダプターを付加し、 その後に断端型アダプターを付加する例を示したが、逆の操作も可能である。  In the above embodiment, an example in which a hairpin-type adapter is added first after fragmentation of the target DNA and then a stump-type adapter is added, but the reverse operation is also possible.
[0017] 上記にぉ 、て生成された iRNA発現構築物はベクターに接続して RNAiライブラリー が構築される。ベクターとしては、本ライブラリーを適用したい細胞種によりにより選択 し得るが、好ましくは大腸菌等のノ クテリアで増幅が可能なプラスミド骨格を備えた発 現ベクターを好適に利用し得る。こうした大腸菌等で増幅が可能なプラスミド骨格とし ては、例えば、 M13系ベクター、 pUC系ベクター、 pBR322、 pBluescript、 pCR- Script などが挙げられる。こうしたバクテリア由来のプラスミドは大量に増幅を行うことができ るため、ライブラリーの大量調製が容易であり、また、ヘアピン型アダプター配列のトリ ミングなどの処理を行う場合には便利である。上記バクテリア系のプラスミドには必要 に応じて Ampなどの薬剤選択マーカー、栄養要求性遺伝子などを担持させることが 好ましい。  [0017] As described above, the iRNA expression construct thus produced is connected to a vector to construct an RNAi library. The vector can be selected depending on the cell type to which the present library is to be applied, but preferably an expression vector having a plasmid backbone that can be amplified in a bacterium such as Escherichia coli can be suitably used. Examples of such a plasmid backbone that can be amplified in Escherichia coli and the like include M13-based vectors, pUC-based vectors, pBR322, pBluescript, and pCR-Script. Since such a bacterial plasmid can be amplified in a large amount, it is easy to prepare a large amount of a library, and it is convenient when performing a treatment such as trimming of a hairpin type adapter sequence. It is preferable to carry a drug selection marker such as Amp, an auxotrophic gene, and the like, as necessary, on the bacterial plasmid.
[0018] また、こうしたプラスミド骨格には実験対象の宿主に応じた発現カセットを備えること が好ましい。発現カセット内のプロモーターは宿主細胞に適したものであればよいが 、哺乳動物細胞の場合には siRNA/shRNA等の短!、RNAを発現させるために RNAポリ メラーゼ III駆動プロモーターを用いることが好まし!/、。 RNAポリメラーゼ III駆動プロモ 一ターとしては、マウス U6遺伝子由来のプロモーター、 tRNAプロモーター、アデノウ ィルス VA1プロモーター、 5S rRNAプロモーター、 7SK RNAプロモーター、 7SL RNAプロモーター、 HI RNAプロモーターなどを挙げることができる。また、 iRNA発 現構築物を染色体に組み込み安定的に iRNAを発現させるためには、レトロウイルス の発現カセットを用い、このカセット内に iRNA発現構築物を組み入れることが好まし い。レトロウイルス発現カセットを用いた例としては、後述する実施例に示す。 [0018] It is preferable that such a plasmid backbone is provided with an expression cassette corresponding to the host to be tested. The promoter in the expression cassette may be any suitable for the host cell. In the case of mammalian cells, it is preferable to use an RNA polymerase III-driven promoter for expressing short RNAs such as siRNA / shRNA. Better!/,. RNA polymerase III driven promo Examples of the promoter include a mouse U6 gene-derived promoter, a tRNA promoter, an adenovirus VA1 promoter, a 5S rRNA promoter, a 7SK RNA promoter, a 7SL RNA promoter, and an HI RNA promoter. To integrate the iRNA expression construct into the chromosome and stably express iRNA, it is preferable to use a retrovirus expression cassette and incorporate the iRNA expression construct into this cassette. An example using a retrovirus expression cassette will be described in Examples described later.
[0019] iRNAを発現させて動物細胞、植物細胞等でフォワードあるいはリバース遺伝学を 実施するために、宿主細胞に応じたベクターを選択してもよい。例えば、哺乳動物由 来の発現ベクター、例えば、 pcDNA3 (インビトロゲン社製)や、 pEGF- BOS (Nucleic Acids. Res.1990, 18(17),p5322)、 pEF、 pCDM8など、昆虫細胞由来の発現ベクター、 例えば「Bac— to— BAC baculovairus expression system」 (ギブコ BRL社製)、 pBacPAK8など、植物由来の発現ベクター、例えば、 ρΜΗ1、 pMH2など、動物ウィルス 由来の発現ベクター、例えば、 pHSV、 pMV、 pAdexLcwなど、レトロウイルス由来の発 現ベクター、例えば、 pZIPneoなど、酵母由来の発現ベクター、例えば、「Pichia Expression KitJ (インビトロゲン社製)、 pNVll、 SP- Q01など、枯草菌由来の発現べク ター、例えば、 pPL608、 pKTH50などが挙げられる。上記膨大な iRNA発現構築物が 個別のベクターに挿入され、 RNAiライブラリーが生成される。  [0019] In order to express iRNA and carry out forward or reverse genetics in animal cells, plant cells, and the like, a vector depending on the host cell may be selected. For example, expression vectors derived from insect cells such as mammalian-derived expression vectors, for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res. 1990, 18 (17), p5322), pEF, and pCDM8 Vectors, for example, Bac-to-BAC baculovairus expression system (manufactured by Gibco BRL), plant-derived expression vectors such as pBacPAK8, and animal virus-derived expression vectors such as ρΜΗ1 and pMH2, for example, pHSV, pMV, pAdexLcw A retrovirus-derived expression vector, for example, pZIPneo, etc., yeast-derived expression vector, for example, `` Pichia Expression KitJ (manufactured by Invitrogen), pNVll, SP-Q01, etc. For example, pPL608, pKTH50, etc. The huge iRNA expression constructs described above are inserted into individual vectors to generate an RNAi library.
[0020] ここで生成された RNAiライブラリ一は直接、フォワード、リバース遺伝学に利用し得 る。その他にも、 in vitroの転写系を用いて本発明の RNAiライブラリーからオリゴ RNAi ライブラリーを合成して、このオリゴ RNAiライブラリーを生成した後にフォワード、リバ ース遺伝学の研究に利用してもよい。  [0020] The RNAi library generated here can be directly used for forward and reverse genetics. In addition, an oligo-RNAi library is synthesized from the RNAi library of the present invention using an in vitro transcription system, and this oligo-RNAi library is generated and then used for research on forward and reverse genetics. Is also good.
[0021] スクリーニング方法  [0021] Screening method
本発明は、上記 RNAiライブラリ一力ゝら標的遺伝子の発現を抑制し得る iRNA発現構 築物を保持したクローンを選択するスクリーニング方法を提供する。具体的には、本 発明のスクリーニング方法は、標的 DNAが発現している細胞に上記方法により標的 DNAから調整された RNAiライブラリーを導入する工程と、標的 DNAの発現を測定す る工程、が含まれる。  The present invention provides a screening method for selecting a clone having an iRNA expression construct capable of suppressing the expression of a target gene as described above in the RNAi library. Specifically, the screening method of the present invention comprises a step of introducing an RNAi library prepared from a target DNA by the above method into cells expressing the target DNA, and a step of measuring the expression of the target DNA. included.
[0022] 標的 DNAが発現している細胞への RNAiライブラリーの導入方法は、 RNAiライブラリ 一を構築した際に使用したベクターにより適宜選択し得る。例えば、感染能力を有す るウィルスベクターを用いた場合には、ウィルスの感染力により RNAiライブラリーを細 胞に導入する。また、プラスミドベクターの場合には、カチォニックリボソーム DOTAP( ベーリンガーマンハイム社製)を用いた方法、エレクト口ポレーシヨン法、リポフエクショ ン法、ジーンガン法、リン酸カルシウム法、 DEAEデキストラン法など力 適宜選択して 用!/、ることができる。 [0022] The method for introducing an RNAi library into cells expressing the target DNA is as follows. One can be appropriately selected depending on the vector used when constructing one. For example, when a virus vector having infectivity is used, an RNAi library is introduced into cells due to the infectivity of the virus. In the case of a plasmid vector, a method using catonic ribosome DOTAP (manufactured by Boehringer Mannheim), electoral poration, lipofection, gene gun, calcium phosphate, DEAE dextran, etc. ! / You can.
[0023] 標的 DNAの発現測定は、標的 DNAの抗体を用いて蛋白質の発現量に基づ ヽて測 定してもよぐまた、特定の遺伝子の活性が同定されている場合には、その活性に基 づいて測定してもよい。例えば、当該標的 DNAの活性として、下流の遺伝子がレギュ レートされることがわ力つて 、る場合には、この下流の遺伝子の発現を測定すること により標的 DNAの発現を間接的に測定してもよい。  [0023] Expression of the target DNA may be measured based on the expression level of the protein using an antibody against the target DNA. If the activity of a specific gene has been identified, the measurement may be performed. You may measure based on activity. For example, if it is known that the downstream gene is regulated as the activity of the target DNA, the expression of the target DNA is indirectly measured by measuring the expression of the downstream gene. Is also good.
[0024] また、標的 DNAの機能が未知であったり、活性測定が困難である場合には、標的 DNAにレポーター遺伝子を接続した融合遺伝子を保持させた形質転換体を調整し、 これを用いてスクリーニングを行うことが好まし 、。  [0024] When the function of the target DNA is unknown or the activity is difficult to measure, a transformant in which a fusion gene in which a reporter gene is connected to the target DNA is prepared is prepared. It is preferable to conduct screening.
[0025] 例えば、レポーターとしては、蛍光蛋白質(ルシフェラーゼ、 GFP、 CFP、 YFP、 RFP など)、アミノグリコシドトランスフェラーゼ (APH)、チミジンキナーゼ (TK)、ジヒドロ葉 酸還元酵素(dhfr)などの酵素を用いることができる。こうしたレポータをコードした遺 伝子に標的 DNAを接続することにより、細胞内では融合遺伝子の mRNAが発現され る。 RNAiライブラリ一力ゝら発現された標的 DNAに対する iRNAは、この融合遺伝子の 発現を抑制し、レポーター活性が低下することになる。したがって、このような標的 DNAがレポーター遺伝子と融合された融合遺伝子を用いることにより、レポータ活性 を指標に RNAiライブラリーの各クローンの標的 DNAに対するサイレンシング活性を簡 便に測定することが可能となる。例えば、上記蛍光蛋白質などのレポータ遺伝子に用 いた場合には、蛍光蛋白質の発現の減少に基づいて、 RNAiライブラリ一中の各クロ ーンのサイレンシング活性を測定することができる。一方、 TKなどのネガティブ選択 マーカーを用いた場合には、 RNAiライブラリ一中のサイレンシング活性を有しないク ローンでは、 TKの活性を抑制できずにガンシクロビルの添カ卩により細胞は死滅し、一 方、サイレンシング活性を有するクローンでは、 TKの活性が抑制されてガンシクロビ ル添カ卩によっても細胞は生存し得ることになる。このようにネガティブ選択マーカーを レポーターとして用いた場合には、サイレンシング活性を有するクローンが導入され た細胞のみが選択的に生き残るため、効率よくサイレンシング活性を有する iRNA発 現構築物を保持したクローンが得られる。ここで選択された細胞より、 iRNA発現構築 物を保持したベクターを回収することにより、標的 DNA中のいな力る領域を iRNAの標 的とすることが好ましいか同定することが可能となる。 [0025] For example, as a reporter, an enzyme such as a fluorescent protein (luciferase, GFP, CFP, YFP, RFP, etc.), aminoglycoside transferase (APH), thymidine kinase (TK), dihydrofolate reductase (dhfr) is used. Can be. By connecting the target DNA to the gene encoding such a reporter, the mRNA of the fusion gene is expressed in the cell. The iRNA against the target DNA expressed as a whole in the RNAi library suppresses the expression of this fusion gene, and the reporter activity decreases. Therefore, by using such a fusion gene in which the target DNA is fused with a reporter gene, it is possible to easily measure the silencing activity of each clone of the RNAi library with respect to the target DNA using the reporter activity as an index. . For example, when used for a reporter gene such as the fluorescent protein, the silencing activity of each clone in the RNAi library can be measured based on the decrease in the expression of the fluorescent protein. On the other hand, when a negative selection marker such as TK is used, the clones having no silencing activity in the RNAi library cannot suppress the TK activity, and the cells are killed by the addition of ganciclovir. On the other hand, in clones having silencing activity, TK activity is suppressed and The cells can survive even with the luster. When a negative selection marker is used as a reporter in this manner, only the cells into which the clones having silencing activity have been introduced selectively survive, so that clones having the iRNA expression constructs having silencing activity efficiently can be obtained. can get. By recovering the vector holding the iRNA expression construct from the cells selected here, it becomes possible to identify whether it is preferable to use any powerful region in the target DNA as an iRNA target.
[0026] キット [0026] Kit
本発明は、上記 RNAiライブラリーの酵素的構築方法を実施するための RNAiライブ ラリーキットを提供する。キットには、上述したヘアピン型アダプター、断端型アダプタ 一、プライマーエクステンション用のプライマーおよび酵素、必要に応じてトリミングに 使用する酵素、ランダム DNA断片を精製するための酵素などを含めることができる。 また、 iRNA発現構築物を挿入するためのベクターなども含めることができる。さらに上 述した RNAiライブラリーの酵素的構築方法を実施するためのプロトコールを添付して もよい。このように本発明のライブラリー構築方法を実施するための材料をキット化す ることにより、より一層簡便かつ身近に本発明の RNAiライブラリー構築方法を実施す ることがでさる。  The present invention provides an RNAi library kit for performing the above-described method for enzymatically constructing an RNAi library. The kit can include the above-described hairpin-type adapter, stump-type adapter 1, primers and enzymes for primer extension, enzymes used for trimming if necessary, enzymes for purifying random DNA fragments, and the like. Also, a vector for inserting the iRNA expression construct can be included. Further, a protocol for performing the above-described method for enzymatically constructing an RNAi library may be attached. By preparing a material for carrying out the method for constructing a library of the present invention as described above, the method for constructing an RNAi library of the present invention can be carried out more easily and more easily.
実施例  Example
[0027]  [0027]
RNAiライブラリーの作製  Preparation of RNAi library
EPRILは、対象となる cDNAsカゝら shRNA発現ベクターライブラリーを作製するために 数段階の酵素処理を含む(図 la)。第一に、二本鎖 DNAsを DNaselによってほぼ無作 為に断片化する(Anderson, S. Nucleic Acids Res. 9, 3015-3027 (1981))。次に、 Mmelの認識配列を含むヘアピン形状のアダプターを断片にライゲーシヨンする。 Mmelは、認識配列からそれぞれ、 20および 18塩基離れた部位で上部および下部の 鎖を切断することが報告されているが(Boyd, A.C. et al. Nucleic Acids Res. 14, 5255-5274 (1986))、本発明者らは、 Mmelが塩基 21および 19位でも DNAを切断する ことを発見した。したがって、 Mmel消化は、標的 cDNAsから 20または 21塩基の長さの 配列を有する短い 3'-突出 DNA断片を生じる。ポリアクリルアミドゲル電気泳動(PAGE )は、 Mmel消化 DNAを- 40 bpのバンドとして示す(図 lb)。 Mmel消化後、生成された 断片に第二のアダプターをライゲーシヨンする。このアダプタ一は、 Mmel消化物の 3' 突出末端が塞がれるように、一方の鎖の 3'末端で二つの縮重塩基を有する。第二の アダプターをライゲーシヨンした後、プライマー伸長反応を行って、一本鎖ヘアピン DNAを、ループ配列を介して結合された逆方向反復配列を備えた二本鎖 DNAに変 換する(図 1)。プライマー伸長産物を適当な制限エンドヌクレアーゼによって消化し て、逆方向反復配列の外側の余分な配列を除去して、下記のプラスミドベクターに挿 入する。逆方向反復配列が隣接する長いループ内の余分な配列を適当な制限ェン ドヌクレアーゼによって除去した後、再環状化を行う。 EPRIL involves several steps of enzymatic treatment to create a target cDNAs shrimp expression vector library (Figure la). First, double-stranded DNAs are fragmented almost randomly with DNasel (Anderson, S. Nucleic Acids Res. 9, 3015-3027 (1981)). Next, a hairpin-shaped adapter containing the recognition sequence of Mmel is ligated to the fragment. Mmel has been reported to cleave the upper and lower strands at sites 20 and 18 bases away from the recognition sequence, respectively (Boyd, AC et al. Nucleic Acids Res. 14, 5255-5274 (1986)). ), The inventors have found that Mmel also cleaves DNA at bases 21 and 19. Thus, Mmel digestion yields short 3'-overhanging DNA fragments with sequences 20 or 21 bases in length from the target cDNAs. Polyacrylamide gel electrophoresis (PAGE ) Shows Mmel digested DNA as a -40 bp band (FIG. Lb). After Mmel digestion, a second adapter is ligated to the resulting fragment. This adapter has two degenerate bases at the 3 'end of one strand so that the 3' overhang of the Mmel digest is plugged. After ligation of the second adapter, a primer extension reaction is performed to convert the single-stranded hairpin DNA into a double-stranded DNA with inverted repeats connected via a loop sequence (Figure 1). . The primer extension product is digested with an appropriate restriction endonuclease to remove extra sequences outside the inverted repeat sequence and inserted into the plasmid vector described below. Recircularization is performed after removing extraneous sequences in the long loop flanked by inverted repeats with an appropriate restriction end nuclease.
ライブラリー構築と shRNA発現のために、本発明者らは、マウス U6遺伝子カゝら RNA ポリメラーゼ III駆動プロモーターを含むレトロウイルスベクターを有するプラスミドを用 V、た。 shRNA発現カセットを導入するためにレトロウイルスベクターを用いることによつ て、安定な RNAi効果が確保される(Paddison, P.J. & Hannon, G.J. Cancer Cell 2, 17-23 (2002)) o  For library construction and shRNA expression, we used a plasmid with a retroviral vector containing a mouse U6 gene capella RNA polymerase III driven promoter. Using a retroviral vector to introduce the shRNA expression cassette ensures a stable RNAi effect (Paddison, P.J. & Hannon, G.J. Cancer Cell 2, 17-23 (2002)).
GFPをコードする cDNAからの RNAiライブラリー  RNAi library from cDNA encoding GFP
EPRILを評価するために、本発明者らは、緑色蛍光タンパク質 (GFP)をコードする cDNAから shRNA発現ライブラリーを作製した。ライブラリーからの個々のクローンの配 列分析により、配列データを有するクローン 343個中 290個が逆方向反復配列を有す ることが示された。これらのクローン 39個は不完全な逆方向反復を有していた力 クロ ーン 251個は GFP配列に由来する 19塩基またはそれ以上の長さの塩基の逆方向反 復配列を有する GFPサイレンシングのための候補 shRNA発現構築物であった。ほと んどのクローンの逆方向反復配列の長さは 20または 21ヌクレオチドのいずれかであり 、クローン 251個中 18個(7.2%)、 139個(55.4%)、および 94個(37.5%)はそれぞれ、 19、 20、および 21塩基の長さであった。第一のアダプタ一は DNasel消化断片の両端 に結合させることができるため、二つの異なる方向を有する shRNAを得ることができる はずである。 mRNA配列と相補的であるガイド配列は、 shRNAの 5 'または 3 '側にほぼ 同じ頻度で存在する(54.6%対 45.4%、 p〉0.1)。標的配列の分析から、様々な shRNA 発現構築物が標的遺伝子の様々な部分力 生成されたことが示された;完全な 720 bpの GFPコード配列の全域に対して、独立したクローン 251個から非重複 shRNA発現 構築物 157個によって全体の 96.3%がカバーされていた。このように、 EPRILによって 、対象となる cDNAからの shRNA発現構築物の膨大なアレイのハイスループット産生 が可能となる。 To evaluate EPRIL, we generated an shRNA expression library from cDNA encoding green fluorescent protein (GFP). Sequence analysis of individual clones from the library showed that 290 out of 343 clones with sequence data had inverted repeats. 39 of these clones had incomplete inverted repeats.251 clones had an inverted repeat of 19 or more bases from the GFP sequence.GFP silencing Was a candidate shRNA expression construct. Most clones have an inverted repeat length of either 20 or 21 nucleotides, and 18 (7.2%), 139 (55.4%), and 94 (37.5%) of 251 clones They were 19, 20, and 21 bases in length, respectively. The first adapter can be ligated to both ends of the DNasel digested fragment, so that shRNAs with two different orientations should be obtained. Guide sequences that are complementary to the mRNA sequence are about the same frequency on the 5 'or 3' side of the shRNA (54.6% vs. 45.4%, p> 0.1). Analysis of the target sequence indicated that different shRNA expression constructs were generated with different partial forces of the target gene; the complete 720 For the entire bp GFP coding sequence, 96.3% of the total was covered by 157 non-overlapping shRNA expression constructs from 251 independent clones. Thus, EPRIL enables high-throughput production of vast arrays of shRNA expression constructs from cDNA of interest.
[0029] shRNA発現構築物を有するレトロウイルスを、 96ゥエルプレートフォーマットで個々 のプラスミドから産生し、これによつて本発明者らは、独立したウィルスの膨大なァレ ィを同時に得ることができる。 GFPを発現する Jurkat T細胞にも同じフォーマットでウイ ルスを感染させた。感染細胞の GFP発現レベルは、フローサイトメトリーによって決定 して、 RNAi効率を定量した。 shRNA発現構築物に応じて RNAi効率にかなりの変動を 認めた。このように、本発明者らは、それぞれ重複していない構築物 262個の測定結 果カゝら RNAi効率の分布を分析した(図 2a)。構築物約 56%が低 、RNAi活性であった (1.5倍未満の減少)。所定の減少倍数 (X)より大き!/、RNAi効率を有する shRNA発現 構築物を発見する確率を推定するために、本発明者らは、その減少倍数が Xを超え る shRNA発現構築物の分画毎の量を Xに対してプロットした。おおよそ、 30%力 ¾倍を 超える RNAi効率の減少を示したのに対し、 8倍を超える減少を有したのはごくわずか な割合であった。全体的な確率は、一- 1.7べき法則スケーリングで減少倍数と比例し 、このことは 5倍の減少効率を有する RNAi構築物を発見したい場合、例えば、 15 (51 7 )倍多 、候補構築物をスクリーニングしなければならな 、ことを意味する。 [0029] Retroviruses with shRNA expression constructs are produced from individual plasmids in a 96-well plate format, allowing the present inventors to simultaneously obtain a vast array of independent viruses. Jurkat T cells expressing GFP were also infected with the virus in the same format. GFP expression levels in infected cells were determined by flow cytometry to quantify RNAi efficiency. There was considerable variation in RNAi efficiency depending on the shRNA expression construct. As described above, the present inventors analyzed the distribution of RNAi efficiency in the measurement results of 262 non-overlapping constructs (FIG. 2a). Approximately 56% of the constructs had low RNAi activity (less than 1.5-fold reduction). In order to estimate the probability of finding a shRNA expression construct with RNAi efficiency greater than a predetermined fold reduction (X)! /, We determined for each fraction of shRNA expression constructs whose fold reduction exceeds X. Was plotted against X. Roughly 30% showed a reduction in RNAi efficiency of more than 30%, whereas only a small percentage had a reduction of more than 8 times. The overall probability is proportional to the fold reduction with a 1-1.7 power law scaling, which means that if you want to find RNAi constructs with a 5 fold reduction efficiency, e.g., 15 (5 17 ) fold more candidate constructs That means you have to screen.
[0030] 次に、本発明者らは、 RNAi効率の領域依存性を分析した。効率的および非効率的 shRNA発現構築物の双方が領域全体に分布した(図 2c)。定量的分析の場合、本発 明者らは、等しく亜分割した領域 10個に従ってデータを分類して(図 2d)、分散分析 を行った。本発明者らは、有意な領域依存性を認めなカゝつた (クラスカル 'ウォリス検 定; pく 0.4)。特に結果は、その領域が RNAiにとつて不良な基質であるというこれまで の推定にもかかわらず(Dykxhoorn, D.M. et al. Nat. Rev. Mol. Cell Biol. 4, 457-467 (2003))、開始コドンから 72 bp内の領域でさえも良好な標的として役立ちうることを示 した。 shRNA発現構築物の方向に関して、 3'側に存在するガイド配列はより有効であ る、という全体的な傾向を認めた。  Next, the present inventors analyzed the region dependence of RNAi efficiency. Both efficient and inefficient shRNA expression constructs were distributed throughout the region (FIG. 2c). In the case of quantitative analysis, we classified the data according to ten equally subdivided regions (Figure 2d) and performed an analysis of variance. We found no significant region dependence (Kruskal 'Wallis test; p 0.4). In particular, the results indicate that the region is a poor substrate for RNAi (Dykxhoorn, DM et al. Nat. Rev. Mol. Cell Biol. 4, 457-467 (2003)). Have shown that even a region within 72 bp from the start codon can serve as a good target. Regarding the orientation of the shRNA expression construct, there was an overall trend that the guide sequence located on the 3 'side was more effective.
[0031] RNAi効率の変動パターンは、調べた代表的な構築物 10個が、 HEK293または HeLa 細胞にぉ 、て類似の効率プロフィールを示したことから(データは示して 、な 、)、細 胞タイプ非依存的である。プラスミドまたは PCR増幅した最小の shRNA発現カセットの 直接トランスフエクシヨンにより、レトロウイルス形質導入と類似のプロフィールが得ら れ(図 3a)、ウィルス力価の差の影響は除外された。さらに、インビトロで転写された shRNAの直接トランスフエクシヨンによる RNAiプロフィールは、 DNAに基づく発現のプ ロフィールと十分に相関した(図 3b)。インビトロで転写した shRNAsをダイサ一によつ て予め消化した場合でも、類似の結果を得た。これらの結果は、 RNAi効率ブロフィー ルを決定する要因が転写およびダイサ一-プロセシング段階の下流に存在することを 示している。 [0031] The variation pattern of the RNAi efficiency was such that 10 representative constructs examined showed that HEK293 or HeLa Since the cells showed a similar efficiency profile in some cases (data are shown,,,), they were independent of the cell type. Direct transfection of the minimal plasmid or PCR amplified shRNA expression cassette yielded a profile similar to retroviral transduction (FIG. 3a), excluding the effects of differences in viral titers. Furthermore, the RNAi profile of the in vitro transcribed shRNA by direct transfection correlated well with the DNA-based expression profile (FIG. 3b). Similar results were obtained when shRNAs transcribed in vitro were previously digested with Dicer. These results indicate that the factors that determine the RNAi efficiency profile are downstream of the transcription and Dicer 1-processing steps.
1型 IP受容体をコードする cDNAからの RNAiライブラリー RNAi library from cDNA encoding type 1 IP receptor
3  Three
本発明者らは、上記の戦略が内因性の遺伝子に応用可能であるか否かを調べた。 本発明者らは、標的として 1型イノシトール 1,4,5-三リン酸受容体 (Mignery, G.A et al. J. Biol. Chem. 265, 12679-12685 (1990)) (IP R)をコードする DNAを用いた。 GFPの  We examined whether the above strategy was applicable to endogenous genes. The present inventors encode inositol type 1,4,5-triphosphate receptor type 1 (Mignery, GA et al. J. Biol. Chem. 265, 12679-12685 (1990)) (IPR) as a target. DNA was used. GFP
3  Three
場合と同様に、本発明者らは IP Rに関して様々な shRNA発現構築物を得た。配列デ As before, we obtained various shRNA expression constructs for the IPR. Array data
3  Three
ータを有するクローン 256個の中で、 214個は shRNA発現構築物を有することが判明 し、これには異なる標的位置を有し互!、に重複して 、な 、構築物 199個が含まれた。 有効な shRNA発現構築物を迅速にスクリーニングするために、本発明者らは、 GFPお よび IP Rのヘッド ティル結合 mRNAsを発現するレポーター構築物を保持した JurkatOf the 256 clones with the same data, 214 were found to have shRNA expression constructs, including 199 constructs with different target positions and overlapping each other. . To rapidly screen for effective shRNA expression constructs, we used Jurkat with a reporter construct expressing GFP and IPR head-til binding mRNAs.
3 Three
T細胞を作製した。 shRNA発現構築物による標的 mRNAの分解は、 GFP蛍光の減少 をモニターすることによって評価することができる(Kumar, R et al. Genome Res. 13, 2333-2340 (2003))。 IP Rを標的とする shRNA発現構築物も同様に RNAi効率を変化さ  T cells were generated. Degradation of the target mRNA by the shRNA expression construct can be assessed by monitoring the decrease in GFP fluorescence (Kumar, R et al. Genome Res. 13, 2333-2340 (2003)). ShRNA expression constructs targeting IPR also have altered RNAi efficiency.
3  Three
せた(図 4 。本発明者らは、最も有効な構築物の中で二つの shRNA発現構築物、 SI2A5および SI3G6を選択して、これらのクローンが血管平滑筋細胞株 A7r5において 内因性に発現された IP Rに関して有効な RNAiを誘導し得るカゝ否かを調べた (De (FIG. 4. We selected two shRNA expression constructs, SI2A5 and SI3G6, among the most effective constructs and these clones were expressed endogenously in the vascular smooth muscle cell line A7r5. We examined whether IPR can induce effective RNAi for IPR (De
3  Three
Smedt, H. et al. J. Biol. Chem. 269, 21691-21698 (1994))。ウェスタンブロット分析に よって、 IP R発現レベルが減少したことを確認した(図 4b)。機能喪失はまた、バソプレ  Smedt, H. et al. J. Biol. Chem. 269, 21691-21698 (1994)). Western blot analysis confirmed that the IPR expression level was reduced (Figure 4b). Loss of function is also
3  Three
ッシン誘発細胞内 Ca2+反応を測定することによつても確認した(図 4c)。これらの結果 は、 EPRILが内因性の遺伝子を標的とする有効な shRNA発現構築物を検索するため に有用であることを示して 、る。 Confirmation was also made by measuring the Ca 2+ response induced by sushin (Fig. 4c). These results indicate that EPRIL searches for effective shRNA expression constructs targeting endogenous genes. It shows that it is useful.
有効な shRNA発現構築物の細胞内選択 Intracellular selection of effective shRNA expression constructs
ノ、イスループットスクリーニングを促進するために、本発明者らは、効率的な shRNA 発現構築物の正の選択を行うために特殊な選択マーカー遺伝子に基づく新規細胞 内選択スキームを開発した(図 5a)。マーカー遺伝子は、二つのヘッド ティル結合部 分力もなる;第一の部分は、チミジンキナーゼとピューロマイシン N-ァセチルトランス フェラーゼからなる融合タンパク質をコードして(Chen, Y.T. & Bradley, A. Genesis 28, 31-35 (2000))、後者は標的 mRNAをコードする。通常、ガンシクロビル(GCV)を 適用すると、チミジンキナーゼの作用による(Chen, Y.T. & Bradley, A. Genesis 28, 31-35 (2000)) GCVの毒性誘導体の細胞内蓄積によって、このマーカー遺伝子を有 する細胞が殺される。標的遺伝子に関して有効な RNAi活性を有する shRNAを細胞に 形質導入すると、細胞は、チミジンキナーゼ発現がサイレンシングされることによって 細胞死を免れることになる。本発明者らは、標的として GFPを用いてそのようなマーカ 一遺伝子を構築して、これを Jurkat T細胞に導入して、ピューロマイシン選択を行つ た。次に、本発明者らは、 GFPを標的とする shRNAiライブラリーからの混合物として shRNA-発現レトロウイルスを作製し、マーカー遺伝子発現細胞にこれらのレトロウイ ルスを感染させた。感染細胞に GCVによる 48時間の処置を行い、 GCV耐性細胞を培 養した。本発明者らは、生存細胞力もの PCR増幅によって shRNA発現構築物を回収 して、それらをレトロウイルス発現ベクターに再構築して、選択されたライブラリーを得 た。 GCV選択が実際に有効な shRNA発現構築物を濃縮したカゝ否かを調べるために、 GFPを発現する Jurkat T細胞に、再構築されたライブラリーから調製したウィルス混合 物を感染させた。 GCV-選択ライブラリーからのレトロウイルスを形質導入した細胞に おける GFP発現は、無処置または親ライブラリーからのレトロウイルスを形質導入した 細胞での発現より大きく減弱されたことがフローサイトメトリーの結果によって示された 。このことは、 GCV選択によってより有効な shRNA発現構築物が濃縮されたことを示し ている(図 5b)。 GCV選択による有効な shRNA発現構築物の濃縮の成功はまた、個々 のクローンの分析によっても確認した。高 、効率を有する shRNA発現構築物集団の 顕著な増加を GCV選択ライブラリーにおいて認めた(図 5c)。これらの結果は、ライブ ラリー力 有効な shRNA発現構築物を得るために、新規細胞内選択スキームが有用 であることを示している。 To facilitate throughput screening, the present inventors have developed a novel intracellular selection scheme based on a special selectable marker gene for efficient positive selection of shRNA expression constructs (Figure 5a). . The marker gene is also a component of the two head-til junctions; the first encodes a fusion protein consisting of thymidine kinase and puromycin N-acetyltransferase (Chen, YT & Bradley, A. Genesis 28). , 31-35 (2000)), the latter encoding the target mRNA. Usually, when ganciclovir (GCV) is applied, this marker gene is possessed by the intracellular accumulation of toxic derivatives of GCV by the action of thymidine kinase (Chen, YT & Bradley, A. Genesis 28, 31-35 (2000)). Cells are killed. When cells are transduced with shRNAs having effective RNAi activity for the target gene, the cells will escape cell death by silencing thymidine kinase expression. The present inventors constructed such a marker-gene using GFP as a target, introduced this into Jurkat T cells, and performed puromycin selection. Next, the inventors generated shRNA-expressing retroviruses as a mixture from a shRNAi library targeting GFP, and infected marker gene expressing cells with these retroviruses. The infected cells were treated with GCV for 48 hours to cultivate GCV-resistant cells. We recovered the shRNA expression constructs by PCR amplification of viable cells and reconstructed them into retroviral expression vectors to obtain the selected library. To determine whether GCV selection actually enriched the effective shRNA expression constructs, Jurkat T cells expressing GFP were infected with a virus mixture prepared from the reconstructed library. Flow cytometry results show that GFP expression in retrovirally transduced cells from the GCV-selected library was significantly attenuated compared to expression in cells transfected with the retrovirus from untreated or parental libraries. Indicated by. This indicates that GCV selection enriched for more effective shRNA expression constructs (Figure 5b). Successful enrichment of effective shRNA expression constructs by GCV selection was also confirmed by analysis of individual clones. A marked increase in the population of shRNA expression constructs with high and efficiency was observed in the GCV selection library (FIG. 5c). These results are live Rally Force A novel intracellular selection scheme has been shown to be useful for obtaining effective shRNA expression constructs.
cDNAライブラリ一由来 RNAiライブラリ一 cDNA library 1 RNAi library 1
EPRILは、単一の cDNA起源よりむしろ cDNAライブラリーのような cDNAsの複雑な混 合物から shRNAiライブラリーを構築する機会を提供する。そのような shRNAiライブラリ 一は、特定の細胞機能に関与する遺伝子を包括的に検索するために極めて貴重と なるはずである。このため、本発明者らはそのような目的のために本技術を実現可能 であるか否かを調べた。マウス骨髄前駆細胞 FL5.12細胞にぉ 、て発現された mRNA 力も調製された cDNAライブラリーに EPRILを行って、 shRNAiライブラリーを作製した。 無作為に選択したクローンをシークェンシングしたところ、得られた配列 240個中 215 個が、逆方向反復配列を含むことが判明した (表 1)。これらの中で、クローン 35個から の逆方向反復配列は、おそらく mRNAsのポリ Aテールに由来するポリ Aまたは Tの 10 塩基を超える鎖力 なる配列を含んだ。したがって、残りのクローン 180個に BLAST検 索を行った。クローン 165個の配列が cDNA配列および/または ESTsにマッチした(表 2)。本発明者らは、ュ-ジーンクラスターに従って、遺伝子転写物に由来するこれら のクローンを分類し(Build 126)、クローン 165個中 146個力 ュ-ジーンクラスターの 少なくとも一つに属することを発見した。これらの中で、いくつかのクローンは、同じク ラスターに対応して、これらのクローンが同じ遺伝子に由来することを示唆した。これ らには、熱ショックタンパク質 8、ュビキチン Bおよびリボソームタンパク質 L41をコード する遺伝子が含まれ、その全てが多くの臓器において高度に発現されている。ュ- ジーンクラスターの大きさは、相対的発現レベルのほぼ推定値であることから、クラス ターの大きさを同じ遺伝子の出現回数と比較した。 1個より多い反復配列を有するクラ スターの大きさは、反復配列を有しないクラスターより有意に大きかった (p〈0.003、マ ンホイト-一 U-検定)。これらの特徴は、 RNAiライブラリーが当初の発現プロフィール を表すことを示唆している。本発明者らはさらに、転写物の標的位置を分析した。 53 %がコード領域に対応し、 44%が 3'-非翻訳領域に対応し、そして 3%が 5'非翻訳領 域に対応した。このように、転写物の様々な部分力も shRNA発現構築物が得られた。 結果は、様々な遺伝子の複雑な混合物力もなる cDNAライブラリーであっても EPRILを 適用できることを示している EPRIL offers the opportunity to construct shRNAi libraries from complex mixtures of cDNAs, such as cDNA libraries, rather than from a single cDNA source. Such shRNAi libraries should be extremely valuable for comprehensively searching for genes involved in specific cellular functions. Therefore, the present inventors have investigated whether or not the present technology can be realized for such a purpose. EPRIL was performed on a cDNA library prepared from mouse bone marrow progenitor cells FL5.12 cells and the mRNA level of which was also expressed to prepare a shRNAi library. Sequencing of randomly selected clones revealed that 215 of the 240 obtained sequences contained inverted repeats (Table 1). Of these, inverted repeats from 35 clones contained sequences with more than 10 bases of poly A or T, probably from the poly A tail of mRNAs. Therefore, a BLAST search was performed on the remaining 180 clones. The sequence of 165 clones matched the cDNA sequence and / or ESTs (Table 2). The present inventors classified these clones derived from gene transcripts according to the gene cluster (Build 126) and found that 146 out of 165 clones belonged to at least one of the gene clusters. . Among these, some clones corresponded to the same cluster, suggesting that these clones were derived from the same gene. These include genes encoding heat shock protein 8, ubiquitin B and ribosomal protein L41, all of which are highly expressed in many organs. Since the size of the gene cluster is an approximate estimate of the relative expression level, the size of the cluster was compared to the number of occurrences of the same gene. Clusters with more than one repetitive sequence were significantly larger than those without repetitive sequences (p <0.003, Man-Whit-I U-test). These characteristics suggest that the RNAi library exhibits an initial expression profile. We further analyzed the target location of the transcript. 53% corresponded to the coding region, 44% corresponded to the 3'-untranslated region, and 3% corresponded to the 5'-untranslated region. Thus, various partial forces of the transcript also resulted in shRNA expression constructs. The result shows that EPRIL can be used even for a cDNA library that can be a complex mixture of various genes. Indicates applicability
FL5.12 cDNAから調製した shRNAライブラリ一の各クローンのシークェンス概要 得られた配列 240 Sequence summary of each clone of one shRNA library prepared from FL5.12 cDNA Sequence obtained 240
逆方向繰返し構造でない 25  Non-repeat structure 25
逆方向繰返し構造を含むクローン 215  Clone 215 containing inverted repeat structure
逆方向繰返しの起源  Origin of reverse repetition
ポリ Aa 35 Poly A a 35
cDNA/EST 165  cDNA / EST 165
ミ トコンドリア遺伝子 6  Mitochondrial gene 6
ゲノム DNAb 3 Genomic DNA b 3
プライマー 3  Primer 3
未同定 3  Unidentified 3
a アデニンまたはチミンの 10塩基以上の連続した配列を含む逆方向繰返し配列 b ゲノム DNA配列にマッチングした配列ではあるが、 cDNA/ESTs 配列にはマッチング しなかったもの a Reverse repeat sequence containing a sequence of 10 or more bases of adenine or thymine b Sequence that matches genomic DNA sequence but does not match cDNA / ESTs sequence
表 2 ■ EPRIL法を用いて FL5.12 cDNAライブラリーから作製した 165shRNA ライブラリーにおける各クローンの標的遺伝子同定 Table 2 ■ Target gene identification of each clone in 165shRNA library prepared from FL5.12 cDNA library using EPRIL method
クローン 標的遺伝子 (ュニジ- 標的遺伝子の 方向 ステム 番号 ン名) ュニジ一ン番 の長さ 号(クラスター Clone Target gene (uni-target gene direction stem number name) Length of the first gene (cluster
サイズ )  Size)
SF2—1— H12 Hspa8 heat shock Mm.197551 20 protein 8 (9743)  SF2—1— H12 Hspa8 heat shock Mm.197551 20 protein 8 (9743)
SF2_1_D10 Hspa8 heat shock Mm.197551 20 protein 8 (9743) SF2_1_D10 Hspa8 heat shock Mm.197551 20 protein 8 (9743)
SF2— 2— D12 Hspa8 heat shock Mm.197551 20 protein 8 (9743) SF2— 2— D12 Hspa8 heat shock Mm.197551 20 protein 8 (9743)
SF2— 1— F07 Hspa8 heat shock Mm.197551 21 protein 8 (9743) SF2— 1— F07 Hspa8 heat shock Mm.197551 21 protein 8 (9743)
SF1— 2—B03 Rps26 ribosomal Mm.372 (889) 20 protein S26 SF1— 2—B03 Rps26 ribosomal Mm.372 (889) 20 protein S26
SF2— 2—D09 Rps26 ribosomal Mm.372 (889) CDS SF2— 2—D09 Rps26 ribosomal Mm.372 (889) CDS
protein S26  protein S26
SF1一 1— G12 Rps26 ribosomal Mm.372 (889) 5'UT 5' 21 protein S26 R SF1-1-1—G12 Rps26 ribosomal Mm.372 (889) 5'UT 5 '21 protein S26 R
SF1_1_F05 Rps26 ribosomal Mm.372 (889) 5'UT 5' 19 protein S26 SF1_1_F05 Rps26 ribosomal Mm.372 (889) 5'UT 5 '19 protein S26
SF1— 2— C04 Ubb ubiquitin B Mm.235 CDS 3' 20 SF1— 2— C04 Ubb ubiquitin B Mm.235 CDS 3 '20
(3529)  (3529)
SF1— 2—E11 Ubb ubiquitin B Mm.235 CDS 5' 20 SF1—2—E11 Ubb ubiquitin B Mm.235 CDS 5 '20
(3529)  (3529)
SF1— 1— C05 Ubb ubiquitin B Mm.235 CDS 5' 20 SF1— 1— C05 Ubb ubiquitin B Mm.235 CDS 5 '20
(3529)  (3529)
SF2一 2— C11 Rpl41 ribosomal Mm.13859 3'UT 3' 19 protein L 1 (1795) R SF21- 2— C11 Rpl41 ribosomal Mm.13859 3'UT 3 '19 protein L 1 (1795) R
SF1一 1一 D08 Rpl41 ribosomal Mm.13859 3'UT 3' 20 protein L41 (1795) R SF1-11-1 D08 Rpl41 ribosomal Mm.13859 3'UT 3 '20 protein L41 (1795) R
SF1—1— C08 Rpl41 ribosomal Mm.13859 3'UT 3' 20 protein L41 (1795) R SF1—1— C08 Rpl41 ribosomal Mm.13859 3'UT 3 '20 protein L41 (1795) R
SF1 2 B01 Mil2-pending Mm.175661 3'UT 3' 21 interferon induced (105) SF1 2 B01 Mil2-pending Mm.175661 3'UT 3 '21 interferon induced (105)
transmembrane  transmembrane
protein 2 like  protein 2 like
SF2 1 E10 Mil2-pending Mm.175661 CDS 3' 21 interferon induced (105)  SF2 1 E10 Mil2-pending Mm.175661 CDS 3 '21 interferon induced (105)
transmembrane  transmembrane
protein 2 like SF1— _1- _F10 Mil2- pending Mm.175661 CDS 3' 20 interferon induced (105) protein 2 like SF1— _1- _F10 Mil2- pending Mm.175661 CDS 3 '20 interferon induced (105)
transmembrane  transmembrane
protein 2 like  protein 2 like
SF2- _1—一 C11 5830436L09Rik Mm.44497 3'UT 5' 20  SF2- _1—one C11 5830436L09Rik Mm.44497 3'UT 5 '20
RIKEN cDNA (92)  RIKEN cDNA (92)
5830436L09 gene  5830436L09 gene
SF2. — 1- _B09 5830436L09Rik Mm.44497 3'UT 5' 21  SF2. — 1- _B09 5830436L09Rik Mm.44497 3'UT 5 '21
RIKEN cDNA (92) R RIKEN cDNA (92) R
5830436L09 gene 5830436L09 gene
SF1- — 2— _E01 5830436L09Rik Mm.44497 3'UT 5' 20  SF1- — 2— _E01 5830436L09Rik Mm.44497 3'UT 5 '20
RIKEN cDNA (92) R RIKEN cDNA (92) R
5830436L09 gene 5830436L09 gene
SF1—一 2— _A11 Eef1a1 eukaryotic Mm.196614 CDS 3' 20 translation (15776)  SF1― 一 2― _A11 Eef1a1 eukaryotic Mm.196614 CDS 3 '20 translation (15776)
elongation factor 1  elongation factor 1
alpha 1  alpha 1
SF2—丄 — A12 Eef1a1 eukaryotic Mm.196614 CDS 3' 20 translation (15776)  SF2— 丄 — A12 Eef1a1 eukaryotic Mm. 196614 CDS 3 '20 translation (15776)
elongation factor 1  elongation factor 1
alpha 1  alpha 1
SF1. — 1- _B1 1 Actb actin, beta, Mm.297 3'UT 3' 21 cytoplasmic (4500) R SF1. — 1- _B1 1 Actb actin, beta, Mm.297 3'UT 3 '21 cytoplasmic (4500) R
SF1_ — 1— — A03 Actb actin, beta, Mm.297 3'UT 3' 20 cytoplasmic (4500) RSF1_ — 1— — A03 Actb actin, beta, Mm.297 3'UT 3 '20 cytoplasmic (4500) R
SF1— — 1一一 E01 Arbp acidic Mm.5286 CDS 3' 21 ribosomal (3925) SF1— — 1-one E01 Arbp acidic Mm.5286 CDS 3 '21 ribosomal (3925)
phosphoprotein PO  phosphoprotein PO
SF1_ _1_ _H05 Arbp acidic Mm.5286 CDS 3' 20 ribosomal (3925)  SF1_ _1_ _H05 Arbp acidic Mm. 5286 CDS 3 '20 ribosomal (3925)
phosphoprotein PO  phosphoprotein PO
SF2一 — 1_ — G05 2010004J23Rik Mm.10706 CDS 3' 20  SF2 一 — 1_ — G05 2010004J23Rik Mm.10706 CDS 3 '20
RIKEN cDNA (3330)  RIKEN cDNA (3330)
2010004J23 gene  2010004J23 gene
SF1— — 1— _E09 2010004J23Rik Mm.10706 CDS 5' 21  SF1— — 1— _E09 2010004J23Rik Mm.10706 CDS 5 '21
RIKEN cDNA (3330)  RIKEN cDNA (3330)
2010004J23 gene  2010004J23 gene
SF2— —2一 — A12 Npm1 Mm.6343 CDS 5· 20 nucleophosmin 1 (2295)  SF2— —2 one — A12 Npm1 Mm.6343 CDS 5.20 nucleophosmin 1 (2295)
SF1_ —I— -E05 Npm1 Mm.6343 CDS 3' 21 nucleophosmin 1 (2295) SF1 2 F12 Slc25a5 solute Mm.658 CDS 3' 21 carrier family 25 (1308) SF1_ —I— -E05 Npm1 Mm.6343 CDS 3 '21 nucleophosmin 1 (2295) SF1 2 F12 Slc25a5 solute Mm.658 CDS 3 '21 carrier family 25 (1308)
(mitochondrial  (mitochondrial
carrier; adenine  carrier; adenine
nucleotide  nucleotide
translocator),  translocator),
member 5  member 5
SF2 1 D08 Slc25a5 solute Mm.658 CDS 3' 19 carrier family 25 (1308)  SF2 1 D08 Slc25a5 solute Mm.658 CDS 3 '19 carrier family 25 (1308)
(mitochondrial  (mitochondrial
carrier; adenine  carrier; adenine
nucleotide  nucleotide
translocator),  translocator),
member 5  member 5
SF2—2—C07 Rpa1 replication Mm.180734 CDS 3' 20 protein A1 (833)  SF2-2-2-C07 Rpa1 replication Mm.180734 CDS 3 '20 protein A1 (833)
SF2_2_D07 Rpa1 replication Mm.180734 CDS 3' 20 protein A1 (833) SF2_2_D07 Rpa1 replication Mm.180734 CDS 3 '20 protein A1 (833)
SF1 2 E03 Erh enhancer of Mm.21952 3'UT 3' 20 rudimentary (510) R homolog SF1 2 E03 Erh enhancer of Mm.21952 3'UT 3 '20 rudimentary (510) R homolog
(Drosophila)  (Drosophila)
SF1 2 A02 Erh enhancer of Mm.21952 3'UT 5' 20 rudimentary (510) R homolog  SF1 2 A02 Erh enhancer of Mm.21952 3'UT 5 '20 rudimentary (510) R homolog
(Drosophila)  (Drosophila)
SF1 2 A08 0610025G13Rik Mm.43330 CDS 3' 19  SF1 2 A08 0610025G13Rik Mm. 43330 CDS 3 '19
RIKEN cDNA (704)  RIKEN cDNA (704)
0610025G13 gene  0610025G13 gene
SF2 2 A01 0610025G13Rik Mm.43330 CDS 5' 20  SF2 2 A01 0610025G13Rik Mm. 43330 CDS 5 '20
RIKEN cDNA (704)  RIKEN cDNA (704)
0610025G13 gene  0610025G13 gene
SF2 1 B11 Psmd protease Mm.157105 CDS 5' 21  SF2 1 B11 Psmd protease Mm.157105 CDS 5 '21
(prosome, (502)  (prosome, (502)
macropain) 26S  macropain) 26S
subunit, ATPase 1  subunit, ATPase 1
SF1 1 F12 Psmd protease Mm.157105 CDS 5' 19  SF1 1 F12 Psmd protease Mm.157105 CDS 5 '19
(prosome, (502)  (prosome, (502)
macropain) 26S  macropain) 26S
subunit, ATPase 1 kinase 1 subunit, ATPase 1 kinase 1
Figure imgf000027_0001
Figure imgf000027_0001
w ω c w c qi en CO  w ω c w c qi en CO
ω 20 SF22 A08 Hnral- ri  ω 20 SF22 A08 Hnral- ri
o o o o o o
rotein- 171  rotein- 171
related nli  related nli
SF12 B09 Gnb2r- 5} ri- p SF21C05 pe —— p9 Staotn Mm.1187 3UTF22B11 Fmrhvmosi_- yg dehdroenase  SF12 B09 Gnb2r-5} ri- p SF21C05 pe —— p9 Staotn Mm. 1187 3UTF22B11 Fmrhvmosi_- yg dehdroenase
で osate h In osate h
p ( yy)58一ceadehde344rll- l Mm 52895 B08 GaDd. - SF1- J. _F06 Prdxl peroxiredoxin Mm.30929 3'UT 5' 21p (yy) 58-ceadehde344rll- l Mm 52895 B08 GaDd.- SF1- J. _F06 Prdxl peroxiredoxin Mm. 30929 3'UT 5 '21
1 (1359) R1 (1359) R
SF2- — 2— _D04 Rpl32 ribosomal Mm.104368 CDS 5' 20 protein L32 (1273) SF2- — 2— _D04 Rpl32 ribosomal Mm. 104368 CDS 5 '20 protein L32 (1273)
SF1-一 1- _C03 Rpl26 ribosomal Mm.3229 CDS 3' 21 proteinし 26 (1169)  SF1-one 1- _C03 Rpl26 ribosomal Mm. 3229 CDS 3 '21 protein 26 (1169)
SF1- _2— _D01 Rpl18 ribosomal Mm.41923 CDS 5' 20 protein L18 (1 149)  SF1- _2— _D01 Rpl18 ribosomal Mm.41923 CDS 5 '20 protein L18 (1 149)
SF1- _1- — F02 3100001 N19Rik Mm.43749 3'UT 3' 21  SF1- _1- — F02 3100001 N19Rik Mm.43749 3'UT 3 '21
RIKEN cDNA (1 121) R RIKEN cDNA (1 121) R
3100001 N19 gene 3100001 N19 gene
SF1- _2- — C05 Tuba2 tubulin, alpha Mm.197515 CDS 3' 20  SF1- _2- — C05 Tuba2 tubulin, alpha Mm.197515 CDS 3 '20
2 (1073)  2 (1073)
SF1- — 2— — B12 2010203J19Rik Mm.4280 CDS 5' 20  SF1- — 2— — B12 2010 203 J19Rik Mm.4280 CDS 5 '20
RIKEN cDNA (1058)  RIKEN cDNA (1058)
2010203J19 gene  2010203J19 gene
SF2_ — 1— — H08 Rps20 ribosomal Mm.21938 5'UT 5' 20 protein S20 (1024) R SF2_ — 1— — H08 Rps20 ribosomal Mm. 21938 5'UT 5 '20 protein S20 (1024) R
SF2.丄 _A04 Canx calnexin Mm.153481 3'UT 3' 21 SF2. 丄 _A04 Canx calnexin Mm.153481 3'UT 3 '21
(993) R  (993) R
SF2.丄 — G12 Sfrs2 splicing factor, Mm.21841 3'UT 5" 20 arginine/serine-rich (955) R SF2. 丄 — G12 Sfrs2 splicing factor, Mm.21841 3'UT 5 "20 arginine / serine-rich (955) R
2 (SC-35) 2 (SC-35)
SF2— _1_一 B10 Lcp1 lymphocyte Mm.153911 3'UT 3' 21 cytosolic protein 1 (940) R SF2— _1_one B10 Lcp1 lymphocyte Mm.153911 3'UT 3 '21 cytosolic protein 1 (940) R
SF1一 —2— _F04 Cfl1 cofilin 1 , Mm.4024 3'UT 3' 21 non-muscle (940) RSF1 一 —2— _F04 Cfl1 cofilin 1, Mm. 4024 3'UT 3 '21 non-muscle (940) R
SF2_一 1一一 B12 Rps25 ribosomal Mm.265 (927) 3'UT 5' 21 protein S25 RSF2_1-111 B12 Rps25 ribosomal Mm.265 (927) 3'UT 5 '21 protein S25 R
SF2— _1_ _H01 Es10 esterase 10 Mm.38055 CDS 3' 20 SF2— _1_ _H01 Es10 esterase 10 Mm.38055 CDS 3 '20
(925)  (925)
SF2— _2_ -D05 Eif3s3 eukaryotic Mm.183083 CDS 3' 21 translation initiation (899)  SF2— _2_ -D05 Eif3s3 eukaryotic Mm. 183083 CDS 3 '21 translation initiation (899)
factor 3, subunit 3  factor 3, subunit 3
(gamma)  (gamma)
SF1_ —1— -D09 Tcp1 t-complex Mm.2223 CDS 3' 20 protein 1 (894)  SF1_ —1— -D09 Tcp1 t-complex Mm.2223 CDS 3 '20 protein 1 (894)
SF1一 — 1_ C07 Rpl24 ribosomal Mm.107869 CDS 5' 20 proteinし 24 (870)  SF1 一 — 1_ C07 Rpl24 ribosomal Mm. 107869 CDS 5 '20 protein 24 (870)
SF2一 —2_ -C09 Set SET Mm.28805 3'UT 3' 19 translocation (865) R 刀4SF2-1 —2_ -C09 Set SET Mm.28805 3'UT 3 '19 translocation (865) R Sword 4
99 Mm.274 SF11 D01  99 Mm.274 SF11 D01
0) (73 CO CO  0) (73 CO CO
(}544 l "Π ~n "Π  (} 544 l "Π ~ n" Π
ho  ho
1 1 1 1 ho  1 1 1 1 ho
1 One
II CS 3 SF11E06 Mm.12848D- 'M  II CS 3 SF11E06 Mm.12848D- 'M
1 1 1  1 1 1
o -n  o -n
(}604 O Ό  (} 604 O Ό
o _ k _ k o k o  o _ k _ k o k o
Γ O Γ O
— 5S3 Mm.10508 CDS- )464 — 5S3 Mm.10508 CDS-) 464
II CS 5 SF22A02 Mm.28952D- )483 II CS 5 SF22A02 Mm.28952D-) 483
II9 CS 3 SF12D09 Mm.17311D- ——06 Mm.22569 CDS 52A-
Figure imgf000029_0001
II9 CS 3 SF12D09 Mm.17311D- ---- 06 Mm.22569 CDS 52A-
Figure imgf000029_0001
()528  () 528
」 SF2 Mm.41596 3UT 5-- )574  '' SF2 Mm. 41596 3UT 5--) 574
So6 CSF2 rol Mm.2171D  So6 CSF2 rol Mm.2171D
IVJ ΓΟ r ) N3 ro r N3 NJ N) N3IVJ ΓΟ r) N3 ro r N3 NJ N) N3
->· o -»■ o o o o )584 O O CD O -> O-»■ o o o o) 584 O O CD O
3955 3U 3 Mm.T--  3955 3U 3 Mm.T--
() Mm.850603 CDS () Mm.850603 CDS
()606  () 606
Mm.128512 3ョ- )697  Mm.128512 3 ョ-) 697
Mm.35389 CDS p transcrition factor Mm.35389 CDS p transcrition factor
y polmerase ro- (a fctor BTF3RNA y polmerase ro- (a fctor BTF3RNA
p () to Transcriton69i4  p () to Transcriton69i4
2 1IOC890 sa538 CS21imilr Mm.1D  2 1IOC890 sa538 CS21imilr Mm.1D
() c IKENDNA743() c IKENDNA743
SF2 AOS 2410030A14Rik Mm.196612 3ョ- SF2 1 C08 Elavil EI_AV Mm.1 19162 3'UT 3' 21 (embryonic lethal, (433) R abnormal vision, SF2 AOS 2410030A14Rik Mm.196612 3 SF2 1 C08 Elavil EI_AV Mm.1 19162 3'UT 3 '21 (embryonic lethal, (433) R abnormal vision,
Drosophila)-like 1  Drosophila) -like 1
(Hu antigen R)  (Hu antigen R)
SF2 1 G07 Psmb3 proteasome Mm.21874 3'UT 5' 20  SF2 1 G07 Psmb3 proteasome Mm. 21874 3'UT 5 '20
(prosome, (425) R macropain) subunit,  (prosome, (425) R macropain) subunit,
beta type 3  beta type 3
SF2— 1—A06 Pfdn5 prefoldin 5 Mm.181847 3'UT 3' 20  SF2— 1—A06 Pfdn5 prefoldin 5 Mm.181847 3'UT 3 '20
(417) R  (417) R
SF2— 1—A09 Rps28 ribosomal Mm.200920 CDS 3' 21 protein S28 (408) SF2— 1—A09 Rps28 ribosomal Mm. 200920 CDS 3 '21 protein S28 (408)
SF2 1 B06 Tomm22 Mm.246435 3'UT 3' 20 translocase of outer (382) R mitochondrial SF2 1 B06 Tomm22 Mm.246435 3'UT 3 '20 translocase of outer (382) R mitochondrial
membrane 22  membrane 22
homolog (yeast)  homolog (yeast)
SF1_1_E02 4933427L07Rik Mm.173826 3'UT 5' 20  SF1_1_E02 4933427L07Rik Mm.173826 3'UT 5 '20
RIKEN cDNA (350) R 4933427L07 gene  RIKEN cDNA (350) R 4933427L07 gene
SF2 1 G02 Cdc2a cell division Mm.4761 CDS 3' 20 cycle 2 homolog A (344)  SF2 1 G02 Cdc2a cell division Mm.4761 CDS 3 '20 cycle 2 homolog A (344)
(S. pom be)  (S. pom be)
SF2_1_F11 Stx7 syntaxin 7 Mm.10818 CDS 5' 20  SF2_1_F11 Stx7 syntaxin 7 Mm.10818 CDS 5 '20
(338)  (338)
SF2 1 C04 Slc6a6 solute carrier Mm.200518 3'UT 5' 19 family 6 (318) RSF2 1 C04 Slc6a6 solute carrier Mm. 200518 3'UT 5 '19 family 6 (318) R
(nsurotransmitter (nsurotransmitter
transporter, taurine),  transporter, taurine),
member 6  member 6
SF1 1 A12 Eif4el3 eukaryotic m.227183 CDS 3' 20 translation initiation (308)  SF1 1 A12 Eif4el3 eukaryotic m.227183 CDS 3 '20 translation initiation (308)
factor 4E like 3  factor 4E like 3
SF1 1 E12 1700001 A24Rik Mm.28085 3'UT 3" 21  SF1 1 E12 1700001 A24Rik Mm.28085 3'UT 3 "21
RIKEN cDNA (306) R 1700001 A24 gene  RIKEN cDNA (306) R 1700001 A24 gene
SF1 2 F06 Srcasm Src Mm.167868 CDS 5' 21 activating and (298)  SF1 2 F06 Srcasm Src Mm.167868 CDS 5 '21 activating and (298)
signaling molecule SF1—— 2— _G01 Mus musculus 8 Mm.29866 3'UT 5, 21 days embryo whole (296) R body cDNA, RIKEN signaling molecule SF1—— 2— _G01 Mus musculus 8 Mm. 29866 3'UT 5, 21 days embryo whole (296) R body cDNA, RIKEN
full-length enriched  full-length enriched
library,  library,
clone:5730496F02  clone: 5730496F02
product: HYPOTHET  product: HYPOTHET
ICAL 8.0 KDA  ICAL 8.0 KDA
PROTEIN homolog  PROTEIN homolog
[Mus musculus], full  [Mus musculus], full
insert sequence  insert sequence
SF1_ — 1- — C06 2610034N03Rik Mm.182574 3'UT 3' 20  SF1_ — 1- — C06 2610034N03Rik Mm.182574 3'UT 3 '20
RIKEN cDNA (294) R RIKEN cDNA (294) R
2610034N03 gene 2610034N03 gene
SF2_ — 1- _C09 2310042M24Rik Mm.27328 3'UT 3' 21  SF2_ — 1- _C09 2310042M24Rik Mm.27328 3'UT 3 '21
RIKEN cDNA (293) R RIKEN cDNA (293) R
2310042M24 gene 2310042M24 gene
SF1— — 1— _F07 Snrpg small nuclear Mm.21764 3'UT 3, 20 ribonucleoprotein (273) R polypeptide G  SF1— — 1— _F07 Snrpg small nuclear Mm.21764 3'UT 3, 20 ribonucleoprotein (273) R polypeptide G
SF2_ J. — C07 2010204I15Rik Mm.245830 CDS 5, 19  SF2_ J. — C07 2010 204I15Rik Mm.245830 CDS 5, 19
RIKEN cDNA (273)  RIKEN cDNA (273)
2010204115 gene  2010204115 gene
SF2— — 1— — F09 Serpinbl a serine (or Mm.250802 CDS 3, 19 cysteine) proteinase (269)  SF2— — 1— — F09 Serpinbl a serine (or Mm. 250802 CDS 3, 19 cysteine) proteinase (269)
inhibitor, clade B,  inhibitor, clade B,
member 1 a  member 1 a
SF2_ _1_ — C03 Rragc Ras-related Mm.28746 3'UT 3, 20  SF2_ _1_ — C03 Rragc Ras-related Mm. 28746 3'UT 3, 20
GTP binding C (261) R GTP binding C (261) R
SF2一 1一 _A08 Zfp161 zinc finger Mm.29434 3'UT 5' 19 protein 161 (254) RSF2-1-1 11 _A08 Zfp161 zinc finger Mm. 29434 3'UT 5 '19 protein 161 (254) R
SF2_ _2_ _C01 BC014795 cDNA Mm.185518 3'UT 3' 20 sequence (248) RSF2_ _2_ _C01 BC014795 cDNA Mm.185518 3'UT 3 '20 sequence (248) R
BC014795 BC014795
SF1一 —2一一 D10 2610040E16 ik Mm.24737 3'UT 3' 21  SF11-1 —21-1 D10 2610040E16 ik Mm.24737 3'UT 3 '21
RIKEN cDNA (229) R RIKEN cDNA (229) R
2610040E16 gene 2610040E16 gene
SF1_ —2— _F1 1 1 190006C12Rik Mm.20188 3'UT 3, 20  SF1_ —2— _F1 1 1 190006C12Rik Mm.20188 3'UT 3, 20
RIKEN cDNA (215) R RIKEN cDNA (215) R
1 190006C12 gene 1 190006C12 gene
SF2— _2_ — B12 Ftsj Ftsj homolog (E. Mm.227141 3'UT 3, 20 coli) (204) R SF1 1 B09 6720463M24Rik Mm.23503 3'UT 3' 20 RIKEN cDNA (202) R 6720463M24 gene SF2— _2_ — B12 Ftsj Ftsj homolog (E. Mm. 227141 3'UT 3, 20 coli) (204) R SF1 1 B09 6720463M24Rik Mm.23503 3'UT 3 '20 RIKEN cDNA (202) R 6720463M24 gene
SF1 1 E07 Rac2 RAS-related Mm.1972 3'UT 3' 21  SF1 1 E07 Rac2 RAS-related Mm. 1972 3'UT 3 '21
C3 botulinum (197) R substrate 2  C3 botulinum (197) R substrate 2
SF2 2 D02 4931426N11 Rik Mm.261333 3'UT 5' 21  SF2 2 D02 4931426N11 Rik Mm.261333 3'UT 5 '21
RIKEN cDNA (197) R 4931426N11  RIKEN cDNA (197) R 4931426N11
gene,HIGH-RISK  gene, HIGH-RISK
HUMAN PAPILLOMA VIRUSES E6  HUMAN PAPILLOMA VIRUSES E6
ONCOPROTEINS TARGETED PROTEIN E6TP1  ONCOPROTEINS TARGETED PROTEIN E6TP1
ALPHA homolog  ALPHA homolog
[Homo sapiens]  [Homo sapiens]
SF1 2 D06 Siat7b Mm.3947 3'UT 5' 20 siaiyltransferase 7 (181) R SF1 2 D06 Siat7b Mm. 3947 3'UT 5 '20 siaiyltransferase 7 (181) R
((alpha-N-acetylneur ((alpha-N-acetylneur
aminyl  aminyl
2,3-beta-galactosyl- 1 ,3)善 acetyl  2,3-beta-galactosyl- 1,3) good acetyl
galactosaminde  galactosaminde
alpha-2,6-sialyltransf  alpha-2,6-sialyltransf
erase) B  erase) B
SF1 2 G07 4632419l22Rik Mm.171304 3'UT 5' 21  SF1 2 G07 4632419l22Rik Mm.171304 3'UT 5 '21
RIKEN cDNA (180) R 4632419122 gene  RIKEN cDNA (180) R 4632419122 gene
SF2 1 A10 Kcp2-pending Mm.177991 CDS 3' 21 keratinocytes (179)  SF2 1 A10 Kcp2-pending Mm.177991 CDS 3 '21 keratinocytes (179)
associated protein 2  associated protein 2
SF1 1 A06 2610034F18Rik Mm.258434 3'UT 3, 20  SF1 1 A06 2610034F18Rik Mm.258434 3'UT 3, 20
RIKEN cDNA (172) R 2610034F18 gene  RIKEN cDNA (172) R 2610034F18 gene
SF2 1 B02 Pwp2h PWP2 Mm.103522 CDS 5, 19  SF2 1 B02 Pwp2h PWP2 Mm.103522 CDS 5, 19
(periodic tryptophan (169)  (periodic tryptophan (169)
protein) homolog,  protein) homolog,
yeast  yeast
SF1 2 A07 LOC269796 Mm.74611 CDS 5' 20 hypothetical protein (165)  SF1 2 A07 LOC269796 Mm.74611 CDS 5 '20 hypothetical protein (165)
LOC269796
Figure imgf000033_0001
LOC269796
Figure imgf000033_0001
M M r NJM M r NJ
O O O CD O 」 O 00 O o o OOO CD O '' O 00 O oo
SF2- _2-— A09 B2301 18H07Rik: Mm.157502 ND ND 20SF2- _2-— A09 B2301 18H07Rik: Mm.157502 ND ND 20
RIKEN cDNA (157) RIKEN cDNA (157)
B230118H07 gene  B230118H07 gene
SF1- — 2— _E09 Mus musculus Mm.259526 ND ND 20 transcribed (11)  SF1- — 2— _E09 Mus musculus Mm.259526 ND ND 20 transcribed (11)
sequence with  sequence with
moderate similarity  moderate similarity
to protein pir:S12207  to protein pir: S12207
(M. musculus)  (M. musculus)
S 12207 hypothetical  S 12207 hypothetical
protein (B2 element)  protein (B2 element)
- mouse  -mouse
SF1— — 1— _G10 Mus musculus, clone Mm.33438 ND ND 20  SF1— — 1— _G10 Mus musculus, clone Mm.33438 ND ND 20
IMAGE:6310380, (33)  IMAGE: 6310380, (33)
mRNA  mRNA
SF1. — 1— — D03 Rpl18: Ribosomal Mm.41923 ND ND 21 proteinし 18 (1149)  SF1. — 1— — D03 Rpl18: Ribosomal Mm.41923 ND ND 21 protein 18 (1149)
SF2— _1_ — C02 CtnnbH : Catenin, Mm.45193 ND ND 20 beta like 1 (296)  SF2— _1_ — C02 CtnnbH: Catenin, Mm. 45193 ND ND 20 beta like 1 (296)
SF1. _2_ — B11 Mus musculus cDNA Mm.247431 ND ND 19 clone (57)  SF1. _2_ — B11 Mus musculus cDNA Mm.247431 ND ND 19 clone (57)
IMAGE:6814793,  IMAGE: 6814793,
partial cds  partial cds
SF1— —2— — D02 Mus musculus cDNA Mm.220932 ND ND 20 clone (124)/Mm.218  SF1— —2— — D02 Mus musculus cDNA Mm.220932 ND ND 20 clone (124) /Mm.218
IMAGE:6491231 , 611 (327)  IMAGE: 6491231, 611 (327)
partial  partial
cds/A530017D24Rik  cds / A530017D24Rik
: RIKEN cDNA  : RIKEN cDNA
A530017D24 gene  A530017D24 gene
SF1_ _2— — C03 Daf1 : Decay Mm.101591 ND ND 20 accelerating factor (160)/Mm.235  SF1_ _2— — C03 Daf1: Decay Mm.101591 ND ND 20 accelerating factor (160) /Mm.235
1/Mus musculus 775 (2)  1 / Mus musculus 775 (2)
transcribed  transcribed
ssqus门 ces  ssqus 门 ces
SF1— —2— _D04 Mus musculus Mm.31941 ND ND 21 transcribed (4)/Mm.25929  SF1— —2— _D04 Mus musculus Mm.31941 ND ND 21 transcribed (4) /Mm.25929
sequences/Revl l: 4 (127)  sequences / Revl l: 4 (127)
REV1-like (S.  REV1-like (S.
cerevisiae) SF2.— 1— _E01 Gas5: Growth arrest Mm.270065 ND ND 20 specific 5/Mus (304)/Mm.272 cerevisiae) SF2.— 1— _E01 Gas5: Growth arrest Mm.270065 ND ND 20 specific 5 / Mus (304) /Mm.272
musculus cDNA 492 (115)  musculus cDNA 492 (115)
clone  clone
IMAGE:4500943,  IMAGE: 4500943,
partial cds  partial cds
SF1- _2— — C12 6030458L21 Rik: Mm.250293 ND ND 19  SF1- _2— — C12 6030458L21 Rik: Mm.250293 ND ND 19
RIKEN cDNA (57)/Mm.8756  RIKEN cDNA (57) /Mm.8756
6030458し 21 8 (83)  6030458 then 21 8 (83)
gene/2010317E24Ri  gene / 2010317E24Ri
k: RIKEN cDNA  k: RIKEN cDNA
2010317E24 gene  2010317E24 gene
SF2— — 2— — B09 Unknown EST ND ND ND 21 SF2— — 2— — B09 Unknown EST ND ND ND 21
SF1一 — 1— — A05 Unknown EST ND ND ND 21SF1 一 — 1— — A05 Unknown EST ND ND ND 21
SF2_ _1. _A11 Unknown EST ND ND ND 20SF2_ _1._A11 Unknown EST ND ND ND 20
SF2_ J. _H02 Unknown EST ND ND ND 20SF2_ J. _H02 Unknown EST ND ND ND 20
SF1_ _2— _A12 Unknown EST ND ND ND 20SF1_ _2— _A12 Unknown EST ND ND ND 20
SF1_ Λ — B02 Unknown EST ND ND ND 20SF1_ Λ — B02 Unknown EST ND ND ND 20
SF2一 — 1— — A01 Unknown EST ND ND ND 20SF2 一 — 1— — A01 Unknown EST ND ND ND 20
SF1— — 1- — D07 Unknown EST ND ND ND 20SF1— — 1- — D07 Unknown EST ND ND ND 20
SF2. — 1— — D07 Unknown EST ND ND ND 21SF2. — 1— — D07 Unknown EST ND ND ND 21
SF1_ _1. — H12 Unknown EST ND ND ND 20SF1_ _1. — H12 Unknown EST ND ND ND 20
SF1_ — 1— _H03 Unknown EST ND ND ND 20SF1_ — 1— _H03 Unknown EST ND ND ND 20
SF1— _2— _C02 Unknown EST ND ND ND 20SF1— _2— _C02 Unknown EST ND ND ND 20
SF1- 2— — E12 Unknown EST ND ND ND 20SF1- 2— — E12 Unknown EST ND ND ND 20
SF1— J. — C02 Unknown EST ND ND ND 20SF1— J. — C02 Unknown EST ND ND ND 20
SF2— J. — B05 Unknown EST ND ND ND 20SF2— J. — B05 Unknown EST ND ND ND 20
SF2— —2— _C08 Unknown EST ND ND ND 20SF2— —2— _C08 Unknown EST ND ND ND 20
SF2— — 1— _H10 Unknown EST ND ND ND 21SF2— — 1— _H10 Unknown EST ND ND ND 21
SF1— — 2— _D07 Unknown EST ND ND ND 20SF1— — 2— _D07 Unknown EST ND ND ND 20
SF1— _1_一 D1 1 Unknown EST ND ND ND 20 aNot determined. 方法 SF1— _1_One D1 1 Unknown EST ND ND ND 20 aNot determined. Method
細胞培養 Cell culture
Jurkat T細胞は、 10%仔ゥシ胎児血清(FCS)、ペニシリンおよびストレプトマイシン を含む RPMI 1640培地(インビトロジェン(Invitrogen) )において培養した。 GP293、 HEK293、 A7r5、および HeLa細胞は、 10%FCSを含むダルベッコ改変イーグル培地( シグマ(Sigma)またはインビトロジェン)において維持した。 FL5.12細胞(広島大学 Inaba博士の寄贈)は、 10%FCSおよび 1 ng/ml IL- 3 (和光、 日本)を含む RPMI 1640 ( シグマ)において維持した。 Jurkat T cells were cultured in RPMI 1640 medium (Invitrogen) containing 10% fetal calf serum (FCS), penicillin and streptomycin. GP293, HEK293, A7r5, and HeLa cells were prepared from Dulbecco's modified Eagle's medium containing 10% FCS ( (Sigma or Invitrogen). FL5.12 cells (donated by Dr. Inaba, Hiroshima University) were maintained in RPMI 1640 (Sigma) containing 10% FCS and 1 ng / ml IL-3 (Wako, Japan).
[0036] プラスミドの構築 [0036] Construction of plasmid
shRNA発現レトロウイルスベクターを有するプラスミド pNAMA-U6を含む全てのプラ スミドは、標準的な分子生物学技術を用いて構築した。簡単に説明すると、 pSilencerl.O- U6 (アンビオン(Ambion) )からの PCR増幅によって得られた U6プロモー ターおよびターミネーシヨンシグナルコード DNAを、 pMXレトロウイルスベクター(東京 大学、 Kitamura博士の寄贈)からの 3' LTRを有するプラスミドの Nhel部位に挿入した 。プライマー対、 5 ' -CGCGGATCCGAATGCTTTTTTTAATTCCTGCAGCCCG-3 ' (配列番号: 1)および 5'  All plasmids, including the plasmid pNAMA-U6 with the shRNA expression retroviral vector, were constructed using standard molecular biology techniques. Briefly, the U6 promoter and termination signal-encoding DNA obtained by PCR amplification from pSilencerl.O-U6 (Ambion) were transferred from a pMX retrovirus vector (donated by Dr. Kitamura, University of Tokyo). It was inserted into the Nhel site of a plasmid having a 3 'LTR. Primer pair, 5'-CGCGGATCCGAATGCTTTTTTTAATTCCTGCAGCCCG-3 '(SEQ ID NO: 1) and 5'
-CGCGGATCCGAAGACCCCAAACAAGGCTTTTCTCCAAG-3' (配列番号: 2)を 用 、てプラスミドにさらに PCR増幅を行 ヽ、 shRNAコード DNA断片を挿入するための Bbsl/Bsml部位を形成して、 pBsk-U63-3LTRを得た。 pNAMA-U6を構築するために 、 Nhel部位で U6プロモーターを含む 3' LTRを有する Hindlll/Sall断片を、  Using -CGCGGATCCGAAGACCCCAAACAAGGCTTTTCTCCAAG-3 '(SEQ ID NO: 2), PCR amplification was further performed on the plasmid to form a Bbsl / Bsml site for inserting an shRNA-encoding DNA fragment, thereby obtaining pBsk-U63-3LTR. . To construct pNAMA-U6, a Hindlll / Sall fragment having a 3 'LTR containing a U6 promoter at the Nhel site was
pBsk-U63-3LTRから切除して、 pDsRed2-Nlに由来する DsRed2遺伝子(クロンテック (Clontech) )と共に 3' LTR欠損 pMXベクターを有する pda5LTR- DeRed2- M4の Hindlll/Sall部位に挿入した。  It was excised from pBsk-U63-3LTR and inserted into the Hindlll / Sall site of pda5LTR-DeRed2-M4 having a 3 'LTR-deficient pMX vector together with the DsRed2 gene (Clontech) derived from pDsRed2-Nl.
[0037] SV40プロモーターの制御下で、チミジンキナーゼ-ピューロマイシン- N-ァセチルト ランスフェラーゼ融合タンパク質(Chen, Y.T. & Bradley, A. Genesis 28, 31-35 (2000))を発現するレトロウイルスをコードするプラスミド pMS240- PNSを、チミジンキナ ーゼとピューロマイシンァセチルトランスフェラーゼをコードする PCR増幅断片力も構 築した。チミジンキナーゼとピューロマイシン N-ァセチルトランスフェラーゼ遺伝子を 含む DNA断片を、自己不活化レトロウイルスベクター pMS240にサブクローユングして 、 pMS240-PNSを産生した。 pMS240-PNSは、標的遺伝子をコードする DNA断片をク ローニングするための BamHI/Notl部位を有する。 GFPを標的とする有効な shRNA発 現構築物を選択するために、 pd2EGFP-l (クロンテック)力もの GFPコード断片をその 部位に挿入した。 [0038] IP Rサイレンシングをモニターするためのレトロウイルスベクターをコードするプラス[0037] Encodes a retrovirus that expresses a thymidine kinase-puromycin-N-acetyltransferase fusion protein (Chen, YT & Bradley, A. Genesis 28, 31-35 (2000)) under the control of the SV40 promoter Plasmid pMS240-PNS was also constructed with a PCR amplified fragment encoding thymidine kinase and puromycin acetyltransferase. A DNA fragment containing the thymidine kinase and puromycin N-acetyltransferase genes was subcloned into a self-inactivating retroviral vector pMS240 to produce pMS240-PNS. pMS240-PNS has a BamHI / Notl site for cloning a DNA fragment encoding the target gene. To select an effective shRNA expression construct targeting GFP, a pd2EGFP-I (Clontech) GFP coding fragment was inserted at that site. [0038] Plus encoding a retroviral vector to monitor IPR silencing
3 Three
ミドである pMX-d2EGFP-IP Rを構築するために、脱安定ィ匕 GFP変種をコードする  Encodes a destabilized Dani GFP variant to construct the pMX-d2EGFP-IPR
3  Three
DNAを pd2EGFP-lから調製して、これを pMXに挿入した。 pBS-IP Rからの IP Rをコー  DNA was prepared from pd2EGFP-1 and inserted into pMX. Coding IPR from pBS-IPR
3 3 ドする DNAを d3EGFPの下流の部位に挿入した。  The DNA to be loaded was inserted into a site downstream of d3EGFP.
[0039] EPRIL [0039] EPRIL
GFPを標的とする shRNA発現構築物を作製するために、 GFPをコードする BamHI/Notl DNA断片を pEGFP— 1 (クロンテック)力ら得た。 IP Rの場合、ラット 1型 IP  To create a shRNA expression construct targeting GFP, a BamHI / Notl DNA fragment encoding GFP was obtained from pEGFP-1 (Clontech). In the case of IPR, rat 1 type IP
3 3 3 3
Rの全コード領域をコードする断片を pBS-IP R1の EcoRI/Notl消化によって調製した。 A fragment encoding the entire coding region of R was prepared by EcoRI / Notl digestion of pBS-IPR1.
3  Three
cDNAライブラリーに由来する shRNA発現構築物を作製するために、 Super SMART PCR cDNA合成キット(クロンテック)を用いて、 FL5.12細胞から調製した mRNAから二 本鎖 cDNAライブラリーを作製し、これをサブクロー-ングせずにさらなる誘導のため に直接用いた。次に、これらの DNA断片を用いて以下のような 6段階プロトコールに 従って EPRILを適用した:  To generate an shRNA expression construct derived from the cDNA library, a double-stranded cDNA library was prepared from mRNA prepared from FL5.12 cells using the Super SMART PCR cDNA synthesis kit (Clontech), -Used directly for further induction without aging. Next, EPRIL was applied using these DNA fragments according to a six-step protocol as follows:
[0040] 段階 1.ランダム DNA断片の調製 [0040] Step 1. Preparation of random DNA fragments
DNA断片は、 1 mM MgCl、 0.1 mg/ml BSAゝおよび 50 mMトリス-塩酸(pH 7.5)の  DNA fragments were prepared using 1 mM MgCl, 0.1 mg / ml BSA ゝ and 50 mM Tris-HCl (pH 7.5).
2  2
存在下で DNaselによって限定的に消化して、 0.1 U/ 1 T4 DNAポリメラーゼ(タカラ( Takara) , 日本)によって末端を修復した。 DNasel (タカラ、 日本)の濃度をそれぞれの 調製物について経験的に決定して、 PAGE上で平均の大きさ約 100— 200 bpを有す る消化物を得た。  After limited digestion with DNasel in the presence, the ends were repaired with 0.1 U / 1 T4 DNA polymerase (Takara, Japan). The concentration of DNasel (Takara, Japan) was determined empirically for each preparation to give a digest with an average size on PAGE of about 100-200 bp.
[0041] 段階 2.第一のアダプターのライゲーシヨンと Mmel切断 [0041] Step 2. Ligation and Mmel cutting of the first adapter
消化物を、 T4 DNAリガーゼ(DNAライゲーシヨンキットバージョン 2、タカラ、 日本)に よって、ヘアピン形状のオリゴヌクレオチドであるアダプター 1、 5, 列番号: 3)にライゲーシヨンした。ヘアピン形状のアダプター 1は、使用前に化学合成 したオリゴヌクレオチドから未変性 PAGEによって精製した。アダプター 1の 5'末端と消 化した DNAの 3'末端との間のニックは、 1.0または 1.25 U/ 1 T4ポリヌクレオチドキナ ーゼによる処理後に、 0.1 mM NAD、 1.2 mM EDTA、 10 mM (NH ) SO、 4 mM MgCl  The digests were ligated with T4 DNA ligase (DNA Ligation Kit version 2, Takara, Japan) to hairpin-shaped oligonucleotides, adapters 1, 5, column number: 3). The hairpin-shaped adapter 1 was purified by native PAGE from chemically synthesized oligonucleotides before use. The nick between the 5 'end of Adapter 1 and the 3' end of the digested DNA was 0.1 mM NAD, 1.2 mM EDTA, 10 mM (NH4) after treatment with 1.0 or 1.25 U / 1 T4 polynucleotide kinase. ) SO, 4 mM MgCl
4 2 4 2 4 2 4 2
、および 30 mMトリス-塩酸 (pH 8.0)の存在下で、 0.006 U/ 1大腸菌リガーゼ(タカラ 、 日本)によって修復した。アダプターが結合した短い DNA断片を Mmelによる切断に よって生成した。生成した DNA断片は、未変性の PAGE上で一 40 bpで移動する単一 のバンドとして検出された。ゲルのバンドを切除して、 Mmel-切断産物をフエノール- クロ口ホルム抽出およびエタノール沈殿によって得た。 And 0.006 U / 1 E. coli ligase (Takara) in the presence of 30 mM Tris-HCl (pH 8.0). , Japan). A short DNA fragment with the adapter attached was generated by cleavage with Mmel. The resulting DNA fragment was detected as a single band migrating at 40 bp on native PAGE. The gel band was excised and the Mmel-cleaved product was obtained by phenol-cloth form extraction and ethanol precipitation.
[0042] 段階 3.第二のアダプターのライゲーシヨン  [0042] Step 3. Ligation of the second adapter
オリゴヌクレオチド対、 5, -CAAAGAGTCTTCGGCCCTCCAGACCGTGAGTC-3 ' (配列番号: 4)および 5 ' -GCCGAAGACTCTTTGNN-3 ' (配列番号: 5)をァニールさ せることによって両端が断端形状のアダプター 2を調製した後、 PAGEを用いて精製し た。後者のオリゴヌクレオチドは、「N」と呼ばれる 3'末端で二つの縮重塩基を含み、こ れは A、 C、 G、または Tを表す。 Τ4 DNAリガーゼを用いて、アダプター 2を段階 2から の Mmel切断 DNA断片にライゲーシヨンした。 PAGEによって精製した後、アダプター 2—ライゲーシヨン断片上のニックを、 T4ポリヌクレオチドキナーゼ (タカラ、 日本)およ び T4 DNAリガーゼによる処置によって修復した。  After preparing the adapter 2 having a truncated shape by annealing the oligonucleotide pair, 5, -CAAAGAGTCTTCGGCCCTCCAGACCGTGAGTC-3 '(SEQ ID NO: 4) and 5'-GCCGAAGACTCTTTGNN-3' (SEQ ID NO: 5), Purified using PAGE. The latter oligonucleotide contains two degenerate bases at the 3 'end, termed "N", which represent A, C, G, or T. # 4 Adapter 2 was ligated to the Mmel-cleaved DNA fragment from step 2 using DNA ligase. After purification by PAGE, nicks on the adapter 2-ligation fragment were repaired by treatment with T4 polynucleotide kinase (Takara, Japan) and T4 DNA ligase.
[0043] 段階 4.プライマーの伸長  [0043] Step 4. Primer extension
次に、段階 3からの産物にプライマー伸長反応を行って、プライマーオリゴヌクレオ チド、 5 ' -GACTCACGGTCTGGAGGGCCGAA-3 ' (配列番号: 6)と共に、 0.1%トラ ィトン X— 100、 0.2 mM dNTPs、 10 mM KC1、 10 mM (NH ) SO  Next, the product from step 3 was subjected to a primer extension reaction, along with the primer oligonucleotide, 5'-GACTCACGGTCTGGAGGGCCGAA-3 '(SEQ ID NO: 6), 0.1% triton X-100, 0.2 mM dNTPs, 10 mM KC1, 10 mM (NH) SO
4 2 4、 2 mM MgSO、および  4 2 4, 2 mM MgSO, and
4 Four
20 mMトリス-塩酸(pH 8.8)を含む反応緩衝液において 94°Cで 135秒間インキュベー トした後、 62°Cに冷却した。次に、 0.02 U/ μ 1 Bst DNAポリメラーゼ大断片(NEB)を 反応混合物に加えて、プライマー伸長反応を開始した。反応は 65°Cで 300秒間行い 、 4°Cに冷却することによって停止させた。反応産物は PAGEによって精製した。 After incubating at 94 ° C for 135 seconds in a reaction buffer containing 20 mM Tris-HCl (pH 8.8), the mixture was cooled to 62 ° C. Next, 0.02 U / μl Bst DNA polymerase large fragment (NEB) was added to the reaction mixture to initiate the primer extension reaction. The reaction was performed at 65 ° C for 300 seconds and stopped by cooling to 4 ° C. Reaction products were purified by PAGE.
[0044] 段階 5.プラスミドへのサブクローユング Step 5. Subcloning to plasmid
段階 4力もの産物を Bpmlによって消化して、タレノウ断片(タカラ、 日本)によって平 滑末端にした後、 Bbslによって消化した。 pNAMA-U6を Bsmlによって消化して、同様 に平滑末端にして力も Bbslによって消化した後、細菌アルカリホスファターゼ (タカラ、 日本)による処置を行った。消化した断片をゲル精製して、モル比約 3 : 1でライゲーシ ヨンした。ライゲーシヨン混合物を精製後、電気穿孔によって ElectroMAX DH5a-Eコ ンピテント細胞 (インビトロジェン)に導入した。形質転換細胞を、 100 g/mlカルべ- シリンを含む 500 cm2 LB寒天プレートに播種した。一晩インキュベートした後、芝状に 増殖した細菌をへらで採取して、プラスミド精製キット(プラスミド MIDIキット、キアゲン (Qiagen) )を用いてプラスミド DNAを調製した。 The product from step 4 was digested with Bpml, blunt-ended with tarenou fragments (Takara, Japan) and then digested with Bbsl. pNAMA-U6 was digested with Bsml, similarly blunt-ended and digested with Bbsl, followed by treatment with bacterial alkaline phosphatase (Takara, Japan). The digested fragments were gel purified and ligated at a molar ratio of about 3: 1. After purification of the ligation mixture, it was introduced into ElectroMAX DH5a-E competent cells (Invitrogen) by electroporation. Transform cells into 100 g / ml The cells were seeded on a 500 cm 2 LB agar plate containing sylin. After overnight incubation, turf-grown bacteria were collected with a spatula, and plasmid DNA was prepared using a plasmid purification kit (plasmid MIDI kit, Qiagen).
[0045] 段階 6.過剰なリンカ一の切断  [0045] Step 6. Excessive linker cleavage
段階 5から精製されたプラスミドを Bcglによって消化して、 T4 DNAポリメラーゼによつ て平滑末端にして、自己ライゲーシヨンによって再度環状ィ匕した。この処置によって、 アダプター 1からの配列のほとんどが除去される力 短いリンカ一配列、 5'  The plasmid purified from step 5 was digested with Bcgl, blunt-ended with T4 DNA polymerase, and circularized again by self-ligation. This procedure removes most of the sequence from adapter 1 Short linker sequence, 5 '
- TTGTCCGAC-3' (配列番号: 7)は保持される。不完全に消化されたプラスミドの混 入を可能な限り消失させるために、その認識配列がアダプター 1からの配列の Bcgl切 除部分に存在する Mfelによって DNAを消化した。 ElectroMAX DH5a-Eコンビテント 細胞を、再環状ィ匕したプラスミドによって形質転換して、 100 μ g/mlカルべ-シリンを 含む LB-寒天プレート上で選択した。プレート上で一晩培養した後、プラスミドライブ ラリーのストックを得た。  -TTGTCCGAC-3 '(SEQ ID NO: 7) is retained. To eliminate as much as possible contamination of the incompletely digested plasmid, the DNA was digested with Mfel whose recognition sequence was present in the Bcgl cut portion of the sequence from adapter 1. ElectroMAX DH5a-E competent cells were transformed with the recirculated plasmid and selected on LB-agar plates containing 100 μg / ml carbecillin. After overnight culture on the plate, a plasmid library stock was obtained.
[0046] ゲノムからの shRNA発現構築物の回収  [0046] Recovery of shRNA expression construct from genome
shRNA発現構築物を、形質導入した FL5.12細胞力も調製したゲノム DNA 100 ngか ら PCR増幅によって回収した。 PCRのために、 Vent DNAポリメラーゼ(NEB)を、プライ マー対、 5 ' -GTACGAGCGCACCGAGGGCCGCCACC-3 ' (配列番号: 8)および 5' - GGCGTTACTTAAGCTAGCGATCCGACGCCGCCATC- 3,(配列番号: 9)と共に 用いた。 PCR増幅 DNAを Notlおよび A11IIによって消化して、 pBsk-3LTRにサブクロー ユングした。形質転換および精製後、回収された shRNA発現構築物を含む 3' LTRを コードする DNAを Hindlllおよび Notlによって切除して、 pda5LTR-DsRed2-M4にサブ クローニングした。得られたプラスミドは、 pNAMA-U6と構造的に同じであり、回収され た shRNA発現構築物を有するレトロウイルスを産生するためにパッケージングを行うこ とがでさる。  shRNA expression constructs were recovered by PCR amplification from 100 ng of genomic DNA also prepared from transduced FL5.12 cells. For PCR, Vent DNA polymerase (NEB) was used with a primer pair, 5'-GTACGAGCGCACCGAGGGCCGCCACC-3 '(SEQ ID NO: 8) and 5'-GGCGTTACTTAAGCTAGCGATCCGACGCCGCCATC-3, (SEQ ID NO: 9). PCR amplified DNA was digested with Notl and A11II and subcloned into pBsk-3LTR. After transformation and purification, the DNA encoding the 3 'LTR containing the recovered shRNA expression construct was excised with Hindlll and Notl and subcloned into pda5LTR-DsRed2-M4. The resulting plasmid is structurally identical to pNAMA-U6 and can be packaged to produce a retrovirus with the recovered shRNA expression construct.
[0047] インビトロでの shRNAの調製  [0047] Preparation of shRNA in vitro
shRNAsは T7プロモーターに基づくインビトロ転写を用いることによって合成した。ィ ンビトロ転写のための铸型を調製するために、二つの化学合成オリゴヌクレオチド、 T7プロモーターコードオリゴヌクレオチド、 5 ' -taatacgactcactataG-3 ' (配列番号: 10) および shRNAコードオリゴヌクレオチド 5,- AAAAN GTCGGACAAN' shRNAs were synthesized by using in vitro transcription based on the T7 promoter. To prepare type I for in vitro transcription, two chemically synthesized oligonucleotides, a T7 promoter-encoding oligonucleotide, 5'-taatacgactcactataG-3 '(SEQ ID NO: 10) And shRNA-encoded oligonucleotide 5, -AAAN GTCGGACAAN '
20-21 20-21 ctatagtgagtcgtatta-3,(配列番号 : 11, N および N' は、 shRNAの基本構造に対  20-21 20-21 ctatagtgagtcgtatta-3, (SEQ ID NOS: 11, N and N 'correspond to the basic structure of shRNA
20-21 20-21  20-21 20-21
応する配列を示し、小文字は、 T7-プロモーターコードオリゴヌクレオチドと相補的な ヌクレオチドを示す)を、 94°Cで 135秒間インキュベートした後、 45°Cで 30秒間ァニー ルした。次に、ァニールしたオリゴヌクレオチドを、 Bst DNAポリメラーゼ大断片(0.08 U/ 1)を用いて、 50°Cで 600秒間の伸長反応によって二本鎖 DNA铸型に変換した。 shRNAは、 CUGA7インビトロ転写キット(二ツボンジーン、 日本)を用いて、製造元のプ ロトコールに従って精製铸型カも作製した。転写された shRNAをゲル濾過スピンカラ ム(マイクロスピン G- 25、アマシャム'バイオサイェンシズ(Amersham Bioeciences) )を 用いて精製した。ダイサー消化 shRNAを作製する場合、 shRNAを組換え型ヒトダイサ 一(ジーンセラピーシステムズ(Gene Therapy Systems) )によって製造元のプロトコ一 ルに従って処理した。  The corresponding sequence is shown, lower case letters indicate nucleotides complementary to the T7-promoter-encoding oligonucleotide) were incubated at 94 ° C for 135 seconds and then annealed at 45 ° C for 30 seconds. Next, the annealed oligonucleotide was converted to double-stranded DNA type II by an extension reaction at 50 ° C. for 600 seconds using a large fragment of Bst DNA polymerase (0.08 U / 1). The shRNA was also purified using the CUGA7 in vitro transcription kit (Futtsubon Gene, Japan) according to the manufacturer's protocol. The transcribed shRNA was purified using a gel filtration spin column (Microspin G-25, Amersham Bioeciences). When preparing Dicer-digested shRNA, shRNA was treated with recombinant human Dicer (Gene Therapy Systems) according to the manufacturer's protocol.
[0048] 異なる shRNAコードオリゴヌクレオチドの N 配列は、 [0048] The N sequences of the different shRNA-encoding oligonucleotides are
20-21  20-21
TCTCGGCATGGACGAGCTGT (shGFPl) (配列番号: 12)  TCTCGGCATGGACGAGCTGT (shGFPl) (SEQ ID NO: 12)
CTTCACCTCGGCGCGGGTCT (shGFP5) (配列番号: 13)  CTTCACCTCGGCGCGGGTCT (shGFP5) (SEQ ID NO: 13)
CTACAAGACCCGCGCCGAGG (shGFP7) (配列番号: 14)  CTACAAGACCCGCGCCGAGG (shGFP7) (SEQ ID NO: 14)
CCCCATCGGCGACGGCCCCGT (shGFPIO) (配列番号: 15)  CCCCATCGGCGACGGCCCCGT (shGFPIO) (SEQ ID NO: 15)
AGATCCGCCACAACATCGAGG (shGFP12) (配列番号: 16)  AGATCCGCCACAACATCGAGG (shGFP12) (SEQ ID NO: 16)
TCAGCTCGATGCGGTTCACC (shGFP13) (配列番号: 17)  TCAGCTCGATGCGGTTCACC (shGFP13) (SEQ ID NO: 17)
CCACAAGTTCAGCGTGTCCGG (shGFP14) (配列番号: 18)  CCACAAGTTCAGCGTGTCCGG (shGFP14) (SEQ ID NO: 18)
CTTCAAGTCCGCCATGCCCGA (shGFP17) (配列番号: 19)  CTTCAAGTCCGCCATGCCCGA (shGFP17) (SEQ ID NO: 19)
TGCTGGTAGTGGTCGGCGAGC (shGFP18) (配列番号: 20)  TGCTGGTAGTGGTCGGCGAGC (shGFP18) (SEQ ID NO: 20)
TCGGCGCGGGTCTTGTAGTTG (shGFP19) (配列番号: 21)および  TCGGCGCGGGTCTTGTAGTTG (shGFP19) (SEQ ID NO: 21) and
TTGTAGTTGCCGTCGTCCTT (shGFP20) (配列番号: 22)であった。  TTGTAGTTGCCGTCGTCCTT (shGFP20) (SEQ ID NO: 22).
N' 配列は、 N 配列と相補的であった。  The N 'sequence was complementary to the N sequence.
20-21 20-21  20-21 20-21
[0049] レトロウイルス産生と形質導入  [0049] Retrovirus production and transduction
ハイスループットスクリーニングの場合、 shRNA発現構築物を有するレトロウイルスの 作製および形質導入は、 96ゥエルプレートフォーマットで行った。プラスミドは、 QIAゥ エル 96ウルトラプラスミドキット(キアゲン)を用いて、製造元のプロトコールに従って 96 ゥエルプレートのフォーマットで調製した。 GP293パッケージング細胞株(クロンテック) に、レトロウイノレスベタタープラスミド一 200 ngおよび VSG-Gコードプラスミド 17 ngを、 96ゥエルプレートにお!、てそれぞれのゥエルに関してリポフエクタミン 2000 (インビトロ ジェン)を用いてトランスフエタトした。トランスフエクシヨンの 2日後、レトロウイルスを含 む培養培地を得た。レトロウイルス形質導入は、レトロウイルス粒子を含む培地 50 μ 1 を1^1¾1:丁細胞浮遊液(1.0 105/½1) 50 1に加えることによって行った。中等度の 規模でレトロウイルスを作製する場合、 DNAをプラスミド MIDIキットによって精製して、 レトロウイノレスベタタープラスミド 24 μ gおよび VSG— Gコードプラスミド 2 μ gによるトラ ンスフエクシヨンによって、 10 cm培養皿において増殖させた GP293においてレトロウイ ルスパッケージングを行った。必要であれば、レトロウイルス粒子を、ー晚遠心するこ とによって濃縮した後、適当な培養培地に再浮遊させた。 For high-throughput screening, retrovirus generation and transduction with shRNA expression constructs was performed in a 96-well plate format. The plasmid is QIA ゥ Prepared in 96-well plate format using the E96 Ultra Plasmid Kit (Qiagen) according to the manufacturer's protocol. In a GP293 packaging cell line (Clontech), 200 ng of retrowinores setter plasmid and 17 ng of VSG-G encoding plasmid were placed in a 96-well plate using Lipofectamine 2000 (Invitrogen) for each well. Transfetat. Two days after transfection, a culture medium containing the retrovirus was obtained. Retroviral transduction was performed by adding 50 μl of medium containing retrovirus particles to 1 ^ 1¾1: cell suspension (1.0 10 5 cells / ½1) 501. For retroviral production on a medium scale, DNA is purified by plasmid MIDI kit and propagated in a 10 cm culture dish by transfection with 24 μg of retrowinoresetter plasmid and 2 μg of VSG-G encoding plasmid. Retrovirus packaging was performed on GP293. If necessary, the retroviral particles were concentrated by centrifugation at 晚, and then resuspended in an appropriate culture medium.
[0050] フローサイトメトリーと RNAi効率の評価  [0050] Flow cytometry and evaluation of RNAi efficiency
相対的 GFP発現レベルは、 FACスキャンフローサイトメーター(BD)を用いて分析し た蛍光強度に基づ!/ヽて推定した。 GFP蛍光の減少倍数 (shRNA形質導入を行った細 胞の蛍光強度で除した対照蛍光強度)を、 RNAi効率の測定値として用いた。レトロゥ ィルスカ価の変動による RNAi効率のバッチ毎の差を補正するために、一連の内部対 照 shRNA発現構築物をそれぞれの 96ゥエルプレートに含めた。  Relative GFP expression levels are based on fluorescence intensity analyzed using a FAC Scan Flow Cytometer (BD)! / Estimated. The fold reduction of GFP fluorescence (control fluorescence intensity divided by the fluorescence intensity of shRNA-transduced cells) was used as a measure of RNAi efficiency. A series of internal control shRNA expression constructs were included in each 96-well plate to correct for batch-to-batch differences in RNAi efficiency due to variations in retrofilska titer.
[0051] ウェスタンブロット分析  [0051] Western blot analysis
A7r5細胞に shRNA発現構築物を有するレトロウイルスを感染させた。 4日後、細胞を トリプシン処理によって回収して、可溶ィ匕し、 SDS-PAGEを行った。 SDS-PAGE産物を PVDFメンブレンに転写した後、 IP Rに対応するタンパク質を、一次抗体および二次  A7r5 cells were infected with the retrovirus carrying the shRNA expression construct. Four days later, the cells were collected by trypsinization, soluble, and subjected to SDS-PAGE. After transferring the SDS-PAGE product to the PVDF membrane, the protein corresponding to the IPR is transferred to the primary antibody and the secondary antibody.
3  Three
抗体としてそれぞれ、ゥサギ IgG抗 1型 IP R (ァロモン (Alomone) )および HRP結合抗ゥ  The antibodies were Eg IgG anti-type I IPR (Alomone) and HRP-conjugated antibody, respectively.
3  Three
サギ IgG (MBL、 日本)によってプロ一ビングして、化学発光によって検出した。ィムノ ブロットシグナル強度の定量は、 IPLabスペクトルソフトウェアを用いて行った (スキャン アナリテイクスインク(Scananalytics, Inc) )。 IP Rシグナルは、抗ァクチン抗体(サンタク  It was probed with heron IgG (MBL, Japan) and detected by chemiluminescence. Quantification of the immunoblot signal intensities was performed using IPLab spectral software (Scan Analytics, Inc.). The IPR signal is detected by an anti-actin antibody
3  Three
ルズ (Santa cruz) )を用いてプロ一ビングしたァクチンのィムノブロットシグナルによつ て標準化した。 [0052] 細胞内カルシウム測定 Normalized by immunoblot signal of actin probed using Santa Cruz. [0052] Intracellular calcium measurement
細胞内カルシウムを測定するために、カバーグラスに播種した A7r5細胞を shRNA発 現レトロウイルスに感染させて、感染 4日後に Ca2+指標物質 Fura-2をローデイングした 。細胞内 Ca2+濃度の変化は、既に記述されているように(Hirose, K. et al. Science 284, 1527-1530 (1999))、 CCDカメラ(フォトメトリタス(Photometries) )を備えた倒立顕 微鏡にお!、て比測定による蛍光測定によって評価した。 L型 Ca2+チャンネル阻害剤で ある-カルジピン(10 μ Μ)の存在下で 1 ηΜアルギニンバソプレツシン (AVP)をカロえ ることによって細胞を刺激した。 To measure intracellular calcium, A7r5 cells seeded on a cover glass were infected with shRNA-expressing retrovirus, and 4 days after infection, the Ca 2+ indicator Fura-2 was loaded. Changes in intracellular Ca 2+ concentration were determined by inversion with a CCD camera (Photometries) as described previously (Hirose, K. et al. Science 284, 1527-1530 (1999)). The evaluation was performed by fluorescence measurement based on ratio measurement in a microscope. Cells were stimulated by caloricizing 1ηΜ arginine vasopressin (AVP) in the presence of the L-type Ca 2+ channel inhibitor -cardipine (10 μΜ).
産業上の利用可能性  Industrial applicability
[0053] 上記の通り、本発明者らは、 shRNA発現ライブラリーを cDNA铸型カゝら酵素的に誘 導することができる技術「EPRIL」を確立した。本発明を単一の cDNA源に適用すると、 ライブラリ一は、 cDNA上の様々な領域に対する候補 shRNA発現構築物の膨大なァ レイを提供し得る。 EPRILをノヽィスループットスクリーニングおよび細胞内選択スキー ムと組み合わせると、あらゆる遺伝子に関して最善の shRNA発現構築物の大き 、コレ クシヨンを作製するための一般ィ匕し得るプラットフォームを提供する。そのようなコレク シヨンは一般的に、哺乳類における RNAiに基づくハイスループットリバース遺伝学に 大きく貢献するであろう。  [0053] As described above, the present inventors have established a technology "EPRIL" capable of enzymatically deriving a shRNA expression library from cDNA type I polymerase. Applying the present invention to a single source of cDNA, the library can provide a vast array of candidate shRNA expression constructs for various regions on the cDNA. Combining EPRIL with a no-throughput screening and intracellular selection scheme provides a generic platform for generating the best shRNA expression construct sizes and collections for any gene. Such collections will generally make a significant contribution to RNAi-based high-throughput reverse genetics in mammals.
[0054] 本発明者らは、効率的な RNAiの配列選択性を同定しようと試みた。本発明者らは、 ガイド配列の 5'末端カゝら 4番目のヌクレオチドで Uを有する shRNA発現構築物が GFP および IP Rにとつて有効である、という弱いが一般的傾向を認めた力 他の位置に対 [0054] The present inventors have attempted to identify efficient RNAi sequence selectivity. We have observed a weak but general trend that shRNA expression constructs having a U at the fourth nucleotide from the 5 'end of the guide sequence are effective for GFP and IPR. Vs position
3 Three
する選択性は必ずしも一貫しな力つた。例えば、第二のヌクレオチドでの Gは IP Rにと  The selectivity to work was not always consistent. For example, G at the second nucleotide is
3 つては好ましい傾向が見られた力 GFPではそのような傾向は認められな力つた。明 らかに、全般的な配列選択性を決定するために様々な遺伝子力 より多くのデータ が必要である。 EPRILはそのような研究を大きく促進するであろう。  All three tended to show a positive tendency. GFP showed no such tendency. Clearly, more data is needed than various genetic powers to determine overall sequence selectivity. EPRIL will greatly facilitate such research.
[0055] EPRILによって、 cDNAsの複雑な混合物からなる cDNAライブラリーから大きい [0055] EPRIL allows large cDNA libraries consisting of complex mixtures of cDNAs
shRNAiライブラリーを作製することができる。本発明者らは、ライブラリーが、独立した cDNA由来 shRNA発現構築物 3 X 105— 4 X 106個を含むと推定した。したがって、本発 明の方法によって、絶対的な表現型の基準、例えば、細胞形態学、接着、細胞死、 重要な分子の発現レベルおよび他の機能的指標に基づく選択によって遺伝子を同 定することができる RNAiに基づくフォワード遺伝学を行うことができるであろう。 shRNA 配列は、ランダム配列を有する 20および 21-塩基の長さのタグを完全にマッチさせる ことができる(Saha, S. et al. Nat. Biotechnol. 20, 508-512 (2002))確率 9.1 X 10— 13お よび 2.3 X 10— 13が、マウスまたはヒトゲノムのサイズ一 3 X 109 bpを考慮すると十分に小 さいことから、遺伝子同定のための信頼できるタグとして役立ちうる。 An shRNAi library can be created. We estimated that the library contained 3 × 10 5 —4 × 10 6 independent cDNA-derived shRNA expression constructs. Therefore, the methods of the present invention provide a measure of absolute phenotype, such as cell morphology, adhesion, cell death, RNAi-based forward genetics could be performed where genes can be identified by selection based on the expression levels of key molecules and other functional indicators. The shRNA sequence can perfectly match 20 and 21-base long tags with random sequences (Saha, S. et al. Nat. Biotechnol. 20, 508-512 (2002)) probability 9.1 X 10 13 Contact and 2.3 X 10- 13 are, since sufficiently small again considering the size one 3 X 10 9 bp of mouse or human genome, can serve as a reliable tags for gene identification.
本発明の RNAiライブラリーを用いたフォワード遺伝学を動物レベルに適用してもよ い。レンチウィルス媒介形質導入によって、 shRNA発現構築物を有するマウスを作製 できることから(Rubinson, D.A. et al. Nat. Genet. 33, 401-406 (2003))、本発明者ら は、異なる遺伝子を標的とする shRNA発現構築物によって変異動物の膨大なアレイ を効率よく作製することができる。表現型に基づいて系統的にスクリーニングすると、 特定の表現型に関与する遺伝子を容易に同定することができる。この特徴は、ェチ ルニトロソゥレア(ENU)を用いてマウスにおいて進行中の大規模な変異誘発プロジェ タトの特徴とは対照的である(Kile, B.T. et al. Nature 425, 81-86 (2003))。 ENU-変 異誘発は変異体動物を効率よく作製するが、座を決定するまでに単調で退屈なプロ セスを要する。さらに、 shRNA発現構築物の RNAi効率の変動によって、遺伝子サイレ ンシングの程度の変動により独自の表現型が発見される可能性がある。このように、 EPRILは、哺乳類におけるフォワード遺伝学の新しいスタイルを提供し、 RNAiに基づ くリバース遺伝学におけるその役割と共に、全ゲノムレベルでの遺伝子と機能との関 係の解明に大きく貢献するであろう。  Forward genetics using the RNAi library of the present invention may be applied at the animal level. Because lentivirus-mediated transduction can generate mice with shRNA expression constructs (Rubinson, DA et al. Nat. Genet. 33, 401-406 (2003)), we target different genes. The shRNA expression construct can efficiently produce a huge array of mutant animals. Systematic screening based on phenotype allows easy identification of genes involved in a particular phenotype. This feature contrasts with that of a large-scale mutagenesis project that is ongoing in mice using ethylnitrosoperrea (ENU) (Kile, BT et al. Nature 425, 81-86 (2003)). . ENU-mutagenesis efficiently produces mutant animals, but requires a tedious and tedious process to determine the locus. In addition, variations in the RNAi efficiency of shRNA expression constructs can lead to the discovery of unique phenotypes due to varying degrees of gene silencing. Thus, EPRIL provides a new style of forward genetics in mammals and, together with its role in RNAi-based reverse genetics, will contribute significantly to elucidating the relationship between genes and functions at the whole genome level. Will.

Claims

請求の範囲 [1] 以下の(1)一 (3)の工程を含む、所望の標的 DNAから RNAiライブラリーを製造する 方法。 Claims [1] A method for producing an RNAi library from a desired target DNA, comprising the following steps (1) and (3).
(1)標的 DNAをランダムに切断し、 DNA断片を生成する工程、  (1) randomly cutting the target DNA to generate a DNA fragment,
(2)ヘアピン型アダプターを、前記 DNA断片の一端に接続して、ヘアピン型の DNA 断片を生成する工程、  (2) connecting a hairpin-type adapter to one end of the DNA fragment to generate a hairpin-type DNA fragment;
(3)ヘアピン型の DNA断片を Strand— displacing活性を有するポリメラーゼを用いてプ ライマーエクステンションを実行させ、インターフェアレンス RNAをコードした iRNA発 現構築物を生成させる工程を含む、 RNAiライブラリー製造方法。  (3) A method for producing an RNAi library, comprising the step of: causing a hairpin-type DNA fragment to undergo primer extension using a polymerase having Strand-displacing activity to generate an iRNA expression construct encoding interference RNA.
[2] 前記(2)工程の前または後に DAN断片の他端に二重鎖断端型アダプターを接続す る工程が含まれ、  [2] a step of connecting a double-stranded stump type adapter to the other end of the DAN fragment before or after the step (2),
前記二重鎖断端型アダプターまたは前記ヘアピン型アダプターのいずれか一方に アウトサイドカッターの制限酵素認識サイトが備えられ、  Either the double-stranded stump type adapter or the hairpin type adapter is provided with a restriction enzyme recognition site of an outside cutter,
前記制限酵素認識サイトを備えたアダプターが先に、前記 DNA断片に接続され、前 記アウトサイドカッターの制限酵素により DNA断片の長さが整えられて形成された端 にもう一方のアダプターが接続される、請求項 1記載の方法。  The adapter having the restriction enzyme recognition site is connected to the DNA fragment first, and the other adapter is connected to the end formed by adjusting the length of the DNA fragment by the restriction enzyme of the outside cutter. The method of claim 1, wherein
[3] ヘアピン型アダプターにアウトサイドカッターの制限酵素認識サイトが備えられている[3] Hairpin-type adapter has a restriction enzyme recognition site for the outside cutter
、請求項 2記載の方法。 The method of claim 2.
[4] 二重鎖断端型アダプターにアウトサイドカッターの制限酵素認識サイトが備えられて いる、請求項 2記載の方法。 [4] The method according to claim 2, wherein the double-stranded stump type adapter is provided with a restriction enzyme recognition site for an outside cutter.
[5] プライマーエクステンション後に iRNA発現構築物を発現ベクターに接続する工程をさ らに含む、請求項 1記載の RNAiライブラリーの製造方法。 [5] The method for producing an RNAi library according to claim 1, further comprising a step of connecting the iRNA expression construct to the expression vector after the primer extension.
[6] 発現ベクターが哺乳動物内で機能し得る、請求項 5記載の RNAiライブラリーの製造 方法。 [6] The method for producing an RNAi library according to claim 5, wherein the expression vector can function in a mammal.
[7] 発現ベクターが宿主染色体内への組込み活性を有する、請求項 5又は 6記載の [7] The expression vector according to claim 5 or 6, wherein the expression vector has an integration activity into a host chromosome.
RNAiライブラリーの製造方法。 Method for producing RNAi library.
[8] 標的 DNAが、特定の遺伝子の cDNA、 cDNAライブラリー、またはサブトラクシヨン後の cDNAのいずれかである、請求項 1から 7のいずれかに記載の RNAiライブラリーの製 造方法。 [8] The production of the RNAi library according to any one of claims 1 to 7, wherein the target DNA is any one of a cDNA of a specific gene, a cDNA library, and a cDNA after subtraction. Construction method.
[9] 前記(1)工程において、ショットガンクローユングに使用し得る DNA消化酵素を用い て標的 DNAが断片化される、請求項 1記載の RNAiライブラリーの製造方法。  [9] The method for producing an RNAi library according to claim 1, wherein in the step (1), the target DNA is fragmented using a DNA digestive enzyme usable for shotgun cloning.
[10] アウトサイドカッターの制限酵素が、少なくとも第一のアダプター内の認識サイトから 1 9bp以上はなれた位置を切断する、請求項 1から 9の!、ずれかに記載の RNAiライブラ リーの製造方法。  [10] The method for producing an RNAi library according to any one of claims 1 to 9, wherein the restriction enzyme of the outside cutter cuts at least 19 bp away from the recognition site in the first adapter. .
[11] Strand-displacing活性を有するポリメラーゼが耐熱性である、請求項 1から 10のいず れかに記載の RNAiライブラリーの製造方法。  [11] The method for producing an RNAi library according to any one of [1] to [10], wherein the polymerase having a strand-displacing activity is heat-resistant.
[12] Strand— displacing活性を有するポリメラーゼカ ¾stポリメラーゼまたは Ventポリメラーゼ の!、ずれかである、請求項 1から 11の 、ずれかに記載の RNAiライブラリーの製造方 法。 [12] Strand—Polymerase polymerase with displacing activity or Vent polymerase! The method for producing an RNAi library according to any one of claims 1 to 11, wherein the RNAi library is a DNA.
[13] 請求項 1から 12のいずれかに記載の方法により製造された RNAiライブラリー。  [13] An RNAi library produced by the method according to any one of claims 1 to 12.
[14] 請求項 1から 12のいずれかに記載の方法により製造された RNAiライブラリーから所 望の RNAi活性を有する siRNA発現構築物をスクリーニングする方法であって、 標的 DNAが発現している細胞に前記 RNAiライブラリーを導入する工程、 [14] A method for screening an siRNA expression construct having a desired RNAi activity from an RNAi library produced by the method according to any one of claims 1 to 12, wherein the cell comprises a target DNA-expressing cell. Introducing the RNAi library,
標的 DNAの発現を測定する工程、を含むスクリーニング方法。  Measuring the expression of the target DNA.
[15] 請求項 14記載のスクリーニング方法において、 [15] The screening method according to claim 14,
標的 DNAをレポーター遺伝子と融合させた融合遺伝子として、  As a fusion gene obtained by fusing target DNA with a reporter gene,
標的 DNAの発現を測定する工程では、前記レポータータンパク質の活性を指標に標 的 DNAの発現が測定される、スクリーニング方法。  A screening method, wherein in the step of measuring the expression of the target DNA, the expression of the target DNA is measured using the activity of the reporter protein as an index.
[16] 請求項 1から 12のいずれかに記載の方法により製造された RNAiライブラリーから所 望の RNAi活性を有する siRNA発現構築物をスクリーニングする方法であって、 標的 DNAとネガティブ選択マーカー遺伝子とを融合させた融合遺伝子が発現してい る細胞に前記 RNAiライブラリーを導入する工程、 [16] A method for screening an siRNA expression construct having a desired RNAi activity from an RNAi library produced by the method according to any one of claims 1 to 12, wherein the target DNA and the negative selection marker gene are combined. Introducing the RNAi library into cells expressing the fused gene,
ネガティブ選択マーカーによる選択を実行し RNAi効果があった細胞のみを選択す る工程とを、スクリーニング方法。  Performing a selection with a negative selectable marker to select only cells having an RNAi effect.
[17] RNAiライブラリーを製造するためのシステムであって、 [17] A system for producing an RNAi library,
ヘアピン型アダプターと、二重鎖断端型アダプターとを含み、 前記アダプターのいずれかにアウトサイドカッターの制限酵素認識サイトが備えられ ている、システム。 Including a hairpin type adapter and a double-stranded stump type adapter, A system, wherein any of the adapters is provided with a restriction enzyme recognition site for an outside cutter.
さらに、アウトサイドカッターの制限酵素および Zまたは Strand— displacing性を有する ポリメラーゼを備えた、請求項 17記載のシステム。 18. The system according to claim 17, further comprising an outside cutter restriction enzyme and a polymerase having Z or Strand-displacing properties.
PCT/JP2004/019612 2003-12-31 2004-12-28 METHOD OF ENZYMATICALLY CONSTRUCTING RNAi LIBRARY WO2005063980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516704A JP4747245B2 (en) 2003-12-31 2004-12-28 Enzymatic construction method of RNAi library

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53385403P 2003-12-31 2003-12-31
US60/533,854 2003-12-31

Publications (2)

Publication Number Publication Date
WO2005063980A1 true WO2005063980A1 (en) 2005-07-14
WO2005063980A8 WO2005063980A8 (en) 2006-02-09

Family

ID=34738877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019612 WO2005063980A1 (en) 2003-12-31 2004-12-28 METHOD OF ENZYMATICALLY CONSTRUCTING RNAi LIBRARY

Country Status (2)

Country Link
JP (1) JP4747245B2 (en)
WO (1) WO2005063980A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129934A (en) * 2005-11-09 2007-05-31 Tokyo Metropolitan Univ Method for identifying genome sequence adjacent to gene search vector and variant susceptible to oxidative stress
US7704222B2 (en) 1998-09-10 2010-04-27 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
WO2010071206A1 (en) * 2008-12-18 2010-06-24 国立大学法人名古屋大学 DNA CONSTRUCT FOR TRANSCRIPTION/EXPRESSION OF siRNA, AND USE THEREOF
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US7896913B2 (en) 2000-02-28 2011-03-01 Jenavalve Technology, Inc. Anchoring system for implantable heart valve prostheses
US8062355B2 (en) 2005-11-04 2011-11-22 Jenavalve Technology, Inc. Self-expandable medical instrument for treating defects in a patient's heart
US8092521B2 (en) 2005-10-28 2012-01-10 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
US8206437B2 (en) 2001-08-03 2012-06-26 Philipp Bonhoeffer Implant implantation unit and procedure for implanting the unit
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US8679174B2 (en) 2005-01-20 2014-03-25 JenaValve Technology, GmbH Catheter for the transvascular implantation of prosthetic heart valves
JP2015084722A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Novel counter selecting method
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9295551B2 (en) 2007-04-13 2016-03-29 Jenavalve Technology Gmbh Methods of implanting an endoprosthesis
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
US10154901B2 (en) 2008-02-26 2018-12-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10450606B2 (en) 2012-02-17 2019-10-22 Fred Hutchinson Cancer Research Center Compositions and methods for accurately identifying mutations
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US11584958B2 (en) 2017-03-31 2023-02-21 Grail, Llc Library preparation and use thereof for sequencing based error correction and/or variant identification
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0706631D0 (en) * 2007-04-04 2007-05-16 King S College London Nucleic acids and libraries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101788A2 (en) * 2003-05-09 2004-11-25 University Of Pittsburgh Of The Commonwealth System Of Higher Education Small interfering rna libraries and methods of synthesis and use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003211058A1 (en) * 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TARGET DISCOVERY AND TARGET VALIDATION USING SHORT INTERFERING NUCLEIC ACID (siNA)
WO2004001044A1 (en) * 2002-06-21 2003-12-31 Sinogenomax Company Ltd. Randomised dna libraries and double-stranded rna libraries, use and method of production thereof
EP1554386A2 (en) * 2002-07-24 2005-07-20 Immusol Incorporated Single promoter system for making sirna expression cassettes and expression libraries using a polymerase primer hairpin linker
CA2515688A1 (en) * 2003-02-11 2004-08-26 Immusol Incorporated Sirna libraries optimized for predetermined protein families
AU2004286261B2 (en) * 2003-10-27 2010-06-24 Merck Sharp & Dohme Llc Method of designing siRNAs for gene silencing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101788A2 (en) * 2003-05-09 2004-11-25 University Of Pittsburgh Of The Commonwealth System Of Higher Education Small interfering rna libraries and methods of synthesis and use

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRUMMELKAMP TH.R. ET AL: "A System for Stable Expression of Short Interfering RNAs in Mammalian Cells", SCIENCE, vol. 296, no. 5567, 2002, pages 550 - 553, XP002225638 *
HIROSE K. ET AL: "Enzymatic production of RNAi libraries from cDNAs", NAT.GENET., vol. 36, no. 2, February 2004 (2004-02-01), pages 190 - 196, XP002323762 *
KILE B.T. ET AL: "Functional genetic analysis of mouse chromosome 11", NATURE, vol. 425, no. 6953, 4 September 2003 (2003-09-04), pages 81 - 86, XP002985088 *
MIYAGISHI M. ET AL: "U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells", NAT BIOTECHNOL., vol. 20, no. 5, 2002, pages 497 - 500, XP001153719 *
TRAN N. ET AL: "Expressing functional siRNAs in mammalian cells using convergent transcription", BMC BIOTECHNOL., vol. 3, no. 1, 6 November 2003 (2003-11-06), pages 21 - 30, XP002299175 *

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216174B2 (en) 1998-09-10 2012-07-10 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US7736327B2 (en) 1998-09-10 2010-06-15 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US7704222B2 (en) 1998-09-10 2010-04-27 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US8597226B2 (en) 1998-09-10 2013-12-03 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US7896913B2 (en) 2000-02-28 2011-03-01 Jenavalve Technology, Inc. Anchoring system for implantable heart valve prostheses
US9949824B2 (en) 2001-08-03 2018-04-24 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US9889002B2 (en) 2001-08-03 2018-02-13 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US8585756B2 (en) 2001-08-03 2013-11-19 Jenavalve Technology, Inc. Methods of treating valves
US8206437B2 (en) 2001-08-03 2012-06-26 Philipp Bonhoeffer Implant implantation unit and procedure for implanting the unit
US8216301B2 (en) 2001-08-03 2012-07-10 Philipp Bonhoeffer Implant implantation unit
US8303653B2 (en) 2001-08-03 2012-11-06 Philipp Bonhoeffer Implant implantation unit and procedure for implanting the unit
US8579965B2 (en) 2001-08-03 2013-11-12 Jenavalve Technology, Inc. Methods of implanting an implantation device
US11007052B2 (en) 2001-08-03 2021-05-18 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US8679174B2 (en) 2005-01-20 2014-03-25 JenaValve Technology, GmbH Catheter for the transvascular implantation of prosthetic heart valves
US9775705B2 (en) 2005-01-20 2017-10-03 Jenavalve Technology, Inc. Methods of implanting an endoprosthesis
US8551160B2 (en) 2005-10-28 2013-10-08 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
USRE45790E1 (en) 2005-10-28 2015-11-03 Jenavalve Technology Gmbh Device for the implantation and fixation of prosthetic valves
USRE45962E1 (en) 2005-10-28 2016-04-05 Jenavalve Technology Gmbh Device for the implantation and fixation of prosthetic valves
US8092521B2 (en) 2005-10-28 2012-01-10 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
US8062355B2 (en) 2005-11-04 2011-11-22 Jenavalve Technology, Inc. Self-expandable medical instrument for treating defects in a patient's heart
JP2007129934A (en) * 2005-11-09 2007-05-31 Tokyo Metropolitan Univ Method for identifying genome sequence adjacent to gene search vector and variant susceptible to oxidative stress
US8685085B2 (en) 2007-04-13 2014-04-01 JenaValve Technologies GmbH Medical device for treating a heart valve insufficiency
US10543084B2 (en) 2007-04-13 2020-01-28 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US7914575B2 (en) 2007-04-13 2011-03-29 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US9918835B2 (en) 2007-04-13 2018-03-20 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficency
US9295551B2 (en) 2007-04-13 2016-03-29 Jenavalve Technology Gmbh Methods of implanting an endoprosthesis
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9339386B2 (en) 2007-04-13 2016-05-17 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficency
US9445896B2 (en) 2007-04-13 2016-09-20 Jenavalve Technology, Inc. Methods for treating a heart valve insufficiency or stenosis
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9877828B2 (en) 2008-02-26 2018-01-30 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US10154901B2 (en) 2008-02-26 2018-12-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9707075B2 (en) 2008-02-26 2017-07-18 Jenavalve Technology, Inc. Endoprosthesis for implantation in the heart of a patient
US10702382B2 (en) 2008-02-26 2020-07-07 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10575947B2 (en) 2008-02-26 2020-03-03 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
WO2010071206A1 (en) * 2008-12-18 2010-06-24 国立大学法人名古屋大学 DNA CONSTRUCT FOR TRANSCRIPTION/EXPRESSION OF siRNA, AND USE THEREOF
JPWO2010071206A1 (en) * 2008-12-18 2012-05-31 国立大学法人名古屋大学 siRNA transcription / expression DNA construct and use thereof
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US11441180B2 (en) 2012-02-17 2022-09-13 Fred Hutchinson Cancer Center Compositions and methods for accurately identifying mutations
US10450606B2 (en) 2012-02-17 2019-10-22 Fred Hutchinson Cancer Research Center Compositions and methods for accurately identifying mutations
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10433954B2 (en) 2013-08-30 2019-10-08 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
JP2015084722A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Novel counter selecting method
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11584958B2 (en) 2017-03-31 2023-02-21 Grail, Llc Library preparation and use thereof for sequencing based error correction and/or variant identification

Also Published As

Publication number Publication date
JPWO2005063980A1 (en) 2007-12-20
JP4747245B2 (en) 2011-08-17
WO2005063980A8 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
WO2005063980A1 (en) METHOD OF ENZYMATICALLY CONSTRUCTING RNAi LIBRARY
Giuliano et al. Generating single cell–derived knockout clones in mammalian cells with CRISPR/Cas9
Ishizu et al. Somatic primary piRNA biogenesis driven by cis-acting RNA elements and trans-acting Yb
Yap et al. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention
EP1853712B1 (en) Stable and long-lasting sirna expression vectors and the applications thereof
Haley et al. A simplified miRNA-based gene silencing method for Drosophila melanogaster
JP2024038096A (en) VI-E and VI-F CRISPR-Cas systems and their use
EP1462525B1 (en) siRNA EXPRESSION SYSTEM AND PROCESS FOR PRODUCING FUNCTIONAL GENE KNOCKDOWN CELL OR THE LIKE USING THE SAME
JP5258874B2 (en) RNA interference tag
Ono et al. Analysis of human small nucleolar RNAs (snoRNA) and the development of snoRNA modulator of gene expression vectors
EP1444346A2 (en) Sirna knockout assay method and constructs
CN109072257B (en) Enhanced sleeping beauty transposons, kits and transposition methods
CN110343724B (en) Method for screening and identifying functional lncRNA
CN112384620B (en) Methods for screening and identifying functional lncRNA
Baumgartner et al. The Drosophila ZAD zinc finger protein Kipferl guides Rhino to piRNA clusters
Yang et al. Silencing transposable elements in the Drosophila germline
Zhao et al. MicroRNA-mediated repression of nonsense mRNAs
US7524653B2 (en) Small interfering RNA libraries and methods of synthesis and use
Gaume et al. In vivo study of the histone chaperone activity of nucleolin by FRAP
Munafò et al. Channel nuclear pore complex subunits are required for transposon silencing in Drosophila
Joosten et al. PIWI proteomics identifies Atari and Pasilla as piRNA biogenesis factors in Aedes mosquitoes
Li et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing
JP2007520221A (en) Composition and production method of short double-stranded RNA using mutant RNase
Du et al. PCR-based generation of shRNA libraries from cDNAs
Joosten et al. Slicing of viral RNA guided by endogenous piRNAs triggers the production of responder and trailer piRNAs in Aedes mosquitoes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 28/2005 UNDER (81) ADD "SM"

WWE Wipo information: entry into national phase

Ref document number: 2005516704

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase