WO2005078955A1 - 無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプログラム - Google Patents

無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプログラム Download PDF

Info

Publication number
WO2005078955A1
WO2005078955A1 PCT/JP2005/002124 JP2005002124W WO2005078955A1 WO 2005078955 A1 WO2005078955 A1 WO 2005078955A1 JP 2005002124 W JP2005002124 W JP 2005002124W WO 2005078955 A1 WO2005078955 A1 WO 2005078955A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
matrix
likelihood
transmission sequence
Prior art date
Application number
PCT/JP2005/002124
Other languages
English (en)
French (fr)
Inventor
Takumi Ito
Shousei Yoshida
Yoshikazu Kakura
Hiroyuki Seki
Hiroyuki Kawai
Kenichi Higuchi
Mamoru Sawahashi
Original Assignee
Nec Corporation
Fujitsu Limited
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Fujitsu Limited, Ntt Docomo, Inc. filed Critical Nec Corporation
Priority to US10/589,460 priority Critical patent/US7936838B2/en
Priority to CN200580010958.8A priority patent/CN1965501B/zh
Priority to EP05719071.2A priority patent/EP1717968A4/en
Priority to JP2005517990A priority patent/JP4728812B2/ja
Publication of WO2005078955A1 publication Critical patent/WO2005078955A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms

Definitions

  • the present invention relates to a wireless communication system, a receiving apparatus, a demodulation method used for them, and a program thereof, and more particularly to a demodulation method in a receiving apparatus of a wireless communication system using a plurality of transmitting and receiving antennas.
  • FIG. 32 is a diagram showing a configuration of this type of wireless communication system.
  • the receiver 800 demodulates the received signal by the demodulation method based on maximum likelihood sequence estimation, using a plurality of receiving antennas 801-1 and 801-4.
  • Receiving apparatus 800 includes four receiving antennas 801-1-801-4, and each receiving antenna 801-1 801-4 receives a signal.
  • Channel coefficient estimation unit 802 receives a received signal as input, estimates channel coefficients between transmitting and receiving antennas, and outputs a channel matrix.
  • Maximum likelihood sequence estimation unit 803 estimates the transmission sequence with the received signal and channel matrix as input.
  • 16 transmit signals c are transmitted from 3 transmit antennas.
  • the maximum likelihood sequence estimation unit 803 is composed of 4096 error calculation units 804-1 804-4 096 and one signal selection unit 805.
  • Each of the error calculation devices 804-1 804-4096 has the configuration of the error calculation device 804 shown in FIG.
  • a transmission symbol generation unit 811 generates and outputs transmission symbols s, s, s for each antenna.
  • Received signal replica generation device 812 receives the transmission symbol and the channel coefficient as input and generates and outputs a received signal replica.
  • Error calculator 813 receives the received signal and the received signal replica and performs error calculation.
  • the transmission symbol generated by the transmission symbol generator 811 is any one of the signals c and c.
  • H, h, h, h, h, h, h, h, h, h is the channel between the transmitting antenna and the receiving antenna
  • An error calculator 813 receives the received signal and the received signal replica as an input, and generates an error signal e,
  • the error calculator 804-1 in the first stage is an error calculated as the generated transmission symbols s, s, s.
  • the second stage error calculator 804-2 is a transmit symbol s
  • Signal selection device 805 selects a minimum error using as input transmission symbols and error signals output from 4096 error calculation device groups 804-1 804-4096 and outputs transmission symbols giving the errors. . Thus, the transmission signal is demodulated.
  • Patent Publication 2003-178048 and Japanese Patent Laid-Open Publication No. Hei 9-219616 are merely examples of techniques for performing the QR decomposition, and the above-mentioned problems can not be solved by these techniques.
  • a wireless communication system is a transmission device including M (M is an integer of 2 or more) transmission antennas in a receiver including N (N is an integer of 2 or more) reception antennas.
  • a wireless communication system for receiving and demodulating a transmission signal from a device comprising:
  • the receiver is provided with means for demodulating the signal.
  • Another wireless communication system comprises a receiver including N (N is an integer of 2 or more) receive antennas, M, M (M is an integer of 2 or more) transmit antennas.
  • N is an integer of 2 or more
  • M is an integer of 2 or more
  • a wireless communication system for receiving and demodulating a transmission signal from a transmitting apparatus comprising:
  • Another wireless communication system according to the present invention is a receiver including N (N is an integer of 2 or more) receiving antennas, M, M (M is an integer of 2 or more) transmitting antennas. What is claimed is: 1.
  • a wireless communication system for receiving and demodulating a transmission signal from a transmitting apparatus comprising:
  • a receiver according to the present invention has a receiver including N (N is an integer of 2 or more) receive antennas.
  • a wireless communication system which receives and demodulates a transmission signal from a transmitting apparatus provided with M (M is an integer of 2 or more) transmitting antennas.
  • N is an integer of 2 or more
  • M is an integer of 2 or more
  • a wireless communication system for receiving and demodulating a transmission signal from a device comprising:
  • N is an integer of 2 or more receiving antennas.
  • M is an integer of 2 or more transmitting antennas.
  • a wireless communication system for receiving and demodulating a transmission signal from a device comprising:
  • a demodulation method is a reception method comprising N (where N is an integer of 2 or more) receive antennas.
  • Another demodulation method comprises: N (N is an integer greater than or equal to 2) receiving antennas in a receiving apparatus, M, M (wherein M is an integer greater than or equal to 2) transmitting antennas
  • N is an integer greater than or equal to 2
  • M is an integer greater than or equal to 2
  • a demodulation method for receiving and demodulating a transmission signal from a transmission device comprising:
  • Another demodulation method comprises: N (N is an integer of 2 or more) receiving antennas.
  • the receiving apparatus includes M, M (M is an integer of 2 or more) transmitting antennas.
  • a demodulation method for receiving and demodulating a transmission signal from a transmission device comprising:
  • a program of the demodulation method according to the present invention has a receiver including N (N is an integer of 2 or more) receive antennas, M, (M is an integer of 2 or more) transmit antennas.
  • a program of a demodulation method for receiving and demodulating a transmission signal from a transmission device comprising:
  • the transmission signal is demodulated based on the nulled signal.
  • a program of another demodulation method according to the present invention is characterized in that, in a receiving apparatus provided with N (N is an integer of 2 or more) receiving antennas, transmission is provided with M (M is an integer of 2 or more) transmitting antennas.
  • a program of a demodulation method for receiving and demodulating a transmission signal from a receiving apparatus, the computer comprising: a signal received using a channel matrix having a channel coefficient between the receiving antenna and the transmitting antenna as an element Processing for performing orthogonalization indicating the orthogonalization of the signal;
  • a process of calculating and outputting a likelihood for the transmission signal based on the nulled signal is performed.
  • a program of another demodulation method according to the present invention is characterized in that, in a receiver provided with N (N is an integer of 2 or more) reception antennas, transmission with M (M is an integer of 2 or more) transmit antennas.
  • a program of a demodulation method for receiving and demodulating a transmission signal from a receiving apparatus, the computer comprising: a signal received using a channel matrix having a channel coefficient between the receiving antenna and the transmitting antenna as an element Processing for performing orthogonalization indicating the orthogonalization of the signal;
  • the first wireless communication system of the present invention has a transmitting apparatus having N (N is an integer of 2 or more) receiving antennas and M (M is an integer of 2 or more) transmitting antennas.
  • a receiver is provided which receives a transmitted signal and demodulates the signal using QR decomposition of a channel matrix whose elements are channel coefficients between transmitting and receiving antennas.
  • a second wireless communication system has a transmitter apparatus having N (N is an integer of 2 or more) receive antennas and M (M is an integer of 2 or more) transmit antennas. And a receiver for calculating and outputting the likelihood for the transmitted signal using the QR decomposition of the channel matrix whose element is the channel coefficient between the transmitting and receiving antennas.
  • a third radio communication system of the present invention is a transmitter apparatus having N (N is an integer of 2 or more) receive antennas and M (M is an integer of 2 or more) transmit antennas.
  • Signal sent from The receiver is provided with a receiver that outputs the likelihood for the transmitted power by using the QR decomposition of the channel matrix that is received and whose channel factor between the transmit and receive antennas is an element.
  • a channel coefficient estimating device which receives a received signal as an input and estimates a channel coefficient between each transmitting and receiving antenna, and outputs the estimated signal.
  • a QR decomposition apparatus that performs QR decomposition of the channel matrix with a channel matrix consisting of channel coefficients as input and outputs a Q matrix and an R matrix;
  • a Q H arithmetic unit which receives a received signal and a Q matrix as inputs and receives a received signal vector having the received signal as an element by multiplying the complex conjugate transpose matrix of the Q matrix and outputting as a converted signal;
  • a receiver comprising: a transmission sequence estimation device that receives at least one of a transmission sequence, a likelihood for the transmission sequence, or a likelihood for bits transmitted by the transmission sequence with the converted signal and the R matrix as inputs; .
  • a fifth wireless communication system is a channel coefficient estimating device that estimates channel coefficients between transmitting and receiving antennas using a received signal and outputs the channel coefficient estimating device;
  • a QR decomposition apparatus that performs QR decomposition of the channel matrix with a channel matrix consisting of channel coefficients as input and outputs a Q matrix and an R matrix;
  • a received signal vector having a received signal and a Q matrix as inputs and a received signal vector having the received signal as an element is multiplied by a complex conjugate transposed matrix of the Q matrix to output a converted signal as an output Q H arithmetic unit,
  • a transmission symbol candidate selection apparatus which selects a symbol candidate for a conversion signal with a reception signal as input and outputs a symbol candidate, a transmission signal, a likelihood with respect to a transmission sequence, or a conversion signal, symbol candidate and R matrix as inputs
  • the receiver comprises: a transmission sequence estimation device that outputs at least one of the likelihood for the bits transmitted by the transmission sequence.
  • a sixth radio communication system is a channel coefficient estimation device which receives a received signal as input and estimates a channel coefficient between transmitting and receiving antennas,
  • M (where M is an integer of 2 or more) transmit antenna power with a received signal as an input; a priority determining device that determines the priority between transmitted sequences;
  • Channel coefficient estimated by the channel coefficient estimator and determined by the priority determiner A reordering device for reordering channel coefficients with the priority given as an input and outputting a modified channel matrix
  • a QR decomposition device that performs QR decomposition of the deformed channel matrix using the deformed channel matrix as input and outputs a Q matrix and an R matrix;
  • a Q H arithmetic unit which receives a received signal and a Q matrix as inputs, multiplies a received signal vector having the received signal as an element by a complex conjugate transpose matrix of the Q matrix and outputs as a converted signal
  • a transmission sequence estimation device that outputs at least one of a transmission sequence, a likelihood for the transmission sequence, or a likelihood for bits transmitted by the transmission sequence, with the converted signal and the R matrix as inputs;
  • a sequence estimation apparatus comprises a receiving apparatus comprising a transmission sequence, a likelihood with respect to the transmission sequence, or a likelihood with respect to bits transmitted by the transmission sequence, and receiving the output and the priority, and outputting the same.
  • a seventh radio communication system is a channel coefficient estimation device which receives a received signal as an input and estimates a channel coefficient between transmitting and receiving antennas,
  • a QR decomposition apparatus that performs QR decomposition with a channel matrix composed of channel coefficients as input and outputs a Q matrix and an R matrix;
  • a Q H arithmetic unit which receives a received signal and a Q matrix as inputs, multiplies a received signal vector having the received signal as an element by a complex conjugate transpose matrix of the Q matrix and outputs as a converted signal
  • a transmission sequence candidate selection device which determines candidate sequences for L (L is an integer of 1 or more and M or less) (M is an integer of 2 or more) conversion signals with the reception signal as an input and outputs them as transmission sequence candidates;
  • a reception sequence estimation apparatus comprising: a transmission sequence, a likelihood for the transmission sequence, or at least one of the likelihood for bits transmitted by the transmission sequence, the transformation signal, the R matrix, and the transmission sequence candidate being input; It has a device.
  • a channel coefficient estimating device which receives a received signal as an input and estimates a channel coefficient between each transmitting and receiving antenna, and outputs the estimated signal.
  • M receive antennas (M is an integer equal to or greater than 2) of transmit antenna power with a received signal as an input;
  • a reordering device for reordering the channel coefficients with the channel coefficients estimated by the channel coefficient estimation device and the priority order determined by the priority determination device as inputs and outputting a modified channel matrix;
  • a QR decomposition device that performs QR decomposition of the deformed channel matrix using the deformed channel matrix as input and outputs a Q matrix and an R matrix;
  • a Q H arithmetic unit which receives a received signal and a Q matrix as inputs and receives a received signal vector having the received signal as an element by multiplying the complex conjugate transpose matrix of the Q matrix and outputting as a converted signal;
  • a transmission symbol candidate selection device that receives a reception signal as an input, selects a symbol candidate for a demodulation sequence, and outputs a transmission symbol candidate;
  • a transmission sequence estimation apparatus that receives at least one of a transmission sequence, a likelihood for the transmission sequence, or a likelihood for bits transmitted by the transmission sequence, with the converted signal, the R matrix, and the transmission symbol candidate as inputs;
  • Transmitting Sequence Estimator A receiving device comprising a transmitting sequence, a likelihood with respect to the transmitting sequence, or a likelihood with respect to bits transmitted by the transmitting sequence and receiving the output and the priority of the transmitting sequence estimation device and outputting the same.
  • a ninth radio communication system is a channel coefficient estimation device which receives a received signal as an input and estimates a channel coefficient between transmitting and receiving antennas, and outputs the estimated signal.
  • M (where M is an integer of 2 or more) transmit antenna power with a received signal as an input; a priority determining device that determines the priority between transmitted sequences;
  • a reordering device for reordering the channel coefficients with the channel coefficients estimated by the channel coefficient estimation device and the priority order determined by the priority determination device as inputs and outputting a modified channel matrix
  • QR decomposition apparatus which performs QR decomposition with the modified channel matrix as input and outputs a Q matrix and an R matrix;
  • a Q H arithmetic unit which receives a received signal and a Q matrix as inputs, multiplies a received signal vector having the received signal as an element by a complex conjugate transpose matrix of the Q matrix and outputs as a converted signal
  • a transmission sequence candidate selection device which receives a reception signal as an input and determines a candidate sequence for a converted signal of S (L is an integer of 1 or more and M or less) and outputs it as a transmission sequence candidate;
  • a transmission sequence estimation device that receives at least one of a transmission sequence, a likelihood for the transmission sequence, or a likelihood for bits transmitted by the transmission sequence, with the converted signal, the R matrix, and the transmission sequence candidate as inputs;
  • a sequence estimation apparatus includes a receiving apparatus including a recovery sequence receiving a power and a priority and a likelihood for the transmit sequence or a likelihood for a bit transmitted from the transmit sequence and outputting the likelihood. !
  • a channel coefficient estimation apparatus which receives a received signal as an input and estimates a channel coefficient between each transmitting and receiving antenna, and outputs the estimated signal.
  • a QR decomposition apparatus that performs QR decomposition with a channel matrix composed of channel coefficients as input and outputs a Q matrix and an R matrix;
  • a Q H arithmetic unit which receives a received signal and a Q matrix as inputs, multiplies a received signal vector having the received signal as an element by a complex conjugate transpose matrix of the Q matrix and outputs as a converted signal
  • a transmission sequence candidate selection device which determines candidate sequences for L (L is an integer of 1 or more and M or less) (M is an integer of 2 or more) conversion signals with the reception signal as an input and outputs them as transmission sequence candidates;
  • a transmission symbol candidate selection device which selects a symbol candidate for (M-L) demodulated signals with a received signal as an input and outputs the selected symbol candidate;
  • a transmission sequence estimation apparatus that receives at least one of a transmission sequence, a likelihood with respect to a transmission sequence, or a likelihood with respect to bits transmitted by a transmission sequence, with a transformed signal, an R matrix, a transmission sequence candidate and a symbol candidate as input.
  • a receiver comprising
  • An eleventh wireless communication system is a channel coefficient estimating device which receives a received signal as an input and estimates a channel coefficient between transmitting and receiving antennas, and outputs the channel coefficient estimating device;
  • M (where M is an integer of 2 or more) transmit antenna power with a received signal as an input; a priority determining device that determines the priority between transmitted sequences;
  • a reordering device for reordering the channel coefficients with the channel coefficients estimated by the channel coefficient estimation device and the priority order determined by the priority determination device as inputs and outputting a modified channel matrix
  • a Q H arithmetic unit which receives a received signal and a Q matrix as inputs and receives a received signal vector having the received signal as an element by multiplying the complex conjugate transpose matrix of the Q matrix and outputting as a converted signal;
  • a transmission sequence candidate selection device which receives a reception signal as an input and determines a candidate sequence for a converted signal of S (L is an integer of 1 or more and M or less) and outputs it as a transmission sequence candidate;
  • a transmission symbol candidate selection device for selecting and outputting symbol candidates for (M-L) conversion signals with the reception signal as an input
  • a transmission sequence estimation apparatus that receives at least one of a transmission sequence, a likelihood with respect to a transmission sequence, or a likelihood with respect to bits transmitted by a transmission sequence, with a transformed signal, an R matrix, a symbol candidate and a transmission sequence candidate as inputs.
  • a transmission sequence estimation device comprises a transmission sequence, a likelihood to the transmission sequence, or a likelihood to a bit transmitted from the transmission sequence, and the output of the transmission sequence estimation device and the priority and the output. / / With a receiver.
  • a transmission sequence estimation apparatus having P stages (where P is an integer of 1 or more) of likelihood calculators and a signal selector.
  • the group of likelihood calculators in the p-th stage (P is an integer of 1 or more and P or less) is composed of Kp (Kp is an integer of 1 or more) likelihood calculators,
  • Each likelihood calculator includes the converted signal, the R matrix, and Lp-1 (Lp-1 is an integer of 1 or more) error signals and transmission symbol candidates output from the signal selection device of the (.rho.-1) stage. , And generates and outputs likelihood calculations and transmission symbol candidates in the p-th stage with
  • the signal selection apparatus in the P-th stage receives the Kp likelihoods output from the group of likelihood calculators in the p-th stage and the maximum likelihood of Lp (Lp is an integer of 1 or more) with the transmission symbol candidate as an input. It outputs Lp transmit symbol candidates that give likelihood.
  • a transmission sequence estimation apparatus having P stages (where P is an integer of 1 or more) of likelihood calculators and a signal selector.
  • the group of likelihood calculators in the p-th stage (P is an integer of 1 or more and P or less) is composed of Kp (Kp is an integer of 1 or more) likelihood calculators,
  • Each likelihood calculator is output from the transformed signal, the R matrix, and the signal selector of the (P-1) stage.
  • Kp ⁇ l (Kp ⁇ 1 is an integer of 1 or more) error signals and transmission symbol candidates as input, likelihood calculation and transmission symbol candidates are generated and output at the ⁇ stage,
  • the signal selection device in the second row receives Kp likelihoods and transmission symbol candidates output from the likelihood calculation device group in the ⁇ th row and gives Kp + 1 maximum likelihood and the corresponding likelihood Kp + Output one transmission symbol candidate.
  • a fourteenth wireless communication system includes a transmission sequence estimation device including a group of likelihood calculators in M stages (M is an integer of 2 or more) and a group of signal selectors in M stages. Ru.
  • a fifteenth wireless communication system includes a transmission sequence estimation device including N stages (N is an integer of 2 or more) of likelihood calculation devices and M stages of signal selection devices.
  • a sixteenth wireless communication system includes a transmission sequence estimation device including a plurality of signal selection devices, and selects and outputs the most likely transmission sequence with the signal selection device of the final stage. There is.
  • a seventeenth wireless communication system includes a transmission sequence estimation apparatus that also has multiple stages of signal selection devices, selects the most robust transmission sequence with the signal selection apparatus at the final stage, and The likelihood of is output.
  • An eighteenth wireless communication system includes a transmission sequence estimation apparatus that also has multiple stages of signal selection devices, selects the most robust transmission sequence with the signal selection apparatus of the final stage, and It outputs the likelihood of the bit sequence transmitted by.
  • the nineteenth wireless communication system of the present invention is a likelihood that a converted signal replica is generated using an R matrix component, and a likelihood calculation is performed using a physical quantity measured using the converted signal replica and a received signal.
  • a transmission sequence estimation apparatus comprising a degree calculation apparatus is provided.
  • the twentieth wireless communication system of the present invention is provided with a transmission sequence estimation apparatus comprising a likelihood calculation apparatus which performs likelihood calculation using a squared Euclidean distance between a received signal and a converted signal replica.
  • a twenty-first wireless communication system includes a transmission sequence estimation device including a likelihood calculation device which performs likelihood calculation using the Euclidean distance between a received signal and a converted signal replica.
  • a twenty-fifth wireless communication system selects transmitted symbol candidates using a linear filter. It has a selection device.
  • a twenty-sixth wireless communication system comprises a transmission symbol candidate selection device using maximum likelihood sequence estimation.
  • a twenty-seventh wireless communication system includes a priority determining apparatus that uses the reception power of each transmission sequence.
  • a twenty-eighth wireless communication system uses received power to noise power ratio of each transmission sequence.
  • a twenty-ninth wireless communication system comprises a prioritization device that uses received power to noise power and interference power ratio of each transmission sequence.
  • a twentieth wireless communication system of the present invention includes a transmission sequence candidate selection device using a linear filter.
  • the 31st wireless communication system of the present invention is provided with a transmission sequence candidate selection apparatus using maximum likelihood sequence estimation.
  • a transmission sequence is generated using a pseudo reception signal generated by QR decomposition of the channel matrix and generating a plurality of strong sequence forces and a reception signal actually received.
  • the present invention has the following advantages when it is possible to demodulate the signal with a very simple configuration by adopting the configuration and operation as described below.
  • FIG. 1 is a block diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing demodulation processing by the receiving apparatus of FIG.
  • FIG. 3 is a block diagram showing the configuration of a receiving apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of a receiving apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG.
  • FIG. 6 is a block diagram showing the configuration of the third stage likelihood calculator shown in FIG. 5;
  • FIG. 7 is a block diagram showing the configuration of a second stage likelihood calculation apparatus of FIG. 5;
  • FIG. 8 is a block diagram showing the configuration of a first stage likelihood calculator shown in FIG. 5;
  • FIG. 9 A flowchart showing a demodulation process of the receiving apparatus according to the second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG.
  • ⁇ 12 It is a block diagram showing the configuration of the second stage likelihood calculator shown in FIG.
  • ⁇ 13 It is a block diagram showing the configuration of the first stage likelihood calculator shown in FIG.
  • FIG. 15 A block diagram showing a configuration of a receiving device according to a fourth example of the present invention.
  • ⁇ 16] is a flowchart showing demodulation processing of the receiving apparatus according to the fourth embodiment of the present invention.
  • FIG. 17 A block diagram showing a configuration of a reception device according to a fifth example of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG.
  • FIG. 21 A flowchart showing a demodulation process of a receiving apparatus according to a fifth embodiment of the present invention.
  • FIG. 22 is a block diagram showing a configuration of a receiving device according to a sixth example of the present invention.
  • FIG. 23 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG.
  • ⁇ 24 It is a block diagram showing the configuration of the second stage likelihood calculator shown in FIG.
  • ⁇ 25 It is a block diagram showing the configuration of the first stage likelihood calculation apparatus of FIG.
  • FIG. 26 is a block diagram showing a configuration of a signal selection device according to a ninth example of the present invention.
  • Fig. 27 is a diagram illustrating an example of information assignment to a transmission signal.
  • FIG. 28 A block diagram showing a configuration of a signal selection device according to a tenth example of the present invention.
  • FIG. 29 is a block diagram showing a configuration of a channel coefficient estimation device according to an eleventh example of the present invention.
  • FIG. 31 is a block diagram showing a configuration of a reception device according to a twelfth example of the present invention.
  • FIG. 32 is a block diagram showing a configuration of a receiving apparatus according to a conventional example.
  • FIG. 34 is a block diagram showing a configuration of a signal selection device according to a thirteenth example of the present invention.
  • FIG. 35 A block diagram showing a configuration of a reception device according to a fourteenth example of the present invention.
  • FIG. 36 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG.
  • FIG. 1 is a block diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
  • the receiving device 1 and the transmitting device 2 can be connected by wireless communication.
  • the receiving device 1 includes N (N is an integer of 2 or more) receiving antennas 111 and 11 N, and is configured of a filtering device 10, a transmission sequence estimation device 15, and a recording medium 16. .
  • the transmitter 2 includes M (M is an integer of 2 or more) transmitting antennas 21-1 to 21-M.
  • FIG. 2 is a flowchart showing the demodulation process by the receiving device 1 of FIG. The demodulation processing by the receiving device 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. The process shown in FIG. 2 is realized by the receiving device 1 executing a program (program executable on a computer) stored in the recording medium 16.
  • Receiving device 1 receives the transmission signal from transmitting antenna 21-1 21-M of transmitting device 2 at receiving antenna 11-1 11 N (FIG. 2 step S 1), nulling device 10 The received signal is nulled using a channel matrix whose elements are channel coefficients between the transmitting and receiving antennas (step S2 in FIG. 2).
  • Receiving apparatus 1 demodulates the reception signal nulled by nulling apparatus 10 in descending order from the Mth transmission sequence to the first transmission sequence in transmission sequence estimation apparatus 15 (see FIG. Figure 2 step S3). The receiver 1 repeats the above process until the end of the process (step S4 in FIG. 2).
  • the nulling process by the nulling device 10 will be described.
  • the signal from the transmitting device 2 is received by each of the N receiving antennas 11 1 1 1 1 N by the receiving device 1, the received signal vector r having the signals received by the respective receiving antennas 11 1 1 11 N as elements Is
  • R represents the received signal received by the Nth receiving antenna 11 N, respectively.
  • the received signal vector r is
  • s is a transmit signal vector having a signal transmitted from each of the transmit antennas 21-1 120-M as an element
  • n is a component having Gaussian noise added by each of the receive antennas 11 1 1 11 N as an element Represent Gaussian noise vectors respectively.
  • the nulling represents orthogonalization of the received signal, and M orthogonal axes are taken as s, s-S 10 s 10 s • ⁇ ⁇ ⁇ + s, the nulling signal z is
  • nulling matrix A for example, QR decomposition of the channel matrix H [Equation 3]
  • Transmission sequence estimation apparatus 15 prepares symbol candidates in descending order from s to s, and transmits the transmission signal
  • FIG. 3 is a block diagram showing the configuration of a receiving apparatus according to the first embodiment of the present invention.
  • the wireless communication system according to the first embodiment of the present invention has the same configuration as the wireless communication system according to the embodiment of the present invention shown in FIG. 1 described above.
  • the receiving apparatus 1 according to the first embodiment of the present invention includes N (M is an integer of 2 or more) M transmitting antennas 21-1 1 2 1 M transmitted signals (2 or more integer) receiving antenna 11-1 1 11 N is receiving.
  • receiving device 1 and the receiving antenna 11-1 one 11 N the N, the channel coefficient estimation unit 12, a QR decomposition unit 13, a Q H arithmetic unit 14, a transmission sequence estimator 15, receiving apparatus 1 And a recording medium 16 for storing a program (program that can be executed by a computer) for realizing the processing of each of the components.
  • a channel coefficient estimator 12, the QR decomposition unit 13, and a Q H arithmetic unit 14 corresponding to nulling device 10 described above. That is, in the present embodiment, QR decomposition processing is performed as the nulling processing.
  • Receiving antenna 111 receives a signal
  • channel coefficient estimating device 12 receives the received signal to estimate channel coefficients
  • QR decomposition device 13 receives a matrix of channel coefficients as input channel matrix Perform QR decomposition and output Q matrix and R matrix.
  • the Q H arithmetic unit 14 receives the Q matrix and the received signal as an input and outputs a converted sequence obtained by multiplying the received signal by the complex conjugate transpose of the Q matrix, and the transmission sequence estimation unit 15 outputs the converted sequence
  • the transmission sequence is estimated with the R matrix as an input and output.
  • the transmission sequence estimation apparatus 15 can output the likelihood for the transmission signal sequence or the likelihood for the bits transmitted by the transmission signal sequence, depending on the configuration of the entire receiver.
  • the received signal vector r having the signal received by each of the receiving antennas 111 1 and 11 N is as described above.
  • H represents a conjugate complex transpose
  • I represents an identity matrix.
  • the R matrix is an M -by- M upper triangular matrix.
  • Transmission sequence estimation apparatus 15 estimates a transmission sequence with transformation signal base z and R matrix as inputs, and outputs transmission signal sequences s ′, ⁇ , s ′ with the largest likelihood. .
  • the channel matrix is QR decomposed and used to estimate the transmission sequence using the pseudo reception signal generated from a plurality of sequences and the reception signal actually received.
  • FIG. 4 is a block diagram showing a configuration of a receiving apparatus according to a second embodiment of the present invention
  • FIG. 5 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG. 4
  • FIG. 7 is a block diagram showing the configuration of the second stage likelihood calculation device of FIG. 5
  • FIG. 8 is a block diagram showing the third stage likelihood calculation device of FIG.
  • FIG. 2 is a block diagram showing the configuration of a first stage likelihood calculation apparatus.
  • the configuration of the wireless communication system according to the second embodiment of the present invention is the same as the configuration of the wireless communication system according to the embodiment of the present invention shown in FIG. 1 except that the receiving device 3 is disposed instead of the receiving device 1. It becomes.
  • the receiving device 3 comprises four receiving antennas 31 for transmitting the signals transmitted from the transmitting device 2 having three transmitting antennas 21-1-21-3. — 1 1 3 4 received.
  • each transmitting antenna 21-1-21-3 has a 16-value signal c
  • the recording medium 35 is composed.
  • Each of the receiving antennas 31-1 to 31-4 receives a signal, and the channel coefficient estimator 32 estimates channel coefficients with the received signal r 1 r as an input, and estimates the channel coefficients.
  • QR decomposition unit 33 performs QR decomposition on channel matrix H with channel matrix H as input, and outputs a Q matrix and an R matrix.
  • Q H arithmetic unit 34 Q matrix and the received signal: the input and one r, the received signal r columns
  • the transmission sequence estimation device 4 receives the converted signal z and the R matrix and estimates and outputs signals transmitted from the respective transmission antennas 21-1 to 21-3.
  • transmission sequence estimation apparatus 4 is a three-stage likelihood consisting of likelihood calculation devices 41 1 41 16 4 3 1-43-16 K 1, 45 1-45-16 K 2. It consists of a group of degree calculators and three stages of signal selectors 42, 44 and 46, and performs signal processing in the order of the third, second and first stages.
  • the third stage likelihood calculator group is 16 likelihood calculators 41-1 to 41-16.
  • Each likelihood calculator 41 1 1 41 16 consists of the transformation signal z and the component of R matrix!: As an error
  • Error signal group consisting of signals e — e and transmission consisting of transmission symbol candidates s — s
  • the first likelihood calculator 41-1 in the third stage is a transmission symbol candidate generator 411, a converted signal replica generator 412, and an error calculator 413. It is composed of The other likelihood calculation devices 41-2-41-16 also have the same configuration as the above likelihood calculation device 41-1.
  • the transmission symbol candidate generation device 411 generates a signal c.
  • Replica generator 412 receives as input the component r of the R matrix and the transmit symbol candidate s
  • Error calculation unit 411 receives conversion signal Z and conversion signal replica z as two signals.
  • the first likelihood calculator 41 1 outputs an error signal e and a transmission symbol candidate s.
  • the second likelihood calculator 41-2 receives the error signal e and the transmission symbol candidate s.
  • the 16th likelihood calculator 41-16 is an error signal e and a transmission symbol candidate s.
  • the third stage signal selection device 42 receives the error signal group and the transmission symbol candidate group calculated by the third stage 16 likelihood calculators 41-1 41-16 as the input with the most error.
  • the small K1 error signals e ''-e '' 'and K1 transmit symbol candidates s' that give the error
  • the K1 transmit symbol candidates to be output are any of the signals c and c.
  • the second stage likelihood calculator group is composed of 16K 1 likelihood calculators 43-1 to 43-16K1, and the first to sixteenth likelihood calculators 43-1 to 43- 16 Is the transformed signal z and the components of the R matrix !:
  • the second likelihood calculator 43— 17— 43— 32 is the transformed signal Z , the components of the R matrix !: r, and the error
  • K1 likelihood calculator 43-16 ( ⁇ 1-1) + 1-43-16 K 1 is the transformed signal ⁇ and the R matrix
  • the components r and r, the error signal e '"and the transmission symbol candidate s'"' are input.
  • the first likelihood calculator 43-1 in the second stage is composed of the transmission symbol candidate generator 431, the converted signal replica generator 432, and the error calculator 433. It is configured.
  • the other likelihood calculation devices 43-2 43-16K1 have the same configuration as the above likelihood calculation device 43-1.
  • the transmission symbol candidate generation unit 431 receives a transmission symbol candidate S ′ ′ ′ as an input and uses a transmission symbol consisting of any symbol of the signal C 1 C.
  • Transform signal replica generator 432 is a component of R matrix r, r
  • the error calculation unit 433 receives the conversion signal z, the conversion signal replica z, and the error signal e '''. Output error signal e as a force. At this time, the converted signal replica z is
  • the error signal e is calculated by
  • the first likelihood calculator 43-1 receives the error signal e and transmission symbol candidates s and s.
  • the second likelihood calculator 43-2 receives the error signal e and the transmission symbol.
  • the transmission symbol candidate generation unit 431 receives the transmission symbol candidate s ,, as a signal c
  • the transformed signal replica generator 432 generates the R matrix
  • Error calculation unit 433 receives conversion signal Z , conversion signal replica z, and error signal e '''.
  • the error signal e is calculated by
  • the 16Kth likelihood calculator 43-16K 1 receives the error signal e and the transmission symbol candidate s.
  • the second stage signal selector 44 is a second stage 16K1 likelihood meter
  • Arithmetic unit 43-1-43-K2 error signals e '-e "with the smallest error from the error signal and transmission symbol candidate calculated by 16K1 as input and K2 transmissions giving the error
  • a set of candidate symbol candidates (s ,,,,,,,,) and (s ,,,,,,,,,) are output.
  • the first-stage likelihood computing device group is composed of 16K2 likelihood computing devices 45-1 45- 16 K 2, and the first 1 16th likelihood computing devices 45-1 1 45- 16 Is the transformed signal z and the components of the R matrix !:
  • the 17th-32nd likelihood calculators 45-17-45-32 are the transformed signal Z and the components of the R matrix !: , The error signal e ,, and the transmission symbol candidate set (s,,, s,) as input
  • 16th (K2-1) + 1-16K 2 likelihood calculator 45-16 (K2-1) + 1 1 45-16K2 is the transformed signal z and the components of the R matrix !:, r Candidate
  • the input is a string (s ", s").
  • the first likelihood calculator 45-1 in the first stage is, as shown in FIG. 8, a transmission symbol candidate generator 451, a converted signal replica generator 452, and an error calculator 453. It is configured.
  • the other likelihood calculation devices 45-2-45-16K1 have the same configuration as the above-described likelihood calculation device 45-1.
  • the transmission symbol candidate generation unit 451 receives a transmission symbol candidate set (s ,, 1-3, s,,) as an input 16-value signal c.
  • Error calculation unit 453 receives conversion signal Z , conversion signal replica z, and error signal e ′ ′.
  • the first likelihood calculator 45-1 is an error signal e and a transmission symbol candidate s.
  • the second likelihood calculator 45-2 receives the error signal e and the transmission signal
  • the difference signal e and the transmission symbol candidates s, s, s are output.
  • the signal selector 46 in the final stage (the 16K2 stage) is the smallest with the error signal calculated by the 16K 2 likelihood calculators in the first stage 45 ⁇ 1 1 45 ⁇ 16 K 2 and the transmission symbol candidate as an input Transmit symbol candidate s 'giving error signal e'
  • transmission symbol candidates to be input to the signal selection device of each stage are provided.
  • the third stage of likelihood calculators 41-1 to 41-16, the second stage of likelihood calculators 43-1 to 43-16K1 16K1, the first stage likelihood calculators The total number is 16 (1 + K1 + K2).
  • the total number of transmission symbol candidates is “784”. Therefore, in the present embodiment, when the prior art is used, the number of operation processing can be largely reduced as compared with that the transmission symbol candidate is "4096".
  • FIG. 9 is a flowchart showing the demodulation process of the receiving device 3 according to the second embodiment of the present invention. Demodulation processing of the receiver 3 according to the second embodiment of the present invention will be described with reference to FIGS.
  • the processing shown in FIG. 9 is realized by the arithmetic unit (CPU: central processing unit) of the receiver 3 executing the program of the recording medium 35. Further, in the above description, the case where the transmitting device 2 has three transmitting antennas 21-1 to 21-3 is described. In the following operation, a case where the transmitting device 2 has M transmitting antennas will be described.
  • QR decomposition of the channel matrix H by the receiving apparatus 3 QR decomposition unit 33, and calculates the converted signal z based on it by Q H arithmetic unit 34 (FIG. 9 step Sl l).
  • the transmission sequence estimation unit 4 sets the parameter m to M and K to 1 (FIG. 9, step S12), and
  • Transmission sequence estimation apparatus 4 calculates the kth symbol candidate for transmission signal s — s and the transmission signal m + 1.
  • the transmission sequence estimation device 4 has a variation m-kQm + q
  • the error e is added to the k-th symbol candidate of m m ⁇ kQ m + q m + 1 one S (Fig. 9, step SI 6).
  • Km symbol candidates for the transmission signal s ⁇ s and the corresponding errors are selected and stored (FIG. 9 step S 20).
  • the transmission sequence estimation device 4 outputs the transmission signal s ⁇ s giving the minimum error (step S21 in FIG. 9).
  • FIG. 10 is a block diagram showing a configuration of a receiving apparatus according to a third embodiment of the present invention
  • FIG. 11 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG. 10
  • FIG. FIG. 13 is a block diagram showing the configuration of a second stage likelihood calculation apparatus of FIG. 11, and
  • FIG. 13 is a block diagram showing the configuration of the first stage likelihood calculation apparatus of FIG.
  • the configuration of the wireless communication system according to the third embodiment of the present invention is the same as that of the wireless communication system according to the embodiment of the present invention shown in FIG. 1 except that the receiving device 5 is arranged instead of the receiving device 1. It has the composition of
  • the receiving device 5 includes three receiving antennas for transmitting signals transmitted from the transmitting device 2 having two transmitting antennas 21-1 and 21-2. 51-1-51-3 is received.
  • each transmitting antenna 51 — 1 — 51 — 3 has a 16-value signal c
  • Receiving device 5 transmits three receiving antennas 51-1-51-3, channel coefficient estimating device 52, QR decomposition device 53, Q H arithmetic device 54, transmission symbol candidate selecting device 55, and A sequence estimation device 6 and a recording medium 56 storing a program (program executable on a computer) for realizing the processing of each part of the reception device 5 are included.
  • Each receiving antenna 51-1 51-3 receives a signal.
  • a channel coefficient estimation unit 52 estimates channel coefficients with the received signal r 1 r as an input, and estimates the channel coefficient.
  • a QR decomposition unit 53 receives the channel matrix H and outputs a QR decomposition, and outputs a Q matrix and an R matrix.
  • the Q H arithmetic unit 54 has the Q matrix and the received signal !:
  • Transmit symbol candidate selection unit 55 selects transmit symbol candidates for converted signal z with reception signal r1 r as input.
  • Transmission symbol candidate selection unit 55 calculates the calculated 16 squared Euclidean distances q — q
  • a symbol is selected as a symbol candidate for the first transmit antenna 21-1.
  • the transmission symbol candidate selection device 55 selects eight symbol candidates for the signal transmitted from the second transmission antenna 21-2 in the same manner as described above.
  • the transmission symbol candidate selection unit 55 performs X — X on the symbol candidates obtained by the above procedure.
  • Transmission sequence estimation apparatus 6 receives signals converted from transmission antennas 21-1 and 21-2 with transformation signal z, R matrix, and symbol candidates selected by transmission symbol candidate selection apparatus 55 as inputs. Estimate and output.
  • Transmission sequence estimation device 6 is, as shown in FIG. 11, a two-stage likelihood calculation device group consisting of likelihood calculation devices 61-1 61-6 8, 6 3-1 63-8 K1.
  • the second stage likelihood calculators, the second stage signal selectors 62, the first stage likelihood calculators, and the first stage signal selectors are configured with two stages of signal selectors 62 and 64. Perform signal processing in order of 64.
  • the second stage likelihood calculation device group has eight likelihoods.
  • Degree calculation device 61-1 61-8 consists of.
  • the first likelihood calculator 61-1 is a converted signal z, an R matrix component!:, And a symbol candidate x And the second likelihood calculator 61-2 receives the transform signal z, the components of the R matrix !:, and
  • the symbol candidate X is an input, and the eighth likelihood calculator 61-8 outputs the transformation signal z and the R matrix.
  • the component r and the symbol candidate X are input.
  • the first likelihood calculator 61-1 in the second stage is composed of a transmission symbol candidate generator 611, a converted signal replica generator 612, and an error calculator 613. It is configured.
  • the other likelihood calculation devices 61-2-61-8 have the same configuration as the above likelihood calculation device 61-1.
  • Transmission symbol candidate generation unit 611 receives symbol candidate X as an input and outputs transmission symbol candidate s to likelihood calculation unit 61-1, and converted signal replica generation unit 612.
  • the error calculation unit 613 receives the conversion signal z and the conversion signal replica z as errors.
  • the error signal e is calculated by
  • the first likelihood calculator 61-1 outputs an error signal e and a transmission symbol candidate s.
  • the second likelihood calculator 61-2 receives the error signal e and the transmission symbol candidate s.
  • the eighth likelihood calculator 61-8 receives the error signal e and the transmission symbol candidate s.
  • the second stage signal selection unit 62 receives the error signal and transmission symbol candidate calculated by the second stage eight likelihood calculation units 61-1-61-8 and has the smallest error K 1 Output the error signal e ', one e', and Kl transmit symbol candidates s ', one s', which give the error.
  • the first stage likelihood calculator group is composed of 8K1 likelihood calculators 63-1 to 63-8K1, and the first to eighth likelihood calculators 63-1 to 63-8. Is the transformed signal z, the components of the R matrix !:, r
  • the eighth likelihood calculator 63-8 takes the symbol candidate X as an input.
  • the ninth to sixteenth likelihood calculators 63-9-63-16 are the transformed signal Z and the components of the R matrix !:,
  • the computing device 63-9 is a symbol candidate X
  • the tenth likelihood computing device 63-10 is a symbol
  • the 16th likelihood calculator 63-16 receives the candidate X as input and the symbol candidate X as input.
  • Eighth (K1-1) +1 Eighth K1 likelihood calculator 63-8 (K1-1) + 1-63-8 K1 is the transformed signal z, the components r and r of the R matrix, and , The error signal e ', and the transmission symbol candidate s', and the eighth (K1-1) + 1-th likelihood calculator 63-8 ( ⁇ 1-1) +1 is a symbol candidate X
  • the eighth (K1-1) + second likelihood calculator 63-8 (Kl-1) + 2 is a symbol candidate ⁇
  • the 8th K1 likelihood calculator 63-8K1 takes the symbol candidate X as its input
  • the first likelihood calculation device 63-1 includes a transmission symbol candidate generation device 631, a converted signal replica generation device 632, and an error calculation device 633.
  • the other likelihood calculator 63-2 63-8K1 has the same configuration as the above likelihood calculator 63-1.
  • the transmission symbol candidate generation unit 631 receives the transmission symbol candidate s ′ and the symbol candidate X as one of the 16-value signals c.
  • the error calculator 633 outputs the converted signal Z , the converted signal replica z, and the error signal e ′ ′
  • the error signal e is calculated by
  • the first likelihood calculator 63-1 is an error signal e and a transmission symbol candidate s.
  • the second likelihood calculator 63-2 receives the error signal e and the transmission symbol.
  • the candidates s and s are the 8th K1 likelihood calculator 63-8K1 is the error signal e and
  • the symbol candidate s and s are output.
  • the first stage signal selector 64 is the first stage 8K1.
  • Likelihood calculators 63 1 1 63 8 transmit symbol candidate s ′ which gives the smallest error with the error signal and transmit symbol candidate calculated by 8K 1 as input
  • the transmission symbol candidate power input to the signal selection device of each stage is the likelihood calculation device of the second stage 61-1 1 to 8-8, the likelihood of the first stage Degree calculation devices 63-1 1 6 3-8K1 to 8K1 pieces, for a total of 8 (1 + K1) pieces.
  • the total number of transmission symbol candidates becomes “72”.
  • the number of arithmetic processing can be greatly reduced as compared with the case where 256 transmission symbol candidates are required.
  • the force of selecting eight candidates for the symbols transmitted from each of the transmitting antennas 21-1 and 21-2 is an example. It does not have to be the same. Furthermore, the transmission symbol candidate selection method is not necessarily the same for each of the transmission antennas 21-1 and 21-2.
  • FIG. 14 is a flowchart showing the demodulation process of the receiving device 5 according to the third embodiment of the present invention.
  • the demodulation processing of the receiver 5 according to the third embodiment of the present invention will be described with reference to FIGS. 10 to 14.
  • the processing shown in FIG. 14 is realized by the arithmetic unit (CPU: central processing unit) of the receiver 5 executing the program of the recording medium 56. Further, in the above description, the power described in the case where the transmitter 2 has two transmitting antennas 21-1 and 21-2 In the following operation, the case where the transmitter 2 has M transmitting antennas will be described. Ru.
  • the channel matrix H is QR decomposition at the receiver 5 in the QR decomposition unit 53, and calculates the converted signal z based on it by Q H computing device 54 (FIG. 14 step S31).
  • the transmission sequence estimation unit 6 generates X symbol candidates for the transmission signal s (FIG. 14 step S32), and the parameter mm
  • Step S34 Transmission sequence estimation apparatus 6 calculates the kth symbol candidate for transmission signal s — s and the transmission signal m + 1
  • the error between the preca z and the replica z is calculated, and the error zm m-kQm + qm + 1 + 1 z for the transmission signal s-s is added (step S36 in Fig. 14).
  • step S40 the transmission sequence estimation apparatus 6 outputs the transmission signal s ⁇ s giving the minimum error (step S41 in FIG. 14).
  • FIG. 15 is a block diagram showing the configuration of a receiving apparatus according to the fourth embodiment of the present invention.
  • the configuration of the wireless communication system according to the fourth embodiment of the present invention is the same as that of the wireless communication system according to the embodiment of the present invention shown in FIG. 1 except that the receiving device 7 is disposed instead of the receiving device 1. It becomes the composition of
  • a receiver 7 has a signal transmitted from the transmitter 2 having three transmit antennas 21-1-21-4 as four receive antennas 71- 1 1 7 4 received it. Also, from each transmitting antenna 21-1-21-3 a 16 value signal c
  • Receiving device 7 has four receiving antennas 71-1 to 71-4, channel coefficient estimating device 72, priority determining device 73, channel coefficient reordering device 74, QR decomposition device 75, and Q.
  • Each receiving antenna 71-1-71-4 receives a signal.
  • a channel coefficient estimation unit 72 estimates channel coefficients with the received signal r 1 r as an input, and estimates the channel coefficient.
  • the priority determining device 73 calculates the norms of the three column vectors of the channel matrix ⁇ ⁇ as power for each transmission sequence, and gives high priority to transmission sequences with large power.
  • a channel coefficient reordering unit 74 receives a channel matrix ⁇ and a signal X as input channels.
  • the channel coefficient reordering unit 74 arranges in order from the column with the lowest priority.
  • the channel matrix ⁇ is
  • the modified channel matrix H ' is
  • the QR decomposition unit 75, the Q H calculation unit 76, and the transmission sequence estimation unit 77 execute QR decomposition, Q H calculation, and transmission sequence estimation respectively according to the same procedure as the second embodiment of the present invention described above.
  • the transmission sequence estimation unit 77 outputs a transmission symbol sequence giving a minimum error.
  • Decompression device 78 rearranges the transmission symbol sequence with channel matrix H from channel coefficient estimation device 72 and the transmission symbol sequence from transmission sequence estimation device 77 as input. This is to make the transmission sequence estimated for the modified channel matrix H ′ be the transmission sequence estimated for the channel matrix H.
  • transmission sequence estimation apparatus 77 By performing transmission sequence estimation using modified channel matrix H ′ in transmission sequence estimation apparatus 77, it is possible to sequentially process sequence forces with high priority as well, thereby improving the accuracy of the sequence estimation. There is expected.
  • the priority is determined based on the received power of each transmission sequence, but the received power to noise power ratio, or received power to noise power, and interference power ratio. It is also possible to measure the priority and determine the priority.
  • FIG. 16 is a flowchart showing demodulation processing of the receiving device 7 according to the fourth example of the present invention.
  • the demodulation processing of the receiver 7 according to the fourth embodiment of the present invention will be described with reference to FIGS.
  • the processing shown in FIG. 16 is realized by the arithmetic unit (CPU: central processing unit) of the receiver 7 executing a program of the recording medium 79.
  • CPU central processing unit
  • the transmitter 2 has M transmitting antennas. Let's talk about it.
  • the channel coefficient reordering device 74 reorders the channel matrix H (step S51 in FIG. 16), and then the QR decomposition device 75 QR dissociates the channel matrix H, and based on that,
  • the converted signal z is calculated by the Q H arithmetic unit 76 (step S52 in FIG. 16).
  • the transmission sequence estimation unit 77 sets the parameter m to M and K to 1 (step S53 in FIG. 16).
  • Transmission sequence estimation apparatus 77 transmits the kth symbol candidate for transmission signal s — s and transmission m + 1
  • step S61 the transmission sequence estimation apparatus 77 outputs the transmission signal s ⁇ s giving the minimum error (step S62 in FIG. 16). Restorer 78 is sorted
  • the transmission sequence estimated for the channel matrix H is output (step S63 in FIG. 16).
  • FIG. 17 is a block diagram showing a configuration of a receiving apparatus according to a fifth example of the present invention
  • FIG. 18 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG. 17,
  • FIG. FIG. 20 is a block diagram showing the configuration of an 18 second-stage likelihood calculator
  • FIG. 20 is a block diagram showing the configuration of a first-stage likelihood calculator in FIG.
  • the configuration of the wireless communication system according to the fifth embodiment of the present invention is the same as the wireless communication system according to the embodiment of the present invention shown in FIG. 1 except that a receiving device 8 is arranged instead of the receiving device 1. It has the composition of
  • the receiving apparatus 8 has two transmitting antennas 21-1-21-4 and two receiving antennas 81- 1, 81-2 received.
  • Receiving apparatus 8 includes two receiving antennas 81-1 and 81-2, channel coefficient estimating apparatus 82, priority order determining apparatus 83, channel coefficient reordering apparatus 84, and QR decomposition apparatus 85.
  • a recording medium storing a program (computer-executable program) for realizing the processing of each unit of the Q H arithmetic unit 86, the transmission sequence estimation unit 9, the transmission sequence candidate selection unit 87, and the reception unit 8. 88 and is connected to the restoration device 89.
  • Each of the receiving antennas 81-1 and 81-2 receives a signal.
  • a channel coefficient estimator 82 estimates channel coefficients with the received signals r and r as input, and outputs a channel matrix H.
  • Prioritizing device 83 receives the received signal!:, R as input and gives priority to the conversion sequence.
  • the channel coefficient reordering device 84 has
  • the channel matrix ⁇ is rearranged with the channel matrix ⁇ and the signal Xpri as inputs !, and the modified channel matrix H ′ is output.
  • the QR decomposition unit 85 performs QR decomposition of the modified channel matrix H, with the modified channel matrix H, as an input, and outputs a Q matrix and an R matrix.
  • Q H arithmetic unit 86 receives the received signal !:, r
  • the received signal vector r is multiplied by the complex conjugate transpose of the Q matrix with the 1 2 and the Q matrix as inputs, and the converted signal Z Output
  • the transmission sequence estimation unit 9 receives the converted signal z and the R matrix and estimates and outputs a transmission sequence.
  • the channel matrix H estimated by the channel coefficient estimator 82 is
  • the reordering device 84 Assuming that the transmission sequences 4, 2, 1 and 3 have the highest priority in the order, the reordering device 84, and the re-sorted deformed channel matrix H 'is
  • the channel coefficient estimation unit 82 estimates two transmission sequences with high priority.
  • Transmission sequence candidate selection apparatus 87 applies to transmission sequence 4 and transmission sequence 2 with high priority, for example,
  • each candidate symbol is signal C
  • transmission sequence estimation apparatus 9 When transmission sequence candidates are selected for two transmission sequences 4 and transmission sequences 2 with high priority, transmission sequence estimation apparatus 9 generates likelihood calculation apparatus 9 as shown in FIG. 1- 1 1 91-16 K, 93-1-93-16 K 1 Two-stage likelihood calculators and two-stage signal selectors 92 and 94 The signal processing is performed in the order of the signal selector 92 of the second stage, the group of likelihood calculators of the first stage, and the signal selector 94 of the first stage. As in the present embodiment, the signal transmitted for each transmitting antenna 21-1-21-4 is 16 values, and K transmission sequence candidates (V 1, V 2) are transmitted from the transmission sequence candidate selection device 87. )But
  • the second stage likelihood calculator group is composed of 16 K likelihood calculators 91 1-9 1-16K.
  • the first to sixteenth likelihood calculators 91 1 91 16 are components of the transformation signal z and the R matrix !:
  • Likelihood calculators 91-17— 91-32 transmit the transformed signal Z and the components of the R matrix !:, r, r and
  • Degree calculator 91-16 ( ⁇ -1) + 1-91-16 K is the converted signal ⁇ and the components of the R matrix r, r, r
  • the first likelihood calculator 91-1 in the second stage is a transmission symbol candidate generator 911, a converted signal replica generator 912, and an error calculator 913. It is configured.
  • the other likelihood calculators 91-2-91-16 K have the same configuration as the above likelihood calculators 91-1.
  • the transmission symbol candidate generation unit 911 receives a transmission sequence candidate (V 1, V 2) 1 (V 1, V 2) as a signal c
  • Converted signal replica generator 912 has R rows
  • Converted signal signals are input with column components r, r, r and transmission symbol candidates s, s, s
  • Error calculation device 913 receives error signal e with transform signal z and transform signal replica as inputs.
  • the first likelihood calculator 91 1 receives the error signal e and transmission symbol candidates s, s, s
  • the second likelihood calculator 91 2 receives the error signal e and the transmission signal
  • Bol candidates s, s, s, the 16th likelihood calculator 91 16K is the error signal e
  • the second stage signal selection device 92 follows the same procedure as the second embodiment of the present invention described above, and the K1 smallest error signals e "-e" and the K1 symbols giving the error Candidate
  • the first stage likelihood calculator group is composed of 16K 1 likelihood calculators 93-1-93-16 K 1, and the first to sixteenth likelihood calculators 93-1-93- 16 is the transformed signal z and the components of the R matrix
  • K 1 likelihood calculator 93-16 (K 1-1) + 1 1 93-16 K 1 is the transformed signal z, the components r, r, r, r of the R matrix, and the symbol candidate set (ss Insert ", s")
  • the first likelihood calculator 93-1 is composed of a transmission symbol candidate generator 931, a converted signal replica generator 932, and an error calculator 933.
  • the other likelihood calculation devices 93-2 93-16K1 have the same configuration as the above likelihood calculation device 93-1.
  • the transmission symbol candidate generation unit 931 is a transmission symbol candidate s, s, s consisting of one of the signals cl and c16.
  • a transformed signal replica generator 932 includes components r, r, r of the R matrix and transmission symbol
  • Error calculation device 933 receives conversion signal z, conversion signal replica z, and error signal e ".
  • the error signal e is expressed as 1 1-1 1
  • the first likelihood calculator 93-1 receives the error signal e and transmission symbol candidates s, s, s
  • the second likelihood calculator 93-2 receives the error signal e and
  • 1 represents an error signal e and transmit symbol candidates s, s, s and s
  • the first stage signal selection device 94 receives the error signal and transmission symbol candidate output from the 16K1 likelihood calculation devices 93-1 93- 16K1, and gives the smallest error. s.
  • the transmission antenna estimation apparatus 9 estimates the sequence that becomes unstable in the upper triangular part of the R matrix calculated by the QR decomposition apparatus 85, and thereby the receiving antenna serves as the transmitting antenna.
  • the transmission signal sequence can be demodulated even if the number is smaller than that.
  • FIG. 21 is a flowchart showing demodulation processing of the receiving device 8 according to the fifth example of the present invention.
  • the demodulation processing of the reception device 8 according to the fifth embodiment of the present invention will be described with reference to FIGS. 17 to 21.
  • the process shown in FIG. 21 is realized by the arithmetic unit (CPU: central processing unit) of the receiver 8 executing a program of the recording medium 88. Further, in the above description, the power described in the case where the transmitter 2 has four transmitting antennas 21-1 to 21-4 In the following operation, the case where the transmitter 2 has M transmitting antennas will be described. Ru.
  • the channel matrix H is QR decomposition by the receiving apparatus 8, QR decomposition unit 85, and calculates the converted signal z based on it by Q H computing device 86 (FIG. 21 step S71).
  • the transmission sequence candidate selection unit 87 determines K symbol candidate sets for the transmission signal s — s (see FIG. 21).
  • Transmission sequence estimation apparatus 9 sets parameter m to (M ⁇ L) (FIG. 21 step S 73), generates Q symbol candidates for transmission signal s (FIG. 21 step S 74), and sets parameter q to 1 mm
  • transmission sequence estimation apparatus 9 calculates the kth symbol candidate and m + 1 for transmission signal s — s
  • Position 6 calculates the error between replica z and replica z, and m m-k Q m + q m +1 for the transmission signal s — s
  • step S81 the transmission sequence estimation apparatus 9 outputs the transmission signal s ⁇ s giving the minimum error (step S82 in FIG. 21).
  • the output of the signal selection device is used as a transmission symbol candidate giving a minimum error.
  • the likelihood of each transmission symbol is And the likelihood of bits transmitted in each transmission symbol.
  • FIG. 22 is a block diagram showing a configuration of a reception apparatus according to a sixth example of the present invention
  • FIG. 23 is a block diagram showing a configuration of a transmission sequence estimation apparatus of FIG. 22
  • FIG. 25 is a block diagram showing a configuration of a second stage likelihood calculation device of FIG. 23,
  • FIG. 25 is a block diagram showing a configuration of a first stage likelihood calculation device of FIG.
  • the configuration of the wireless communication system according to the sixth embodiment of the present invention is the same as that of the wireless communication system according to the embodiment of the present invention shown in FIG. 1 except that the receiving device 100 is arranged instead of the receiving device 1. It is a structure.
  • a receiving apparatus 100 has two transmitting antennas 21-1 and 21-2 and two receiving antennas 101-. 1, 101-2 are received.
  • Receiving apparatus 100 includes two receiving antennas 101-1 and 101-2, channel coefficient estimating apparatus 102, control channel decoding apparatus 103, priority determining apparatus 104, and channel coefficient reordering apparatus 105.
  • a QR decomposition unit 106 When, a QR decomposition unit 106, a Q H arithmetic unit 107, a transmission sequence estimator 110, a recording medium 108 for storing a program for realizing the processing of each unit of the receiving apparatus 100 (a program executable by a computer) And connected to the restoration device 120.
  • Each of the transmitting antennas 101-1 and 101-2 is modulated by an independent modulation scheme, and from the transmitting antenna 21-1 to the signal c 21-2
  • transmit antenna 21-1 For example, transmit antenna 21-1
  • the receiving device 100 includes two receiving antennas 101-1 and 101-2, and each receiving antenna 101-1 and 101-2 receives a signal.
  • Channel coefficient estimator 102 receives the received signal !:
  • QR decomposition unit 106 performs QR decomposition of the channel matrix with the channel matrix as an input, and outputs a Q matrix and an R matrix.
  • the Q H arithmetic unit 107 receives the Q matrix and the received signal!:, R and
  • the received signal is multiplied by the conjugate complex transposed matrix of the Q matrix, and the converted signal z is output.
  • Prioritizing device 104 receives the number of signal points (L, L) of each transmitting antenna 21-1 and 21-2 notified from control channel decoding device 103 as input and determines the priority between transmitting antennas
  • the priority order determination unit 104 gives high priority to an antenna having a small number of signal points! /, And a transmission sequence (low modulation multi-value number, transmission sequence).
  • Channel coefficient reordering apparatus 105 receives channel matrix ⁇ and signal Xpri representing priority, and rearranges column vectors of channel matrix H, and outputs a modified channel matrix H ′. At this time, the channel coefficient reordering unit 105 arranges the column powers with low priority in order.
  • the signal score of the low priority antenna is L1 ′
  • the signal score of the high priority antenna is L2 ′.
  • Transmission sequence estimation apparatus 110 estimates and outputs signals transmitted from transmission antennas 21-1 and 21-2 with transformation signal z and R matrix as inputs.
  • Transmission sequence estimation apparatus 110 is, as shown in FIG. 23, two-stage likelihood calculation apparatus group each including likelihood calculation apparatus 111 1 1 1 1 1 1 1 -L 2 ', 113 1 1 1 1 113 1 L 1' K 1.
  • the second stage likelihood calculation unit group, the second stage signal selection unit 112, the first stage likelihood calculation unit group, and the first stage signal selection which are composed of two stage signal selection units 112 and 114.
  • the signal processing is performed in the order of the device 114.
  • the second stage likelihood calculating device group is L With a likelihood calculator
  • Each likelihood calculator 111-1 1 1 1 1-L 2 ' is the transformed signal z and the component r of the R matrix
  • An error signal group and a transmission symbol candidate group are output with 2 22 as an input.
  • the first likelihood calculator 1111 in the second stage is configured from a transmission symbol candidate generator 1111, a converted signal replica generator 1112, and an error calculator 1113. It is done.
  • the other likelihood calculation devices 111 2-111 L 2 ′ have the same configuration as the above likelihood calculation device 1 11-1.
  • the transmission symbol candidate generation unit 1111 outputs a signal c.
  • the replica signal replica generator 1112 receives the component r of the R matrix and the transmission symbol candidate s as input.
  • Error calculator 1113 receives conversion signal Z and conversion signal replica z as two inputs.
  • the error signal e is calculated by
  • the first likelihood calculator 111-1 outputs an error signal e and a transmission symbol candidate s
  • the second stage signal selection unit 112 receives the error signal group calculated by the second stage L2 'likelihood calculators 111 1 1 1 1 1 1 L 2' and the transmission symbol candidate group as the smallest number of errors Signal e "— e" and K transmit symbol candidates s "giving the error
  • K 1 transmit symbol candidates to be output are any of the signals c and c
  • the first-stage likelihood computing device group is configured of L K likelihood computing devices, and
  • the first likelihood calculator 113-LI '(K1 1) + 1-113-L1' K1 is the transformed signal z, R matrix
  • Components r and r, an error signal e ", and a transmission symbol candidate s" are input.
  • the first likelihood calculator 113 is composed of a transmission symbol candidate generator 1131, a converted signal replica generator 1132, and an error calculator 1133. Note that the other likelihood calculators 113-2 113-L1 'K1 and the other likelihood calculators 113-1 It has the same configuration.
  • the transmission symbol candidate generation unit 1131 receives a transmission symbol candidate s "as an input c.
  • the transformed signal replica generator 1132 generates the components r and r of the R matrix.
  • Error calculation unit 1133 receives conversion signal z, conversion signal replica z, and error signal e ".
  • the error signal e is calculated by
  • the first likelihood calculator 113-1 generates an error signal e and transmission symbol candidates s and s.
  • the L l 'K th likelihood calculator 113 — L l' K l is the error signal e 'K and
  • the first stage signal selector 114 receives the error signal calculated by the first stage L ′ K likelihood calculators 113-1 113 ⁇ L 1 ′ K 1 and the transmission symbol candidate as the smallest. , Outputs the transmission symbol candidates s 'and s, which give an error signal e'.
  • S is a transmission symbol candidate selected from S S, K. 1-2 1-2 1-1-1 1-L1 1-1
  • Restoration apparatus 120 rearranges the transmission symbol sequence using signal Xpri representing the priority generated by priority determination apparatus 104 as an input, and transmits antenna number s ′.
  • the signal selection unit 112 in the second stage selects K1 transmit symbol candidates with the smallest error among the L2 'transmit symbol candidate groups.
  • the order of priority is given to antennas with a small number of signal points, and the channel coefficients are rearranged. Therefore, processing can be performed in the order of antennas with a small number of signal points, the number of candidate reductions performed in the former stage is reduced, and reception characteristics are improved as a result.
  • the transmission sequence candidate selection device 87 is prioritized. For transmission sequences 4 and 2 that have high degrees of power, K sequence candidates that reduce the error signal are selected.
  • transmission sequence candidate selection apparatus 87 selects K candidates from among combinations of cL 4 X cL 2. Therefore, even in this case, if transmission sequences with a small number of signal points are preferentially processed, it is possible to select fewer candidates of combination medium power K, and transmission sequence candidate selection device 87 Characteristic deterioration due to selection error can be suppressed. Furthermore, if the relationship of c X c K K holds, the transmission sequence candidate selection device 87 itself becomes unnecessary.
  • the group of likelihood calculators consists of L likelihood calculators. Also, the first stage likelihood calculation
  • the group is composed of L K likelihood calculators.
  • the number of likelihood calculators actually used is L1 'K1. Therefore, when L1 'is smaller than L, all the prepared likelihood calculators are not used.
  • the number of K1 is set according to L1 ′.
  • J 1 be the maximum number of likelihood calculators in the first stage.
  • the process of determining the prioritization of the antenna is performed by the prioritization based on the code ratio.
  • priority order determining apparatus 104 transmits transmitting antennas 21-1 and 21-2 respectively. The priority is determined based on the coding rate in.
  • the transmission sequence estimation apparatus of the present invention a difference occurs in the signal separation characteristic for each antenna depending on the processing order of the antennas. Specifically, as the signal of the antenna processed in the former stage becomes worse, the signal separation characteristic becomes better as the signal of the antenna processed in the latter stage becomes worse. This is considered to be due to an error in candidate point selection in the previous stage because the influence of other antenna interference remains even after orthogonalization by QR decomposition.
  • FIG. 26 is a block diagram showing a configuration of a signal selection device according to a ninth example of the present invention.
  • the signal selection device 200 according to the ninth embodiment of the present invention incorporates a bit likelihood output function, and the antenna minimum value selection device 201, bit determination devices 202 and 203, and bit minimum value. It consists of selection units 204 and 205 and bitwise likelihood calculation units 206 and 207. And are connected to turbo decoders 210 and 211.
  • a signal selection apparatus 200 having a function of outputting bit likelihood of a transmitted data sequence is provided. It needs to be used.
  • four signals c from the transmitting device 2 having two transmitting antennas 21-1 and 21-2, respectively.
  • the antenna-by-antenna minimum value selection device 201 receives the error signal and the transmission symbol candidate calculated by the first stage 4K1 likelihood calculation device (not shown), the smallest!
  • the bit decision devices 202 and 203 are provided for each antenna, and perform bit decision of each signal with each transmission symbol candidate as an input.
  • Bit-by-bit minimum value selectors 204 and 205 are provided for each antenna, and the judgment bits which are the outputs of bit judgment devices 202 and 203 and error signals calculated by the 4K1 likelihood calculators in the first stage And, with the transmission symbol candidate as an input, the smallest error signal is output from among the transmission symbol candidates having a bit (inverted bit) different from the determination bit.
  • Selection devices 204 and 205 are c
  • the bit likelihood calculators 206 and 207 are provided for each antenna, and the error signal e ′ output from the antenna minimum value selectors 204 and 205 and the bit value minimum value selectors 204 and 205 for each bit.
  • Signal selection apparatus 200 can perform error correction decoding based on soft decision information by inputting the bit likelihood obtained by the above-described processing to turbo decoder 210, 211.
  • turbo decoder 210 e.g., a code ⁇ is performed for each transmitting antenna.
  • the outputs of the bit likelihood calculators 206 and 207 are input to the restoration device (not shown), and the transmission antenna is transmitted. After reordering to bit likelihood in numerical order, the signal is input to a predetermined turbo decoder to perform processing.
  • FIG. 28 is a block diagram showing a configuration of a signal selection device according to a tenth example of the present invention.
  • the signal selection device 300 according to the tenth embodiment of the present invention incorporates a bit likelihood output function, and the antenna minimum value selection device 301, bit determination devices 302 and 303, and each bit. It is composed of minimum value selectors 304 and 305, error signal accumulators 306 and 307, and bitwise likelihood calculators 308 and 309, which are connected to turbo decoders 310 and 311.
  • bit-by-bit minimum value selector 301 the smallest error is selected from among transmission symbol candidates having a bit (inverted bit) different from the judgment bit of the transmission symbol candidate for which the error signal is the smallest. Find the difference signal.
  • narrowing of transmission symbol candidates by the signal selection device in the previous stage may result in the case where all symbol candidates of inverted bits are deleted.
  • error signal storage devices 306 and 307 are provided.
  • the error signal storage devices 306 and 307 store the output of the error signal E for the inverted bit for a predetermined interval. Then, the error signal storage devices 306 and 307 average the results accumulated for a predetermined period, and output temporary error signals e 'and e' for the inverted bits.
  • Bit-wise likelihood calculators 308 and 309 output an error signal e ′ output from antenna-by-antenna minimum value selector 301, an error signal E output from bit-by-bit minimum value selectors 304 and 305, and an error.
  • the temporary error signal e ′ from the signal storage devices 306 and 307 is input, and bitwise likelihood estimation is performed.
  • the temporary error signal e ′ is sent to the bitwise minimum value selector 304, 305.
  • bit likelihood calculation can always be performed. It will be appreciated that even when symbol candidates are narrowed down by the signal selection device of the previous stage by the above processing, bit likelihood calculation can always be performed. It will be appreciated
  • FIG. 29 is a block diagram showing a configuration of a channel coefficient estimation device according to an eleventh example of the present invention
  • FIG. 30 is a transmission signal configuration when the channel coefficient estimation device shown in FIG. 29 is used.
  • the channel coefficient estimator 500 is a pilot symbol replica generator 501-1-501-3, 505-1-505-3, ... (The pilot symbol replica generator 501-2, 505-2 is a diagram. Not shown) and the correlation detection device 502-1 50
  • pilot symbols of 4 symbol lengths that are different for each of transmitting antenna # 1 to # 3 are periodically inserted to the data symbol.
  • the pilot symbol patterns of the transmitting antennas # 1 and # 3 are orthogonal to each other.
  • Such an orthogonal pattern can be generated, for example, by using a Walsh sequence of the same length as the number of pilot symbols.
  • the pilot symbol series of transmitting antenna # m be p m (n).
  • n represents a symbol number.
  • channel coefficient estimating apparatus 500 received signal r is input to correlation detecting apparatus 502-1.
  • pilot symbol replica generation apparatus 501-1 generates pilot symbol sequence p of transmission antenna # 1 (not shown) and outputs it to correlation detection apparatus 502-1.
  • reception signal rl is multiplied by the complex conjugate value of pilot symbol sequence pi of transmission antenna # 1 to obtain transmission antenna # 1 by averaging four lot symbols. Estimate the channel coefficient h between antenna # 1 (not shown)
  • the channel coefficient h is
  • correlation detection unit 502-m (not shown), received signal r and a pilot signal
  • the channel coefficient h is estimated and output with the pilot symbol sequence p of transmit antenna # m generated by the bolt replica generator 501-m (not shown) as an input.
  • correlation detection apparatus 506-1 receives received signal r4 and a pilot symbol. Transmit antenna # 1 pilot symbol sequence p generated by replica generator 505—1 p
  • the channel coefficient h is estimated and output by inputting 1 and calculating the correlation.
  • the above-described operation is repeated to estimate channel coefficients between three transmit antennas (not shown) and four receive antennas (not shown), and to estimate the estimated channel coefficients.
  • Output a channel matrix H that is also the channel coefficient power.
  • the channel coefficient estimate can be obtained by the method.
  • FIG. 31 is a block diagram showing a configuration of a receiving apparatus according to a twelfth embodiment of the present invention.
  • the configuration of the wireless communication system according to the twelfth embodiment of the present invention is similar to that of the wireless communication system according to the embodiment of the present invention shown in FIG. 1 except that a receiving device 700 is arranged instead of the receiving device 1. It is a structure.
  • a receiver 700 includes four receiver antennas for transmitting a signal transmitted from a transmitter 2 having three transmitter antennas 21- 1-21-3. It is received by 701-1 1 701-4. In this case, each transmitting antenna 21-1-21-3 has a 16 value signal c.
  • the receiver 700 according to the twelfth embodiment of the present invention is applied to the case where one of the transmit signals c1 and c is spread in advance by the same spreading code in the transmitter 2.
  • Receiving apparatus 700 has four receiving antennas 701-1-701-4, channel coefficient estimating apparatus 702, QR decomposition apparatus 703, four despreading apparatuses 704-1-704-4, and Q H arithmetic unit 705, a transmission sequence estimator 706, and a storage medium 707 Metropolitan storing a program for realizing the processing of each unit of the receiving apparatus 700 (a program executable by a computer).
  • Channel coefficient estimation unit 702 estimates channel coefficients with the received signal r 1 r as input and estimates the channel
  • QR factorizer 703 enters channel matrix H Perform QR decomposition as force! ⁇ , Q matrix and R matrix are output.
  • the despreading is performed using the same spreading code replica as the spreading code used for spreading in step
  • Q H arithmetic unit 705 performs the same operation as Q H arithmetic unit 34 of the receiving apparatus 3 according to a second embodiment of the present invention shown in FIG. 4, the received signal as an input signal: reverse diffusion
  • This embodiment differs from the second embodiment of the present invention in that the later received signal r'1 r 'is input.
  • Q H operation
  • Device 705 is the despread received signal !: '
  • Transmission sequence estimation unit 706 receives the converted signal z and the R matrix, and transmits it by the same operation as transmission sequence estimation unit 4 in receiver 3 according to the second embodiment of the present invention shown in FIG.
  • the signal sequence estimates s', s' and s' are output.
  • the present embodiment by using the above configuration,
  • the amount of operation in transmission sequence estimation apparatus 706 can be reduced to 1 / the spreading factor.
  • FIG. 34 is a block diagram showing a configuration of a signal selection device according to a thirteenth embodiment of the present invention. However, here, only the bit likelihood output device for the transmission antenna 1 is described.
  • function arithmetic units 905 to 908 are for the error signal (square Euclidean distance) to which the force of each antenna minimum value selector 901, each bit minimum value selector 903 and error signal storage device 904 is also output.
  • the value of each error signal is converted by performing an arbitrary function operation. For example, if the function operation is a square root, the squared Euclidean distance is converted to a Euclidean distance.
  • the likelihood of the j-th bit of the transmitting antenna i is
  • a signal selection device incorporating a bit likelihood output function is described in order to solve the problem in the case where all symbol candidates of inverted bits are reduced.
  • the signal can also be demodulated by the configuration described below.
  • FIG. 35 is a block diagram showing a configuration of a receiving apparatus according to a fourteenth embodiment of the present invention. Book In the embodiment, it is assumed that the transmission signal is a signal which takes any of 16 values.
  • receiver 1200 has four receive antennas, which receive signals r, r, r and r, respectively.
  • a channel coefficient estimation unit 32 estimates and outputs a channel between transmitting and receiving antennas.
  • the transmission sequence estimation unit 1202 estimates a transmission sequence and outputs a bit likelihood ratio, and the decoding unit 1203 decodes and outputs.
  • FIG. 36 is a block diagram showing a configuration of transmission sequence estimation apparatus 1202 in FIG.
  • the transmission sequence estimation apparatus 1202 will be described with reference to FIG.
  • the transmission sequence estimation device 1202 is composed of a three-stage likelihood calculation device group and a three-stage signal selection device group as in FIG.
  • the likelihood calculators 1204-1204-120, 1206-1-1206-16 K, and 1208-1-1208-16 K2 receive the received signal and the channel estimation value
  • a 3-stage signal selection device 1209 is a signal selection device incorporating a bit likelihood output function.
  • Likelihood calculator 1204-1 receives an error signal with reception signal r1 r and channel matrix H as inputs.
  • the likelihood calculating device 1204-2-1204-16 also calculates and outputs an error signal.
  • the signal selection unit 1205 selects K1 with the smallest error from the calculated error signal, and outputs a symbol candidate giving the error.
  • Likelihood calculator 1206-1 is selected from receiver signal r selector 1205.
  • the first candidate for the signal being received, and S is the signal sent from the second transmit antenna
  • the likelihood calculation device 1206-2-1206-16K1 calculates an error signal, and outputs the calculated error and a symbol candidate that gives the error.
  • Signal selection unit 12 07 receives 16K 1 error signals and symbol candidates calculated by likelihood calculation unit 1206-1-1206-16K 1 and inputs the smallest ⁇ K 2 symbol candidate sets (S, S ")
  • Likelihood calculator 1208-1 is a received signal !:
  • the error signal e is
  • S "and S" are the third and second selected by the signal selection device 1207.
  • the likelihood calculation device 1208-2-1208-16K2 calculates an error signal, and outputs the calculated error and a symbol candidate that gives the error.
  • the third stage likelihood calculation The number of error signals and symbol candidates output from the device group is 16K2. Therefore, depending on the settings of K1 and ⁇ 2, as described in the tenth embodiment of the present invention, the reduction of symbol candidates may cause the case where the inverted bit metric can not be calculated.
  • the signal selection device 1209 incorporating the bit likelihood output function is the tenth embodiment of the present invention.
  • the likelihoods for all bits are calculated and output by the same calculation as that described in the embodiment.

Abstract

 非常に簡易な構成で信号を復調することが可能な受信装置を提供することを目的とし、受信装置1はN本の受信アンテナ11−1~11−Nを備え、各受信アンテナ11−1~11−Nで信号を受信する。チャネル係数推定装置12は各受信アンテナ11−1~11−Nで受信した信号からチャネル係数を推定して出力する。QR分解装置13はチャネル係数を要素とするチャネル行列を入力としてQR分解を行ってQ行列及びR行列を出力する。QH演算装置14はQ行列と受信信号とを入力としてQ行列の複素共役転置行列を乗算して変換信号zを出力し、送信系列推定装置15は変換信号zとR行列とを入力として送信系列の推定を行う。

Description

明 細 書
無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプ ログラム
技術分野
[0001] 本発明は無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプ ログラムに関し、特に複数の送受信アンテナを用いた無線通信システムの受信装置 における復調方法に関する。
背景技術
[0002] 従来、特開 2003— 178048号公報に開示される複数の参照信号系列に対する出 力を同時に得る技術ゃ特開平 9— 219616号公報に開示される複数のセンサー素子 力 なるアレーセンサーによって受信された複数の到来信号を処理する技術がある。
[0003] 図 32はこの種の無線通信システムの構成を示す図である。受信装置 800が複数の 受信アンテナ 801— 1一 801— 4を用い、最尤系列推定による復調方法にて受信信号 の復調を行っている。
[0004] 図 32においては、 3本の送信アンテナ(図示せず)から送られた信号を 4本の受信 アンテナ 801— 1一 801— 4を備えた受信装置 800で受信するものとし、各送信アンテ ナからは 16値の信号 c
1一 c のいずれかが送信されているものとする。
16
[0005] 受信装置 800は 4本の受信アンテナ 801— 1— 801— 4を備え、各受信アンテナ 801 -1一 801 - 4はそれぞれ信号を受信する。チャネル係数推定装置 802は受信信号を 入力として送受信アンテナ間のチャネル係数を推定し、チャネル行列を出力する。最 尤系列推定装置 803は受信信号とチャネル行列とを入力として送信系列の推定を行
[0006] 上記の例のように、 3本の送信アンテナから 16値の信号 c かが送ら
1一 c のいずれ
16
れて 、る場合、最尤系列推定装置 803は 4096個の誤差計算装置 804— 1一 804— 4 096と、 1つの信号選択装置 805とから構成される。
[0007] 誤差計算装置 804— 1一 804— 4096の各々は、図 33に示す誤差計算装置 804の 構成をとつている。第 1段の誤差計算装置 804— 1において、送信シンボル生成装置 811は各アンテナに対する送信シンボル s 、s 、s を生成して出力する。
1-1 1-2 1-3
[0008] 受信信号レプリカ生成装置 812は送信シンボルとチャネル係数とを入力として受信 信号レプリカを生成して出力する。
[0009] 誤差計算装置 813は受信信号と受信信号レプリカとを入力として誤差計算を行う。
但し、送信シンボル生成装置 811で生成される送信シンボルは信号 c一 c のいずれ
1 16 かであり、誤差計算装置 804—1 804— 4096の各々で互いに異なる送信シンボル が生成される。
[0010] 受信信号レプリカ生成装置 812では、
r =h s +h s +h s
1-1 11 1-1 12 1-2 13 1-3
r =h s +h s +h s
1-2 21 1-1 22 1-2 23 1-3
r =h s +h s +h s
1-3 31 1-1 32 1-2 33 1-3
r =h s +h s +h s
1-4 41 1-1 42 1-2 43 1-3
として、 4つの受信信号レプリカ r 、r 、r 、r を生成する。ここで、 h 、h 、h 、h
1-1 1-2 1-3 1-4 11 12 13
、h 、h 、h 、h 、h 、h 、h 、h は送信アンテナと受信アンテナとの間のチヤネ
21 22 23 31 32 33 41 42 43
ル係数である。
[0011] 誤差計算装置 813では受信信号と受信信号レプリカとを入力として誤差信号 eを、
1 e = r— r
1 I 1 1-1 I + I r— r
2 1-2 I
+ I r -r I 2+ I r -r | 2
3 1-3 4 1-4
という式から計算する。
[0012] 第 1段の誤差計算装置 804— 1は生成した送信シンボル s 、s 、s と計算した誤
1-1 1-2 1-3
差信号 eとを出力する。同様に、第 2段の誤差計算装置 804— 2は送信シンボル s 、
1 2-1 s 、 s 及び誤差信号 eを、第 4096段の誤差計算装置 804-4096は送信シンボル
2-2 2-3 2
s 、s 、s 及び誤差信号 e をそれぞれ出力する。
4096-1 4096-2 4096-3 4096
[0013] 信号選択装置 805は 4096個の誤差計算装置群 804— 1一 804— 4096から出力さ れた送信シンボル及び誤差信号を入力として最小誤差を選択し、当該誤差を与える 送信シンボルを出力する。これによつて、送信信号の復調が行われる。
発明の開示
発明が解決しょうとする課題 [0014] 上述した従来の送信系列推定装置では、信号選択装置 405に 4096個の信号が 入力され、 3つの信号を復調するために 4096個の信号を生成して比較する必要が あり、非常に多くの演算を必要とすることとなる。
[0015] これは送信された可能性のある全ての候補力 生成した擬似受信信号と実際に受 信した信号とを比較しているためであり、一般的に、 D値の信号が各送信アンテナか ら送信されて!、る場合には、 D値の信号を復調するために DM個の信号生成及び比 較が必要となる。
[0016] したがって、指数的に組合せ数が増大し、非常に複雑な構成となる。尚、上記の特 開 2003— 178048号公報および特開平 9— 219616号公報は QR分解を行う技術例 として挙げたにすぎず、これらの技術にて上記の課題を解決することはできな 、。
[0017] そこで、本発明の目的は上記の問題点を解消し、非常に簡易な構成で信号を復調 することができる無線通信システム、受信装置及びそれらに用いる復調方法並びに そのプログラムを提供することにある。 課題を解決するための手段
[0018] 本発明による無線通信システムは、 N本 (Nは 2以上の整数)の受信アンテナを備え る受信装置にお 、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装置か らの送信信号を受信して復調する無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号の復調を行う手段とを前記受信装置に備 えている。
[0019] 本発明による他の無線通信システムは、 N本 (Nは 2以上の整数)の受信アンテナを 備える受信装置にお!、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装 置からの送信信号を受信して復調する無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力する手段と を前記受信装置に備えている。 [0020] 本発明による別の無線通信システムは、 N本 (Nは 2以上の整数)の受信アンテナを 備える受信装置にお!、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装 置からの送信信号を受信して復調する無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力する手段と を前記受信装置に備えている。
[0021] 本発明による受信装置は、 N本 (Nは 2以上の整数)の受信アンテナを備える受信
Figure imgf000006_0001
、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装置からの送 信信号を受信して復調する無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号の復調を行う手段とを備えている。
[0022] 本発明による他の受信装置は、 N本 (Nは 2以上の整数)の受信アンテナを備える 受信装置にお 、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装置から の送信信号を受信して復調する無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力する手段と を備えている。
[0023] 本発明による別の受信装置は、 N本 (Nは 2以上の整数)の受信アンテナを備える 受信装置にお 、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装置から の送信信号を受信して復調する無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力する手段とを 備えている。
[0024] 本発明による復調方法は、 N本 (Nは 2以上の整数)の受信アンテナを備える受信
Figure imgf000007_0001
、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装置からの送 信信号を受信して復調する復調方法であって、
前記受信装置側に、前記受信アンテナと前記送信アンテナとの間のチャネル係数 を要素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示す ヌリングを行うステップと、
そのヌリングした信号を基に前記送信信号の復調を行うステップとを備えている。
[0025] 本発明による他の復調方法は、 N本 (Nは 2以上の整数)の受信アンテナを備える 受信装置にお!、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装置から の送信信号を受信して復調する復調方法であって、
前記受信装置側に、前記受信アンテナと前記送信アンテナとの間のチャネル係数 を要素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示す ヌリングを行うステップと、
そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力するステツ プとを備えている。
[0026] 本発明による別の復調方法は、 N本 (Nは 2以上の整数)の受信アンテナを備える 受信装置にお!、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装置から の送信信号を受信して復調する復調方法であって、
前記受信装置側に、前記受信アンテナと前記送信アンテナとの間のチャネル係数 を要素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示す ヌリングを行うステップと、
そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力するステツ プとを備えている。
[0027] 本発明による復調方法のプログラムは、 N本 (Nは 2以上の整数)の受信アンテナを 備える受信装置にお!、て、 M本 (Mは 2以上の整数)の送信アンテナを備える送信装 置からの送信信号を受信して復調する復調方法のプログラムであって、
コンピュータに、前記受信アンテナと前記送信アンテナとの間のチャネル係数を要 素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示すヌリ ングを行う処理と、 そのヌリングした信号を基に前記送信信号の復調を行う処理とを実行させている。
[0028] 本発明による他の復調方法のプログラムは、 N本 (Nは 2以上の整数)の受信アンテ ナを備える受信装置において、 M本 (Mは 2以上の整数)の送信アンテナを備える送 信装置からの送信信号を受信して復調する復調方法のプログラムであって、 コンピュータに、前記受信アンテナと前記送信アンテナとの間のチャネル係数を要 素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示すヌリ ングを行う処理と、
そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力する処理と を実行させている。
[0029] 本発明による別の復調方法のプログラムは、 N本 (Nは 2以上の整数)の受信アンテ ナを備える受信装置において、 M本 (Mは 2以上の整数)の送信アンテナを備える送 信装置からの送信信号を受信して復調する復調方法のプログラムであって、 コンピュータに、前記受信アンテナと前記送信アンテナとの間のチャネル係数を要 素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示すヌリ ングを行う処理と、
そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力する処理と を実行させている。
[0030] すなわち、本発明の第 1の無線通信システムは、 N本 (Nは 2以上の整数)の受信ァ ンテナを持ち、 M本 (Mは 2以上の整数)の送信アンテナを持つ送信装置力 送信さ れた信号を受信し、送受信アンテナ間のチャネル係数を要素とするチャネル行列の QR分解を用いて信号の復調を行う受信装置を備えて ヽる。
[0031] 本発明の第 2の無線通信システムは、 N本 (Nは 2以上の整数)の受信アンテナを持 ち、 M本 (Mは 2以上の整数)の送信アンテナを持つ送信装置カゝら送信された信号を 受信し、送受信アンテナ間のチャネル係数を要素とするチャネル行列の QR分解を 用いて送信装置力 送信された信号に対する尤度を計算して出力する受信装置を 備えている。
[0032] 本発明の第 3の無線通信システムは、 N本 (Nは 2以上の整数)の受信アンテナを持 ち、 M本 (Mは 2以上の整数)の送信アンテナを持つ送信装置カゝら送信された信号を 受信し、送受信アンテナ間のチャネル係数を要素とするチャネル行列の QR分解を 用いて送信装置力 送信されたビットに対する尤度を出力する受信装置を備えてい る。
[0033] 本発明の第 4の無線通信システムは、受信信号を入力として各送受信アンテナ間 のチャネル係数の推定を行って出力するチャネル係数推定装置と、
チャネル係数からなるチャネル行列を入力としてチャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解装置と、
受信信号と Q行列を入力として受信信号を要素とする受信信号べ外ルに Q行列の 複素共役転置行列を乗算して変換信号として出力する QH演算装置と、
変換信号と R行列とを入力として送信系列、送信系列に対する尤度、あるいは送信 系列によって送信されたビットに対する尤度のうちの少なくとも一つを出力する送信 系列推定装置とからなる受信装置を備えて 、る。
[0034] 本発明の第 5の無線通信システムは、受信信号を用いて各送受信アンテナ間のチ ャネル係数の推定を行って出力するチャネル係数推定装置と、
チャネル係数からなるチャネル行列を入力としてチャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解装置と、
受信信号と Q行列とを入力として受信信号を要素とする受信信号べ外ルに Q行列 の複素共役転置行列を乗算して変換信号として出力 QH演算装置と、
受信信号を入力として変換信号に対するシンボル候補を選択してシンボル候補を 出力する送信シンボル候補選択装置と、変換信号とシンボル候補と R行列とを入力と して送信系列、送信系列に対する尤度、あるいは送信系列によって送信されたビット に対する尤度のうちの少なくとも一つを出力する送信系列推定装置とからなる受信装 置を備えている。
[0035] 本発明の第 6の無線通信システムは、受信信号を入力として各送受信アンテナ間 のチャネル係数の推定を行って出力するチャネル係数推定装置と、
受信信号を入力として M本 (Mは 2以上の整数)の送信アンテナ力 送信された系 列間の優先順位を決定する優先順位決定装置と、
チャネル係数推定装置で推定されたチャネル係数と優先順位決定装置で決定され た優先順位とを入力としてチャネル係数の並び替えを行って変形チャネル行列を出 力する並び替え装置と、
変形チャネル行列を入力として変形チャネル行列の QR分解を行って Q行列及び R 行列を出力する QR分解装置と、
受信信号と Q行列とを入力として受信信号を要素とする受信信号べ外ルに Q行列 の複素共役転置行列を乗算して変換信号として出力する QH演算装置と、
変換信号と R行列とを入力として送信系列、送信系列に対する尤度、あるいは送信 系列によって送信されたビットに対する尤度のうちの少なくとも一つを出力する送信 系列推定装置と、
系列推定装置力 出力と優先順位とを入力として送信系列、送信系列に対する尤 度、あるいは送信系列によって送信されたビットに対する尤度の復元を行って出力す る復元装置とからなる受信装置を備えて 、る。
[0036] 本発明の第 7の無線通信システムは、受信信号を入力として各送受信アンテナ間 のチャネル係数の推定を行って出力するチャネル係数推定装置と、
チャネル係数カゝら構成されるチャネル行列を入力として QR分解を行って Q行列及 び R行列を出力する QR分解装置と、
受信信号と Q行列とを入力として受信信号を要素とする受信信号べ外ルに Q行列 の複素共役転置行列を乗算して変換信号として出力する QH演算装置と、
受信信号を入力として L個 (Lは 1以上、 M以下の整数)(Mは 2以上の整数)の変換 信号に対する候補系列を決定して送信系列候補として出力する送信系列候補選択 装置と、
変換信号と R行列と送信系列候補とを入力として送信系列、送信系列に対する尤 度、あるいは送信系列によって送信されたビットに対する尤度のうちの少なくとも一つ を出力する送信系列推定装置とからなる受信装置を備えている。
[0037] 本発明の第 8の無線通信システムは、受信信号を入力として各送受信アンテナ間 のチャネル係数の推定を行って出力するチャネル係数推定装置と、
受信信号を入力として M本 (Mは 2以上の整数)の送信アンテナ力 送信された系 列間の優先順位を決定優先順位決定装置と、 チャネル係数推定装置で推定されたチャネル係数と優先順位決定装置で決定され た優先順位とを入力としてチャネル係数の並び替えを行って変形チャネル行列を出 力する並び替え装置と、
変形チャネル行列を入力として変形チャネル行列の QR分解を行って Q行列及び R 行列を出力する QR分解装置と、
受信信号と Q行列を入力として受信信号を要素とする受信信号べ外ルに Q行列の 複素共役転置行列を乗算して変換信号として出力する QH演算装置と、
受信信号を入力として復調系列に対するシンボル候補を選択して送信シンボル候 補を出力する送信シンボル候補選択装置と、
変換信号と R行列と送信シンボル候補とを入力として送信系列、送信系列に対する 尤度、あるいは送信系列によって送信されたビットに対する尤度のうちの少なくとも一 つを出力する送信系列推定装置と、
送信系列推定装置力もの出力と優先順位とを入力として送信系列、送信系列に対 する尤度、あるいは送信系列によって送信されたビットに対する尤度の復元を行って 出力する復元装置とからなる受信装置を備えて ヽる。
本発明の第 9の無線通信システムは、受信信号を入力として各送受信アンテナ間 のチャネル係数の推定を行って出力するチャネル係数推定装置と、
受信信号を入力として M本 (Mは 2以上の整数)の送信アンテナ力 送信された系 列間の優先順位を決定する優先順位決定装置と、
チャネル係数推定装置で推定されたチャネル係数と優先順位決定装置で決定され た優先順位とを入力としてチャネル係数の並び替えを行って変形チャネル行列を出 力する並び替え装置と、
変形チャネル行列を入力として QR分解を行って Q行列及び R行列を出力する QR 分解装置と、
受信信号と Q行列とを入力として受信信号を要素とする受信信号べ外ルに Q行列 の複素共役転置行列を乗算して変換信号として出力する QH演算装置と、
受信信号を入力として S (Lは 1以上、 M以下の整数)の変換信号に対する候補 系列を決定して送信系列候補として出力する送信系列候補選択装置と、 変換信号と R行列と送信系列候補とを入力として送信系列、送信系列に対する尤 度、あるいは送信系列によって送信されたビットに対する尤度のうちの少なくとも一つ を出力する送信系列推定装置と、
系列推定装置力 出力と優先順位とを入力として送信系列、送信系列に対する尤 度、あるいは送信系列よつて送信されたビットに対する尤度の復元を行って出力する 復元装置とからなる受信装置を備えて!/ヽる。
[0039] 本発明の第 10の無線通信システムは、受信信号を入力として各送受信アンテナ間 のチャネル係数の推定を行って出力するチャネル係数推定装置と、
チャネル係数カゝら構成されるチャネル行列を入力として QR分解を行って Q行列及 び R行列を出力する QR分解装置と、
受信信号と Q行列とを入力として受信信号を要素とする受信信号べ外ルに Q行列 の複素共役転置行列を乗算して変換信号として出力する QH演算装置と、
受信信号を入力として L個 (Lは 1以上、 M以下の整数)(Mは 2以上の整数)の変換 信号に対する候補系列を決定して送信系列候補として出力する送信系列候補選択 装置と、
受信信号を入力として (M - L)個の復調信号に対するシンボル候補を選択して出 力する送信シンボル候補選択装置と、
変換信号と R行列と送信系列候補とシンボル候補とを入力として送信系列、送信系 列に対する尤度、あるいは送信系列によって送信されたビットに対する尤度のうちの 少なくとも一つを出力する送信系列推定装置とからなる受信装置を備えている。
[0040] 本発明の第 11の無線通信システムは、受信信号を入力として各送受信アンテナ間 のチャネル係数の推定を行って出力するチャネル係数推定装置と、
受信信号を入力として M本 (Mは 2以上の整数)の送信アンテナ力 送信された系 列間の優先順位を決定する優先順位決定装置と、
チャネル係数推定装置で推定されたチャネル係数と優先順位決定装置で決定され た優先順位とを入力としてチャネル係数の並び替えを行って変形チャネル行列を出 力する並び替え装置と、
変形チャネル行列を入力として QR分解を行って Q行列及び R行列を出力する QR 分解装置と、
受信信号と Q行列を入力として受信信号を要素とする受信信号べ外ルに Q行列の 複素共役転置行列を乗算して変換信号として出力する QH演算装置と、
受信信号を入力として S (Lは 1以上、 M以下の整数)の変換信号に対する候補 系列を決定して送信系列候補として出力する送信系列候補選択装置と、
受信信号を入力として (M - L)個の変換信号に対するシンボル候補を選択して出 力する送信シンボル候補選択装置と、
変換信号と R行列とシンボル候補と送信系列候補とを入力として送信系列、送信系 列に対する尤度、あるいは送信系列によって送信されたビットに対する尤度のうちの 少なくとも一つを出力する送信系列推定装置と、
送信系列推定装置力もの出力と優先順位とを入力として送信系列、送信系列に対 する尤度、あるいは送信系列よつて送信されたビットに対する尤度の復元を行って出 力する復元装置とからなる受信装置を備えて!/ヽる。
[0041] 本発明の第 12の無線通信システムは、 P段 (Pは 1以上の整数)の尤度計算装置群 と信号選択装置群とを持つ送信系列推定装置を備え、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は Kp個 (Kpは 1以上の整数) の尤度計算装置から構成され、
各尤度計算装置は、変換信号と R行列と第 (ρ - 1)段の信号選択装置から出力され る Lp— 1個 (Lp— 1は 1以上の整数)の誤差信号と送信シンボル候補とを入力として第 p段での尤度計算及び送信シンボル候補を生成して出力し、
第 P段の信号選択装置は、第 p段の尤度計算装置群から出力された Kp個の尤度と 送信シンボル候補を入力として Lp個(Lpは 1以上の整数)の最大尤度と当該尤度を 与える Lp個の送信シンボル候補とを出力して 、る。
[0042] 本発明の第 13の無線通信システムは、 P段 (Pは 1以上の整数)の尤度計算装置群 と信号選択装置群とを持つ送信系列推定装置を備え、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は、 Kp個 (Kpは 1以上の整 数)の尤度計算装置から構成され、
各尤度計算装置は、変換信号と R行列と第 (P - 1)段の信号選択装置から出力され る Kp—l個 (Kp— 1は 1以上の整数)の誤差信号と送信シンボル候補とを入力として第 ρ段での尤度計算及び送信シンボル候補を生成して出力し、
第 Ρ段の信号選択装置は、第 ρ段の尤度計算装置群から出力された Kp個の尤度と 送信シンボル候補とを入力として Kp + 1個の最大尤度と当該尤度を与える Kp + 1個 の送信シンボル候補とを出力して 、る。
[0043] 本発明の第 14の無線通信システムは、 M段 (Mは 2以上の整数)の尤度計算装置 群と、 M段の信号選択装置群とからなる送信系列推定装置を備えて 、る。
[0044] 本発明の第 15の無線通信システムは、 N段 (Nは 2以上の整数)の尤度計算装置 群と M段の信号選択装置群とからなる送信系列推定装置を備えている。
[0045] 本発明の第 16の無線通信システムは、複数段の信号選択装置からなる送信系列 推定装置を備え、最終段の信号選択装置にて最も確からしい送信系列を選択して出 力している。
[0046] 本発明の第 17の無線通信システムは、複数段の信号選択装置力もなる送信系列 推定装置を備え、最終段の信号選択装置にて最も確力 しい送信系列を選択し、当 該系列の尤度を出力している。
[0047] 本発明の第 18の無線通信システムは、複数段の信号選択装置力もなる送信系列 推定装置を備え、最終段の信号選択装置にて最も確力 しい送信系列を選択し、当 該系列で送信されたビット系列の尤度を出力している。
[0048] 本発明の第 19の無線通信システムは、 R行列成分を用いて変換信号レプリカを生 成し、変換信号レプリカと受信信号を用いて測定される物理量を用いて尤度計算を 行う尤度計算装置からなる送信系列推定装置を備えている。
[0049] 本発明の第 20の無線通信システムは、受信信号と変換信号レプリカとの自乗ユー クリツド距離を用いて尤度計算を行う尤度計算装置からなる送信系列推定装置を備 えている。
[0050] 本発明の第 21の無線通信システムは、受信信号と変換信号レプリカとのユークリツ ド距離を用いて尤度計算を行う尤度計算装置からなる送信系列推定装置を備えてい る。
[0051] 本発明の第 25の無線通信システムは、線形フィルタを用いる送信シンボル候補選 択装置を備えている。
[0052] 本発明の第 26の無線通信システムは、最尤系列推定を用いる送信シンボル候補 選択装置を備えている。
[0053] 本発明の第 27の無線通信システムは、各送信系列の受信電力を用いる優先順位 決定装置を備えている。
[0054] 本発明の第 28の無線通信システムは、各送信系列の受信電力対雑音電力比を用
V、る優先順位決定装置を備えて 、る。
[0055] 本発明の第 29の無線通信システムは、各送信系列の受信電力対雑音電力及び干 渉電力比を用いる優先順位決定装置を備えて 、る。
[0056] 本発明の第 30の無線通信システムは、線形フィルタを用いる送信系列候補選択装 置を備えている。
[0057] 本発明の第 31の無線通信システムは、最尤系列推定を用いる送信系列候補選択 装置を備えている。
[0058] これによつて、本発明の無線通信システムでは、チャネル行列を QR分解して用い、 確力もしい複数の系列力も生成した擬似受信信号と実際に受信した受信信号とを用 いて送信系列の推定を行うことによって、適当な数の系列を用いることで、従来技術 を用いた場合と比較して非常に簡易な構成で信号の復調が可能となる。
発明の効果
[0059] 本発明は、以下に述べるような構成及び動作とすることで、非常に簡易な構成で信 号を復調することができると 、う効果が得られる。
図面の簡単な説明
[0060] [図 1]本発明の実施の形態による無線通信システムの構成を示すブロック図である。
[図 2]図 1の受信装置による復調処理を示すフローチャートである。
[図 3]本発明の第 1の実施例による受信装置の構成を示すブロック図である。
[図 4]本発明の第 2の実施例による受信装置の構成を示すブロック図である。
[図 5]図 4の送信系列推定装置の構成を示すブロック図である。
[図 6]図 5の第 3段目の尤度計算装置の構成を示すブロック図である。
[図 7]図 5の第 2段目の尤度計算装置の構成を示すブロック図である。 [図 8]図 5の第 1段目の尤度計算装置の構成を示すブロック図である。
圆 9]本発明の第 2の実施例による受信装置の復調処理を示すフローチャートである 圆 10]本発明の第 3の実施例による受信装置の構成を示すブロック図である。
[図 11]図 10の送信系列推定装置の構成を示すブロック図である。
圆 12]図 11の第 2段目の尤度計算装置の構成を示すブロック図である。
圆 13]図 11の第 1段目の尤度計算装置の構成を示すブロック図である。
圆 14]本発明の第 3の実施例による受信装置の復調処理を示すフローチャートであ る。
圆 15]本発明の第 4の実施例による受信装置の構成を示すブロック図である。
圆 16]本発明の第 4の実施例による受信装置の復調処理を示すフローチャートであ る。
圆 17]本発明の第 5の実施例による受信装置の構成を示すブロック図である。
[図 18]図 17の送信系列推定装置の構成を示すブロック図である。
圆 19]図 18の第 2段目の尤度計算装置の構成を示すブロック図である。
圆 20]図 18の第 1段目の尤度計算装置の構成を示すブロック図である。
圆 21]本発明の第 5の実施例による受信装置の復調処理を示すフローチャートであ る。
圆 22]本発明の第 6の実施例による受信装置の構成を示すブロック図である。
[図 23]図 22の送信系列推定装置の構成を示すブロック図である。
圆 24]図 23の第 2段目の尤度計算装置の構成を示すブロック図である。
圆 25]図 23の第 1段目の尤度計算装置の構成を示すブロック図である。
圆 26]本発明の第 9の実施例による信号選択装置の構成を示すブロック図である。 圆 27]送信信号への情報割り当て例を示す図である。
圆 28]本発明の第 10の実施例による信号選択装置の構成を示すブロック図である。
[図 29]本発明の第 11の実施例によるチャネル係数推定装置の構成を示すブロック 図である。
圆 30]図 29に示すチャネル係数推定装置を用いる場合の送信信号構成の一例を示 す図である。
圆 31]本発明の第 12の実施例による受信装置の構成を示すブロック図である。
[図 32]従来例による受信装置の構成を示すブロック図である。
圆 33]図 32の誤差計算装置の構成を示すブロック図である。
圆 34]本発明の第 13の実施例による信号選択装置の構成を示すブロック図である。 圆 35]本発明の第 14の実施例による受信装置の構成を示すブロック図である。
[図 36]図 35の送信系列推定装置の構成を示すブロック図である。
符号の説明
1, 3, 5, 7, 8, 100, 700, 1200 受信装置
2 送信装置
4, 6, 9, 15, 77, 110, 706, 1202 送信系列推定装置
10 ヌリング装置
11— 1一 11— N, 31-1—31-4, 51— 1—51—3, 71— 1—71—4, 81—1, 81—2, 1 01-1, 101-2, 701-1—701-4, 1201— 1—1201—4 受信アンテナ
12, 32, 52, 72, 82, 102, 500 チャネル係数推定装置
13, 33, 53, 75, 85, 106, 703 QR分解装置
14, 34, 54, 76, 86, 107, 705 QH演算装置
16, 35, 56, 79, 108, 707 記録媒体
21— 1— 21— M 送信アンテナ
41-1—41-16, 43-1— 43-16K1, 45— 1— 45— 16K2, 61— 1—61—8, 63—1 — 63-8K1, 91-1— 91-16K, 93— 1— 93— 16K1, 111— 1— 111— L2' , 113—1 一 113— Ll 'Kl, 1204-1—1204-16, 1206— 1— 1206— 16K1, 1208—1— 12 08-16K2 尤度計算装置
42, 44, 46, 62, 64, 92, 94, 112, 114, 200, 300, 1205, 1207 信号選択
55 送信シンボル候補選択装置
73, 83, 104 優先順位決定装置
74, 84, 105 チャネル係数並べ替え装置 78, 89, 120 復元装置
103 制御チャネル復号装置
201, 301, 901 アンテナ毎最小値選択装置
202, 203, 302, 303, 902 ビット判定装置
204, 205, 304, 305, 903 ビット毎最小値選択装置
206, 207, 308, 309, 909 ビット毎尤度計算装置
210, 211, 310, 311 ターボ復号器
306, 307, 904 誤差信号蓄積装置
411, 431, 451, 611, 631, 911, 931, 1111, 1131
装置
412, 432, 452, 612, 632, 912, 932, 1112, 1132
413, 433, 453, 613, 633, 913, 933, 1113, 1133 誤差計算装置
501- 1, 501-3, 505-1, 505—3 ノ ィロットシンボルレプリカ生成装置
502- 1, 502-3, 506-1, 506—3 相関検出装置
704-1-704-4 逆拡散装置
905— 908 関数演算装置
1203 復号装置
1209 ビット尤度出力機能を内蔵した信号選択装置
発明を実施するための最良の形態
[0062] 次に、本発明の実施の形態について図面を参照して説明する。図 1は本発明の実 施の形態による無線通信システムの構成を示すブロック図である。図 1において、本 発明の実施の形態による無線通信システムにおいては、受信装置 1と送信装置 2とが 無線通信にて接続可能となって 、る。
[0063] 受信装置 1は N本 (Nは 2以上の整数)の受信アンテナ 11 1一 11 Nを備え、ヌリ ング装置 10と、送信系列推定装置 15と、記録媒体 16とから構成されている。また、 送信装置 2は M本 (Mは 2以上の整数)の送信アンテナ 21— 1— 21— Mを備えている [0064] 図 2は図 1の受信装置 1による復調処理を示すフローチャートである。これら図 1及 び図 2を参照して本発明の実施の形態による受信装置 1による復調処理につ!、て説 明する。尚、図 2に示す処理は受信装置 1が記録媒体 16に格納されたプログラム (コ ンピュータで実行可能なプログラム)を実行することで実現される。
[0065] 受信装置 1は送信装置 2の送信アンテナ 21— 1一 21— Mからの送信信号を受信ァ ンテナ 11—1一 11 Nで受信すると(図 2ステップ S 1 )、ヌリング装置 10にて送受信ァ ンテナ間のチャネル係数を要素とするチャネル行列を用いて受信信号をヌリングする (図 2ステップ S 2)。
[0066] 受信装置 1はヌリング装置 10にてヌリングした受信信号に対して、送信系列推定装 置 15にて第 M番目の送信系列から第 1番目の送信系列へと降順に復調処理を行う ( 図 2ステップ S3)。受信装置 1は上記の処理を処理終了まで(図 2ステップ S4)、繰り 返し行う。
[0067] 続いて、ヌリング装置 10によるヌリング処理について説明する。受信装置 1で N本の 受信アンテナ 11 1一 1 1 N各々で送信装置 2からの信号を受信する時、各受信ァ ンテナ 11 1一 11 Nで受信される信号を要素とする受信信号ベクトル rは、
r= u:, · · · , r )
1 N
と表すことができる。但し、 rは 1番目の受信アンテナ 11—1で受信される受信信号を
1
、 rは N番目の受信アンテナ 11 Nで受信される受信信号をそれぞれ表している。
N
[0068] いま、送信アンテナ 21— jと受信アンテナ 11 iとの間のチャネル係数を hとし、チヤ ネル係数 hを要素に持つチャネル行列を Hとすると、受信信号ベクトル rは、
[0069] [数 1]
Figure imgf000019_0001
と記述することができる。ここで、 sは各送信アンテナ 21— 1一 21— Mから送信される信 号を要素に持つ送信信号ベクトルを、 nは各受信アンテナ 11 1一 11 Nで付加され るガウス雑音を要素に持つガウス雑音ベクトルをそれぞれ表して 、る。 ヌリング装置 10はヌリング行列 Aを用いてヌリング信号 zを生成する。これは、 z=Ar=AHs+An
と表すことができる。ここで、ヌリングとは受信信号の直交化を表し、 M個の直交軸とし s , s - S 十 S s 十 s • · · + sを選ぶと、ヌリング信号 zは、
M2
[0071] [数 2] ζι rn rn · · · rUi ' ηι
0 r22
Z =■ riU + 2
: 0 0
0 0 0 rUM と記述することができる。ヌリング行列 Aとしては、例えば、チャネル行列 Hの QR分解 [数 3]
Figure imgf000020_0001
を行うことによって求められる Q行列の複素転置行列を用いることができる。この場合 のヌリング処理は、
z— Q y
= QH (Hs+n)
= QH (QRs+n)
= QHQRs + QHn
=Rs+n'
と記述できる。ここで、一般的に、 Q行列は QHQ=I (Iは単位行列)を満たす。
[0073] 送信系列推定装置 15は sから sへと降順にシンボル候補を準備して送信信号べク
1
トル s , s , · · · , s を推定して出力する。これによつて、 M本の送信アンテナ 21— 1—
1 2
21— Mを有する送信装置 2から同時に送信された M個の信号を復調することができ る。よって、本発明の実施の形態では、適当な数の系列を用いることで、従来技術を 用いた場合と比較して非常に簡易な構成で信号の復調が可能となる。 実施例 1
[0074] 図 3は本発明の第 1の実施例による受信装置の構成を示すブロック図である。まず 、本発明の第 1の実施例による無線通信システムは上記の図 1に示す本発明の実施 の形態による無線通信システムと同様の構成となっている。図 3において、本発明の 第 1の実施例による受信装置 1は M本 (Mは 2以上の整数)の送信アンテナ 21— 1一 2 1 Mカゝら送信された信号を N本 (Nは 2以上の整数)の受信アンテナ 11—1一 11 N で受信している。
[0075] 受信装置 1は N本の受信アンテナ 11—1一 11 Nと、チャネル係数推定装置 12と、 QR分解装置 13と、 QH演算装置 14と、送信系列推定装置 15と、受信装置 1の各部 の処理を実現するためのプログラム (コンピュータで実行可能なプログラム)を格納す る記録媒体 16とから構成されている。ここで、チャネル係数推定装置 12と、 QR分解 装置 13と、 QH演算装置 14とが上記のヌリング装置 10に相当する。つまり、本実施例 ではヌリング処理として QR分解処理を行って 、る。
[0076] 受信アンテナ 11 1は信号を受信し、チャネル係数推定装置 12は受信信号を入力 としてチャネル係数の推定を行 ヽ、 QR分解装置 13はチャネル係数カゝらなる行列を 入力としてチャネル行列の QR分解を行って Q行列及び R行列を出力する。
[0077] QH演算装置 14は Q行列と受信信号とを入力として受信信号に Q行列の複素共役 転置行列を乗算して得られた変換系列を出力し、送信系列推定装置 15は変換系列 と R行列とを入力として送信系列の推定を行って出力する。
[0078] 送信系列推定装置 15は、受信機全体の構成に応じて、送信信号系列に対する尤 度、あるいは送信信号系列によって送信されたビットに対する尤度を出力することが 可能となっている。尚、各受信アンテナ 11 1一 11 Nで受信される信号を要素とす る受信信号ベクトル rは、上述した通りである。
[0079] QR分解装置 13から出力される Q行列は N行 M列のュ-タリー行列であり、 QHQ = Iを満たす。ここで、 Hは共役複素転置を表し、 Iは単位行列を表す。また、 R行列は M 行 M列の上三角行列となる。
[0080] QH演算装置 14における演算は、
[0081] [数 4] ,
η2'
Figure imgf000022_0001
と記述することができる。
[0082] 送信系列推定装置 15は変換信号べ外ル zと R行列とを入力として送信系列の推 定を行い、最も尤度の大きい送信信号系列 s' , · · · , s' を出力する。これによつて、
1
M本の送信アンテナ 21— 1— 21— Mを有する送信装置 2から同時に送信された M個 の信号を復調することができる。
[0083] このように、本実施例では、チャネル行列を QR分解して用い、確力もし 、複数の系 列から生成した擬似受信信号と実際に受信した受信信号とを用いて送信系列の推 定を行うことによって、適当な数の系列を用いることで、従来技術を用いた場合と比 較して非常に簡易な構成で信号の復調を行うことができる。
実施例 2
[0084] 図 4は本発明の第 2の実施例による受信装置の構成を示すブロック図であり、図 5 は図 4の送信系列推定装置の構成を示すブロック図であり、図 6は図 5の第 3段目の 尤度計算装置の構成を示すブロック図であり、図 7は図 5の第 2段目の尤度計算装置 の構成を示すブロック図であり、図 8は図 5の第 1段目の尤度計算装置の構成を示す ブロック図である。本発明の第 2の実施例による無線通信システムの構成は受信装置 1の代わりに受信装置 3を配置した以外は、上記の図 1に示す本発明の実施の形態 による無線通信システムと同様の構成となって 、る。
[0085] 図 4において、本発明の第 2の実施例による受信装置 3は、 3本の送信アンテナ 21 —1一 21— 3を持つ送信装置 2から送信された信号を 4本の受信アンテナ 31— 1一 31 4で受信している。この場合、各送信アンテナ 21— 1— 21— 3からは 16値の信号 c
1 一 C のいずれかが送信されているものとする。
16
[0086] 受信装置 3は 4本の受信アンテナ 31— 1— 31-4と、チャネル係数推定装置 32と、 QR分解装置 33と、 QH演算装置 34と、送信系列推定装置 4と、受信装置 3の各部の 処理を実現するためのプログラム (コンピュータで実行可能なプログラム)を格納する 記録媒体 35とから構成されている。
[0087] 各受信アンテナ 31 - 1一 31 - 4はそれぞれ信号を受信し、チャネル係数推定装置 3 2は受信信号 r一 rを入力として、チャネル係数を推定し、推定されたチャネル係数
1 4
力もなるチャネル行列 Hを出力する。 QR分解装置 33はチャネル行列 Hを入力として 、チャネル行列 Hの QR分解を行い、 Q行列及び R行列を出力する。
[0088] QH演算装置 34は Q行列と受信信号!:一 rとを入力として、受信信号 r 列
1 4 1一 rに Q行
4 の共役複素転置行列を乗算し、変換信号 zを出力する。送信系列推定装置 4は変換 信号 zと R行列とを入力として各送信アンテナ 21-1— 21-3から送信された信号を推 定して出力する。
[0089] 送信系列推定装置 4は、図 5に示すように、各々尤度計算装置 41 1一 41 16, 4 3—1— 43—16K1 , 45—1— 45— 16K2からなる 3段の尤度計算装置群と、 3段の信 号選択装置 42, 44, 46とから構成され、第 3段、第 2段、第 1段の順に信号処理を行 う。本実施例では、送信アンテナ 21-1— 21-3から送られる信号が 16値である場合 、第 3段の尤度計算装置群は 16個の尤度計算装置 41 - 1一 41 - 16で構成され、各 尤度計算装置 41 1一 41 16は変換信号 z及び R行列の成分!: を入力として誤差
3 33
信号 e — e からなる誤差信号群及び送信シンボル候補 s — s からなる送信
3-1 3-16 3-1-3 3-16-3 シンボル候補群を出力する。
[0090] 第 3段の第 1番の尤度計算装置 41 - 1は、図 6に示すように、送信シンボル候補生 成装置 41 1と、変換信号レプリカ生成装置 412と、誤差計算装置 413とから構成され ている。尚、他の尤度計算装置 41 - 2— 41 - 16も上記の尤度計算装置 41 - 1と同様 の構成となっている。
[0091] この尤度計算装置 41 1において、送信シンボル候補生成装置 411は信号 c
1一 c 16 のいずれかのシンボル力もなる送信シンボル候補 S を生成して出力する。変換信
3-1-3
号レプリカ生成装置 412は R行列の成分 r と送信シンボル候補 s とを入力として
33 3-1-3
変換信号レプリカ z を生成して出力する。
3-1
[0092] 誤差計算装置 411は変換信号 Zと変換信号レプリカ z とを入力として二つの信号
3 3-1
の誤差を計算し、誤差信号 e を出力する。この時、変換信号レプリカ z は、
3-1 3-1 z =r s
3-1 33 3-1-3 という式にて計算され、誤差信号 e は、
3-1
e =
3-1 I z— z
3 3-1 I
という式にて計算される。
[0093] 第 1番の尤度計算装置 41 1は誤差信号 e 及び送信シンボル候補 s を出力す
3-1 3-1-3 る。同様に、第 2番の尤度計算装置 41 - 2は誤差信号 e 及び送信シンボル候補 s
3-2
を、第 16番の尤度計算装置 41 - 16は誤差信号 e 及び送信シンボル候補 s
3-2-3 3-16 3-16-3 をそれぞれ出力する。
[0094] 第 3段の信号選択装置 42は第 3段の 16個の尤度計算装置群 41 - 1一 41 - 16で計 算された誤差信号群及び送信シンボル候補群を入力として最も誤差の小さい K1個 の誤差信号 e' ' ' — e' ' ' と、当該誤差を与える K1個の送信シンボル候補 s'
1 K1 ,, 1-3一 s ' ', とを出力する。出力される K1個の送信シンボル候補は信号 c一 c のいずれ
Kl-3 1 16 かとなる。
[0095] 第 2段の尤度計算装置群は 16K1個の尤度計算装置 43— 1一 43— 16K1で構成さ れ、第 1一第 16番の尤度計算装置 43— 1一 43— 16は変換信号 zと、 R行列の成分!:
2 22
、 r と、誤差信号 e',,及び送信シンボル候補 s',, とを入力とする。第 17番ー第 3
23 1 1-3
2番の尤度計算装置 43— 17— 43— 32は変換信号 Zと、 R行列の成分!: 、r と、誤差
2 22 23 信号 e ',,及び送信シンボル候補 s',, とを入力とする。第 16 (K1— 1) + 1
2 2-3 —第 16
K1番の尤度計算装置 43— 16 (Κ1— 1) + 1— 43— 16K1は変換信号 ζと、 R行列の
2
成分 r、r と、誤差信号 e' " 及び送信シンボル候補 s ' ' ' とを入力とする。
22 23 Kl K1-3
[0096] 第 2段の第 1番の尤度計算装置 43— 1は、図 7に示すように、送信シンボル候補生 成装置 431と、変換信号レプリカ生成装置 432と、誤差計算装置 433とから構成され ている。尚、他の尤度計算装置 43— 2— 43— 16K1も上記の尤度計算装置 43— 1と 同様の構成となっている。
[0097] 第 1番の尤度計算装置 43— 1において、送信シンボル候補生成装置 431は送信シ ンボル候補 S ' ' 'を入力として信号 C一 C のいずれかのシンボルからなる送信シンポ
1 1 16
ル候補 s 、 s を出力する。変換信号レプリカ生成装置 432は R行列の成分 r、 r
2-1-3 2-1-2 22 と送信シンボル候補 s 、s を入力として変換信号レプリカ z を出力する。
23 2-1-3 2-1-2 2-1
[0098] 誤差計算装置 433は変換信号 zと、変換信号レプリカ z と、誤差信号 e ' ' 'とを入 力として誤差信号 e を出力する。この時、変換信号レプリカ z は、
z =r s 十 r s
2-1 22 2-1-2 23 2-1-3
という式で計算され、誤差信号 e は、
2-1
z— Z e
2-1 2 2-1
という式で計算される c
[0099] 第 1番の尤度計算装置 43 - 1は誤差信号 e 及び送信シンボル候補 s 、s を
2-1 2-1-3 2-1-2 出力する。同様に、第 2番の尤度計算装置 43 - 2は誤差信号 e 及び送信シンボル
2-2
候補 s 、 s を出力する。
2-2-3 2-2-2
[0100] 第 17番の尤度計算装置 43- 17にお 、て、送信シンボル候補生成装置 431は送 信シンボル候補 s,,, を入力として信号 c
1一 c の!、ずれかのシンボルからなる送信
2-3 16
シンボル候補 s 、 s を出力する。変換信号レプリカ生成装置 432は R行列の成
2-17-3 2-17-2
分 、 r と送信シンボル候補 s 、 s とを入力として変換信号レプリカ z を出力
22 23 2-17-3 2-17-2 2-17 する。
[0101] 誤差計算装置 433は変換信号 Zと、変換信号レプリカ z と、誤差信号 e' ' 'とを入
2 2-17 2 力として誤差信号 e を出力する。この時、変換信号レプリカ Z は、
2-17 2-17
z =r s +r s
2-17 22 2-17-2 23 2-17-3
という式で計算され、誤差信号 e
2-17
e = — z
2-17 I z
2 2-17 I +e
という式で計算される。
[0102] 第 16K1番の尤度計算装置 43 - 16K1は誤差信号 e 及び送信シンボル候補 s
2-16K1
、 s を出力する。第 2段の信号選択装置 44は第 2段の 16K1個の尤度計
2-16K1-3 2-16K1-2
算装置 43— 1一 43— 16K1で計算された誤差信号及び送信シンボル候補を入力とし て最も誤差の小さい K2個の誤差信号 e' ' -e" と、当該誤差を与える K2個の送
1 Κ2
信シンボル候補セット(s,, 、s,, )一(s,, 、s,, )とを出力する。
1-3 1-2 K2-3 K2-2
[0103] 第 1段の尤度計算装置群は 16K2個の尤度計算装置 45— 1一 45— 16K2で構成さ れ、第 1一第 16番の尤度計算装置 45— 1一 45— 16は変換信号 zと、 R行列の成分!:
1 11
、 r 、 r と、誤差信号 e,,及び送信シンボル候補セット(s,, 、 s,, )を入力とする。
12 13 1 1-3 1-2
[0104] 第 17—第 32番の尤度計算装置 45— 17— 45-32は変換信号 Zと、 R行列の成分!: と、誤差信号 e,,と、送信シンボル候補セット (s,, 、s,, )とを入力とする
[0105] 第 16 (K2-1) + 1—第 16K2番の尤度計算装置 45 - 16 (K2 - 1) + 1一 45 - 16K2 は変換信号 zと、 R行列の成分!: 、r ボル候補セ
1 11 12、r と、誤差信号 e', と、送信シン
13 K2
ット(s" 、s " )とを入力とする。
K2-3 K2-2
[0106] 第 1段の第 1番の尤度計算装置 45 - 1は、図 8に示すように、送信シンボル候補生 成装置 451と、変換信号レプリカ生成装置 452と、誤差計算装置 453とから構成され ている。尚、他の尤度計算装置 45— 2— 45— 16K1も上記の尤度計算装置 45— 1と 同様の構成となっている。
[0107] 第 1番の尤度計算装置 45— 1において、送信シンボル候補生成装置 451は送信シ ンボル候補セット(s,, 1-3、s,, )を入力として 16値の信号 c
1-2 1一 c のいずれかからな
16
る送信シンボル候補 s
1-1-3、s
1-1-2、s を出力する。変換信号レプリカ生成装置 452 1-1-1
は R行列の成分 r
11、r
12、r と、送信シンボル候補 s
13 1-1-3、s
1-1-2、s とを入力として変 1-1-1
換信号レプリカ Z を出力する。
1-1
[0108] 誤差計算装置 453は変換信号 Zと、変換信号レプリカ z と、誤差信号 e ' 'とを入
1 1-1 1 力として誤差信号 e を出力する。この時、変換信号レプリカ z は、
1-1 1-1
z =r s +r s +r s
1-1 11 1-1-1 12 1-1-2 13 1—1—3
という式力 計算され、誤差信号 e は、
1-1
e =
1-1 I z— z
1 1-1 I +e
1
という式力 計算される。
[0109] 第 1番の尤度計算装置 45 - 1は誤差信号 e 及び送信シンボル候補 s
1-1 1-1-3、s
1-1-2、s を出力する。同様に、第 2番の尤度計算装置 45— 2は誤差信号 e 及び送信シン
1-1-1 1-2
ボル候補 s 、s
1-2-3、s を出力する。第 16K2番の尤度計算装置 45— 16K2は誤 1-2-2 1-2-1
差信号 e と、送信シンボル候補 s 、s 、s とを出力する。
1-16K2 1-16K2-3 1-16K2-2 1-16K2-1
[0110] 最終段 (第 16K2段)の信号選択装置 46は第 1段の 16K2個の尤度計算装置 45 - 1一 45— 16K2で計算された誤差信号と送信シンボル候補とを入力として最も小さい 誤差信号 e 'を与える送信シンボル候補 s'
1 1、 s'
2、 s'を出力する。
3
[0111] このように、本実施例では、各段の信号選択装置に入力される送信シンボル候補 が第 3段の尤度計算装置群 41 - 1一 41 - 16の 16個、第 2段の尤度計算装置群 43 - 1一 43— 16K1の 16K1個、第 1段の尤度計算装置群 45— 1一 45— 16K2の 16K2個 であり、合計で 16 (1 +K1 +K2)個となる。
[0112] したがって、本実施例では、例えば、 K1を「16」とし、 Κ2を「32」とすることで、送信 シンボル候補の総数は「784」となる。よって、本実施例では、従来技術を用いた場 合に、送信シンボル候補が「4096」であることと比較してその演算処理数を大きく削 減することができる。
[0113] 図 9は本発明の第 2の実施例による受信装置 3の復調処理を示すフローチャートで ある。これら図 4一図 9を参照して本発明の第 2の実施例による受信装置 3の復調処 理について説明する。尚、図 9に示す処理は受信装置 3の演算装置 (CPU :中央処 理装置)が記録媒体 35のプログラムを実行することで実現される。また、上記の説明 では送信装置 2が 3本の送信アンテナ 21— 1— 21— 3を持つ場合について述べた力 以下の動作では送信装置 2が M本の送信アンテナを持つ場合について述べる。
[0114] 受信装置 3では QR分解装置 33にてチャネル行列 Hを QR分解し、それを基に QH 演算装置 34にて変換信号 zを算出する(図 9ステップ Sl l)。送信系列推定装置 4は パラメータ mを Mに、 K を 1に設定し(図 9ステップ S12)、送信信号 s に対するシン
+1 m
ボル候補を Qm個生成し(図 9ステップ SI 3)、パラメータ qを 1に設定する(図 9ステツ プ S14)。
[0115] 送信系列推定装置 4は送信信号 s — s に対する k番目のシンボル候補と、送信信 m+1
号 s に対する q番目のシンボル候補とを用いて変換信号 zに対する(kQm + q)番目 m m
のレプリカ z を計算する(図 9ステップ S15)。さらに、送信系列推定装置 4は変 m-kQm+q
換信号 Zとレプリカ Z との誤差を計算し、 S
m m— kQm+q m+1一 S の k番目のシンボル候補に対 する誤差 eを加算する(図 9ステップ SI 6)。
k
[0116] 送信系列推定装置 4は「q+ + =Qm」でなく(図 9ステップ S 17)、「k+ + = K 」で m+1 なく(図 9ステップ S18)、「m— = 1」でない場合(図 9ステップ SI 9)、送信信号 s — s に対するシンボル候補 Km個と、当該誤差を選択して保存する(図 9ステップ S 20)。 また、送信系列推定装置 4は「m— = 1」である場合 (図 9ステップ S19)、最小誤差を 与える送信信号 s— s を出力する(図 9ステップ S21)。 実施例 3
[0117] 図 10は本発明の第 3の実施例による受信装置の構成を示すブロック図であり、図 1 1は図 10の送信系列推定装置の構成を示すブロック図であり、図 12は図 11の第 2段 目の尤度計算装置の構成を示すブロック図であり、図 13は図 11の第 1段目の尤度 計算装置の構成を示すブロック図である。本発明の第 3の実施例による無線通信シ ステムの構成は受信装置 1の代わりに受信装置 5を配置した以外は、上記の図 1に示 す本発明の実施の形態による無線通信システムと同様の構成となっている。
[0118] 図 10において、本発明の第 3の実施例による受信装置 5は、 2本の送信アンテナ 2 1—1, 21— 2を持つ送信装置 2から送信された信号を 3本の受信アンテナ 51— 1— 51 —3で受信している。この場合、各送信アンテナ 51— 1— 51— 3からは 16値の信号 c
1 一 C のいずれかが送信されているものとする。
16
[0119] 受信装置 5は 3本の受信アンテナ 51— 1— 51— 3と、チャネル係数推定装置 52と、 QR分解装置 53と、 QH演算装置 54と、送信シンボル候補選択装置 55と、送信系列 推定装置 6と、受信装置 5の各部の処理を実現するためのプログラム (コンピュータで 実行可能なプログラム)を格納する記録媒体 56とから構成されて 、る。
[0120] 各受信アンテナ 51— 1一 51— 3はそれぞれ信号を受信する。チャネル係数推定装 置 52は受信信号 r一 rを入力としてチャネル係数を推定し、推定されたチャネル係
1 3
数力もなるチャネル行列 Hを出力する。 QR分解装置 53はチャネル行列 Hを入力とし て QR分解を行 ヽ、 Q行列及び R行列を出力する。
[0121] QH演算装置 54は Q行列と受信信号!:
1一 rとを入力として受信信号 r
3 1一 rに Q行列
3 の共役複素転置行列を乗算し、変換信号 zを出力する。送信シンボル候補選択装置 55は受信信号 r一 rを入力として変換信号 zに対する送信シンボル候補を選択する
1 3
。本実施例では、例えば MMSE (Minimum Mean Square Error)フィルタを用いて送 信シンボル候補として 8つの信号を選択するものとする。
[0122] 送信シンボル候補選択装置 55では受信信号!:
1一 rを基に第 1の送信アンテナ 21— 3
1から送信された信号に対する MMSE基準のウェイトベクトルを用意し、受信信号 r
1 一 r
3に乗積することで、仮の復調信号 y
1を得る。この仮の復調信号 y
1は、
[0123] [数 5]
Figure imgf000029_0001
と表される。ここで、 wは MMSE基準で生成された重みベクトルである。
[0124] 次に、得られた仮の復調信号 yと、 16値の信号 c一 c との自乗ユークリッド距離を
1 1 16
計算すると、
信号 cとの自乗ユークリッド距離 = I c -y I 2
となる。ここでは、得られた自乗ユークリッド距離をそれぞれ q — q とする。
1-1 1-16
[0125] 送信シンボル候補選択装置 55は計算された 16個の自乗ユークリッド距離 q — q
1-1 の中で、最も小さい 8つの自乗ユークリッド距離を選択し、当該誤差を与える 8つの
1-16
シンボルを第 1の送信アンテナ 21— 1に対するシンボル候補として選択する。送信シ ンボル候補選択装置 55は、上記と同様にして、第 2の送信アンテナ 21— 2から送信さ れた信号に対するシンボル候補を 8つ選択する。
[0126] 送信シンボル候補選択装置 55は上記の手順で得られたシンボル候補を X —X
1-1 1-8
、x X として出力する。ここで、シンボル候補 X は i番目の送信アンテナ 21— iか
2-1 2-8 i-m
ら送信された信号に対する m番目の送信シンボル候補を表し、 16値の信号 c
1一 c 16 のいずれかである。
[0127] 送信系列推定装置 6は変換信号 zと、 R行列と、送信シンボル候補選択装置 55で 選択されたシンボル候補とを入力として各送信アンテナ 21— 1 , 21— 2から送信された 信号を推定して出力する。
[0128] 送信系列推定装置 6は、図 1 1に示すように、各々尤度計算装置 61— 1一 61— 8, 6 3—1— 63— 8K1からなる 2段の尤度計算装置群と 2段の信号選択装置 62, 64と力 構成され、第 2段の尤度計算装置群、第 2段の信号選択装置 62、第 1段の尤度計算 装置群、第 1段の信号選択装置 64の順に信号処理を行う。本実施例では、送信シン ボル候補選択装置 55で各送信アンテナ 21— 1 , 21— 2に対するシンボル候補として 8 個のシンボルを選択した場合、第 2段の尤度計算装置群は 8個の尤度計算装置 61 - 1一 61—8で構成されている。
[0129] 第 1番の尤度計算装置 61 - 1は変換信号 zと、 R行列の成分!: と、シンボル候補 x とを入力とし、第 2番の尤度計算装置 61— 2は変換信号 zと、 R行列の成分!: と、シ
2-1 2 22 ンボル候補 X とを入力とし、第 8番の尤度計算装置 61— 8は変換信号 zと、 R行列の
2-2 2
成分 r と、シンボル候補 X とを入力とする。
22 2-8
[0130] 第 2段の第 1番の尤度計算装置 61 - 1は、図 12に示すように、送信シンボル候補生 成装置 611と、変換信号レプリカ生成装置 612と、誤差計算装置 613とから構成され ている。尚、他の尤度計算装置 61 - 2— 61 - 8も上記の尤度計算装置 61 - 1と同様の 構成となっている。
[0131] この尤度計算装置 61-1にお 、て、送信シンボル候補生成装置 611はシンボル候 補 X を入力として送信シンボル候補 s を出力し、変換信号レプリカ生成装置 612
2-1 2-1-2
は受信信号ベクトル r と送信シンボル候補 s とを入力として変換信号レプリカ z
22 2-1-2 2-1 を出力し、誤差計算装置 613は変換信号 zと、変換信号レプリカ z とを入力として誤
2 2-1
差信号 e
2-1を出力する。
[0132] この時、変換信号レプリカ z は、
2-1
z =r s
2-1 22 2-1-2
という式で計算され、誤差信号 e
2-1
z— Z
22--11 22 22-1 I 2
という式で計算される c
[0133] 第 1番の尤度計算装置 61 - 1は誤差信号 e 及び送信シンボル候補 s を出力す
2-1 2-1-2 る。同様に、第 2番の尤度計算装置 61 - 2は誤差信号 e 及び送信シンボル候補 s
2-2
を、第 8番の尤度計算装置 61 - 8は誤差信号 e 及び送信シンボル候補 s をそ
2-2-2 2-8 2-8-2 れぞれ出力する。
[0134] 第 2段の信号選択装置 62は第 2段の 8個の尤度計算装置 61 - 1一 61 - 8で計算さ れた誤差信号及び送信シンボル候補を入力として最も誤差の小さい K1個の誤差信 号 e ',一 e', と、当該誤差を与える Kl個の送信シンボル候補 s ', 一 s', とを出
1 K1 1-2 K1-2 力する。
[0135] 第 1段の尤度計算装置群は 8K1個の尤度計算装置 63-1— 63-8K1で構成され 、第 1番ー第 8番の尤度計算装置 63-1— 63-8は変換信号 zと、 R行列の成分!: 、 r
1 11 と、誤差信号 e',と、送信シンボル候補 s ', とを入力とする。また、第 1番の尤度計 算装置 63-1はシンボル候補 x を、第 2番の尤度計算装置 63— 2はシンボル候補 X
1-1
を、第 8番の尤度計算装置 63— 8はシンボル候補 X をそれぞれ入力とする。
1-2 1-8
[0136] 第 9一第 16番の尤度計算装置 63— 9— 63— 16は変換信号 Zと、 R行列の成分!: 、
1 11 r と、誤差信号 e',と、送信シンボル候補 s ', とを入力とし、さらに、第 9番の尤度
12 1 2-2
計算装置 63-9はシンボル候補 X を、第 10番の尤度計算装置 63-10はシンボル
1-1
候補 X を、第 16番の尤度計算装置 63— 16はシンボル候補 X をそれぞれ入力とす
1-2 1-8
る。
[0137] 第 8 (K1-1) + 1一第 8K1番の尤度計算装置 63— 8 (K1— 1) + 1一 63— 8K1は変 換信号 zと、 R行列の成分 r、r と、誤差信号 e ',と、送信シンボル候補 s', とを 入力とし、さらに、第 8 (K1— 1) + 1番の尤度計算装置 63-8 (Κ1— 1) + 1はシンボル 候補 X を、第 8 (K1-1) + 2番の尤度計算装置 63— 8 (Kl— 1) + 2はシンボル候補 χ
1-1
を、第 8K1番の尤度計算装置 63— 8K1はシンボル候補 X をそれぞれ入力とする
1-2
[0138] 第 1番の尤度計算装置 63 - 1は、図 13に示すように、送信シンボル候補生成装置 6 31と、変換信号レプリカ生成装置 632と、誤差計算装置 633とから構成されている。 尚、他の尤度計算装置 63- 2— 63-8K1も上記の尤度計算装置 63- 1と同様の構 成となっている。
[0139] この尤度計算装置 63— 1において、送信シンボル候補生成装置 631は送信シンポ ル候補 s ', とシンボル候補 X とを入力として 16値の信号 c のいずれかからな
1-1 1-1 1一 c
16
る送信シンボル候補 s 、 s を出力し、変換信号レプリカ生成装置 632は R行列
1-1-2 1-1-1
の成分 r、r と、送信シンボル候補 s 、s とを入力として変換信号レプリカ z を
11 12 1-1-2 1-1-1 1-1 出力し、誤差計算装置 633は変換信号 Zと、変換信号レプリカ z と、誤差信号 e' '
1 1-1 1 とを入力として誤差信号 e を出力する。
1-1
[0140] この時、変換信号レプリカ z は、
1-1
z =r s +r s
1-1 11 1-1-1 12 1-1-2
という式で計算され、誤差信号 e
e = I z— z e
1-1 1 1-1
という式で計算される。 [0141] 第 1番の尤度計算装置 63 - 1は誤差信号 e 及び送信シンボル候補 s
1-1 1-1-2、s を
1-1-1 出力する。同様に、第 2番の尤度計算装置 63 - 2は誤差信号 e 及び送信シンボル
1-2
候補 s 、s を、第 8K1番の尤度計算装置 63 - 8K1は誤差信号 e と、送信シ
1-2-2 1-2-1 1-8K1 ンボル候補 s と、 s とを出力する。第 1段の信号選択装置 64は第 1段の 8K1
1-8K1-2 1-8K1-1
個の尤度計算装置 63— 1一 63— 8K1で計算された誤差信号及び送信シンボル候補 を入力として最も小さい誤差を与える送信シンボル候補 s '
1、s 'を出力する。
2
[0142] このように、本実施例では、各段の信号選択装置に入力される送信シンボル候補 力 第 2段の尤度計算装置 61— 1一 61— 8から 8個、第 1段の尤度計算装置 63— 1一 6 3— 8K1から 8K1個であり、合計で 8 (1 +K1)個となる。
[0143] したがって、本実施例では、例えば K1を「8」に設定することで、送信シンボル候補 の総数は「72」となる。従来の技術を用いた場合には、送信シンボル候補が 256個必 要となることと比較し、演算処理数を大きく削減することができる。
[0144] また、本実施例では、各送信アンテナ 21— 1, 21— 2から送信されるシンボルに対し て 8つを候補として選択している力 これは一つの例であり、必ずしもアンテナ間で同 数である必要はない。さらに、送信シンボル候補選択方法が各送信アンテナ 21— 1, 21— 2に対して必ずしも同一である必要はない。
[0145] 図 14は本発明の第 3の実施例による受信装置 5の復調処理を示すフローチャート である。これら図 10—図 14を参照して本発明の第 3の実施例による受信装置 5の復 調処理について説明する。尚、図 14に示す処理は受信装置 5の演算装置 (CPU :中 央処理装置)が記録媒体 56のプログラムを実行することで実現される。また、上記の 説明では送信装置 2が 2本の送信アンテナ 21— 1, 21— 2を持つ場合について述べ た力 以下の動作では送信装置 2が M本の送信アンテナを持つ場合にっ 、て述べ る。
[0146] 受信装置 5では QR分解装置 53にてチャネル行列 Hを QR分解し、それを基に QH 演算装置 54にて変換信号 zを算出する(図 14ステップ S31)。送信系列推定装置 6 は送信信号 s に対するシンボル候補を X個生成し(図 14ステップ S32)、パラメータ m m
mを Mに、 K を 1に設定し(図 14ステップ S33)、パラメータ qを 1に設定する(図 14
+1
ステップ S34)。 [0147] 送信系列推定装置 6は送信信号 s — s に対する k番目のシンボル候補と、送信信 m+1
号 s に対する q番目のシンボル候補とを用いてレプリカ z に対する(kQm + q)番目 m m
のレプリカ z を計算する(図 14ステップ S35)。さらに、送信系列推定装置 6はレ m-kQm+q
プリカ z とレプリカ z との誤差を計算し、当該送信信号 s — s に対する誤差 z m m-kQm+q m+1 m+1 一 zを加算する(図 14ステップ S 36)。
[0148] 送信系列推定装置 6は「q+ + =Qm」でなく(図 14ステップ S37)、「k+ + =K 」 m+1 でな 図 14ステップ S38)、「m— = 1」でない場合(図 14ステップ S39)、送信信号 s一 s に対するシンボル候補 K個と、当該誤差を選択して保存する(図 14ステップ m m
S40)。送信系列推定装置 6は「m— = 1」である場合(図 14ステップ S39)、最小誤 差を与える送信信号 s— sを出力する(図 14ステップ S41)。
1
実施例 4
[0149] 図 15は本発明の第 4の実施例による受信装置の構成を示すブロック図である。本 発明の第 4の実施例による無線通信システムの構成は受信装置 1の代わりに受信装 置 7を配置した以外は、上記の図 1に示す本発明の実施の形態による無線通信シス テムと同様の構成となって ヽる。
[0150] 図 15において、本発明の第 4の実施例による受信装置 7は 3本の送信アンテナ 21 —1一 21— 3を持つ送信装置 2から送信された信号を 4本の受信アンテナ 71— 1一 71 4で受信している。また、各送信アンテナ 21— 1— 21— 3からは 16値の信号 c
1一 c 16 が送信されているものとする。
[0151] 受信装置 7は 4本の受信アンテナ 71— 1— 71— 4と、チャネル係数推定装置 72と、 優先順位決定装置 73と、チャネル係数並べ替え装置 74と、 QR分解装置 75と、 QH 演算装置 76と、送信系列推定装置 77と、復元装置 78と、受信装置 5の各部の処理 を実現するためのプログラム (コンピュータで実行可能なプログラム)を格納する記録 媒体 79とから構成されて 、る。
[0152] 各受信アンテナ 71-1— 71-4はそれぞれ信号を受信する。チャネル係数推定装 置 72は受信信号 r一 rを入力としてチャネル係数を推定し、推定されたチャネル係
1 4
数力もなるチャネル行列 Hを出力する。優先順位決定装置 73は受信信号 r
1一 rを 4 入力として送信アンテナ 21— 1一 21— 3間の優先順位を決定し、決定された優先順位 を表す信号 X
ρπを出力する。
[0153] 優先順位決定装置 73ではチャネル行列 Ηの 3つの列ベクトルのノルムを計算して 各送信系列に対する電力とし、電力の大きい送信系列に高い優先順位を与える。チ ャネル係数並び替え装置 74はチャネル行列 Ηと信号 X とを入力としてチャネル行
ρπ
列 Ηの列ベクトルを並び替え、変形チャネル行列 H'を出力する。
[0154] この時、チャネル係数並び替え装置 74は優先順位の低い列から順に並べる。例え ば、チャネル行列 Ηが、
[0155] [数 6]
Figure imgf000034_0001
であり、優先順位が送信系列 2, 1, 3の順で高い場合には、変形チャネル行列 H'は
[0156] [数 7]
Λη "12
^23 Λ21 "22
Α33 Λ31 Λ32
となる。
[0157] QR分解装置 75、 QH演算装置 76、送信系列推定装置 77は、上述した本発明の第 2の実施例と同一の手順によって、それぞれ QR分解、 QH演算及び送信系列の推定 を行 、、送信系列推定装置 77は最小の誤差を与える送信シンボル系列を出力する
[0158] 復元装置 78はチャネル係数推定装置 72からのチャネル行列 Hと、送信系列推定 装置 77からの送信シンボル系列とを入力として送信シンボル系列を並び替える。こ れは変形チャネル行列 H'に対して推定された送信系列をチャネル行列 Hに対して 推定された送信系列となるようにするためである。 [0159] 送信系列推定装置 77では変形チャネル行列 H'を用いて送信系列の推定を行うこ とによって、優先順位の高い系列力も順に処理を行うことができ、系列推定精度の向 上を図ることが期待される。
[0160] 本実施例では、優先順位を各送信系列の受信電力に基づ!/、て決定して 、るが、受 信電力対雑音電力比、あるいは受信電力対雑音電力、及び干渉電力比を測定して 優先順位を決定することも可能である。
[0161] 図 16は本発明の第 4の実施例による受信装置 7の復調処理を示すフローチャート である。これら図 15及び図 16を参照して本発明の第 4の実施例による受信装置 7の 復調処理について説明する。尚、図 16に示す処理は受信装置 7の演算装置 (CPU : 中央処理装置)が記録媒体 79のプログラムを実行することで実現される。また、上記 の説明では送信装置 2が 3本の送信アンテナ 21— 1— 21— 3を持っている場合につい て述べたが、以下の動作では送信装置 2が M本の送信アンテナを持つ場合にっ ヽ て述べる。
[0162] 受信装置 7ではチャネル係数並び替え装置 74にてチャネル行列 Hの並べ替えを 行い(図 16ステップ S51)、その後に QR分解装置 75にてチャネル行列 Hを QR分解 し、それを基に QH演算装置 76にて変換信号 zを算出する(図 16ステップ S52)。送信 系列推定装置 77はパラメータ mを Mに、 K を 1に設定し(図 16ステップ S53)、送
+1
信信号 s に対するシンボル候補を Q 個生成し(図 16ステップ S54)、パラメータ qを 1 m m
に設定する(図 16ステップ S55)。
[0163] 送信系列推定装置 77は送信信号 s — s に対する k番目のシンボル候補と、送信 m+1
信号 s に対する q番目のシンボル候補とを用いてレプリカ z に対する (kQm + q)番 m m
目のレプリカ z を計算する(図 16ステップ S56)。さらに、送信系列推定装置 77 m-KQm+q
はレプリカ z とレプリカ z との誤差を計算し、当該送信信号 s — s に対する誤 m m-kQm+q m+1 差 z — zを加算する(図 16ステップ S57)。
m+1
[0164] 送信系列推定装置 77は「q+ + =Qm」でなく(図 16ステップ S58)、「k+ + =K m+1
」でなく(図 16ステップ S59)、「m— = 1」でない場合(図 16ステップ S60)、送信信 号 s — s に対するシンボル候補 K個と、当該誤差を選択して保存する(図 16ステツ m m
プ S61)。 [0165] 送信系列推定装置 77は「m— = 1」である場合(図 16ステップ S60)、最小誤差を 与える送信信号 s— sを出力する(図 16ステップ S62)。復元装置 78は並び替えに
1
よる順序を復元してチャネル行列 Hに対して推定された送信系列を出力する(図 16 ステップ S63)。
実施例 5
[0166] 図 17は本発明の第 5の実施例による受信装置の構成を示すブロック図であり、図 1 8は図 17の送信系列推定装置の構成を示すブロック図であり、図 19は図 18の第 2段 目の尤度計算装置の構成を示すブロック図であり、図 20は図 18の第 1段目の尤度 計算装置の構成を示すブロック図である。本発明の第 5の実施例による無線通信シ ステムの構成は受信装置 1の代わりに受信装置 8を配置した以外は、上記の図 1に示 す本発明の実施の形態による無線通信システムと同様の構成となっている。
[0167] 図 17において、本発明の第 5の実施例による受信装置 8は 4本の送信アンテナ 21 —1一 21— 4を持つ送信装置 2から送信された信号を 2本の受信アンテナ 81— 1, 81— 2で受信している。
[0168] 受信装置 8は 2本の受信アンテナ 81—1, 81— 2と、チャネル係数推定装置 82と、優 先順位決定装置 83と、チャネル係数並べ替え装置 84と、 QR分解装置 85と、 QH演 算装置 86と、送信系列推定装置 9と、送信系列候補選択装置 87と、受信装置 8の各 部の処理を実現するためのプログラム (コンピュータで実行可能なプログラム)を格納 する記録媒体 88とから構成され、復元装置 89に接続されている。
[0169] 各受信アンテナ 81—1, 81— 2はそれぞれ信号を受信する。チャネル係数推定装置 82は受信信号 r , rを入力としてチャネル係数の推定を行い、チャネル行列 Hを出
1 2
力する。優先順位決定装置 83は受信信号!: , rを入力として変換系列の優先順位を
1 2
決定し、優先順位を表す信号 X を出力する。チャネル係数並び替え装置 84はチヤ ρπ
ネル行列 Ηと信号 Xpriとを入力としてチャネル行列 Ηの並び替えを行!、、変形チヤネ ル行列 H'を出力する。
[0170] QR分解装置 85は変形チャネル行列 H,を入力として変形チャネル行列 H,の QR 分解を行い、 Q行列及び R行列を出力する。 QH演算装置 86は受信信号!: , r
1 2と Q行 列とを入力として受信信号ベクトル rに Q行列の複素共役転置を乗算し、変換信号 Z を出力する。送信系列推定装置 9は変換信号 z及び R行列を入力として送信系列の 推定を行って出力する。
[0171] ここで、チャネル係数推定装置 82で推定されたチャネル行列 Hを、
[0172] [数 8]
Figure imgf000037_0001
とし、送信系列 4, 2, 1, 3の順に優先順位が高いものとすると、並び替え装置 84 お!、て並び替えられた変形チャネル行列 H'は、
[0173] [数 9]
Figure imgf000037_0002
となる。また、チャネル係数推定装置 82では、優先順位の高い二つの送信系列を推 定するものとする。
[0174] 送信系列候補選択装置 87は優先順位の高い送信系列 4及び送信系列 2に対して 、例えば、
e I r -h -h I 2
1 14xi 12xj
+ I r -h -h に
2 24xi 22xj
という式で計算される値を最も小さくする K個の系列候補 (x , X )ー , X )を
1-4 1-2 K-4 K-2 送信アンテナ 21— 4, 21— 2の送信系列候補 (V , V )
1-4 1-2一 (V , V )として出力する
K-4 K-2
。但し、各候補シンボルは信号 C
1一 C のいずれかである。
16
[0175] 優先順位の高い二つの送信系列 4及び送信系列 2に対して送信系列候補の選択 を行った場合には、送信系列推定装置 9は図 18に示すように、各々尤度計算装置 9 1— 1一 91— 16K, 93— 1— 93— 16K1からなる 2段の尤度計算装置群と 2段の信号選 択装置 92, 94とから構成され、第 2段の尤度計算装置群、第 2段の信号選択装置 9 2、第 1段の尤度計算装置群、第 1段の信号選択装置 94の順に信号処理を行う。 [0176] 本実施例のように、各送信アンテナ 21— 1— 21— 4力 送信される信号が 16値であ り、送信系列候補選択装置 87から K個の送信系列候補 (V , V ) )が
1-4 1-2一 (V , V
K-4 K-2 出力される場合には、第 2段の尤度計算装置群が 16K個の尤度計算装置 91 1一 9 1— 16Kで構成される。
[0177] 第 1番ー第 16番の尤度計算装置 91 1一 91 16は変換信号 zと、 R行列の成分!:
22
, r , r と、送信系列候補 (V , V ) V )とを入力とし、第 17番ー
1-2一 (V , 第 32番
23 24 1-4 K-4 K-2
の尤度計算装置 91-17— 91-32は変換信号 Zと、 R行列の成分!: , r , r と、送信
2 22 23 24 系列候補 (V , V )
2-4 2-2一 (V , V )とを入力とし、第 16 (K— 1) + 1番ー第 16K番の尤
K-4 Κ-2
度計算装置 91— 16 (Κ— 1) + 1— 91— 16Kは変換信号 ζと、 R行列の成分 r , r , r
2 22 23 24 と、送信系列候補 (v , V )一 (V , V )とを入力とする。
K-4 K-2 K-4 K-2
[0178] 第 2段の第 1番の尤度計算装置 91 - 1は、図 19に示すように、送信シンボル候補生 成装置 911と、変換信号レプリカ生成装置 912と、誤差計算装置 913とから構成され ている。尚、他の尤度計算装置 91— 2— 91— 16Kも上記の尤度計算装置 91— 1と同 様の構成となっている。
[0179] この尤度計算装置 91 1にお ヽて、送信シンボル候補生成装置 911は送信系列候 補 (V , V )一(V , V )を入力として信号 c
1-4 1-2 K-4 K-2 1一 c のいずれかからなる送信シンポ
16
ル候補 s , s , s を生成して出力する。変換信号レプリカ生成装置 912は R行
2-1-4 2-1-3 2-1-2
列の成分 r , r , r と送信シンボル候補 s , s , s とを入力として変換信号レ
22 23 24 2-1-4 2-1-3 2-1-2
プリカ z を、
2-1
z =r s +r s +r s
2-1 22 2-1-2 23 2-1-3 24 2-1-4
という式力 算出して出力する。
[0180] 誤差計算装置 913は変換信号 zと、変換信号レプリカ とを入力として誤差信号 e
2 z2-l
を、
2-1
e = z
2-1 I — z
2 2-1 I
という式力 算出して出力する。
[0181] 第 1番の尤度計算装置 91 1は誤差信号 e 及び送信シンボル候補 s , s , s
2-1 2-1-4 2-1-3 を出力する。同様に、第 2番の尤度計算装置 91 2は誤差信号 e 及び送信シン
2-1-2 2-2
ボル候補 s , s , s を、第 16K番の尤度計算装置 91 16Kは誤差信号 e
2-2-4 2-2-3 2-2-2 2-16K 及び送信シンボル候補 s , s , s をそれぞれ出力する。
2-16K-4 2-16K-3 2-16K-2
[0182] 第 2段の信号選択装置 92は上述した本発明の第 2の実施例と同一の手順によって 、 K1個の最も小さい誤差信号 e" — e" と、当該誤差を与える K1個のシンボル候補
1 K1
セット(S,, (S )とを出力する。
1-4, S"
1-3, S" )
1-2 ,, Kl-4, S"
Kl-3, S"
K1-2
[0183] 第 1段の尤度計算装置群は 16K1個の尤度計算装置 93— 1一 93— 16K1で構成さ れ、第 1番ー第 16番の尤度計算装置 93— 1一 93— 16は変換信号 zと、 R行列の成分
1
r, r, r, r と、シンボル候補セット(s,, , s,, , s,, ;)とを入力とし、第 16 (Kl— 1)
11 12 13 14 1-4 1-3 1-2
+ 1番ー第 16K1番の尤度計算装置 93— 16 (K1-1) + 1一 93— 16K1は変換信号 z と、 R行列の成分 r , r , r , r と、シンボル候補セット(s s" , s" )とを入
1 11 12 13 14 ,, ,
Kl-4 Kl-3 —―' ' 力とする。
[0184] 第 1番の尤度計算装置 93 - 1は、図 20に示すように、送信シンボル候補生成装置 9 31と、変換信号レプリカ生成装置 932と、誤差計算装置 933とから構成されている。 尚、他の尤度計算装置 93— 2— 93— 16K1も上記の尤度計算装置 93— 1と同様の構 成となっている。
[0185] この尤度計算装置 93— 1において、送信シンボル候補生成装置 931は信号 cl一 c 16のいずれかからなる送信シンボル候補 s , s , s
1-1-4 1-1-3 1-1-2、s を生成して出力する
1-1-1
。変換信号レプリカ生成装置 932は R行列の成分 r , r , r と、送信シンボル候
11、 r
12 13 14
補 s , S , S
1-1-4 1-1-3 1-1-2、 S とを入力として変換信号レプリカ Z を、
1-1-1 1-1
z =r s +r s +r s +r s
1-1 11 1-1-1 12 1-1-2 13 1—1—3 14 1—1—4
という式力 算出して出力する。
[0186] 誤差計算装置 933は変換信号 zと、変換信号レプリカ z と、誤差信号 e"とを入力
1 1-1 1 として誤差信号 e を、
1-1
e = z
1 I — z
1 1-1 I + e
1- 1
という式力 算出して出力する。
[0187] 第 1番の尤度計算装置 93 - 1は誤差信号 e 及び送信シンボル候補 s , s , s
1-1 1-1-4 1-1-3
、 s とを出力する。同様に、第 2番の尤度計算装置 93— 2は誤差信号 e 及び
1-1-2 1-1-1 1-2 送信シンボル候補 s
-4, s
1-2-3, s
1-2-2, s を、第 16K1番の尤度計算装置 93— 16K
1-2 1-2-1
1は誤差信号 e 及び送信シンボル候補 s , s , s , s をそれぞ
2-16K1 1-16K1-4 1-16K1-3 1-16K1-2 1-16K1-1 れ出力する。
[0188] 第 1段の信号選択装置 94は 16K1個の尤度計算装置 93— 1一 93— 16K1から出力 される誤差信号及び送信シンボル候補を入力として最も小さい誤差を与える送信系 列 s, , s する。
1 ,2, s, 3, s,を出力
4
[0189] このように、本実施例では、 QR分解装置 85で計算される R行列の上三角部におい て不定となる系列を、送信系列推定装置 9で推定することによって、受信アンテナが 送信アンテナよりも少ない場合でも送信信号系列を復調することができる。
[0190] 図 21は本発明の第 5の実施例による受信装置 8の復調処理を示すフローチャート である。これら図 17—図 21を参照して本発明の第 5の実施例による受信装置 8の復 調処理について説明する。尚、図 21に示す処理は受信装置 8の演算装置 (CPU :中 央処理装置)が記録媒体 88のプログラムを実行することで実現される。また、上記の 説明では送信装置 2が 4本の送信アンテナ 21— 1— 21— 4を持つ場合について述べ た力 以下の動作では送信装置 2が M本の送信アンテナを持つ場合にっ 、て述べ る。
[0191] 受信装置 8では QR分解装置 85にてチャネル行列 Hを QR分解し、それを基に QH 演算装置 86にて変換信号 zを算出する(図 21ステップ S71)。送信系列候補選択装 置 87は送信信号 s — s に対するシンボル候補セットを K個決定する(図 21ステツ
M M-L+l L
プ S72)。
[0192] 送信系列推定装置 9はパラメータ mを (M— L)に設定し(図 21ステップ S73)、送信 信号 s に対するシンボル候補を Q 個生成し(図 21ステップ S74)、パラメータ qを 1に m m
設定する(図 21ステップ S 75)。
[0193] その後、送信系列推定装置 9は送信信号 s — s に対する k番目のシンボル候補と m+1
、送信信号 s に対する q番目のシンボル候補とを用いてレプリカ z に対する(kQm+ m m
q)番目のレプリカ z を計算する(図 21ステップ S76)。さらに、送信系列推定装 m-kQm+q
置 6はレプリカ z とレプリカ z との誤差を計算し、当該送信信号 s — s に対する m m-kQm+q m+1
誤差 z — zを加算する(図 21ステップ S77)。
m+1
[0194] 送信系列推定装置 9は「q+ + =Qm」でなく(図 21ステップ S78)、「k+ + =K 」 m+1 でなく(図 21ステップ S79)、「m— = 1」でない場合(図 21ステップ S80)、送信信号 s一 s に対するシンボル候補 K個と、当該誤差とを選択して保存する(図 21ステツ m m
プ S81)。送信系列推定装置 9は「m— = 1」である場合(図 21ステップ S80)、最小 誤差を与える送信信号 s— sを出力する(図 21ステップ S82)。
1
[0195] 上述した本発明の第 1一第 5の実施例では、信号選択装置の出力を最小誤差を与 える送信シンボル候補としているが、受信機全体の構成に応じて、各送信シンボルの 尤度や各送信シンボルで送信されるビットの尤度とすることもできる。
実施例 6
[0196] 図 22は本発明の第 6の実施例による受信装置の構成を示すブロック図であり、図 2 3は図 22の送信系列推定装置の構成を示すブロック図であり、図 24は図 23の第 2段 目の尤度計算装置の構成を示すブロック図であり、図 25は図 23の第 1段目の尤度 計算装置の構成を示すブロック図である。本発明の第 6の実施例による無線通信シ ステムの構成は受信装置 1の代わりに受信装置 100を配置した以外は、上記の図 1 に示す本発明の実施の形態による無線通信システムと同様の構成となっている。
[0197] 図 22において、本発明の第 6の実施例による受信装置 100は 2本の送信アンテナ 21-1, 21— 2を持つ送信装置 2から送信された信号を 2本の受信アンテナ 101— 1, 101— 2で受信している。
[0198] 受信装置 100は 2本の受信アンテナ 101— 1, 101-2と、チャネル係数推定装置 10 2と、制御チャネル復号装置 103と、優先順位決定装置 104と、チャネル係数並べ替 え装置 105と、 QR分解装置 106と、 QH演算装置 107と、送信系列推定装置 110と、 受信装置 100の各部の処理を実現するためのプログラム (コンピュータで実行可能な プログラム)を格納する記録媒体 108とから構成され、復元装置 120に接続されてい る。
[0199] 各送信アンテナ 101— 1, 101— 2はそれぞれ独立な変調方式によって変調されて おり、送信アンテナ 21— 1からは信号 c 21— 2から
1一 c のいずれ力が、送信アンテナ
L1
は信号 c一 c のいずれかが送信されているものとする。例えば、送信アンテナ 21— 1
1 L2
の変調方式が QPSK (Quaternary Phase Shift Keying)の場合に L =4、送信アンテ ナ 21— 2の変調方式が 16QAM (Quadrature Amplitude Modulation)の場合に L = 1
2
6となる。 [0200] 受信装置 100は 2本の受信アンテナ 101— 1, 101— 2を備え、各受信アンテナ 101 -1, 101— 2はそれぞれ信号を受信する。チャネル係数推定装置 102は受信信号!:
1
, rを入力としてチャネル係数を推定し、推定されたチャネル係数カゝらなるチャネル行
2
列 Hを出力する。
[0201] QR分解装置 106はチャネル行列を入力としてチャネル行列の QR分解を行い、 Q 行列及び R行列を出力する。 QH演算装置 107は Q行列と受信信号!: , rとを入力とし
1 2
て受信信号に Q行列の共役複素転置行列を乗積し、変換信号 zを出力する。
[0202] 優先順位決定装置 104は制御チャネル復号装置 103から通知される各送信アンテ ナ 21— 1, 21— 2の信号点数 (L , L )を入力として送信アンテナ間の優先順位を決定
1 2
し、決定された優先順位を表す信号 X を出力する。ここで、各送信アンテナ 21— 1, ρπ
21— 2に用いられる変調方式は、予め決められたフォーマットを用いた制御チャネル によって送信側力 通知されて 、るものとする。優先順位決定装置 104では信号点 数の少な!/、送信系列 (変調多値数の低 、送信系列)を有するアンテナに高 、優先順 位を与える。
[0203] チャネル係数並び替え装置 105はチャネル行列 Ηと優先順位を表す信号 Xpriを 入力としてチャネル行列 Hの列ベクトルを並び替え、変形チャネル行列 H'を出力す る。この時、チャネル係数並び替え装置 105は優先順位の低い列力も順に並べる。 本実施例では、優先順位の低いアンテナの信号点数を L1 '、優先順位の高いアンテ ナの信号点数を L2'とする。送信系列推定装置 110は変換信号 zと R行列とを入力と して各送信アンテナ 21— 1, 21— 2から送信された信号を推定して出力する。
[0204] 送信系列推定装置 110は、図 23に示すように、各々尤度計算装置 111 1一 111 -L2' , 113 - 1一 113 - Ll 'Klからなる 2段の尤度計算装置群と 2段の信号選択装 置 112, 114とから構成され、第 2段の尤度計算装置群、第 2段の信号選択装置 112 、第 1段の尤度計算装置群、第 1段の信号選択装置 114の順に信号処理を行う。
[0205] 本実施例のように、送信アンテナ 21— 1, 21— 2から送信される信号の最大信号点 数が L である場合には、第 2段の尤度計算装置群は、 L 個の尤度計算装置で
MAX MAX
構成される。各尤度計算装置 111 - 1一 111 - L2'は変換信号 zと、 R行列の成分 r
2 22 とを入力として誤差信号群及び送信シンボル候補群を出力する。 [0206] 第 2段の第 1番の尤度計算装置 111 1は、図 24に示すように、送信シンボル候補 生成装置 1111と、変換信号レプリカ生成装置 1112と、誤差計算装置 1113とから構 成されている。尚、他の尤度計算装置 111 2— 111 L2'も上記の尤度計算装置 1 11—1と同様の構成となって 、る。
[0207] この尤度計算装置 111 1において、送信シンボル候補生成装置 1111は信号 c
1一
C ,のいずれかのシンボルからなる送信シンボル候補 S を生成して出力する。変
2-1-2
換信号レプリカ生成装置 1112は R行列の成分 r と送信シンボル候補 s とを入力と
22 2-1-2
して変換信号レプリカ z を生成して出力する。
2-1
誤差計算装置 1113は変換信号 Zと、変換信号レプリカ z とを入力として二つの信
2 2-1
号の誤差を計算し、誤差信号 e を出力する。この時、変換信号レプリカ z は、
2-1 2-1
z =r s
2-1 22 2-1-2
という式で計算され、誤差信号 e
2-1
e z— z
22--11 22 22-1 I 2
という式で計算される c
[0209] 第 1番の尤度計算装置 111 - 1は誤差信号 e 及び送信シンボル候補 s を出力
2-1 2-1-2 する。第 2段の信号選択装置 112は第 2段の L2'個の尤度計算装置 111 1一 111 L2 'で計算された誤差信号群及び送信シンボル候補群を入力として最も誤差の小さ い 個の誤差信号 e"— e" と、当該誤差を与える K個の送信シンボル候補 s" —
1 1 Kl 1 1-2 s" を出力する。出力される Kl個の送信シンボル候補は信号 c一 c ,のいずれか
Kl-2 1 L2
となる。
[0210] 第 1段の尤度計算装置群は L K個の尤度計算装置で構成され、第 1番ー第 L
MAX 1 1
'番の尤度計算装置 113— 1一 113— L1 'は変換信号 Zと、 R行列の成分!: , r と、誤
1 11 12 差信号 e"と、送信シンボル候補 s" とを入力とし、第 LI ' (K1 1) + 1番ー第 Ll 'K
1 1-2
1番の尤度計算装置 113— LI ' (K1 1) + 1— 113— Ll 'Klは変換信号 zと、 R行列
1
の成分 r , r と、誤差信号 e" と、送信シンボル候補 s" とを入力とする。
11 12 K1 一 "
[0211] 第 1番の尤度計算装置 113は、図 25に示すように、送信シンボル候補生成装置 11 31と、変換信号レプリカ生成装置 1132と、誤差計算装置 1133とから構成されてい る。尚、他の尤度計算装置 113— 2— 113-L1 'K1も上記の尤度計算装置 113— 1と 同様の構成となっている。
[0212] この尤度計算装置 113—1において、送信シンボル候補生成装置 1131は送信シン ボル候補 s" を入力として c
1-2 1一 c ,のいずれかのシンボルからなる送信シンボル候
L1
補 s , s を出力する。変換信号レプリカ生成装置 1132は R行列の成分 r , r と
1-1-2 1-1-1 11 12 送信シンボル候補 S , S とを入力として変換信号レプリカ Z を出力する。
1-1-2 1-1-1 1-1
[0213] 誤差計算装置 1133は変換信号 zと、変換信号レプリカ z と、誤差信号 e"を入力
1 1-1 1 として誤差信号 e を出力する。この時、変換信号レプリカ z は、
1-1 1-1
z =r s +r s
1-1 11 1-1-1 12 1-1-2
という式で計算され、誤差信号 e は、
1-1
e = +e
1-1 I z— z
1 1-1 I 1
という式で計算される。
[0214] 第 1番の尤度計算装置 113— 1は誤差信号 e と、送信シンボル候補 s , s とを
1-1 1-1-2 1-1-1 出力する。第 Ll ' Kl番の尤度計算装置 113— Ll ' Klは誤差信号 e ' Kと、送信シ
1-L1 1 ンボル候補 s ' Κ , s ' K とを出力する。
1-L1 1-2 1-L1 1-1
[0215] 第 1段の信号選択装置 114は第 1段の L ' K個の尤度計算装置 113— 1一 113— L 1 ' K1で計算された誤差信号及び送信シンボル候補を入力として最も小さ 、誤差信 号 e 'を与える送信シンボル候補 s' , s, を出力する。ここで、 s, は s — s ' K
1 1-2 1-1 1-2 1-1-2 1-L1 の中から、 S, は S S ,K の中から選択された送信シンボル候補である。 1-2 1-2 1-1-1 1-L1 1-1
[0216] 復元装置 120は優先順位決定装置 104で生成した優先順位を表す信号 Xpriを入 力として送信シンボル系列を並べ替え、送信アンテナ番号 s '
1、s 'を出力する。
2
[0217] 第 2段の信号選択装置 112では L2'個の送信シンボル候補群の中から、最も誤差 の小さい K1個の送信シンボル候補を選択している。この場合、 L2,と K1との差が大 きいほど、正しい送信シンボルが誤って候補から削除される可能性が高くなるため、 受信特性が劣化してしまう。本実施例では、信号点数の少ないアンテナに優先順位 を与え、チャネル係数の並べ替えを行っている。したがって、信号点数の少ないアン テナの順に処理を行うことが可能となり、前段において大幅な候補削減が行われる回 数が少なくなり、結果として受信特性が改善される。
[0218] また、上述した本発明の第 6の実施例において、送信系列候補選択装置 87は優先 度の高い送信系列 4及び送信系列 2に対して、誤差信号を小さくする K個の系列候 補を選択している。ここで、送信系列 4及び送信系列 2の信号点数をそれぞれ cL4, c L2とすると、送信系列候補選択装置 87は cL4 X cL2の組合せの中から K個の候補を 選択する。したがって、この場合においても、信号点数の少ない送信系列を優先的 に処理するようにすれば、より少な 、組合せの中力 K個の候補を選択すればよくな り、送信系列候補選択装置 87の選択エラーによる特性劣化が抑えられる。さらに、 c X c く Kの関係が成り立てば、送信系列候補選択装置 87そのものが不要になる。
L4 L2
実施例 7
[0219] 次に、本発明の第 7の実施例について説明する力 本発明の第 7の実施例は上記 の本発明の第 6の実施例と同様の構成となっているので、図 22—図 25を参照して説 明する。
[0220] 送信アンテナ力 送られる信号の最大信号点数が L である場合には、第 2段の
MAX
尤度計算装置群は L 個の尤度計算装置で構成される。また、第 1段の尤度計算装
MAX
置群は L K個の尤度計算装置で構成される。
MAX 1
[0221] ここで、適応変調等によって、各送信アンテナの変調方式、すなわち信号点数が変 化する場合について考える。第 1段の尤度計算装置群に用意される L K個の尤
MAX 1 度計算装置のうち、実際に使用される尤度計算装置数は Ll 'Kl個となる。したがつ て、 L1 'が L より小さい場合には、用意した尤度計算装置全てが活用されない状
MAX
態となる。
[0222] そこで、本実施例では、 L1 'に応じて K1の数を設定する。今、第 1段の尤度計算装 置群の最大数を J 1
MAXとした場合、
[0223] [数 10]
Figure imgf000045_0001
という式によって、 L1 'に応じて K1を設定することで、 J1 個の尤度計算装置を全て
MAX
活用することができる。これによつて、本実施例ではトータルの受信特性が改善され る。 実施例 8
[0224] 次に、本発明の第 8の実施例について説明する力 本発明の第 8の実施例は上記 の本発明の第 6の実施例と同様の構成となっているので、図 22—図 25を参照して説 明する。
[0225] 上述した各実施例にお 、て、アンテナの優先順位の決定処理では、受信電力、受 信電力対雑音電力比、あるいは受信電力対雑音電力、及び干渉電力比等に基づく 優先順位決定、及び変調方式に基づく優先順位決定を用いているが、本実施例で は符号ィヒ率に基づく優先順位決定にてアンテナの優先順位の決定処理を行ってい る。
[0226] 優先順位決定装置 104は、送信アンテナ 21-1, 21-2から送信されるデータ系列 がそれぞれ独立の符号化率によって符号化される場合において、送信アンテナ 21— 1, 21-2各々における符号化率を基に優先順位を決定する。
[0227] ここで、各送信アンテナの符号化率が変化する場合について考える。本発明の送 信系列推定装置では、アンテナの処理順によつて、アンテナ毎の信号分離特性に差 が生じる。具体的には、前段のステージで処理するアンテナの信号ほど信号分離特 性が悪ぐ後段のステージで処理するアンテナの信号ほど信号分離特性が良くなる。 これは、 QR分解による直交化後においても、他のアンテナ干渉の影響が残るので、 前段のステージにおける候補点選択に誤りが生じるためと考えられる。
[0228] したがって、本実施例では、符号化率の低!、アンテナに対して高 、優先順位を与 えることによって、誤り訂正能力の高い (符号ィ匕率の低い)信号に対して信号分離特 性の悪 、前段のステージを割り当て、誤り訂正能力の低 ヽ (符号ィ匕率の高 、)信号に 対して信号分離特性の良い後段のステージを割り当てることで、トータルの受信特性 の改善及びアンテナ間の特性の均一化が可能となる。
実施例 9
[0229] 図 26は本発明の第 9の実施例による信号選択装置の構成を示すブロック図である 。図 26において、本発明の第 9の実施例による信号選択装置 200はビット尤度出力 機能を内蔵しており、アンテナ毎最小値選択装置 201と、ビット判定装置 202, 203 と、ビット毎最小値選択装置 204, 205と、ビット毎尤度計算装置 206, 207とから構 成され、ターボ復号器 210, 211に接続されている。
[0230] ターボ復号器 210, 211等の軟判定ビット情報を用いた誤り訂正復号装置と組み合 わせる場合、送信されたデータ系列のビット尤度を出力する機能を備えた信号選択 装置 200を用いる必要がある。ここでは、 2本の送信アンテナ 21— 1, 21— 2を持つ送 信装置 2からそれぞれ 4値の信号 c
1一 cのいずれかが送信されているものとする。こ
4
の時、各信号には、図 27に示すように、 2bitの情報が割り当てられる。また、送信ァ ンテナ 21— 1から送信される信号点のビットを b , b 、送信アンテナ 21-2から送信
1-1 1-2
される信号のビットを b , b とする。
2-1 2-2
[0231] アンテナ毎最小値選択装置 201は、第 1段の 4K1個の尤度計算装置(図示せず) で計算された誤差信号及び送信シンボル候補を入力として、最も小さ!、誤差信号 e '
1 と、その誤差信号 e 'を与えるアンテナ毎の送信シンボル候補 s' , s'を出力する。ビ
1 1 2
ット判定装置 202, 203はアンテナ毎に設けられ、それぞれの送信シンボル候補を入 力として、各信号のビット判定を行う。
[0232] ビット毎最小値選択装置 204, 205はアンテナ毎に設けられ、ビット判定装置 202, 203の出力である判定ビットと、第 1段の 4K1個の尤度計算装置で計算された誤差 信号及び送信シンボル候補を入力として、判定ビットと異なるビット (反転ビット)を有 する送信シンボル候補の中から、最も小さ 、誤差信号を出力する。
[0233] 例えば、送信アンテナ iの j番目のビットの判定ビット b 力^の場合、ビット毎最小値
i-J
選択装置 204, 205は、 c
1一 cのうち j番目のビットが 1となる信号点の中から、最も小
4
さい誤差信号 Eを出力する。ここで、誤差信号 Eは、
[0234] [数 11]
Figure imgf000047_0001
と表される。
ビット毎尤度計算装置 206, 207はアンテナ毎に設けられ、アンテナ毎最小値選択 装置 204, 205から出力される誤差信号 e'と、ビット毎最小値選択装置 204, 205の
1
出力である誤差信号 Eとを入力とし、ビット毎の尤度え を出力する。ビット毎の尤度 は、
[0236] [数 12] -i一 ei-i ^i-j )~ ei
(when b =0)
H
[0237] [数 13] ι =" - U
(when b = 1)
i-j
と 、う式によって求められる。
[0238] 信号選択装置 200は上述した処理によって求められたビット尤度をターボ復号器 2 10, 211に入力することによって、軟判定情報に基づいた誤り訂正復号を行うことが できる。ここでは、送信アンテナ毎に符号ィ匕が行われていることを想定している。尚、 図 22に示すように、優先順位に基づく処理の並べ替えを行っている場合には、ビット 毎尤度計算装置 206, 207の出力を復元装置(図示せず)に入力し、送信アンテナ 番号順のビット尤度に並べ替えた後、所定のターボ復号器に入力して処理を行う。 実施例 10
[0239] 図 28は本発明の第 10の実施例による信号選択装置の構成を示すブロック図であ る。図 28において、本発明の第 10の実施例による信号選択装置 300はビット尤度出 力機能を内蔵しており、アンテナ毎最小値選択装置 301と、ビット判定装置 302, 30 3と、ビット毎最小値選択装置 304, 305と、誤差信号蓄積装置 306, 307と、ビット毎 尤度計算装置 308, 309とから構成され、ターボ復号器 310, 311に接続されている
[0240] ビット毎最小値選択装置 301では誤差信号が最小となる送信シンボル候補の判定 ビットと異なるビット (反転ビット)を有する送信シンボル候補の中から、最も小さい誤 差信号を探し出す。ところが、前段の信号選択装置 (例えば、図 23に示す信号選択 装置 112)による送信シンボル候補の絞り込みによって、反転ビットのシンボル候補 が全て削除されている場合が起こり得る。
[0241] この時、上記の式によるえ の計算が成り立たず、尤度の計算ができないとう問題が
i-J
生じる。例えば、アンテナ毎最小値選択装置 301で検出された信号点が cの場合、 b
1
=0となる、この時、前段の信号選択装置において、信号点 c , cが選択されずに
1- 1 2 3
削除されたと仮定すると、ビット毎最小値選択装置 304, 305に対して、 b = 1となる
1-1
反転ビットの誤差信号が入力されないため、ビット尤度の計算が不可能となる。
[0242] 上記の問題を解決するため、本実施例では、誤差信号蓄積装置 306, 307を設け ている。誤差信号蓄積装置 306, 307は反転ビットに対する誤差信号 Eの出力を一 定区間蓄積する。そして、誤差信号蓄積装置 306, 307は一定区間蓄積した結果を 平均する等して、反転ビットに対する仮の誤差信号 e' , e' を出力する。
1 ave 2 - ave
[0243] ビット毎尤度計算装置 308, 309はアンテナ毎最小値選択装置 301から出力される 誤差信号 e 'と、ビット毎最小値選択装置 304, 305の出力である誤差信号 Eと、誤差
1
信号蓄積装置 306, 307からの仮の誤差信号 e ' とを入力とし、ビット毎の尤度え
~ave
を出力する。ここで、仮の誤差信号 e' は、ビット毎最小値選択装置 304, 305にお
ave
いて、反転ビットの誤差信号が出力できない場合に、ビット毎の尤度計算の代用とし て用いられる。
[0244] これによつて、本実施例では、上記の処理によって前段の信号選択装置によるシン ボル候補の絞込みが行われた場合にぉ 、ても、常にビット尤度の計算を行うことが可 能となる。
実施例 11
[0245] 図 29は本発明の第 11の実施例によるチャネル係数推定装置の構成を示すブロッ ク図であり、図 30は図 29に示すチャネル係数推定装置を用 ヽる場合の送信信号構 成の一例を示す図である。図 29において、チャネル係数推定装置 500はパイロット シンボルレプリカ生成装置 501— 1—501—3, 505— 1一 505— 3, · · · (パイロットシン ボルレプリカ生成装置 501— 2, 505— 2は図示せず)と、相関検出装置 502— 1一 50
2- 3, 506— 1—506—3, · · · (相関検出装置 502— 2, 506— 2は図示せず)と力 構 成されている。
[0246] 図 30に示すように、各送信アンテナ # 1一 # 3からは送信アンテナ # 1一 # 3毎に 異なる 4シンボル長のパイロットシンボルがデータシンボルに対して周期的に挿入さ れている。この図 30に示す例では、各送信アンテナ # 1一 # 3のパイロットシンボル パターンは互 、に直交して 、る。
[0247] このような直交パターンは、例えばパイロットシンボル数と同じ長さの Walsh系列を 用いることで生成可能である。以降、送信アンテナ # mのノィロットシンボル系列を p m (n)とする。ここで、 nはシンボル番号を表すものとする。
[0248] チャネル係数推定装置 500では、受信信号 rを相関検出装置 502-1に入力する。
1
また、パイロットシンボルレプリカ生成装置 501—1では送信アンテナ # 1 (図示せず) のパイロットシンボル系列 pを生成して相関検出装置 502-1に出力する。
1
[0249] 相関検出装置 502— 1では、受信信号 rlに送信アンテナ # 1のパイロットシンボル 系列 piの複素共役値を乗算した値を 4ノィロットシンボル分平均化することによって 、送信アンテナ # 1と受信アンテナ # 1 (図示せず)との間のチャネル係数 h を推定し
11 て出力する。尚、チャネル係数 h は、
11
[0250] [数 14]
Figure imgf000050_0001
という式で推定される。ここで, r (n)は、パイロットシンボル nが受信される時の受信
1
信号 を示す。実際には、チャネル係数 h の推定を、複数のパイロットシンボル送信
1 11
区間で得られたチャネル係数推定値に対して重み付け平均を行うことで求めることも 可能である。
[0251] 同様にして、相関検出装置 502-m (図示せず)では、受信信号 rと、パイロットシン
1
ボルレプリカ生成装置 501— m (図示せず)で生成された送信アンテナ # mのパイロッ トシンボル系列 pを入力として、チャネル係数 h を推定して出力する。
m lm
[0252] さらに同様にして、相関検出装置 506—1では、受信信号 r4と、パイロットシンボル レプリカ生成装置 505—1で生成される送信アンテナ # 1のパイロットシンボル系列 p
1 とを入力して相関を求めることで、チャネル係数 h を推定して出力する。
41
[0253] 本実施例では、上述した動作を繰り返すことで、 3つの送信アンテナ(図示せず)と 4つの受信アンテナ(図示せず)との間の各チャネル係数を推定し、推定されたチヤ ネル係数力もなるチャネル行列 Hを出力する。尚、本実施例では、パイロットシンボル がデータシンボルに時間的に多重される構成を例に挙げて説明している力 周波数 多重や符号多重、これらの組み合わせを用いた場合にも、上記と同様の方法でチヤ ネル係数推定値を得ることができる。
実施例 12
[0254] 図 31は本発明の第 12の実施例による受信装置の構成を示すブロック図である。本 発明の第 12の実施例による無線通信システムの構成は受信装置 1の代わりに受信 装置 700を配置した以外は、上記の図 1に示す本発明の実施の形態による無線通 信システムと同様の構成となっている。
[0255] 図 31において、本発明の第 12の実施例による受信装置 700は、 3本の送信アンテ ナ 21— 1— 21-3を持つ送信装置 2から送信された信号を 4本の受信アンテナ 701- 1一 701— 4で受信している。この場合、各送信アンテナ 21— 1— 21— 3からは 16値の 信号 c
1一 c のいずれかが送信されているものとする。
16
[0256] 本発明の第 12の実施例による受信装置 700は、送信装置 2において、送信信号で ある c一 c のいずれかが予め同一の拡散符号によって拡散されている場合に適用さ
1 16
れる。
[0257] 受信装置 700は 4本の受信アンテナ 701— 1— 701— 4と、チャネル係数推定装置 7 02と、 QR分解装置 703と、 4個の逆拡散装置 704 - 1一 704 - 4と、 QH演算装置 705 と、送信系列推定装置 706と、受信装置 700の各部の処理を実現するためのプログ ラム (コンピュータで実行可能なプログラム)を格納する記憶媒体 707とから構成され ている。
[0258] 各受信アンテナ 701— 1一 701— 4はそれぞれ信号を受信する。チャネル係数推定 装置 702は受信信号 r一 rを入力としてチャネル係数を推定し、推定されたチャネル
1 4
係数力もなるチャネル行列 Hを出力する。 QR分解装置 703はチャネル行列 Hを入 力として QR分解を行!ヽ、 Q行列及び R行列を出力する。
[0259] 逆拡散装置 704— 1一 704— 4はそれぞれ受信信号!:一 rを入力として、送信装置 2
1 4
において拡散に用いられた拡散符号と同一の拡散符号レプリカを用いて逆拡散を行 い、逆拡散後の受信信号 r'
1一 r'を出力する。
4
[0260] QH演算装置 705は、図 4に示す本発明の第 2の実施例による受信装置 3内の QH演 算装置 34と同様の演算を行うが、入力信号として受信信号!: 逆拡散
1一 rの代わりに、
4
後の受信信号 r'一 r'を入力するところが本発明の第 2の実施例と異なる。 QH演算
1 4
装置 705は逆拡散後の受信信号!:'
1一 r' に Q行列の共役複素転置行列を乗算し、 4
変換信号 zを出力する。
[0261] 送信系列推定装置 706は変換信号 zと R行列とを入力として、図 4に示す本発明の 第 2の実施例による受信装置 3内の送信系列推定装置 4と同様の演算によって、送 信系列推定値 s' , s' , s'を出力する。本実施例では、上記の構成を用いることで、
1 2 3
拡散信号の系列を推定する場合に比較して、送信系列推定装置 706における演算 量を拡散率分の 1に抑えることができる。
実施例 13
[0262] 図 34は本発明の第 13の実施例による信号選択装置の構成を示すブロック図であ る。但し、ここでは、送信アンテナ 1に対するビット尤度出力装置のみを記載している 。図 34において、関数演算装置 905— 908はアンテナ毎最小値選択装置 901、ビッ ト毎最小値選択装置 903、誤差信号蓄積装置 904のそれぞれ力も出力される誤差 信号(自乗ユークリッド距離)に対して、任意の関数演算を施すことで、それぞれの誤 差信号の値を変換している。例えば、関数演算が平方根の場合、自乗ユークリッド距 離は、ユークリッド距離に変換される。
[0263] ここで、関数演算子を f{ · }と定義すると、送信アンテナ iの j番目のビットの尤度は、
[0264] [数 15]
λ /- = ( >) (whe n= 0) (when = 0)
bi-j
[0265] [数 16]
λ
Figure imgf000053_0001
(wheni)
(when = 1)
bi-j
と 、う式によって求められる。
[0266] また、関数演算に平方根を用いた場合には、
[0267] [数 17]
Λーゾ (when b : 0)
Figure imgf000053_0002
(when = 0)
bi-j
[0268] [数 18]
Figure imgf000053_0003
(when = 1)
bi-j
という式となる。
実施例 14
[0269] 本発明の第 10の実施例では、反転ビットのシンボル候補が全て削減された場合の 問題解決のために、ビット尤度出力機能を内蔵した信号選択装置について説明して いる。ビット尤度出力機能を内蔵した信号選択装置を用いた場合、以下に説明する 構成によって信号を復調することもできる。
[0270] 図 35は本発明の第 14の実施例による受信装置の構成を示すブロック図である。本 実施例では、送信信号は 16値の値のいずれかをとる信号であるとする。図 35におい て、受信装置 1200は 4本の受信アンテナを有し、それぞれ信号 r , r , r , rを受信
1 2 3 4 する。チャネル係数推定装置 32は、送受信アンテナ間のチャネル推定を行って出力 する。送信系列推定装置 1202は送信系列の推定を行ってビット尤度比を出力し、復 号装置 1203は復号を行って出力する。
[0271] 図 36は図 35の送信系列推定装置 1202の構成を示すブロック図である。この図 36 を参照して送信系列推定装置 1202について説明する。図 36において、送信系列 推定装置 1202では、図 5と同様に、 3段の尤度計算装置群と、 3段の信号選択装置 群とから構成されている。但し、図 5と異なり、各尤度計算装置 1204 - 1一 1204 - 16 , 1206— 1一 1206— 16K1, 1208—1— 1208— 16K2は、受信信号とチャネル推定 値とを入力としており、第 3段の信号選択装置 1209はビット尤度出力機能を内蔵し た信号選択装置である。
[0272] 尤度計算装置 1204— 1は、受信信号 r一 rとチャネル行列 Hとを入力として誤差信
1 4
号 e を、
3-1
[0273] [数 19]
Figure imgf000054_0001
と計算して出力する。ここで、 Sは第 3の送信アンテナ力 送られた信号に対するシ
3
ンボル候補である。
[0274] 上記と同様に、尤度計算装置 1204— 2— 1204— 16でも誤差信号を計算して出力 する。信号選択装置 1205は計算された誤差信号から最も誤差の小さい K1個を選択 し、当該誤差を与えるシンボル候補を出力する。
[0275] 尤度計算装置 1206 - 1は、受信信号 r 択装置 1205で選択されたシ
1一 rと信号選
4
ンボル候補とを用 、て誤差信号 e
2-1を、
[0276] [数 20] 4
k - ·3 · 5 ' "リー 2 | と計算する。但し、 S' ' ' は信号選択装置 1205で選択された第 3のアンテナ力も送
1-3
信された信号に対する第 1の候補であり、 Sは第 2の送信アンテナから送られた信号
2
に対するシンボル候補である。
[0277] 上記と同様にして、尤度計算装置 1206— 2— 1206— 16K1は誤差信号を計算し、 計算された誤差及び当該誤差を与えるシンボル候補を出力する。信号選択装置 12 07は尤度計算装置 1206—1— 1206— 16K1で計算された 16K1個の誤差信号及 びシンボル候補を入力とし、最も小さ ヽ K2個のシンボル候補セット(S,, S" )
1-3 1-2一
(S " S" )を出力する。
K2-3 K2-2
[0278] 尤度計算装置 1208— 1は受信信号!:
1一 rと信号選択装置 1207で選択されたシン 4
ボル候補とを用いて誤差信号 e を、
1-1
[0279] [数 21]
4 2 e 1
Figure imgf000055_0001
と計算する。但し、 S" , S" は信号選択装置 1207で選択された第 3及び第 2の
1-3 1-2
アンテナから送信された信号に対する第 1の候補であり、 Sは第 1の送信アンテナか
1
ら送られた信号に対するシンボル候補である。
[0280] 上記と同様にして、尤度計算装置 1208— 2— 1208— 16K2は誤差信号を計算し、 計算された誤差及び当該誤差を与えるシンボル候補を出力する。第 3段の尤度計算 装置群から出力される誤差信号及びシンボル候補数は 16K2個である。したがって、 K1や Κ2の設定によっては、本発明の第 10の実施例で述べたように、シンボル候補 の削減によって反転ビットメトリックが計算できない場合も発生する。
[0281] そこで、ビット尤度出力機能を内蔵した信号選択装置 1209は、本発明の第 10の実 施例で説明した計算と同様の計算によって、全てのビットに対する尤度を計算して出 力する。このように、本実施例では、ビット尤度出力機能を内蔵した信号選択装置 12 09を備えた送信系列推定装置 1202によって、受信信号とチャネル行列とから信号 の復調を行うことが可能となる。

Claims

請求の範囲
[1] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号の復調を行う手段と、を前記受信装置に 有することを特徴とする無線通信システム。
[2] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力する手段と 、を前記受信装置に有することを特徴とする無線通信システム。
[3] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力する手段と 、を前記受信装置に有することを特徴とする無線通信システム。
[4] 前記ヌリングを行う手段は、ヌリングとしてチャネル行列を QR分解して得た Q行列の 複素共役転置行列を用いることを特徴とする請求項 1から請求項 3のいずれか記載 の無線通信システム。
[5] 前記ヌリングした信号を基に第 Mの送信アンテナカゝら送信された送信系列から、第 1の送信アンテナから送信された送信系列へと降順に前記送信信号の復調を行うこ とを特徴とする請求項 1から請求項 3のいずれか記載の無線通信システム。 [6] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数カゝらなるチャネル行列の QR分解を行って Q行列及び R行列を出 力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記変換信号と前記 R行列とを基に送信系列と前記送信系列に対する尤度と前記 送信系列によって送信されたビットに対する尤度とのうちの少なくとも一つを出力する 送信系列推定装置と、を前記受信装置に含むことを特徴とする請求項 1から請求項 5 の!、ずれか記載の無線通信システム。
[7] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数カゝらなるチャネル行列の QR分解を行って Q行列及び R行列を出 力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に前記変換信号に対するシンボル候補を選択して出力する送 信シンボル候補選択装置と、
前記変換信号と前記シンボル候補と前記 R行列とを基に送信系列と前記送信系列 に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの少な くとも一つを出力する送信系列推定装置と、を前記受信装置に含むことを特徴とする 請求項 1から請求項 5のいずれか記載の無線通信システム。
[8] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記変換信号と前記 R行列とを基に前記送信系列と前記送信系列に対する尤度と 前記送信系列によって送信されたビットに対する尤度とのうちの少なくとも一つを出 力する送信系列推定装置と、
前記系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記送信 系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を前記受信装置に含むことを特徴と する請求項 1から請求項 5のいずれか記載の無線通信システム。
[9] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数力 構成されるチャネル行列の QR分解を行って Q行列及び R行 列を出力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補とを基に送信系列と前記送信系 列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの少 なくとも一つを出力する送信系列推定装置と、を前記受信装置に含むことを特徴とす る請求項 1から請求項 5のいずれか記載の無線通信システム。
[10] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、 前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に復調系列に対するシンボル候補を選択して送信シンボル候 補を出力する送信シンボル候補選択装置と、前記変換信号と前記 R行列と前記送信 シンボル候補とを基に前記送信系列と前記送信系列に対する尤度と前記送信系列 によって送信されたビットに対する尤度とのうちの少なくとも一つを出力する送信系列 推定装置と、
前記系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記送信 系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を前記受信装置に含むことを特徴と する請求項 1から請求項 5のいずれか記載の無線通信システム。
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、 前記変換信号と前記 R行列と前記送信系列候補とを基に前記送信系列と前記送 信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうち の少なくとも一つを出力する送信系列推定装置と、
前記送信系列推定装置から出力と前記優先順位とを基に前記送信系列と前記送 信系列に対する尤度と前記送信系列よつて送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を前記受信装置に含むことを特徴と する請求項 1から請求項 5のいずれか記載の無線通信システム。
[12] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数力 構成されるチャネル行列の QR分解を行って Q行列及び R行 列を出力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記受信信号を基に (M - L)個の復調信号に対するシンボル候補を選択して出力 する送信シンボル候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補と前記シンボル候補とを基に送信 系列と前記送信系列に対する尤度と前記送信系列によって送信されたビットに対す る尤度とのうちの少なくとも一つを出力する送信系列推定装置と、を前記受信装置に 含むことを特徴とする請求項 1から請求項 5のいずれか記載の無線通信システム。
[13] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、前記受信信 号を基に (M— L)個の変換信号に対するシンボル候補を選択して出力する送信シン ボル候補選択装置と、
前記変換信号と前記 R行列と前記シンボル候補と前記送信系列候補とを基に前記 送信系列と前記送信系列に対する尤度と前記送信系列によって送信されたビットに 対する尤度とのうちの少なくとも一つを出力する送信系列推定装置と、
前記送信系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記 送信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのう ちの少なくとも一つを復元して出力する復元装置と、を前記受信装置に含むことを特 徴とする請求項 1から請求項 5のいずれか記載の無線通信システム。
[14] 前記送信系列推定装置は、 P段 (Pは 1以上の整数)の尤度計算装置群と信号選択 装置群とを含み、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は、 Kp個 (Kpは 1以上の整 数)の尤度計算装置から構成され、
前記尤度計算装置各々は、変換信号と、前記 R行列と、第 (ρ - 1)段の信号選択装 置から出力される Lp-1個(Lp-1は 1以上の整数)の誤差信号と、送信シンボル候補 とを基に第 P段での尤度の計算及び前記送信シンボル候補の生成を行い、
第 P段の信号選択装置は、前記第 p段の尤度計算装置群から出力された Kp個の 尤度と前記送信シンボル候補とを基に Lp個(Lpは 1以上の整数)の最大尤度と当該 尤度を与える Lp個の送信シンボル候補とを出力することを特徴とする請求項 6から請 求項 13の 、ずれか記載の無線通信システム。
[15] 前記送信系列推定装置は、 P段 (Pは 1以上の整数)の尤度計算装置群と信号選択 装置群とを備え、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は、 Kp個 (Kpは 1以上の整 数)の尤度計算装置から構成され、
各尤度計算装置は、変換信号と、前記 R行列と、第 (ρ - 1)段の信号選択装置から 出力される Kp— 1個 (Kp— 1は 1以上の整数)の誤差信号と、送信シンボル候補とを基 に第 P段での尤度の計算及び前記送信シンボル候補の生成を行い、
第 P段の信号選択装置は、前記第 p段の尤度計算装置群から出力された Kp個の 尤度と前記送信シンボル候補とを基に Kp+ 1個の最大尤度と当該尤度を与える Kp + 1個の送信シンボル候補とを出力することを特徴とする請求項 6から請求項 13のい ずれか記載の無線通信システム。
[16] 前記送信系列推定装置は、 M段 (Mは 2以上の整数)の尤度計算装置群と、 M段 の信号選択装置群とからなることを特徴とする請求項 6から請求項 13のいずれか記 載の無線通信システム。
[17] 前記送信系列推定装置は、 N段 (Nは 2以上の整数)の尤度計算装置群と、 M段の 信号選択装置群とからなることを特徴とする請求項 6から請求項 13のいずれか記載 の無線通信システム。
[18] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確力もしい送信系列を選択して出力することを特徴とする請求項 6から請 求項 13の 、ずれか記載の無線通信システム。
[19] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確カゝらしい送信系列を選択し、当該系列の尤度を出力することを特徴とす る請求項 6から請求項 13のいずれか記載の無線通信システム。
[20] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確力もしい送信系列を選択し、当該系列で送信されたビット系列の尤度を 出力することを特徴とする請求項 6から請求項 13のいずれか記載の無線通信システ ム。
[21] 前記送信系列推定装置は、前記 R行列成分を用いて変換信号レプリカを生成し、 前記変換信号レプリカと前記受信信号とから測定される物理量を用いて尤度計算を 行う尤度計算装置を含むことを特徴とする請求項 6から請求項 13のいずれか記載の 無線通信システム。
[22] 前記尤度計算装置は、前記受信信号と前記変換信号レプリカとの自乗ユークリッド 距離を用いて尤度計算を行うことを特徴とする請求項 21記載の無線通信システム。
[23] 前記尤度計算装置は、前記受信信号と前記変換信号レプリカとの自乗ユークリッド 距離に対して任意の関数演算を施すことにより変換したユークリッド距離を用いて尤 度計算を行うことを特徴とする請求項 21記載の無線通信システム。
[24] 前記送信シンボル候補選択装置は、線形フィルタを用いることを特徴とする請求項
7と請求項 10と請求項 12と請求項 13とのいずれか記載の無線通信システム。
[25] 前記送信シンボル候補選択装置は、最尤系列推定を用いることを特徴とする請求 項 7と請求項 10と請求項 12と請求項 13とのいずれか記載の無線通信システム。
[26] 前記優先順位決定装置は、前記送信系列各々の受信電力を用いることを特徴とす る請求項 8と請求項 10と請求項 11と請求項 13とのいずれか記載の無線通信システ ム。
[27] 前記優先順位決定装置は、前記送信系列各々の受信電力対雑音電力比を用いる ことを特徴とする請求項 8と請求項 10と請求項 11と請求項 13とのいずれか記載の無 線通信システム。
[28] 前記優先順位決定装置は、前記送信系列各々の受信電力対雑音電力及び干渉 電力比を用いることを特徴とする請求項 8と請求項 10と請求項 11と請求項 13との 、 ずれか記載の無線通信システム。
[29] 前記送信系列候補選択装置は、線形フィルタを用いることを特徴とする請求項 9と 請求項 11と請求項 12と請求項 13とのいずれか記載の無線通信システム。
[30] 前記送信系列候補選択装置は、最尤系列推定を用いることを特徴とする請求項 9 と請求項 11と請求項 12と請求項 13とのいずれか記載の無線通信システム。
[31] 前記優先順位決定装置は、前記 M本の送信アンテナから送信されるデータ系列が それぞれ独立の変調方式によって変調され、それら各変調方式がそれぞれ異なった 数の信号点を有する場合において、前記送信アンテナ各々における前記変調方式 を基に前記優先順位を決定することを特徴とする請求項 8と請求項 10と請求項 11と 請求項 13との 、ずれか記載の無線通信システム。
[32] 前記送信アンテナそれぞれにお ヽて変調多値数の小さ!ヽ系列を持つアンテナを優 先することを特徴とする請求項 31記載の無線通信システム。
[33] 前記信号選択装置は、前記 M本の送信アンテナから送信されるデータ系列がそれ ぞれ独立の変調方式によって変調され、それら各変調方式がそれぞれ異なった数の 信号点を有する場合において、次段の尤度計算装置で処理される送信アンテナに おける前記変調方式に応じて出力する誤差信号及び送信シンボル候補の数を決定 することを特徴とする請求項 14から請求項 20のいずれか記載の無線通信システム。
[34] 前記送信系列推定装置は、ビット 0における変換信号レプリカと受信信号との自乗 ユークリッド距離と、ビット 1における変換信号レプリカと受信信号との自乗ユークリッド 距離との差を用いて尤度計算を行う尤度計算装置を含むことを特徴とする請求項 6 力 請求項 13のいずれか記載の無線通信システム。
[35] 前記送信系列推定装置は、ビット 0における変換信号レプリカと受信信号との第 1の 自乗ユークリッド距離と、ビット 1における変換信号レプリカと受信信号との第 2の自乗 ユークリッド距離とを蓄積しかつ蓄積した自乗ユークリッド距離を基に仮の自乗ユーク リツド距離を出力する蓄積装置を含み、
前記尤度計算装置は、前記第 1及び第 2の自乗ユークリッド距離のうちのいずれか が出力されな!、時に前記仮の自乗ユークリッド距離を用いて前記尤度計算を行うこと を特徴とする請求項 34記載の無線通信システム。
[36] 前記自乗ユークリッド距離に替えて、前記自乗ユークリッド距離に対して任意の関 数演算を施すことにより変換したユークリッド距離を用いることを特徴とする請求項 34 または請求項 35記載の無線通信システム。
[37] 前記優先順位決定装置は、前記 M本の送信アンテナから送信されるデータ系列が それぞれ独立の符号化率によって符号化される場合にぉ 、て、前記送信アンテナ各 々における前記符号化率を基に前記優先順位を決定することを特徴とする請求項 8 と請求項 10と請求項 11と請求項 13とのいずれか記載の無線通信システム。
[38] 前記チャネル係数推定装置は, M本 (Mは 2以上の整数)の送信アンテナを備える 送信装置において、 送信アンテナ毎に固有でかつ受信装置側で既知のシンボルパターンで周期的に 送信されたノ ィロットシンボルを用いてチャネル係数を推定することを特徴とする請 求項 6から請求項 13のいずれか記載の無線通信システム。
[39] 前記 QH演算装置は、送信装置において送信信号が予め拡散されてから送信され る場合に、受信信号を逆拡散した逆拡散後の受信信号を要素とする受信信号べタト ルに前記 Q行列の複素共役転置行列を乗算して変換信号として出力することを特徴 とする請求項 6から請求項 13のいずれか記載の無線通信システム。
[40] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、
M本 (Mは 2以上の整数)の送信アンテナを備える送信装置からの送信信号を受信 して復調する無線通信システムであって、自乗ユークリッド距離に対して任意の関数 演算を施すことにより変換したユークリッド距離を用いる手段を前記受信装置に有す ることを特徴とする無線通信システム。
[41] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
ビット 0における第 1の自乗ユークリッド距離と、ビット 1における第 2の自乗ユークリツ ド距離とを蓄積しかつ蓄積した自乗ユークリッド距離を基に仮の自乗ユークリッド距離 を出力する蓄積装置を含み、前記第 1及び第 2の自乗ユークリッド距離のうちのいず れかが出力されない時に前記仮の自乗ユークリッド距離を用いて尤度計算を行う手 段を受信装置に有することを特徴とする無線通信システム。
[42] 前記自乗ユークリッド距離に替えて、前記自乗ユークリッド距離に対して任意の関 数演算を施すことにより変換したユークリッド距離を用いることを特徴とする請求項 41 記載の無線通信システム。
[43] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、
M本 (Mは 2以上の整数)の送信アンテナを備える送信装置からの送信信号を受信 して復調する無線通信システムであって、前記受信アンテナと前記送信アンテナとの 間のチャネル係数を要素とするチャネル行列を用いて受信した信号をヌリングする手 段と、 そのヌリングした信号を基に前記送信信号の復調を行う手段と、を有することを特徴 とする受信装置。
[44] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置において、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力する手段と 、を有することを特徴とする受信装置。
[45] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
前記受信アンテナと前記送信アンテナとの間のチャネル係数を要素とするチャネル 行列を用いて受信した信号に対して当該信号の直交化を示すヌリングを行う手段と、 そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力する手段と 、を有することを特徴とする受信装置。
[46] 前記ヌリングを行う手段は、ヌリングとしてチャネル行列を QR分解して得た Q行列の 複素共役転置行列を用いることを特徴とする請求項 43から請求項 45の 、ずれか記 載の受信装置。
[47] 前記ヌリングした信号を基に第 Mの送信アンテナカゝら送信された送信系列から、第 1の送信アンテナから送信された送信系列へと降順に前記送信信号の復調を行うこ とを特徴とする請求項 43から請求項 45のいずれか記載の受信装置。
[48] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数カゝらなるチャネル行列の QR分解を行って Q行列及び R行列を出 力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、 前記変換信号と前記 R行列とを基に送信系列と前記送信系列に対する尤度と前記 送信系列によって送信されたビットに対する尤度とのうちの少なくとも一つを出力する 送信系列推定装置と、を含むことを特徴とする請求項 43から請求項 47の ゝずれか 記載の受信装置。
[49] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数カゝらなるチャネル行列の QR分解を行って Q行列及び R行列を出 力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に前記変換信号に対するシンボル候補を選択して出力する送 信シンボル候補選択装置と、
前記変換信号と前記シンボル候補と前記 R行列とを基に送信系列と前記送信系列 に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの少な くとも一つを出力する送信系列推定装置と、を含むことを特徴とする請求項 43から請 求項 47の ヽずれか記載の受信装置。
[50] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記変換信号と前記 R行列とを基に前記送信系列と前記送信系列に対する尤度と 前記送信系列によって送信されたビットに対する尤度とのうちの少なくとも一つを出 力する送信系列推定装置と、
前記系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記送信 系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 43か ら請求項 47の 、ずれか記載の受信装置。
[51] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数力 構成されるチャネル行列の QR分解を行って Q行列及び R行 列を出力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補とを基に送信系列と前記送信系 列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの少 なくとも一つを出力する送信系列推定装置と、を含むことを特徴とする請求項 43から 請求項 47の 、ずれか記載の受信装置。
[52] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に復調系列に対するシンボル候補を選択して送信シンボル候 補を出力する送信シンボル候補選択装置と、
前記変換信号と前記 R行列と前記送信シンボル候補とを基に前記送信系列と前記 送信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのう ちの少なくとも一つを出力する送信系列推定装置と、
前記系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記送信 系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 43か ら請求項 47の 、ずれか記載の受信装置。
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補とを基に前記送信系列と前記送 信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうち の少なくとも一つを出力する送信系列推定装置と、
前記送信系列推定装置から出力と前記優先順位とを基に前記送信系列と前記送 信系列に対する尤度と前記送信系列よつて送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 43か ら請求項 47の 、ずれか記載の受信装置。
[54] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数力 構成されるチャネル行列の QR分解を行って Q行列及び R行 列を出力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記受信信号を基に (M - L)個の復調信号に対するシンボル候補を選択して出力 する送信シンボル候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補と前記シンボル候補とを基に送信 系列と前記送信系列に対する尤度と前記送信系列によって送信されたビットに対す る尤度とのうちの少なくとも一つを出力する送信系列推定装置と、を含むことを特徴と する請求項 43から請求項 47のいずれか記載の受信装置。
[55] 受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、 前記受信信号を基に (M— L)個の変換信号に対するシンボル候補を選択して出力 する送信シンボル候補選択装置と、
前記変換信号と前記 R行列と前記シンボル候補と前記送信系列候補とを基に前記 送信系列と前記送信系列に対する尤度と前記送信系列によって送信されたビットに 対する尤度とのうちの少なくとも一つを出力する送信系列推定装置と、
前記送信系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記 送信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのう ちの少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 4
3から請求項 47の 、ずれか記載の受信装置。
[56] 前記送信系列推定装置は、 P段 (Pは 1以上の整数)の尤度計算装置群と信号選択 装置群とを含み、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は、 Kp個 (Kpは 1以上の整 数)の尤度計算装置から構成され、
前記尤度計算装置各々は、変換信号と、前記 R行列と、第 (Ρ - 1)段の信号選択装 置から出力される Lp-1個(Lp-1は 1以上の整数)の誤差信号と、送信シンボル候補 とを基に第 P段での尤度の計算及び前記送信シンボル候補の生成を行い、
第 P段の信号選択装置は、前記第 p段の尤度計算装置群から出力された Kp個の 尤度と前記送信シンボル候補とを基に Lp個(Lpは 1以上の整数)の最大尤度と当該 尤度を与える Lp個の送信シンボル候補とを出力することを特徴とする請求項 48から 請求項 55の 、ずれか記載の受信装置。
[57] 前記送信系列推定装置は、 P段 (Pは 1以上の整数)の尤度計算装置群と信号選択 装置群とを備え、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は、 Kp個 (Kpは 1以上の整 数)の尤度計算装置から構成され、
各尤度計算装置は、変換信号と、前記 R行列と、第 (P - 1)段の信号選択装置から 出力される Kp— 1個 (Kp— 1は 1以上の整数)の誤差信号と、送信シンボル候補とを基 に第 P段での尤度の計算及び前記送信シンボル候補の生成を行い、 第 P段の信号選択装置は、前記第 p段の尤度計算装置群から出力された Kp個の 尤度と前記送信シンボル候補とを基に Κρ+ 1個の最大尤度と当該尤度を与える Κρ + 1個の送信シンボル候補とを出力することを特徴とする請求項 48から請求項 55の いずれか記載の受信装置。
[58] 前記送信系列推定装置は、
Μ段 (Μは 2以上の整数)の尤度計算装置群と、
Μ段の信号選択装置群と、力もなることを特徴とする請求項 48から請求項 55の 、 ずれか記載の受信装置。
[59] 前記送信系列推定装置は、
Ν段 (Νは 2以上の整数)の尤度計算装置群と、
Μ段の信号選択装置群と、力もなることを特徴とする請求項 48から請求項 55の 、 ずれか記載の受信装置。
[60] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確力もしい送信系列を選択して出力することを特徴とする請求項 48から 請求項 55の 、ずれか記載の受信装置。
[61] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確カゝらしい送信系列を選択し、当該系列の尤度を出力することを特徴とす る請求項 48から請求項 55のいずれか記載の受信装置。
[62] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確力もしい送信系列を選択し、当該系列で送信されたビット系列の尤度を 出力することを特徴とする請求項 48から請求項 55のいずれか記載の受信装置。
[63] 前記送信系列推定装置は、前記 R行列成分を用いて変換信号レプリカを生成し、 前記変換信号レプリカと前記受信信号とから測定される物理量を用いて尤度計算を 行う尤度計算装置を含むことを特徴とする請求項 48から請求項 55のいずれか記載 の受信装置。
[64] 前記尤度計算装置は、前記受信信号と前記変換信号レプリカとの自乗ユークリッド 距離を用いて尤度計算を行うことを特徴とする請求項 63記載の受信装置。
[65] 前記尤度計算装置は、前記受信信号と前記変換信号レプリカとの自乗ユークリッド 距離に対して任意の関数演算を施すことにより変換したユークリッド距離を用いて尤 度計算を行うことを特徴とする請求項 63記載の受信装置。
[66] 前記送信シンボル候補選択装置は、線形フィルタを用いることを特徴とする請求項
49と請求項 51と請求項 54と請求項 55とのいずれか記載の受信装置。
[67] 前記送信シンボル候補選択装置は、最尤系列推定を用いることを特徴とする請求 項 49と請求項 51と請求項 54と請求項 55とのいずれか記載の受信装置。
[68] 前記優先順位決定装置は、前記送信系列各々の受信電力を用いることを特徴とす る請求項 50と請求項 52と請求項 53と請求項 55とのいずれか記載の受信装置。
[69] 前記優先順位決定装置は、前記送信系列各々の受信電力対雑音電力比を用いる ことを特徴とする請求項 50と請求項 52と請求項 53と請求項 55とのいずれか記載の 受信装置。
[70] 前記優先順位決定装置は、前記送信系列各々の受信電力対雑音電力及び干渉 電力比を用いることを特徴とする請求項 50と請求項 52と請求項 53と請求項 55との いずれか記載の受信装置。
[71] 前記送信系列候補選択装置は、線形フィルタを用いることを特徴とする請求項 51と 請求項 53と請求項 54と請求項 55とのいずれか記載の受信装置。
[72] 前記送信系列候補選択装置は、最尤系列推定を用いることを特徴とする請求項 51 と請求項 53と請求項 54と請求項 55とのいずれか記載の受信装置。
[73] 前記優先順位決定装置は、前記 M本の送信アンテナから送信されるデータ系列が それぞれ独立の変調方式によって変調され、それら各変調方式がそれぞれ異なった 数の信号点を有する場合において、前記送信アンテナ各々における前記変調方式 を基に前記優先順位を決定することを特徴とする請求項 50と請求項 52と請求項 53 と請求項 54との 、ずれか記載の受信装置。
[74] 前記送信アンテナそれぞれにお ヽて、変調多値数の小さ!ヽ系列を持つアンテナを 優先することを特徴とする請求項 73記載の受信装置。
[75] 前記信号選択装置は、前記 M本の送信アンテナから送信されるデータ系列がそれ ぞれ独立の変調方式によって変調され、それら各変調方式がそれぞれ異なった数の 信号点を有する場合において、次段の尤度計算装置で処理される送信アンテナに おける前記変調方式に応じて出力する誤差信号及び送信シンボル候補の数を決定 することを特徴とする請求項 56から請求項 62のいずれか記載の受信装置。
[76] 前記送信系列推定装置は、ビット 0における変換信号レプリカと受信信号との自乗 ユークリッド距離と、ビット 1における変換信号レプリカと受信信号との自乗ユークリッド 距離との差を用いて尤度計算を行う尤度計算装置を含むことを特徴とする請求項 48 力も請求項 55の 、ずれか記載の受信装置。
[77] 前記送信系列推定装置は、ビット 0における変換信号レプリカと受信信号との第 1の 自乗ユークリッド距離と、ビット 1における変換信号レプリカと受信信号との第 2の自乗 ユークリッド距離とを蓄積し、かつ、蓄積した自乗ユークリッド距離を基に仮の自乗ュ ークリツド距離を出力する蓄積装置を含み、
前記尤度計算装置は、前記第 1及び第 2の自乗ユークリッド距離のうちのいずれか が出力されな!、時に前記仮の自乗ユークリッド距離を用いて前記尤度計算を行うこと を特徴とする請求項 76記載の受信装置。
[78] 前記自乗ユークリッド距離に替えて、前記自乗ユークリッド距離に対して任意の関 数演算を施すことにより変換したユークリッド距離を用いることを特徴とする請求項 76 または 77記載の受信装置。
[79] 前記優先順位決定装置は、前記 M本の送信アンテナから送信されるデータ系列が それぞれ独立の符号化率によって符号化される場合にぉ 、て、前記送信アンテナ各 々における前記符号ィヒ率を基に前記優先順位を決定することを特徴とする請求項 4 6と請求項 48と請求項 49と請求項 51とのいずれか記載の受信装置。
[80] 前記チャネル係数推定装置は, M本 (Mは 2以上の整数)の送信アンテナを備える 送信装置にお!、て、送信アンテナ毎に固有でかつ受信装置側で既知のシンボルパ ターンで周期的に送信されたノ ィロットシンボルを用いてチャネル係数を推定するこ とを特徴とする請求項 48から請求項 55のいずれか記載の受信装置。
[81] 前記 QH演算装置は、送信装置において送信信号が予め拡散されてから送信され る場合に、受信信号を逆拡散した逆拡散後の受信信号を要素とする受信信号べタト ルに前記 Q行列の複素共役転置行列を乗算して変換信号として出力することを特徴 とする請求項 48から請求項 55のいずれか記載の受信装置。 [82] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
自乗ユークリッド距離に対して任意の関数演算を施すことにより変換したユークリツ ド距離を用いる手段を有することを特徴とする受信装置。
[83] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、
ビット 0における第 1の自乗ユークリッド距離と、ビット 1における第 2の自乗ユークリツ ド距離とを蓄積し、かつ、蓄積した自乗ユークリッド距離を基に仮の自乗ユークリッド 距離を出力する蓄積装置を含み、前記第 1及び第 2の自乗ユークリッド距離のうちの
V、ずれかが出力されな 、時に前記仮の自乗ユークリッド距離を用いて尤度計算を行 う手段を有することを特徴とする受信装置。
[84] 前記自乗ユークリッド距離に替えて、前記自乗ユークリッド距離に対して任意の関 数演算を施すことにより変換したユークリッド距離を用いることを特徴とする請求項 83 記載の受信装置。
[85] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 復調方法であって、
前記受信装置側に、前記受信アンテナと前記送信アンテナとの間のチャネル係数 を要素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示す ヌリングを行うステップと、
そのヌリングした信号を基に前記送信信号の復調を行うステップと、を有することを 特徴とする復調方法。
[86] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 復調方法であって、
前記受信装置側に、前記受信アンテナと前記送信アンテナとの間のチャネル係数 を要素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示す ヌリングを行うステップと、
そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力するステツ プと、を有することを特徴とする復調方法。
[87] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 復調方法であって、
前記受信装置側に、前記受信アンテナと前記送信アンテナとの間のチャネル係数 を要素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示す ヌリングを行うステップと、
そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力するステツ プと、を有することを特徴とする復調方法。
[88] 前記ヌリングを行うステップは、ヌリングとしてチャネル行列を QR分解して得た Q行 列の複素共役転置行列を用いることを特徴とする請求項 85から請求項 87のいずれ か記載の復調方法。
[89] 前記ヌリングした信号を基に第 Mの送信アンテナカゝら送信された送信系列から、第 1の送信アンテナから送信された送信系列へと降順に前記送信信号の復調を行うこ とを特徴とする請求項 85から請求項 87のいずれか記載の復調方法。
[90] 前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数カゝらなるチャネル行列の QR分解を行って Q行列及び R行列を出 力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記変換信号と前記 R行列とを基に送信系列と前記送信系列に対する尤度と前記 送信系列によって送信されたビットに対する尤度とのうちの少なくとも一つを出力する 送信系列推定装置と、を含むことを特徴とする請求項 85から請求項 89の ゝずれ力ゝ 記載の復調方法。
[91] 前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数カゝらなるチャネル行列の QR分解を行って Q行列及び R行列を出 力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に前記変換信号に対するシンボル候補を選択して出力する送 信シンボル候補選択装置と、
前記変換信号と前記シンボル候補と前記 R行列とを基に送信系列と前記送信系列 に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの少な くとも一つを出力する送信系列推定装置と、を含むことを特徴とする請求項 85から請 求項 89の 、ずれか記載の復調方法。
[92] 前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記変換信号と前記 R行列とを基に前記送信系列と前記送信系列に対する尤度と 前記送信系列によって送信されたビットに対する尤度とのうちの少なくとも一つを出 力する送信系列推定装置と、
前記系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記送信 系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 85か ら請求項 89の 、ずれか記載の復調方法。
[93] 前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数力 構成されるチャネル行列の QR分解を行って Q行列及び R行 列を出力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補とを基に送信系列と前記送信系 列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの少 なくとも一つを出力する送信系列推定装置と、を含むことを特徴とする請求項 85から 請求項 89の 、ずれか記載の復調方法。
[94] 前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、 前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に復調系列に対するシンボル候補を選択して送信シンボル候 補を出力する送信シンボル候補選択装置と、
前記変換信号と前記 R行列と前記送信シンボル候補とを基に前記送信系列と前記 送信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのう ちの少なくとも一つを出力する送信系列推定装置と、
前記系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記送信 系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 85か ら請求項 89の 、ずれか記載の復調方法。
前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補とを基に前記送信系列と前記送 信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのうち の少なくとも一つを出力する送信系列推定装置と、 前記送信系列推定装置から出力と前記優先順位とを基に前記送信系列と前記送 信系列に対する尤度と前記送信系列よつて送信されたビットに対する尤度とのうちの 少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 85か ら請求項 89の 、ずれか記載の復調方法。
[96] 前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記チャネル係数力 構成されるチャネル行列の QR分解を行って Q行列及び R行 列を出力する QR分解装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記受信信号を基に (M - L)個の復調信号に対するシンボル候補を選択して出力 する送信シンボル候補選択装置と、
前記変換信号と前記 R行列と前記送信系列候補と前記シンボル候補とを基に送信 系列と前記送信系列に対する尤度と前記送信系列によって送信されたビットに対す る尤度とのうちの少なくとも一つを出力する送信系列推定装置と、を含むことを特徴と する請求項 85から請求項 89のいずれか記載の復調方法。
[97] 前記受信装置は、
受信信号を基に前記受信アンテナと前記送信アンテナとの間各々の前記チャネル 係数の推定を行って出力するチャネル係数推定装置と、
前記受信信号を基に前記送信アンテナカゝら送信された送信系列間の優先順位を 決定する優先順位決定装置と、
前記チャネル係数推定装置で推定されたチャネル係数と前記優先順位決定装置 で決定された優先順位とを基に前記チャネル係数の並び替えを行って変形チャネル 行列を出力する並び替え装置と、
前記変形チャネル行列の QR分解を行って Q行列及び R行列を出力する QR分解 装置と、
前記受信信号を要素とする受信信号ベクトルに前記 Q行列の複素共役転置行列を 乗算して変換信号として出力する QH演算装置と、
前記受信信号を基に S (Lは 1以上、 M以下の整数)の変換信号に対する候補系 列を決定して送信系列候補として出力する送信系列候補選択装置と、
前記受信信号を基に (M— L)個の変換信号に対するシンボル候補を選択して出力 する送信シンボル候補選択装置と、
前記変換信号と前記 R行列と前記シンボル候補と前記送信系列候補とを基に前記 送信系列と前記送信系列に対する尤度と前記送信系列によって送信されたビットに 対する尤度とのうちの少なくとも一つを出力する送信系列推定装置と、
前記送信系列推定装置からの出力と前記優先順位とを基に前記送信系列と前記 送信系列に対する尤度と前記送信系列によって送信されたビットに対する尤度とのう ちの少なくとも一つを復元して出力する復元装置と、を含むことを特徴とする請求項 8 5から請求項 89の 、ずれか記載の復調方法。
[98] 前記送信系列推定装置は、 P段 (Pは 1以上の整数)の尤度計算装置群と信号選択 装置群とを含み、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は、 Kp個 (Kpは 1以上の整 数)の尤度計算装置から構成され、
前記尤度計算装置各々は、変換信号と、前記 R行列と、第 (Ρ - 1)段の信号選択装 置から出力される Lp-1個(Lp-1は 1以上の整数)の誤差信号と、送信シンボル候補 とを基に第 P段での尤度の計算及び前記送信シンボル候補の生成を行い、
第 P段の信号選択装置は、前記第 p段の尤度計算装置群から出力された Kp個の 尤度と前記送信シンボル候補とを基に Lp個(Lpは 1以上の整数)の最大尤度と当該 尤度を与える Lp個の送信シンボル候補とを出力することを特徴とする請求項 90から 請求項 97の 、ずれか記載の復調方法。
[99] 前記送信系列推定装置は、 P段 (Pは 1以上の整数)の尤度計算装置群と信号選択 装置群とを備え、
第 p段 (Pは 1以上、 P以下の整数)の尤度計算装置群は、 Kp個 (Kpは 1以上の整 数)の尤度計算装置から構成され、
各尤度計算装置は、変換信号と、前記 R行列と、第 (p - 1)段の信号選択装置から 出力される Kp— 1個 (Κρ— 1は 1以上の整数)の誤差信号と、送信シンボル候補とを基 に第 Ρ段での尤度の計算及び前記送信シンボル候補の生成を行い、
第 Ρ段の信号選択装置は、前記第 ρ段の尤度計算装置群から出力された Kp個の 尤度と前記送信シンボル候補とを基に Kp+ 1個の最大尤度と当該尤度を与える Kp + 1個の送信シンボル候補とを出力することを特徴とする請求項 90から請求項 97の いずれか記載の復調方法。
[100] 前記送信系列推定装置は、 M段 (Mは 2以上の整数)の尤度計算装置群と、 M段 の信号選択装置群とからなることを特徴とする請求項 90から請求項 97のいずれか記 載の復調方法。
[101] 前記送信系列推定装置は、 N段 (Nは 2以上の整数)の尤度計算装置群と、 M段の 信号選択装置群とからなることを特徴とする請求項 90から請求項 97のいずれか記載 の復調方法。
[102] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確力もしい送信系列を選択して出力することを特徴とする請求項 90から 請求項 97の 、ずれか記載の復調方法。
[103] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確カゝらしい送信系列を選択し、当該系列の尤度を出力することを特徴とす る請求項 90から請求項 97のいずれか記載の復調方法。
[104] 前記送信系列推定装置は、複数段の信号選択装置を含み、最終段の信号選択装 置にて最も確力もしい送信系列を選択し、当該系列で送信されたビット系列の尤度を 出力することを特徴とする請求項 90から請求項 97のいずれか記載の復調方法。
[105] 前記送信系列推定装置は、前記 R行列成分を用いて変換信号レプリカを生成し、 前記変換信号レプリカと前記受信信号とから測定される物理量を用いて尤度計算を 行う尤度計算装置を含むことを特徴とする請求項 90から請求項 97のいずれか記載 の復調方法。
[106] 前記尤度計算装置は、前記受信信号と前記変換信号レプリカとの自乗ユークリッド 距離を用いて尤度計算を行うことを特徴とする請求項 105記載の復調方法。
[107] 前記尤度計算装置は、前記受信信号と前記変換信号レプリカとの自乗ユークリッド 距離に対して任意の関数演算を施すことにより変換したユークリッド距離を用いて尤 度計算を行うことを特徴とする請求項 105記載の復調方法。
[108] 前記送信シンボル候補選択装置は、線形フィルタを用いることを特徴とする請求項
91と請求項 94と請求項 96と請求項 97とのいずれか記載の復調方法。
[109] 前記送信シンボル候補選択装置は、最尤系列推定を用いることを特徴とする請求 項 91と請求項 94と請求項 96と請求項 97とのいずれか記載の復調方法。
[110] 前記優先順位決定装置は、前記送信系列各々の受信電力を用いることを特徴とす る請求項 92と請求項 94と請求項 95と請求項 97とのいずれか記載の復調方法。
[111] 前記優先順位決定装置は、前記送信系列各々の受信電力対雑音電力比を用いる ことを特徴とする請求項 92と請求項 94と請求項 95と請求項 97とのいずれか記載の 復調方法。
[112] 前記優先順位決定装置は、前記送信系列各々の受信電力対雑音電力及び干渉 電力比を用いることを特徴とする請求項 92と請求項 94と請求項 95と請求項 97との いずれか記載の復調方法。
[113] 前記送信系列候補選択装置は、線形フィルタを用いることを特徴とする請求項 93と 請求項 95と請求項 96と請求項 97とのいずれか記載の復調方法。
[114] 前記送信系列候補選択装置は、最尤系列推定を用いることを特徴とする請求項 93 と請求項 95と請求項 96と請求項 97とのいずれか記載の復調方法。
[115] 前記優先順位決定装置は、前記 M本の送信アンテナから送信されるデータ系列が それぞれ独立の変調方式によって変調され、それら各変調方式がそれぞれ異なった 数の信号点を有する場合において、前記送信アンテナ各々における前記変調方式 を基に前記優先順位を決定することを特徴とする請求項 92と請求項 94と請求項 95 と請求項 97との 、ずれか記載の復調方法。
[116] 前記送信アンテナそれぞれにお ヽて変調多値数の小さ!ヽ系列を持つアンテナを優 先することを特徴とする請求項 115記載の復調方法。
[117] 前記信号選択装置は、前記 M本の送信アンテナから送信されるデータ系列がそれ ぞれ独立の変調方式によって変調され、それら各変調方式がそれぞれ異なった数の 信号点を有する場合において、次段の尤度計算装置で処理される送信アンテナに おける前記変調方式に応じて出力する誤差信号及び送信シンボル候補の数を決定 することを特徴とする請求項 98から請求項 104のいずれか記載の復調方法。
[118] 前記送信系列推定装置は、ビット 0における変換信号レプリカと受信信号との自乗 ユークリッド距離と、ビット 1における変換信号レプリカと受信信号との自乗ユークリッド 距離との差を用いて尤度計算を行う尤度計算装置を含むことを特徴とする請求項 90 から請求項 97の 、ずれか記載の復調方法。
[119] 前記送信系列推定装置は、ビット 0における変換信号レプリカと受信信号との第 1の 自乗ユークリッド距離と、ビット 1における変換信号レプリカと受信信号との第 2の自乗 ユークリッド距離とを蓄積し、かつ、蓄積した自乗ユークリッド距離を基に仮の自乗ュ ークリツド距離を出力する蓄積装置を含み、
前記尤度計算装置は、前記第 1及び第 2の自乗ユークリッド距離のうちのいずれか が出力されな!、時に前記仮の自乗ユークリッド距離を用いて前記尤度計算を行うこと を特徴とする請求項 118記載の復調方法。
[120] 前記自乗ユークリッド距離に替えて、前記自乗ユークリッド距離に対して任意の関 数演算を施すことにより変換したユークリッド距離を用いることを特徴とする請求項 11 8または請求項 119記載の復調方法。
[121] 前記優先順位決定装置は、前記 M本の送信アンテナから送信されるデータ系列が それぞれ独立の符号化率によって符号化される場合にぉ 、て、前記送信アンテナ各 々における前記符号化率を基に前記優先順位を決定することを特徴とする請求項 9 2と請求項 94と請求項 95と請求項 97とのいずれか記載の復調方法。
[122] 前記チャネル係数推定装置は, M本 (Mは 2以上の整数)の送信アンテナを備える 送信装置において送信アンテナ毎に固有でかつ受信装置側で既知のシンボルバタ ーンで周期的に送信されたパイロットシンボルを用いてチャネル係数を推定すること を特徴とする請求項 90から請求項 97のいずれか記載の復調方法。
[123] 前記 QH演算装置は、送信装置において送信信号が予め拡散されてから送信され る場合に、受信信号を逆拡散した逆拡散後の受信信号を要素とする受信信号べタト ルに前記 Q行列の複素共役転置行列を乗算して変換信号として出力することを特徴 とする請求項 90から請求項 97のいずれか記載の復調方法。
[124] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置において、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 復調方法であって、自乗ユークリッド距離に対して任意の関数演算を施すことにより 変換したユークリッド距離を用いるステップを有することを特徴とした復調方法。
[125] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 無線通信システムであって、ビット 0における第 1の自乗ユークリッド距離と、ビット 1に おける第 2の自乗ユークリッド距離とを蓄積し、かつ、蓄積した自乗ユークリッド距離を 基に仮の自乗ユークリッド距離を出力するステップを含み、前記第 1及び第 2の自乗 ユークリッド距離のうちの ヽずれかが出力されな!ヽ時に前記仮の自乗ユークリッド距 離を用いて尤度計算を行うステップを有することを特徴とした復調方法。
[126] 前記自乗ユークリッド距離に替えて、前記自乗ユークリッド距離に対して任意の関 数演算を施すことにより変換したユークリッド距離を用いることを特徴とする請求項 12 5記載の復調方法。
[127] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 復調方法のプログラムであって、
コンピュータに、前記受信アンテナと前記送信アンテナとの間のチャネル係数を要 素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示すヌリ ングを行う処理と、
そのヌリングした信号を基に前記送信信号の復調を行う処理と、を実行させるため のプログラム。
[128] N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 復調方法のプログラムであって、
コンピュータに、前記受信アンテナと前記送信アンテナとの間のチャネル係数を要 素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示すヌリ ングを行う処理と、
そのヌリングした信号を基に前記送信信号に対する尤度を計算して出力する処理と 、を実行させるためのプログラム。
N本 (Nは 2以上の整数)の受信アンテナを備える受信装置にお 、て、 M本 (Mは 2 以上の整数)の送信アンテナを備える送信装置からの送信信号を受信して復調する 復調方法のプログラムであって、
コンピュータに、前記受信アンテナと前記送信アンテナとの間のチャネル係数を要 素とするチャネル行列を用いて受信した信号に対して当該信号の直交化を示すヌリ ングを行う処理と、
そのヌリングした信号を基に前記送信信号のビットに対する尤度を出力する処理と 、を実行させるためのプログラム。
PCT/JP2005/002124 2004-02-13 2005-02-14 無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプログラム WO2005078955A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/589,460 US7936838B2 (en) 2004-02-13 2005-02-14 Wireless communication system, receiving apparatus, modulating method for use therein, and program therefor
CN200580010958.8A CN1965501B (zh) 2004-02-13 2005-02-14 无线通信系统、接收设备、解调方法
EP05719071.2A EP1717968A4 (en) 2004-02-13 2005-02-14 RADIO COMMUNICATION SYSTEM, RECEPTION DEVICE, DEMODULATION METHOD AND PROGRAM THEREFOR
JP2005517990A JP4728812B2 (ja) 2004-02-13 2005-02-14 無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-035891 2004-02-13
JP2004035891 2004-02-13
JP2004-244164 2004-08-24
JP2004244164 2004-08-24

Publications (1)

Publication Number Publication Date
WO2005078955A1 true WO2005078955A1 (ja) 2005-08-25

Family

ID=34863454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002124 WO2005078955A1 (ja) 2004-02-13 2005-02-14 無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプログラム

Country Status (7)

Country Link
US (1) US7936838B2 (ja)
EP (1) EP1717968A4 (ja)
JP (2) JP4728812B2 (ja)
KR (2) KR100859789B1 (ja)
CN (3) CN1965501B (ja)
SG (1) SG149816A1 (ja)
WO (1) WO2005078955A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243358A (ja) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法および受信装置並びにそのプログラムと記録媒体
JP2007282040A (ja) * 2006-04-10 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2007306535A (ja) * 2006-04-10 2007-11-22 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2008017125A (ja) * 2006-07-05 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2008053853A (ja) * 2006-08-22 2008-03-06 National Institute Of Information & Communication Technology 信号復号装置、信号復号方法、プログラム並びに情報記録媒体
JP2008131366A (ja) * 2006-11-21 2008-06-05 Nippon Telegr & Teleph Corp <Ntt> 無線信号検出方法
JP2008227809A (ja) * 2007-03-12 2008-09-25 Fujitsu Ltd Qrm−mld制御方法及びシステム
JP2008300962A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp 受信機
WO2009038018A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 無線送信装置、無線通信システム及び無線送信方法
WO2009037989A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 無線受信装置及び無線受信方法
WO2009038178A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 送信装置、受信装置、通信システム及び送信方法
US20090175367A1 (en) * 2006-01-06 2009-07-09 Panasonic Corporation Wireless communication device
JP2012095322A (ja) * 2011-12-13 2012-05-17 National Institute Of Information & Communication Technology 信号復号装置および信号復号方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478119B2 (ja) * 2005-05-25 2010-06-09 パナソニック株式会社 受信装置
KR100891448B1 (ko) * 2005-08-04 2009-04-01 삼성전자주식회사 다중 안테나 시스템에서 공간 멀티플랙싱 방식의 검출 장치및 방법
US8121209B2 (en) 2006-07-25 2012-02-21 Marvell World Trade Ltd. Concatenation-assisted symbol-level combining for MIMO systems with HARQ and/or repetition coding
US8929472B1 (en) 2006-07-26 2015-01-06 Marvell International Ltd. Bit-level combining for MIMO systems with HARQ and/or repetition coding
US8699601B1 (en) 2006-08-08 2014-04-15 Marvell World Trade Ltd. Distance-level combining for MIMO systems with HARQ and/or repetition coding
US8411778B1 (en) 2006-08-08 2013-04-02 Marvell World Trade Ltd. Optimal linear equalizer for MIMO systems with HARQ and/or repetition coding
US8718166B2 (en) 2006-08-08 2014-05-06 Marvell World Trade Ltd. Maximal ratio combining of equalized symbols for MIMO systems with HARQ and/or repetition coding
US8223895B2 (en) * 2006-08-22 2012-07-17 Panasonic Corporation Signal separating device and signal separating method
FI20075083A0 (fi) * 2007-02-06 2007-02-06 Nokia Corp Ilmaisumenetelmä ja -laite monivuo-MIMOa varten
US8619910B1 (en) * 2007-04-11 2013-12-31 Marvell International Ltd. Decision feedback equalization for MIMO systems with hybrid ARQ
KR101378266B1 (ko) * 2007-08-16 2014-03-26 재단법인서울대학교산학협력재단 통신 시스템에서 신호를 디코딩하는 수신기 및 방법
US8270515B2 (en) * 2007-09-06 2012-09-18 Alcatel Lucent Providing feedback in a MIMO system
KR101329012B1 (ko) * 2007-10-11 2013-11-12 삼성전자주식회사 Mimo 수신장치 및 그 장치의 신호검출방법
JP5143533B2 (ja) 2007-11-21 2013-02-13 三星電子株式会社 受信装置、及び信号処理方法
US8094708B2 (en) * 2007-11-21 2012-01-10 Samsung Electronics Co., Ltd. Receiver with multiple antennas and method of receiving signals
KR101400852B1 (ko) * 2007-12-05 2014-05-29 삼성전자주식회사 다중 안테나 시스템에서 간섭 제거 장치 및 방법
KR100917862B1 (ko) 2007-12-14 2009-09-18 한국전자통신연구원 다중입력 다중출력 시스템에서 qr 분해 장치 및 그 방법
KR100932789B1 (ko) * 2007-12-15 2009-12-21 한국전자통신연구원 다중입력 다중출력 시스템에서 qr 분해 장치 및 그 방법
US8179990B2 (en) * 2008-01-16 2012-05-15 Mitsubishi Electric Research Laboratories, Inc. Coding for large antenna arrays in MIMO networks
CN102324959B (zh) * 2011-06-10 2013-10-16 宁波大学 一种基于多天线系统协方差矩阵的频谱感知方法
US8804851B2 (en) * 2011-10-04 2014-08-12 Himax Media Solutions, Inc. Iterative detection and decoding device for selecting soft information according to at least one predetermined constraint rule, and related iterative detection and decoding method
CN103701513B (zh) * 2013-12-16 2016-08-17 西安交通大学 广义空间调制系统在相关信道下的发送天线选择方法
US11152994B1 (en) * 2020-05-27 2021-10-19 Apple Inc. Communication of channel state information (CSI) in wireless networks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036440A (ja) * 1999-07-21 2001-02-09 Ntt Docomo Inc 最尤系列推定器、最尤系列推定方法及び受信機

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271187B2 (ja) * 1991-06-21 2002-04-02 ソニー株式会社 軟判定復号回路
US5867538A (en) 1995-08-15 1999-02-02 Hughes Electronics Corporation Computational simplified detection of digitally modulated radio signals providing a detection of probability for each symbol
JP3081522B2 (ja) 1996-02-14 2000-08-28 株式会社エイ・ティ・アール光電波通信研究所 受信信号処理装置
FR2764464B1 (fr) * 1997-06-04 1999-08-13 France Telecom Procede d'allocation dynamique de canaux dans un reseau cellulaire de radiocommunication
JP2000136440A (ja) * 1998-11-04 2000-05-16 Toray Ind Inc 潜在捲縮発現性ポリエステル繊維および製造方法
US6298092B1 (en) 1999-12-15 2001-10-02 Iospan Wireless, Inc. Methods of controlling communication parameters of wireless systems
US8634481B1 (en) * 2000-11-16 2014-01-21 Alcatel Lucent Feedback technique for wireless systems with multiple transmit and receive antennas
JP3714910B2 (ja) * 2001-02-20 2005-11-09 株式会社エヌ・ティ・ティ・ドコモ ターボ受信方法及びその受信機
JP3924507B2 (ja) 2001-07-19 2007-06-06 株式会社エヌ・ティ・ティ・ドコモ シストリックアレー装置
CN1155190C (zh) * 2001-10-09 2004-06-23 华为技术有限公司 垂直的贝尔实验室分层空时编码阵列线性检测方法
US20030125040A1 (en) * 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US7418063B2 (en) 2001-11-16 2008-08-26 Ericsson Inc. DTX detection method with high success probability
US7154936B2 (en) * 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
JP3926641B2 (ja) * 2002-02-13 2007-06-06 株式会社エヌ・ティ・ティ・ドコモ 多入力多出力ターボ受信機
JP3763793B2 (ja) * 2002-03-12 2006-04-05 株式会社東芝 受信装置及び送受信装置
JP4086574B2 (ja) * 2002-04-12 2008-05-14 松下電器産業株式会社 パスサーチ回路、無線受信装置及び無線送信装置
JP4490265B2 (ja) * 2002-07-24 2010-06-23 ビーエイイー・システムズ・インフォメーション・アンド・エレクトロニック・システムズ・インテグレイション・インコーポレーテッド 同一チャネル干渉受信機
JP4197482B2 (ja) * 2002-11-13 2008-12-17 パナソニック株式会社 基地局の送信方法、基地局の送信装置及び通信端末
CN1203637C (zh) * 2003-01-07 2005-05-25 大唐移动通信设备有限公司 时隙cdma系统噪声空间相关特性估计方法
US7873016B2 (en) * 2005-11-07 2011-01-18 Broadcom Corporation Method and system for utilizing tone grouping with givens rotations to reduce overhead associated with explicit feedback information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036440A (ja) * 1999-07-21 2001-02-09 Ntt Docomo Inc 最尤系列推定器、最尤系列推定方法及び受信機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LETAIEF K.B. ET AL: "Joint maximum likelihood detection and interference cancellation for MIMO/OFDM systems", VEHICULAR TECHNOLOGY CONFERENCE 2003 VTC 2003-FALL 2003 IEEE 58TH, vol. 1, 9 October 2003 (2003-10-09), pages 612 - 616, XP010700882 *
See also references of EP1717968A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175367A1 (en) * 2006-01-06 2009-07-09 Panasonic Corporation Wireless communication device
US8243834B2 (en) * 2006-01-06 2012-08-14 Panasonic Corporation Wireless communication device
JP2007243358A (ja) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法および受信装置並びにそのプログラムと記録媒体
JP4708224B2 (ja) * 2006-03-06 2011-06-22 日本電信電話株式会社 無線信号分離方法および受信装置並びにそのプログラムと記録媒体
JP2007282040A (ja) * 2006-04-10 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2007306535A (ja) * 2006-04-10 2007-11-22 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP4722785B2 (ja) * 2006-04-10 2011-07-13 日本電信電話株式会社 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2008017125A (ja) * 2006-07-05 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2008053853A (ja) * 2006-08-22 2008-03-06 National Institute Of Information & Communication Technology 信号復号装置、信号復号方法、プログラム並びに情報記録媒体
JP2008131366A (ja) * 2006-11-21 2008-06-05 Nippon Telegr & Teleph Corp <Ntt> 無線信号検出方法
JP2008227809A (ja) * 2007-03-12 2008-09-25 Fujitsu Ltd Qrm−mld制御方法及びシステム
JP2008300962A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp 受信機
WO2009037989A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 無線受信装置及び無線受信方法
WO2009038178A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 送信装置、受信装置、通信システム及び送信方法
WO2009038018A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 無線送信装置、無線通信システム及び無線送信方法
JP5111512B2 (ja) * 2007-09-21 2013-01-09 シャープ株式会社 送信装置、受信装置、通信システム及び送信方法
JP2012095322A (ja) * 2011-12-13 2012-05-17 National Institute Of Information & Communication Technology 信号復号装置および信号復号方法

Also Published As

Publication number Publication date
CN101677262B (zh) 2013-01-23
CN1965501A (zh) 2007-05-16
US20070155433A1 (en) 2007-07-05
CN102332967B (zh) 2014-04-16
EP1717968A4 (en) 2015-06-17
KR20070011304A (ko) 2007-01-24
SG149816A1 (en) 2009-02-27
JP5175947B2 (ja) 2013-04-03
EP1717968A1 (en) 2006-11-02
CN101677262A (zh) 2010-03-24
JP2011130503A (ja) 2011-06-30
US7936838B2 (en) 2011-05-03
KR100859789B1 (ko) 2008-09-24
CN102332967A (zh) 2012-01-25
JPWO2005078955A1 (ja) 2007-10-18
JP4728812B2 (ja) 2011-07-20
KR20080042944A (ko) 2008-05-15
CN1965501B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2005078955A1 (ja) 無線通信システム、受信装置及びそれらに用いる復調方法並びにそのプログラム
KR101153941B1 (ko) Mimo 다중통신 시스템 및 신호 분리 방법
US7961826B2 (en) Parameterized sphere detector and methods of using the same
CN1902834B (zh) 用于码分多址通信的方法、装置和系统
CN101981846B (zh) 接收设备、接收方法和通信系统
US8488721B2 (en) Adaptive QRD-M algorithm based signal detecting method by using constellation set grouping in spatial multiplexing multiple-input multiple-output system
CN1245606A (zh) 用于数字调制信号的双向解调的方法和装置
WO2009122842A1 (ja) 移動通信システム、受信装置及び方法
CN1329789A (zh) 带可变数量抽头的信道估测器
KR20070081786A (ko) 통신시스템에서 다중입출력을 위한 신호 수신 방법 및 장치
WO2008001979A1 (en) Transmitter having full-diversity and full-rate, a linear space-time code generating method for the transmitter, and a mimo system using same
US8040959B2 (en) Dynamic resource allocation to improve MIMO detection performance
US20130170587A1 (en) Systems and Methods for N-Dimensional Leaf-Node Prediction for MIMO Detection
US20120014469A1 (en) Wireless communication system, device and method
CN1633792B (zh) 使用网格结合判定反馈均衡和补码键控解码的方法和系统
WO2016121625A1 (en) Method for decoding block of data received over communication channel and receiver
WO2008086044A1 (en) Local maximum likelihood detection in a communication system
JP2009055217A (ja) 信号検出装置及び信号検出方法並びにそのプログラムと記録媒体
JP2008053853A (ja) 信号復号装置、信号復号方法、プログラム並びに情報記録媒体
KR100488806B1 (ko) 동적 계획법 기반의 그룹화 기법을 이용한 혼합형 다중사용자 간섭 제거 방법과 그 장치
CN101416415A (zh) 多输入多输出接收装置和多输入多输出通信系统
KR101284833B1 (ko) 다중 입출력 안테나의 최대 우도 검출 장치 및 방법
Liang et al. Over-Saturated Wavelet Packet Multiple Access Communication and Its Multi-User Detection
JP2015012556A (ja) 受信装置および受信方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517990

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005719071

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067018283

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580010958.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005719071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10589460

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067018283

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10589460

Country of ref document: US