WO2005089917A1 - 選択透過性分離膜およびその製造方法 - Google Patents

選択透過性分離膜およびその製造方法 Download PDF

Info

Publication number
WO2005089917A1
WO2005089917A1 PCT/JP2005/004980 JP2005004980W WO2005089917A1 WO 2005089917 A1 WO2005089917 A1 WO 2005089917A1 JP 2005004980 W JP2005004980 W JP 2005004980W WO 2005089917 A1 WO2005089917 A1 WO 2005089917A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
separation membrane
fiber membrane
blood
content
Prior art date
Application number
PCT/JP2005/004980
Other languages
English (en)
French (fr)
Inventor
Kimihiro Mabuchi
Hideyuki Yokota
Katsuaki Kuze
Noriyuki Tamamura
Makoto Ono
Noriko Monden
Noriaki Kato
Hiroshi Shibano
Katsuhiko Nose
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to US10/599,128 priority Critical patent/US7922007B2/en
Priority to EP05721144.3A priority patent/EP1733783B1/en
Publication of WO2005089917A1 publication Critical patent/WO2005089917A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time

Definitions

  • the present invention relates to a selectively permeable separation membrane that can be used for blood purification treatment. More specifically, the present invention relates to a polysulfone-based selectively permeable separation membrane having a good balance of separation characteristics, high safety and high performance stability, and excellent threading property of a module, and a method for producing the same.
  • Background art
  • cellulose which is a natural material, and cellulose derivatives such as cellulose diacetate, cellulose triacetate, and synthetic polymers are used.
  • hemodialyzers and hemofilters that use dialysis membranes and ultrafiltration membranes using polymers such as polysulfone, polymethyl methacrylate, and polyacrylonitrile as separation materials!
  • modules such as hemodiafiltration filters are widely used.
  • Modules using hollow fiber membranes as separation materials are particularly important in the field of dialysis machines due to their advantages such as reduced extracorporeal blood volume, high efficiency in removing blood substances, and productivity during module production. Is high,.
  • a polysulfone-based resin having high water permeability has attracted attention as the one most suited to the progress of dialysis technology.
  • a semi-permeable membrane is made of polysulfone alone, since the polysulfone resin is hydrophobic, it causes an air-opening phenomenon with poor affinity for blood. Cannot be used.
  • a method for solving the above-mentioned problem a method has been proposed in which a hydrophilic polymer is mixed with a polysulfone-based resin to form a film, thereby imparting hydrophilicity to the film.
  • a method of blending a polyhydric alcohol such as polyethylene glycol has been disclosed (for example, see Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-232860
  • Patent Document 2 JP-A-58-114702
  • Patent Document 3 Japanese Patent Publication No. 5-54373
  • Patent Document 4 Japanese Patent Publication No. 6-75667
  • the latter method using polyvinylpyrrolidone has attracted attention from the viewpoint of safety and economy, and the above-mentioned method solves the above-mentioned problems.
  • the problem arises when polyvinylpyrrolidone is eluted and mixed with purified blood during dialysis.
  • the amount of polyvinylpyrrolidone elutes is increased, the accumulation of polyvinylpyrrolidone, which is a foreign substance to the human body, during long-term dialysis increases, which may cause side effects and complications.
  • the amount of polyvinylpyrrolidone eluted is determined by the dialysis-type artificial kidney device manufacturing approval standard. According to the standard, the elution amount of polybutylpyrrolidone and the like is determined by UV absorbance. A technique for judging the effect of elution amount control using the criterion is disclosed (for example, see Patent Documents 5-7).
  • Patent Document 5 Patent No. 3314861
  • Patent Document 6 JP-A-6-165926
  • Patent Document 7 JP-A-2000-350926
  • the above problem is solved by the above method.
  • the polyvinyl alcohol existing on the inner surface of the membrane referred to as the inner surface
  • the outer surface of the membrane opposite to the blood referred to as the outer surface
  • the content of pyrrolidone greatly affects the membrane performance of the permselective separation membrane, it is important to optimize the content. For example, by increasing the content of polypyrrolidone on the inner surface, it is possible to ensure blood compatibility. If the content on the surface is too high, the amount of polyvinylpyrrolidone eluted into the blood increases. The accumulation of the eluted polypyrrolidone is not preferable because side effects and complications occur during long-term dialysis.
  • reducing the amount of polyvinylpyrrolidone present on the outer surface is preferable from the viewpoint of suppressing the penetration of endotoxin into the blood. Since the hydrophilicity of the outer surface is reduced while applying force, when the hollow fiber membrane dried for assembly after the assembly of the module is returned to a wet state, the affinity with the physiological saline used for wetting is reduced. For this reason, if the priming property, which is the ability to add and remove air during the wetting operation, is reduced, this leads to the generation of a problem.
  • the content of polyvinylpyrrolidone present in the dense layer on the inner surface of the permselective separation membrane is specified, and the polyvinylpyrrolidone present in the dense layer on the inner surface is provided.
  • a method is disclosed in which the content of is at least 1.1 times the content of polyvinylpyrrolidone present on the outer surface (see Patent Document 5).
  • this technology increases the content of polybutylpyrrolidone present on the surface of the dense layer on the inner surface and improves blood compatibility, and conversely lowers the content of polybutylpyrrolidone present on the outer surface, thereby reducing the membrane.
  • Patent Document 5 JP-A-6-165926
  • Patent Document 7 JP-A-6-296686
  • Patent Document 8 JP-A-11 309355
  • Patent Document 9 JP-A-2000-157852
  • endotoxin endotoxic system
  • endotoxin has a hydrophobic portion in its molecule and is easily adsorbed to a hydrophobic material.
  • a method using characteristics is disclosed (for example, see Patent Document 10). That is, the method relates to making the ratio of polyvinylpyrrolidone to hydrophobic polymer on the outer surface of the hollow fiber membrane 5 to 25%. Certainly, this method is preferable as a method for suppressing invasion of endotoxin into the blood side.
  • Patent Document 10 JP-A-2000-254222
  • hydrophilicity Since the compound acts as a foreign substance during dialysis and the hydrophilic compound is susceptible to deterioration such as light deterioration, it leads to problems such as adversely affecting the storage stability of the module. Another problem is that when the hollow fiber membrane is fixed to the module in module assembly, adhesion of the adhesive is hindered.
  • Patent Document 11 JP-A-2001-190934
  • Patent Document 12 Patent No. 3193262
  • Patent Document 13 JP-A-2000-140589
  • the polybutylpyrrolidone content on the inner surface also has a large effect on the selectivity of separation by a permselective separation membrane.
  • a permselective separation membrane For example, in the treatment of blood in patients with chronic renal failure, it is necessary to actively remove other low-molecular-weight proteins while minimizing leakage of the active protein albumin.
  • a polysulfone-based selective separation membrane having a transmittance of albumin of 0.5 to 0.0001% is disclosed (see Patent Document 15). Certainly, the method of the patent document is excellent in that the transmittance of albumin is suppressed to an extremely low level.
  • the permselective separation membrane obtained by this method has a problem that the ⁇ 1-microglobulin removal rate is low, for example.
  • dialysis complications associated with the increase in long-term dialysis patients have been attracting attention, and low molecular weights from a medium molecular weight region of around 5,000 daltons to molecular weights of 10,000 daltons or more can be obtained using only low molecular weight substances such as urea, uric acid, and creatine.
  • the removal target has spread to proteins. Therefore, it is required that uremic substances having a molecular weight represented by OC 1 microglobulin present in blood can be efficiently removed.However, according to the method of Patent Document 15, the selectivity of protein separation is inferior. I can't respond.
  • Patent Document 16 a polysulfone-based selective separation membrane having a sieving coefficient of ovalbumin of 0.2 or more has been disclosed (see Patent Document 16).
  • the permselective separation membrane obtained in the literature is effective in that it can remove uremic substances efficiently.
  • Patent Document 15 JP-A-11-309356
  • Patent Document 16 JP-A-7-289863
  • Patent Document 17 Japanese Patent Application Laid-Open No. 2003-175320
  • Patent Document 18 JP-A-2003-175321
  • Patent Document 19 JP-A-2003-175322
  • the present inventors have conducted detailed studies on the dissolution behavior of polypyrrolidone.
  • the extract extracted by the test method defined by the above dialysis-type artificial kidney device manufacturing approval standard contains: It has been found that hydrogen peroxide is included, which cannot be measured by conventionally known UV absorbance!
  • the presence of hydrogen peroxide for example, promotes the oxidation degradation of polypyrrolidone and increases the amount of polyvinylpyrrolidone eluted during storage of the permselective separation membrane, thereby deteriorating the storage stability.
  • the presence of hydrogen peroxide for example, promotes the oxidation degradation of polypyrrolidone and increases the amount of polyvinylpyrrolidone eluted during storage of the permselective separation membrane, thereby deteriorating the storage stability.
  • Patent Documents 5 to 7 described above evaluate V and deviation of specific portions of the permselective separation membrane. For example, when processing such as drying the hollow fiber membrane during module assembly, etc., the above-mentioned elution amount fluctuates greatly due to fluctuations in drying conditions, etc. It turned out to be unresponsive.
  • the present invention provides a blood having a high balance of separation characteristics, high safety and high performance stability, and excellent module assemblability, and high water permeability for use in the treatment of chronic renal failure. It is an object of the present invention to provide a selectively permeable separation membrane suitable for a purifier. Another object of the present invention is to provide a method for economically and stably producing a selectively permeable separation membrane having the above characteristics.
  • the present invention relates to a selectively permeable separation membrane
  • the permselective separation membrane mainly comprises a polysulfone-based polymer and polyvinylpyrrolidone,
  • the present invention when the film forming solution and the internal solution is discharged from the tube-in-orifice type nozzle, and then coagulated in a coagulation bath through an air gap,
  • the film-forming solution contains a polysulfone polymer, polybulpyrrolidone and a solvent.
  • the ratio of polybulpyrrolidone to the polysulfone polymer is 10-18% by mass, and the internal solution contains an amide solvent of 30-60% by mass.
  • the liquid temperature of the internal liquid is lowered by 30 to 60 ° C from the liquid temperature of the film forming solution, and the liquid temperature is discharged under the condition of SO-40 ° C.
  • FIG. 1 is a schematic view of a tube in orifice nozzle that can be used in the present invention.
  • FIG. 2 is a graph showing the relationship between the PVP content ratio on the inner and outer surfaces of the hollow fiber membrane and the albumin sieving coefficient.
  • FIG. 3 is a graph showing the relationship between the PVP content ratio on the inner and outer surfaces of the hollow fiber membrane and the change over time in the albumin sieving coefficient.
  • FIG. 4 is a view showing the relationship between the PVP content ratio on the inner and outer surfaces of a hollow fiber membrane and a1 microglobulin clearance.
  • FIG. 5 is a graph showing the relationship between the PVP content ratio on the inner and outer surfaces of the hollow fiber membrane and the amount of ⁇ 1 microglobulin adsorbed.
  • FIG. 6 is a view showing the relationship between the PVP content on the inner surface of the hollow fiber membrane and the amount of a1MG adsorbed.
  • the permselective separation membrane of the present invention comprises a polysulfone-based resin containing polyvinylpyrrolidone.
  • the polysulfone resin in the present invention is a general term for a resin having a sulfone bond, and is not particularly limited.
  • a polysulfone resin having a repeating unit represented by the following formula is preferred because it is widely commercially available as a polysulfone resin and is easily available.
  • the polybutylpyrrolidone used in the present invention is a water-soluble polymer compound obtained by subjecting N-bulpyrrolidone to beul polymerization.
  • N-bulpyrrolidone for example, “Rubitec” from BASF, “Brasdon” from ISP, Daiichi Kogyo It is marketed by pharmaceutical companies under the brand name "Pitzcol", and there are products with various molecular weights.
  • a product having a single molecular weight may be used, or a mixture of two or more products having different molecular weights may be used.
  • a commercially available product may be purified, for example, one having a sharp molecular weight distribution.
  • the molecular weight of polyvinylpyrrolidone those having a mass average molecular weight of 10,000 to 1,500,000 can be used. Specifically, for example, those having a molecular weight of 9,000 sold by BASF (K17), and similarly, 45,000 ( ⁇ 30), 450,000 ( ⁇ 60), 900,000 ( ⁇ 80), 1, It is preferable to use 200,000 ( ⁇ 90). These may be used alone or in appropriate combination of two or more kinds in order to obtain the intended use, characteristics and structure. In the present invention, it is most preferable to use 90 alone.
  • the permselective separation membrane of the present invention is preferably produced using polyvinylpyrrolidone having a hydrogen peroxide content of 30 Oppm or less. 250 ppm or less is more preferred 20 Oppm or less is even more preferred 150 ppm or less is even more preferred.
  • the content of hydrogen peroxide in the polyvinylpyrrolidone used as a raw material is 300 ppm or less, the amount of hydrogen peroxide dissolved in the permselective separation membrane can be stabilized at 5 ppm or less. This is preferable because film quality stability can be achieved.
  • a method of reducing the amount of hydrogen peroxide by a recrystallization method and an extraction method is used.
  • polypyrrolidone When polypyrrolidone is dissolved in a solvent, it is preferable to dissolve it at a temperature of 70 ° C. or lower. It is also a preferred embodiment that the dissolution is carried out in a state of being replaced with an inert gas.
  • polybutylpyrrolidone As described above, in the present invention, it is preferable to use only the above-described polybutylpyrrolidone. However, for example, another hydrophilic polymer such as polydalicol described in Patent Document 6 is used. They may be used together within the scope of the present invention.
  • the method for producing the permselective separation membrane of the present invention is not limited at all, for example, a method for producing a hollow fiber membrane type as disclosed in Japanese Patent Application Laid-Open No. 2000-300663 Is preferred.
  • the following methods can be exemplified as disclosed in the patent document: 16 parts by mass of polyether sulfone (4800P, manufactured by Sumitomo Chemical Co., Ltd.) and 5 parts by mass of polybutylpyrrolidone (K-90, manufactured by BASF).
  • the permselective separation membrane of the present invention is obtained by a wet membrane formation method using a membrane formation solution obtained by dissolving the above-mentioned constituent polysulfone-based polymer and polybutylpyrrolidone in a solvent.
  • a solvent include dimethyl phos- phate capable of dissolving both components.
  • Sulfoxide polar solvents such as amides such as lumamide, dimethylacetoamide, and N-methylpyrrolidone are preferably used. If the content is 10% by mass or less, a non-solvent for the polysulfone-based polymer such as water or alcohol may be used in combination. This makes it possible to control the phase separation of polybutylpyrrolidone from the polysulfone-based polymer.
  • the permselective separation membrane of the present invention is prepared by loading a permselective separation membrane having the above composition with a module prepared by adding a hematocrit of 30%, a total protein concentration of 6 to 7gZdl, and sodium tenoate.
  • a permselective separation membrane having the above composition with a module prepared by adding a hematocrit of 30%, a total protein concentration of 6 to 7gZdl, and sodium tenoate.
  • the sieving coefficient [A] of albumin after 15 minutes was 0.01 or more and 0.1 or less, and albumin after 2 hours. It is preferable that the sieving coefficient [B] is not less than 0.005 and less than 0.04 (requirement 1).
  • the sieving coefficient [A] of albumin after 15 minutes is more preferably from 0.01 to 0.09, and still more preferably from 0.01 to 0.08.
  • the sieving coefficient [B] of albumin after 2 hours is more preferably from 0.005 to 0.035, and still more preferably from 0.005 to 0.03. If the sieving coefficient of albumin after 15 minutes and after 2 hours is too large, the permeability of albumin, a useful protein, will increase, which may increase the burden on patients. On the other hand, when the sieving of the albumin after 15 minutes and after 2 hours, the coefficient is too small, respectively, it is preferable in that the transmittance of albumin is low, but (1) there is a possibility that uremic substances such as microglobulin cannot be removed efficiently. is there.
  • Albumin is a useful protein for living organisms, and in clinical practice, it is considered that the amount of albumin leakage per hemodialysis treatment (3 L of water removal) should be 3 g or less. Excessive albumin leakage can cause disorders such as hypoalbuminemia in patients with low dietary intake. Therefore, the amount of albumin leaked per hemodialysis is preferably 2.5 g or less, more preferably 2. Og or less, and even more preferably 1.5 g or less. Conversely, the existence of a toxin that binds to albumin is also known in vivo, and even if the amount of albumin leakage is too small, various disorders may be caused. Therefore, the amount of albumin leakage per dialysis treatment is preferably 0.05 g or more, more preferably 0.1 lg or more, and still more preferably 0.15 g or more.
  • the clearance of ⁇ -microglobulin (molecular weight 33,000) is 15 ml / min (lOm 2 ) or more (Requirement 4). If the clearance of ⁇ 1 microglobulin is too small, the removal amount of substances with a molecular weight of about 30,000 is small, so that it is possible to prevent dialysis complications and improve itching and pain! There may not be. Therefore, the clearance of ⁇ microglobulin is more preferably 18 ml / min (l.Om 2 ) or more, more preferably 21 ml / min (l.Om 2 ) or more, more than 24 ml / min (1 Om 2 ).
  • the clearance is large.
  • the alpha I microglobulin clearance 100ml / min (l. Om 2 ) or less preferably fixture 80ml / min (l. Om 2 ) or less and more preferably tool 60ml / min (l. Om 2 ) hereinafter is More preferred.
  • the albumin sieving coefficient [B] is 0.015 or more and 0.1 or less and 2 hours later. It has been found that it is an optimal condition to provide a selectively permeable separation membrane having characteristics falling within the range of less than 04. In order to manufacture a separation membrane with such optimum conditions, it is important to control various materials, their specifications, the manufacturing process, drying conditions, etc. One method is to analyze the relationship between albumin and the sieving coefficient.
  • FIG. 1 shows the relationship between [D] Z [C] as a relationship between the content of [D], the albumin sieving coefficient [A] after 15 minutes, and the albumin sieving coefficient [B] after 2 hours. It is. According to this, when [D] Z [C] becomes 1.1 or more, the albumin sieving coefficient [A] is set to a predetermined value of 0.01 or more and 0.1 or less in Example 13 to 13 in Example 13.
  • FIG. 4 shows the power of quantitatively analyzing the relationship between [D] Z [C] and a1 microglobulin clearance.
  • [D] Z [C] 1.1
  • its distribution is concentrated in the stable region of 15 mlZmin (l.Om 2 ) in Example 13 of the present Example 13 in which the clearance of ⁇ ⁇ ⁇ ⁇ ⁇ microglobulin is concentrated.
  • ⁇ 1 a large dispersion state of microglobulin clearance suggests that a separation membrane of unstable quality was obtained.
  • FIG. 5 is a quantitative analysis of the relationship between [D] Z [C] and the amount of ⁇ microglobulin adsorbed.
  • ⁇ 1 microglobulin adsorption the pore size of the membrane that can be formed only with [D] Z [C]] the structure of the blood contact surface, such as micro unevenness, and the degree of hydrophilicity of the surface affect the amount of adsorption. I can't say it.
  • [D] Z [C] is 1.1 or more is one of the factors that have a significant effect in that ⁇ ⁇ microglobulin falls within a predetermined range. Can be easily understood.
  • the outermost layer of the permselective separation membrane is a 20-40 mass 0/0 It is suitable.
  • Many technical factors affect the performance of the separation membrane, such as the grade of polysulfone polymer, the grade of polyvinylpyrrolidone, the total blended amount of polypyrrolidone, the content on the outer surface, and the method of manufacturing the selectively permeable separation membrane.
  • the content of polybutylpyrrolidone in the outermost layer on the blood contact side surface greatly affects the performance of the separation membrane of the present invention.
  • the permselective separation membrane of the present invention preferably has an ⁇ 1 microglobulin (MG) adsorption amount of 2.0-20 mgZm 2 .
  • FIG. 6 shows the relationship between the content (% by mass) of polybutylpyrrolidone (PVP) in the outermost layer of the inner surface and ⁇ the amount of adsorbed microglobulin. As is evident from the figure, it is important to specify the PVP content in the outermost surface of the blood contact side as 20-40% by mass as one of the factors indicating the performance of the permselective separation membrane. The figure also shows that one of the performance requirements of the permselective separation membrane, ex 1MG adsorption, is closely related to the PVP content that specifies the material or structure of the permselective separation membrane. Clarified.
  • the method for imparting the above-mentioned selectivity balance of protein separation to the permselective separation membrane is not limited, but the hollow fiber membrane for blood purification in the present invention has a skin layer on the inner surface.
  • the thickness of the skin layer is preferably 0.1-1.2 m (requirement 6). The thinner the skin layer, which is a substantial separation active layer, the lower the solute migration resistance. For this reason, it is more preferable that the length is 1.1 m or less, and it is even more preferable that the length is 1.0 m or less.
  • the thickness of the skin layer is more preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more, and particularly preferably 0.4 ⁇ m or more.
  • the film-forming solution also becomes a polysulfone-based polymer, polyvinyl vinylidone and a solvent, and the ratio of polybulpyrrolidone to the polysulfone-based polymer is 10 to 18% by mass.
  • the internal solution is an aqueous solution containing 30 to 60% by mass of an amide-based solvent.
  • the temperature of the internal solution is 30 to 60 ° C lower than the temperature of the film forming solution, and the temperature of the solution is 0 to 40. It is also an embodiment that it is preferable to discharge under the condition of ° C.
  • the polyvinylpyrrolidone ratio is more preferably from 12.0 to 17.5% by mass, and still more preferably from 13.0 to 17.5% by mass.
  • the amount of the amide solvent in the internal liquid is more preferably 32 to 58% by mass, more preferably 34 to 56% by mass, and still more preferably 35 to 54% by mass.
  • the temperature of the internal solution is preferably 30 to 55 ° C, more preferably 35 to 50 ° C.
  • the liquid temperature of the internal liquid is more preferably 0 to 35 ° C, more preferably 5 to 30 ° C, and still more preferably 10 to 30 ° C.
  • the inner surface properties such as the skin layer thickness of the permselective separation membrane, the content of polyvinylpyrrolidone on the inner surface, and the average pore size / pore size distribution are optimized, and the selectivity of the protein is improved.
  • the method of giving a temperature difference between the liquid temperature of the internal liquid and the liquid temperature of the film forming solution is not limited, either.
  • a tube-in orifice type nozzle the pipe from the internal liquid tank to the nozzle and the inside of the nozzle block are used. It is preferable to use an internal liquid heat medium circulation type block in which heat exchange is provided and the liquid temperature can be adjusted separately from the temperature of the film forming solution.
  • the balance of protein selectivity can be imparted by the swelling effect of polyvinylpyrrolidone present in the permselective separation membrane through blood.
  • protein permeability is increased, but during the dialysis process, polybulpyrrolidone in the permselective separation membrane swells with the passage of blood, thereby reducing albumin permeability.
  • the polypyrrolidone When the polypyrrolidone is cross-linked, the molecular motility of the polyvinylpyrrolidone and the swelling property of the polyvinylpyrrolidone by blood are reduced, so that the action and function are reduced, and the selectivity of protein separation may be reduced.
  • the content of the insoluble component is preferably 30% by mass or less based on all polyvinylpyrrolidone present in the permselective separation membrane. 25 mass% or less is more preferred 20 mass% or less is even more preferred 15 mass% or less is even more preferred 10 mass% or less is particularly preferred Less than 5 mass% is most preferred.
  • the content of the insoluble component is a measure of the degree of crosslinking of polyvinylpyrrolidone, and a high content of the insoluble component means that the crosslinking of the polypyrrolidone present in the permselective separation membrane proceeds. I do.
  • the permselective separation membrane of the present invention preferably keeps the moisture content after drying at 110 to 10% by mass, a certain degree of crosslinking reaction may occur due to the effect of a small amount of water present during irradiation sterilization.
  • cross-linking insolubilizing
  • the content of insolubles is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, even more preferably 0.3% by mass or more, more preferably 0.5% by mass or more. More preferred.
  • the content of the above insoluble matter can be simply obtained from the insoluble matter in a solution obtained by immersing and dissolving the permselective separation membrane in dimethylformamide.
  • the solution is obtained by dissolving 10 g of the selectively permeable separation membrane in 100 ml of dimethylformamide. If the solution is visually observed and no insoluble matter is seen! /, The solution may be determined to be non-crosslinked.
  • the thickness of the permselective separation membrane is preferably 25 to 45 ⁇ m.
  • the film thickness is more preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less, and even more preferably 33 ⁇ m or less.
  • the content of polyvinylpyrrolidone in the outermost layer on the blood contacting surface (inner surface) of the permselective separation membrane is preferably 20 to 40% by mass. Requirement 9). If the content of polypyrrolidone is too low, the hydrophilicity of the inner surface of the hollow fiber membrane is low and blood compatibility is deteriorated, and blood coagulation tends to occur on the surface of the hollow fiber membrane. Blockage of the fiber membrane may occur and the separation performance of the hollow fiber membrane may decrease, or residual blood after use in hemodialysis may increase.
  • the content of polybutylpyrrolidone in the outermost layer on the inner surface of the hollow fiber membrane is more preferably 21% by mass or more, further preferably 22% by mass or more, and even more preferably 23% by mass or more.
  • the content of polyvinylpyrrolidone in the outermost layer on the inner surface of the hollow fiber membrane is more preferably 38% by mass or less, and still more preferably 36% by mass or less.
  • Blood compatibility is also affected by the amount of plasma protein adsorbed. That is, the plasma protein, which is a hydrophilic protein, is adsorbed on the blood-contacting surface of the permselective separation membrane, thereby increasing the hydrophilicity of the surface and improving blood compatibility.
  • ⁇ 1 microglobulin (molecular weight 33,000) in plasma protein is used as an indicator for improving clinical symptoms (itching / pain) and blood compatibility of a selectively permeable separation membrane. It is preferable that the adsorption amount is 2.0 to 20 mgZm 2 (requirement 5).
  • ⁇ 1 microglobulin has a property of easily binding to immunoglobulin (molecular weight of 100,000 or more) in blood (plasma).
  • the removal amount is increased by the action of adsorption to the selectively permeable separation membrane. a 1 If the amount of adsorbed microglobulin is too small, blood compatibility may decrease or the effect of improving clinical symptoms may be insufficient. Therefore, the adsorption amount is more preferably 2.5 mg / m 2 or more 3. OmgZm 2 is more preferable 3.5 mgZm 2 is even more preferable.
  • the adsorption amount 19MgZm 2 or less still more preferred more and more preferably tool 18MgZm 2 or less still more preferred instrument 17 mg Zm 2 is.
  • the amount of adsorption is also affected by the form of the surface layer on the inner surface.
  • the method for controlling the amount of adsorption to be in the above range is not limited.
  • the temperature of the internal liquid can have a significant effect on the amount of adsorption. Therefore, it is important that the liquid temperature of the above-mentioned internal liquid is 30 to 60 ° C lower than the liquid temperature of the film forming solution and that the liquid is discharged under the condition that the liquid temperature is 0 to 40 ° C.
  • the content of polyvinylpyrrolidone on the outermost surface of the inner surface is optimized. Furthermore, by increasing the draft ratio at the time of film formation under the above conditions, streaky micro unevenness continuous in the longitudinal direction of the hollow fiber membrane is formed on the surface layer on the inner surface. The micro unevenness increases the surface area of the inner surface and optimizes the amount of adsorption.
  • the amount of ⁇ 1 microglobulin adsorbed is affected by the degree of orientation of polybutylpyrrolidone on the inner surface of the hollow fiber membrane.
  • the shear stress in the nozzle is more preferably 5 ⁇ 10 4 s ⁇ 1 or more, more preferably 1 ⁇ 10 5 s ⁇ 1 or more, and still more preferably 5 ⁇ 10 5 s ⁇ 1 or more. If the shear stress is too large, crystallization of polypyrrolidone on the inner surface of the hollow fiber membrane may proceed, and the permeability of the solute may be reduced. did Therefore, the shear stress 5 X 10 7 s- 1 or less even more preferably from more preferred instrument l X 10 7 s- 1 or less and more preferably tool 5 X 10 6 s- 1 or less.
  • Shear stress time 1 X 10- 5 - 0. lsec is preferred. More preferably 5 X 10- 4 - 5 X 10- 2 sec, more preferably 1 X 10- 4 - a 1 X 10- 2 sec.
  • the specific nozzle shape should have a maximum outer diameter of 100 to 700 / ⁇ ⁇ and a land length of 0.1 to 5 mm. .
  • the maximum outer diameter is preferably 150-600 m force, more preferably 180-550 m force S, even more preferably 200-500 m force S.
  • the amount of adsorbed a1 microglobulin is also affected by the charge state of the surface of the hollow fiber membrane on the blood contact side.
  • it is effective to use RO water as the water used for producing the hollow fiber membrane.
  • the use of RO water makes it possible to efficiently remove the charged substance adhering to the membrane.
  • RO water contains no ionic substances, so no ions are adsorbed on the membrane.
  • the RO water to be used preferably has a specific resistance of 0.3 to 2 ⁇ ⁇ cm, more preferably 0.4 to 1.9 ⁇ ⁇ cm.
  • the adsorbed amount of a1 microglobulin contributes not only to the improvement of blood compatibility but also to the removal of a1 microglobulin, thereby preventing dialysis complications and improving clinical symptoms such as itching and pain. Also seems to give good results.
  • the content of polyvinyl pyrrolidone near the surface layer of the blood contacting surface of the permselective separation membrane is 5 20 weight 0/0 (Requirement 10). 7-18% by mass is more preferred.
  • the content of polyvinylpyrrolidone in the outermost layer on the blood contact side surface of the permselective separation membrane is preferably higher from the viewpoint of blood compatibility.
  • the amount of polyvinylpyrrolidone eluted into the blood increases, which is a trade-off phenomenon.
  • the content of polyvinylpyrrolidone in the vicinity of the inner surface of the hollow fiber membrane is more preferably 19% by mass or less, more preferably 18% by mass or less.
  • the content of polypyrrolidone near the inner surface is too low, pouring to the outermost layer will occur. Since rivulpyrrolidone is not supplied, there is a possibility that the solute removal performance and the stability over time of blood compatibility may decrease. Therefore, the content of polypyrrolidone in the vicinity of the inner surface is more preferably 6% by mass or more, more preferably 7% by mass or more.
  • the above trade-off phenomenon can be overcome, and optimization of the above-mentioned phenomenon can be achieved at a very high level that cannot be achieved by the prior art. That is, it is important to set the content of polybutylpyrrolidone in the outermost layer of the permselective separation membrane that governs blood compatibility to the lowest level at which blood compatibility can be exhibited.
  • polyvinylpyrrolidone present in the outermost layer gradually elutes into the blood after long-term dialysis, and as the dialysis progresses, Blood compatibility gradually decreases! / ⁇ t ⁇ ⁇ Issues occur.
  • this problem has been solved by replenishing polyvinylpyrrolidone existing in the layer near the surface to the outermost layer. Therefore, when the content of polyvinylpyrrolidone in the layer near the surface on the blood contact side is too low, it may be insufficient to suppress a decrease in the persistence of blood compatibility. On the other hand, if the content is too high, the amount of polybutylpyrrolidone eluted in the blood increases, which may cause side effects and complications due to long-term dialysis.
  • the content of polybutylpyrrolidone in the outermost layer on the blood non-contact side of the permselective separation membrane is 25 to 50% by mass
  • the content of polyvinylpyrrolidone in the surface layer: [D]) Z (the content of polypyrrolidone in the outermost surface layer on the blood contact side: [C]) is preferably 1.1 times or more (Requirement 11). . If the content of polybutylpyrrolidone in the outermost layer of the surface on the blood non-contact side (outer surface) is too low, the amount of blood protein adsorbed to the support layer of the hollow fiber membrane will increase, resulting in poor blood compatibility and permeability. Degradation can occur.
  • the priming property may be poor. Therefore, the content of polybutylpyrrolidone in the outermost surface layer is more preferably 27% by mass or more, further preferably 29% by mass or more, and still more preferably 31% by mass or more. Conversely, if the content of polyvinylpyrrolidone on the outer surface is too high, the possibility that endotoxin (endotoxin) contained in the dialysate enters the blood side increases, which may lead to side effects such as fever. Dried membrane In this case, there is a possibility that the hollow fiber membranes will adhere to each other due to the interposition of polypyrrolidone present on the surface, and problems such as poor module assemblability will be caused.
  • the content of polyvinylpyrrolidone on the outer surface is more preferably 43% by mass or less, more preferably 41% by mass or less, and still more preferably 39% by mass or less.
  • the content of polypyrrolidone in the outermost layer on the surface (outer surface) on the blood non-contact side is 1.1 times the content of polyvinylpyrrolidone in the outermost layer on the surface (inner surface) on the blood contact side. It is preferable that it is above.
  • the content of polypyrrolidone can affect the shrinkage of the hollow fiber membrane after the membrane formation. That is, as the content of polybutylpyrrolidone increases, the contraction rate of the hollow fiber membrane increases.
  • the difference in shrinkage between the inner surface side and the outer surface side results in microscopic formation on the inner surface side. Wrinkles may occur or the hollow fiber membrane may break.
  • wrinkles are formed on the inner surface side, for example, when a separation membrane is used for hemodialysis, blood proteins and the like easily accumulate on the membrane surface when the blood flows, so that the permeation performance decreases over time. This can lead to problems. For these reasons, it is preferable to increase the content of polyvinylpyrrolidone on the outer surface side.
  • the hollow fiber membrane of the present invention preferably has a structure in which a dense layer is provided on the inner surface, and the pore diameter gradually increases as the outer surface is urged. That is, since the porosity is higher on the outer surface side than on the inner surface side, the outer surface side has a characteristic that the shrinkage ratio on the outer surface side is larger.
  • the content of polybutylpyrrolidone in the outermost surface layer is preferably 1.1 times or more the content of polybutylpyrrolidone in the innermost surface layer. More preferably, it is 1.2 times or more, further preferably 1.3 times or more.
  • the content of polyvinylpyrrolidone in the outermost surface layer is preferably high, but if it is too high, the ratio of polyvinylpyrrolidone to polysulfone polymer becomes too high, resulting in insufficient strength, adhesion between hollow fiber membranes, and hemodialysis. It may cause problems such as reverse influx of endotoxin during use and elution of polybulpyrrolidone. It is more preferably at most 1.9 times, more preferably at most 1.8 times, even more preferably at most 1.7 times.
  • the difference between the two layers is described in detail.
  • the pore diameter of the permselective separation membrane tends to increase from the skin layer (dense layer) on the blood contact side surface to the opposite surface, so that there is a difference in density between the outermost layer and the vicinity of the surface. It can be a layered structure.
  • the thickness of each layer and its boundary line are arbitrarily changed depending on the manufacturing conditions of the permselective separation membrane, and the structure of the layer has some influence on the performance.
  • the outermost layer and the near-surface layer are almost at the same time, and the two layers are formed at the same time, considering that both layers are manufactured adjacent to each other.
  • the boundaries are not sharp, but they can be recognized. If you look at the distribution curve of the hydrophilic polymer content in the two layers, if you look at the distribution curve of the hydrophilic polymer content, there are many cases where there is a continuous line.Because there is a fault in the distribution curve of the hydrophilic polymer content in polyvinylpyrrolidone, In addition, it would be technically impossible to assume that there would be two discontinuous layers with different material behavior.
  • the content of polypyrrolidone in the outermost layer is 20 to 40% by mass and that in the layer near the surface is 5 to 20% by mass as an optimum range.
  • a design in which the outermost layer is 40% by mass and the near-surface layer is 5% by mass works sufficiently in function. It may not be.
  • the difference in the polypyrrolidone content of the two layers is about 135% by mass so that the ratio of the polyvinylpyrrolidone content in the outermost layer to the polyvinylpyrrolidone content in the layer near the surface is 1.1 or more.
  • the content By optimally designing the content to be about 5 to 25% by mass, the diffusion transfer of polyvinylpyrrolidone from the layer near the surface to the outermost layer can be performed smoothly.
  • the outermost layer is 32% by mass
  • the layer near the surface is in the range of about 7 to 27% by mass, which satisfies the requirement of about 1.1 to 10 times.
  • the content of the above-mentioned polybutylpyrrolidone in the outermost layer of the permselective separation membrane was measured and calculated by the ESCA method as described later, and was determined in the outermost layer of the permselective separation membrane (depth from the surface layer). It is the absolute value of the content in number A—several tens A).
  • the ESCA method can measure the content of polybutylpyrrolidone up to about 10 nm (100 A) below the surface.
  • the content of polybutylpyrrolidone in the near-surface layer was measured by surface infrared spectroscopy (ATR method).
  • the ATR method (layer near the surface) can measure the content of polybutylpyrrolidone up to a depth of about 1000 to 1500 nm (l-1.5 ⁇ m) from the surface.
  • the content of polyvinylpyrrolidone on the blood contact side surface and the opposite side surface may be related to the molecular weight of polybutylpyrrolidone.
  • polyvinylpyrrolidone having a low molecular weight of about 450,000 compared to the case of using polyvinylpyrrolidone having a high molecular weight of about 1.2 million
  • solubility and elution amount of polybulpyrrolidone in coagulation are increased. , Diffusion movement becomes large.
  • the ratio of polybutylpyrrolidone to polysulfone-based polymer is 11 to 20% by mass, and the outermost layer portion is 20 to 40% by mass and the surface vicinity portion is 5 to 20% by mass.
  • Polyvinylpyrrolidone content tends to be produced.
  • Methods for achieving the above requirements 5, 9, 10 and 11 in the present invention include, for example, setting the composition ratio of polybutylpyrrolidone to the polysulfone-based polymer to the above-mentioned range, and selectively permeating and separating. This can be achieved by optimizing the film forming conditions.
  • the dense layer formed on the inner surface side of the permselective separation membrane preferably has a two-layer structure having a density difference between the outermost layer portion and the portion near the surface. That is, although the detailed reason is not sufficient, the content of the polysulfone-based polymer and polybutylpyrrolidone in the membrane forming solution and the concentration and temperature of the internal solution are set in the ranges described below, so that the hollow fiber membrane is formed. Differences occur in the solidification rate and Z or phase separation rate between the outermost layer on the inner surface and the vicinity of the surface, and differences in the solubility of the polysulfone polymer and polyvinylpyrrolidone in the solvent Z water express the characteristics described above. Do not do it.
  • the porosity of the surface on the blood non-contact side of the permselective separation membrane is 25 to 35% (Requirement 12). 27-33% is more preferred. If the porosity is too small, when the permselective separation membrane is used as a hollow fiber membrane, sticking between the hollow fiber membranes in the hollow fiber membrane may easily occur. If the porosity is too large, the porosity of the permselective separation membrane will increase, making it difficult to obtain the expected burst pressure, and it may not be possible to control the leakage of albumin, a useful protein, etc.
  • the method for setting the porosity in the above range is not limited !, but examples thereof include a method carried out according to the method described in Patent Document 6.
  • the membrane strength may be reduced, which may lead to problems such as blood leak. Therefore, when the burst pressure of the permselective separation membrane is 0.5 MPa or more, the preferred embodiment (Requirement 13) of the present invention cannot be satisfied.
  • the burst pressure of the perm-selective separation membrane is an index relating to the pressure resistance of the perm-selective separation membrane after forming a module using the perm-selective separation membrane formed of a hollow fiber membrane.
  • the burst pressure is the pressure at which the inside of the hollow fiber membrane is pressurized with gas and the pressure is gradually increased, and the hollow fiber membrane bursts without being able to withstand the internal pressure.
  • the higher the burst pressure the less the cutting of the hollow fiber membrane and the occurrence of pinholes during use are reduced, so 0.5 MPa or more is preferred 0.5 MPa or more is more preferred 0.6 MPa or more is more preferred .
  • the burst pressure is less than 0.5MPa, it may have a potential defect. The higher the burst pressure, the better. However, if the focus is on increasing the burst pressure and the film thickness is too large or the porosity is too low, the desired film performance may not be obtained.
  • the burst pressure is preferably less than 2. OMPa. More preferably, it is less than 1.7 MPa, even more preferably less than 1.5 MPa, even more preferably less than 1.3 MPa, particularly preferably less than 1. OMPa.
  • the above characteristics are blood leak characteristics governed by macro characteristics such as conventionally known membrane strength. It has been found based on the knowledge that the safety of hollow fiber membranes in long-term dialysis cannot be sufficiently proved. That is, as a result of examining the physical properties of a hollow fiber type permselective separation membrane (hereinafter, simply referred to as a hollow fiber membrane) used for a blood purifier, a hollow fiber membrane used for blood purification is usually At the final stage of product production, a leak test is performed in which the inside or outside of the hollow fiber membrane is pressurized with air to check for defects in the hollow fiber membrane or blood purifier. When a leak is detected by pressurized air, the blood purifier is discarded as defective and repaired.
  • macro characteristics such as conventionally known membrane strength.
  • the air pressure in this leak test is often several times the guaranteed pressure of the blood purifier (normally 500 mmHg).
  • the guaranteed pressure of the blood purifier normally 500 mmHg.
  • minute scratches, crushing, cracks, etc. of the hollow fiber membrane which cannot be detected by a normal pressure leak test, occur after the leak test.
  • this leads to the cutting of hollow fibers and the generation of pinholes.
  • the present inventors have found that this is a cause of troubles such as cracks.
  • the above embodiment of the present invention is based on the finding that the safety of a hollow fiber membrane cannot be sufficiently ensured with conventionally known macroscopic properties such as membrane strength. That is, in the hollow fiber membrane of the present invention, the thickness and the skin layer are made extremely thin in order to improve the permeability of a substance having a molecular weight of about 30,000 represented by a1 microglobulin. If so, the potential defects of the hollow fiber membrane (pinholes, scratches, etc.) may become apparent, especially during clinical use. In the present invention, in order to ensure safety, it is extremely important to eliminate the above-mentioned potential defects in addition to macro characteristics.
  • the membrane is formed of a hollow fiber membrane having a burst pressure of 0.5 MPa or more, and has a water permeability of 150 mlZm 2 ZhrZmmHg. It is preferable that it is above. If the permeability is too low, the dialysis efficiency May drop. To increase the dialysis efficiency, the pore diameter is increased or the number of pores is increased. However, this tends to cause problems such as a decrease in membrane strength and defects. Therefore, it is preferable that the porosity of the support layer portion be optimized by optimizing the pore diameter of the outer surface, and the solute permeation resistance and the membrane strength be balanced.
  • a more preferable range of the water permeability is 200 mlZm 2 ZhrZmmHg or more, further preferably 250 mlZm 2 ZhrZmmHg or more, particularly preferably 300 mlZm 2 ZhrZmmHg or more. Further, if the coefficient of water permeability is too high, it becomes difficult to have water removal control during hemodialysis, or less preferably 2000mlZ m 2 ZhrZmmHg.
  • the method of setting the burst pressure to 0.5 MPa or more is not limited, but it is also important and preferable to reduce the thickness deviation of the hollow fiber membrane, which is an embodiment (Requirement 14).
  • the thickness unevenness in the present invention refers to the thickness deviation when observing a cross section of 100 hollow fiber membranes in a blood purifier, and is indicated by a ratio between a maximum value and a minimum value.
  • the minimum thickness deviation of the 100 hollow fiber membranes is preferably 0.6 or more. If any one of the 100 hollow fiber membranes contains a hollow fiber membrane with a thickness deviation of less than 0.6, the hollow fiber membrane may cause a leak during clinical use.
  • the thickness unevenness of the present invention represents a minimum value of 100 pieces, which is equal to the average value.
  • the average pore area of the pores on the outer surface of the hollow fiber membrane is 0.3-1. This is also an effective and preferable embodiment for increasing the burst pressure.
  • the average pore area is more preferably 0.4 to 0.9 m 2 . If the average pore area is too small, the pore diameter of the whole membrane becomes small, so that the water permeability and solute permeability may decrease. Further, when the membrane is dried, there is a possibility that a hydrophilic polymer existing on the outer surface of the membrane is interposed and the hollow fiber membranes are fixed to each other, thereby causing a problem such as poor module assembly. Conversely, if the average pore area is too large, the pore diameter ⁇ the porosity of the hollow fiber membrane becomes too large, and the burst pressure becomes low. It may go down.
  • the method for imparting the above characteristics is not limited.
  • the ratio between the maximum value and the minimum value of the nozzle slit width of the tube in orifice type nozzle is 1.00 or more and 1.11 or more. It is preferable to make the following.
  • the spinning nozzle for the hollow fiber membrane generally, a tube-in-orifice type nozzle having an annular portion for discharging a film forming solution and a core liquid discharge hole inside the annular portion for forming an internal liquid is used.
  • the nozzle slit width refers to the width of the outer annular portion from which the film forming solution is discharged.
  • the ratio between the maximum value and the minimum value of the slit width is 1.00 or more and 1.11 or less, and the difference between the maximum value and the minimum value is 10 m or less, more preferably 7 ⁇ m or less. Is more preferably 5 m or less, particularly preferably 3 ⁇ m or less. This method makes it possible to set the thickness unevenness within a preferable range.
  • the membrane forming solution is preferably filtered with a filter having a filtration accuracy of 25 ⁇ m or less.
  • a filter having a filtration accuracy of 20 m or less is more preferable, and a filter of 15 m or less is more preferable.
  • the filtration treatment may be performed at least once, but the filtration treatment is divided into several stages, and the pore size of the filter is reduced in the later stages, which is preferable in order to increase the filtration efficiency and the filter life.
  • the filtration accuracy of the filter is measured according to JIS B8356: 1976, and the maximum particle size of the glass beads transmitted through the filter media is defined as the filtration accuracy ( ⁇ m).
  • the material and structure of the filter are not limited as long as the above filtering accuracy is satisfied.
  • wire mesh filters are generally used in many cases, and depending on the shape of the plain weave, twill weave, plain tatami weave, twill tatami weave, etc. The miniaturization efficiency will change.
  • a metal sintered filter Apart from these wire mesh filters, there is a type called a metal sintered filter. There are roughly two types: a powder sintered type, and a type of non-woven fabric which is hardened without weaving metal.
  • non-woven fabrics that have been hardened without weaving metal are made by uniformly laminating and sintering micron-order stainless steel fibers, and a myriad of contacts between fibers are joined and integrated by metal members.
  • '' It has high filtration accuracy with few falling This is preferable because it has a higher foreign matter holding ability than a wire mesh / sintered metal powder filter in which the pressure loss is small due to the effect of a higher porosity than a metal filter material.
  • Wire mesh filters are not excluded at all, and some of them can achieve the same or better performance by improving the weaving method and lamination method. The point of selection is to select a filter with low pressure loss and high filtration capacity.
  • the uniformity of the phase separation between the polysulfone-based polymer and the polybulpyrrolidone in the permselective separation membrane can be improved, not only the contamination due to the filtration effect is suppressed.
  • the uniformity of phase separation in the membrane is determined by microscopic observation of the outer surface of the hollow fiber membrane shown below.
  • the uniformity of the phase separation can be evaluated using a real surface view microscope VE-7800 (manufactured by Keyence Corporation). Hollow fiber membranes are arranged on the sample table at a pitch of 3 mm, fixed with double-sided tape, and the total length of lm is checked while scanning for the presence or absence of foreign matter at a magnification of 200 times. To check for voids, cut the hollow fiber membrane obliquely with a razor, fix it on a sample table with double-sided tape so that the cut surface faces upward, and observe 30 visual fields at a magnification of 300 times. Can be done.
  • the uniformity of phase separation is improved by the above method because the poorly dispersed portion of polybulpyrrolidone present in the film forming solution passes through the filter when the film forming solution is filtered by the specified filter. It is presumed that it is based on the effect of dispersing by the effect and the effect of removing the poor dispersion part.
  • the uniformity of phase separation between the polysulfone-based polymer and polybulpyrrolidone in the membrane constituting the permselective separation membrane can be improved.
  • the formation of a defective portion where the film strength is reduced due to non-uniform phase separation in the film is suppressed, which leads to the improvement of the burst pressure.
  • the nozzle temperature is preferably 20-90 ° C. If the nozzle temperature is low, it is easily affected by the room temperature, the nozzle temperature becomes unstable, and the discharge of the film forming solution may occur. Therefore, the nozzle temperature is more preferably 30 ° C. or higher, further preferably 35 ° C. or higher, and still more preferably 40 ° C. or higher. If the nozzle temperature is high, The viscosity of the film-forming solution may be too low and the ejection may not be stable, and the thermal degradation and decomposition of polybutylpyrrolidone may proceed. Therefore, the nozzle temperature is more preferably at most 85 ° C, even more preferably at most 80 ° C.
  • the viscosity of the film forming solution is 2000 to 6000 cps. 3 000—5000 cps is more preferred.
  • the stirring efficiency of the solution is improved, so that the effects such as the uniformity of the phase separation, the reduction of the discharge unevenness from the nozzle, and the ease of the defoaming are exhibited, and the burst pressure is improved. Leads to.
  • Methods to reduce the occurrence of scratches include optimizing the materials and surface roughness of the rollers and guides in the hollow fiber membrane manufacturing process, as well as inserting the hollow fiber membrane into the module container when inserting the hollow fiber membrane into the module container when assembling the module. It is effective to take measures to reduce contact between the hollow fibers and the hollow fiber membranes.
  • a roller having a mirror-finished surface in order to prevent the surface of the hollow fiber membrane from being damaged due to slipping of the hollow fiber membrane.
  • a guide having a matte finish or a knurled guide in order to minimize contact resistance with the hollow fiber membrane.
  • a film in which the contact surface with the hollow fiber membrane is embossed is wound around the hollow fiber membrane. It is preferable to use a method in which the module container is inserted into the module container, and after the film is inserted, the module container force is removed only from the film.
  • the degree of decompression is too high, it may be necessary to increase the number of times of defoaming, so that the treatment may take a long time. If the degree of pressure reduction is too low, the cost for increasing the degree of sealing of the system may increase. Total processing The time is preferably 5 minutes to 5 hours. If the treatment time is too long, polyvinylpyrrolidone may decompose and deteriorate due to the effect of reduced pressure. If the treatment time is too short, the defoaming effect may be insufficient.
  • the permselective separation membrane is divided into 10 pieces in the longitudinal direction, and the elution power of hydrogen peroxide when measured for each is preferably 5 ppm or less at all sites.
  • Mode (Requirement 15) the elution power of hydrogen peroxide when measured for each is preferably 5 ppm or less at all sites.
  • the amount of eluate from the permselective separation membrane is determined by the dialysis-type artificial kidney device manufacturing approval standard.
  • the amount of eluate from the membrane is determined by UV absorbance.
  • the present inventors have studied the elution behavior from the membrane in detail, and as a result, the selective permeable separation membrane mainly composed of a polysulfone-based polymer and polyvinylpyrrolidone has been determined based on the above-mentioned dialysis-type artificial kidney device manufacturing approval standard. It has been found that the extract extracted by the test method contains hydrogen peroxide, which cannot be measured by a conventionally known UV absorbance.
  • the hydrogen peroxide which the present inventors have noticed even when this is present only in a specific part of the hollow fiber membrane, the degradation reaction of the hollow fiber membrane material is started from that point and the hollow fiber membrane Is propagated throughout. Therefore, it is important that the content of hydrogen peroxide in the length direction of the hollow fiber membrane used is maintained at a certain level or less over the entire region.
  • the amount of hydrogen peroxide eluted from the hollow fiber membrane is preferably 5 ppm or less. 4 ppm or less is more preferred 3 ppm or less is even more preferred.
  • the amount of the hydrogen peroxide eluted is too large, the storage stability is deteriorated as described above due to the deterioration of the hydrogen peroxide and the like, for example, when polyvinylpyrrolidone is stored for a long period of time. Dissolution The output may increase.
  • the increase in the amount of polyvinylpyrrolidone eluted is the most remarkable phenomenon, but other factors include deterioration of the polysulfone-based polymer causing brittleness of the hollow fiber membrane and polyurethane-based adhesive used for module assembly. It also means that the deterioration of the agent is accelerated, the amount of the degraded product eluted increases, and the safety decreases.
  • the amount of hydrogen peroxide eluted in the present invention is quantified using an extract extracted by a method according to the elution test method of the dialysis type artificial kidney device manufacturing approval standard. That is, the hollow fiber membrane is arbitrarily taken out from the hollow fiber membrane, and 1.Og is weighed in a dry state, 100 ml of RO water is added thereto, and the mixture is extracted at 70 ° C. for 1 hour. Obtain a liquid.
  • the amount of hydrogen peroxide in polyvinylpyrrolidone used as a raw material is set to 300 ppm or less. This is an effective method.
  • hydrogen peroxide is also produced during the production process of the hollow fiber membrane as described above, so it is important to strictly control the production conditions of the hollow fiber membrane.
  • the optimization of the drying conditions can be an effective means particularly for reducing the fluctuation of the elution amount of the hollow fiber membrane in the longitudinal direction.
  • the film-forming solution As another method for suppressing the generation of hydrogen peroxide, it is important to dissolve the film-forming solution in a short time when dissolving the film-forming solution. To that end, it is usually effective to increase the dissolution temperature and increase the Z or stirring speed. While doing so, the degradation, decomposition of polyvinylpyrrolidone tends to proceed due to the effects of temperature, stirring linear velocity, and shearing force.
  • the molecular weight of polybutylpyrrolidone in the film-forming solution is such that as the dissolution temperature rises, the peak top of the molecular weight moves toward the decomposition direction (shifts to the lower molecular side) or decreases.
  • the present inventors have tried to mix the raw materials at a low temperature in order to suppress the decomposition of polyvinylpyrrolidone.
  • the temperature is preferably 5 ° C or more and 70 ° C or less. 60 ° C or less is preferable.
  • simply lowering the dissolution temperature will lead to degradation and degradation of polybutylpyrrolidone due to prolonged dissolution time, decrease in operability, and increase in equipment size, which is problematic for industrial implementation. .
  • the present inventors have studied the dissolution conditions for dissolving at low temperature without taking time, and found that it is preferable to dissolve the components constituting the spinning solution after kneading them before dissolution. Reached the present invention.
  • constituent components such as a polysulfone-based polymer, polyvinylpyrrolidone, and a solvent may be kneaded at a time, or polybutylpyrrolidone and a polysulfone-based polymer may be separately kneaded.
  • the degradation of polybutylpyrrolidone is accelerated by contact with oxygen, generating hydrogen peroxide.
  • kneading it is important to suppress contact with oxygen, for example, in an atmosphere replaced with an inert gas, and it is preferable to perform the kneading in a separate line.
  • a method in which kneading is performed using only polyvinylpyrrolidone and a solvent and the polysulfone-based polymer is directly supplied to the dissolving tank without preliminary kneading is also included in the scope of the present invention.
  • Kneading may be performed by providing a kneading line separately from the dissolving tank, and then the kneaded product may be supplied to the dissolving tank! Both the kneading and the dissolving are performed in a dissolving tank having a kneading function. You can.
  • the type and the type of the kneading device when the former is performed by a separate device are not limited. Either a batch type or a continuous type may be used. It may be a static method such as a static mixer or a dynamic method such as an eder or a stirring kneader. The latter is preferable for the kneading efficiency.
  • the kneading method may be any type such as a pin type, a screw type, and a stirrer type, which are not limited. Screw type is preferred. The shape and rotation speed of the screw may be appropriately selected from the balance between kneading efficiency and heat generation.
  • the type of the dissolving tank when using a dissolving tank having a kneading function is not limited.For example, there is a kneading dissolver of a type in which a kneading effect is exhibited by a so-called planetary motion in which two frame-type blades rotate and revolve. Recommended. For example, planetary mixers and trimixes manufactured by Inoue Manufacturing Co., Ltd. correspond to this method.
  • the ratio of the resin component such as polyvinylpyrrolidone or polysulfone-based polymer to the solvent during kneading is not limited. 0.1-3 is preferable as the mass ratio of the resin Z solvent. 0.5—2 is more preferred.
  • the technical point of the present invention is to suppress the deterioration of polyvinylpyrrolidone and perform efficient dissolution. Therefore, it is a preferred embodiment that the system in which at least polybutylpyrrolidone is present is kneaded and dissolved at a low temperature of 70 ° C. or lower under a nitrogen atmosphere.
  • the above method may be applied to a kneading line for the polysulfone polymer.
  • the efficiency of kneading and dissolving and the generation of heat are two trade-offs. The selection of a device and conditions that avoid the trade-off as much as possible is an important element of the present invention. In that sense, the cooling method in the kneading mechanism is important and needs to be considered.
  • the dissolution method is not limited, but, for example, a dissolution method using a stirring-type dissolution apparatus can be applied.
  • Is preferably 0.7 or more and 1.3 or less
  • is the blade rotation speed (rps)
  • p density (Kg / m 3 )
  • Pa 's viscosity
  • d stirring blade diameter (m).
  • the Froude number is more preferably 1.25 or less, further preferably 1.2 or less, and still more preferably 1.15 or less.
  • the Froude number is too small, the dispersibility of the raw material is reduced due to weakening of the inertia force, and in particular, polybutylpyrrolidone becomes lumpy, which makes it difficult to dissolve it further, and it is difficult to dissolve it evenly. It may take time. Therefore, the number of flows is more preferably 0.75 or more, and further preferably 0.8 or more.
  • the stirring Reynolds number is large. If it is too much, problems such as prolonged defoaming time or insufficient defoaming due to entrapment of air bubbles in the film forming solution may occur during stirring. Therefore, the stirring Reynolds number is more preferably 240 or less, further preferably 230 or less, and still more preferably 220 or less. On the other hand, if the stirring Reynolds number is too small, nonuniform dissolution may easily occur because the stirring power is small. Therefore, the stirring Reynolds number is more preferably 35 or more, more preferably 40 or more, still more preferably 55 or more, and still more preferably 60 or more.
  • a hollow fiber membrane is formed with such a spinning solution
  • spinnability is reduced by air bubbles and operability is reduced, and in terms of quality, air bubbles are impregnated into the hollow fiber membrane by the penetration of air bubbles into the hollow fiber membrane. It turned out to be a defect, causing problems such as a decrease in the airtightness and burst pressure of the film.
  • Defoaming the spinning solution is an effective countermeasure, but careful control is required when performing defoaming because the spinning solution viscosity may be controlled and the composition of the spinning solution may change due to evaporation of the solvent. It becomes.
  • polybutylpyrrolidone since polybutylpyrrolidone has a tendency to undergo oxidative decomposition under the influence of oxygen in the air, it is preferable to dissolve the spinning solution in an inert gas atmosphere.
  • the inert gas include nitrogen and argon, and it is preferable to use nitrogen.
  • the residual oxygen concentration in the dissolution tank is preferably 3% or less.
  • the dissolution time can be shortened by increasing the nitrogen filling pressure, but the inert gas filling pressure is preferably at least atmospheric pressure and no more than 2 kgfZcm2 from the viewpoint of increasing equipment costs for forming a high pressure and work safety. No.
  • the stirring blade that can be used in the present invention is a stirring blade having a shape used for dissolving a low-viscosity film forming solution, and includes a disk turbine type, a paddle type, a curved blade fan turbine type, and an arrow blade bin.
  • Forces include axial flow type blades such as a radial flow type blade such as a die, a propeller type, an inclined paddle type, and a Faudler type.
  • the present invention is not particularly limited to these.
  • the low-temperature dissolution method as described above, it is possible to obtain a highly safe hollow fiber membrane in which the degradation and degradation of the hydrophilic polymer is suppressed.
  • a spinning solution having a residence time of less than 24 hours after dissolving the raw materials for film formation. This is because thermal energy was accumulated while the film-forming solution was kept warm, and there was a tendency for raw material degradation to occur.
  • the hollow fiber membrane is not completely dried. Absolute drying is not preferable because the degradation of polyvinylpyrrolidone is promoted and the production of hydrogen peroxide is greatly increased.
  • the moisture content of the dried hollow fiber membrane is preferably 0.5% by mass or more, more preferably 0.7% by mass or more, and even more preferably 1.0% by mass or more.
  • polyvinylpyrrolidone is substantially non-crosslinked as described above.
  • sterilization treatment by gamma irradiation is performed, and the irradiation tends to crosslink polybulpyrrolidone.
  • the crosslinking reaction of polypyrrolidone is affected by the water content of the hollow fiber membrane. If the water content exceeds 10% by mass, the crosslinking reaction becomes remarkable. Therefore, the water content is preferably 10% by mass or less. Less than 7% by weight is more preferred Less than 4% by weight is even more preferred.
  • the hollow fiber membrane bundle is over-dried at the air inlet, and the decomposition of the hollow fiber membrane bundle material progresses, and as a result, the inlet portion is made of the constituent material of the hollow fiber membrane bundle, particularly, It was speculated that this was caused by an increase in the deterioration of polybutylpyrrolidone.
  • the present inventors aimed to prevent partial overdrying of the hollow fiber membrane bundle and to dry the hollow fiber membrane evenly, and to change the air direction during drying at regular intervals (for example, every hour or every 30 minutes).
  • the hollow fiber membrane bundle was dried while being inverted by 180 degrees.
  • the temperature inside the dryer and the temperature of the drying air are set to By lowering the temperature to 40 ° C., the hollow fiber membrane bundle of the present invention could be obtained.
  • the air volume and the air velocity in the dryer may be adjusted according to the amount of the hollow fiber membrane bundle and the total water content. Usually, the air volume is about 0.01 to 5 LZsec (one hollow fiber membrane bundle). Is enough. It is preferable to use an inert gas as the ventilation medium, but it is preferable to use dehumidified air when using ordinary air.
  • the drying temperature may be 20-80 ° C, but if the temperature is increased, the damage of the hollow fiber membrane bundle will be increased, and the drying tends to be partially unbalanced. It is preferable that For example, in the state of a water content of 200 to 1000 mass%, force drying that can be dried at a relatively high temperature of 60 to 80 ° C progresses, for example, when the water content falls to about 150% by mass, It is preferable to dry at a relatively low temperature in the range of room temperature to a maximum of about 60 ° C.
  • the “water content” of the hollow fiber membrane bundle here means the water content at several points, such as the central part, middle part, and outer peripheral part, of the hollow fiber membrane bundle as the basis for calculation, and This is the "average moisture content” obtained by calculating the average value of the moisture content.
  • the total water content of the hollow fiber membrane bundle can be used as a basis for the calculation, but there is a disadvantage that the accuracy is reduced. Since the difference in water content at the center, middle, and outer periphery of the hollow fiber membrane bundle is small, it is an embodiment for producing a product with good quality.
  • Technical considerations are given to the drying method used. For example, when using an inert gas such as nitrogen gas or argon gas as the ventilation medium, the drying is performed in a substantially oxygen-free state. It is possible.
  • the air volume and the drying temperature can be determined according to the total amount of water contained in the hollow fiber membrane bundle. If the water content is high, increase the air volume relatively. For example, 0.1-5 LZsec (1 hollow fiber membrane bundle) And the temperature can be set relatively high, eg, 50-80 ° C. As drying progresses and the water content of the hollow fiber membrane bundle decreases, the air volume is adjusted to gradually decrease to, for example, 0.1 LZsec (one hollow fiber membrane bundle) or less, while the temperature is also linked to it.
  • One method of drying is to adopt a drying method that allows the temperature to gradually reach room temperature.
  • the hollow fiber membrane bundle In order to reduce the difference in the water content of the central portion, the intermediate portion, and the outer peripheral portion of the hollow fiber membrane bundle, it may be effective to simultaneously and uniformly dry the respective portions.
  • a method of alternately reversing the direction of air flow when air-drying the hollow fiber membrane bundle is used i.e., air is alternately blown from a direction in which the airflow direction of the hollow fiber membrane bundle in the air-drying is changed by 180 degrees.
  • the method can be suitably adopted.
  • the reversal of the blowing direction can also be achieved by devising the apparatus so that the hollow fiber membrane bundle itself, which is the content itself, is alternately reversed by 180 degrees with respect to the ventilation direction.
  • blowing means is not particularly limited.
  • a device that alternately turns the hollow fiber membrane bundle itself by 180 degrees alternately functions rationally not only in design but also in operation.
  • This seemingly common method of inversion including drying is found in the drying of general-purpose materials in the embodiment of the present invention, particularly for quality control for preventing a bundle from partially sticking to a special material such as a hollow fiber membrane bundle. It has been found to have no unexpected effect.
  • the alternate reversal time of ventilation in drying can be changed according to factors such as the total water content of the hollow fiber membrane bundle to be dried and the wind speed, air volume, drying temperature, and the degree of dehumidification of air.However, in order to achieve uniform drying, It is preferable that the air blowing direction is frequently reversed.
  • the wind reversal time which is industrially set for practical use, also affects the water content after the start of drying. For example, dry at a high temperature of about 60-80 ° C (for example, 65 ° C) for 1-4 hours and at a temperature of 25-60 ° C (for example, about 30 ° C) for 120 hours, and reduce the total drying time to 24 hours. If set to about 30 minutes, the wind direction can be reversed mechanically at intervals of about 30-60 minutes.
  • the total amount of water is large! During the initial drying stage! At a high temperature of, for example, about 60-80 ° C !, the air flow is relatively low, such as about 0.1-5LZsec (1 hollow fiber membrane bundle). When drying under a lot of conditions, the part that is directly hit by wind first dries relatively quickly, so it takes about 10-120 minutes. The reversal of the wind direction may be repeated for about 15 hours at intervals. In particular, in the first stage, it is preferable to reverse the wind direction at intervals of 10 to 40 minutes.
  • the drying temperature is gradually brought closer to room temperature to about 30 ° C, and the reversal time is set to about 30 to 90 minutes, and the wind direction is reversed. Can be repeated. Switching of the air volume and the temperature at that time can be arbitrarily determined in consideration of the moisture content of the hollow fiber membrane bundle. More specifically, when the water content, which is based on the calculation of the water content at the center and the outer periphery of the hollow fiber membrane bundle, becomes 50-100% by mass or less, while observing the drying condition, The drying temperature and the reversal time can be appropriately changed.
  • Drying can be performed by setting the wind direction reversal time mechanically at fixed time intervals. On the other hand, there are factors that rely on the situation judgment and empirical rules to determine the wind direction reversal time and total drying time while observing the degree of drying progress.
  • the water content (% by mass) in the present invention is obtained by measuring the mass (a) of the hollow fiber membrane bundle before drying and the mass (b) of the hollow fiber membrane bundle after drying. ab) Zb X 100
  • a method of drying by irradiating a microwave under reduced pressure is one of the effective means.
  • the drying conditions of the drying method it is preferable to irradiate a 0.1 to 100 kW output of a microwave under a reduced pressure of 20 KPa or less. Further, it is preferable that the frequency of the microwave is 1,000 to 5,000 MHz and the maximum temperature of the hollow fiber membrane bundle during the drying treatment is 90 ° C. or less. Employment of decompression means that the drying of water is promoted by itself, so there is an advantage that the output of microphone mouth wave irradiation can be kept low and the irradiation time can be shortened. Since it can be kept small, the overall effect on the performance of the hollow fiber membrane bundle is small.
  • drying with reduced pressure has the advantage that the drying temperature can be relatively lowered, and is particularly excellent in that the degradation and degradation of the hydrophilic polymer can be significantly suppressed.
  • the drying temperature is preferably from 20 to 80 ° C, more preferably from 20 to 60 ° C, still more preferably from 20 to 50 ° C, and still more preferably from 30 to 40 ° C.
  • decompression accompanies means that decompression acts uniformly on the central part and the outer peripheral part of the hollow fiber membrane bundle, the evaporation of water is promoted uniformly, and the hollow fiber membrane is dried uniformly. Therefore, it is possible to avoid the trouble of the hollow fiber membrane bundle caused by uneven drying.
  • microwave the heating by the pressure acts almost equally on the entire center and the outer periphery of the hollow fiber membrane bundle, so that the uniform heating and the reduced pressure work synergistically, so that a specific effect can be obtained in drying the hollow fiber membrane bundle.
  • the degree of decompression can be appropriately set according to the microwave output, the total water content of the hollow fiber membrane bundle, and the number of hollow fiber membrane bundles.
  • the degree of reduced pressure is preferably 20 kPa or less, more preferably 15 kPa or less, and still more preferably 10 kPa or less. If the degree of decompression is high, the moisture evaporating efficiency decreases, and the temperature of the polymer forming the hollow fiber membrane bundle, which is loosened by force, may increase to cause deterioration.
  • a low degree of pressure reduction is preferable in order to suppress the temperature rise and increase the drying efficiency, but it is preferable to use 0.1 lkPa or more because the cost for maintaining the airtightness of the apparatus increases. It is more preferably at least 0.25 kPa, even more preferably at least 0.4 kPa.
  • the microwave output be high.
  • the microwave output it is preferable that the microwave output be high.
  • the degree of decompression and the microwave output can be determined as appropriate according to the water content of the hollow fiber membrane bundle and the number of hollow fiber membrane bundles to be processed.
  • the microwave output is more preferably from 0.1 to 80 kW, and still more preferably from 0.1 to 60 kW.
  • the output of the microwave is determined, for example, by the total number of hollow fiber membranes and the total water content.
  • a high-output microwave is suddenly irradiated, drying may be completed in a short time, but the hollow fiber membrane may be partially denatured and deformed like shrinkage.
  • the hollow fiber membrane contains a water retention agent or the like, drying at high power or using microwaves can cause loss of the water retention agent due to scattering. In the past, it has never been intended to irradiate microwaves under reduced pressure.
  • the present invention microwave irradiation under reduced pressure Then, since the evaporation of the aqueous liquid becomes active even at a relatively low temperature, the damage of the hollow fiber membrane such as deterioration of the polypyrrolidone and deformation of the hollow fiber membrane due to high-power microwave and high temperature is prevented. The effect can be obtained.
  • drying by microwave irradiation under reduced pressure is not limited to single-stage drying with a constant microwave output, but as another preferred embodiment, the microwave output is sequentially changed according to the progress of drying. Includes so-called multi-stage drying, which is stepwise lowered. Therefore
  • the multistage drying will be described below.
  • microwave drying When microwave drying is performed at a relatively low temperature of about 30 to 90 ° C under reduced pressure, the microwave output is gradually reduced in accordance with the progress of drying of the hollow fiber membrane bundle.
  • Multi-stage drying methods can be an excellent method.
  • the degree of decompression, temperature, microwave output and irradiation time should be determined in consideration of the total amount of the hollow fiber membrane to be dried, an appropriate industrially acceptable drying time, and the like.
  • the multi-stage drying can be performed in any number of stages, for example, 2 to 6 stages, but the industrially appropriate number of stages is 2 to 4 in consideration of productivity.
  • multi-stage drying is performed, for example, at a temperature of 90 ° C or less and under a reduced pressure of about 5 to 20 kPa.
  • the second stage is in the range of 10-30 kW and the third stage is in the range of 0.1-10 kW, taking into account the microwave irradiation time. If the range of the microwave output is large, for example, 90 kW for the high stage and 0.1 kW for the low stage, the number of stages for reducing the output may be increased to, for example, 418 stages.
  • the pressure reduction operation can be used in combination with microwave irradiation, it is advantageous in that drying can be performed even when the microwave output is relatively low.
  • the first stage is about 10-100 minutes using a 10-20 kW microwave
  • the second stage is about 5-10 minutes at about 3-10 kW
  • the third step is about 1-160 kW at about 0.1-13 kW.
  • This drying method is a very gentle drying method for the hollow fiber membrane bundle, and cannot be expected in the prior art of Patent Documents 17 to 19 described above.
  • the total water content of the hollow fiber membrane bundle is relatively small! /, For example, when the water content is 400% by mass or less, irradiation with a low-output microwave of 12kW or less may be excellent.
  • the total amount of water in the hollow fiber membrane bundle to be dried at a time is relatively small, about 17 kg, at a temperature of 80 ° C. or less, preferably 60 ° C.
  • the microwave irradiation is stopped, and at the same time, the water pressure is reduced to 13 kPa to evaporate water. I can make it.
  • the pressure reduction is returned to 3 lOkPa, and the microwave irradiation is resumed.
  • the membrane bundle may be heated.
  • microwave irradiation can be stopped and the pressure can be reduced to 0.5-1.5 kPa to evaporate water.
  • the pressure can be raised again to 3-lOkPa, and microwaves of less than 0.1-0.5 kW can be applied for heating for about 1-240 minutes.
  • drying can be performed uniformly by adjusting the irradiation output and irradiation time of the microwave according to the degree of drying.
  • the degree of decompression can be set at 0.1 to 20 kPa for each stage, but the degree of decompression at each stage should be adjusted according to the situation in consideration of changes in the total water content and the water content of the hollow fiber membrane bundle. Can be set properly.
  • the first stage which has a relatively high water content in the hollow fiber membrane, has a higher decompression (for example, 0.1 to 5 kPa) and a higher microwave output (for example, 10 to 30 kW).
  • the eye may be irradiated with microwaves at a slightly higher pressure than the first stage (eg, 0.1-5 kW output under reduced pressure of 5-2 OkPa).
  • the operation of changing the degree of decompression in each stage can further make the feature of the present invention that microwaves are irradiated under reduced pressure more significant.
  • a combination of a drying method of irradiating microwaves under reduced pressure and a drying method of alternately reversing the direction of ventilation is also effective for the present invention, although the steps are complicated. It is.
  • the microwave irradiation method and the alternate ventilation reverse method each have advantages and disadvantages, and when high quality is required, these can be used in combination.
  • a ventilation alternate reversal method is adopted, and when the average moisture content advances to about 20-60% by mass, it is possible to dry by applying microwaves under reduced pressure in the next stage. .
  • a drying method of alternately reversing the direction of ventilation after drying by irradiating microwaves may be used in combination.
  • the method of combined use is a hollow fiber membrane product obtained by drying.
  • the quality can be determined in consideration of the quality, particularly, the quality of the polysulfone-based selectively permeable hollow fiber membrane bundle having no partial fixation in the longitudinal direction of the hollow fiber membrane.
  • these drying methods can be performed simultaneously, they are not practical because of disadvantages such as complexity and complexity of the apparatus and soaring prices.
  • an effective heating method such as far infrared rays may be used in combination.
  • the maximum temperature of the hollow fiber membrane bundle during drying can be checked by attaching an irreversible thermolabel to the side of the film that protects the hollow fiber membrane bundle, drying it, removing it after drying, and checking the display. Can be measured by At this time, the maximum temperature of the hollow fiber membrane bundle during drying is preferably 90 ° C or less, more preferably 80 ° C or less. More preferably, it is 70 ° C or less. If the maximum temperature is high, the film structure is liable to change, which may cause a decrease in performance or deterioration due to oxidation.
  • the drying temperature is preferably lower, it is preferably 30 ° C. or higher from the viewpoint of the cost of maintaining the degree of reduced pressure and shortening the drying time.
  • the irradiation frequency of the microwave is preferably 1,000 to 5, OOOMHz in consideration of the suppression of irradiation spots on the hollow fiber membrane bundle and the effect of extruding water in the pores from the pores. More preferably, it is 1,500-4, OOOMHz, even more preferably, 2,000-3, OOOMHz.
  • the film forming solution a polymer and a solvent, and if necessary, non-solvent components are used. .
  • the hollow inner solution it is preferable to use a mixed solution containing the same solvent and water as used in the film-forming solution.However, a non-solvent is appropriately added to obtain the desired membrane performance and membrane characteristics. You may.
  • the polysulfone-based polymer not only polysulfone and polyether sulfone, but also a mixture of two or more of these polymers can be used.
  • the solvent it is preferable to use a solvent capable of dissolving both the polysulfone-based polymer and polybutylpyrrolidone.
  • the non-solvent refers to a non-solvent which can be mixed with the solvent at an arbitrary ratio to some extent but has no ability to dissolve the polysulfone-based polymer.
  • water, ethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-butylene glycol, glycerin, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and the like are preferable. Water, triethylene glycol, and polyethylene glycol are more preferable in terms of work safety, availability, and cost.
  • the film-forming solution is discharged from a tube-in-orifice-type double tube nozzle heated to a room temperature of 130 ° C, and a film is formed by a so-called dry-wet spinning method.
  • the film-forming solution and the hollow inner solution for coagulating the film-forming solution are simultaneously extruded into the air, pass through the air that is shielded from the outside air, and then guided to the coagulation bath provided immediately below the nozzle, where the microphase A film is formed by the separation.
  • excess solvent “non-solvent” polyvinylpyrrolidone is removed from the membrane.
  • the width of the film forming solution discharge hole of the nozzle is preferably 100 ⁇ m or less as described above. It is more preferably at most 80 m, further preferably at most 60 m. It is preferable that the discharge hole width is small because the film thickness can be reduced. However, if the discharge hole width is too small, nozzle clogging is likely to occur, or a problem may occur when cleaning becomes difficult. Therefore, the discharge hole width is preferably 30 m or more, more preferably 20 m or more.
  • the L / D value which is the ratio between the discharge outer diameter (D) and the land length (L), is preferably 2-6. By taking such measures, the orientation of polyvinylpyrrolidone on the inner surface of the hollow fiber membrane can be in a preferable range.
  • the film forming conditions include optimization of the stretching conditions, the temperature of the coagulation bath, the composition ratio of the solvent and the non-solvent in the coagulation solution, and the cleaning methods include hot water cleaning, alcohol cleaning, and centrifugal cleaning. Etc. are effective.
  • the stretching is not substantially performed before the hollow fiber membrane structure is completely fixed.
  • Substantially no stretching means that the film-forming solution discharged from the nozzle does not excessively loosen or tension, for example, by controlling the roller speed during the spinning process. .
  • Discharge linear velocity The ratio (draft ratio) of the first opening speed of the first coagulation bath per one liter (draft ratio) is preferably 0.7 to 2.0. If the draft ratio is low, the running hollow fiber membrane may be slackened, which may lead to a decrease in productivity. Therefore, the draft ratio is more preferably 0.8 or more, and 0.9 or more is even more preferable 0.95. The above is even more preferred.
  • the draft ratio is more preferably 1.9 or less, and still more preferably 1.8 or less.
  • the draft ratio is more preferably 1.9 or less, and still more preferably 1.8 or less.
  • the hollow fiber membranes that have passed through the washing bath are entirely wound up in a wet state to form a bundle of 3,000 to 20,000.
  • the obtained hollow fiber membrane is washed to remove the excess solvent, polyvinylpyrrolidone.
  • the method for cleaning the hollow fiber membrane includes hot water at 70 to 130 ° C.
  • the hollow fiber membrane is preferably immersed in an aqueous solution of 10-40 vol% ethanol or isopropanol at room temperature and 50 ° C. for treatment.
  • the cleaning method may be performed in combination of two or more.
  • the processing temperature is too low, it is necessary to increase the number of times of cleaning and the like, which may lead to an increase in cost.
  • the treatment temperature is too high, the decomposition of polyvinylpyrrolidone is accelerated, and conversely, the washing efficiency may decrease.
  • the content of polyvinylpyrrolidone on the outer surface is optimized, and it is possible to suppress the fixation and reduce the amount of eluted substances.
  • the hollow fiber membrane when the hollow fiber membrane is stored in a dry state, it is preferable to store the hollow fiber membrane at a temperature of 20 ° C.
  • an aluminum foil that can substantially block oxygen gas and water vapor is a constituent layer
  • an outer layer is a polyester film
  • an intermediate layer is an aluminum foil
  • an inner layer is a polyethylene film.
  • the moisture content of the hollow fiber membrane is less than 1% by mass, store it in a state where the relative humidity at room temperature of the atmosphere in the packaging bag is 50% RH or more, or use a water release type oxygen scavenger. Preferably packed.
  • the hollow fiber membrane bundle in the case of sterilization by ⁇ -ray or electron beam irradiation, in order to suppress the crosslinking reaction of polyvinylpyrrolidone, it is preferable to sterilize the hollow fiber membrane bundle in a dry state.
  • the permselective separation membrane and the blood purifier of the present invention can positively remove other low-molecular-weight proteins while minimizing leakage of albumin, which is a useful protein. It is preferable that the amount of albumin leaked from the permselective separation membrane used in the blood purifier is 3 gZ3L or less. On the other hand, the clearance of ⁇ 1 microglobulin is preferably 15 mlZm 2 or more. a 1 If the removal rate of microglobulin is reduced, the effect of preventing dialysis complications and the improvement of clinical symptoms such as itching and pain may not be obtained.
  • a means for increasing the permeability of 1 microglobulin and a means for adsorbing 1 microglobulin on the surface of the permselective separation membrane are added, and a total of both means is added. Achieving a high removal rate as one of the effects of this is one of the points that broke the above trade-off phenomenon.
  • the permselective separation membrane of the present invention also satisfies the following many properties that should be provided when used for a blood purifier.
  • the selectively permeable separation membrane of the present invention has an extremely high quality for a blood purifier, and can be suitably applied to a blood purifier.
  • Solution B 20.42 g of KH PO and 126.30 g of NaC were dissolved in 3 L of pure water.
  • Solution A was added with solution B, and the pH was adjusted to 7.5 ⁇ 0.1.
  • 30 g of bovine plasma albumin (manufactured by Wako Pure Chemical Industries) was dissolved in 3 L of this phosphate buffer. After dissolution, the pH was adjusted to 7.5 ⁇ 0.1 again using IN-NaOH.
  • Pure water was passed through the dialysate flow path of the module at 500 mLZmin for 5 minutes, and then passed through the blood flow path at 200 mLZmin for 5 minutes.
  • the above phosphate buffer solution was passed through the dialysate side flow path of the module at 500 mLZmin for 5 minutes, and then passed through the blood side flow path at 200 mLZmin for 5 minutes. Thereafter, the solution was passed for 3 minutes while filtering from the blood side to the dialysate side.
  • the circuit was connected to the blood side, and the priming solution (phosphate buffer) on the dialysate side was discarded. Place the module in a 37 ° C constant temperature bath, seal the dialysate side, and set the blood side at 200 mL Zmin. The solution was passed for 1 minute to remove the priming solution remaining on the blood side.
  • a circuit was connected to the dialysate inlet, the flow rate on the blood side was set to 200 mLZmin, the flow rate of the filtration circuit connected to the dialysate inlet was set to 30 mLZmin, and both the blood-side permeate and filtrate were returned to the test solution. The test was carried out.
  • the test solution, the blood-side permeate, and the filtrate were collected 15 minutes after the start of circulation.
  • the collected sample was diluted 10-fold with pure water (the filtrate was preferably not diluted), and the absorbance was measured with a spectroscope at a wavelength of 280 nm.
  • the sieving coefficient of albumin was calculated from the respective absorbances using the following equation.
  • Cf is the absorbance of the filtrate
  • Cb is the absorbance of the test solution
  • Co is the absorbance of the blood-side permeate. If diluted, multiply by the respective dilution factor.
  • both ends were sealed with urethane resin, and the measurement was performed using a hollow fiber membrane module in which the hollow portions were opened at both ends by cutting.
  • the sample may or may not be gamma sterilized.
  • Solution A Na HPO ⁇ 12 ⁇ 053.72 g and NaC126.30 g were dissolved in 3 L of pure water.
  • Solution B 20.42 g of KHPO and 126.30 g of NaC were dissolved in pure water.
  • 300 mg of bovine plasma albumin (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 3 L of this phosphate buffer. After dissolution, the pH was adjusted to 7.5 ⁇ 0.1 again using IN-NaOH.
  • Pure water was passed through the dialysate flow path of the module at 500 mL / min for 5 minutes, and then passed through the blood flow path at 200 mL / min for 5 minutes.
  • the phosphate buffer solution was passed through the dialysate flow path of the module at 500 mL / min for 5 minutes, and then passed through the blood flow path at 200 mL / min for 5 minutes. Thereafter, the solution was passed for 3 minutes while filtering the dialysate side from the blood side.
  • the measurement solution circuit was connected to the blood side, and the priming solution (phosphate buffer) on the dialysate side was discarded.
  • the module was placed in a thermostat at 37 ° C, the dialysate side was sealed, and the blood side was passed at 200 mL / min for 1 minute to remove the priming solution remaining on the blood side.
  • a circuit was connected to the dialysate inlet, and the flow rate on the blood side was set to 200 mL / min, and the flow rate of the filtration circuit connected to the dialysate inlet was set to 30 mL / min.
  • the test was carried out in a circulation system that returns to. Test liquids were collected at the start of circulation and 15 minutes later, respectively. The concentration of the collected sample was determined by the eraser method, and the amount of adsorption was determined.
  • a 1MG adsorption amount (mg) CbO X test solution volume Cbl5 X test solution volume
  • CbO and Cbl5 represent the concentration of the test solution at the start of circulation and 15 minutes after, respectively, and when diluted, multiply by the respective dilution ratio.
  • the flow in the blood outlet circuit (outlet side from the pressure measurement point) of the dialyzer was stopped with forceps, and the whole filtration was performed. Pure water kept at 37 ° C is placed in a pressurized tank, and while controlling the pressure with a regulator, the pure water is sent to the dialyzer kept in a 37 ° C high-temperature bath, and the filtrate flowing out from the dialysate side is measured with a graduated cylinder. It was measured.
  • TMP transmembrane pressure difference
  • TMP (Pi + Po) / 2 And Where Pi is the dialyser inlet pressure and Po is the dialyser outlet pressure.
  • the filtration flow rate was measured by changing the TMP at four points, and the water permeability (mLZhrZmmHg) was calculated from the slope of the relationship. At this time, the correlation coefficient between TMP and filtration flow rate must be greater than 0.999. TMP was measured within the range of 100 mmHg or less to reduce the pressure loss error due to the circuit. For the water permeability of the hollow fiber membrane, the membrane area and the water permeability of the dialyzer were also calculated.
  • UFR (H) is the water permeability of the hollow fiber membrane (mLZm 2 ZhrZmmHg)
  • UFR (D) is the water permeability of the dialyzer (mLZhrZmmHg)
  • A is the membrane area (m 2 ) of the dialyzer.
  • the membrane area of the dialyzer was determined based on the inner diameter of the hollow fiber.
  • n is the number of hollow fibers in the dialyzer
  • is the pi
  • d is the inner diameter of the hollow fibers (m)
  • L is the effective length of the hollow fibers in the dialyzer (m).
  • the dialysate side of the module loaded with about 10,000 hollow fiber membranes was filled with water and plugged. Dry air or nitrogen was supplied from the blood side at room temperature and pressurized at a rate of 0.5 MPa per minute. The pressure was increased, and the air pressure when the hollow fiber membrane burst (burst) with pressurized air and bubbles were generated in the liquid filled on the dialysate side was defined as the burst pressure.
  • a cross section of 100 hollow fiber membranes was observed with a 200 ⁇ projector.
  • the thickness of the thickest portion, the portion and the thinnest portion, and the thickness of the portion were measured for one yarn cross section having the largest film thickness difference in one visual field.
  • the film thickness is perfectly uniform.
  • Bovine blood at 37 ° C with quenched acid added to suppress coagulation was sent to a blood purifier at 200 mLZmin, and the blood was filtered at a rate of 20 mLZmin. At this time, the filtrate was returned to the blood to form a circulation system. After 60 minutes, the filtrate from the blood purifier was collected, and the red color caused by red blood cell leak was visually observed.
  • This blood leak test was performed for 30 blood purification samples in each of the Examples and Comparative Examples. The test was carried out using a device, and the number of modules that leaked blood was examined.
  • hydrophilic polymers such as polyvinylpyrrolidone (PVP) was determined by X-ray photoelectron spectroscopy (ESCA method).
  • One hollow fiber membrane was affixed to a sample stage and measured by ESCA.
  • the measurement conditions are as follows.
  • Photoelectron escape angle 45 °
  • Vacuum about 10- 7 Pa or less
  • the sample was dried at 80 ° C for 48 hours using a vacuum dryer, and its lOmg was analyzed using a CHN coder (manufactured by Janaco Analytical Industry Co., Ltd., MT-6), and the nitrogen content
  • CHN coder manufactured by Janaco Analytical Industry Co., Ltd., MT-6
  • PVP content Nitrogen content (% by mass) X111 / 14
  • the ratio ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ s of the peak position ⁇ ⁇ (wave number) of V s and PVP was multiplied by the actually measured value.
  • the content of the hydrophilic polymer (for example, PVP) in the layer near the blood contact surface was calculated according to the following equation.
  • Cav is the content (% by mass) of the hydrophilic polymer (for example, PVP) determined in 10 above.
  • the outer surface of the hollow fiber membrane was observed with an electron microscope at 10,000 magnification, and a photograph (SEM photograph) was taken.
  • the image was processed by image analysis processing software to determine the porosity of the outer surface of the hollow fiber membrane.
  • the measurement was performed using, for example, Image Pro Plus (Media Cybernetics, Inc.) as image analysis processing software.
  • An emphasis' filter operation was performed on the captured image so that holes and occlusions were identified. Thereafter, the holes were counted. At this time, when the lower polymer chain was found inside the pore, the counting was performed ignoring the lower polymer chain.
  • the scale setting is to be performed as an initial operation, and holes at the boundary of the measurement range are not excluded at the time of counting.
  • the holes were counted in the same manner as in the previous section, and the area of each hole was determined.
  • the measurement range Holes on the border of the enclosure were excluded. This was performed for 10 visual fields, and the average of all pore areas was determined.
  • the cross section of the hollow fiber membrane was projected using a 200 ⁇ magnification projector, and the inner diameter (A) and outer diameter (B) of the maximum, minimum, and medium-sized hollow fibers were measured in each field of view.
  • the film thickness of each hollow fiber is determined according to the following equation,
  • the average of the film thickness of five hollow fibers per one visual field was calculated.
  • the thickness of the skin layer of the hollow fiber membrane was determined as follows. That is, the cross section of the hollow fiber membrane was observed with a scanning electron microscope (SEM) at a magnification of 3000 times, and a portion where no pore was clearly observed was defined as a skin layer, and its thickness was measured.
  • SEM scanning electron microscope
  • a dialysate having an endotoxin concentration of 200 EUZL was sent from the dialysate inlet of the module at a flow rate of 500 mlZmin, and the dialysate containing endotoxin was filtered from the outside to the inside of the hollow fiber membrane at a filtration rate of 15 mlZmin for 2 hours.
  • the filtered dialysate was stored from the outside of the hollow fiber membrane to the inside of the hollow fiber membrane, and the endotoxin concentration of the stored solution was measured.
  • the endotoxin concentration was analyzed using Limulus ESII Test Co., Ltd. (manufactured by Wako Pure Chemical Industries, Ltd.) according to the method described in the manual (gelling method).
  • the dialysate side of the module with a membrane area of 1.5 m 2 was filled with physiological saline, and 200 ml of heparin cider blood collected from a healthy person was packed in a blood bag.
  • the blood bag and the module were connected by a tube and circulated at 37 ° C for 1 hour at a blood flow rate of 100 mlZmin. Blood was sampled before and 60 minutes after the start of circulation, and the numbers of white blood cells and platelets were measured. The measured value is Corrected by the value of Tocrit.
  • Rate of change correction value (60 minutes) Z value before circulation start X 100
  • the blood was returned with physiological saline, the number of remaining blood threads was counted, and the evaluation was made according to the following criteria.
  • distilled water for injection was flowed at 200 mL / min from the blood side inlet port. After the distilled water for injection reached the outlet port, the module case was lightly squeezed five times for 10 seconds for 10 seconds to defoam, and the number of air bubbles per minute was visually confirmed. Judgment was made based on the following criteria.
  • the insolubility due to crosslinking of polyvinylpyrrolidone in the present invention is determined by the solubility of dimethylformamide in the crosslinked film. That is, 10 g of the membrane after cross-linking was taken, a solution dissolved in 100 ml of dimethylformamide was separated by a centrifuge at 1500 rpm for 10 minutes, and the supernatant was removed. Once again, add 100 ml of After adding methylformamide and stirring, centrifuge under the same conditions.
  • An extract was obtained according to the method defined in the dialysis-type artificial kidney device manufacturing standard, and hydrogen peroxide in the extract was quantified by a colorimetric method. The quantification was performed on each part by dividing the hollow fiber membrane into ten pieces each of 2.7 cm in the longitudinal direction.
  • 0.2 ml of a coloring reagent prepared at 0.4 mM from a mixed solution with an aqueous salt solution was prepared, heated at 50 ° C. for 5 minutes, cooled to room temperature, and the absorbance at 508 nm was measured.
  • the amount of hydrogen peroxide eluted was quantified using a calibration curve obtained by performing the same measurement using a sample.
  • a physiological saline solution was passed through the dialysate-side flow path of the module at 500 mLZmin for 5 minutes, and then passed through the blood-side flow path at 200 mLZmin. After that, the solution was passed through the blood side to the dialysate side for 3 minutes while being filtered at 200 ml Zmin, followed by freeze drying to obtain a dried membrane. The quantification was performed using the dried film.
  • Bovine blood at 37 ° C to which coagulation was added to inhibit coagulation was used. Hematocrit was adjusted to 30% by dilution with bovine plasma.
  • the blood was sent to the blood purifier at 200 mL Zmin, and the blood was filtered at a rate of 20 mLZmin. At this time, the filtrate was returned to blood to form a circulatory system.
  • the blood purifier was sufficiently replaced with physiological saline in advance. Circulation Five minutes after the start, it was confirmed that a predetermined filtration flow rate was obtained. From 15 minutes after the start, the filtrate was sampled by about lcc every 15 minutes.
  • Cf indicates the albumin concentration in the filtrate
  • Ci indicates the albumin concentration in the blood 'plasma at the inlet of the blood purifier
  • Co indicates the albumin concentration in the blood' plasma at the outlet of the blood purifier.
  • the amount of albumin leak equivalent to 3 L of water removal was determined as follows. That is, the samples were sampled at 30, 45, 60, 75, 90, 105, and 120 minutes, and the albumin concentration in the filtrate was calculated by the A / GB-Testco's BCG method. . Using these data, take the albumin leak (TAL [mgZdL]) on the vertical axis and In (time [min]) (InT) on the horizontal axis, and use spreadsheet software (for example, Microsoft EXCEL- ⁇ ).
  • TAL aXlnT + b
  • the water content of the permselective separation membrane in the present invention was calculated by the following equation.
  • Ww is the weight (g) of the permselective separation membrane
  • Wd is the weight (g) of the permselective separation membrane after drying in a dry heat oven at 120 ° C for 2 hours (after absolute drying).
  • Ww is the weight (g) of the permselective separation membrane after drying in a dry heat oven at 120 ° C for 2 hours (after absolute drying).
  • Polyethersulfone manufactured by Sumika Chemtex Co., Sumikaetaseru 5200P
  • poly Bulle pyrrolidone BASF Corp. Kollidon K 90
  • DM Ac dimethyl ⁇ Seto amide
  • the dissolution tank was immediately sealed and left for 15 minutes so that the solvent and the like did not evaporate and the composition of the film-forming solution did not change. This operation was repeated three times to defoam the film forming solution.
  • the ratio of polyvinylpyrrolidone to polysulfone polymer in the film-forming solution was 16.7% by mass, and the hydrogen peroxide content of polybutylpyrrolidone was 100 ppm.
  • the supply tank of the raw material supply system and the inside of the above-mentioned dissolution tank were replaced with nitrogen gas. At this time, the oxygen concentration in the dissolution tank was 0.06%.
  • the Froude number and the stirring Reynolds number at the time of dissolution were 1.1 and 120, respectively.
  • the obtained film forming solution was passed through a two-stage sintered filter of 15 / zm10 / zm in order. After that, discharge from the tube in orifice nozzle heated to 70 ° C at a discharge rate of 2.3 ccZmin, and at the same time discharge a 46% by mass aqueous DMAc solution at 25 ° C at 25 ° C, which was previously degassed at -700 mm Hg for 30 minutes as an internal liquid. did.
  • the ejected material was passed through a dry section (air gap) of 700 mm, which was cut off from the outside air by a spinning tube, then solidified in a 20% by mass aqueous DMAc solution at 70 ° C, and wound up entirely in a wet state .
  • the average slit width was 60 m
  • the maximum was 61 ⁇ m
  • the ratio of the maximum and minimum slit width was 1.03.
  • the pressure loss in the nozzle was 2.9 ⁇ 10 8 Pa 's
  • the shear stress in the film forming solution flow path was 1.5 ⁇ 10 6 s- 1
  • the flow path passage time was 1.3 It was calculated to be X 10- 3 sec.
  • the draft ratio was 1.3.
  • the rollers used for changing the yarn path during the spinning process used mirror-finished surfaces, and the fixed guides used were matte-finished surfaces.
  • a polyethylene film was wound around the bundle of about 10,000 hollow fiber membranes, and immersed and washed twice in a 40 vol% aqueous solution of isopropanol at 30 ° C for 30 minutes.
  • the hollow fiber membrane bundle after the washing treatment is lightly rinsed with RO water, and isopropanol is replaced with water. At 600 rpm for 5 min.
  • the obtained bundle of wet hollow fiber membranes was set on a rotating table in a drying device in a 12-piece ⁇ 2 stage, and was subjected to a drying treatment under the following conditions.
  • the microwave irradiation was stopped, and at the same time, the degree of reduced pressure was reduced to 1.5 kPa and maintained for 3 minutes. Subsequently, the pressure reduction degree was returned to 7 kPa, and at the same time, the hollow fiber membrane bundle was heated at a power of 0.5 kW for 10 minutes by irradiating the microwave, then the microwave was cut, and the pressure reduction degree was reduced to 0.7 kPa for 3 minutes. Maintained. The degree of pressure reduction was returned to 7 kPa, and microwave irradiation was performed for 8 minutes at an output of 0.2 kW to heat the hollow fiber membrane bundle.
  • the degree of vacuum was reduced to 0.5 kPa and maintained for 5 minutes to condition the hollow fiber membrane bundle and finish drying.
  • the highest temperature reached on the surface of the hollow fiber membrane bundle was 65 ° C.
  • the moisture content of the hollow fiber membrane bundle before drying is 310% by mass
  • the moisture content of the hollow fiber membrane bundle after the first stage is 38% by mass
  • the moisture content of the hollow fiber membrane bundle after the second stage is 14% by mass.
  • the water content of the hollow fiber membrane bundle was 2.3% by mass.
  • the inner diameter of the obtained hollow fiber membrane was 198 m
  • the film thickness was 27 ⁇ m
  • the skin layer thickness was 0.9 ⁇ m. Table 1 shows the characteristic values of the obtained hollow fiber membrane.
  • the obtained hollow fiber membrane was divided into 10 pieces of 2.7 cm each in the longitudinal direction, and the hollow fiber membrane lg in a dry state was weighed from each site, and the amount of hydrogen peroxide eluted was quantified. The eluted amount of hydrogen peroxide was stable at a low level at all sites. The quantitative values are shown in Table 2.
  • the hollow fiber membrane bundle prepared by the above method was inserted into a polycarbonate module case. Both ends are fixed with urethane resin, the resin ends are cut to open the hollow fiber membrane hollow, and a cap with an inlet is attached.
  • the effective length of the hollow fiber membrane is 115 mm and the membrane area is 1.
  • An Om 2 hollow fiber membrane mini-module was fabricated. This module was sterilized by irradiating 25 kgy of ⁇ -rays in an oxygen-free environment. The priming property of the obtained module was good.
  • the obtained module was used to evaluate the sieving coefficient of albumin, a1 microglobulin talliance, a1 microglobulin adsorption amount, blood leak, endotoxin permeability, residual blood and burst pressure. .
  • the hollow fiber membrane after ⁇ -ray sterilization was cut out and subjected to an eluate test.
  • the elution amount of polybutylpyrrolidone was 5 ppm
  • the maximum elution amount of hydrogen peroxide was 2 ppm.
  • Table 1 shows the results of these evaluations.
  • Example 1 Te film the composition of the solution polyethersulfone (Sumika Chemical Kemutetsu task Co., Sumikaetaseru 5200P) 18. 0 Weight 0/0, poly Bulle pyrrolidone (BASF Corp. coli pyrrolidone K 90) 0.5 mass%, dimethylacetamide (DMAc) 77.0 mass%, RO water 4.5 mass%, except for changing the internal solution temperature to 50 ° C and the coagulation solution to RO water
  • the hollow fiber membrane and the module of Comparative Example 1 were obtained in the same manner as in Example 1.
  • the ratio of polyvinylpyrrolidone to polysulfone-based polymer in the film-forming solution was 2.8% by mass, and the temperature difference between the film-forming solution temperature and the internal solution at the time of nozzle discharge was 20 ° C. These characteristics are shown in Table 1 and Table 2.
  • the hollow fiber membrane obtained in this comparative example is inferior in permselectivity for proteins because the content of polyvinyl bilidone in the outermost surface layer of the hollow fiber membrane is too low and the skin layer is thick. Was.
  • the residual blood content was poor because the content of polyvinylpyrrolidone on the inner surface was too low.
  • the priming property was improved because the content of polybulpyrrolidone on the inner and outer surfaces of the hollow fiber membrane was low. Therefore, the hollow fiber membrane obtained in this comparative example was of low practicality for blood purifiers.
  • Example 1 Te film the composition of the solution polyethersulfone (Sumika Chemical Kemutetsu task Co., Sumikaetaseru 5200P) 18. 0 Weight 0/0, poly Bulle pyrrolidone (BASF Corp. coli pyrrolidone K 90) 10.0 mass%, dimethylacetamide (DMAc) 67.5 mass%, RO water 4.5 mass%, except that the concentration of the internal solution was changed to 65 mass% and the liquid temperature was changed to 45 ° C.
  • a hollow fiber membrane and a module of Comparative Example 1 were obtained in the same manner as in Example 1.
  • the ratio of polyvinylpyrrolidone to polysulfone-based polymer in the film-forming solution was 55.5% by mass. Tables 1 and 2 show these characteristics.
  • the hollow fiber membrane obtained in this comparative example had a high content of polyvinylpyrrolidone on the inner surface of the hollow fiber membrane, and had a large pore diameter, and thus was inferior in permselectivity for proteins. Ma In addition, the elution amount of polybulpyrrolidone was high. Regarding the low selectivity of the protein, other than the fact that the content of polybutylpyrrolidone on the inner surface is high, there are other factors that affect the permeability of the protein, such as the average pore size / pore size distribution on the inner surface. Are different from those of the hollow fiber membrane of Example 1, and it is presumed that this also has an effect. In addition, since the content of polyvinylpyrrolidone on the outer surface of the hollow fiber membrane was high, sticking between the hollow fiber membranes occurred. In addition, permeation of endotoxin was observed.
  • a blood purifier was assembled using the hollow fiber membrane thus obtained, and an air leak test was performed. As a result, bubbles were generated from the module bonding portion. It is probable that poor adhesion was caused by the adhesion of the hollow fiber membranes. Therefore, the hollow fiber membrane obtained in this comparative example was of low practicality for a blood purifier.
  • a hollow fiber membrane and a module of Comparative Example 3 were obtained in the same manner as in Comparative Example 2, except that the number of washings with a 50 vol% aqueous solution of isopropanol was changed to six.
  • Tables 1 and 2 show the properties of the obtained hollow fiber membrane and module.
  • the hollow fiber membrane obtained in the present comparative example has a high hydrophobicity due to a decrease in the content of polybulpyridone in the outer surface due to enhanced washing. Therefore, the problem of permeation of endotoxin, which is one of the problems of the hollow fiber membrane obtained in Comparative Example 2, is solved, but the priming property is poor. In addition, since the state of the inner surface did not change, the problem of Comparative Example 2 which had the permselective separation membrane of Example 2 due to the inner surface characteristics was not improved.
  • polyethersulfone manufactured by Sumika Chemtex Co., Sumikaeta cells 5200P
  • Poly Bulle pyrrolidone BASF Corp. Kollidon K-90
  • DMAc dimethyl ⁇ Seto amide
  • RO water 1.
  • film soluble liquid consisting of 0 wt 0/0.
  • the ratio of polybutylpyrrolidone to polysulfone-based polymer in the film forming solution was 27.7 mass 0 /. Met.
  • the polypyrrolidone one having a hydrogen peroxide content of 100 ppm was used.
  • the film forming solution was passed through a two-stage sintered filter of 15 m and 10 m in order. Then, using a tube-in orifice nozzle heated to 70 ° C, a 46% by mass aqueous DMAc solution at 25 ° C that had been degassed at -700 mmHg for 30 minutes in advance was used as the internal solution.
  • the liquid was discharged at a spinning speed of 50 mZ, and passed through a dry section (air gap section) of 700 mm, which was isolated from the outside air by a spinning tube. Thereafter, it was coagulated in a 20 wt% DMAc aqueous solution at 35 ° C., and was entirely wound up in a wet state.
  • the average nozzle slit width of the tube-in-orifice nozzle used was 60 m, the maximum was 61 ⁇ m, the minimum was m, the ratio of the maximum and minimum slit widths was 1.03, and the draft ratio was 1.15. .
  • the hollow fiber membrane whose coagulation bath power was also lifted was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then wound up.
  • Example 1 After the same polyethylene film as in Example 1 was wound around the bundle of about 10,000 hollow fiber membranes, a reflector was placed in an oven without washing, and uniform heating was possible. It was introduced into a microwave irradiation type dryer having such a structure, and dried under the following conditions. Under reduced pressure of 7 KPa, microwave irradiation is performed for 30 minutes at 1.5 kW output, 10 minutes at 0.5 kW output, and 8 minutes at 0.2 kW output, and the water content becomes 2.9% by mass. Dried to dryness. At this time, the highest temperature reached on the surface of the hollow fiber membrane was 65 ° C.
  • a roller having a mirror-finished surface was used as a roller for changing the yarn path during the spinning process, and a surface-finished roller was used as a fixing guide.
  • the inner diameter of the obtained hollow fiber membrane was 200 m, and the membrane thickness was 35 ⁇ m.
  • the skin layer thickness was 1.7 ⁇ m. Table 1 shows the characteristic values of the obtained hollow fiber membrane.
  • the obtained hollow fiber membrane was divided into 10 pieces of 2.7 cm each in the longitudinal direction, and the dried hollow fiber membrane lg was weighed from each site, and the amount of hydrogen peroxide eluted was quantified. The eluted amount of hydrogen peroxide was stable at a low level at all sites. The quantitative values are shown in Table 2. However, the hollow fiber membrane obtained in this comparative example was observed to adhere to the dried hollow fiber membrane bundle, and the end adhesive resin did not enter between the hollow fiber membranes when assembling the blood purification device. In many cases, blood purifiers could not be assembled.
  • the filter used for filtration of the film-forming solution was changed to a sintered filter with a filter accuracy of 30 ml, and the tube in orifice nozzle was used with a nozzle slit width of 60 m on average, maximum m, minimum m, and slit.
  • a hollow fiber membrane and a module were obtained.
  • Tables 1 and 2 show the properties of the obtained hollow fiber membrane and module.
  • the hollow fiber membrane and the module obtained in this comparative example had the same problems as the product obtained in comparative example 1.
  • blood cell leaks were observed in 5 out of 30 modules in a blood leak test using bovine blood with a low burst pressure due to a decrease in wall thickness unevenness and phase separation uniformity of the hollow fiber membrane.
  • the hollow fiber membrane obtained in this comparative example was of low practicality for a blood purifier.
  • a hollow fiber membrane and a module were obtained in the same manner as in Comparative Example 1 except that the method of Comparative Example 1 was changed as follows.
  • a product having a hydrogen peroxide content of 500 ppm was used as polybutylpyrrolidone used in the film forming solution.
  • the nos and the nore slit width are 80 ⁇ m on average, 81 ⁇ m at maximum, 79 / ⁇ minimum, the ratio of the maximum and minimum slit width is 1.03, and the flow of the film forming solution A nozzle with an L ZD of 2.5 was used.
  • Tables 1 and 2 show the properties of the obtained hollow fiber membrane and module.
  • the hollow fiber membrane and the module obtained in this comparative example had the same problems as the product obtained in comparative example 1, and also had a large amount of hydrogen peroxide dissolved out.
  • the dried sample used for the measurement of hydrogen peroxide in the hollow fiber membrane obtained in this comparative example was placed in a dry box conditioned at a humidity of 50% RH (atmosphere: air) at room temperature for 3 times. After storage for a month, extraction was performed by the method specified in the dialysis-type artificial kidney device manufacturing standard, and UV (220-350 nm) absorbance was measured. The UV (220-350 nm) absorbance at the start of storage was less than the approval standard of 0.1 at all sites, but after storage, all sites exceeded the approval standard of 0.1. The storage stability was poor.
  • polyethersulfone manufactured by Sumika Chemtex Co., Sumikaeta cells 4800P
  • Polyethersulfone manufactured by Sumika Chemtex Co., Sumikaeta cells 4800P
  • Poly Bulle pyrrolidone BASF Corp. Kollidon K-90
  • 5 Weight 0 / 0, dimethyl ⁇ Seto amide (DMAc) 74.
  • 5 mass 0/0, RO water 5.
  • film soluble liquid consisting of 0 wt 0/0 were prepared.
  • the ratio of polyvinylpyrrolidone to polysulfone-based polymer in the film forming solution was 13.8% by mass.
  • the hydrogen peroxide content of the starting polyvinylpyrrolidone was 100 ppm.
  • the obtained film-forming solution was passed through a two-stage sintering filter of 15 m and 10 m in order, and then discharged at a tube-in-orifice nozzle power heated to 70 ° C with a film-forming stock solution discharge rate of 2.lccZmin. .
  • a 50% by mass DMAc aqueous solution at 30 ° C which was previously degassed at -700 mmHg for 30 minutes, was discharged as an internal solution, and after passing through a 75 Omm air gap that was shut off from the outside air by the spinning tube, Was coagulated in a 25% by mass aqueous solution of DMAc, and the whole was wound up in a wet state.
  • the average nozzle slit width was 60 m, the maximum was 61 ⁇ m, and the minimum was 59 / zm.
  • the ratio between the maximum and the minimum slit width was 1.03.
  • the draft ratio was 1.3.
  • Pressure loss of the membrane forming solution in the nozzle 2. a 15 X 10 8 Pa 's, shear stress 1. 1 X Pass the passage time 1. was 2 X 10- 3 sec.
  • the hollow fiber membrane pulled out of the coagulation bath was passed through a water washing tank at 85 ° C for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then wound up.
  • a roller having a mirror-finished surface was used as a roller for changing the yarn path during the spinning process, and a surface-finished roller was used as a fixed guide.
  • a polyethylene film similar to that in Example 1 was wound around the bundle of about 10,000 hollow fiber membranes. Thereafter, the substrate was immersed and washed three times in a 30 vol% ethanol aqueous solution at 30 ° C. for 30 minutes, and the hollow fiber membrane bundle after the washing treatment was lightly rinsed with RO water to replace ethanol with water. afterwards Then, the liquid was removed with a centrifugal separator at 600 rpm for 5 minutes.
  • the obtained wet hollow fiber membrane bundle is dried at 65 ° C for 3 hours at a flow rate of 0.3 LZsec using a draft dryer having a flow path in the longitudinal direction, and then at 35 ° C and a flow rate of 0.05 LZsec. For 20 hours.
  • the drying start force was changed every 20 minutes for the first 3 hours and every hour for the next 20 hours until the end of drying, and the drying direction was reversed by 180 degrees.
  • the moisture content of the hollow fiber membrane bundle before drying is 290% by mass
  • the moisture content of the hollow fiber membrane bundle after 3 hours of drying is 67% by mass
  • the moisture content of the hollow fiber membrane bundle after drying is 2.4% by mass.
  • nitrogen gas was used as a ventilation medium.
  • the inner diameter of the obtained hollow fiber membrane was 200 ⁇ m
  • the film thickness was 29 ⁇ m.
  • the thickness of the skin layer was 0.7 ⁇ m. Table 1 shows the characteristic values of the obtained hollow fiber membrane.
  • the obtained hollow fiber membrane was divided into 10 pieces of 2.7 cm each in the longitudinal direction, and the dried hollow fiber membrane lg was weighed from each site, and the amount of eluted hydrogen peroxide was quantified. The eluted amount of hydrogen peroxide was stable at a low level at all sites. The quantitative values are shown in Table 2.
  • the hollow fiber membrane bundle adjusted by the above method is inserted into a polycarbonate module case, both ends are fixed with urethane resin, cut and opened, and a cap having an inflow port is attached.
  • a hollow fiber membrane module with an effective length of 115 mm and a membrane area of 1. Om 2 was produced. This module was sterilized by irradiating it with 25 kgy of ⁇ -rays in an oxygen-free environment. The priming property of the obtained module was good.
  • the obtained module was used to evaluate the sieving coefficient of albumin, a1 microglobulin talliance, a1 microglobulin adsorption amount, blood leak, endotoxin permeability, residual blood and burst pressure. .
  • the hollow fiber membrane after ⁇ -ray sterilization was cut out and subjected to an eluate test. As a result, the elution amount of polybutylpyrrolidone was 5 ppm, and the elution amount of hydrogen peroxide was 3 ppm.
  • Example 2 In the same manner as in Example 1, a polysulfone (Amoko Co. P- 3500) 18. 5 wt%, polyvinyl - Rupiroridon (BASF Corp. Kollidon K 60) 3. 0 mass 0/0, dimethyl ⁇ Seto amide (DMAc 74.5% by mass and 4.0% by mass of RO water were obtained.
  • the ratio of polypyrrolidone to polysulfone polymer in the film forming solution was 16.2% by mass, and the content of hydrogen peroxide in the starting polypyrrolidone was 150 ppm.
  • the resulting film-forming solution was passed through a two-stage sintering filter of 15 / ⁇ , 10 m in order, and then discharged at a discharge rate of 2.4 cc / min from a tube-in orifice nozzle heated to 50 ° C.
  • a 35% by mass aqueous solution of DMAc at 15 ° C which was previously degassed at 700 mmHg for 30 minutes, was discharged as an internal solution, and after passing through a 650 mm air gap blocked from the outside air by a spinning tube, the temperature was raised to 60 ° C.
  • Coagulation was carried out in a 15% by mass aqueous solution of DMAc, and the whole was wound up in a wet state.
  • the tube in orifice nozzle used had a nosed and knurled slit width of 60 ⁇ m on average, a maximum of 61 ⁇ m, and a minimum of 59 ⁇ m, and the ratio between the maximum and minimum slit widths was 1.03.
  • the pressure drop of the casting solution in the nozzle is 2.3 X 10 8 Pa's and the shear stress is 1.2 X Pass the passage time was 1. 5 X 10- 3 sec.
  • the draft ratio was 1.3.
  • Mirror-finished rollers were used as rollers for changing the yarn path during the spinning process, and satin-finished surfaces were used as fixed guides.
  • Example 2 The same polyethylene film as in Example 1 was wound around the bundle of about 10,000 hollow fiber membranes. Thereafter, the substrate was washed by immersion in a 40 vol% isopropanol aqueous solution at 30 ° C. for 30 minutes ⁇ 2 times, and the hollow fiber membrane bundle after the washing treatment was lightly rinsed with RO water to replace isopropanol with water. Thereafter, the liquid was removed using a centrifugal separator at 600 rpm for 5 minutes. The obtained wet hollow fiber membrane bundle was set on a rotating table in a drying device provided with a microwave reflecting plate in a device so as to be able to perform uniform heating, and was set in two stages of 48 tubes and dried under the following conditions.
  • Microwave irradiation was performed at a reduced pressure of 7 kPa at an output of 12 kW to perform a heat treatment for 15 minutes. Subsequently, the microwave irradiation was stopped and the degree of vacuum was reduced to lkPa, and the water was evaporated by maintaining the pressure for 3 minutes. Next, the degree of pressure reduction was returned to 7 kPa, microwave irradiation was performed, and heat treatment was performed for 7 minutes at an output of 3.5 kW. After the heating, the microwave irradiation was stopped, and the degree of reduced pressure was reduced to 0.7 kPa and maintained for 3 minutes.
  • the pressure reduction was returned to 7 kPa, and microwave irradiation was restarted.
  • the output was reheated at 2.5 kW for 6 minutes, then the microwave irradiation was stopped, the pressure reduction was reduced to 0.5 kPa, and drying was performed for 7 minutes. Processing was performed.
  • the hollow fiber membrane bundle was subjected to a moisture content equalization treatment at 35 ° C. for 3 hours in a ventilation dryer.
  • the water content of the hollow fiber membrane bundle before microwave drying was 306 %,
  • the moisture content after the first stage is 33% by mass
  • the moisture content after the second stage is 16% by mass
  • the moisture content after the third stage is 6% by mass
  • the moisture content after the ventilation drying is It was 1.7% by mass.
  • the maximum temperature of the hollow fiber membrane bundle during the drying treatment was 54 ° C.
  • the inner diameter of the obtained hollow fiber membrane was 197 ⁇ m, and the film thickness was 30 ⁇ m.
  • the thickness of the skin layer was 0.7 ⁇ m. Table 1 shows the characteristic values of the obtained hollow fiber membrane.
  • the obtained hollow fiber membrane was divided into 10 pieces of 2.7 cm each in the longitudinal direction, and the hollow fiber membrane lg in a dry state was weighed from each site, and the elution amount of hydrogen peroxide was quantified. The eluted amount of hydrogen peroxide was stable at a low level at all sites. The quantitative values are shown in Table 2.
  • the hollow fiber membrane bundle adjusted by the above method is inserted into a polycarbonate module case, both ends are fixed with urethane resin, cut and opened, and a cap having an inflow port is attached.
  • a hollow fiber membrane mini-module with an effective length of 115 mm and a membrane area of 1. Om 2 was prepared.
  • This module was sterilized by irradiating 25 kgy of ⁇ -rays in an oxygen-free environment.
  • the priming property of the obtained module was good.
  • the sieving coefficient of albumin, a1 microglobulin talliance, a1 microglobulin adsorption amount, blood leak property, endotoxin permeability, residual blood property, and burst pressure were evaluated.
  • the hollow fiber membrane after gamma ray sterilization was cut out and subjected to an elution test.
  • the elution amount of polyvinylpyrrolidone was 4 ppm, and the elution amount of hydrogen peroxide was 2 ppm.
  • the selectively permeable separation membrane of the present invention has a good balance of separation characteristics, high safety and high performance stability, and is excellent in module assemblability. Therefore, it is suitable for use as a hollow fiber type blood purifier by hemodialysis, which has high water permeability and is used for treatment of chronic renal failure. Further, according to the production method of the present invention, a selectively permeable separation membrane having the above characteristics can be produced economically and stably.

Abstract

 本発明は、血液浄化治療に用い得る選択透過性分離膜に関する。さらに詳しくは分離特性のバランスが良く、安全性や性能の安定性が高く、かつモジュールの組み立て性に優れたポリスルホン系選択透過性分離膜およびその製造方法に関する。

Description

明 細 書
選択透過性分離膜およびその製造方法
技術分野
[0001] 本特許出願は日本国特許出願第 2004— 83712号について優先権を主張するも のであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものと する。
本発明は、血液浄ィ匕治療に用い得る選択透過性分離膜に関する。さらに詳しくは 分離特性のバランスが良ぐ安全性や性能の安定性が高ぐかつモジュールの糸且み 立て性に優れたポリスルホン系選択透過性分離膜およびその製造方法に関する。 背景技術
[0002] 腎不全治療などにおける血液浄ィ匕療法では、血液中の尿毒素、老廃物を除去する 目的で、天然素材であるセルロース、またその誘導体であるセルロースジアセテート 、セルローストリアセテート、合成高分子としてはポリスルホン、ポリメチルメタタリレート 、ポリアクリロニトリルなどの高分子を用いた透析膜や限外濾過膜を分離材として用い た血液透析器、血液濾過器ある!ヽは血液透析濾過器などのモジュールが広く使用さ れている。特に中空糸型の膜を分離材として用いたモジュールは体外循環血液量の 低減、血中の物質除去効率の高さ、さらにモジュール生産時の生産性などの利点か ら透析器分野での重要度が高 、。
[0003] 上記した膜素材の中で透析技術の進歩に最も合致したものとして透水性能が高い ポリスルホン系樹脂が注目されている。しかし、ポリスルホン単体で半透膜を作った場 合は、ポリスルホン系樹脂が疎水性であるために血液との親和性に乏しぐエアー口 ック現象を起こしてしまうため、そのまま血液処理用などに用いることはできない。
[0004] 上記した課題の解決方法として、ポリスルホン系樹脂に親水性ポリマーを配合し製 膜することにより、膜に親水性を付与する方法が提案されている。例えば、ポリエチレ ングリコール等の多価アルコールを配合する方法が開示されている(例えば、特許文 献 1, 2参照)。
特許文献 1:特開昭 61— 232860号公報 特許文献 2:特開昭 58— 114702号公報
[0005] また、ポリビニルピロリドンを配合する方法が開示されて 、る(例えば、特許文献 3, 4参照)。
特許文献 3:特公平 5 - 54373号公報
特許文献 4:特公平 6 - 75667号公報
[0006] 特に、後者のポリビニルピロリドンを用いた方法が安全性や経済性の点より注目さ れており、該方法により上記した課題は解決される。し力しながら、ポリビニルピロリド ンを配合することによる親水性ィ匕技術に於いては、透析時にポリビニルピロリドンが溶 出し浄ィ匕された血液に混入すると 、う課題が発生する。該ポリビニルピロリドンの溶出 が多くなると、人体にとって異物であるポリビニルピロリドンの長期透析時の体内蓄積 が増え、副作用や合併症等を引き起こす可能性がある。そこで、ポリビニルピロリドン の溶出量に関しては、透析型人工腎臓装置製造承認基準により定められている。該 基準においては、ポリビュルピロリドン等の溶出量は UV吸光度で定量されている。 該基準を用いて溶出量制御の効果を判定する技術が開示されている (例えば、特許 文献 5— 7参照)。
特許文献 5 :特許第 3314861号公報
特許文献 6:特開平 6—165926号公報
特許文献 7:特開 2000 - 350926号公報
[0007] 上記方法により上記の課題は解決される。し力しながら、ポリビニルピロリドンを配合 することによる親水性ィ匕技術に於いては、血液と接触する膜内面(内表面と称する) および反対面の膜外面 (外表面と称する)に存在するポリビニルピロリドンの含有量に より選択透過性分離膜の膜性能が大きく影響されるため、該含有量の最適化が重要 となる。例えば、内表面のポリビュルピロリドン含有量を高めることにより血液適合性を 確保できる力 表面における含有量が高くなりすぎるとポリビニルピロリドンの血液へ の溶出量が増加する。この溶出するポリビュルピロリドンの蓄積により、長期透析時の 副作用や合併症が起こるので好ましくな 、。
[0008] 一方、外表面に存在するポリビュルピロリドンの含有量が高すぎると、透析液に含ま れる親水性の高いエンドトキシン(内毒系)が血液側へ浸入する可能性が高まり、発 熱等の副作用を引き起こすことに繋がる。また、膜を乾燥させた時に外表面に存在 するポリビュルピロリドンが介在して中空糸膜同士がくっつき(固着し)、モジュール組 み立て性が悪ィ匕する等の新たな課題が引き起こされる。
逆に、外表面に存在するポリビニルピロリドン量を低くすることは、エンドトキシンの 血液側への浸入を抑える点では好ましい。し力しながら、外表面の親水性が低くなる ため、モジュール組み立て後に組み立てのために乾燥した中空糸膜を湿潤状態に 戻す際に、湿潤のために用いる生理食塩水との馴染みが低くなる。このため、該湿潤 操作の折の空気の追 、出し性であるプライミング性が低下すると 、う課題の発生に繋 がる。
[0009] 上記した課題を解決するための方策として、選択透過性分離膜の内表面の緻密層 に存在するポリビニルピロリドンの含有量を特定範囲とし、かつ内表面の上記緻密層 に存在するポリビニルピロリドンの含有量が外表面に存在するポリビニルピロリドンの 含有量の少なくとも 1. 1倍以上にする方法が開示されている (特許文献 5参照)。す なわち、この技術は、内表面の緻密層表面に存在するポリビュルピロリドンの含有量 を高め血液適合性を改善し、逆に外表面に存在するポリビュルピロリドンの含有量を 低くし、膜を乾燥させた時に発生する中空糸膜同士の固着の発生を抑える思想の技 術である。この技術により、固着発生の課題に加え、上記した課題の一つである透析 液に含まれるエンドトキシン(内毒系)が血液側へ浸入する課題も改善される。しかし ながら、外表面に存在するポリビニルピロリドンの含有量が低く過ぎるため、前記した もう一つの課題であるプライミング性が低下すると言う課題の発生に繋がる。
特許文献 5:特開平 6—165926号公報
[0010] また、選択透過性分離膜の内表面、外表面および膜中間部におけるポリビュルピ 口リドンの含有量を特定ィ匕することにより、前記した課題の一つである透析液に含ま れるエンドトキシン(内毒系)が血液側へ浸入する課題を改善する方法が開示されて いる(例えば、特許文献 6参照)。該方法により上記課題の一つは改善される。しかし ながら、例えば、プライミング性が低下する課題は解決されない。また、該方法で得ら れた選択透過性分離膜は、外表面の開孔率が 25%以上と高くなるので膜強度が低 くなり、血液リーク等の課題に繋がるという問題を有している。 特許文献 6:特開 2001— 38170号公報
[0011] さらに、選択透過性分離膜の内表面におけるポリビニルピロリドンの含有量を特定 化することにより、血液適合性とポリビュルピロリドンの血液への溶出量を改善する方 法が開示されている (例えば、特許文献 7— 9参照)。
特許文献 7:特開平 6— 296686号公報
特許文献 8:特開平 11 309355号公報
特許文献 9:特開 2000-157852号公報
[0012] 上記文献には、中空糸膜の外表面におけるポリビュルピロリドンの含有量に関して 全く言及されていない。このため、前記した外表面のポリビュルピロリドンの含有量に よる課題の全てを改善できては ヽな 、。
[0013] 上記した課題の内、エンドトキシン(内毒系)が血液側へ浸入する課題に関しては、 エンドトキシンが、その分子中に疎水性部分を有しており、疎水性材料へ吸着しやす いという特性を利用する方法が開示されている (例えば、特許文献 10参照)。すなわ ち、該方法は、中空糸膜の外表面における疎水性高分子に対するポリビニルピロリド ンの比率を 5— 25%にすることに関する。確かに、該方法はエンドトキシンの血液側 への浸入を抑える方法としては好ましい。し力しながら、この特性を付与するには、膜 の外表面に存在するポリビュルピロリドンを洗浄によって除去する必要があり、この洗 浄に多大の処理時間を要するため経済的に不利である。例えば、上記した特許の実 施例では、 60°Cの温水によるシャワー洗浄および 110°Cの熱水での洗浄を、それぞ れ 1時間ずつ掛けて行っている。
特許文献 10:特開 2000— 254222号公報
[0014] また、外表面に存在するポリビュルピロリドン量を低くすることは、エンドトキシンの血 液側への浸入を抑える点では好ましい。し力しながら、外表面の親水性が低くなるた め、モジュール組み立て後に組み立てのために乾燥した中空糸膜を湿潤状態に戻 す際に、湿潤のために用いる生理食塩水との馴染みが低くなる。そのため、該湿潤 操作の折の空気の追い出し性であるプライミング性が低下する課題の発生に繋がる 。この点を改良する方法として、例えばグリセリン等の親水性化合物を配合する方法 が開示されている (例えば、特許文献 11、 12参照)。しかし、該方法によると、親水性 化合物が透析時の異物として働き、かつ該親水性化合物は光劣化等の劣化を受け やすいため、モジュールの保存安定性等に悪影響を及ぼす等の課題に繋がる。また 、モジュール組み立てにおいて中空糸膜をモジュールに固定する際に、接着剤の接 着阻害を引き起こすという課題もある。
特許文献 11 :特開 2001— 190934号公報
特許文献 12 :特許第 3193262号公報
[0015] 一方、膜の外表面の開孔率ゃ孔面積を特定値ィ匕した膜が開示されている (例えば 、特許文献 13参照)。
特許文献 13:特開 2000— 140589号公報
[0016] 内表面のポリビュルピロリドン含有量は、選択透過性分離膜による分離の選択性に 関しても大きな影響を与える。例えば、慢性腎不全患者の血液処理法に関しては、 有効蛋白質であるアルブミンの漏れを最小限に抑えつつ、その他の低分子蛋白を積 極的に除去する必要がある。分離膜の選択性に関しては、例えば、アルブミンの透 過率が 0. 5-0. 0001%であるポリスルホン系選択分離膜が開示されている(特許 文献 15参照)。確かに、該特許文献の方法は、アルブミンの透過率が極めて低いレ ベルに抑えられている点では優れている。しカゝしながら、該方法で得られる選択透過 性分離膜は、例えば α 1—マイクログロブリンの除去率が低いという課題がある。近年 、長期透析患者の増加に伴う透析合併症が注目されており、尿素、尿酸、クレアチ- ンなどの低分子量物質だけでなぐ分子量 5000ダルトン前後の中分子量領域から 分子量 1万ダルトン以上の低分子量蛋白まで除去対象が広がっている。従って、血 中に存在する OC 1 マイクログロブリンに代表される分子量の尿毒症物質を効率よく 除去できることが求められるが、特許文献 15の方法によると蛋白質分離の選択性が 劣るので、この要求には応えることが出来ない。
一方、卵白アルブミンの篩い係数が 0. 2以上のポリスルホン系選択分離膜が開示 されている (特許文献 16参照)。該文献で得られる選択透過性分離膜は尿毒症物質 を効率よく除去できる点では有効である。しかしながら、有効蛋白質の除去率も高く なりすぎるという課題を有している。従って、アルブミンと α 1-マイクログロブリン両者 の除去バランスの取れた選択透過性分離膜の開発が強く望まれている。 特許文献 15:特開平 11—309356号公報
特許文献 16:特開平 7 - 289863号公報
[0017] また、中空糸膜束の乾燥を、マイクロ波を照射して乾燥する場合に、平均含水率が 20— 70質量%になる時点でマイクロ波の照射出力を低下させる方法が提案されて いる(特許文献 17、 18、 19参照)。これらの文献においては、最初 30kW、次いで 21 kW程度の出力で乾燥することが具体的には示されているものの、減圧下でマイクロ 波を照射するという手法については認識されていない。また、通常の乾燥工程とマイ クロ波を用いることも開示されて 、るが、マイクロ波に減圧と 、う手段を併用すると 、う 手法は示されていない。また、該文献では、中空糸膜束の中心部と外周部における 乾燥の均一性に関しては配慮がなされて 、るが、中空糸膜束の長さ方向にっ 、ての 乾燥の均一性に関しては何ら配慮がなされて 、な 、。
特許文献 17:特開 2003— 175320号公報
特許文献 18:特開 2003— 175321号公報
特許文献 19:特開 2003 - 175322号公報
発明の開示
発明が解決しょうとする課題
[0018] 本発明者等はポリビュルピロリドンの溶出挙動について、詳細な検討を行った結果 、上記の透析型人工腎臓装置製造承認基準により定められた試験法で抽出された 抽出液中には、従来公知の UV吸光度では測定できな 、過酸化水素が含まれて!/、 ることを見出した。ここで、過酸化水素が存在すると、例えばポリビュルピロリドンの酸 化劣化を促進し、選択透過性分離膜を保存中にポリビニルピロリドンの溶出量が増 加するという保存安定性が悪ィ匕することを見出した。
[0019] 上記した特許文献 5— 7に開示された方法は、 V、ずれも選択透過性分離膜の特定 部位について評価したものである。例えば、モジュール組み立て等において中空糸 膜を乾燥する等の処理を行うと乾燥条件の変動等の影響により上記の溶出量が大き く変動するため、特定部位のみの評価では高度な安全性の要求に応えられないこと が判明した。特に、過酸化水素は選択透過性分離膜の特定部位に存在しても、その 個所より選択透過性分離膜素材の劣化反応が開始され選択透過性分離膜の全体に 伝播していくため、モジュールと用いられる選択透過性分離膜の長さ方向の含有量 が全領域に渡り、過酸化水素を一定量以下に維持すべきであることを、本発明者ら は明らかにした。
[0020] 従って、本発明は、分離特性のバランスが良ぐ安全性や性能の安定性が高ぐか つモジュールの組み立て性に優れており、慢性腎不全の治療に用いる高透水性能 を有する血液浄化器用として好適な選択透過性分離膜を提供することを課題とする 。また、本発明は、上記特性の選択透過性分離膜を、経済的に、かつ安定して製造 する方法を提供することを課題とする。
課題を解決するための手段
[0021] 本発明者らは、上記課題を解決するため、鋭意研究した結果、遂に本発明を完成 するに到った。即ち本発明は、選択透過性分離膜であって、
(a)該選択透過性分離膜は、主としてポリスルホン系高分子とポリビニルピロリドンを 含んでなり、
(b)該選択透過性分離膜を装填して作製したモジュールに、へマトクリット 30%、総タ ンパク濃度 6— 7gZdl、クェン酸ナトリウムを添カ卩した 37°Cの牛血液を 200mlZ分、 濾過流量 20mlZ分で流したとき、
(i) 15分後のアルブミンの篩い係数 [A]が 0. 01以上 0. 1以下で、かつ
(ii) 2時間後のアルブミンの篩い係数 [B]が 0. 005以上 0. 04未満である、 ことを特徴とする選択透過性分離膜に関する。
また、本発明は、製膜溶液と内部液をチューブインオリフィス型ノズルから吐出させ た後、エアギャップを経て凝固浴で凝固させるに際し、
製膜溶液はポリスルホン系高分子、ポリビュルピロリドンおよび溶剤を含んで成り、 ポリスルホン系高分子に対するポリビュルピロリドンの比率は 10— 18質量%であり 内部液はアミド系溶剤を 30— 60質量%含む水溶液であり、
該内部液の液温を製膜溶液の液温より 30— 60°C低くし、かつその液温力 SO— 40 °Cである条件で吐出する、
ことを特徴とする選択透過性分離膜の製造方法に関する。 図面の簡単な説明
[0022] [図 1]本発明にお 、て用い得るチューブインオリフィスノズルの模式図である。
[図 2]中空糸膜の内外表面における PVP含有量比とアルブミン篩い係数との関係を 示す図である。
[図 3]中空糸膜の内外表面における PVP含有量比とアルブミン篩い係数の経時変化 との関係を示す図である。
[図 4]中空糸膜の内外表面における PVP含有量比と a 1マイクログロブリンクリアランス との関係を示す図である。
[図 5]中空糸膜の内外表面における PVP含有量比と α 1マイクログロブリン吸着量との 関係を示す図である。
[図 6]中空糸膜の内表面における PVP含有量と a 1MG吸着量との関係を示す図で ある。
符号の説明
[0023] 1:内液吐出孔
2 :製膜原液吐出孔
L :ランド長
D :ノズル外径
発明を実施するための最良の形態
[0024] 以下、本発明を詳細に説明する。
本発明の選択透過性分離膜は、ポリビニルピロリドンを含有するポリスルホン系榭 脂からなる。本発明におけるポリスルホン系樹脂とはスルホン結合を有する榭脂の総 称であり、特に限定されないが、例えば、
[化 1]
Figure imgf000010_0001
Figure imgf000011_0001
で示される繰り返し単位をもつポリスルホン榭脂ゃポリエーテルスルホン榭脂が、ポリ スルホン系榭脂として広く市販されており、入手も容易なため好ましい。
[0025] 本発明に用いられるポリビュルピロリドンは、 N—ビュルピロリドンをビュル重合させ た水溶性の高分子化合物であり、例えば BASF社より「ルビテック」、 ISP社より「ブラ スドン」、第一工業製薬社より「ピッツコール」の商品名で市販されており、それぞれ各 種の分子量の製品がある。一般には、親水性の付与効率の観点では低分子量のも の、一方、溶出量を低くする観点では高分子量のものを用いるのが好適である力 最 終製品の中空糸膜の要求特性に応じて適宜選択される。また、単一の分子量のもの を用いてもよいし、分子量の異なる製品を 2種以上混合して用いてもよい。また、市販 の製品を精製し、例えば分子量分布をシャープにしたものを用いてもよい。ポリビ- ルピロリドンの分子量としては、質量平均分子量 10, 000— 1, 500, 000のものを用 いることができる。具体的には、例えば BASF社より巿販されている分子量 9, 000の もの(K17)、以下同様に 45, 000 (Κ30)、 450, 000 (Κ60)、 900, 000 (Κ80)、 1 , 200, 000 (Κ90)を用いるのが好まし。これらは、目的とする用途、特性、構造を得 るために、それぞれ単独で用いてよぐ適宜 2種以上を組み合わせて用いてもよい。 本願発明にお 、ては、 Κ90を単独で用いるのが最も好ま 、。
[0026] 本発明の選択透過性分離膜は、ポリビニルピロリドンとして過酸ィ匕水素含有量が 30 Oppm以下のものを用いて製造することが好ましい。 250ppm以下がより好ましぐ 20 Oppm以下がさらに好ましぐ 150ppm以下がよりさらに好ましい。原料として用いる ポリビニルピロリドン中の過酸ィ匕水素含有量を 300ppm以下にすると、選択透過性分 離膜中の過酸ィ匕水素溶出量を 5ppm以下に安定させることが可能となり、選択透過 性分離膜の品質安定ィ匕を達成できるので好ましい。
[0027] 上記した原料として用いるポリビュルピロリドン中に含有される過酸ィ匕水素は、ポリ ビュルピロリドンの酸化劣化の過程で発生すると推定される。従って、過酸化水素含 有量を 300ppm以下とするには、ポリビュルピロリドンの製造工程でポリビュルピロリ ドンの酸ィ匕劣化を抑える方策をとることが有効である。
また、ポリビニルピロリドンの搬送や保存時の劣化を抑える手段を採用することも有 効であり推奨される。例えば、アルミ箔ラミネート袋を用いて、遮光し、かつ窒素ガス 等の不活性ガスで封入するとか、脱酸素剤を併せて封入し保存することが好まし 、 実施態様である。また、該包装体を開封し小分けする場合の計量や仕込みは不活性 ガス置換をして行 、、かつその保存にっ 、ても上記の対策を行うのが好ま U、。 また、中空糸膜の製造工程において、原料供給系での供給タンク等を不活性ガス 置換する等の手段を採用することも、好ましい実施態様として推奨される。また、再結 晶法ゃ抽出法で過酸ィ匕水素量を低下させる方法をとることも排除されない。また、ポ リビュルピロリドンを溶媒に溶解する場合は、 70°C以下の温度で溶解するのが好まし い。該溶解を不活性ガス置換した状態で行うのも、好ましい実施態様である。
[0028] このように、本発明においては、上記のポリビュルピロリドンのみを使用することが好 ましいが、例えば特許文献 6に記載されているようなポリダリコール等の他の親水性 高分子を、本発明の目的の範囲内で併用しても構わない。
[0029] 本発明の選択透過性分離膜の製造方法は何ら限定されるものではな 、が、例えば 、特開 2000— 300663号公報に知られるような中空糸膜タイプのものを製造する方 法が好ましい。例えば、該特許文献に開示されているように以下の方法が例示できる :ポリエーテルスルホン (4800P、住友化学社製) 16質量部とポリビュルピロリドン (K —90、 BASF社製) 5質量部、ジメチルァセトアミド 74質量部、水 5質量部を混合溶解 し、脱泡したものを製膜溶液として、 50%ジメチルァセトアミド水溶液を芯液として使 用し、これを 2重管オリフィスの外側、内側より同時に吐出し、 50cmの空走部を経て 、 75°Cの、水の凝固浴中に導き中空糸膜を形成し、水洗後に巻き取り、 10000本束 ねたところで筒状ポリプロピレン製フィルムに装填して 27cmの長さにカットし、ウエット の中空糸膜を製造し、得られたウエットの中空糸膜を 60°Cのエアを中空糸膜束の長 手方向に、一方向から 20時間通風することによって乾燥する。
[0030] 上記のごとぐ本発明の選択透過性分離膜は、その構成成分である上記のポリスル ホン系高分子とポリビュルピロリドンとを溶媒に溶解した製膜溶液を用いた湿式製膜 法で製造できる。そのような溶媒としては、両成分を溶解することのできるジメチルホ ルムアミド、ジメチルァセトアミド、 N—メチルピロリドン等のアミド系ゃジメチルスルホキ サイド等のスルホキサイド系の極性溶媒が好ましく用いられる。また、 10質量%以下 であれば水やアルコール等のポリスルホン系高分子に対する非溶媒を併用してもよ い。このことによりポリスルホン系高分子に対するポリビュルピロリドンの相分離を制御 できる。
[0031] 本発明の選択透過性分離膜は、上記組成よりなる選択透過性分離膜を装填して作 製したモジュールに、へマトクリット 30%、総タンパク濃度 6— 7gZdl、タエン酸ナトリ ゥムを添加した 37°Cの牛血液を 200mlZ分、濾過流量 20mlZ分で流したとき、 15 分後のアルブミンの篩い係数 [A]が 0. 01以上 0. 1以下で、かつ 2時間後のアルブミ ンの篩い係数 [B]が 0. 005以上 0. 04未満であることが好ましい(要件 1)。 15分後 のアルブミンの篩い係数 [A]は 0. 01以上 0. 09以下がより好ましぐ 0. 01以上 0. 0 8以下がさらに好ましい。一方、 2時間後のアルブミンの篩い係数 [B]は 0. 005以上 0. 035以下がより好ましぐ 0. 005以上 0. 03以下がさらに好ましい。 15分後および 2時間後のアルブミンの篩い係数がそれぞれ大きすぎる場合は、有用蛋白質である アルブミンの透過率が高くなり、患者に対する負担が大きくなる可能性がある。一方、 15分後および 2時間後のアルブミンの篩 、係数がそれぞれ小さすぎる場合は、アル ブミンの透過率が低い点では好ましいが、 1マイクログロブリン等の尿毒症物質を 効率よく除去できない可能性がある。
[0032] アルブミンは生体にとって有用なタンパク質であり、臨床においては、血液透析治 療 1回(除水量 3L)あたりのアルブミン漏出量は 3g以下が適当と考えられている。ァ ルブミン漏出量が多すぎると、食事摂取量の少な 、患者では低アルブミン血症など の障害を引き起こす可能性がある。したがって、血液透析 1回あたりのアルブミン漏 出量は 2. 5g以下がより好ましぐ 2. Og以下がさらに好ましぐ 1. 5g以下がよりさらに 好ましい。逆に、生体内にはアルブミンに結合する毒素の存在も知られており、アル ブミン漏出量が少なすぎても、種々の障害を引き起こすことがある。したがって、透析 治療 1回あたりのアルブミン漏出量は 0. 05g以上が好ましぐ 0. lg以上がより好まし ぐ 0. 15g以上がさらに好ましい。
[0033] また、本発明においては、 2時間後のアルブミンの篩い係数 [B]が 15分後のアルブ ミンの篩い係数 [A]より小さいことが、より好ましい実施態様である(要件 2)。該要件 を満たすことにより本発明の効果が顕著に発現され得る。さらに、 15分後のアルブミ ンの篩い係数 [A]と 2時間後のアルブミンの篩い係数 [B]の関係力 [B] / [A] =0 . 1-0. 4を満足することが、さらに好ましい実施態様である(要件 3)。 [B] Z [A] = 0. 15-0. 38を満足することが、がより好ましい。 [B] Z [A]が大きすぎる場合は、有 用タンパク質であるアルブミンの透過率が高くなり、患者に対する負担が大きくなるこ とがある。一方、 [B] Z [A]が小さすぎる場合は、 α 1マイクログロブリン等の尿毒症 物質を効率よく除去できなくなる可能性がある。
[0034] 本発明においては、 α ΐマイクログロブリン(分子量 33, 000)のクリアランスが 15ml /min (l . Om2)以上であること力 好ましい実施態様である(要件 4)。 α 1マイクログ ロブリンのクリアランスが小さすぎると、分子量 30, 000程度の物質の除去量が少な V、ため、透析合併症の予防効果や痒み ·痛みと!、つた臨床症状の改善効果を得られ ないことがある。したがって、 α ΐマイクログロブリンのクリアランスは 18ml/min (l . 0 m2)以上がより好ましぐ 21ml/min (l . Om2)以上がさらに好ましぐ 24ml/min ( 1. Om2)以上がよりさらに好ましぐ 27ml/min (l . Om2)以上が特に好ましい。また 、 a 1マイクログロブリンの除去性を高める意味でクリアランスは大きい方が好ましいが 、クリアランスを大きくしすぎると有用タンパクであるアルブミンの漏出量を抑えること が難しくなる。従って、 α ΐマイクログロブリンのクリアランスは 100ml/min (l . Om2) 以下が好ましぐ 80ml/min (l . Om2)以下がより好ましぐ 60ml/min (l . Om2)以 下がさらに好ましい。
[0035] 慢性腎不全患者の血液処理において、有用なタンパク質であるアルブミンの漏れ を最小限に抑えることが重要である力 これを抑えると、一方で α 1マイクログロブリン などの除去率が非常に低下してくる。その適正なバランスを持たせるために、選択透 過性分離膜の性能にっ 、て検討した結果、ポリスルホン系高分子とポリビニルピロリ ドンよりなる選択透過性分離膜を装填して作製したモジュールに、へマトクリット 30% 、総タンパク濃度 6— 7gZdl、クェン酸ナトリウムを添カ卩した 37°Cの牛血液を 200ml Zmin、ろ過流量 20mlZminで流したとき、 15分後のアルブミンの篩い係数 [A]が 0. 01以上 0. 1以下で、かつ 2時間後のアルブミンの篩い係数 [B]が 0. 005以上 0. 04未満の範囲に収まるような特徴を有する選択透過性分離膜とすることが最適な条 件であることを見出した。このような最適な条件を備えた分離膜を製造するためには、 各種の材料、その仕様、製造プロセス、乾燥条件などを制御することが重要であるが 、この分離膜の構造的な特徴とアルブミンの篩い係数との関係を解析するのも一つ の手法である。
[0036] 本発明の分離膜の有する特性の最も典型的な特徴の一つである、中空糸膜の内 表面最表層におけるポリビュルピロリドンの含有量 [C]と外表面最表層におけるポリ ビュルピロリドンの含有量 [D]の関係としての [D]Z[C]と、 15分後のアルブミン篩い 係数 [A]と 2時間後のアルブミン篩い係数 [B]との関係を表わしたものが図 2である。 これによると、 [D]Z[C]が 1. 1以上になると、アルブミン篩い係数 [A]に関しては、 実施例 1一 3においては、所定の 0. 01以上 0. 1以下と、 0. 005以上 0. 04未満の 範囲に適正に収まり、アルブミンと α 1マイクログロブリンとのバランスの取れた、安定 した分離膜が得られる。もちろん、ポリビュルピロリドンの分子量、分離膜中の含有量 などが、そのアルブミン篩い係数に影響するものと考えられるが、本件実施例におい て検証した範囲では、 [D]Z[C]が 1. 1以上であることが、アルブミン篩い係数が所 定の範囲に収まるという点で、大きな影響を与える要因の一つであることが容易に理 解できる。
[0037] 同様に、アルブミン篩 、係数の比である [B] / [A]とポリビュルピロリドン含有量比 である [D]Z[C]の関係を調べると(図 3参照)、実施例 1一 3において [D]Z[C]が 1. 1以上の場合に [B]Z[A]が 0. 1-0. 4の範囲に適正に収まる力 比較例 1一 6 にお ヽて分布が大きく外れる。
[0038] この [D]Z[C]と、 a 1マイクログロブリンクリアランスとの関係を、定量的に解析した の力 図 4である。やはり、 [D]Z[C] = 1. 1を起点にして、その分布が本件実施例 1 一 3では、 α ΐマイクログロブリンのクリアランスが 15mlZmin (l . Om2)という安定し た領域に集中する傾向にある。一方、比較例 1一 6においては、《1マイクログロブリ ンクリアランスの分散状態が大きぐこれは品質の不安定な分離膜が得られていること を示唆する。これらの図 2— 4より、本発明の実施例 1一 3を総合的に判断すれば、本 発明においてそれぞれ特定されるアルブミン篩い係数の範囲、 a 1マイクログロプリ ンの量、ポリビュルピロリドンの含有量は、臨界的な技術的意味を有することが容易 に理解できる。
[0039] さらに、図 5は、 [D]Z[C]と、 α ΐマイクログロブリン吸着量との関係を定量的に解 祈したものである。 α 1マイクログロブリン吸着に関しては、 [D]Z[C]だけでなぐ膜 の細孔径ゃ血液接触面の構造、たとえばミクロな凹凸など、さらに表面の親水性度が 、その吸着量に影響するため、一概には言えない。し力しながら、やはり [D]Z[C] が 1. 1以上であることが、 α ΐマイクログロブリンが所定の範囲に収まるという点で、大 きな影響を与える要因の一つであることが容易に理解できる。
[0040] 本発明によれば、選択透過性分離膜の血液接触側表面(内表面)最表層における ポリビニルピロリドンの含有量は 20— 40質量0 /0であること力 分離膜の性能の点から 好適である。分離膜の性能には、ポリスルホン系高分子のグレード、ポリビニルピロリ ドンのグレード、ポリビュルピロリドンのトータル配合量、外表面における含有量、選 択透過性分離膜の製造方法など多くの技術的要因が関与するが、血液接触側表面 最表層におけるポリビュルピロリドンの含有量が、本発明の分離膜の性能に大きく関 与する。
本発明の選択透過性分離膜は、《1マイクログロブリン (MG)吸着量が 2. 0— 20m gZm2であることが好ましい。図 6に、内表面最表層におけるポリビュルピロリドン( PVP)の含有量 (質量%)と、《1マイクログロブリン吸着量との関係を示す。図から明 らかなように、選択透過性分離膜の性能を表わす要因の 1つとして、血液接触側表 面最表層における PVPの含有量を 20— 40質量%と特定することが重要である。図は 、選択透過性分離膜に要求される性能の 1つである ex 1MG吸着量が選択透過性分 離膜の物質または構造を特定する PVPの含有量と密接な関係にあることも定量的に 明らかにしている。
[0041] 本発明において、選択透過性分離膜に上記した蛋白質分離の選択性バランスを 付与する方法は限定されないが、本発明における血液浄ィ匕用中空糸膜は、内表面 にスキン層を有し、外表面に向力つて孔径が拡大する所謂非対称構造を有すること が好ましい。さらに、スキン層の厚みは 0. 1 - 1. 2 mであることが好ましい(要件 6) 。実質の分離活性層であるスキン層の厚みは、薄い方が溶質の移動抵抗が小さくな るため好ましぐ 1. 1 m以下がより好ましぐ 1. 0 m以下がさらに好ましい。しかし 、スキン層の厚みが薄すぎると、潜在的な細孔構造の欠陥が顕在化しやすくなり、有 用タンパクであるアルブミンの漏出を抑えることができなくなるとか、耐圧性を確保す るのが難しくなるなどの問題が発生することがある。したがって、スキン層厚みは 0. 2 μ m以上がより好ましぐ 0. 3 μ m以上がよさらに好ましぐ 0. 4 μ m以上が特に好ま しい。
[0042] また、前記の製造方法にお!ヽて、製膜溶液がポリスルホン系高分子、ポリビニルビ 口リドンおよび溶剤力もなり、ポリスルホン系高分子に対するポリビュルピロリドンの比 率が 10— 18質量%であり、内部液がアミド系溶剤を 30— 60質量%含む水溶液であ り、該内部液の液温を製膜溶液の液温より 30— 60°C低くし、かつその液温が 0— 40 °Cである条件で吐出することも好ま 、実施態様である。ポリビニルピロリドン比率とし ては 12. 0— 17. 5質量%がより好ましぐ 13. 0— 17. 5質量%がさらに好ましい。内 部液のアミド系溶剤量は 32— 58質量%がより好ましぐ 34— 56質量%がさらに好ま しぐ 35— 54質量%がよりさらに好ましい。内部液の液温を製膜溶液の液温の差は 3 0— 55°Cがより好ましぐ 35— 50°Cがさらに好ましい。内部液の液温は 0— 35°Cがよ り好ましぐ 5— 30°Cがさらに好ましぐ 10— 30°Cがよりさらに好ましい。これらの条件 を選ぶことにより選択透過性分離膜のスキン層厚み、内表面のポリビニルピロリドン含 有量、平均孔径ゃ孔径分布等の内表面特性が最適化され蛋白質の選択性が向上 し、本発明の選択透過性分離膜が具備すべき特性を付与できる。
[0043] また、内部液の温度を前記範囲に設定することにより、内部液をノズルより吐出した 際、溶け込んでいた溶存気体が気泡となって発生するのを抑制できる。すなわち、内 部液中の溶存気体の気泡化を抑制することにより、ノズル直下での糸切れや、ノブの 発生を抑えるという副次効果も有する。
[0044] 内部液の液温と製膜溶液の液温に温度差を付与する方法も限定されな!ヽが、チュ 一ブインオリフィス型ノズルとして内部液タンクからノズルまでの配管およびノズルブロ ック内に熱交^^が設けられ製膜溶液の温度とは別個に液温調整ができる内部液 熱媒循環型ブロックを用いるのが好まし 、実施態様である。
[0045] また、蛋白質の選択性のバランスを選択透過性分離膜へ付与するためには、ポリビ -ルピロリドンが実質的に非架橋であることが好ま ヽ(要件 8)。本発明にお 、ては、 選択透過性分離膜中に存在するポリビニルピロリドンの血液通過による膨潤効果に より、蛋白質の選択性のバランスが付与され得る。すなわち、治療開始時は蛋白質の 透過性を高くするが、透析の過程で血液の通過に伴って選択透過性分離膜中のポリ ビュルピロリドンの膨潤が進行し、アルブミンの透過性を低減させることによって、蛋 白質分離の選択性を向上させる作用を利用している。ポリビュルピロリドンが架橋さ れると、ポリビニルピロリドンの分子運動性や血液による膨潤性が低下するので、該 作用機能が低下し、蛋白質分離の選択性が低下することがある。
[0046] 本発明にお ヽて、不溶分の含有率は、選択透過性分離膜中に存在する全ポリビ- ルピロリドンに対して 30質量%以下が好ましい。 25質量%以下がより好ましぐ 20質 量%以下がさらに好ましぐ 15質量%以下がよりさらに好ましぐ 10質量%以下が特 に好ましぐ 5質量%未満が最も好ましい。該不溶分の含有率はポリビニルピロリドン の架橋度の尺度であり、不溶分の含有率が多いことは、選択透過性分離膜中に存在 するポリビュルピロリドンの架橋が進行して 、ることを意味する。不溶分の含有率が多 すぎる場合は、上記の作用機能が低下するため、蛋白質の選択性の低下や、選択 透過性分離膜の血液適合性の低下を生じさせ得る。ただし、本発明の選択透過性 分離膜は、乾燥後の含水率を 1一 10質量%に保つのが好ましいため、照射滅菌時 にわずかに存在する水分の影響によってある程度の架橋反応が起こり得る。また、極 わずかに架橋 (不溶化)させることにより、血液通液時の残血等に悪影響を及ぼさず 、かつ溶出物量を減ずるという副次的な効果を発現することができる。したがって、不 溶分の含有率は 0. 1質量%以上が好ましぐ 0. 2質量%以上がより好ましぐ 0. 3質 量%以上がさらに好ましぐ 0. 5質量%以上がよりさらに好ましい。
[0047] 上記の不溶分の含有率は、簡易的には、選択透過性分離膜をジメチルホルムアミ ドに浸漬し溶解させて得られる溶液中の不溶分から得ることができる。溶液は、選択 透過性分離膜 10gを 100mlのジメチルホルムアミドに溶解することにより得られる。溶 液を目視で観察して不溶分が見えな!/、場合は、非架橋と判定し得る。
[0048] 本発明にお ヽては、選択透過性分離膜の膜厚が 25— 45 μ mであることが好ま ヽ
(要件 7)。膜厚が薄すぎると、耐圧性が低下することがある。また、選択透過性分離 膜の腰が弱くなりモジュールの組み立て性が低下することもある。したがって、膜厚は
26 m以上がより好ましぐ 27 m以上がさらに好ましい。一方、膜厚が厚すぎると、 α ΐマイクログロブリンのクリアランスの低下やポリビュルピロリドンの溶出量の増大が 生じ得る。また、膜厚の増大に伴いモジュールを大きくする必要が生じるなど、例え ば、中空糸膜の場合、モジュールがコンパクトであるというメリットを損なうおそれがあ る。したがって、膜厚は 40 μ m以下がより好ましぐ 35 μ m以下がさらに好ましぐ 33 μ m以下がよりさらに好ましい。
[0049] 本発明にお ヽては、選択透過性分離膜の血液接触側表面(内表面)の最表層にお けるポリビニルピロリドンの含有量が 20— 40質量%であることが好まし ヽ(要件 9)。ポ リビュルピロリドンの含有量が低すぎると、中空糸膜内表面の親水性が低く血液適合 性が悪ィ匕し中空糸膜表面で血液の凝固が発生しやすくなり、凝固した血栓による中 空糸膜の閉塞が発生し中空糸膜の分離性能が低下したり、血液透析に使用した後 の残血が増えたりすることがある。中空糸膜内表面の最表層におけるポリビュルピロ リドンの含有量は、 21質量%以上がより好ましぐ 22質量%以上がさらに好ましぐ 2 3質量%以上がよりさらに好ましい。一方、ポリビニルピロリドンの含有量が高すぎると 、血液中に溶出するポリビニルピロリドン量が増大し、該溶出したポリビニルピロリドン によって長期透析において副作用や合併症が起こる可能性がある。中空糸膜内表 面の最表層におけるポリビニルピロリドンの含有量は 38質量%以下がより好ましぐ 3 6質量%以下がさら好ましい。
[0050] また、血液適合性は血漿タンパクの吸着量によっても影響を受ける。すなわち、親 水性の蛋白質である血漿タンパクが、選択透過性分離膜の血液接触側表面に吸着 することにより、表面の親水性が増し血液適合性が向上する。本発明の別の実施態 ヽては、臨床症状 (痒み ·痛み)の改善効果および選択透過性分離膜の血液 適合性の指標として、血漿タンパク中の α 1マイクログロブリン(分子量 33, 000)の 吸着量が 2. 0— 20mgZm2であることが好ましい(要件 5)。 α 1マイクログロブリンは 、血液 (血漿)中で免疫グロブリン (分子量 10万以上)と結合しやすい性質を有する。 免疫グロブリンに結合した OC 1マイクログロブリンは選択透過性分離膜の細孔よりも大 きくなるため、篩い効果だけでは十分に除去しきれない問題がある。そのため、臨床 症状の改善効果を高める目的で、選択透過性分離膜への吸着という作用により除去 量を高める。 a 1マイクログロブリンの吸着量が少なすぎると、血液適合性が低下し又 は臨床症状の改善効果が不足することがある。したがって、該吸着量は 2. 5mg/m 2以上がより好ましぐ 3. OmgZm2で以上がさらに好ましぐ 3. 5mgZm2がよりさらに 好ましい。逆に、該吸着量が多すぎると、有効細孔径の減少につながり、ひいては中 分子量物質一低分子量タンパクの除去性が低下する可能性がある。したがって、該 吸着量は 19mgZm2以下がより好ましぐ 18mgZm2以下がさらに好ましぐ 17mg Zm2がよりさらに好ましい。
a 1マイクログロブリンの吸着量を上記範囲にするためには、前述した内表面の最 表層ポリビニルピロリドンの含有量を最適化することが大きく寄与し得る。その他、該 吸着量は、内表面の表層の形態によっても影響を受ける。吸着量を上記範囲にする 方法は限定されないが、例えば、前述および後述の製造条件を組み合わせることに より行うことができる。特に、内部液の液温は、該吸着量へ大きな影響を及ぼし得る。 従って、前述した内部液の液温を製膜溶液の液温より 30— 60°C低くし、かつその液 温が 0— 40°Cである条件で吐出することが重要である。このことにより、内表面の最 表層面ポリビニルピロリドンの含有量が最適化される。さらに、上記条件において製 膜時のドラフト比を高めることで、内表面の表層に中空糸膜の長手方向に連続した 筋状のミクロの凹凸が形成される。このミクロの凹凸により、内表面の表面積が増大し 吸着量が最適化される。
加えて、 α 1マイクログロブリンの吸着量は、中空糸膜の内表面のポリビュルピロリド ンの配向度の影響を受ける。配向度が高い方が、吸着量が増大する。従って、図 1に 示すように、製膜時のチューブインオリフィスノズル内の製膜溶液の剪断応力を 1 X 1 04— 1 X 108 S _1の範囲にすることが好ましい実施態様である。剪断応力が小さすぎる 場合には、中空糸膜内表面のポリビュルピロリドンの配向度が小さくなるため、 α ΐマ イクログロブリンの吸着量が減少する可能性がある。したがって、ノズル内での剪断応 力は 5 X 104s— 1以上がより好ましぐ l X 105s— 1以上が更に好ましぐ 5 X 105s— 1以上 がより更に好ましい。また、剪断応力が大きすぎる場合には、中空糸膜の内表面のポ リビュルピロリドンの結晶化が進行し、溶質の透過性が低下する可能性がある。した がって、剪断応力は 5 X 107s— 1以下がより好ましぐ l X 107s— 1以下がさらに好ましぐ 5 X 106s— 1以下がよりさらに好ましい。
また、同様に、製膜原液が剪断応力を受ける時間も重要である。剪断応力時間は 1 X 10— 5— 0. lsecが好ましい。より好ましくは 5 X 10— 4— 5 X 10— 2sec、さらに好ましく は 1 X 10— 4— 1 X 10— 2secである。これらの条件を達成するための具体的なノズル形 状としては、製膜原液吐出孔の最大外径が 100— 700 /ζ πι、ランド長が 0. 1— 5mm であること力 S好まし ヽ。最大外径は 150— 600 m力より好ましく、 180— 550 m力 S さらに好ましぐ 200— 500 m力 Sよりさらに好ましい。このようなノズルを用いることに より、ノズル内で剪断を受けた製膜原液が、ノズルより吐出後、適度に配向し、かっ血 液接触表面にミクロな凹凸を形成することが可能となる。
[0052] また、 a 1マイクログロブリンの吸着量は、中空糸膜の血液接触側表面の荷電状態 の影響も受ける。本発明においては、中空糸膜の製造に用いる水として RO水を用い ることが効果的である。例えば、中空糸膜の洗浄工程において、 RO水を使用するこ とで、膜に付着している帯電性物質を効率よく除去することができる。当然のことなが ら、 RO水にはイオン性物質は含有されていないので、イオンが膜に吸着することもな い。使用する RO水は、比抵抗が 0. 3— 2Μ Ω cmのものが好ましぐさらには 0. 4— 1 . 9Μ Ω cmのものが好ましい。
[0053] 前記 a 1マイクログロブリンの吸着量は、血液適合性の向上のみでなく a 1マイクロ グロブリンの除去に対しても寄与し、透析合併症の予防や痒み '痛みといった臨床症 状の改善にも好結果を与えるものと思われる。
[0054] 本発明にお ヽては、選択透過性分離膜の血液接触側表面の表面近傍層における ポリビニルピロリドンの含有量が 5— 20質量0 /0であることが好ましい(要件 10)。 7- 1 8質量%がより好ま 、。上記のごとく選択透過性分離膜における血液接触側表面 の最表層におけるポリビニルピロリドンの含有量は、血液適合性の観点からは高 、方 が好ましい。しかし、該含有量が増加すると血液へのポリビニルピロリドンの溶出量が 増大するという二律背反の現象となる。したがって、中空糸膜内表面近傍のポリビ- ルピロリドンの含有量は、 19質量%以下がより好ましぐ 18質量%以下がさらに好ま しい。また、内表面近傍のポリビュルピロリドンの含有量が低すぎると、最表層へのポ リビュルピロリドンの供給が行われな 、ため、溶質除去性能や血液適合性の経時安 定性が低下する可能性がある。したがって、内表面近傍のポリビュルピロリドンの含 有量は、 6質量%以上がより好ましぐ 7質量%以上がさらに好ましい。
該条件を満足させることにより上記の二律背反の現象が打破され、上記現象の最 適化を従来技術で到達できなカゝつた高度なレベルで達成し得る。すなわち、血液適 合性を支配する選択透過性分離膜の最表層におけるポリビュルピロリドンの含有量 を、血液適合性が発現できる最低のレベルに設定することは重要である。ただし、該 最表層の含有量では、初期の血液適合性は満足できるが、長期透析をすると該最表 層に存在するポリビニルピロリドンが少しずつであるが血液に溶出していき、透析の 経過とともに段々と血液適合性が低下して!/ヽく t ヽぅ課題が発生する。本発明の一つ の実施態様では、該課題を、表面近傍層に存在するポリビニルピロリドンの最表層へ の移動により補給することで解決した。従って、血液接触側表面の表面近傍層にお けるポリビニルピロリドンの含有量が低すぎる場合は、血液適合性の持続性の低下を 抑えることが不十分となる可能性がある。一方、含有量が高すぎる場合は、血液に溶 出するポリビュルピロリドンの量が増大し長期透析による副作用や合併症が起こる可 能性がある。
本発明のある実施態様にぉ ヽては、選択透過性分離膜における血液非接触側の 最表層におけるポリビュルピロリドンの含有量が 25— 50質量%であり、かつ(血液非 接触側の表面最表層におけるポリビニルピロリドンの含有量: [D] ) Z (血液接触側の 表面最表層におけるポリビュルピロリドンの含有量: [C])が 1. 1倍以上であることが 好まし ヽ(要件 11)。血液非接触側の表面 (外表面)の最表層におけるポリビュルピロ リドンの含有量が低すぎると、中空糸膜の支持層部分への血中タンパクの吸着量が 増えるため、血液適合性や透過性能の低下が起こる可能性がある。また、乾燥膜の 場合、プライミング性が悪ィ匕することがある。したがって、外表面最表層におけるポリ ビュルピロリドンの含有量は 27質量%以上がより好ましぐ 29質量%以上がさらに好 ましぐ 31質量%以上がよりさらに好ましい。逆に、外表面におけるポリビニルピロリド ンの含有量が多すぎると、透析液に含まれるエンドトキシン(内毒素)が血液側へ浸 入する可能性が高まり、発熱等の副作用を引き起こすことに繋がるとか、膜を乾燥さ せた時に該表面に存在するポリビュルピロリドンが介在し、中空糸膜同士が固着し、 モジュール組み立て性が悪ィ匕する等の課題を引き起こす可能性がある。外表面にお けるポリビニルピロリドンの含有量は 43質量%以下がより好ましぐ 41質量%以下が さらに好ましぐ 39質量%以下がよりさらに好ましい。
[0056] また、血液非接触側の表面 (外表面)の最表層におけるポリビュルピロリドンの含有 量は、血液接触側の表面(内表面)の最表層におけるポリビニルピロリドンの含有量 の 1. 1倍以上であることが好ましい。ポリビュルピロリドンの含有量は、製膜後の中空 糸膜の収縮率に影響を与え得る。すなわち、ポリビュルピロリドンの含有量が高くなる に従い、中空糸膜の収縮率は大きくなる。例えば、内表面最表層におけるポリビニル ピロリドンの含有量が外表面最表層におけるポリビュルピロリドンの含有量よりも高 ヽ 場合、内表面側と外表面側の収縮率の違いにより、内表面側にミクロな皺が発生した り、中空糸膜が破断することがある。内表面側に皺が入ると、例えば、分離膜を血液 透析に使用する場合、血液を流したときに血中タンパク質等が膜面に堆積しやすく なるため、経時的に透過性能が低下するなどの問題に繋がる可能性がある。このよう な理由から、外表面側のポリビニルピロリドンの含有量を高くするのが好ましい。さら に、本発明の中空糸膜は、内表面に緻密層を有し、外表面に向力つて次第に孔径 が拡大する構造を好ましく有する。すなわち、内表面側に比較して外表面側の方が、 空隙率が高いため、より外表面側の収縮率が大きくなる特性を有している。このような 特性などの影響も加味すると、外表面最表層におけるポリビュルピロリドンの含有量 は、内表面最表層におけるポリビュルピロリドンの含有量の 1. 1倍以上であることが 好ましい。より好ましくは、 1. 2倍以上、さらに好ましくは 1. 3倍以上である。
前記理由により、外表面最表層におけるポリビニルピロリドンの含有量は高い方が 好ましいが、高すぎるとポリスルホン系高分子に対するポリビニルピロリドンの比率が 高くなりすぎ、強度不足や中空糸膜同士の固着、血液透析使用時のエンドトキシン の逆流入、ポリビュルピロリドン溶出などの問題を引き起こす可能性がある。より好ま しくは 1. 9倍以下、さらに好ましくは 1. 8倍以下、よりさらに好ましくは 1. 7倍以下で ある。
[0057] 血液接触側表面最表層と血液接触側表面近傍層に関して、詳細にその二層の違 いをみると、親水性高分子の濃度差による二層構造が存在する。選択透過性分離膜 は一般に、血液接触側表面のスキン層(緻密層)から反対側表面に向かうに従い、孔 径が拡大する傾向にあるから、最表層部分と表面近傍部分で密度差のある二層構 造となることもある。この各層の厚み及びその境界線は、選択透過性分離膜の製造 条件により任意に変わるものであり、また、その層の構造は性能にも多少なりとも影響 する。そうすると、溶媒交換による中空糸膜の製造工程力 推測しても、最表層と表 面近傍層がほとんど同時に、し力も両層が隣接して製造されている事情力もすれば、 一応二層が形成されることは認識できても、境界は鮮明に線引きできるようなもので はない。二層にまた力 ¾親水性高分子の含有量の分布曲線をみるなら、連続線で繋 力 ¾ような場合が多ぐポリビニルピロリドンにおいて親水性高分子の含有量の分布 曲線に断層ができるために、材料挙動の違う不連続な 2つの層ができると仮定するこ とは技術的に無理があろう。ポリビュルピロリドンの含有量を最表層で 20— 40質量% 、表面近傍層のそれを 5— 20質量%ということが最適範囲として一応規定している。 しかし、ポリビニルピロリドンが表面近傍層力 最表層へと拡散移動するという機構か らすれば、例えば、最表層が 40質量%で表面近傍層が 5質量%というような設計で は機能上十分に作用しないこともありうる。要するに、二層に存在する単純なポリビ- ルピロリドンの含有量の較差に着目して設計することも重要である。表面近傍層にお けるポリビニルピロリドン含有量に対する最表層におけるポリビニルピロリドン含有量 の比が 1. 1以上となるように、例えば、二層のポリビュルピロリドン含有量の較差を 1 一 35質量%程度、最適には 5— 25質量%程度に設計することにより、表面近傍層か ら最表層へのポリビニルピロリドンの拡散移動が円滑に行われ得る。例えば、最表層 を 32質量%とすると、表面近傍層は、 7— 27質量%程度の範囲にあることになり、こ れは 1. 1一 10倍という程度の要件を満たすことになる。
なお、選択透過性分離膜の最表層における上記ポリビュルピロリドンの含有量は、 後述のごとく ESCA法で測定し算出したものであり、選択透過性分離膜の最表層部 分 (表層からの深さ数 A—数十 A)における含有量の絶対値を求めたものである。通 常は、 ESCA法では、表面より深さが 10nm (100A)程度までのポリビュルピロリドン 含有量を測定可能である。 また、表面近傍層におけるポリビュルピロリドンの含有量は、表面赤外分光法 (AT R法)によって測定したものである。 ATR法 (表面近傍層)では、表面より深さ 1000— 1500nm (l— 1. 5 μ m)程度までのポリビュルピロリドン含有量を測定可能である。
[0059] 血液接触側表面および反対側表面におけるポリビニルピロリドンの含有量は、ポリ ビュルピロリドンの分子量にも関係することがある。例えば、分子量 120万程度という 高い分子量のポリビニルピロリドンを使用した場合より、分子量 45万程度の低い分子 量のポリビュルピロリドンを使用すると、凝固において、ポリビュルピロリドンの溶解性 や溶出量が大きぐまた、拡散移動が大きくなる。このため、ポリスルホン系高分子に 対するポリビュルピロリドンの比率 1一 20質量%に対して、最表層部分 20— 40質量 %および表面近傍部分 5— 20質量%と 、うように、相対的に高!、ポリビニルピロリドン の含有量のものが製造できる傾向にある。
[0060] 本発明における上記要件 5、 9、 10および 11を達成する方法としては、例えば、ポリ スルホン系高分子に対するポリビュルピロリドンの構成割合を前記した範囲にするこ とや、選択透過性分離膜の製膜条件を最適化する等により達成できる。具体的には
、選択透過性分離膜の内表面側に形成される緻密層において、最表層部分と表面 近傍部分で密度差のある 2層構造とするのが好ましい。すなわち、詳細な理由はわ 力 ないが、製膜溶液中のポリスルホン系高分子とポリビュルピロリドンの含有量およ び内部液濃度と温度を後述するような範囲にすることにより、中空糸膜の内表面の最 表層部分と表面近傍部分の凝固速度および Zまたは相分離速度に差が生じ、かつ ポリスルホン系高分子とポリビニルピロリドンの溶媒 Z水への溶解性の違いが上記要 件の特性を発現するのではな 、かと考える。
また、要件 9に対しては、乾燥条件の適正化が重要なポイントである。すなわち、湿 潤状態の中空糸膜を乾燥する際、水に溶解して!/、るポリビュルピロリドンは水の移動 に伴い、中空膜内部力 表面側へ移動する。ここで、後述するような乾燥条件を用い ることにより、水の移動にある程度の速度を与え、かつ中空糸膜全体における移動速 度を均一にすることができ、中空糸膜内部のポリビュルピロリドンは斑なく速やかに両 表面側へ移動する。膜面からの水の蒸発は、中空糸膜の内表面側よりも外表面側か らの方がより多くなる。したがって、外表面側に移動するポリビュルピロリドンの量が多 くなるため、上記要件 9を達成できるものと推測する。また、要件 9を達成することに対 しては、中空糸膜の洗浄方法や条件も重要であり、これを最適化することが望ましい
[0061] 本発明にお 、ては、選択透過性分離膜における血液非接触側の表面の開孔率が 25— 35%であることが好ましい実施態様である(要件 12)。 27— 33%がより好まし い。開孔率が小さすぎると、選択透過性分離膜を中空糸膜として使用する場合に、 中空糸膜内での中空糸膜間の固着が起こりやすくなる可能性がある。開孔率が大き すぎると、選択透過性分離膜の空隙率が大きくなるため、所期のバースト圧を得るこ とが難しくなり、有用タンパクであるアルブミン等の漏出を抑えきれない可能性がある
[0062] 開孔率を上記範囲にする方法は限定されな!、が、例えば特許文献 6に記載の方法 に準じて実施する方法が挙げられる。ただし、該方法で実施する場合は、膜強度が 低くなり血液リーク等の課題に繋がる可能性がある。従って、選択透過性分離膜のバ 一スト圧が 0. 5MPa以上と 、う本発明における好ま 、実施態様 (要件 13)を満足 できなくなる。なお、選択透過性分離膜のバースト圧とは、中空糸膜からなる選択透 過性分離膜を用いてモジュールを形成後の選択透過性分離膜の耐圧性能に関する 指標である。すなわち、バースト圧とは、中空糸膜の内側を気体で加圧し、加圧圧力 を徐々に上げていき、中空糸膜が内部圧に耐えきれずに破裂 (バースト)するときの 圧力である。バースト圧は高いほど、使用時の中空糸膜の切断やピンホールの発生 が少なくなるので、 0. 5MPa以上が好ましぐ 0. 55MPa以上がさらに好ましぐ 0. 6 MPa以上がよりさらに好ましい。バースト圧が 0. 5MPa未満では潜在的な欠陥を有 している可能性がある。また、バースト圧は高いほど好ましいが、バースト圧を高める ことに主眼を置き、膜厚を大きくしすぎたり、空隙率を下げすぎると、所望の膜性能を 得ることができなくなることがある。したがって、血液透析膜として仕上げる場合には、 バースト圧は 2. OMPa未満が好ましい。より好ましくは、 1. 7MPa未満、さらに好まし くは 1. 5MPa未満、よりさらに好ましくは 1. 3MPa未満、特に好ましくは 1. OMPa未 満である。
[0063] 上記特性は、従来公知の膜強度等のマクロな特性により支配される血液リーク特性 では長期透析における中空糸膜の安全性を十分に証明することができな 、という知 見に基づいて見出されたものである。すなわち、血液浄化器に用いられる中空糸型 の選択透過性分離膜 (以下、単に中空糸膜と称する)の物理的性質について検討し た結果、通常、血液浄ィ匕に用いる中空糸膜は、製品となる最終段階で、中空糸膜や 血液浄化器の欠陥を確認するため、中空糸膜内部あるいは外部をエアによって加圧 するリークテストを行う。加圧エアによってリークが検出されたときには、血液浄化器は 不良品として廃棄あるいは欠陥を修復する作業がなされる。このリークテストのエア圧 力は血液浄化器の保証耐圧(通常 500mmHg)の数倍であることが多 ヽ。しかしなが ら、特に高い透水性を持つ中空糸型血液浄ィ匕膜の場合、通常の加圧リークテストで は検出できない中空糸膜の微小な傷、つぶれ、裂け目などが、リークテスト後の製造 工程 (主に滅菌や梱包)、輸送工程、あるいは臨床現場での取り扱い(開梱や、ブラ イミングなど)時に、中空糸の切断やピンホールの発生につながり、ひいては治療時 に血液カ^ークする等のトラブルの原因となっていることを本発明者らは見出した。上 記事象に関して鋭意検討したところ、臨床使用時の中空糸膜の切断やピンホールの 発生につながる潜在的な糸の欠陥は、通常の加圧エアリークテストにおける圧力で は検出することができず、より高い圧力が必要であることが判明した。また、中空糸膜 の偏肉糸の混入を抑えることが、上記した潜在的な欠陥の発生抑制に対して有効で あることが判明した。
[0064] 本発明の上記実施態様は、従来公知の膜強度等のマクロな特性では中空糸膜の 安全性を十分に保証することができないという知見に基づく。すなわち、本発明の中 空糸膜においては、 a 1マイクログロブリンに代表される分子量 3万程度の物質の透 過性を向上させるために、膜厚およびスキン層を非常に薄くしている。そうすると、中 空糸膜が潜在的に擁する欠陥 (ピンホール、傷など)が特に臨床使用時に顕在化す る可能性がある。本発明では、安全性を確保するために、マクロな特性に加え、上記 したような潜在的な欠陥を無くすことが極めて重要である。
[0065] 本発明の選択透過性分離膜を血液浄化器用として用いる場合、上記のごとくバー スト圧が 0. 5MPa以上の中空糸膜よりなることおよび該血液浄化器の透水率が 150 mlZm2ZhrZmmHg以上であることが好ましい。透水率が低すぎると、透析効率が 低下することがある。透析効率を上げるためには細孔径を大きくしたり、細孔数を増 やしたりするが、そうすると膜強度が低下したり欠陥ができるといった問題が生じやす くなる。従って、外表面の孔径を最適化することにより支持層部分の空隙率を最適化 し、溶質透過抵抗と膜強度をバランスさせたものであることが好ましい。より好ましい 透水率の範囲は 200mlZm2ZhrZmmHg以上、さらに好ましくは 250mlZm2Zh rZmmHg以上、特に好ましくは 300mlZm2ZhrZmmHg以上である。また、透水 率が高すぎる場合、血液透析時の除水コントロールがしにくくなるため、 2000mlZ m2ZhrZmmHg以下が好ましい。より好ましくは 1500mlZm2ZhrZmmHg以下 、さらに好ましくは 1000mlZm2ZhrZmmHg以下、よりさらに好ましくは 800mlZ m2ZhrZmmHg以下、特に好ましくは 500mlZm2ZhrZmmHg以下である。
[0066] 上記のバースト圧を 0. 5MPa以上にする方法は限定されないが、中空糸膜の偏肉 度を小さくすることも重要であり好まし 、実施態様である(要件 14)。本発明における 偏肉度とは、血液浄化器中の 100本の中空糸膜断面を観察した際の膜厚の偏りのこ とであり、最大値と最小値の比で示す。本発明では、 100本の中空糸膜の最小の偏 肉度は 0. 6以上であることが好ましい。 100本の中空糸膜に 1本でも偏肉度 0. 6未 満の中空糸膜が含まれると、その中空糸膜が原因となって臨床使用時のリーク発生 に繋がることがある。従って、本発明の偏肉度は平均値でなぐ 100本の最小値を表 す。偏肉度は高い方が、膜の均一性が増し潜在欠陥の顕在化が抑えられバースト圧 が向上するので、より好ましくは 0. 7以上、さらに好ましくは 0. 8以上、よりさらに好ま しくは 0. 85以上である。偏肉度が低すぎると、潜在欠陥が顕在化しやすぐ前記バ 一スト圧が低くなり、血液リークが起こりやすくなる可能性がある。
[0067] また、中空糸膜外表面における開孔部の平均孔面積が 0. 3-1. であること もバースト圧を高めるために有効であり好ましい実施態様である。平均孔面積は 0. 4 一 0. 9 m2がより好ましい。平均孔面積が小さすぎる場合には、膜全体の細孔径が 小さくなるので透水性や溶質透過性が低下する可能性がある。また、膜を乾燥させた 時に膜外表面に存在する親水性高分子が介在し中空糸膜同士が固着し、モジユー ル組み立て性が悪ィ匕する等の課題を引き起こす可能性がある。逆に、平均孔面積が 大きすぎる場合には、細孔径ゃ中空糸膜の空隙率が大きくなりすぎ、バースト圧が低 下することがある。
[0068] 本発明にお 、て、上記特性を付与する方法は限定されな 、が、例えばチューブイ ンオリフィス型ノズルのノズルスリット幅の最大値と最小値との比を 1. 00以上 1. 11以 下にすることが好ましい。中空糸膜の紡糸ノズルとしては、一般的に、製膜溶液を吐 出する環状部と、その内側に内部液となる芯液吐出孔を有するチューブインオリフィ ス型ノズルが用いられる。ここで、ノズルスリット幅とは、前記製膜溶液を吐出する外側 環状部の幅をさす。このスリット幅のバラツキを小さくすることで、紡糸された中空糸膜 の偏肉を減らすことができる。具体的にはスリット幅の最大値と最小値の比を 1. 00以 上 1. 11以下とし、最大値と最小値の差を 10 m以下とすることがより好ましぐ 7 μ m以下とすることがさらに好ましぐよりさらに好ましくは 5 m以下、特に好ましくは 3 μ m以下である。該方法により前記の偏肉度を好ましい範囲にすることが可能となる
[0069] また、製膜溶液を濾過精度が 25 μ m以下のフィルターで濾過するのが好ま 、実 施態様である。濾過精度が 20 m以下のフィルターがより好ましぐ 15 m以下のフ ィルターがさらに好ましい。具体的には、均一溶解した製膜溶液を、溶解タンクからノ ズルまで導く間に設けられたフィルターを通過させるのが好まし 、。濾過処理は少な くとも 1回行えばよいが、濾過処理を何段階かに分け、後段になるに従いフィルター の孔径を小さくして 、くのが濾過効率およびフィルター寿命を延ばす意味で好ま Uヽ 。なお、フィルターの濾過精度は JIS B8356 : 1976年に準じて計測し、フィルターメ ディアを透過した最大グラスビーズ粒径を濾過精度( μ m)とする。該フィルタ一は、 上記濾過精度を満足すれば、その材質や構造は限定されない。フィルタ一としては、 金網フィルターが一般的に多く用いられており、平織り、綾織、平畳織、綾畳織など 織り方の形状の変化、それに使用する線の太さと積層構成により、濾過能力や微小 化効率が変ってくる。それらの金網フィルターとは別に、金属焼結フィルターというタ イブがあり、粉末焼結したもの、不織布のように金属を織ることなく固めたものの大きく 2種類がある。特に不織布のように金属を織ることなく固めたものは、ミクロンオーダー のステンレス鋼繊維を均一に積層焼結したもので、繊維相互の無数の接点が金属同 士で接合一体化しており、 目開き'抜け落ちが少なく高い濾過精度を有する上、他の 金属濾過材より空隙率が大きい影響で、圧力損失が小さぐ金網 ·金属粉末焼結フィ ルターに比べて、異物保持能力が高いので好ましい。金網フィルターも何ら排除はさ れず、織り方、積層法を改良すると上記と同等以上の性能が出るものも有る。選定ポ イントは、圧力損失が低ぐ濾過能力の高いものを選ぶことである。該濾過フィルター の最適化により、濾過効果による異物混入が抑制されるだけでなぐ選択透過性分 離膜中のポリスルホン系高分子とポリビュルピロリドンとの相分離の均一性が向上す る。該膜中の相分離の均一性は、以下に示す中空糸膜の外表面の顕微鏡観察によ り判定される。
[選択透過性分離膜中の相分離の均一性]
相分離の均一性は、リアルサーフェスビュー顕微鏡 VE— 7800 (キーエンス社製)を 用いて評価し得る。試料台に 3mmピッチで中空糸膜を並べて両面テープで固定し、 200倍の倍率で異物の存在有無をスキャンしながら総長 lm分の確認を実施する。ま た、ボイドの有無の確認は、中空糸膜を剃刀にて斜め切りにし、切断面が上方を向く ように試料台に両面テープで固定して、 300倍の倍率で 30視野観察して行うことが できる。
[0070] 上記方法により相分離の均一性が向上するのは、製膜溶液を特定化されたフィル ターで濾過する際に、製膜溶液中に存在するポリビュルピロリドンの分散不良部分が フィルター通過によって分散される効果と、分散不良部分が除去される効果に基づく ものと推測される。
[0071] 上記に例示した方法を採用することにより、選択透過性分離膜を構成する膜中に おけるポリスルホン系高分子とポリビュルピロリドンとの相分離の均一性を向上させ得 る。その結果、膜厚およびスキン層を非常に薄くしても、膜中の相分離の不均一性に 起因する膜強度が低下した欠点部の形成が抑制され、上記のバースト圧の向上に繋 がる。
[0072] また、ノズル温度を最適化することも重要である。ノズル温度は 20— 90°Cが好まし い。ノズル温度が低いと室温の影響を受けやすくなり、ノズル温度が安定せず、製膜 溶液の吐出斑が起こることがある。そのため、ノズル温度は 30°C以上がより好ましぐ 35°C以上がさらに好ましぐ 40°C以上がよりさらに好ましい。またノズル温度が高いと 製膜溶液の粘度が下がりすぎ吐出が安定しなくなることがあるし、ポリビュルピロリドン の熱劣化 '分解が進行する可能性がある。よって、ノズル温度は、より好ましくは 85°C 以下、さらに好ましくは 80°C以下である。
[0073] また、製膜溶液の粘度が 2000— 6000cpsであることも好ましい実施態様である。 3 000— 5000cpsがより好ましい。該粘度範囲に設定することにより、該溶液の攪拌効 率が良くなるので、前記の相分離の均一化、ノズルからの吐出斑低減および脱泡の 容易性等の効果が発現しバースト圧の向上に繋がる。
[0074] さらに、バースト圧を高くする方策として、中空糸膜表面の傷を少なくし潜在的な欠 陥を低減するのも有効な方法である。傷発生を低減させる方法としては、中空糸膜の 製造工程のローラーやガイドの材質や表面粗度を最適化する、モジュールの組み立 て時に中空糸膜をモジュール容器に挿入する時に容器と中空糸膜との接触あるい は中空糸膜同士のこすれが少なくなるような工夫をする等が有効である。
本発明では、使用するローラーとしては、中空糸膜がスリップして中空糸膜表面に 傷が付くのを防止するため、表面が鏡面加工されたものを使用するのが好ましい。ま た、ガイドとしては、中空糸膜との接触抵抗をできるだけ避ける意味で、表面が梨地 加工されたものやローレットカ卩ェされたものを使用するのが好ましい。
中空糸膜をモジュール容器に挿入する際には、中空糸膜を直接モジュール容器に 挿入するのではなぐ例えば、中空糸膜との接触面がエンボスカ卩ェされたフィルムを 中空糸膜に巻いたものをモジュール容器に挿入し、挿入した後、フィルムのみモジュ ール容器力も抜き取る方法を用いるのが好まし 、。
[0075] また、中空糸膜中に気泡が混入するとバースト圧低下の原因となる。従って、製膜 溶液への気泡混入を抑えることも、バースト圧を高くするための好ましい実施態様で ある。その方法としては、製膜用のポリマー溶液の脱泡を行うのが有効である。製膜 溶液の粘度にもよる力 静置脱泡や減圧脱泡を用いることができる。例えば、溶解タ ンク内を- 100—— 750mmHgに減圧した後、タンク内を密閉して 5分一 30分間静置 する。この操作を数回繰り返し、脱泡処理を行う。減圧度が高すぎる場合には、脱泡 の回数を増やす必要があるため、処理に長時間を要することがある。また減圧度が 低すぎると、系の密閉度を上げるためのコストが高くなることがある。トータルの処理 時間は 5分一 5時間とするのが好ましい。処理時間が長すぎると、減圧の効果により ポリビニルピロリドンが分解、劣化することがある。また、処理時間が短すぎると脱泡の 効果が不十分になることがある。
[0076] 本発明においては、選択透過性分離膜を長手方向に 10分割し、各々について測 定した時の過酸ィ匕水素の溶出量力 全ての部位で 5ppm以下であることが好まし ヽ 実施態様である (要件 15)。
[0077] 従来、選択透過性分離膜からの溶出物量は、透析型人工腎臓装置製造承認基準 により定められている。該透析型人工腎臓装置製造承認基準においては、該膜から の溶出物量は UV吸光度で定量される。本発明者等は該膜からの溶出挙動につい て詳細に検討した結果、主としてポリスルホン系高分子とポリビニルピロリドン力 なる 選択透過性分離膜において、上記の透析型人工腎臓装置製造承認基準により定め られた試験法で抽出された抽出液中には、従来公知の UV吸光度では測定できな 、 過酸ィ匕水素が含まれていることを見出した。該過酸ィ匕水素が存在すると保存安定性 が悪化すること、例えばポリビニルピロリドンの酸ィ匕劣化が促進され、中空糸膜を保 存した時に該ポリビュルピロリドンの溶出量が増加することを見出した。また、従来技 術においては、いずれも中空糸膜の特定部位について評価したものであった。すな わち、例えば、モジュール組み立て等において中空糸膜を乾燥する等の処理を行う と、乾燥条件の変動等の影響により上記の過酸化水素溶出量が中空糸膜の長さ方 向で大きく変動するため、上記特定部位のみの評価では高度な安全性の要求には 応えられないことを、本発明者らは見出した。特に、本発明者らが注目した過酸化水 素は、これが中空糸膜の特定部位にのみ存在した場合であっても、その個所から中 空糸膜素材の劣化反応が開始されて中空糸膜の全体に伝播していく。従って、用い 中空糸膜の長さ方向の過酸ィ匕水素の含有量を、全領域に渡って一定量以下に維持 することが重要である。
[0078] 本発明においては、前記した中空糸膜からの過酸化水素の溶出量が 5ppm以下で あることが好ましい。 4ppm以下がより好ましぐ 3ppm以下がさらに好ましい。該過酸 化水素の溶出量が多すぎる場合は、該過酸ィ匕水素による酸ィ匕劣化等によって前記 のように保存安定性が悪ィ匕し、例えば、長期保存した場合にポリビニルピロリドンの溶 出量が増大することがある。保存安定性としては、ポリビニルピロリドンの溶出量の増 加が最も顕著な現象であるが、その他、ポリスルホン系高分子の劣化が引き起こされ て中空糸膜が脆くなるとか、モジュール組み立てに用いるポリウレタン系接着剤の劣 化を促進し該劣化物の溶出量が増加し安全性が低下することも含まれる。長期保存 における過酸ィ匕水素の酸ィ匕作用により引き起こされる劣化起因の溶出物量の増加は
、透析型人工腎臓装置製造承認基準により設定されている UV(220— 350nm)吸光 度の測定によって評価できる。
[0079] 本発明における過酸化水素の溶出量は、透析型人工腎臓装置製造承認基準の溶 出試験法に準じた方法で抽出された抽出液にっ 、て定量されたものである。すなわ ち、該中空糸膜から任意に中空糸膜を取り出し、乾燥状態で 1. Ogを計りとり、これに 100mlの RO水をカ卩え、 70°Cで 1時間抽出を行って、抽出液を得る。
[0080] 過酸ィ匕水素溶出量を上記の規制された範囲に制御する方法としては、例えば、前 述したごとく原料として用いるポリビニルピロリドン中の過酸ィ匕水素量を 300ppm以下 にすることが有効な方法である。し力しながら、過酸ィ匕水素は上記したように中空糸 膜の製造過程でも生成するので、該中空糸膜の製造条件を厳密に制御することが重 要である。特に、中空糸膜を製造する際の乾燥工程における生成は溶出量への寄 与が大きいので、乾燥条件の最適化が重要である。この乾燥条件の最適化は、特に 、中空糸膜の長手方向の溶出量の変動を小さくすることに関して有効な手段となり得 る。
[0081] また、過酸ィ匕水素の発生を抑制する他の方法として、製膜溶液を溶解する際、短時 間に溶解することも重要である。そのためには、通常、溶解温度を高くすることおよび Zまたは撹拌速度を上げることが有効である。し力しながら、そうすると温度および撹 拌線速度、剪断力の影響により、ポリビニルピロリドンの劣化'分解が進行する傾向に ある。事実、本発明者らの検討によれば、製膜溶液中のポリビュルピロリドンの分子 量は溶解温度の上昇に従い、分子量のピークトップが分解方向に移動 (低分子側に シフト)し、または低分子側に分解物と思われるショルダーが現れる現象が認められ た。従って、原料の溶解速度を向上させる目的で温度を上昇させると、ポリビュルピロ リドンの劣化分解を促進し、ひ ヽては選択透過性分離膜中にポリビニルピロリドンの 分解物がブレンドされてしまうため、例えば、得られた中空糸膜を血液浄化に使用す る場合、血液中に分解物が溶出するなど、製品の品質安全上、優れたものとはなら なかった。
そこで、本発明者らは、ポリビニルピロリドンの分解を抑制する目的で、低温で原料 を混合することを試みた。低温溶解ではあっても、氷点下となるような極端な条件に するとランニングコストも力かるため、通常、 5°C以上 70°C以下が好ましい。 60°C以下 力 り好ましい。しかし、単純に溶解温度を下げると、溶解時間の長時間化によるポリ ビュルピロリドン劣化分解、操業性の低下や設備の大型化を招くことになるため、ェ 業的に実施する上では問題がある。
[0082] 本発明者らは、低温で時間をかけずに溶解するための溶解条件について検討を行 つた結果、溶解に先立ち紡糸溶液を構成する成分を混練した後に溶解させることが 好ましいことを見出し、本発明に到達した。該混練はポリスルホン系高分子、ポリビ- ルピロリドンおよび溶媒等の構成成分を一括して混練してもよ 、し、ポリビュルピロリド ンとポリスルホン系高分子とを別個に混練してもよい。前述のごとくポリビュルピロリド ンは酸素との接触により劣化が促進され、過酸化水素を発生する。従って、該混練時 にお 、ても不活性ガスで置換した雰囲気で行う等、酸素との接触を抑制する配慮が 重要であり、別ラインで行うのが好ましい。混練はポリビニルピロリドンと溶媒のみとし てポリスルホン系高分子は予備混練をせずに直接溶解槽に供給する方法も本発明 の範疇に含まれる。
[0083] 溶解槽とは別に混練ラインを設けて混練を実施し、次いで混練したものを溶解槽に 供給してもよ!/ヽし、混練機能を有する溶解槽で混練と溶解の両方を実施してもよ ヽ。 前者の別個の装置で実施する場合の、混練装置の種類や形式は限定されない。回 分式、連続式のいずれであっても構わない。スタチックミキサー等のスタチックな方法 であってもよ 、し、エーダーや攪拌式混練機等のダイナミックな方法であってもよ 、。 混練の効率力 は後者が好ましい。後者の場合の混練方法も限定なぐピンタイプ、 スクリュータイプ、攪拌器タイプ等いずれの形式でもよい。スクリュータイプが好ましい 。スクリューの形状や回転数も、混練効率と発熱とのバランスから適宜選択すればよ い。 一方、混練機能を有する溶解槽を用いる場合の溶解槽の形式も限定されないが、 例えば、 2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練 効果を発現する形式の混練溶解機が推奨される。例えば、井上製作所社製のプラネ タリュームミキサーやトリミックス等が本方式に該当する。
[0084] 混練時におけるポリビニルピロリドンやポリスルホン系高分子等の榭脂成分と溶媒と の比率も限定されない。榭脂 Z溶媒の質量比として 0. 1— 3が好ましい。 0. 5— 2が より好まし 、。
[0085] 前述のごとくポリビニルピロリドンの劣化を抑制し、かつ効率的な溶解を行うことが、 本発明の技術ポイントである。従って、少なくともポリビュルピロリドンが存在する系は 、窒素雰囲気下、 70°C以下の低温で混練および溶解することが好ましい実施態様で ある。ポリビュルピロリドンとポリスルホン系高分子を別ラインで混練する場合、ポリス ルホン系高分子の混練ラインに上記方法を適用してもよい。混練や溶解の効率と発 熱とは二律背反現象である。該二律背反をできるだけ回避した装置や条件の選択が 、本発明の重要な要素となる。そういう意味で混練機構における冷却方法が重要で あり配慮が必要である。
[0086] 引き続き前記方法で混練されたものの溶解を行う。溶解方法は限定されな 、が、例 えば、攪拌式の溶解装置による溶解方法を適用できる。低温'短時間(3時間以内) で溶解するためには、フルード数
Figure imgf000035_0001
が 0. 7以上 1. 3以下、攪拌レイノル ズ数 (Re=nd2 β / μ )が 50以上 250以下であることが好ましい。ここで ηは翼の回 転数 (rps)、 pは密度 (Kg/m3)、 は粘度 (Pa' s)、gは重力加速度( = 9. 8m/s2 )、 dは撹拌翼径 (m)である。フルード数が大きすぎると、慣性力が強くなるためタンク 内で飛散した原料が壁や天井に付着し、所期の製膜溶液組成が得られな!/ヽことがあ る。したがって、フルード数は 1. 25以下がより好ましぐ 1. 2以下がさらに好ましぐ 1 . 15以下がよりさらに好ましい。また、フルード数が小さすぎると、慣性力が弱まるた めに原料の分散性が低下し、特にポリビュルピロリドンがダマ状になり、それ以上溶 解することが困難となったり、均一溶解に長時間を要することがある。したがって、フ ルード数は 0. 75以上がより好ましぐ 0. 8以上がさらに好ましい。
[0087] 本発明における製膜溶液は所謂低粘性流体であるため、撹拌レイノルズ数が大き すぎると、撹拌時、製膜溶液中への気泡のかみこみによる脱泡時間の長時間化や脱 泡不足が起こるなどの問題が生ずることがある。そのため、撹拌レイノルズ数はより好 ましくは 240以下、さらに好ましくは 230以下、よりさらに好ましくは 220以下である。 また、撹拌レイノルズ数が小さすぎると、撹拌力が小さくなるため溶解の不均一化が 起こりやすくなることがある。したがって、撹拌レイノルズ数は、 35以上がより好ましぐ 40以上がさらに好ましぐ 55以上がよりさらに好ましぐ 60以上が特に好ましい。さら に、このような紡糸溶液で中空糸膜を製膜すると、気泡によって曳糸性が低下して操 業性が低下し、品質面でも、中空糸膜への気泡の嚙み込みによりその部位が欠陥と なり、膜の気密性やバースト圧の低下などを引き起こして問題となることがわ力つた。 紡糸溶液の脱泡は効果的な対処策だが、紡糸溶液の粘度コントロールや溶剤の蒸 発による紡糸溶液の組成変化を伴うこともありうるので、脱泡を行う場合には慎重な対 応が必要となる。
[0088] さらに、ポリビュルピロリドンは空気中の酸素の影響により酸ィ匕分解を起こす傾向に あることから、紡糸溶液の溶解は不活性気体封入下で行うのが好ましい。不活性気 体としては、窒素、アルゴンなどが挙げられるが、窒素を用いるのが好ましい。このと き、溶解タンク内の残存酸素濃度は 3%以下であることが好ましい。窒素封入圧力を 高めると溶解時間短縮が望めるが、高圧を形成するには設備費用が嵩む点、また作 業安全性の面から、不活性気体の封入圧力は大気圧以上 2kgfZcm2以下が好まし い。
[0089] 本発明にお ヽて用い得る撹拌翼は、低粘性製膜溶液の溶解に用いられる形状の 撹拌翼であり、ディスクタービン型、パドル型、湾曲羽根ファンタービン型、矢羽根タ 一ビン型などの放射流型翼、プロペラ型、傾斜パドル型、ファウドラー型などの軸流 型翼が挙げられる力 特にこれらに限定されるものではない。
[0090] 以上のような低温溶解方法を用いることにより、親水性高分子の劣化分解が抑制さ れた安全性の高い中空糸膜を得ることが可能となる。さらに付言すれば、製膜には、 原料溶解後の滞留時間が 24時間以内の紡糸溶液を使用することが好ま 、。なぜ なら製膜溶液が保温されている間に熱エネルギーを蓄積し、原料劣化を起こす傾向 が認められたためである。 [0091] さらに、過酸ィ匕水素溶出量およびその変動抑制に関しては、中空糸膜を絶乾しな いことが好ましい。絶乾してしまうと、ポリビニルピロリドンの劣化が促進され、過酸ィ匕 水素の生成が大幅に増大するので好ましくない。また、使用時の再湿潤化において 濡れ性が低下したり、ポリビニルピロリドンが吸水しに《なって中空糸膜から溶出し やすくなる可能性がある。乾燥後の中空糸膜の含水率は 0. 5質量%以上が好ましく 、 0. 7質量%以上がより好ましぐ 1. 0質量%以上がさらに好ましい。
一方、本発明においては、前記のようにポリビニルピロリドンが実質的に非架橋であ ることが好ましい。例えば、分離膜を血液浄化器用として使用する場合は、 γ線照射 による滅菌処理が実施されるが、該照射によってポリビュルピロリドンが架橋される傾 向がある。本発明においては、 γ線照射によるポリビュルピロリドンの架橋をできるだ け少なくするのが好ましい実施態様である。ポリビュルピロリドンの架橋反応は、中空 糸膜の含水率の影響を受ける。含水率が 10質量%を超えると架橋反応が顕著にな る。従って、含水率は 10質量%以下が好ましい。 7質量%未満がより好ましぐ 4質量 %未満がさらに好ましい。
[0092] 乾燥工程に関しては、従来技術では、例えば特開 2000-300663号公報に開示 されているように、 60°Cのエアを中空糸膜束の長手方向に、一方向から 20時間程度 通風することにより中空糸膜束を乾燥させていた。しかし、この方法では、中空糸膜 束の長手方向における過酸ィ匕水素溶出量の変動が大き力つた。この理由は定かで ないが、エアを一定方向力 通風して中空糸膜束の乾燥を行うと、中空糸膜束のェ ァ入口部から出口部に向力つて順次乾燥が進行するため、エア入口部では速く乾燥 が終了し、エア出口部で遅れて乾燥が終了することが原因であると推測した。すなわ ち、エア入口部では中空糸膜束が過乾燥になることによって、中空糸膜束素材の分 解劣下が進行し、結果として入口部は該中空糸膜束の構成材料、特に、ポリビュル ピロリドンの酸ィ匕劣化が増大することによって引き起こされたのではないかと推測した
。そこで本発明者らは、中空糸膜束の部分的な過乾燥を防ぎ、均等に乾燥させること を目的とし、乾燥時のエアの向きを定時毎 (例えば、 1時間毎や 30分毎)に 180度反 転しながら中空糸膜束の乾燥処理を行った。また、乾燥時の熱による酸化反応速度 を抑制することを目的として、乾燥器内温度および乾燥エアの温度を従来の 60°Cか ら 40°Cに低下させることによって本発明の中空糸膜束を得ることができた。上記のご とぐ酸ィ匕劣化が過酸ィ匕水素溶出量の変動要因になっていると推定されるため、乾 燥時の雰囲気を窒素ガス等の不活性ガスに置換して実施する方法も有効である。
[0093] 乾燥器内の風量および風速は、中空糸膜束の量、総含水量に応じて調整すれば よいが、通常、風量は 0. 01— 5LZsec (中空糸膜束 1本)程度で足りる。通風媒体と しては不活性ガスを用いるのが好ましいが、通常の空気を使用する場合には、除湿 したものを使用するのが好ましい。
乾燥温度は 20— 80°Cであってよいが、温度を高くすると、中空糸膜束の損傷を大 きくし、乾燥が部分的にアンバランスになりがちであるから、常温から最高 60°C程度 までとするのが好ましい。例えば、含水率 200— 1000質量%の状態では、 60— 80 °Cと比較的高い温度で乾燥可能である力 乾燥が進行し、例えば含水率が 1一 50質 量%程度に低下した場合、比較的温度の低い常温一最高 60°C程度の範囲におい て乾燥するのが好ましい。
乾燥は、中空糸膜の中心部分および外周部分は勿論のこと、それを束ねた中空糸 膜束の中心部分および外周部分の含水率に較差がないのが理想的である。実際に は、中空糸膜や中空糸膜束の中心部および外周部の含水率には若干の差がある。 したがって、ここでいう中空糸膜束の「含水率」とは、中空糸膜束の中心部、中間部 および外周部などの何点かの含水率を算定の根拠にして、それら何点かの含水率 の平均値を求めた「平均含水率」のことである。勿論それほどの精度を期待しな 、場 合には、中空糸膜束の水分総量を算定の根拠にすることも可能であるが、精度が下 力 Sるという弊害がある。そして、中空糸膜束の中心部、中間部および外周部などの含 水率の較差が小さ 、と 、うことは、品質のょ 、製品を造るための好ま 、実施態様で あるから、それを製造する乾燥方法には技術的な配慮がなされる。通風媒体として、 例えば、窒素ガス、アルゴンガスなどの不活性ガスを使用する場合には、実質的に無 酸素状態での乾燥であるため親水性高分子の劣化分解が起こりにくぐ乾燥温度を 高めることが可能である。
[0094] 風量および乾燥温度は、中空糸膜束に含まれる水分総量に応じて決定し得る。含 水率が高い場合には、風量を比較的高ぐ例えば 0. 1— 5LZsec (中空糸膜束 1本) に設定し、温度も比較的高ぐ例えば 50— 80°Cに設定し得る。乾燥が進行し、中空 糸膜束の水分含有量が低くなつたら、風量を、例えば 0. lLZsec (中空糸膜束 1本) 以下に徐々に下げるように調整し、一方で、温度もそれに連動させて徐々に常温に 近づける乾燥方法を採用することが乾燥の工夫の一つである。
中空糸膜束の中心部、中間部および外周部などの含水率の較差を小さくするには 、各部の乾燥を同時に均一に進行させることが有効であり得る。このためには、中空 糸膜束を通風乾燥するときに送風向きを交互に逆転させる方法、すなわち、通風乾 燥における中空糸膜束に対する送風の向きを 180度変えた方向から交互に送風す る方法を好適に採用できる。勿論、その送風方向の反転は、内容物である中空糸膜 束それ自体を通風方向に対して 180度交互に反転させるように装置を工夫すること によっても達成し得る。又、乾燥のための中空糸膜束を固定し、送風装置に工夫して 通風方向を交互に 180度程度変えた方向から送風する方法もあるが、送風手段に 関しては特に限定されない。特に循環型送風乾燥機の場合には、内容物の中空糸 膜束それ自体を交互に 180度反転させるような装置が、設計上は勿論のこと、運転 上も合理的に機能する。この一見ありふれたような反転を含む乾燥方法は、本発明 の実施態様において、特に中空糸膜束という特殊な材料における一束の部分固着 を防ぐ品質管理にとって、汎用の材料の乾燥には見られない予期し得ない効果を奏 することが判明した。
乾燥における通風の交互反転時間は、乾燥すべき中空糸膜束の水分総量および 風速、風量、乾燥温度、空気の除湿程度などの要因に応じて変更され得るが、均一 乾燥を実現するためには、送風方向をこまめに反転させることが好ましい。工業的に 実用上設定される風向反転時間は、乾燥開始後の含水率にも影響する。例えば 60 一 80°C程度の高温(例えば 65°C)で 1一 4時間、 25— 60°Cの温度(例えば 30°C程 度)で 1一 20時間乾燥し、総乾燥時間を 24時間程度に設定する場合、 30— 60分程 度の間隔で機械的に風向を反転させることができる。
水分総量が多!、初期の乾燥段階にお!、て、例えば 60— 80°C程度の高温にお!、 て、 0. 1一 5LZsec (中空糸膜束 1本)程度の比較的風量が多い条件で乾燥する場 合には、最初に風の直接当たる部分の乾燥が比較的早いため、 10— 120分程度の 間隔で、風向の反転を 1一 5時間程度繰り返してよい。特に、最初の段階は 10— 40 分間隔で風向を反転させることが好ましい。中空糸膜束の中心部および外周部の含 水率の較差が小さくなるに従い、乾燥温度を徐々に常温に近づけて 30°C程度とし、 反転時間を 30— 90分程度の間隔として風向の反転を繰り返すことができる。その際 の風量および温度の切り換えは、中空糸膜束の含水率を考慮して任意に決めること ができる。より定量的に示せば、中空糸膜束の中心部および外周部の水分含有量を 算定の根拠にした含水率が 50— 100質量%程度以下になった時点で、乾燥の状況 を観察しながら乾燥温度と反転時間を適宜変更することができる。
乾燥は、固定した時間間隔で機械的に風向反転時間を設定して行うことができる。 一方、乾燥の進行の程度を観察しながら風向反転時間、総乾燥時間を決めるという 状況判断や経験則に頼るような要素もある。なお、本発明における含水率 (質量%) は、乾燥前の中空糸膜束の質量 (a)と乾燥後の中空糸膜束の質量 (b)を測定し、 含水率 (質量%) = (a-b) Zb X 100
に従って容易に算定できる。
[0096] また、減圧下でマイクロ波を照射して乾燥する方法も、有効な手段の一つである。
該乾燥方法の乾燥条件としては、 20KPa以下の減圧下で出力 0. 1— 100KWのマ イク口波を照射することが好ましい。また、マイクロ波の周波数を 1, 000— 5, 000M Hzとし、乾燥処理中の中空糸膜束の最高到達温度を 90°C以下とすることが好ましい 。減圧という手段を採用すれば、それだけでも水分の乾燥が促進されるので、マイク 口波の照射の出力を低く抑え、照射時間も短縮できる利点があり、力 tlえて、温度の上 昇も比較的小さく抑えることができるので、総合的に、中空糸膜束の性能に与える影 響が少ない。さらに、減圧を伴う乾燥は、乾燥温度を比較的下げることができる利点 力 Sあり、特に親水性高分子の劣化分解を著しく抑えることができる点で優れている。 従って、乾燥温度は 20— 80°Cが好適であり、より好ましくは 20— 60°C、さらに好まし くは 20— 50°C、よりさらに好ましくは 30— 40°Cである。
[0097] 減圧を伴うということは、中空糸膜束の中心部および外周部に均等に減圧が作用 することを意味し、水分の蒸発が均一に促進され、中空糸膜の乾燥が均一になされ るため、乾燥の不均一に起因する中空糸膜束の障害を回避し得る。また、マイクロ波 による加熱も、中空糸膜束の中心および外周全体にほぼ等しく作用するため、均一 な加熱と減圧が相乗的に機能する結果、中空糸膜束の乾燥において特有の効果を 奏し得る。減圧度については、マイクロ波の出力、中空糸膜束の有する総水分含量 および中空糸膜束の本数に応じて適宜設定し得る。乾燥中の中空糸膜束の温度上 昇を防ぐため、減圧度は 20kPa以下とするのが好ましぐより好ましくは 15kPa以下、 さらに好ましくは lOkPa以下である。減圧度が高いと水分蒸発効率が低下するば力り でなぐ中空糸膜束を形成するポリマーの温度が上昇して劣化を生じる可能性がある 。また、減圧度は低い方が温度上昇抑制と乾燥効率を高めるためには好ましいが、 装置の密閉度を維持するために力かるコストが高くなるので 0. lkPa以上が好まし ヽ 。より好ましくは 0. 25kPa以上、さらに好ましくは 0. 4kPa以上である。
[0098] 乾燥時間を短縮するためにはマイクロ波の出力は高い方が好ましいが、例えばポリ ビュルピロリドンを含有する中空糸膜束では、過乾燥や過加熱によるポリビニルピロリ ドンの劣化、分解や、使用時の濡れ性の低下等の問題が生じる可能性があるため、 出力はあまり上げないのが好ましい。また、 0. lkW未満の出力でも中空糸膜束を乾 燥することは可能である力 乾燥時間が延びることにより処理量が低下する可能性が ある。減圧度とマイクロ波出力の組合せの最適値は、中空糸膜束の保有水分量およ び中空糸膜束の処理本数に応じて、適宜、決定し得る。
本発明における乾燥条件を満足させるための一応の目安としては、例えば、中空 糸膜束 1本当たり 50gの水分を有する中空糸膜束を 20本乾燥する場合、総水分含 量 1, 000g ( = 50g X 20本)に対し、マイクロ波の出力を 1. 5kW、減圧度を 5kPaと するのが適当である。
[0099] マイクロ波出力は 0. 1— 80kWがより好ましぐ 0. 1一 60kWがさらに好ましい。マイ クロ波の出力は、例えば、中空糸膜の総数と総含水量により決定される。しかしなが ら、いきなり高出力のマイクロ波を照射すると、短時間で乾燥が終了するものの、中空 糸膜が部分的に変性し縮れのような変形を生じることがある。例えば、中空糸膜が保 水剤のようなものを含む場合、高出力で或いはマイクロ波を用いて過激に乾燥するこ とは保水剤の飛散による消失の原因となり得る。また従来、減圧下でマイクロ波を照 射することが意図されることはな力つた。本発明において、減圧下でマイクロ波を照射 すると、水性液体の蒸発が比較的温度が低い状態においてすら活発になるため、高 出力マイクロ波および高温によるポリビュルピロリドンの劣化や中空糸膜の変形等の 中空糸膜の損傷を防ぐという二重の効果を奏し得る。
[0100] 本発明において、減圧下におけるマイクロ波照射による乾燥は、マイクロ波の出力 を一定とする一段乾燥のみならず、別の好ましい実施態様として、乾燥の進行に応じ てマイクロ波の出力を順次段階的に下げる、いわゆる多段乾燥をも包含する。そこで
、多段乾燥に関して以下に説明する。
減圧下で、し力も 30— 90°C程度の比較的低い温度で、マイクロ波による乾燥を行 う場合、中空糸膜束の乾燥の進み具合に合わせて、マイクロ波の出力を順次下げて いく多段乾燥方法は優れた方法であり得る。乾燥すべき中空糸膜の総量、工業的に 許容できる適正な乾燥時間などを考慮して、減圧の程度、温度、マイクロ波の出力お よび照射時間を決めればょ 、。
多段乾燥は、例えば、 2— 6段など任意の段数であり得るが、生産性を考慮してェ 業的に適正な段数は 2— 4段である。中空糸膜束に含まれる水分の総量が比較的多 い場合、多段乾燥は、例えば、 90°C以下の温度で 5— 20kPa程度の減圧下に、例 えば、一段目を 30— lOOkWの範囲、二段目を 10— 30kWの範囲、三段目を 0. 1— 10kWというように、マイクロ波の照射時間を加味して決めることができる。マイクロ波 の出力の較差が大きい場合、例えば、高い段では 90kW、低い段で 0. lkWのような 場合、出力を下げる段数を例えば 4一 8段と多くすればよい。本発明においては、減 圧操作をマイクロ波照射と組み合わせて用い得るため、比較的マイクロ波の出力を下 げた状態でも乾燥できる点で有利である。例えば、一段目は 10— 20kWのマイクロ 波により 10— 100分程度、二段目は 3— 10kW程度で 5— 80分程度、三段目は 0. 1 一 3kW程度で 1一 60分程度という段階で乾燥し得る。各段のマイクロ波の出力およ び照射時間は、中空糸膜に含まれる水分の総量の減り具合に連動して下げていくこ とが好ましい。この乾燥方法は、中空糸膜束に対して非常に穏ゃ力な乾燥方法であ つて、前掲の特許文献 17— 19の先行技術においては期待できないものである。
[0101] 中空糸膜束の水分総量が比較的少な!/、場合、例えば、含水率が 400質量%以下 の場合には、 12kW以下の低出力マイクロ波による照射が優れることがある。例えば 、一度に乾燥を行う中空糸膜束の水分総量が 1一 7kg程度と比較的少量の場合には 、 80°C以下、好ましくは 60°C以下の温度で、 3— lOkPa程度の減圧下、 12kW以下 、例えば 1一 5kW程度の出力のマイクロ波で 10— 240分間中空糸膜束を均一にカロ 熱した後、マイクロ波照射を停止すると同時に減圧度を 1一 3kPaに上げることにより 水分を蒸発させ得る。中空糸膜束の温度が下がり、水分が蒸発しにくくなつたら、減 圧度を 3— lOkPaに戻し、マイクロ波照射を再開し 0. 5— lkW未満のマイクロ波で 1 一 240分程度中空糸膜束を加熱し得る。中空糸膜束の温度が上がったら、マイクロ 波照射を停止し、減圧度を 0. 5— 1. 5kPaに下げて水分を蒸発させ得る。中空糸膜 束から水分が蒸発しにくくなれば、再度減圧度を 3— lOkPaに上げ、 0. 1-0. 5kW 未満のマイクロ波を照射し 1一 240分程度加熱し得る。このように、乾燥の程度に応じ てマイクロ波の照射出力および照射時間を調整することにより、乾燥を均一に行い 得る。減圧度は、各段において、一応 0. 1— 20kPaという条件を設定し得るが、中空 糸膜束の水分総量および含水率の低下の推移を考慮して、各段の減圧度を状況に 応じて適正に設定し得る。例えば、中空糸膜の水分含量の比較的多い一段目は減 圧を高め(例えば 0. 1— 5kPa)、マイクロ波の出力を高め(例えば 10— 30kW)てお き、二段目、三段目を、一段目よりやや高い圧力下でマイクロ波を照射 (例えば 5— 2 OkPaの減圧下で 0. 1— 5kWの出力)してよい。このように、各段において、減圧度を 変える操作は、減圧下でマイクロ波を照射するという本発明における特徴をさらに意 義深いものとし得る。勿論、マイクロ波照射装置内におけるマイクロ波の均一な照射 および排気には常時配慮することも重要である。
中空糸膜束の乾燥において、減圧下でマイクロ波を照射する乾燥方法と、通風向 きを交互に逆転する乾燥方法を併用することも、工程が煩雑にはなるものの、本発明 にとつて有効である。マイクロ波照射方法および通風交互逆転方法にはそれぞれ一 長一短があり、高度の品質が求められる場合には、これらを併用することができる。乾 燥の最初の段階では通風交互逆転方法を採用し、平均含水率が 20— 60質量%程 度に進行したら、次の段階では減圧下でマイクロ波を照射して乾燥することも可能で ある。この場合、マイクロ波を照射して乾燥した後、次に通風向きを交互に逆転する 乾燥方法を併用することもできる。併用の方法は、乾燥により得られる中空糸膜の品 質、特に中空糸膜の長さ方向に部分固着のないポリスルホン系選択透過性中空糸 膜束の品質を考慮して決めることができる。これらの乾燥方法を同時に行うこともでき るが、装置の煩雑さ、複雑さ、価格の高騰などの不利な点があるため実用的ではな い。しかし、本発明の乾燥方法において、遠赤外線等の有効な加熱方法を併用して も構わない。
[0103] 乾燥中の中空糸膜束の最高到達温度は、中空糸膜束を保護するフィルム側面に 不可逆性のサーモラベルを貼り付けて乾燥を行 、、乾燥後にこれを取り出して表示 を確認することによって測定することができる。この時、乾燥中の中空糸膜束の最高 到達温度は 90°C以下が好ましぐ 80°C以下に抑えることがより好ましい。さらに好ま しくは 70°C以下である。最高到達温度が高いと、膜構造が変化しやすくなり性能低 下や酸ィ匕劣化を引き起こす場合がある。特にポリビニルピロリドンを含有する中空糸 膜束では、熱によるポリビニルピロリドンの分解等が起こりやすいので、温度上昇をで きるだけ防ぐことが重要である。温度上昇を防ぐためには、減圧度とマイクロ波出力の 最適化と断続的に照射することが有効である。また、乾燥温度は低い方が好ましいが 、減圧度の維持コスト、乾燥時間短縮の面から 30°C以上が好ましい。
[0104] マイクロ波の照射周波数は、中空糸膜束への照射斑の抑制や、細孔内の水を細孔 より押出す効果などを考慮すると、 1, 000— 5, OOOMHzが好ましい。より好ましくは 1, 500— 4, OOOMHz,さらに好ましくは 2, 000— 3, OOOMHzである。
該マイクロ波照射による乾燥においては、中空糸膜束を均一に加熱し乾燥すること が重要である。上記したマイクロ波乾燥においては、マイクロ波照射時に付随発生す る反射波により不均一加熱が生じるため、該反射波による不均一加熱を低減する手 段を講じることが重要である。該方策は限定されないが、例えば、特開 2000-3403 56号公報に開示されているように、オーブン中に反射板を設けて反射波を反射させ 加熱の均一化を行う方法は、好まし 、実施態様として採用し得る。
[0105] 以上、本発明の主要な構成および本発明を実施するための重要なポイントについ て記述した。次に、本発明の分離膜を得るための紡糸および後処理等について、具 体例を挙げてより詳細に説明する。
[0106] 製膜溶液としては、ポリマーと溶媒、並びに必要に応じて非溶媒の各成分を用いる 。中空内液としては、製膜溶液に用いたのと同じ溶媒と水を含んでなる混合液を用い るのが好ましいが、 目的とする膜性能 '膜特性を得るために適宜非溶媒を添加しても よい。ポリスルホン系高分子としては、ポリスルホン、ポリエーテルスルホンは勿論のこ と、これらのポリマーの二種以上を混合して使用することもできる。溶媒としては、ポリ スルホン系高分子とポリビュルピロリドンを共に溶解し得る溶媒を用いるのが好まし ヽ 。具体的には、例えばジメチルァセトアミド、ジメチルスルホキシド、 N—メチルー 2—ピ 口リドン、ジメチルホルムアミドなどが挙げられる。ジメチルァセトアミド、 N—メチルー 2— ピロリドンがより好ましい。本発明において非溶媒とは、ある程度任意の割合で溶媒と 混合できるがポリスルホン系高分子を溶解する能力のないものをいう。例えば、水、 エチレングリコーノレ、トリエチレングリコール、ポリエチレングリコール、プロピレングリコ ール、ポリプロピレングリコール、 1, 3—ブチレングリコール、グリセリン、ジエチレング リコールモノェチルエーテル、ジエチレングリコールモノブチルエーテルなどが好まし い。作業安全性、入手のしゃすさ、コストの面から、水、トリエチレングリコール、ポリエ チレングリコールがより好ましい。
[0107] 製膜溶液は、室温一 130°Cに加温されたチューブインオリフィス型の二重管ノズル より吐出され、所謂乾湿式紡糸法によって膜が形成される。ノズルから、製膜溶液と 該製膜溶液を凝固させるための中空内液とが同時に空中に押し出され、外気と遮断 された空中を通過後、ノズル直下に設けた凝固浴槽へ導かれ、ミクロ相分離により膜 が形成される。得られた中空糸膜を、引き続き水洗槽を通すことにより、過剰の溶媒' 非溶媒'ポリビニルピロリドンが膜から除去される。一定本数を総に卷きとり、中空糸 膜束を保護するフィルムに挿入した後、一定長さに切断する。更に遠心分離により内 液を除去した後、再度洗浄を行い、過剰のポリビニルピロリドン、劣化分解物の除去 および膜中の含有量の制御を行う。得られた中空糸膜は、低温で乾燥をおこなう。
[0108] ノズルの製膜溶液吐出孔幅は、前記したように、 100 μ m以下であることが好ま ヽ 。より好ましくは 80 m以下、さらに好ましくは 60 m以下である。該吐出孔幅は小さ い方が膜厚を薄くできるため好ましいが、小さすぎるとノズル詰まりを起こしやすくなる とか、洗浄しに《なるといつた問題が発生することがある。従って、吐出孔幅は 20 m以上が好ましぐ 30 m以上がより好ましい。また、前述のごとぐ製膜溶液流路の 吐出外径 (D)とランド長 (L)との比である L/D値は 2— 6が好ま ヽ。該対応を行うこ とにより、中空糸膜内表面のポリビニルピロリドンの配向が好ましい範囲となり得る。
[0109] 本発明においては、上記したように、ポリビニルピロリドンの溶出と内毒素であるェン ドトキシンの血液側への浸入を阻止し、また中空糸膜を乾燥する折の中空糸膜同士 の固着を防止する等の作用をバランスするため、中空糸膜の外表面におけるポリビ -ルピロリドンの含有量を特定範囲にすることが重要である。これを実現するために、 例えば、ポリスルホン系高分子に対するポリビニルピロリドンの構成割合を特定の範 囲〖こすること、中空糸膜の製膜条件を最適化すること等を採用し得る。また、製膜さ れた中空糸膜を洗浄することも有効な方法である。製膜条件としては、延伸条件、凝 固浴の温度、凝固液中の溶媒と非溶媒との組成比等の最適化が、また、洗浄方法と しては、温水洗浄、アルコール洗浄および遠心洗浄等が有効である。
[0110] 本発明の中空糸膜の製造において、完全に中空糸膜構造が固定される以前に実 質的に延伸をかけないことが好ましい。実質的に延伸をかけないとは、ノズルから吐 出された製膜溶液に過度の弛みや緊張を生じさせな 、ことを意味し、このためには、 例えば紡糸工程中のローラー速度をコントロールする。吐出線速度 Z凝固浴第一口 一ラー速度の比(ドラフト比)は 0. 7-2. 0が好ましい範囲である。ドラフト比が低いと 、走行する中空糸膜に弛みが生じ生産性の低下に繋がることがあるので、ドラフト比 は 0. 8以上がより好ましぐ 0. 9以上がさらに好ましぐ 0. 95以上がよりさらに好まし い。ドラフト比が高すぎる場合は、中空糸膜の緻密層が裂けるなど膜構造が破壊され ることがある。そのため、ドラフト比は、より好ましくは 1. 9以下、さらに好ましくは 1. 8 以下である。ドラフト比をこの範囲に調整することにより細孔の変形や破壊を防ぐこと ができ、膜孔への血中タンパクの目詰まりを防ぎ経時的な性能安定性やシャープな 分画特性を発現することが可能となる。また、前述の内部液の液温の最適化との相 乗効果により、内表面の表層に中空糸膜の長手方向に連続した筋状の凹凸が形成 され、 a 1マイクログロブリンの吸着量の増大に繋げることが可能となる。
[0111] 水洗浴を通過した中空糸膜は、湿潤状態のまま総に巻き取り、 3, 000— 20, 000 本の束にする。次いで、得られた中空糸膜を洗浄し、過剰の溶媒、ポリビニルピロリド ンを除去する。中空糸膜の洗浄方法としては、本発明では、 70— 130°Cの熱水、ま たは室温一 50°Cの 10— 40vol%エタノールまたはイソプロパノール水溶液に中空糸 膜を浸漬して処理するのが好まし 、。
(1)熱水洗浄の場合は、中空糸膜を過剰の RO水に浸漬し 70— 90°Cで 15— 60分 処理した後、中空糸膜を取り出し遠心脱水を行う。この操作を、 RO水を更新しながら 3、 4回繰り返して洗浄処理を行う。
(2)加圧容器内の過剰の RO水に浸漬した中空糸膜を 121°Cで 2時間程度処理する 方法を採用することもできる。
(3)エタノールまたはイソプロパノール水溶液を使用する場合も、 (1)と同様の操作を 繰り返すのが好ましい。
(4)遠心洗浄器に中空糸膜を放射状に配列し、 40°C— 90°Cの洗浄水を回転中心 力もシャワー状に吹きつけながら 30分一 5時間遠心洗浄することも好ましい洗浄方法 である。
前記洗浄方法は 2つ以上組み合わせて行ってもょ 、。 V、ずれの方法にぉ 、ても、 処理温度が低すぎる場合には、洗浄回数を増やす等が必要になりコストアップに繋 力 Sることがある。また、処理温度が高すぎるとポリビニルピロリドンの分解が加速し、逆 に洗浄効率が低下することがある。上記洗浄を行うことにより、外表面におけるポリビ -ルピロリドンの含有量が適正化され、固着の抑制や溶出物量の低減が可能となる。 本発明においては、中空糸膜を乾燥状態で保管する場合は、過酸化水素の発生 を抑制するために、 20°C以下の温度で保存するのが好ましい。また、脱酸素された 状態で密封包装することも好ましい実施態様である。例えば、酸素ガスおよび水蒸気 をほぼ実質的に遮断できるアルミ箔を構成層とする、外層がポリエステルフィルム、 中間層がアルミ箔、内層がポリエチレンフィルムよりなる不透過性とヒートシール性を 兼ね備えた包装袋に、不活性ガス置換し或!ヽは脱酸素剤の存在下で封入する方法 が挙げられる。この場合、中空糸膜の含水率が 1質量%—飽和含水率の状態で保存 するのが好ましい。より好ましくは 1一 10質量%、さらに好ましくは 1一 7質量%である 。また、中空糸膜の含水率が 1質量%未満の場合は、包装袋内雰囲気の室温にお ける相対湿度が 50%RH以上の状態で保存するか、または水分放出型の脱酸素剤 を同梱するのが好ましい。 [0113] 本発明においては、 γ線や電子線照射により滅菌する場合は、ポリビニルピロリド ンの架橋反応を抑制するために、中空糸膜束を乾燥状態にして滅菌を行うのが好ま しい。該方法においては、 γ線や電子線照射によるポリビニルピロリドンの劣化に基 づく過酸ィ匕水素の生成を抑制するために、上記の保存方法と同様の方法を採用する ことが好ましい。
[0114] 本発明の選択透過性分離膜および血液浄化器は、有用タンパク質であるアルブミ ンの漏れは最小限に抑えつつ、その他の低分子タンパクを積極的に除去し得る。該 血液浄化器に用いられる選択透過性分離膜のアルブミンの漏出量は 3gZ3L以下 であることが好ましい。一方、 α 1マイクログロブリンのクリアランスは、 15mlZm2以上 であることが好ましい。 a 1マイクログロブリンの除去率が低下すると、透析合併症の 予防効果や痒み ·痛みと 、つた臨床症状の改善効果が得られな 、ことがある。該ァ ルブミンの漏れ防止と α 1マイクログロブリンの除去は、両者の分子量が近いことから 二律背反現象となり得る。従来公知の技術によれば、アルブミンの漏れを上記範囲 にすると a 1マイクログロブリンの除去率が低くなつた。一方、 a 1マイクログロブリンの 除去率を上記範囲内にするとアルブミンの漏出量を 3gZ3L以下にすることが達成で きな力つた。本発明の最も重要な特徴は、従来公知の技術では達成することのでき なかった、アルブミンの漏れと α 1マイクログロブリンの除去の両作用を同時に満足さ せることに成功したことにある。本発明においては、 1マイクログロブリンの除去率を 高める方策として、 a 1マイクログロブリンの透過率を高める手段と共に a 1マイクログ ロブリンを選択透過性分離膜表面に吸着させる手段を付加し、両者の合計の効果と して高 、除去率を実現したことが、上記の二律背反現象を打破したポイントの一つで ある。
[0115] さらに、本発明の選択透過性分離膜は、上記特徴に加え、下記のような、血液浄化 器用に用いる場合に具備すべき数多くの特性をも満足している。
(1)ポリビニルピロリドンの溶出量と血液適合性のバランス
(2)エンドトキシンの透過性の抑制
(3)残血性の低減
(4)プライミング性の低減 (5)選択透過性分離膜同士の固着性の低減によるモジュール組み立て性の向上
(6)バースト圧の改善による信頼性の向上
(7)選択透過性分離膜の長期保存安定性の確保
従って、本発明の選択透過性分離膜は、血液浄化器用として極めて高い品質を具 備しており、血液浄化器用へ好適に適用し得る。
実施例
[0116] 以下、本発明の有効性について実施例を挙げて説明する力 本発明はこれらに限 定されるものではない。なお、以下の実施例における物性の評価方法は以下の通り である。
[0117] 1.アルブミンの篩い係数
中空糸膜束の場合は、モジュールケースに装填後、両端をウレタン榭脂により封止 し、切削により中空部を開口した中空糸膜モジュールを用いて測定を実施した。サン プノレは γ線滅菌されて 、てもされて 、なくてもどちらでもよ!/、。
( 1 %牛血漿アルブミン溶液の調製)
Α液;純水 3Lに対して Na HPO - 12H 053. 72gと NaC126. 30gを溶解した。
2 4 2
B液;純水 3Lに対して KH PO 20. 42gと NaC126. 30gを溶解した。
2 4
A液に B液を添カ卩し、 pH=7.5± 0.1にあわせた。このリン酸緩衝液 3Lに牛血漿アル ブミン (和光純薬社製) 30gを溶解させた。溶解後、再度 IN- NaOHを用いて pH = 7.5 ±0.1に調整した。
(モジュールの準備)
モジュールの透析液側流路に純水を 500mLZminで 5分間通液し、次!、で血液 側流路に 200mLZminで 5分間通液した。次 、でモジュールの透析液側流路に先 のリン酸緩衝液を 500mLZminで 5分間通液し、次!、で血液側流路に 200mLZmi nで 5分間通液した。その後、血液側から透析液側にろ過を施しながら 3分間通液し た。
(測定)
回路を血液側に接続し、透析液側のプライミング液 (リン酸緩衝液)を廃棄した。モ ジュールを 37°Cの恒温槽中に置き、透析液側を封止し、血液側を 200mLZminで 1分間通液し、血液側に残っていたプライミング液を除去した。次いで透析液入り口 部に回路を接続し、血液側の流量を 200mLZmin、透析液入り口部につないだ濾 過回路の流量を 30mLZminに設定し、血液側透過液、濾液ともに試験液に戻す循 環系で試験を実施した。循環開始から 15分後の試験液、血液側透過液、濾液をそ れぞれ採取した。この採取したサンプルを純水で 10倍に希釈し (濾液は希釈なしが 好ましい)、 280nmの波長で分光器により吸光度を測定した。アルブミンの篩係数は 、それぞれの吸光度から下式を用いて算出した。
SCalb = 2 X Cf/ (Cb + Co)
ここで、 Cfは濾液の吸光度、 Cbは試験液の吸光度、 Coは血液側透過液の吸光度を 表し、希釈した場合にはそれぞれの希釈倍率を乗じるものとする。
[0118] 2. α 1マイクログロブリンのクリアランス
ヒト at 1マイクログロブリン(カタログ # 133007 コスモ'バイオ社)を牛血液(タエン 酸ナトリウム添加、へマトクリット 30%、総蛋白質濃度 6— 7gZdlに調整)に溶解し、 1 OOmLZLの濃度になるように調製した。この牛血液を 37°Cに加温し、内径基準で 1 . Om2のモジュールの血液側(中空糸内部)へ小型ポンプで lOmlZminで送り、透 析液側は 37°Cに加温した透析液を同様に 25mlZminで血液側と向流方向に流し た。また、血液側出口流量を lOmlZminに維持した。流量設定をした後、 30分後に 血液側入口、出口、透析液側出口力もサンプリングを行った。ィライザ (ELISA)法に より a 1MGの濃度を測定して、次式によりクリアランス CLを算出した。
CL = (Cbi-Cbout) /Cbi X Qb
ここで、 CL :クリアランス(mlZmin)
Cbi :血液側入口濃度
Cbout :血液側出口濃度
Qb:血揿流量 (ml/ min)
[0119] 3. α 1マイクログロブリン吸着量測定
中空糸膜束の場合は、モジュールケースに装填後、両端をウレタン榭脂により封止 し、切削により両端中空部を開口した中空糸膜モジュールを用いて測定を実施した。 サンプルは γ線滅菌されていてもされていなくてもどちらでもよい。 (lOOmg/L a IMG溶液の調製)
A液;純水 3Lに Na HPO · 12Η 053. 72gと NaC126. 30gを溶解した。
2 4 2
B液;純水 に KH PO 20. 42gと NaC126. 30gを溶解した。
2 4
A液に B液を添カ卩し、 pH=7.5 ± 0.1にあわせた。このリン酸緩衝液 3Lに牛血漿アル ブミン (和光純薬社製) 300mgを溶解させた。溶解後、再度 IN- NaOHを用いて pH = 7.5 ±0.1に調製した。
(モジュールの準備)
モジュールの透析液側流路に純水を 500mL/minで 5分間通液し、次!、で血液側 流路に 200mL/minで 5分間通液した。次!、でモジュールの透析液側流路に先のリン 酸緩衝液を 500mL/minで 5分間通液し、次!、で血液側流路に 200mL/minで 5分間 通液した。その後、血液側カゝら透析液側にろ過を施しながら 3分間通液した。
(測定)
測定液回路を血液側に接続し、透析液側のプライミング液 (リン酸緩衝液)を廃棄し た。モジュールを 37°Cの恒温槽中に置き、透析液側を封止し、血液側を 200mL/min で 1分間通液し、血液側に残っていたプライミング液を除去した。次いで透析液入り 口部に回路を接続し、血液側の流量を 200mL/min、透析液入り口部につないだ濾 過回路の流量を 30mL/minに設定し、血液側透過液、濾液ともに試験液に戻す循環 系で試験を実施した。循環開始時と 15分後の試験液をそれぞれ採取した。この採取 したサンプルをィライザ法により濃度を決定し、吸着量を求めた。
a 1MGの吸着量(mg) =CbO X試験液量 Cbl5 X試験液量
ここで CbO、 Cbl5は、それぞれ循環開始時および 15分後の試験液の濃度を表し、希 釈した場合にはそれぞれの希釈倍率を乗じるものとする。
4.透水性
透析器の血液出口部回路 (圧力測定点よりも出口側)を鉗子により流れを止め、全 ろ過とした。 37°Cに保温した純水を加圧タンクに入れ、レギュレーターにより圧力を 制御しながら、 37°C高温槽で保温した透析器へ純水を送り、透析液側から流出した 濾液をメスシリンダーで測定した。膜間圧力差 (TMP)は
TMP= (Pi+Po) /2 とする。ここで Piは透析器入り口側圧力、 Poは透析器出口側圧力である。 TMPを 4 点変化させて濾過流量を測定し、それらの関係の傾きから透水性 (mLZhrZmmH g)を算出した。このとき TMPと濾過流量の相関係数は 0. 999以上でなくてはならな い。また回路による圧力損失誤差を少なくするために、 TMPは lOOmmHg以下の範 囲で測定した。中空糸膜の透水性は、膜面積と透析器の透水性力も算出した。
UFR (H) = UFR (D) /A
ここで UFR(H)は中空糸膜の透水性(mLZm2ZhrZmmHg)、 UFR (D)は透析 器の透水性 (mLZhrZmmHg)、 Aは透析器の膜面積 (m2)である。
[0121] 5.膜面積の計算
透析器の膜面積は中空糸の内径基準として求めた。
Α=η Χ π X d X L
ここで、 nは透析器内の中空糸本数、 πは円周率、 dは中空糸の内径 (m)、 Lは透析 器内の中空糸の有効長 (m)である。
[0122] 6.バースト圧
約 10, 000本の中空糸膜を装填したモジュールの透析液側を水で満たし、栓をし た。血液側から室温で乾燥空気または窒素を送り込み、 1分間に 0. 5MPaの割合で 加圧した。圧力を上昇させ、中空糸膜が加圧空気によって破裂 (バースト)し、透析液 側に満たした液に気泡が発生した時の空気圧をバースト圧とした。
[0123] 7.偏肉度
中空糸膜 100本の断面を 200倍の投影機で観察した。一視野中で最も膜厚差のあ る一本の糸断面にっ 、て、最も厚 、部分と最も薄 、部分の厚さを測定した。
偏肉度 =最薄部 Z最厚部
偏肉度 = 1で、膜厚が完璧に均一となる。
[0124] 8.血液リークテスト
クェン酸を添カ卩し、凝固を抑制した 37°Cの牛血液を、血液浄化器へ 200mLZmin で送液し、 20mLZminの割合で血液を濾過した。このとき、ろ液は血液に戻し、循 環系とした。 60分後に血液浄化器のろ液を採取し、赤血球のリークに起因する赤色 を目視で観察した。この血液リーク試験を、各実施例、比較例ともに 30本の血液浄 ィ匕器を用いて行 、、血液リークしたモジュール数を調べた。
[0125] 9.中空糸膜の内外表面の最表層における親水性高分子の含有量
ポリビニルピロリドン (PVP)などの親水性高分子の含有量は、 X線光電子分光法( ESCA法)で求めた。
中空糸膜 1本を試料台に貼り付け、 ESCAで測定を行った。測定条件は次に示す 通りである。
測定装置:アルバック'フアイ ESCA5800
励起 X線: MgKa線
X線出力: 14kV, 25mA
光電子脱出角度: 45°
分析径: 400 πιφ
パスエネルギー: 29.35eV
分解能: 0.125eV/step
真空度:約 10— 7Pa以下
窒素の測定値 (N)と硫黄の測定値 (S)から、次式により表面での PVP含有量を算出 した。
< PVP添加 PES (ポリエーテルスルホン)膜の場合〉
PVP含有量 (Hpvp)[%]
= 100X (NX 111) / (NX 111 + SX 232)
< PVP添加 PSf (ポリスルホン)膜の場合 >
PVP含有量 (Hpvp)[%]
= 100X (NX111)/(NX111 + SX442)
[0126] 10.中空糸膜全体での PVP含有量の測定方法
サンプルを、真空乾燥器を用いて、 80°Cで 48時間乾燥させ、その lOmgを CHNコ ーダー (ャナコ分析工業社製、 MT - 6型)で分析し、窒素含有量カゝら PVPの含有量 を下記式で計算し求めた。
PVPの含有量 (質量%) =窒素含有量 (質量%) X111/14
[0127] 11.中空糸膜の血液接触面(内表面)の表面近傍層における PVPの含有量 測定は、フーリエ変換赤外分光光度計 (SPECTRA TECH社製 IR s/SIRM) を用い、 ATR (Attenuated Total Reflection)法に従って行った。上記 9と同様の方法 により準備した測定サンプルを使用し、内部反射エレメントとしてダイヤモンド 45° を 使用し、赤外吸収スペクトルを測定した。
赤外吸収スペクトルにお 、て、 1675cm— 1付近に存在する PVPの C = Oに由来す るピークの吸収強度 Apと、 1580cm— 1付近に存在するポリスルホン系高分子に由来 するピークの吸収強度 Asの比 ApZAsを求めた。 ATR法においては、吸収強度が 測定波数に依存するため、これを補正するため、ポリスルホン系高分子のピーク位置
V sおよび PVPのピーク位置 υ ρ (波数)の比 υ ρΖ υ sを、実測値にかけた。次式に 従 、、血液接触面の近傍層における親水性高分子 (例えば PVP)の含有量を算出し た。
表面近傍層における親水性高分子の含有量 (質量%) = Cav X ApZAs X υ ρΖ
V s
ただし、 Cavは前記 10で求めた親水性高分子 (例えば PVP)の含有量 (質量%)であ る。
[0128] 12. 中空糸膜の外表面の開孔率
中空糸膜の外表面を 10, 000倍の電子顕微鏡で観察し、写真 (SEM写真)を撮影 した。その画像を画像解析処理ソフトで処理して、中空糸膜外表面の開孔率を求め た。画像解析処理ソフトとして、例えば Image Pro Plus (Media Cybernetics, Inc. )を使用して、測定を行った。孔部と閉塞部が識別されるように、取り込んだ画像 の強調'フィルタ操作を実施した。その後、孔部をカウントした。その際、孔内部に下 層のポリマー鎖が見て取れる場合には、下層のポリマー鎖を無視してカウントした。 測定範囲の面積 (A)、および測定範囲内の孔の面積の累計 (B)を求め、開孔率 (% ) = B/A X 100に従い、開孔率を求めた。これを 10視野実施して、その平均を求め た。初期操作としてスケール設定を実施するものとし、また、カウント時には測定範囲 の境界上の孔は除外しないものとした。
[0129] 13. 中空糸膜外表面の開孔部の平均孔面積
前項と同様に孔部をカウントし、各孔の面積を求めた。また、カウント時には測定範 囲の境界上の孔は除外した。これを 10視野実施して、すべての孔面積の平均を求 めた。
[0130] 14. 中空糸膜の膜厚測定
倍率 200倍の投影機を用いて中空糸膜の断面を投影し、各視野内で最大、最小、 中程度の大きさの中空糸の内径 (A)および外径 (B)を測定した。各中空糸の膜厚を 次式に従って求め、
膜厚 = (B— A) Z2
1視野につき 5個の中空糸の膜厚の平均を算出した。
[0131] 15.スキン層厚みの測定
中空糸膜のスキン層の厚みは、以下のようにして求めた。すなわち、中空糸膜の断 面を 3000倍の倍率で走査型電子顕微鏡 (SEM)にて観察を行い、明らかに孔が観 察されない部分をスキン層と定義し、その厚みを測定した。
[0132] 16. 中空糸膜の固着性
中空糸膜約 10, 000本を束ね、 30— 35mm φのモジュールケースに装填し、 2液 系ポリウレタン榭脂で封止してモジュールを作成した。各水準について 30本ずつリー クテストを実施し、ウレタン榭脂封止不良となったモジュールの本数をカウントした。
[0133] 17.エンドトキシン透過性
エンドトキシン濃度 200EUZLの透析液をモジュールの透析液入り口より流速 500 mlZminで送液し、中空糸膜の外側から内側へエンドトキシンを含有する透析液を 濾過速度 15mlZminで 2時間濾過を行った。中空糸膜の外側から中空糸膜の内側 へ濾過された透析液を貯留し、該貯留液のエンドトキシン濃度を測定した。エンドトキ シン濃度は、リムルス ESIIテストヮコー(和光純薬工業社製)を用い、取り説の方法( ゲル化転倒法)に従って分析した。
[0134] 18. 中空糸膜の残血性
膜面積 1. 5m2のモジュールの透析液側を生理食塩水で満たし、健康人から採取し たへパリンカ卩血 200mlを血液バッグに詰めた。血液バッグとモジュールをチューブで 連結し、 37°Cで血液流速 100mlZmin、 1時間循環した。循環開始前と循環開始 6 0分後の血液をサンプリングし、白血球数、血小板数を測定した。測定した値はへマ トクリットの値で補正した。
補正値 =測定値 (60分) Xへマトクリット(0分) Zへマトクリット(60分)
補正値から、白血球と血小板の変化率を算出した。
変化率 =補正値 (60分) Z循環開始前値 X 100
60分間の循環を終了後、生理食塩水で返血し、残血している糸の本数を数え、以下 の基準で判定した。
14本以下:〇
15— 50本:△
51本以上: X
[0135] 19.プライミング性
透析液側ポートに蓋をした状態で、血液側入口ポートから 200mL/minで注射用蒸 留水を流した。出口側ポートに注射用蒸留水が到達した時点から 10秒間、カンシで 5 回モジュールケースを軽くたた 、て脱泡した後、 1分間に気泡が通過する個数を目視 にて確認した。以下の基準で判定した。
10個 Z分以下:〇
11一 30個 Z分:△
30個以上 Z分: X
[0136] 20. PVP不溶分量の測定
モジュールに液体が充填されたモジュールの場合は、まず充填液を抜き、次に、透 析液側流路に純水を 500mLZminで 5分間流した後、血液側流路に同じように純 水を 200mLZminで 5分間流した。最後に、血液側から透析液側へ膜を透過するよ うに 200mLZminの純水を通液し、洗浄処理を終了した。得られたモジュールより中 空糸膜束を取り出し、フリーズドライしたものを不溶成分測定用サンプルとした。乾燥 中空糸膜束モジュールの場合も、同様の洗浄処理を行 、測定用サンプルとした。 本発明におけるポリビニルピロリドンの架橋による不溶ィ匕は、架橋後の膜における ジメチルホルムアミドに対する溶解性で判定される。すなわち、架橋後の膜 10gを取 り、 100mlのジメチルホルムアミドに溶解した溶液を、遠心分離機によって 1500rpm 、 10分間分離を行った後、上澄みを除去した。残った不溶物に、再度、 100mlのジ メチルホルムアミドを添加して、撹拌をおこなった後、同条件で遠心分離操作を行い
、上澄みを除去した。再び、 100mlのジメチルホルムアミドを添カ卩して撹拌し、同様の 遠心分離操作を行った後、上澄みを除去した。残った固形物を蒸発乾固して、その 量から不溶物の含有率を求めた。
[0137] 21.過酸化水素の溶出量
透析型人工腎臓装置製造基準に定められた方法に従って抽出液を得、該抽出液 中の過酸ィ匕水素を比色法により定量した。定量は、中空糸膜を長手方向に 2. 7cm ずつ 10個に等分し、各々の部位について行った。
乾燥中空糸膜の場合は、中空糸膜束 lgに純水 100mlを加え、 70°Cで 1時間抽出 した。得られた抽出液 2. 6mlに、塩化アンモ-ゥム緩衝液 (pH8. 6) 0. 2mlとモル 比で当量混合した TiClの塩化水素溶液と 4一(2—ピリジルァゾ)レゾルシノールの Na
4
塩水溶液との混合液を 0. 4mMに調製した発色試薬 0. 2mlをカ卩え、 50°Cで 5分間 加温後、室温に冷却し 508nmの吸光度を測定した。標品を用いて同様に測定して 求めた検量線によって、過酸化水素の溶出量を定量した。
湿潤中空糸膜モジュールの場合は、モジュールの透析液側流路に生理食塩水を 5 OOmlZminで 5分間通液し、次いで血液側流路に 200mlZminで通液した。その 後、血液側カゝら透析液側へ 200mlZminで濾過を施しながら 3分間通液した後に、 フリーズドライをして乾燥膜を得た。該乾燥膜を用いて上記定量を行った。
[0138] 22.ポリビュルピロリドン(PVP)の溶出量
上記方法で抽出した抽出液 2. 5mlに、 0. 2molのクェン酸水溶液 1. 25ml, 0. 0 06規定のヨウ素水溶液 0. 5mlをカ卩えてよく混合し、室温で 10分間放置した後に、 4 70nmでの吸光度を測定した。定量は、標品のポリビニルピロリドンを用いて上記方 法に従 、求めた検量線によって行った。
[0139] 23.アルブミン漏出量
クェン酸を添加し、凝固を抑制した 37°Cの牛血液を用いた。牛血漿で希釈し、へマ トクリットを 30%に調製した。該血液を、血液浄化器へ 200mLZminで送液し、 20m LZminの割合で血液をろ過した。このとき、ろ液は血液に戻し、循環系とした。溶血 を防止する目的で、血液浄化器は予め生理食塩水で十分に置換しておいた。循環 開始から 5分後に、所定のろ過流量を得ていることを確認し、開始 15分後から 15分 おきに、ろ液を約 lccずつサンプリングした。また、開始後 15分、 60分、 120分時に、 血液浄化器入り口側と出口側の血液をサンプリングし、遠心分離により血漿を得て、 これを試験液とした。採取したサンプルを、 AZG B-テストヮコー(和光純薬工業社 製)を用いて、ブロムタレゾールグリーン (BCG法)により、ろ液及び血液'血漿中のァ ルブミン濃度を算出した。その濃度を基に、アルブミンの篩係数を次式により求めた。
SCalb = 2水 CfZ (Ci+Co)
ここで Cfはろ液中のアルブミン濃度、 Ciは血液浄化器入り口での血液'血漿中のァ ルブミン濃度、 Coは血液浄化器出口での血液'血漿中のアルブミン濃度をそれぞれ 示す。この式に 15分及び 120分時のデータを代入することにより、 15分及び 120分 時のアルブミンの篩係数を得た。
また、 3L除水換算のアルブミンリーク量は、次のように求めた。すなわち、 30分、 4 5分、 60分、 75分、 90分、 105分、 120分時にサンプリングし、同様に A/G B—テ ストヮコ一の BCG法により、ろ液中のアルブミン濃度を算出した。これらのデータを用 い、縦軸にアルブミンリーク (TAL[mgZdL])、横軸に In (時間 [min]) (InT)をとり、 表計算ソフト(例えば、マイクロソフト社製 EXCEL— ΧΡ)を用いて一次近似によりフィ ッティングカーブを描き、その関係式、 TAL = a X lnT+bにおける定数 aおよび bを 求めた (相関係数は 0. 95以上が好ましぐ 0. 97以上がさらに好ましぐ 0. 99以上 力 り好ましい)。この式、 TAL=a X lnT+bを用いて、丁=0から丁= 240まで積分し 、これを 240[min]で除することにより、平均のアルブミンリーク濃度 [mgZdL]を算 出した。求めた平均のアルブミンリーク濃度に 30dLを乗ずることにより、本発明にお ける 3L除水換算でのアルブミンリーク量を得ることができた。
本発明における選択透過性分離膜の含水率は、以下の式により計算した。
含水率(質量%) = 100 X (Ww-Wd)/Wd
ここで、 Wwは選択透過性分離膜の重量 (g)、 Wdは 120°Cの乾熱オーブンで 2時間乾 燥後(絶乾後)の選択透過性分離膜の重量 (g)である。ここで、 Wwを 1一 2gの範囲内 とすることで、 2時間後に絶乾状態 (これ以上重量変化がない状態)にすることができ る。 [0141] (実施例 1)
ポリエーテルスルホン(住化ケムテックス社製、スミカエタセル 5200P) 18質量0 /0、 ポリビュルピロリドン(BASF社製コリドン K 90) 3質量0 /0、ジメチルァセトアミド(DM Ac) 27質量%を 2軸のスクリュータイプの混練機で混練した。得られた混練物を、 D MAc47. 5質量%および水 4. 5質量%を仕込んだ攪拌式の溶解タンクへ投入し、 3 時間攪拌して溶解した。混練および溶解は、溶液温度が 30°C以上に上がらないよう に、冷却しながら実施した。次いで、真空ポンプを用いて溶解タンク内を 500mmH gまで減圧した後、溶媒等が蒸発して製膜溶液組成が変化しないように、直ぐに溶解 タンクを密閉し、 15分間放置した。この操作を 3回繰り返して、製膜溶液の脱泡を行 つた。なお、製膜溶液中のポリスルホン系高分子に対するポリビニルピロリドンの比率 は 16. 7質量%、ポリビュルピロリドンの過酸化水素含有量は lOOppmであった。原 料供給系の供給タンクや前記の溶解タンク内は、窒素ガスで置換した。このときの溶 解タンク内の酸素濃度は 0. 06%であった。また、溶解時のフルード数および撹拌レ イノルズ数は、それぞれ 1. 1および 120であった。得られた製膜溶液を 15 /z m 10 /z mの 2段の焼結フィルターに順に通した。その後、 70°Cに加温したチューブインォ リフィスノズルから吐出量 2. 3ccZminで吐出し、同時に内部液として予め— 700mm Hgで 30分間脱気処理した 25°Cの 46質量%DMAc水溶液を吐出した。吐出物を、 紡糸管により外気と遮断された 700mmの乾式部(エアギャップ部)を通過させた後、 70°Cの 20質量%DMAc水溶液中で凝固させ、湿潤状態のまま総に捲き上げた。ノ ズノレスリット幅は平均 60 mであり、最大 61 μ m、最 /J、59 /z m、スリット幅の最大値、 最小値の比は 1. 03であった。このときのノズル内の圧力損失は 2. 9 X 108Pa' sであ り、製膜溶液流路での剪断応力は 1. 5 X 106s— 1、流路通過時間は 1. 3 X 10— 3secと 計算された。ドラフト比は 1. 3であった。紡糸工程中の糸道変更のためのローラーと しては、表面が鏡面加工されたものを使用し、固定ガイドとしては、表面が梨地処理 されたものを使用した。
[0142] 該中空糸膜約 10, 000本の束の周りにポリエチレン製のフィルムを卷きつけた後、 30°Cの 40vol%イソプロパノール水溶液で 30分 X 2回浸漬洗浄した。洗浄処理後の 中空糸膜束を RO水で軽く濯いで、イソプロパノールを水に置換した後、遠心脱液器 で 600rpm X 5min間脱液した。得られた湿潤中空糸膜束を乾燥装置内の回転テー ブル上に 12本 X 2段にセットし、以下の条件で乾燥処理を行った。 7kPaの減圧下、 1. 5kWの出力で 30分間中空糸膜束を加熱した後、マイクロ波照射を停止すると同 時に、減圧度を 1. 5kPaに下げて 3分間維持した。つづいて減圧度を 7kPaに戻すと 同時に、マイクロ波を照射し 0. 5kWの出力で 10分間中空糸膜束を加熱した後、マイ クロ波を切断し、減圧度を下げ 0. 7kPaを 3分間維持した。さらに減圧度を 7kPaに戻 し、 0. 2kWの出力で 8分間マイクロ波の照射を行い、中空糸膜束を加熱した。マイク 口波切断後、減圧度を 0. 5kPaに下げ 5分間維持することにより中空糸膜束のコンデ イショユングを行い、乾燥を終了した。この際の中空糸膜束表面の最高到達温度は 6 5°Cであった。乾燥前の中空糸膜束の含水率は 310質量%、 1段目終了後の中空糸 膜束の含水率は 38質量%、 2段目終了後の中空糸膜束の含水率は 14質量%、 3段 目終了後の中空糸膜束の含水率は 2. 3質量%であった。得られた中空糸膜の内径 は 198 m、膜厚は 27 μ m、スキン層厚みは 0. 9 μ mであった。得られた中空糸膜の 特性値を表 1に示した。
[0143] 得られた中空糸膜を長手方向に 2. 7cmずつ 10個に等分し、各々の部位から乾燥 状態の中空糸膜 lgをはかりとり、過酸化水素溶出量を定量した。該過酸化水素溶出 量は、全部位において低レベルで安定していた。定量値を表 2に示した。
[0144] 上記方法で調製した中空糸膜束をポリカーボネート製のモジュールケースに挿入 した。両端部をウレタン榭脂で固定するとともに、榭脂端部を切断して中空糸膜中空 部を開口させ、流入口を有するキャップを装着して、中空糸膜の有効長 115mm、膜 面積 1. Om2の中空糸膜ミニモジュールを作製した。このモジュールを、無酸素環境 下で γ線を 25KGy照射して、滅菌を行った。得られたモジュールのプライミング性は 良好であった。
[0145] 得られたモジュールを用いて、アルブミンの篩い係数、 a 1マイクログロブリンのタリ ァランス、 a 1マイクログロブリン吸着量、血液リーク性、エンドトキシン透過性、残血 性およびバースト圧の評価を行った。また、 γ線滅菌後の中空糸膜を切り出し、溶出 物試験に供したところ、ポリビュルピロリドン溶出量は 5ppm、過酸化水素溶出量の最 大値は 2ppmと良好であった。 [0146] また血液浄化器より中空糸膜を取り出し、外表面を顕微鏡にて観察したところ、傷 等の欠陥は観察されなカゝつた。いずれの特性も良好であり、血液浄化器として実用 性の高 ヽものであった。これらの評価結果を表 1に示した。
[0147] (比較例 1)
実施例 1の方法にぉ 、て、製膜溶液の組成をポリエーテルスルホン (住化ケムテツ タス社製、スミカエタセル 5200P) 18. 0質量0 /0、ポリビュルピロリドン(BASF社製コリ ドン K 90) 0. 5質量%、ジメチルァセトアミド(DMAc) 77. 0質量%、 RO水 4. 5質 量%に、内液の温度を 50°Cに、また凝固液を RO水に変更する以外は、実施例 1と 同様にして比較例 1の中空糸膜およびモジュールを得た。製膜溶液中のポリスルホ ン系高分子に対するポリビニルピロリドンの比率は 2. 8質量%、ノズル吐出時の製膜 溶液温度と内部液の温度差は 20°Cであった。これらの特性を表 1および表 2に示す
[0148] 本比較例で得られた中空糸膜は、中空糸膜の内表面最表層におけるポリビニルビ 口リドンの含有量が低すぎ、かつスキン層厚みが厚いため、蛋白質の選択透過性が 劣っていた。また内表面のポリビニルピロリドンの含有量が低すぎるために,残血性 が劣っていた。さらに、中空糸膜の内表面および外表面におけるポリビュルピロリドン の含有量が低いため,プライミング性が良くな力 た。従って、本比較例で得られた 中空糸膜は,血液浄化器用としては実用性の低いものであった。
[0149] (比較例 2)
実施例 1の方法にぉ 、て、製膜溶液の組成をポリエーテルスルホン (住化ケムテツ タス社製、スミカエタセル 5200P) 18. 0質量0 /0、ポリビュルピロリドン(BASF社製コリ ドン K 90) 10. 0質量%、ジメチルァセトアミド(DMAc) 67. 5質量%、 RO水 4. 5質 量%に、内部液の濃度を 65質量%、液温を 45°Cに変更する以外は、実施例 1と同 様にして比較例 1の中空糸膜およびモジュールを得た。製膜溶液中のポリスルホン 系高分子に対するポリビニルピロリドンの比率は 55. 5質量%であった。これらの特 性を表 1および表 2に示す。
[0150] 本比較例で得られた中空糸膜は、中空糸膜の内表面におけるポリビニルピロリドン の含有量が高ぐ細孔径が大きいので、蛋白質の選択透過性に劣るものであった。ま た、ポリビュルピロリドンの溶出量が高力つた。なお、蛋白質の選択性が低いことに関 しては、内表面におけるポリビュルピロリドンの含有量が高いこと以外にも、内表面の 平均孔径ゃ孔径分布等、蛋白質の透過性に影響を及ぼす他の要因も実施例 1の中 空糸膜とは異なっており、このことも影響を及ぼしているものと推察される。また、中空 糸膜の外表面におけるポリビニルピロリドンの含有量が高いので、中空糸膜同士の 固着が発生した。また、エンドトキシンの透過が見られた。
[0151] このようにして得られた中空糸膜を用いて血液浄化器を組み立て、エアリークテスト を行った結果、モジュール接着部より気泡が発生するものがみられた。中空糸膜同 士の固着に起因する接着不良を起こしたものと思われる。従って、本比較例で得られ た中空糸膜は、血液浄化器用として実用性の低いものであった。
[0152] (比較例 3)
比較例 2の方法にお!、て、 50vol%イソプロパノール水溶液での洗浄回数を 6回に 変更する以外は、比較例 2と同様にして比較例 3の中空糸膜およびモジュールを得 た。得られた中空糸膜およびモジュールの特性を表 1および表 2に示す。
[0153] 本比較例で得られた中空糸膜は、洗浄の強化により、外表面におけるポリビュルピ 口リドンの含有量が低下して疎水性が強くなつている。従って、比較例 2で得られた中 空糸膜の課題の一つであったエンドトキシンが透過する課題は解決されるが、プライ ミング性が悪ィ匕する。また、内表面の状態は変わらないので、内表面特性に起因する 実施例 2の選択透過性分離膜の有していた比較例 2の課題は改善されなカゝつた。
[0154] (比較例 4)
実施例 1と同様の方法で、ポリエーテルスルホン (住化ケムテックス社製、スミカエタ セル 5200P) 18. 0質量0 /0、ポリビュルピロリドン(BASF社製コリドン K— 90) 5. 0質 量0 /0、ジメチルァセトアミド(DMAc) 75. 0質量0 /0、 RO水 2. 0質量0 /0よりなる製膜溶 液を得た。製膜溶液中のポリスルホン系高分子に対するポリビュルピロリドンの比率 は 27. 7質量0 /。であった。なお、上記ポリビュルピロリドンとしては、過酸化水素含有 量 lOOppmのものを用いた。製膜溶液を 15 m、 10 mの 2段の焼結フィルターに 順に通した。その後、 70°Cに加温したチューブインオリフィスノズルから、内部液とし て予め—700mmHgで 30分間脱気処理した 25°Cの 46質量%DMAc水溶液を用い て紡糸速度 50mZ分で吐出し、紡糸管により外気と遮断された 700mmの乾式部( エアギャップ部)を通過させた。その後、 35°Cの 20wt%DMAc水溶液中で凝固させ 、湿潤状態のまま総に捲き上げた。使用したチューブインオリフィスノズルのノズルス リット幅は、平均 60 mであり、最大 61 μ m、最小 m、スリット幅の最大値、最小 値の比は 1. 03、ドラフト比は 1. 15であった。凝固浴力も引き揚げられた中空糸膜は 、 85°Cの水洗槽を 45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後、 巻き上げた。
[0155] 該中空糸膜約 10, 000本の束の周りに実施例 1と同様のポリエチレン製のフィルム を巻きつけた後、洗浄を行うことなぐオーブン中に反射板を設置し均一加熱ができ るような構造を有したマイクロ波照射方式の乾燥機へ導入し、以下の条件で乾燥した 。 7KPaの減圧下、 1. 5kWの出力で 30分、 0. 5kWの出力で 10分間、さらに 0. 2k Wの出力で 8分間マイクロ波の照射を行い、含水率が 2. 9質量%になるまで乾燥し た。この際の中空糸膜表面の最高到達温度は 65°Cであった。紡糸工程中の糸道変 更のためのローラーとしては表面が鏡面カ卩ェされたものを使用し、固定ガイドとして は表面が梨地処理されたものを使用した。得られた中空糸膜の内径は 200 m、膜 厚は 35 μ mであった。スキン層厚みは 1. 7 μ mであった。得られた中空糸膜の特性 値を表 1に示す。
[0156] 得られた中空糸膜を長手方向に 2. 7cmずつ 10個に等分し、各々の部位から乾燥 状態の中空糸膜 lgをはかりとり、過酸化水素溶出量を定量した。該過酸化水素溶出 量は全部位において低レベルで安定していた。該定量値を表 2に示した。しかし、本 比較例で得られた中空糸膜は、乾燥後の中空糸膜束には固着が観察され、血液浄 ィ匕器を組立てる際、端部接着樹脂が中空糸膜間にうまく入らず、血液浄化器を組み 立てることが出来ないものが多発した。
[0157] (比較例 5)
比較例 1の方法において、製膜溶液の濾過に用いるフィルターをフィルター精度が 30 ml段の焼結フィルターに変更し、チューブインオリフィスノズルをノズルスリット 幅が平均 60 m、最大 m、最小 m、スリット幅の最大値、最小値の比が 1. 18のものに変更し、さらにドラフト比を 0. 95に変更する以外は、比較例 1と同様の方 法で、中空糸膜およびモジュールを得た。
得られた中空糸膜およびモジュールの特性を表 1および表 2に示す。本比較例で 得られた中空糸膜およびモジュールは、比較例 1で得られた製品と同様の課題を有 していた。更に、中空糸膜の偏肉度や相分離の均一性が低下したため、バースト圧 が低ぐ牛血液を用いた血液リークテストではモジュール 30本中、 5本に血球リークが みられた。このため、本比較例で得られた中空糸膜は血液浄化器用として実用性の 低いものであった。
[0158] (比較例 6)
比較例 1の方法において、以下のごとく変更する以外は、比較例 1と同様の方法で 中空糸膜およびモジュールを得た。
(1)製膜溶液に用いるポリビュルピロリドンとして、過酸ィ匕水素含有量が 500ppmの 製品を用いた。
(2)製膜溶液の調製時に混練を行わず、攪拌機付きの溶解槽に、各原料を直接、一 括して添加し、液温 70°Cで溶解を行った。
(3)チューブインオリフィスノズルとして、ノス、ノレスリット幅が平均 80 μ m、最大 81 μ m 、最小 79 /ζ πι、スリット幅の最大値、最小値の比が 1. 03、および製膜溶液流路の L ZDが 2. 5のノズルを用いた。
(4)ドラフト比を 1. 00とした。
(5)湿潤状態の中空糸膜の乾燥を、含水率が 0. 2質量%になるまで行った。
得られた中空糸膜およびモジュールの特性を表 1および表 2に示す。
[0159] 本比較例で得られた中空糸膜およびモジュールは、比較例 1で得られた製品と同 様の課題に加えて過酸ィ匕水素溶出量が多力つた。
本比較例で得られた中空糸膜について過酸ィ匕水素の測定に用いた乾燥状態のサ ンプルを、湿度 50%RHに調湿されたドライボックス中(雰囲気は空気)に室温で 3ケ 月間保存した後、透析型人工腎臓装置製造基準に定められた方法で抽出を行い、 UV (220-350nm)吸光度を測定した。保存スタート時の UV(220— 350nm)吸光 度は、全部位において承認基準の 0. 1未満であったものが、保存後は、いずれの部 位も承認基準の 0. 1を超えており、保存安定性に劣っていた。なお、過酸化水素溶 出量の低い実施例 1一 3および比較例 1一 5の中空糸膜は、同様の保存を行っても、 UV (220— 350nm)吸光度は殆ど変化せず、 0. 06以下が維持されていた。すなわ ち、本比較例で得られた中空糸膜は、中空糸膜中に過酸ィ匕水素が多く含まれ、該過 酸ィ匕水素によってポリビュルピロリドンの劣化が引き起こされる結果、経時後の UV (2 20— 350nm)吸光度が増大したものと推察される。従って、本比較例で得られた中 空糸膜は血液浄化器用として実用性の低 、ものであった。
[0160] (実施例 2)
実施例 1と同様の方法で、ポリエーテルスルホン (住化ケムテックス社製、スミカエタ セル 4800P) 18. 0質量0 /0、ポリビュルピロリドン(BASF社製コリドン K— 90) 2. 5質 量0 /0、ジメチルァセトアミド(DMAc) 74. 5質量0 /0、RO水 5. 0質量0 /0よりなる製膜溶 液を調製した。なお、製膜溶液中のポリスルホン系高分子に対するポリビニルピロリド ンの比率は 13. 8質量%であった。原料ポリビニルピロリドンの過酸ィ匕水素含有量は lOOppmであった。得られた製膜溶液を 15 m、 10 mの 2段の焼結フィルターに 順に通した後、 70°Cに加温したチューブインオリフィスノズル力ゝら製膜原液吐出量 2 . lccZminで吐出した。同時に、内部液として予め— 700mmHgで 30分間脱気処 理した 30°Cの 50質量%DMAc水溶液を吐出し、紡糸管により外気と遮断された 75 Ommのエアギャップ部を通過後、 65°Cの 25質量%DMAc水溶液中で凝固させ、 湿潤状態のまま総に捲き上げた。ノズルスリット幅は平均 60 m、最大 61 μ m、最小 59 /z mであり、スリット幅の最大値、最小値の比は 1. 03であった。ドラフト比は 1. 3 であった。ノズル内での製膜溶液の圧力損失は 2. 15 X 108Pa' sであり、剪断応力 は 1. 1 X
Figure imgf000065_0001
流路通過時間は 1. 2 X 10— 3secであった。凝固浴から引き揚げら れた中空糸膜は、 85°Cの水洗槽を 45秒間通過させて溶媒と過剰のポリビニルピロリ ドンを除去した後、巻き上げた。紡糸工程中の糸道変更のためのローラーとしては表 面が鏡面カ卩ェされたものを使用し、固定ガイドとしては表面が梨地処理されたものを 使用した。
[0161] 該中空糸膜約 10, 000本の束の周りに実施例 1と同様のポリエチレン製のフィルム を卷きつけた。その後、 30°Cの 30vol%エタノール水溶液で 30分 X 3回浸漬洗浄し 、洗浄処理後の中空糸膜束を RO水で軽く濯いでエタノールを水に置換した。その後 、遠心脱液器で 600rpm X 5min間脱液した。得られた湿潤中空糸膜束を、長手方 向に流路のとられた通風乾燥機を用いて、 65°C、風量 0. 3LZsecで 3時間乾燥した 後、 35°C、風量 0. 05LZsecで 20時間乾燥させた。乾燥開始力も乾燥終了までの 間、最初の 3時間は 20分おきに、後の 20時間は 1時間おきに、通風の向きを 180度 反転させて乾燥を実施した。乾燥前の中空糸膜束の含水率は 290質量%、乾燥 3時 間後の中空糸膜束の含水率は 67質量%、乾燥終了後の中空糸膜束の含水率は 2. 4質量%であった。このとき通風媒体としては窒素ガスを用いた。得られた中空糸膜 の内径は 200 μ m、膜厚は 29 μ mであった。スキン層厚みは 0. 7 μ mであった。得 られた中空糸膜の特性値を表 1に示す。
[0162] 得られた中空糸膜を長手方向に 2. 7cmずつ 10個に等分し、各々の部位から乾燥 状態の中空糸膜 lgをはかりとり、過酸化水素溶出量を定量した。該過酸化水素溶出 量は、全部位において低レベルで安定していた。該定量値を表 2に示した。
[0163] 上記方法で調整した中空糸膜束をポリカーボネート製のモジュールケースに挿入 し、両端部をウレタン榭脂で固定するとともに切断開口させ、流入口を有するキャップ を装着して、中空糸膜の有効長 115mm、膜面積 1. Om2の中空糸膜モジュールを 作製した。このモジュールに、無酸素環境下で γ線を 25KGy照射することにより、滅 菌を行った。得られたモジュールのプライミング性は良好であった。
[0164] 得られたモジュールを用いて、アルブミンの篩い係数、 a 1マイクログロブリンのタリ ァランス、 a 1マイクログロブリン吸着量、血液リーク性、エンドトキシン透過性、残血 性およびバースト圧の評価を行った。また、 γ線滅菌後の中空糸膜を切り出し、溶出 物試験に供したところ、ポリビュルピロリドン溶出量は 5ppm、過酸化水素溶出量は 3 ppmと良好であった。
[0165] また血液浄化器より中空糸膜を取り出し、外表面を顕微鏡にて観察したところ、傷 等の欠陥は観察されなカゝつた。いずれの特性も良好であり、血液浄化器として実用 性の高 ヽものであった。これらの評価結果を表 1に示した。
[0166] (実施例 3)
実施例 1と同様の方法で、ポリスルホン (ァモコ社製 P— 3500) 18. 5質量%、ポリビ -ルピロリドン(BASF社製コリドン K 60) 3. 0質量0 /0、ジメチルァセトアミド(DMAc ) 74. 5質量%、 RO水 4. 0質量%ょりなる製膜溶液を得た。なお、製膜溶液中のポリ スルホン系高分子に対するポリビュルピロリドンの比率は 16. 2質量%、原料ポリビ- ルピロリドン中の過酸ィ匕水素含有量は 150ppmのものを用いた。得られた製膜溶液 を 15 /ζ πι、 10 mの 2段の焼結フィルターに順に通した後、 50°Cに加温したチュー ブインオリフィスノズルから吐出量 2. 4cc/minで吐出した。同時に、内部液として予め — 700mmHgで 30分間脱気処理した 15°Cの 35質量%DMAc水溶液を吐出し、紡 糸管により外気と遮断された 650mmのエアギャップ部を通過後、 60°Cの 15質量% DMAc水溶液中で凝固させ、湿潤状態のまま総に捲き上げた。使用したチューブイ ンオリフィスノズルのノス、ノレスリット幅は、平均 60 μ m、最大 61 μ m、最小 59 μ mであ り、スリット幅の最大値、最小値の比は 1. 03であった。ノズル内での製膜溶液の圧力 損失は 2. 3 X 108Pa' s、剪断応力は 1. 2 X
Figure imgf000067_0001
流路通過時間は 1. 5 X 10— 3sec であった。ドラフト比は 1. 3であった。紡糸工程中の糸道変更のためのローラーとして は表面が鏡面加工されたものを使用し、固定ガイドとしては表面が梨地処理されたも のを使用した。
該中空糸膜約 10, 000本の束の周りに実施例 1と同様のポリエチレン製のフィルム を卷きつけた。その後、 30°Cの 40vol%イソプロパノール水溶液で 30分 X 2回浸漬 洗浄し、洗浄処理後の中空糸膜束を RO水で軽く濯いでイソプロパノールを水に置換 した。その後、遠心脱液器で 600rpm X 5min間脱液した。得られた湿潤中空糸膜束 を、均一加熱ができるように装置内にマイクロ波反射板を設置した乾燥装置内の回 転テーブルに 48本 X 2段にセットし、以下の条件で乾燥した。 7kPaの減圧下、 12kW の出力でマイクロ波を照射し 15分間加熱処理を行った。つづいてマイクロ波照射を 停止するとともに減圧度を lkPaに下げ、 3分間維持することにより水分を蒸発させた 。次に減圧度を 7kPaに戻すとともにマイクロ波を照射し、出力 3. 5kWにて 7分問加 熱処理を行った。加熱後、マイクロ波照射を停止し、減圧度を 0. 7kPaに下げて、 3分 間維持した。さらに減圧度を 7kPaに戻してマイクロ波照射を再開し、出力を 2. 5kW にて 6分間再加熱した後、マイクロ波照射を停止し、減圧度を 0. 5kPaに下げて、 7分 間乾燥処理を行った。さらに、該中空糸膜束を、通風乾燥器において、 35°Cにて 3 時間、含水率均一化処理を行った。マイクロ波乾燥前の中空糸膜束の含水率は 306 質量%、 1段目終了後の含水率は 33質量%、 2段目終了後の含水率は 16質量%、 3段目終了後の含水率は 6質量%、通風乾燥終了後の含水率は 1. 7質量%であつ た。乾燥処理中の中空糸膜束の最高到達温度は 54°Cであった。得られた中空糸膜 の内径は 197 μ m、膜厚は 30 μ mであった。スキン層厚みは 0. 7 μ mであった。得 られた中空糸膜の特性値を表 1に示す。
[0168] 得られた中空糸膜を長手方向に 2. 7cmずつ 10個に等分し、各々の部位から乾燥 状態の中空糸膜 lgをはかりとり、過酸化水素溶出量を定量した。該過酸化水素溶出 量は全部位にぉ 、て低レベルで安定して 、た。該定量値を表 2に示した。
[0169] 上記方法で調整した中空糸膜束をポリカーボネート製のモジュールケースに挿入 し、両端部をウレタン榭脂で固定するとともに切断開口させ、流入口を有するキャップ を装着して、中空糸膜の有効長 115mm、膜面積 1. Om2の中空糸膜ミニモジュール を作製した。
このモジュールに、無酸素環境下で γ線を 25KGy照射することにより、滅菌を行つ た。得られたモジュールのプライミング性は良好であった。
[0170] 得られたモジュールを用いて、アルブミンの篩い係数、 a 1マイクログロブリンのタリ ァランス、 a 1マイクログロブリン吸着量、血液リーク性、エンドトキシン透過性、残血 性およびバースト圧の評価を行った。また、 γ線滅菌後の中空糸膜中空糸膜を切り 出し、溶出物試験に供したところ、ポリビニルピロリドン溶出量は 4ppm、過酸化水素 溶出量は 2ppmと良好であった。
[0171] また血液浄化器より中空糸膜を取り出し、外表面を顕微鏡にて観察したところ、傷 等の欠陥は観察されなカゝつた。いずれの特性も良好であり、血液浄化器として実用 性の高 ヽものであった。これらの評価結果を表 1に示した。
[0172] [表 1] ^
表 1
Figure imgf000069_0001
ND: not detectable
ss画 ¾c.. 〇 o 〇 o
寸 賺廳マ i ln- 麵雄例支施例列糊糊比比 1- z 寸
0
Z Z z
0
Z
P
Z z
z Z Z GM→Λ¾5- qυφφ.ou
Z Z Z st
Z Z Z
0
Z z
産業上の利用可能性
本発明の選択透過性分離膜は、分離特性のバランスが良ぐ安全性や性能の安定 性が高ぐかつモジュールの組み立て性に優れている。従って、慢性腎不全の治療 に用いられる高透水性能を有する血液透析法による中空糸型血液浄化器用として 好適である。また、本発明の製造方法によれば、上記特性の選択透過性分離膜を、 経済的に、かつ安定して製造し得る。

Claims

請求の範囲
[1] 選択透過性分離膜であって、
(a)該選択透過性分離膜は、主としてポリスルホン系高分子とポリビニルピロリドンを 含んでなり、
(b)該選択透過性分離膜を装填して作製したモジュールに、へマトクリット 30%、総タ ンパク濃度 6— 7gZdl、クェン酸ナトリウムを添カ卩した 37°Cの牛血液を 200mlZ分、 濾過流量 20mlZ分で流したとき、
(i) 15分後のアルブミンの篩い係数 [A]が 0. 01以上 0. 1以下で、かつ
(ii) 2時間後のアルブミンの篩い係数 [B]が 0. 005以上 0. 04未満である、 ことを特徴とする選択透過性分離膜。
[2] 2時間後のアルブミンの篩い係数 [B]が 15分後のアルブミンの篩い係数 [A]より小 さ!ヽことを特徴とする請求項 1に記載の選択透過性分離膜。
[3] 15分後のアルブミンの篩 、係数 [A]と 2時間後のアルブミンの篩 、係数 [B]の関 係が下記式:
[B] / [A] =0. 1—0. 4
を満足することを特徴とする請求項 1または 2に記載の選択透過性分離膜。
[4] a 1マイクログロブリンのクリアランスが 15ml/min (l . Om2)以上であることを特徴 とする請求項 1一 3のいずれかに記載の選択透過性分離膜。
[5] a 1マイクログロブリンの吸着量が 2. 0— 20mgZm2であることを特徴とする請求項
1一 4の 、ずれかに記載の選択透過性分離膜。
[6] 選択透過性分離膜のスキン層厚みが 0. 1- 1. 2 mであることを特徴とする請求 項 1一 5のいずれかに記載の選択透過性分離膜。
[7] 選択透過性分離膜の膜厚が 25— 45 mであることを特徴とする請求項 1一 6のい ずれかに記載の選択透過性分離膜。
[8] ポリビニルピロリドンが実質的に非架橋であることを特徴とする請求項 1一 7のいず れかに記載の選択透過性分離膜。
[9] 選択透過性分離膜の血液接触側の表面最表層におけるポリビニルピロリドンの含 有量が 20— 40質量%であることを特徴とする請求項 1一 8のいずれかに記載の選択 透過性分離膜。
[10] 選択透過性分離膜の血液接触側の表面近傍層におけるポリビニルピロリドンの含 有量が 5— 20質量%であることを特徴とする請求項 1一 9のいずれかに記載の選択 透過性分離膜。
[11] 選択透過性分離膜の血液非接触側の表面最表層におけるポリビニルピロリドンの 含有量が 25— 50質量%であり、かつ
(血液非接触側の表面最表層におけるポリビュルピロリドンの含有量: [D] ) Z (血 液接触側の表面最表層におけるポリビニルピロリドンの含有量: [C] )が 1. 1倍以上、 であることを特徴とする請求項 1一 10のいずれかに記載の選択透過性分離膜。
[12] 選択透過性分離膜における血液非接触側の表面の開孔率が 20— 35%であること を特徴とする請求項 1一 11の!ヽずれかに記載の選択透過性分離膜。
[13] 選択透過性分離膜が中空糸膜であることを特徴とする請求項 1一 12のいずれかに 記載の選択透過性分離膜。
[14] 中空糸膜のバースト圧が 0. 5MPa以上であることを特徴とする請求項 1一 13のい ずれかに記載の選択透過性分離膜。
[15] 中空糸膜の偏肉度が 0. 6以上であることを特徴とする請求項 1一 14のいずれかに 記載の選択透過性分離膜。
[16] 中空糸膜を長手方向に 10分割し、各々より抽出した抽出液について測定した過酸 化水素の溶出量が全て 5ppm以下であることを特徴とする請求項 1一 15のいずれか に記載の選択透過性分離膜。
[17] 製膜溶液と内部液をチューブインオリフィス型ノズルから吐出させた後、エアギヤッ プを経て凝固浴で凝固させるに際し、
製膜溶液はポリスルホン系高分子、ポリビュルピロリドンおよび溶剤を含んで成り、 ポリスルホン系高分子に対するポリビュルピロリドンの比率は 10— 18質量%であり 内部液はアミド系溶剤を 30— 60質量%含む水溶液であり、
該内部液の液温を製膜溶液の液温より 30— 60°C低くし、かつその液温力 SO— 40 °Cである条件で吐出する、 ことを特徴とする選択透過性分離膜の製造方法。
[18] チューブインオリフィス型ノズルが内部液熱媒循環型ブロックであることを特徴とす る請求項 17に記載の選択透過性分離膜の製造方法。
[19] チューブインオリフィス型ノズルのノズルスリット幅の最大値と最小値との比が 1. 00 一 1. 11であるノズルを用いることを特徴とする請求項 17または 18に記載の選択透 過性分離膜の製造方法。
[20] 製膜溶液を濾過精度が 25 μ m以下のフィルターで濾過することを特徴とする請求 項 17— 19のいずれかに記載の選択透過性分離膜の製造方法。
[21] 過酸ィ匕水素含有量が 300ppm以下のポリビュルピロリドンを原料として用いることを 特徴とする請求項 17— 20のいずれかに記載の選択透過性分離膜の製造方法。
PCT/JP2005/004980 2004-03-22 2005-03-18 選択透過性分離膜およびその製造方法 WO2005089917A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/599,128 US7922007B2 (en) 2004-03-22 2005-03-18 Separation membrane with selective permeability and process for producing the same
EP05721144.3A EP1733783B1 (en) 2004-03-22 2005-03-18 Separation membrane with selective permeability and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-083712 2004-03-22
JP2004083712A JP3642065B1 (ja) 2004-03-22 2004-03-22 選択透過性分離膜および選択透過性分離膜の製造方法

Publications (1)

Publication Number Publication Date
WO2005089917A1 true WO2005089917A1 (ja) 2005-09-29

Family

ID=34545166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004980 WO2005089917A1 (ja) 2004-03-22 2005-03-18 選択透過性分離膜およびその製造方法

Country Status (4)

Country Link
US (1) US7922007B2 (ja)
EP (1) EP1733783B1 (ja)
JP (1) JP3642065B1 (ja)
WO (1) WO2005089917A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291398A (ja) * 2007-05-25 2008-12-04 Toyobo Co Ltd チューブインオリフィス型ノズルの検査方法および中空糸膜の製造方法および中空糸膜

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551971B1 (ja) * 2003-11-26 2004-08-11 東洋紡績株式会社 ポリスルホン系選択透過性中空糸膜
JP3642065B1 (ja) 2004-03-22 2005-04-27 東洋紡績株式会社 選択透過性分離膜および選択透過性分離膜の製造方法
JP4501530B2 (ja) * 2004-05-19 2010-07-14 東洋紡績株式会社 高透水性中空糸膜型血液浄化器
US20080000830A1 (en) * 2004-08-10 2008-01-03 Kimihiro Mabuchi Highly Water Permeable Hollow Fiber Membrane Type Blood Purifier and Process for Manufacturing the Same
JP4885437B2 (ja) * 2004-10-15 2012-02-29 東洋紡績株式会社 血液浄化器および血液浄化器包装体
JP4731875B2 (ja) 2004-10-15 2011-07-27 東洋紡績株式会社 血液浄化器の滅菌方法および血液浄化器包装体
US9067178B2 (en) 2004-12-22 2015-06-30 Nipro Corporation Blood purifier package and process for manufacturing the same
JP3772909B1 (ja) * 2005-04-04 2006-05-10 東洋紡績株式会社 血液浄化器
JP4843993B2 (ja) * 2005-04-26 2011-12-21 東洋紡績株式会社 血液浄化器
WO2007102528A1 (ja) * 2006-03-09 2007-09-13 Toyo Boseki Kabushiki Kaisha 性能安定性に優れた中空糸膜および血液浄化器および中空糸膜の製造方法
ES2342966T3 (es) * 2006-07-07 2010-07-20 Gambro Lundia Ab Membrana de separacion de plasma.
DE102007019051B3 (de) * 2007-04-23 2008-10-09 Fresenius Medical Care Deutschland Gmbh Hohlfaserkapillarmembran und Verfahren zu deren Herstellung
JP5609116B2 (ja) * 2008-02-21 2014-10-22 東洋紡株式会社 耐ファウリング性に優れる中空糸型限外ろ過膜
JPWO2009125598A1 (ja) * 2008-04-11 2011-08-04 川崎重工業株式会社 ポリエーテルスルホン製の親水性ろ過膜、その製造方法及び製膜原液
KR101597829B1 (ko) * 2008-08-20 2016-02-26 코오롱인더스트리 주식회사 다공성 막 및 그 제조방법
ES2828098T3 (es) * 2008-12-25 2021-05-25 Toyo Boseki Membrana de fibra hueca porosa
CN102307603B (zh) * 2009-02-04 2015-04-22 东洋纺织株式会社 中空丝膜及其制造方法和血液净化组件
KR101657307B1 (ko) * 2009-09-25 2016-09-19 엘지전자 주식회사 불소계 중공사막 및 그 제조 방법
ITBO20090705A1 (it) * 2009-10-29 2011-04-29 Medica S R L Procedimento per la preparazione di una membrana cava per lo scambio di materia tra una fase liquida e una fase gassosa
US8551208B2 (en) * 2010-11-16 2013-10-08 General Electric Company Plasma treated filter
CA2824396C (en) * 2011-02-04 2015-12-15 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
JP6030295B2 (ja) * 2011-10-20 2016-11-24 旭化成メディカル株式会社 血液浄化器の製造方法
AU2013240292B2 (en) * 2012-03-28 2018-02-15 Rasirc, Inc. Method of delivering a process gas from a multi-component solution
TWI549744B (zh) 2012-03-28 2016-09-21 東麗股份有限公司 血液製劑淨化用的聚碸系中空絲膜以及中空絲膜模組
KR102090095B1 (ko) 2012-09-26 2020-03-17 도레이 카부시키가이샤 복합 반투막
US9410191B2 (en) 2014-05-13 2016-08-09 Rasirc, Inc. Method and system for decontaminating materials
WO2016006041A1 (ja) * 2014-07-08 2016-01-14 国立大学法人山梨大学 血液浄化器
CN106573203B (zh) * 2014-08-25 2020-02-07 旭化成医疗株式会社 多孔膜
US10150048B2 (en) 2014-10-23 2018-12-11 Rasirc, Inc. Method, system, and device for delivery of process gas
DE102016224627A1 (de) * 2016-12-09 2018-06-14 Fresenius Medical Care Deutschland Gmbh Hohlfasermembran mit verbesserter Trennleistung und Herstellung einer Hohlfasermembran mit verbesserter Trennleistung
CN110099705B (zh) * 2017-01-26 2022-05-17 泰尔茂株式会社 换热器及人工肺
JP7037402B2 (ja) 2018-03-26 2022-03-16 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN113634130B (zh) * 2020-05-11 2022-11-18 中国石油化工股份有限公司 一种耐污染反渗透膜及其制备方法和应用
CN114733362B (zh) * 2021-01-07 2023-10-31 杭州费尔新材料有限公司 一种聚烯烃中空纤维膜的制备工艺

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165926A (ja) * 1992-04-29 1994-06-14 Kuraray Co Ltd ポリスルホン系中空繊維膜とその製造方法
JPH06296686A (ja) * 1993-04-19 1994-10-25 Asahi Chem Ind Co Ltd 医療用ポリスルホン中空糸膜
JPH07289866A (ja) * 1994-04-27 1995-11-07 Asahi Medical Co Ltd ポリスルホン系選択透過膜
JPH07289863A (ja) 1994-04-27 1995-11-07 Asahi Medical Co Ltd ポリスルホン系中空糸膜及びその製造方法
US5762798A (en) 1991-04-12 1998-06-09 Minntech Corporation Hollow fiber membranes and method of manufacture
JPH10180058A (ja) * 1996-12-24 1998-07-07 Toyobo Co Ltd 中空糸膜
JPH11169690A (ja) * 1997-12-15 1999-06-29 Nikkiso Co Ltd 血液浄化膜
JPH11309355A (ja) * 1998-04-28 1999-11-09 Asahi Medical Co Ltd ポリスルホン系中空糸型血液浄化膜とその製造方法
JP2000157852A (ja) * 1998-11-25 2000-06-13 Asahi Medical Co Ltd ポリスルホン系血液処理膜
JP2000210544A (ja) * 1999-01-26 2000-08-02 Toray Ind Inc 半透膜の製造方法
JP2000254222A (ja) * 1999-03-12 2000-09-19 Terumo Corp 血液浄化用中空糸膜および中空糸膜型人工腎臓
KR20010012689A (ko) 1997-05-19 2001-02-26 아사히 메디칼 가부시키가이샤 혈액 정제용 폴리술폰형 중공사막 및 그의 제조 방법
JP2001190934A (ja) 2000-01-12 2001-07-17 Toyobo Co Ltd 溶出物の少ない中空糸膜モジュール
JP3193262B2 (ja) 1995-05-12 2001-07-30 帝人株式会社 血液処理器の製造方法及び血液処理器
JP2003175321A (ja) 2001-10-05 2003-06-24 Asahi Medical Co Ltd 中空糸状膜の製造方法
JP2003175322A (ja) 2001-10-05 2003-06-24 Asahi Medical Co Ltd 中空糸状膜の製造方法
JP2003175320A (ja) 2001-10-05 2003-06-24 Asahi Medical Co Ltd 中空糸状膜の製造方法
JP3551971B1 (ja) * 2003-11-26 2004-08-11 東洋紡績株式会社 ポリスルホン系選択透過性中空糸膜

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US199891A (en) * 1878-02-05 Improvement in refrigerators
US4976A (en) * 1847-02-20 Improvement in plows
JPS58114702A (ja) 1981-12-28 1983-07-08 Kuraray Co Ltd ポリスルホン中空繊維膜
US4906375A (en) 1984-07-14 1990-03-06 Fresenius, Ag Asymmetrical microporous hollow fiber for hemodialysis
JPS61232860A (ja) 1985-04-08 1986-10-17 鐘淵化学工業株式会社 血漿分離用ポリスルホン中空糸
JP3334705B2 (ja) 1991-03-28 2002-10-15 東レ株式会社 ポリスルホン系選択透過性中空糸膜
JPH0554373A (ja) 1991-08-27 1993-03-05 Sumitomo Metal Mining Co Ltd 磁気記録媒体
US5340480A (en) 1992-04-29 1994-08-23 Kuraray Co., Ltd. Polysulfone-based hollow fiber membrane and process for manufacturing the same
JPH0675667A (ja) 1992-08-26 1994-03-18 Nec Corp 電源供給方式
JPH06339620A (ja) 1993-11-29 1994-12-13 Toray Ind Inc ポリスルホン系樹脂半透膜の処理方法
JP4003982B2 (ja) 1995-06-30 2007-11-07 東レ株式会社 ポリスルホン系選択透過性分離膜
DE69634352T2 (de) 1995-06-30 2006-01-12 Toray Industries, Inc. Methode zur Herstellung einer teildurchlässigen Hohlfasermembran aus Polysulfon
JP3617194B2 (ja) 1995-06-30 2005-02-02 東レ株式会社 選択透過性分離膜及びその製造方法
US6355730B1 (en) 1995-06-30 2002-03-12 Toray Industries, Inc. Permselective membranes and methods for their production
JP3651121B2 (ja) 1995-06-30 2005-05-25 東レ株式会社 選択透過性分離膜
DE69629042T2 (de) 1995-10-09 2004-04-22 Asahi Kasei Kabushiki Kaisha Polysulfon-membran zur reinigung von blut
JPH1057476A (ja) * 1996-08-26 1998-03-03 Toray Ind Inc 膜分離装置
JP2713294B2 (ja) 1996-09-30 1998-02-16 東レ株式会社 ポリスルホン系樹脂半透膜の製造方法
JP3966481B2 (ja) 1997-02-18 2007-08-29 東レ株式会社 半透膜
JP3132415B2 (ja) 1997-04-28 2001-02-05 東レ株式会社 親水化透析膜
KR100289413B1 (ko) 1997-12-30 2001-05-02 구광시 폴리설폰계 중공사 막 및 그의 제조 방법
JP3933300B2 (ja) 1998-04-28 2007-06-20 旭化成メディカル株式会社 ポリスルホン系選択分離膜
JP4265701B2 (ja) 1998-11-16 2009-05-20 旭化成クラレメディカル株式会社 ポリスルホン系多孔質膜
JP2000300663A (ja) 1999-04-19 2000-10-31 Toyobo Co Ltd 選択分離膜
JP3293069B2 (ja) 1999-05-28 2002-06-17 エリー株式会社 被加熱物の加熱方法及びその装置
JP2001038170A (ja) 1999-08-03 2001-02-13 Toyobo Co Ltd 中空糸膜
JP4061798B2 (ja) 1999-12-21 2008-03-19 東レ株式会社 血液処理用半透膜およびそれを用いた血液処理用透析器
JP4211168B2 (ja) 1999-12-21 2009-01-21 東レ株式会社 透析器の製造方法および滅菌法
KR20010112689A (ko) 2000-06-10 2001-12-21 최영민 인터넷 포탈 asp서비스 분산처리 시스템 구성 방법
JP4214750B2 (ja) 2001-10-04 2009-01-28 東レ株式会社 材料およびそれを用いた血液浄化用モジュール
JP4453248B2 (ja) 2001-12-19 2010-04-21 東レ株式会社 中空糸膜および中空糸膜モジュールの製造方法
JP4325904B2 (ja) 2002-03-27 2009-09-02 旭化成クラレメディカル株式会社 中空糸膜の乾燥装置
JP3642065B1 (ja) 2004-03-22 2005-04-27 東洋紡績株式会社 選択透過性分離膜および選択透過性分離膜の製造方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762798A (en) 1991-04-12 1998-06-09 Minntech Corporation Hollow fiber membranes and method of manufacture
JPH06165926A (ja) * 1992-04-29 1994-06-14 Kuraray Co Ltd ポリスルホン系中空繊維膜とその製造方法
JPH06296686A (ja) * 1993-04-19 1994-10-25 Asahi Chem Ind Co Ltd 医療用ポリスルホン中空糸膜
JPH07289866A (ja) * 1994-04-27 1995-11-07 Asahi Medical Co Ltd ポリスルホン系選択透過膜
JPH07289863A (ja) 1994-04-27 1995-11-07 Asahi Medical Co Ltd ポリスルホン系中空糸膜及びその製造方法
JP3193262B2 (ja) 1995-05-12 2001-07-30 帝人株式会社 血液処理器の製造方法及び血液処理器
JPH10180058A (ja) * 1996-12-24 1998-07-07 Toyobo Co Ltd 中空糸膜
KR20010012689A (ko) 1997-05-19 2001-02-26 아사히 메디칼 가부시키가이샤 혈액 정제용 폴리술폰형 중공사막 및 그의 제조 방법
JPH11169690A (ja) * 1997-12-15 1999-06-29 Nikkiso Co Ltd 血液浄化膜
JPH11309355A (ja) * 1998-04-28 1999-11-09 Asahi Medical Co Ltd ポリスルホン系中空糸型血液浄化膜とその製造方法
JP2000157852A (ja) * 1998-11-25 2000-06-13 Asahi Medical Co Ltd ポリスルホン系血液処理膜
JP2000210544A (ja) * 1999-01-26 2000-08-02 Toray Ind Inc 半透膜の製造方法
JP2000254222A (ja) * 1999-03-12 2000-09-19 Terumo Corp 血液浄化用中空糸膜および中空糸膜型人工腎臓
JP2001190934A (ja) 2000-01-12 2001-07-17 Toyobo Co Ltd 溶出物の少ない中空糸膜モジュール
JP2003175321A (ja) 2001-10-05 2003-06-24 Asahi Medical Co Ltd 中空糸状膜の製造方法
JP2003175322A (ja) 2001-10-05 2003-06-24 Asahi Medical Co Ltd 中空糸状膜の製造方法
JP2003175320A (ja) 2001-10-05 2003-06-24 Asahi Medical Co Ltd 中空糸状膜の製造方法
JP3551971B1 (ja) * 2003-11-26 2004-08-11 東洋紡績株式会社 ポリスルホン系選択透過性中空糸膜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L.M. WIENK ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 10, no. 6, 1995, pages 233 - 243
See also references of EP1733783A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291398A (ja) * 2007-05-25 2008-12-04 Toyobo Co Ltd チューブインオリフィス型ノズルの検査方法および中空糸膜の製造方法および中空糸膜

Also Published As

Publication number Publication date
EP1733783A4 (en) 2007-09-26
JP3642065B1 (ja) 2005-04-27
EP1733783A1 (en) 2006-12-20
JP2006345876A (ja) 2006-12-28
US20070199891A1 (en) 2007-08-30
US7922007B2 (en) 2011-04-12
EP1733783B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2005089917A1 (ja) 選択透過性分離膜およびその製造方法
JP3551971B1 (ja) ポリスルホン系選択透過性中空糸膜
WO2005089918A1 (ja) ポリスルホン系選択透過性中空糸膜束及びその製造方法
JP3580314B1 (ja) ポリスルホン系選択透過性中空糸膜束およびその製造方法
JP4843993B2 (ja) 血液浄化器
JP2005349093A (ja) ポリスルホン系選択透過性中空糸膜
JP4843992B2 (ja) 血液浄化器
JP4501155B2 (ja) ポリスルホン系選択透過性中空糸膜束の製造方法
JP4257598B2 (ja) ポリスルホン系選択透過性中空糸膜
JP4839630B2 (ja) ポリスルホン系選択透過性中空糸膜束および血液浄化器
JP4446173B2 (ja) 選択透過性分離膜および血液浄化器
JP4315054B2 (ja) ポリスルホン系選択透過性中空糸膜
JP2005334377A (ja) 血液適合性に優れたポリスルホン系選択透過性中空糸膜
JP5580616B2 (ja) ポリスルホン系選択透過性中空糸膜束の乾燥方法
JP2005342139A (ja) ポリスルホン系選択透過性中空糸膜
JP2005342413A (ja) ポリスルホン系選択透過性血液浄化器
JP2005270631A (ja) 選択透過性分離膜
JP4288602B2 (ja) ポリスルホン系選択透過性中空糸膜
JP2005270633A (ja) 選択透過性分離膜
JP2005270632A (ja) 選択透過性分離膜
JP2006075247A (ja) ポリスルホン系選択透過性中空糸膜束
JP2005342415A (ja) 高透水性中空糸膜型血液浄化器
JP2005342414A (ja) 血液適合性に優れたポリスルホン系選択透過性中空糸膜
JP2006167597A (ja) 中空糸膜束の乾燥方法
JP2005348785A (ja) ポリスルホン系選択透過性中空糸膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10599128

Country of ref document: US

Ref document number: 2007199891

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2005721144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005721144

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005721144

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 10599128

Country of ref document: US