WO2005081335A1 - A process for fabricating an organic electronic device and devices made by the processes - Google Patents

A process for fabricating an organic electronic device and devices made by the processes Download PDF

Info

Publication number
WO2005081335A1
WO2005081335A1 PCT/US2005/005582 US2005005582W WO2005081335A1 WO 2005081335 A1 WO2005081335 A1 WO 2005081335A1 US 2005005582 W US2005005582 W US 2005005582W WO 2005081335 A1 WO2005081335 A1 WO 2005081335A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
liquid medium
electronic device
phenyl
Prior art date
Application number
PCT/US2005/005582
Other languages
French (fr)
Inventor
William John Gambogi
Norman Herron
Eric Maurice Smith
Original Assignee
E.I. Dupont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Dupont De Nemours And Company filed Critical E.I. Dupont De Nemours And Company
Publication of WO2005081335A1 publication Critical patent/WO2005081335A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to processes for making organic electronic devices.
  • the invention further relates to devices made by such processes.
  • OLED organic electronic devices
  • the organic photoactive layer emits light through the light- transmitting electrical contact layer upon application of a voltage across the electrical contact layers.
  • organic electroluminescent compounds as the active component in light-emitting diodes. Simple organic molecules, conjugated polymers, and organometallic complexes have been used.
  • Devices which use photoactive materials frequently include one or more organic charge transport layers, which are positioned between the photoactive (e.g., light-emitting) layer and one of the contact layers.
  • a hole transport layer may be positioned between the photoactive layer and the hole-injecting contact layer, also called the anode.
  • An electron transport layer may be positioned between the photoactive layer and the electron-injecting contact layer, also called the cathode.
  • Multilayer polymeric OLEDs have been fabricated by solution processing techniques using one water-soluble organic material and one solvent- soluble organic material.
  • a transport layer of poly(ethylenedioxythiophene)/polystyrenesulfonic acid ("PEDT/PSSA”) is formed from an aqueous medium and overcoated with a light-emitting phenylenevinylene polymer in an organic solvent.
  • PEDT/PSSA poly(ethylenedioxythiophene)/polystyrenesulfonic acid
  • the fabrication of multilayer OLED devices with organic light- emitting materials by non-aqueous solution processing or the combination of vapor deposition and non-aqueous solution processing techniques has generally been unavailable.
  • the organic materials that are useful with such light-emitting materials generally have similar solubility properties in most organic liquids. There is a continuing need for processes to form organic electronic devices.
  • One embodiment is a new process for forming an organic electronic device comprising at least two organic layers, said process comprising (a) applying a first organic layer comprising a first organic material by a method selected from vapor deposition and liquid deposition from a first organic liquid medium; (b) applying a second organic layer comprising a photoactive material directly over the first organic layer by liquid deposition from a second organic liquid medium, wherein the first organic material is sparingly soluble in the second organic liquid medium.
  • Another embodiment is a new organic electronic device made by the above process.
  • FIG. 1 An illustrative example of one organic electronic device which can be made by the new process.
  • FIG. 1 An illustrative example of one organic electronic device which can be made by the new process.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment is a new process for forming an organic electronic device comprising at least two organic layers, said process comprising (a) applying a first organic layer comprising a first organic material by a method selected from vapor deposition and liquid deposition from a first organic liquid medium; (b) applying a second organic layer comprising a photoactive material directly over at least a portion of the first organic layer by liquid deposition from a second organic liquid medium, wherein the first organic material is sparingly soluble in the second organic liquid medium.
  • a first organic layer is applied by a vapor deposition process, or by liquid deposition from an organic liquid medium.
  • the first organic layer comprises an organic material.
  • the organic material can be an active material or an inactive material.
  • active material refers to a material which electronically facilitates the operation of the device. Examples of active materials include, but are not limited to, materials which conduct, inject, transport, or block a charge, where the charge can be either an electron or a hole. Examples of inactive materials include, but are not limited to, planarization materials, insulating materials, and environmental barrier materials. Any conventional vapor deposition technique can be used. Examples of vapor deposition techniques include, but are not limited to, thermal evaporation, chemical vapor deposition, and the like.
  • Typical liquid deposition techniques include, but are not limited to, continuous deposition techniques such as spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray-coating, and continuous nozzle coating; and discontinuous deposition techniques such as ink jet printing, gravure printing, and screen printing.
  • the organic liquid medium can be any one in which the first organic material is soluble or dispersible and from which a film can be formed.
  • the combination of the liquid medium and the first organic material can be in the form of a solution, a dispersion, an emulsion, or other forms.
  • the first organic material is a charge transport material.
  • charge transport material refers to material that can receive a charge from an electrode and facilitate its movement through the thickness of the material with relatively high efficiency and small loss of charge.
  • Hole transport materials are capable of receiving a positive charge from an anode and transporting it.
  • Electron transport materials are capable of receiving a negative charge from a cathode and transporting it.
  • the first organic material is a hole transport material. Any material which functions as a hole transport composition for the photoacitve material can be used. Examples of hole transport materials have been summarized for example, in Kirk-Othmer
  • hole transport molecules are: N,N'-diphenyl-N,N'- bis(3-methylphenyl)-[1 ,1'-biphenyl]-4,4 , -diamine (TPD), 1 ,1-bis[(di-4- tolylamino) phenyljcyclohexane (TAPC), N,N'-bis(4-methylphenyl)-N,N'- bis(4-ethylphenylH1 ,1 , -(3,3'-dimethyl)biphenyl]-4,4 , -diamine (ETPD), tetrakis-(3-methylphenyl)-N,N,N',N , -2,5-phenylenediamine (PDA), a- phenyl-4-N,N-dip
  • hole transport polymers are polyvinylcarbazole, poly(ethylenedioxythiophene), (phenylmethyl)polysilane, and polyaniline.
  • the hole transport material may comprise a polymer, such as polystyrene or polycarbonate, doped with at least one hole transport small molecule, such as those mentioned above. Mixtures of materials can be used.
  • the organic liquid medium for hole transport materials generally comprises an organic liquid. The exact liquid selected will depend on the hole transport material used.
  • the first organic material is an electron transport material. Any material which functions as an electron transport composition for the photoactive material can be used.
  • electron transport materials include, but are not limited to, metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3); phenanthrolines, such as 4,k7-diphenyl-1,10-phenanthroline (DPA), 2,9- dimethyl-1 ,10-phenanthroline (DMPA), and 4,7-diphenyl-2,9-dimethyl- 1 ,10-pheanthroline (DDPA); quinoxalines; and azole compounds such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1 ,3,4-oxadiazole (PBD) and 3-(4- biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1 ,2,4-triazole (TAZ); imidazoles, such as 1,3,5-tri(phenyl-2-benzimidazole)benzene (TPBI); and mixtures thereof.
  • the organic liquid medium for electron transport materials generally comprises an organic liquid.
  • the exact liquid selected will depend on the electron transport material used. Examples of some suitable liquids include, but are not limited to, chlorinated organic liquids, such as chloroform, dichloromethane, and chlorobenzene; alkylated aromatic compounds, such as toluene and xylene; tetrahydrofuran; and N,N- dimethylpyrrolidone.
  • the first organic liquid medium may include additional materials.
  • the additional material may act as a processing aid, may improve the physical or electrical properties of films containing the first organic material, and/or may decrease the aggregation of the first organic material.
  • the first organic layer can be patterned or unpatterned.
  • a second organic layer comprising a photoactive material is applied directly over at least a portion of the first organic layer by liquid deposition from a second organic liquid medium.
  • photoactive refers to any material that exhibits electroluminescence and/or photosensitivity.
  • directly over is intended to mean that the two layers are in physical contact.
  • the photoactive material can be a polymer, such as a phenylenevinylene polymer or copolymer, a fluorene polymer or copolymer, and mixtures thereof; a small molecule organic material, such as anthracene, thiadiazole derivatives, and coumarin derivatives; or an organometallic compound, such as metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq ⁇ ) and cyclometallated metal complexes.
  • the photoactive material is an organometallic compound.
  • the organometallic compound is a complex of at least one metal selected from Re, Ru, Os, Rh, Ir, Pd, Pt, and Au.
  • the organometallic compound is a complex having at least one ligand selected from an aryl-N-heterocycle and a heteroaryl-N-heterocycle, hereinafter referred to collectively as the "first ligand".
  • the first ligand has an aromatic or heteroaromatic ring joined to a N-heteroaromatic ring by a single bond.
  • the first ligand is coordinated to the metal by two points of attachment and is a monoanionic, bidentate ligand, The two points of attachment are through the nitrogen atom of the N-heteroaromatic ring and to a carbon of the aromatic or heteroaromatic ring.
  • the aromatic or heteroaromatic ring may comprise a single ring or a fused ring system.
  • aromatic rings include, but are not limited to phenyl, naphthyl, and anthracenyl.
  • heteroaromatic rings include, but are not limited to, rings derived from thiophene, dithiole, and pyridine.
  • the N-heteroaromatic ring may comprises a single ring or fused ring system.
  • Examples of N-heteroaromatic groups include, but are not limited to, pyridine, pyrazine, pyrimidine, and quinolines.
  • the organometallic compound can have one or more than one first ligand.
  • the organometallic compound can have additional ligands to fill the coordination sphere of the metal.
  • the additional ligands can be anionic or nonionic.
  • the additional ligands can be monodentate or multidentate. Examples of monodentate anionic ligands include, but are not limited to, H ⁇ ("hydride") and ligands having C, O or S as coordinating atoms. Coordinating groups include, but are not limited to alkoxide, carboxylate, thiocarboxylate, dithiocarboxylate, sulfonate, thiolate, nitrile, aryl, carbamate, dithiocarbamate, thiocarbazone anions, sulfonamide anions, and the like.
  • ligands discussed below as bidentate can act as monodentate ligands.
  • the monodentate ligand can also be a coordinating anion such as halide, nitrate, sulfate, hexahaloantimonate, and the like. These ligands are generally available commercially.
  • the multidentate ligands generally have N, O, P, or S as coordinating atoms and form one or more 5- or 6-membered rings when coordinated to the metal. Suitable coordinating groups include amino, imino, amido, alkoxide, carboxylate, phosphino, thiolate, and the like.
  • Suitable parent compounds for these ligands include, but are not limited to ⁇ -dicarbonyls ( ⁇ -enolate ligands), and their N and S analogs; amino carboxylic acids (aminocarboxylate ligands); pyridine carboxylic acids (iminocarboxylate ligands); salicylic acid derivatives (salicylate ligands); hydroxyquinolines (hydroxyquinolinate ligands) and their S analogs; and phosphinoalkanols (phosphinoalkoxide ligands).
  • nonionic ligands include, but are not limited to CO, mono- and multidentate phosphine ligands, isonitriles, imines, and diimines.
  • the metal is selected from Os, Ir, and Pt.
  • the first ligand is selected from a phenyl-pyridine, phenyl-pyrimidine, phenyl-quinoline, bipyridine and thienyl-pyridine.
  • there is an additional ⁇ -enolate ligand examples of specific organometallic compounds have been disclosed in, for example, U.S.
  • the second organic layer can comprise additional materials.
  • a fluorescent dye may be present to alter the color of emission, or a diluent may be present.
  • a diluent may be a charge transport material or an inert matrix.
  • a diluent may comprise polymeric materials, small molecule or mixtures thereof.
  • a diluent may act as a processing aid, may improve the physical or electrical properties of films containing the organometallic compound, may decrease self-quenching in the organometallic compounds described herein, and/or may decrease the aggregation of the organometallic compounds described herein.
  • suitable polymeric materials include poly(N-vinyl carbazole), conjugated polymers, and polysilane.
  • suitable small molecules includes 4,4'-N,N'-dicarbazole biphenyl or tertiary aromatic amines.
  • conjugated polymers examples include polyarylenevinylenes, polyfluorenes, polyoxadiazoles, polyanilines, polythiophenes, polyphenylenes, copolymers thereof and combinations thereof.
  • the conjugated polymer can be a copolymer having non- conjugated portions, for example, acrylic, methacrylic, or vinyl monomeric units.
  • the diluent comprises homopolymers and copolymers of fluorene and substituted fluorenes.
  • the second organic liquid medium is one in which the photoactive material can be dissolved or dispersed to such an extent that a film can be formed.
  • the second organic liquid medium is also one in which the first organic material is sparingly soluble.
  • the term "sparingly soluble” is intended to mean that the material is not completely insoluble, but only a small amount will dissolve or disperse. In general, when a material is sparingly soluble, from 0.1 to 5 mg will dissolve in a 1 mL sample of the liquid. In one embodiment, from 0.3 to 3 mg will dissolve in a 1 mL sample.
  • the second layer is applied to at least a portion of the first layer, the first organic material is dissolved or dispersed in the second organic liquid medium only to a slight extent. This can result in a slight blurring of the interface between the first and second layers, which can be beneficial to device performance.
  • the second organic liquid medium generally comprises an organic liquid.
  • the photoactive material is an organometallic compound and the second organic liquid medium comprises a fluorinated aromatic compound, a linear or branched aliphatic ketone or a linear or branched aliphatic ester. Mixtures of liquids can be used.
  • the second organic liquid medium comprises a liquid selected from ethyl acetate, 4-methyl-4- hydroxy-2-pentanone, trifluorotoluene, and methylethylketone. Any conventional liquid deposition technique can be used to apply the second organic layer.
  • the second organic layer can be patterned or unpatterned.
  • the second organic layer can have a pattern that is the same as or different from the pattern of the first organic layer.
  • Organic electronic devices that can be made by the new process include, but are not limited to, (1) devices that convert electrical energy into radiation (e.g., a light-emitting diode (“OLED"), light emitting diode display, or diode laser), (2) devices that detect signals through electronic processes (e.g., photodetectors (e.g., photoconductive cells, photoresistors, photoswitches, phototransistors, phototubes), IR detectors), (3) devices that convert radiation into electrical energy, (e.g., a photovoltaic device or solar cell), and (4) devices that include one or more electronic components that include two or more organic semi-conductor layers (e.g., a transistor or diode).
  • OLED light-emitting diode
  • LED light emitting diode display
  • diode laser devices that detect signals through electronic processes
  • photodetectors e.g., photoconductive cells, photoresistors, photoswitches, phototransistors, phototubes
  • IR detectors e
  • the device 100 has an anode layer 110 and a cathode layer 160. Adjacent to the anode is a layer 120 comprising hole transport material. Adjacent to the cathode is a layer 140 comprising an electron transport and/or anti-quenching material. Between the hole transport layer and the electron transport and/or anti-quenching layer is the photoactive layer 130. As an option, devices frequently use another electron transport layer 150, next to the cathode. Layers 120, 130, 140, and 150 are individually and collectively referred to as the active layers.
  • the photoactive layer 130 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector).
  • an applied voltage such as in a light-emitting diode or light-emitting electrochemical cell
  • a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage
  • photodetectors include photoconductive cells, photoresistors, photoswitches, phototransistors, and phototubes, and photovoltaic cells, as these terms are describe in Markus, John, Electronics and Nucleonics Dictionary, 470 and 476 (McGraw-Hill, Inc. 1966).
  • the anode 110 is an electrode that is particularly efficient for injecting positive charge carriers. It can be made of, for example materials containing a metal, mixed metal, alloy, metal oxide or mixed-metal oxide, or it can be a conducting polymer, and mixtures thereof. Suitable metals include the Group 11 metals, the metals in Groups 4, 5, and 6, and the Group 8-10 transition metals. If the anode is to be light-transmitting, mixed-metal oxides of Groups 12, 13 and 14 metals, such as indium-tin- oxide, are generally used.
  • the anode 110 may also comprise an organic material such as polyaniline as described in "Flexible light-emitting diodes made from soluble conducting polymer," Nature vol. 357, pp 477-479 (11 June 1992). At least one of the anode and cathode should be at least partially transparent to allow the generated light to be observed.
  • the cathode 160 is an electrode that is particularly efficient for injecting electrons or negative charge carriers.
  • the cathode can be any metal or nonmetal having a lower work function than the anode.
  • Materials for the cathode can be selected from alkali metals of Group 1 (e.g., Li, Cs), the Group 2 (alkaline earth) metals, the Group 12 metals, including the rare earth elements and lanthanides, and the actinides. Materials such as aluminum, indium, calcium, barium, samarium and magnesium, as well as combinations, can be used. Li-containing organometallic compounds, LiF, and Li 2 O can also be deposited between the organic layer and the cathode layer to lower the operating voltage. It is known to have other layers in organic electronic devices.
  • anode 110 there can be a layer (not shown) between the anode 110 and hole transport layer 120 to facilitate positive charge transport and/or band- gap matching of the layers, or to function as a protective layer.
  • Layers that are known in the art can be used.
  • any of the above- described layers can be made of two or more layers.
  • some or all of anode layer 110, the hole transport layer 120, the electron transport layers 140 and 150, and cathode layer 160 may be surface treated to increase charge carrier transport efficiency.
  • the choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency with device operational lifetime. It is understood that each functional layer may be made up of more than one layer.
  • the device can be prepared by a variety of techniques, including sequentially depositing the individual layers on a suitable substrate.
  • Substrates such as glass and polymeric films can be used.
  • Metal electrodes can be formed using conventional vapor deposition techniques can be used, such as thermal evaporation, chemical vapor deposition, and the like. If an organic electrode is used, it can be applied from solutions or dispersions in suitable liquids, using any liquid deposition techniques, as described above.
  • the different layers will have the following range of thicknesses: anode 110, 500-5000A, preferably 1000-2000A; hole transport layer 120, 50-2000A, preferably 200-1000A; photoactive layer 130, 10-2000 A, preferably 100-1000A; electron transport layer 140 and 150, 50-2000A, preferably 100-1000A; cathode 160, 200-10000A, preferably 300-5000A.
  • the location of the electron-hole recombination zone in the device, and thus the emission spectrum of the device, can be affected by the relative thickness of each layer.
  • the thickness of the electron-transport layer should be chosen so that the electron-hole recombination zone is in the light-emitting layer.
  • aliphatic is intended to mean an organic compound or group which does not contain a ring of atoms with delocalized pi-electrons.
  • aromatic is intended to mean an organic compound or group which contains at least one ring of atoms with delocalized pi-electrons.
  • aryl is intended to mean a group derived from an aromatic hydrocarbon having one point of attachment, which group may be unsubstituted or substituted.
  • heteroaryl is intended to mean a group derived from an aromatic group having at least one heteroatom and having one point of attachment, which group may be unsubstituted or substituted.
  • film refers to a coating covering a desired area.
  • the area can be as large as an entire display, or as small as a single pixel.
  • Films can be formed by any conventional deposition technique, including vapor deposition and liquid deposition.
  • organic refers to a material that is composed primarily of carbon and hydrogen atoms.
  • a “hydrocarbyl” moiety may also contain heteroatoms, e.g., N, O, P, Si, and the like.
  • compound is intended to mean an electrically uncharged substance made up of molecules that further consist of atoms, wherein the atoms cannot be separated by physical means.
  • ligand is intended to mean a molecule, ion, or atom that is attached to the coordination sphere of a metallic ion.
  • complex when used as a noun, is intended to mean a compound having at least one metallic ion and at least one ligand.
  • IUPAC numbering system is used throughout, where the groups from the Periodic Table are numbered from left to right St as 1 through 18 (CRC Handbook of Chemistry and Physics, 81 Edition, 2000).
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • "or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • “the”, “a” or “an” are employed to describe elements and components of the invention. This is done merely for convenience and to give a general sense of the invention.
  • EXAMPLE 1 This example illustrates the formation of an OLED device using the new process, in which the first organic layer is apply by vapor deposition.
  • NPD is 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl, from H. W. Sands Corp. (Jupiter, FL)
  • TPBI is 1 ,3,5-tri(phenyl-2-benzimidazole)benzene, and was made according to the procedure in Examples 1 and 2 of U.S.
  • the compound was made according to the procedure in Example 10 of U.S. Patent 6,670,645. Substrates of glass with a patterned layer of indium tin oxide were cleaned and treated with oxygen plasma. The substrates were then masked and loaded into a vacuum evaporator chamber. The chamber was evacuated, reaching a pressure of 1 x 10 "6 mbar. A 100 A layer of copper phthalocyanine was then thermally evaporated, followed by a 300 A layer of NPD. The chamber was then backfilled with nitrogen and the substrates were removed. The substrates were then spin-coated with a 1% w/v solution of Ir compound 1 and mCP (8:92) in 4-hydroxy-4-methyl- 2-pentanone.
  • the inactive area of the device was cleaned with chloroform-wetted swabs, removing excess film.
  • the substrates were then masked and loaded into a vacuum evaporator chamber.
  • the chamber was evacuated, reaching a pressure of 3 x 10 "7 mbar, and then a 600 A layer of TPBI was thermally evaporated.
  • the chamber was backfilled with nitrogen, a new mask was placed over the substrates, and chamber was re-evacuated. After reaching a pressure of 8 x 10 "7 mbar, a 10 A layer LiF was thermally evaporated, followed by a 2000 A layer of Al.
  • the chamber was then backfilled with nitrogen and the devices were encapsulated using standard techniques.

Abstract

The present invention relates to a process for forming an organic electronic device comprising at least two organic layers, said process comprising (a) applying a first organic layer comprising a first organic material by a method selected from vapor deposition and liquid deposition from a first organic liquid medium; (b) applying a second organic layer comprising a photoactive compound directly over at least a portion of the first organic layer by liquid deposition from a second organic liquid medium, wherein the first organic material is sparingly soluble in the second organic liquid medium.

Description

TITLE
A PROCESS FOR FABRICATING AN ORGANIC ELECTRONIC DEVICE AND DEVICES MADE BY THE PROCESS BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to processes for making organic electronic devices. The invention further relates to devices made by such processes. Background In organic electronic devices, such as light-emitting diodes ("OLED"), that make up OLED displays, the organic active layer is sandwiched between two electrical contact layers in an OLED display. In an OLED the organic photoactive layer emits light through the light- transmitting electrical contact layer upon application of a voltage across the electrical contact layers. It is well known to use organic electroluminescent compounds as the active component in light-emitting diodes. Simple organic molecules, conjugated polymers, and organometallic complexes have been used. Devices which use photoactive materials, frequently include one or more organic charge transport layers, which are positioned between the photoactive (e.g., light-emitting) layer and one of the contact layers. A hole transport layer may be positioned between the photoactive layer and the hole-injecting contact layer, also called the anode. An electron transport layer may be positioned between the photoactive layer and the electron-injecting contact layer, also called the cathode. Fabrication of organic electronic devices by solution processing techniques, such as spin-coating or ink-jetting, can have manufacturing advantages over vapor deposition techniques. In the field of OLEDs, multilayer devices have demonstrated performance advantages over simple one-, or two-layer devices. Multilayer OLEDs with small organic molecules are generally fabricated by vapor deposition techniques. Multilayer polymeric OLEDs have been fabricated by solution processing techniques using one water-soluble organic material and one solvent- soluble organic material. For example, a transport layer of poly(ethylenedioxythiophene)/polystyrenesulfonic acid ("PEDT/PSSA") is formed from an aqueous medium and overcoated with a light-emitting phenylenevinylene polymer in an organic solvent. The fabrication of multilayer OLED devices with organic light- emitting materials by non-aqueous solution processing or the combination of vapor deposition and non-aqueous solution processing techniques has generally been unavailable. The organic materials that are useful with such light-emitting materials generally have similar solubility properties in most organic liquids. There is a continuing need for processes to form organic electronic devices. SUMMARY OF THE INVENTION One embodiment is a new process for forming an organic electronic device comprising at least two organic layers, said process comprising (a) applying a first organic layer comprising a first organic material by a method selected from vapor deposition and liquid deposition from a first organic liquid medium; (b) applying a second organic layer comprising a photoactive material directly over the first organic layer by liquid deposition from a second organic liquid medium, wherein the first organic material is sparingly soluble in the second organic liquid medium. Another embodiment is a new organic electronic device made by the above process. The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as defined in the appended claims. DESCRIPTION OF THE DRAWINGS The invention is illustrated by way of example and not limitation in the accompanying figures. Figure 1 : An illustrative example of one organic electronic device which can be made by the new process. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment is a new process for forming an organic electronic device comprising at least two organic layers, said process comprising (a) applying a first organic layer comprising a first organic material by a method selected from vapor deposition and liquid deposition from a first organic liquid medium; (b) applying a second organic layer comprising a photoactive material directly over at least a portion of the first organic layer by liquid deposition from a second organic liquid medium, wherein the first organic material is sparingly soluble in the second organic liquid medium. In the new process, a first organic layer is applied by a vapor deposition process, or by liquid deposition from an organic liquid medium. The first organic layer comprises an organic material. The organic material can be an active material or an inactive material. As used herein, the term "active material" refers to a material which electronically facilitates the operation of the device. Examples of active materials include, but are not limited to, materials which conduct, inject, transport, or block a charge, where the charge can be either an electron or a hole. Examples of inactive materials include, but are not limited to, planarization materials, insulating materials, and environmental barrier materials. Any conventional vapor deposition technique can be used. Examples of vapor deposition techniques include, but are not limited to, thermal evaporation, chemical vapor deposition, and the like. Any conventional liquid deposition technique can be used. Typical liquid deposition techniques include, but are not limited to, continuous deposition techniques such as spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray-coating, and continuous nozzle coating; and discontinuous deposition techniques such as ink jet printing, gravure printing, and screen printing. The organic liquid medium can be any one in which the first organic material is soluble or dispersible and from which a film can be formed. The combination of the liquid medium and the first organic material can be in the form of a solution, a dispersion, an emulsion, or other forms. In one embodiment, the first organic material is a charge transport material. As used herein, the term "charge transport material" refers to material that can receive a charge from an electrode and facilitate its movement through the thickness of the material with relatively high efficiency and small loss of charge. Hole transport materials are capable of receiving a positive charge from an anode and transporting it. Electron transport materials are capable of receiving a negative charge from a cathode and transporting it. In one embodiment, the first organic material is a hole transport material. Any material which functions as a hole transport composition for the photoacitve material can be used. Examples of hole transport materials have been summarized for example, in Kirk-Othmer
Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, p. 837-860, 1996, by Y. Wang. Both hole transport molecules and polymers can be used. Commonly used hole transport molecules are: N,N'-diphenyl-N,N'- bis(3-methylphenyl)-[1 ,1'-biphenyl]-4,4,-diamine (TPD), 1 ,1-bis[(di-4- tolylamino) phenyljcyclohexane (TAPC), N,N'-bis(4-methylphenyl)-N,N'- bis(4-ethylphenylH1 ,1,-(3,3'-dimethyl)biphenyl]-4,4,-diamine (ETPD), tetrakis-(3-methylphenyl)-N,N,N',N,-2,5-phenylenediamine (PDA), a- phenyl-4-N,N-diphenylaminostyrene (TPS), p-(diethylamino)benzaldehyde diphenylhydrazone (DEH), triphenylamine (TPA), bis[4-(N,N- diethylamino)-2-methylphenyl](4-methylphenyl)methane (MPMP), 4,4'- dicarbazole-biphenyl (CBP), 3,5-bis(N-carbazolyl)benzene (mCP), 4,4'- bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), 1-phenyl-3-[p- (diethylamino)styryl]-5-[p-(diethylamino)phenyl] pyrazoline (PPR or DEASP), 1 ,2-trans-bis(9H-carbazol-9-yl)cyclobutane (DCZB), N,N,N',N'-tetrakis(4-methylphenyl)-(1,1,-biphenyl)-4,4'-diamine (TTB), and porphyrinic compounds, such as copper phthalocyanine. Commonly used hole transport polymers are polyvinylcarbazole, poly(ethylenedioxythiophene), (phenylmethyl)polysilane, and polyaniline. The hole transport material may comprise a polymer, such as polystyrene or polycarbonate, doped with at least one hole transport small molecule, such as those mentioned above. Mixtures of materials can be used. The organic liquid medium for hole transport materials generally comprises an organic liquid. The exact liquid selected will depend on the hole transport material used. Examples of some suitable liquids include, but are not limited to, chlorinated organic liquids, such as chloroform, dichloromethane, and chlorobenzene; alkylated aromatic compounds, such as toluene and xylene; tetrahydrofuran; and N,N-dimethylpyrrolidone. In one embodiment, the first organic material is an electron transport material. Any material which functions as an electron transport composition for the photoactive material can be used. Examples of electron transport materials include, but are not limited to, metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3); phenanthrolines, such as 4,k7-diphenyl-1,10-phenanthroline (DPA), 2,9- dimethyl-1 ,10-phenanthroline (DMPA), and 4,7-diphenyl-2,9-dimethyl- 1 ,10-pheanthroline (DDPA); quinoxalines; and azole compounds such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1 ,3,4-oxadiazole (PBD) and 3-(4- biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1 ,2,4-triazole (TAZ); imidazoles, such as 1,3,5-tri(phenyl-2-benzimidazole)benzene (TPBI); and mixtures thereof. The organic liquid medium for electron transport materials generally comprises an organic liquid. The exact liquid selected will depend on the electron transport material used. Examples of some suitable liquids include, but are not limited to, chlorinated organic liquids, such as chloroform, dichloromethane, and chlorobenzene; alkylated aromatic compounds, such as toluene and xylene; tetrahydrofuran; and N,N- dimethylpyrrolidone. The first organic liquid medium may include additional materials. The additional material may act as a processing aid, may improve the physical or electrical properties of films containing the first organic material, and/or may decrease the aggregation of the first organic material. The first organic layer can be patterned or unpatterned. In the new process, a second organic layer comprising a photoactive material is applied directly over at least a portion of the first organic layer by liquid deposition from a second organic liquid medium. The term "photoactive" refers to any material that exhibits electroluminescence and/or photosensitivity. The term "directly over" is intended to mean that the two layers are in physical contact. The photoactive material can be a polymer, such as a phenylenevinylene polymer or copolymer, a fluorene polymer or copolymer, and mixtures thereof; a small molecule organic material, such as anthracene, thiadiazole derivatives, and coumarin derivatives; or an organometallic compound, such as metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alqβ) and cyclometallated metal complexes. In one embodiment, the photoactive material is an organometallic compound. In one embodiment, the organometallic compound is a complex of at least one metal selected from Re, Ru, Os, Rh, Ir, Pd, Pt, and Au. In one embodiment, the organometallic compound is a complex having at least one ligand selected from an aryl-N-heterocycle and a heteroaryl-N-heterocycle, hereinafter referred to collectively as the "first ligand". The first ligand has an aromatic or heteroaromatic ring joined to a N-heteroaromatic ring by a single bond. The first ligand is coordinated to the metal by two points of attachment and is a monoanionic, bidentate ligand, The two points of attachment are through the nitrogen atom of the N-heteroaromatic ring and to a carbon of the aromatic or heteroaromatic ring. The aromatic or heteroaromatic ring may comprise a single ring or a fused ring system. Examples of aromatic rings include, but are not limited to phenyl, naphthyl, and anthracenyl. Examples of heteroaromatic rings include, but are not limited to, rings derived from thiophene, dithiole, and pyridine. The N-heteroaromatic ring may comprises a single ring or fused ring system. Examples of N-heteroaromatic groups include, but are not limited to, pyridine, pyrazine, pyrimidine, and quinolines. The organometallic compound can have one or more than one first ligand. The organometallic compound can have additional ligands to fill the coordination sphere of the metal. The additional ligands can be anionic or nonionic. The additional ligands can be monodentate or multidentate. Examples of monodentate anionic ligands include, but are not limited to, H~ ("hydride") and ligands having C, O or S as coordinating atoms. Coordinating groups include, but are not limited to alkoxide, carboxylate, thiocarboxylate, dithiocarboxylate, sulfonate, thiolate, nitrile, aryl, carbamate, dithiocarbamate, thiocarbazone anions, sulfonamide anions, and the like. In some cases, ligands discussed below as bidentate, such as β-enolates and phosphinoakoxides, can act as monodentate ligands. The monodentate ligand can also be a coordinating anion such as halide, nitrate, sulfate, hexahaloantimonate, and the like. These ligands are generally available commercially. The multidentate ligands generally have N, O, P, or S as coordinating atoms and form one or more 5- or 6-membered rings when coordinated to the metal. Suitable coordinating groups include amino, imino, amido, alkoxide, carboxylate, phosphino, thiolate, and the like. Examples of suitable parent compounds for these ligands include, but are not limited to β-dicarbonyls (β-enolate ligands), and their N and S analogs; amino carboxylic acids (aminocarboxylate ligands); pyridine carboxylic acids (iminocarboxylate ligands); salicylic acid derivatives (salicylate ligands); hydroxyquinolines (hydroxyquinolinate ligands) and their S analogs; and phosphinoalkanols (phosphinoalkoxide ligands). Examples of nonionic ligands include, but are not limited to CO, mono- and multidentate phosphine ligands, isonitriles, imines, and diimines. In one embodiment of the organometallic compound, the metal is selected from Os, Ir, and Pt. In one embodiment, the first ligand is selected from a phenyl-pyridine, phenyl-pyrimidine, phenyl-quinoline, bipyridine and thienyl-pyridine. In one embodiment, there is an additional β-enolate ligand. Examples of specific organometallic compounds have been disclosed in, for example, U.S. Patents 6,670,645 and 6,303,238, and in published applications US 2001/0019782, EP 1191612, WO 02/15645, and EP 1191614. The second organic layer can comprise additional materials. For example, a fluorescent dye may be present to alter the color of emission, or a diluent may be present. A diluent may be a charge transport material or an inert matrix. A diluent may comprise polymeric materials, small molecule or mixtures thereof. A diluent may act as a processing aid, may improve the physical or electrical properties of films containing the organometallic compound, may decrease self-quenching in the organometallic compounds described herein, and/or may decrease the aggregation of the organometallic compounds described herein. Non- limiting examples of suitable polymeric materials include poly(N-vinyl carbazole), conjugated polymers, and polysilane. Non-limiting examples of suitable small molecules includes 4,4'-N,N'-dicarbazole biphenyl or tertiary aromatic amines. Examples of suitable conjugated polymers include polyarylenevinylenes, polyfluorenes, polyoxadiazoles, polyanilines, polythiophenes, polyphenylenes, copolymers thereof and combinations thereof. The conjugated polymer can be a copolymer having non- conjugated portions, for example, acrylic, methacrylic, or vinyl monomeric units. In one embodiment, the diluent comprises homopolymers and copolymers of fluorene and substituted fluorenes. The second organic liquid medium is one in which the photoactive material can be dissolved or dispersed to such an extent that a film can be formed. The second organic liquid medium is also one in which the first organic material is sparingly soluble. As used herein, the term "sparingly soluble" is intended to mean that the material is not completely insoluble, but only a small amount will dissolve or disperse. In general, when a material is sparingly soluble, from 0.1 to 5 mg will dissolve in a 1 mL sample of the liquid. In one embodiment, from 0.3 to 3 mg will dissolve in a 1 mL sample. When the second layer is applied to at least a portion of the first layer, the first organic material is dissolved or dispersed in the second organic liquid medium only to a slight extent. This can result in a slight blurring of the interface between the first and second layers, which can be beneficial to device performance. The second organic liquid medium generally comprises an organic liquid. The exact liquid selected will depend on the nature of the first organic material and the photoactive material. In one embodiment, the photoactive material is an organometallic compound and the second organic liquid medium comprises a fluorinated aromatic compound, a linear or branched aliphatic ketone or a linear or branched aliphatic ester. Mixtures of liquids can be used. In one embodiment, the second organic liquid medium comprises a liquid selected from ethyl acetate, 4-methyl-4- hydroxy-2-pentanone, trifluorotoluene, and methylethylketone. Any conventional liquid deposition technique can be used to apply the second organic layer. The second organic layer can be patterned or unpatterned. The second organic layer can have a pattern that is the same as or different from the pattern of the first organic layer.
Electronic Device The present invention also relates to an electronic device made by the above process. Types of organic electronic devices that can be made by the new process include, but are not limited to, (1) devices that convert electrical energy into radiation (e.g., a light-emitting diode ("OLED"), light emitting diode display, or diode laser), (2) devices that detect signals through electronic processes (e.g., photodetectors (e.g., photoconductive cells, photoresistors, photoswitches, phototransistors, phototubes), IR detectors), (3) devices that convert radiation into electrical energy, (e.g., a photovoltaic device or solar cell), and (4) devices that include one or more electronic components that include two or more organic semi-conductor layers (e.g., a transistor or diode). One illustration of an organic electronic device structure is shown in Figure 1. The device 100 has an anode layer 110 and a cathode layer 160. Adjacent to the anode is a layer 120 comprising hole transport material. Adjacent to the cathode is a layer 140 comprising an electron transport and/or anti-quenching material. Between the hole transport layer and the electron transport and/or anti-quenching layer is the photoactive layer 130. As an option, devices frequently use another electron transport layer 150, next to the cathode. Layers 120, 130, 140, and 150 are individually and collectively referred to as the active layers. Depending upon the application of the device 100, the photoactive layer 130 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector). Examples of photodetectors include photoconductive cells, photoresistors, photoswitches, phototransistors, and phototubes, and photovoltaic cells, as these terms are describe in Markus, John, Electronics and Nucleonics Dictionary, 470 and 476 (McGraw-Hill, Inc. 1966). Materials suitable for use in the hole transport layer 120, the photoactive layer 130, and the electron transport layer 140, have been discussed above. The anode 110, is an electrode that is particularly efficient for injecting positive charge carriers. It can be made of, for example materials containing a metal, mixed metal, alloy, metal oxide or mixed-metal oxide, or it can be a conducting polymer, and mixtures thereof. Suitable metals include the Group 11 metals, the metals in Groups 4, 5, and 6, and the Group 8-10 transition metals. If the anode is to be light-transmitting, mixed-metal oxides of Groups 12, 13 and 14 metals, such as indium-tin- oxide, are generally used. The anode 110 may also comprise an organic material such as polyaniline as described in "Flexible light-emitting diodes made from soluble conducting polymer," Nature vol. 357, pp 477-479 (11 June 1992). At least one of the anode and cathode should be at least partially transparent to allow the generated light to be observed. The cathode 160, is an electrode that is particularly efficient for injecting electrons or negative charge carriers. The cathode can be any metal or nonmetal having a lower work function than the anode. Materials for the cathode can be selected from alkali metals of Group 1 (e.g., Li, Cs), the Group 2 (alkaline earth) metals, the Group 12 metals, including the rare earth elements and lanthanides, and the actinides. Materials such as aluminum, indium, calcium, barium, samarium and magnesium, as well as combinations, can be used. Li-containing organometallic compounds, LiF, and Li2O can also be deposited between the organic layer and the cathode layer to lower the operating voltage. It is known to have other layers in organic electronic devices. For example, there can be a layer (not shown) between the anode 110 and hole transport layer 120 to facilitate positive charge transport and/or band- gap matching of the layers, or to function as a protective layer. Layers that are known in the art can be used. In addition, any of the above- described layers can be made of two or more layers. Alternatively, some or all of anode layer 110, the hole transport layer 120, the electron transport layers 140 and 150, and cathode layer 160, may be surface treated to increase charge carrier transport efficiency. The choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency with device operational lifetime. It is understood that each functional layer may be made up of more than one layer. The device can be prepared by a variety of techniques, including sequentially depositing the individual layers on a suitable substrate. Substrates such as glass and polymeric films can be used. Metal electrodes can be formed using conventional vapor deposition techniques can be used, such as thermal evaporation, chemical vapor deposition, and the like. If an organic electrode is used, it can be applied from solutions or dispersions in suitable liquids, using any liquid deposition techniques, as described above. In general, the different layers will have the following range of thicknesses: anode 110, 500-5000A, preferably 1000-2000A; hole transport layer 120, 50-2000A, preferably 200-1000A; photoactive layer 130, 10-2000 A, preferably 100-1000A; electron transport layer 140 and 150, 50-2000A, preferably 100-1000A; cathode 160, 200-10000A, preferably 300-5000A. The location of the electron-hole recombination zone in the device, and thus the emission spectrum of the device, can be affected by the relative thickness of each layer. Thus the thickness of the electron-transport layer should be chosen so that the electron-hole recombination zone is in the light-emitting layer. The desired ratio of layer thicknesses will depend on the exact nature of the materials used. As used herein, the term "aliphatic" is intended to mean an organic compound or group which does not contain a ring of atoms with delocalized pi-electrons. The term "aromatic" is intended to mean an organic compound or group which contains at least one ring of atoms with delocalized pi-electrons. The term "aryl" is intended to mean a group derived from an aromatic hydrocarbon having one point of attachment, which group may be unsubstituted or substituted. The term "heteroaryl" is intended to mean a group derived from an aromatic group having at least one heteroatom and having one point of attachment, which group may be unsubstituted or substituted. The term "film" refers to a coating covering a desired area. The area can be as large as an entire display, or as small as a single pixel. Films can be formed by any conventional deposition technique, including vapor deposition and liquid deposition. As used herein, "organic" refers to a material that is composed primarily of carbon and hydrogen atoms. As used herein, a "hydrocarbyl" moiety may also contain heteroatoms, e.g., N, O, P, Si, and the like. The term "compound" is intended to mean an electrically uncharged substance made up of molecules that further consist of atoms, wherein the atoms cannot be separated by physical means. The term "ligand" is intended to mean a molecule, ion, or atom that is attached to the coordination sphere of a metallic ion. The term "complex", when used as a noun, is intended to mean a compound having at least one metallic ion and at least one ligand. In addition, the IUPAC numbering system is used throughout, where the groups from the Periodic Table are numbered from left to right St as 1 through 18 (CRC Handbook of Chemistry and Physics, 81 Edition, 2000). As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present). Also, "the", "a" or "an" are employed to describe elements and components of the invention. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Unless otherwise defined, all letter symbols in the figures represent atoms with that atomic abbreviation. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. EXAMPLES The following examples illustrate certain features and advantages of the present invention. They are intended to be illustrative of the invention, but not limiting. All percentages are by weight, unless otherwise indicated. EXAMPLE 1 This example illustrates the formation of an OLED device using the new process, in which the first organic layer is apply by vapor deposition. In this example: "NPD" is 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl, from H. W. Sands Corp. (Jupiter, FL) "TPBI" is 1 ,3,5-tri(phenyl-2-benzimidazole)benzene, and was made according to the procedure in Examples 1 and 2 of U.S. Patent 5,645,948. "mCP" is 3,5-bis(N-carbazolyl)benzene, and was made according to the procedure of Adamovich et al. in New J. Chem., 2002, 26, 1171-1178. "Ir compound 1" has the structure
Figure imgf000013_0001
The compound was made according to the procedure in Example 10 of U.S. Patent 6,670,645. Substrates of glass with a patterned layer of indium tin oxide were cleaned and treated with oxygen plasma. The substrates were then masked and loaded into a vacuum evaporator chamber. The chamber was evacuated, reaching a pressure of 1 x 10"6 mbar. A 100 A layer of copper phthalocyanine was then thermally evaporated, followed by a 300 A layer of NPD. The chamber was then backfilled with nitrogen and the substrates were removed. The substrates were then spin-coated with a 1% w/v solution of Ir compound 1 and mCP (8:92) in 4-hydroxy-4-methyl- 2-pentanone. The inactive area of the device was cleaned with chloroform-wetted swabs, removing excess film. The substrates were then masked and loaded into a vacuum evaporator chamber. The chamber was evacuated, reaching a pressure of 3 x 10"7 mbar, and then a 600 A layer of TPBI was thermally evaporated. The chamber was backfilled with nitrogen, a new mask was placed over the substrates, and chamber was re-evacuated. After reaching a pressure of 8 x 10"7 mbar, a 10 A layer LiF was thermally evaporated, followed by a 2000 A layer of Al. The chamber was then backfilled with nitrogen and the devices were encapsulated using standard techniques.

Claims

CLAIMS What is claimed is: 1. A process for forming an organic electronic device comprising at least two organic layers, said process comprising (a) applying a first organic layer comprising a first organic material by a method selected from vapor deposition and liquid deposition from a first organic liquid medium; (b) applying a second organic layer comprising a photoactive compound directly over at least a portion of the first organic layer by liquid deposition from a second organic liquid medium, wherein the first organic material is sparingly soluble in the second organic liquid medium.
2. The process of Claim 1 , wherein the first organic material is a charge transport material.
3. The process of Claim 2, wherein the first organic material is a hole transport material.
4. The process of Claim 1 , wherein the photoactive compound is an organometallic compound.
5. The process of Claim 4, wherein the organometallic compound is a complex of at least one metal selected from Re, Ru, Os, Rh, Ir, Pd, Pt, and Au.
6. The process of Claim 4, wherein the organometallic compound is a complex having at least one first ligand selected from an aryl-N-heterocycle and a heteroaryl-N-heterocycle.
7. The process of Claim 5, wherein the metal is selected from
Os, Ir, and Pt.
8. The process of Claim 7, wherein the first ligand is selected from a phenyl-pyridine, phenyl-pyrimidine, phenyl-quinoline, bipyridine and thienyl-pyridine.
9. The process of Claim 1 , wherein the second layer further comprises a diluent.
10. The process of Claim 4, wherein the second organic liquid medium comprises an organic liquid selected from fluorinated aromatic compounds, linear aliphatic ketones, branched aliphatic ketones, linear aliphatic esters, branched aliphatic esters, and mixtures thereof.
11. The process of Claim 10, wherein the metal is selected from Os, Ir, and Pt, and the organic liquid is selected from trifluorotoluene, ethyl acetate, 4-methyl-4-hydroxy-2-pentanone, and methylethylketone.
12. An organic electronic device made by the process of Claim 1.
13. The device of Claim 12, wherein the device is selected from a light-emitting diode, a light emitting diode display, a diode laser, a photodetector, a photoconductive cell, a photoresistor, a photoswitch, a phototransistor, a phototube, an IR detector, a photovoltaic device, a solar cell, a transistor, or a diode.
1/1
Figure imgf000017_0001
FIG. 1
PCT/US2005/005582 2004-02-19 2005-02-17 A process for fabricating an organic electronic device and devices made by the processes WO2005081335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54604004P 2004-02-19 2004-02-19
US60/546,040 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005081335A1 true WO2005081335A1 (en) 2005-09-01

Family

ID=34886230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/005582 WO2005081335A1 (en) 2004-02-19 2005-02-17 A process for fabricating an organic electronic device and devices made by the processes

Country Status (3)

Country Link
US (1) US7749037B2 (en)
TW (1) TW200539738A (en)
WO (1) WO2005081335A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058080A1 (en) * 2005-11-17 2007-05-24 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescent element employing the same
JP2008523004A (en) * 2004-12-09 2008-07-03 メルク パテント ゲーエムベーハー Metal complex
US8920939B2 (en) 2004-09-24 2014-12-30 Solvay Usa, Inc. Heteroatomic regioregular poly (3-substitutedthiophenes) in electroluminescent devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626332B2 (en) * 2005-08-16 2009-12-01 Osram Opto Semiconductors Gmbh Luminance uniformity enhancement methods for an OLED light source
JP4478166B2 (en) * 2006-11-09 2010-06-09 三星モバイルディスプレイ株式會社 Organic light-emitting device provided with organic film containing organometallic complex
JP5252880B2 (en) * 2007-11-01 2013-07-31 キヤノン株式会社 Oligofluorene compound and organic EL device using the same
US20110127508A1 (en) * 2009-04-22 2011-06-02 Badr Omrane Organic electronic device and method of manufacture
CN110036498B (en) 2016-12-06 2023-04-18 默克专利有限公司 Method for manufacturing electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162955A (en) * 1996-11-28 1998-06-19 Seiko Precision Kk Manufacture of organic el element
US20020187567A1 (en) * 2001-05-21 2002-12-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing thereof
US20030140982A1 (en) * 2002-01-11 2003-07-31 Seiko Epson Corporation Manufacturing method for display device, display device, manufacturing method for electronic apparatus, and electronic apparatus
WO2003072681A1 (en) * 2002-02-28 2003-09-04 Jsr Corporation Phosphors, process for production thereof, phosphorescent compositions and articles made by using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2340995A1 (en) * 1976-02-16 1977-09-09 Fuji Photo Film Co Ltd METHOD OF MANUFACTURING A SHEET MATERIAL INCLUDING A METAL LAYER DEPOSITED UNDER VACUUM, AND PROCESS FOR MANUFACTURING A RECORDING MATERIAL
US5645948A (en) * 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
US6303238B1 (en) * 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6821645B2 (en) * 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US6670645B2 (en) * 2000-06-30 2003-12-30 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
CN102041001B (en) 2000-08-11 2014-10-22 普林斯顿大学理事会 Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154139B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element
JP4154140B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Metal coordination compounds
DE10237577A1 (en) * 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituted poly (alkylenedioxythiophenes) as solid electrolytes in electrolytic capacitors
US7192657B2 (en) * 2003-04-15 2007-03-20 3M Innovative Properties Company Ethynyl containing electron transport dyes and compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162955A (en) * 1996-11-28 1998-06-19 Seiko Precision Kk Manufacture of organic el element
US20020187567A1 (en) * 2001-05-21 2002-12-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing thereof
US20030140982A1 (en) * 2002-01-11 2003-07-31 Seiko Epson Corporation Manufacturing method for display device, display device, manufacturing method for electronic apparatus, and electronic apparatus
WO2003072681A1 (en) * 2002-02-28 2003-09-04 Jsr Corporation Phosphors, process for production thereof, phosphorescent compositions and articles made by using the same
US20040106006A1 (en) * 2002-02-28 2004-06-03 Yuichi Eriyama Phosphors, process for production thereof, phosphorescent compositions and articles made by using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONGGE MA ET AL: "NOVEL HETEROLAYER ORGANIC LIGHT-EMITTING DIODES BASED ON A CONJUGATED DENDRIMER", ADVANCED FUNCTIONAL MATERIALS, WILEY INTERSCIENCES, WIENHEIM, DE, vol. 12, no. 8, August 2002 (2002-08-01), pages 507 - 511, XP001123872, ISSN: 1616-301X *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 11 30 September 1998 (1998-09-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920939B2 (en) 2004-09-24 2014-12-30 Solvay Usa, Inc. Heteroatomic regioregular poly (3-substitutedthiophenes) in electroluminescent devices
JP2008523004A (en) * 2004-12-09 2008-07-03 メルク パテント ゲーエムベーハー Metal complex
US8304542B2 (en) 2004-12-09 2012-11-06 Merck Patent Gmbh Metal complexes and their use as the emitting constituent in electronic components, in particular in electroluminescent display devices
WO2007058080A1 (en) * 2005-11-17 2007-05-24 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescent element employing the same
US7462719B2 (en) 2005-11-17 2008-12-09 Idemitsu Kosan Co., Ltd. Metal-complex compound and organic electroluminescence device using the compound

Also Published As

Publication number Publication date
US20050191927A1 (en) 2005-09-01
US7749037B2 (en) 2010-07-06
TW200539738A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
US7547842B2 (en) Spatially-doped charge transport layers
US7517594B2 (en) Electroluminescent platinum compounds and devices made with such compounds
US7749037B2 (en) Process for fabricating an organic electronic device using liquid deposition and devices made by the process
WO2005124890A1 (en) Electrolumineschent iridium complex and devices made with such compound
EP1851285B1 (en) Photoactive material comprising a metal hydroxyquinoline complex
EP2412699A1 (en) Compositions comprising novel compounds and electronic devices made with such compositions
US7011871B2 (en) Charge transport compounds and electronic devices made with such compounds
US20080309221A1 (en) Containment Structure For an Electronic Device
US8470208B2 (en) Organometallic complexes
US8017223B2 (en) Containment structure and method
US8481104B2 (en) Method of forming organic electronic devices
US7732062B1 (en) Charge transport layers and organic electron devices comprising same
US7781550B1 (en) Charge transport compositions and their use in electronic devices
US7736540B1 (en) Organic compositions for depositing onto fluorinated surfaces
US7811624B1 (en) Self-assembled layers for electronic devices
WO2006072001A2 (en) Active compositions and methods
AU2002354028A1 (en) Electroluminescent platinum compounds and devices made with such compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase