WO2005095115A1 - 中空円筒状印刷基材 - Google Patents

中空円筒状印刷基材 Download PDF

Info

Publication number
WO2005095115A1
WO2005095115A1 PCT/JP2005/005751 JP2005005751W WO2005095115A1 WO 2005095115 A1 WO2005095115 A1 WO 2005095115A1 JP 2005005751 W JP2005005751 W JP 2005005751W WO 2005095115 A1 WO2005095115 A1 WO 2005095115A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photosensitive resin
hollow cylindrical
core material
resin layer
Prior art date
Application number
PCT/JP2005/005751
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamada
Masahisa Yokota
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2005800108551A priority Critical patent/CN1938162B/zh
Priority to AT05727408T priority patent/ATE458624T1/de
Priority to DE602005019550T priority patent/DE602005019550D1/de
Priority to EP05727408A priority patent/EP1731325B1/en
Priority to JP2006511646A priority patent/JP4530367B2/ja
Priority to US10/592,867 priority patent/US20080156212A1/en
Publication of WO2005095115A1 publication Critical patent/WO2005095115A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/16Curved printing plates, especially cylinders
    • B41N1/22Curved printing plates, especially cylinders made of other substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/18Coating curved surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2201/00Special arrangements for pipe couplings
    • F16L2201/60Identification or marking

Definitions

  • the present invention relates to the formation of a relief image for flexographic printing plate or gravure printing by laser engraving, the formation of a surface processing pattern such as anilox roll and embossing, the formation of a relief image for printing tiles, and the formation of an electronic circuit.
  • a surface processing pattern such as anilox roll and embossing
  • the formation of a relief image for printing tiles and the formation of an electronic circuit.
  • Patterning of functional materials such as conductor, semiconductor and insulator pattern printing, anti-reflective coatings of optical components, color filters, (near) infrared cut filters, etc., as well as liquid crystal displays or organic electorescence displays.
  • the present invention relates to a cylindrical printing original plate suitable for forming an alignment film, an underlayer, a light emitting layer, an electron transporting layer, a coating film pattern of a sealing material layer and the like in the production of a display element, and a method for producing the same.
  • the method of pasting a plate onto a rigid or flexible cylindrical support which is not the method of pasting a sheet-like plate while accurately aligning it on a plate cylinder, is used.
  • a hollow cylindrical core material serving as a core of a cylindrical printing base material a glass fiber cloth impregnated with a thermosetting resin is wound around the surface of a cylindrical support, and is thermally cured while applying pressure.
  • the method of forming a core-like material is already known as described in FRP molding in Non-patent Document 1 (Practical Plastics Molding Processing Encyclopedia, Industrial Conference, Encyclopedia Publishing Center).
  • Such a hollow cylindrical core material can be obtained as a glass fiber reinforced plastic sleeve (hollow cylindrical core material) from a plurality of sleeve manufacturers.
  • this method uses a thermosetting resin, there is a problem that it takes a lot of time to cure.
  • a sheet-shaped printing substrate is attached to the surface of the fiber-reinforced plastic sleeve. For this reason, it is necessary to ensure the smoothness of the sleeve surface, and in the manufacturing process of the fiber-reinforced plastic sleeve, after the thermosetting process, the sleeve surface is polished to ensure surface accuracy. . Polishing this surface also took a lot of time, and there was also a problem that the reinforcing glass fibers could be scattered. In addition, the grinding wheel has been rapidly consumed for polishing the glass fiber.
  • Patent Document 1 Japanese Patent No. 33917964 discloses that a sleeve (hollow cylindrical core material) for supporting a flexible printing plate is formed using a polyester film and a thermoplastic adhesive.
  • a thermoplastic adhesive is used to fix the polyester film, there is a major problem that the polyester film is deformed by heat.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 7-506780 discloses a resin molded into a sheet on a flexible support on a cylindrical core material reinforced with synthetic resin, which is not photosensitive resin. There is a description of a laser-engravable printing substrate on which a photosensitive resin layer is laminated. However, in order to laminate the sheet-shaped photosensitive resin layer, it is premised that the cylindrical core material used has good surface accuracy V.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 5-505352 describes that a fibrous material is impregnated with a photosensitive resin to obtain a structure having an arbitrary shape such as a pipe by photocuring. However, there is no description of using this structure as a printing substrate. Further, there is no description about the use of a specific photopolymerization initiator, and the photosensitive resin described in Patent Document 3 is used in place of a synthetic resin used in the production of fiber-reinforced plastic conventionally used. When a fiber impregnated with a natural resin is used, there is a major problem that the surface of the resulting photocured product becomes sticky and sticky even when irradiated with light in the atmosphere where oxygen is present. Was.
  • a hollow cylindrical core material for printing obtained by photo-curing a photosensitive resin composition has been unknown. Therefore, a hollow cylindrical printing substrate in which a resin layer capable of forming a pattern or a resin layer having a pattern formed on the surface of the hollow cylindrical core material is not known. Furthermore, there is no known method of using a fiber-reinforced plastic layer without polishing.
  • Non-patent document 1 Industrial Research Council "Practical plastic molding and processing encyclopedia” (Encyclopedia Publishing Center)
  • Patent document 1 Japanese patent 3391794
  • Patent Document 2 Japanese Patent Publication No. Hei 7-506780
  • Patent Document 3 Japanese Patent Publication No. 5-505352
  • An object of the present invention is to provide a hollow cylindrical printing base material having good plate thickness accuracy and dimensional accuracy, easily and in a short time.
  • a cured photosensitive resin layer having a thickness of 0.05 mm or more and 50 mm or less.
  • a cured resin layer (1) comprising a fibrous, cloth-like or film-like reinforcing material.
  • the present invention optionally comprises at least a hollow cylindrical core material (A) of the hollow cylindrical printing base material including the perimeter adjusting layer (F), the cushion layer (E), or the rigid body layer (G).
  • the photosensitive The technical idea of the present invention is to form the resin composition by photo-curing. By using a photosensitive resin, it is possible to form a structure including the hollow cylindrical core material (A) in a very short time. Further, since printing can be performed simply by installing a hollow cylindrical printing plate having an uneven pattern on the surface of the hollow cylindrical printing substrate of the present invention in a printing press, the printing plate on a plate cylinder, which has been conventionally performed, is used. The alignment step and the printing plate fixing step can be omitted, and the steps can be greatly simplified.
  • the present invention is as follows.
  • the hollow cylindrical core material (A) comprising a reinforcing material in the form of a resin, a cloth or a film, and having a Shore D hardness of 30 to 100 degrees of the cured photosensitive resin layer (1); as well as
  • a cylindrical printing substrate comprising:
  • the patternable resin layer (B) is a photosensitive resin composition layer capable of forming a pattern by photoengraving technology or a photosensitive resin cured layer (3) capable of laser engraving.
  • a cushion layer (E) is further laminated between the hollow cylindrical core material (A) and the resin layer (B) on which the pattern can be formed or the resin layer (C) with the pattern formed on the surface.
  • the thickness of the cushion layer (E) is not less than 0.05 mm and not more than 50 mm.
  • the hollow cylindrical printing substrate according to any one of 3.
  • the hollow cylindrical printing substrate according to the above item 4 wherein the thickness of the substrate is 0.1 mm or more and 100 mm or less.
  • a rigid body layer (G) is further provided between the resin layer (B) capable of forming a pattern or the resin layer (C) having a pattern formed on its surface and the cushion layer (E). 4.
  • the photosensitive resin cured material constituting the hollow cylindrical core material (A) is formed by photo-curing a liquid photosensitive resin composition at 20 ° C./1. 7.
  • Resin layer (B) which also has strength has at least one kind of bond selected from the group consisting of carbonate bond, urethane bond and ester bond force 2.
  • the hollow cylindrical printing substrate according to the above item 2 comprising a compound and an inorganic porous material.
  • the cured photosensitive resin constituting the hollow cylindrical core material (A) contains a photopolymerization initiator or a decomposition product of the photopolymerization initiator, and the photopolymerization initiator starts hydrogen abstraction type photopolymerization.
  • a hollow cylindrical core material for forming a hollow cylindrical printing substrate comprising a cured photosensitive resin layer (1) having a thickness of 0.05 mm or more and 50 mm or less, wherein the photosensitive resin is The above-mentioned hollow, wherein the cured product layer (1) contains a fibrous, cloth-like or film-like reinforcing material, and the Shore D hardness of the photosensitive resin cured product layer (1) is 30 to 100 degrees. Cylindrical core material.
  • the photosensitive resin is irradiated with a light beam containing light having a wavelength of 200 nm or more and 450 nm or less in the atmosphere.
  • a step of photo-curing the composition layer to form a cured photosensitive resin layer (1), a resin layer (B) or a resin layer capable of forming a pattern on the hollow cylindrical core material (A) formed by the above steps A method for producing a hollow cylindrical printing substrate, comprising a step of laminating a resin layer (C) having a pattern formed on a surface.
  • a sheet obtained by adding a liquid photosensitive resin composition or a semi-cured liquid photosensitive resin composition to a fibrous, cloth-like or film-like reinforcing material is wound around the surface of a cylindrical support. And irradiating the formed photosensitive resin composition layer with a light beam containing light having a wavelength of 200 nm or more and 450 nm or less in the atmosphere, and photo-curing the photosensitive resin composition layer to cure the photosensitive resin composition layer ( Step 1), a step of laminating a resin layer (B) capable of forming a pattern on the hollow cylindrical core material (A) formed in the above step or a resin layer (C) having a pattern formed on the surface.
  • a method for producing a hollow cylindrical printing substrate comprising:
  • the method of laminating the resin layer (B) includes a step of applying the photosensitive resin composition, a step of applying the photosensitive resin composition and then photo-curing, or a step of forming the photosensitive layer formed into a sheet.
  • the method further includes the step of forming at least one resin layer (D) on the cylindrical support, When the resin film is wound on the cylindrical support in the step of forming the resin film, the both ends of the resin film are not overlapped (the seam generated at the joint portion between the both ends is 2 mm or less). Or a step of covering with a seamless resin tube formed in a cylindrical shape, or a step of applying a liquid photosensitive resin composition on a cylindrical support and curing it by light irradiation. The method described in 12. or 13. above.
  • the method includes a step of laminating a perimeter adjusting layer (F) on the hollow cylindrical core material (A). 12. The method according to any one of 12. above, wherein the step of laminating (F) includes a step of applying a liquid photosensitive resin on the hollow cylindrical core material (A) and photo-curing by light irradiation. the method of.
  • the hollow cylindrical core material (A) or Includes a step of laminating a cushion layer (E) on the perimeter adjusting layer (F), and the method of laminating the cushion layer (E) is based on the hollow cylindrical core material (A) or the perimeter adjusting layer (F). 17.
  • the method according to the above 16 including a step of applying a liquid photosensitive resin thereon and photocuring it by light irradiation, or a step of attaching a cushion tape via an adhesive layer or an adhesive layer.
  • the step of laminating the rigid body layer (G) on the cushion layer (E) includes the step of laminating the rigid body layer (G).
  • the hollow cylindrical printing substrate of the present invention has good plate thickness accuracy and dimensional accuracy, and can be formed easily and in a short time.
  • the hollow cylindrical core material (A) of the present invention has a thickness of 0.05 to 50 mm, preferably 0.1 to 20 mm, and more preferably 0.2 to 10 mm. It is preferably formed from 1). Further, the cured photosensitive resin layer (1) preferably has a fibrous, cloth-like or film-like reinforcing material.
  • the thickness of the cylindrical core material of the present invention is 0.05 mm or more and 50 mm or less, shape stability can be ensured, the weight is not extremely heavy, and it is easy to carry.
  • the term fibrous refers to a thread-like material, in which fine fibers are bundled or broken. Including things.
  • the term “fabric” refers to a woven fabric in which fibers are knitted or a nonwoven fabric in which short fibers are irregularly joined.
  • the cloth-like reinforcing material used in the present invention may be a woven cloth or a non-woven cloth.
  • specific examples of the organic fibers include aramide fibers, polyimide fibers, polyester fibers, and acrylic fibers.
  • a nonwoven fabric formed with the strength of cellulose nanofibers produced by Nocteria may be used.
  • Specific examples of the inorganic fibers include glass fibers and carbon fibers.
  • the fibrous reinforcing material made of the above-mentioned organic fiber or inorganic fiber can be used by being wound around the surface of the cylindrical support.
  • the film-like reinforcing material used in the present invention preferably has a thickness of 1 ⁇ m or more and 100 ⁇ m or less. A more preferred range is from 5 m to 80 m, and an even more preferred range is from 10 m to 50 ⁇ m. If the thickness of the film-like reinforcing material is 1 ⁇ m or more and 100 ⁇ m or less, the handling of the film-like reinforcing material is easy and the reinforcing effect of the photosensitive resin cured material layer (1) is sufficiently obtained. be able to.
  • the film-like reinforcing agent is not particularly limited, but is selected from a group of polyester, polyimide, polyamide, polyamideimide, polysulfone, polyether ether ketone, polyphenylene ether, polyphenylene ether, and polyolefin. It is preferable that at least one kind of material is formed, and two or more kinds of laminates may be used.
  • the linear thermal expansion coefficient of the film-like reinforcing material is preferably from -10 ppmZ ° C to 150 ppmZ ° C, and more preferably from -10 ppmZ ° C to 100 ppmZ ° C.
  • the coefficient of linear thermal expansion of the film-like reinforcing material is preferably measured using a thermomechanical measurement method (TMA) in a temperature range of 20 ° C to 80 ° C.
  • the film-like reinforcing material and the photosensitive resin cured product forming the photosensitive resin cured product (1) are alternately laminated. It is preferable to have a laminated structure.
  • the thickness of the cured photosensitive resin laminated on the film-like reinforcing material is preferably 1 ⁇ m or more and 100 ⁇ m or less. A more preferred range is from 5 ⁇ m to 80 ⁇ m, and a still more preferred range is from 10 m to 50 m. If the thickness of the cured photosensitive resin is within the above range, sufficient adhesion or tackiness to the film-like reinforcing material is ensured. And the dimensional stability of the cured photosensitive resin layer (1) can be ensured.
  • the adhesiveness or tackiness between the film-like reinforcing material and the cured photosensitive resin is preferably 50 NZm or more, more preferably 200 NZm or more, and even more preferably 500 NZm or more.
  • adheresiveness refers to a property capable of peeling, and is used separately from adhesiveness in which an interface is broken when peeled.
  • the light transmittance of the film-like reinforcing material used in the present invention is preferably from 10% to 100%, more preferably from 30% to 100%, and more preferably from 10% to 100% in the range of wavelength 370 nm to 350 nm.
  • the preferred range is 50% or more and 100% or less.
  • the surface of the reinforcing material used in the present invention may be surface-modified with a compound having a polymerizable unsaturated group.
  • a silane coupling agent having a functional group such as an acrylic group, a methacryl group, a mercapto group, or a vinyl group, a titanium coupling agent, or the like can be used to chemically react with a functional group such as a hydroxyl group exposed on the surface of the reinforcing agent. .
  • an active functional group such as a hydroxyl group can be formed on the surface by surface treatment of irradiation with plasma, vacuum ultraviolet rays, or the like, and the silane coupling agent or the titanium coupling agent can be reacted.
  • the Shore D hardness of the cured photosensitive resin layer (1) of the present invention is 30 to 100 degrees, preferably 40 to 100 degrees, and more preferably 50 to 100 degrees. When the Shore D hardness is 30 degrees or more and 100 degrees or less, it is easy to maintain a cylindrical shape and dimensional stability can be secured.
  • the photosensitive resin composition (6) has, as components, a resin (a) having a number average molecular weight of 1,000 to 300,000 and a polymerizable unsaturated group in the molecule having a number average molecular weight of less than 1000.
  • organic compound (b) In order to obtain the cured photosensitive resin layer (1) having the above hardness range, two or more, more preferably three or more polymerizable polymers are present in the molecule of the resin (a) and the organic compound (b). It is desirable that the compound structure containing a saturated group contains 10% by weight or more, more preferably 20% by weight or more of the total amount of the resin (a) and Z or the organic compound (b).
  • a compound having a rigid skeleton site such as an aromatic hydrocarbon group and Z or an alicyclic hydrocarbon group in the molecule of the resin (a) and Z or the organic compound (b) may be used.
  • the content of the resin (a) and Z or the organic compound (b) is preferably at least 10 wt%, more preferably at least 20 wt%.
  • the monomer unit having a rigid portion is contained in an amount of 1% or more, more preferably 5% or more, further preferably 10% or more of the monomer unit constituting the resin (a).
  • the maximum difference of the unevenness existing on the surface is preferably 30 m or less, more preferably 20 m or less. Below, more preferably 10 m or less. If the maximum value of the height difference is 30 m or less, a sheet-shaped printing plate, printing plate, blanket, etc. can be directly attached. Further, the surface of the hollow cylindrical core material (A) may have irregularities on the surface which does not need to be smoothed by polishing. In this case, since the polishing step is not performed, the manufacturing time of the hollow cylindrical core material (A) can be greatly reduced, and the powder of the inorganic reinforcing material such as glass fiber does not scatter.
  • the height difference between the irregularities is preferably 20 m or more and 500 m or less.
  • the height difference is within the above range, when the liquid photosensitive resin is applied on the hollow cylindrical core material (A) and a layer to be laminated thereon is formed, entrapment of air bubbles and the like can be prevented.
  • the height difference of the unevenness existing on the surface of the cylindrical core material (A) of the present invention is measured using a contact displacement sensor (trade name “AT3-010” manufactured by KEYENCE CORPORATION), and the contact displacement sensor is fixed. Then, the circumference of one place is measured by rotating the cylindrical core material (A) fixed to the cylindrical support such as an air cylinder once.
  • the rotation speed of the cylindrical core material (A) is preferably set to a speed at which the response of the contact-type sensor can follow, and is preferably 1 rotation or less per second.
  • the height difference is measured with one point arbitrarily selected on the surface of the cylindrical support as a reference point.
  • the maximum value of the height difference with respect to the three reference points at the measurement points is defined as the maximum value of the height difference of the unevenness in the present invention.
  • the height difference of the entire surface of the cylindrical support is 10 / zm or less, more preferably 5 / zm or less with respect to this reference position. Desirably. Therefore, it is desirable that the production accuracy of the air cylinder and the device for fixing and rotating the air cylinder is also less than 10 ⁇ m, preferably less than 5 ⁇ m.
  • the cured photosensitive resin layer (1) constituting the hollow cylindrical core material (A) and the layer (4) constituting the resin layer (D) are each heated at 20 ° C.
  • the photosensitive resin compositions (6) and (7) in a liquid state are preferably formed by photo-curing in the air.
  • the viscosity of the liquid photosensitive resin composition at 20 ° C is lOPa's or more and 50 kPa's or less, more preferably 50? &'5 or more and 201 ⁇ 1 ⁇ 2'5 or less, further preferably lOOPa's or less. It is not more than lOkPa's.
  • the liquid resin can be easily applied in a cylindrical shape, and within the above viscosity range, it can be easily formed without causing liquid dripping due to gravity.
  • the method for forming the cured photosensitive resin layer (1) constituting the hollow cylindrical core material (A) of the present invention comprises the steps of: forming the photosensitive resin composition (6) on a cylindrical support; Coating, irradiating a light beam containing light having a wavelength of 200 nm or more and 450 nm or less, and a step of adjusting the thickness of the obtained cured photosensitive resin layer.
  • the method for applying the photosensitive resin composition (6) on the cylindrical support is not particularly limited, but includes spray coating, blade coating, gravure coating, reverse roller coating, and kistati coating. And a commonly used coating method such as a high-pressure knife coating method. Rotating the cylindrical support around the axis during application of the photosensitive resin composition (6) is effective for uniform application.
  • the light source used for photo-curing the formed photosensitive resin composition layer (1) is preferably a light source that emits light including light having a wavelength of 200 nm or more and 450 nm or less! / ⁇ .
  • a light source that emits light including light having a wavelength of 200 nm or more and 450 nm or less! / ⁇ .
  • metalno, ride lamp, high pressure mercury lamp, ultra high pressure mercury lamp, carbon arc lamp, chemical lamp, germicidal lamp and the like can be mentioned.
  • the light irradiation can be performed simultaneously with the application of the photosensitive resin composition (6), or the light irradiation may be performed after the application.
  • the thickness of the cured photosensitive resin layer (1) obtained by light irradiation can be adjusted by cutting with a turning tool such as a turning tool or cutting with a rotating polishing wheel.
  • a step of winding a fibrous material, a cloth-like material or a film-like material around the surface of the cylindrical support may be further included.
  • the method of winding the fibrous material, the cloth-like material or the film-like material is not particularly limited.
  • a method of spirally winding the formed material is preferable because it has a large effect of maintaining the strength of the hollow cylindrical core material (A).
  • the photosensitive resin composition (6) or the semi-cured photosensitive resin composition (6) is applied to the surface of or inside a fibrous or cloth-like material wound on a cylindrical support, or to the surface of a film-like material. It is also possible to use one containing an object!
  • the semi-cured product of the photosensitive resin composition (6) refers to the photosensitive resin composition (6) that is completely cured and hardened before the stage where physical properties such as hardness no longer change. It refers to the photo-cured state of the object, and can be easily obtained by setting the amount of light to be applied to be small.
  • the standard of the amount of light that can form a semi-hardened product is 80% or less, more preferably 50% or less, even more preferably 30% or less of the minimum light amount at which physical properties such as hardness do not change.
  • the photosensitive resin composition (6) When the photosensitive resin composition (6) is applied to the surface of a fibrous, cloth-like, or film-like material and wound on a cylindrical support, apply the photosensitive resin composition (6).
  • the method for carrying out the method is not particularly limited, and a known method can be used. For uniform application, a doctor blade method, a roll coating method, and a spray coating method are preferable. Further, the inside of the fibrous material or cloth (the space between the fibers) may be impregnated with the photosensitive resin composition (6) or filled by impregnation. The fiber or cloth containing the semi-cured photosensitive resin composition (6) can be photocured while being wound on a cylindrical support. This method is effective for securing light transmittance when fibrous or cloth-like materials are laminated.
  • the cured photosensitive resin layer (1) constituting the hollow cylindrical core material (A) of the present invention is a compound having a rigid skeleton site such as an aromatic hydrocarbon group and Z or an alicyclic hydrocarbon group. It is preferable to have
  • the aromatic hydrocarbon group is one of the skeletons of an aromatic compound such as a phenyl group, a tolyl group, a xylyl group, a biphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a pyrenyl group. Refers to a functional group having an atomic group excluding a hydrogen atom.
  • An alicyclic hydrocarbon group is a functional group having the remaining atomic group of a carbocyclic compound having a structure in which carbon atoms are bonded in a ring, except for one hydrogen atom of a compound that does not belong to an aromatic compound.
  • a cyclohexyl group, a bicyclooctyl group, a cyclopentagel group, a cyclooctyl group and the like can be mentioned.
  • the Shore D hardness of the cured resin layer (1) can be increased, which is effective in maintaining rigidity and ensuring dimensional stability.
  • the photosensitive resin composition (6) for forming the cured photosensitive resin layer (1) of the present invention comprises a resin (a) having a number average molecular weight of 1,000 or more and 300,000 or less, and a number average molecular weight of 1,000. It is preferable to contain an organic compound (b) having a polymerizable unsaturated group in a molecule thereof and a photopolymerization initiator. Further, the photopolymerization initiator contains a hydrogen abstraction type photopolymerization initiator and a collapse type photopolymerization initiator, or a site acting as a hydrogen abstraction type photopolymerization initiator in the same molecule and a collapse type photopolymerization initiator. A compound having a site that acts as an initiator is particularly preferable because a photosensitive resin composition that is photocured by a radical polymerization reaction can be photocured in the atmosphere.
  • the resin (a) a known polymer compound which is not particularly limited can be used.
  • compounds having a rigid molecular structure such as an aromatic hydrocarbon compound and Z or an alicyclic hydrocarbon compound in the molecule are preferable.
  • a rubber-based polymer compound having high rubber elasticity such as synthetic rubber, thermoplastic elastomer, etc., a thermoplastic resin having a high elastic modulus, a solid resin at 20 ° C, or an intramolecular resin.
  • Preferred examples of the polymer include liquid polyurethane at 20 ° C., such as unsaturated polyurethane having a polymerizable unsaturated group, unsaturated polyester, and liquid polybutadiene.
  • Preferred rubber-based polymer compounds include natural rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, polybutadiene rubber, polyisoprene rubber, ethylene propylene rubber, and a polymer of a monobutyl-substituted aromatic hydrocarbon monomer and a conjugated gen monomer. ,.
  • the monovinyl-substituted aromatic hydrocarbon monomer styrene, a-methylstyrene, p-methylstyrene, p-methoxystyrene and the like are used, and as the conjugated diene monomer, butadiene and isoprene are used.
  • thermoplastic elastomer examples include styrene butagen block copolymer and styrene isoprene block copolymer.
  • thermoplastic resin having a high elastic modulus examples include polycarbonate, polysulfone, polyethersulfone, polyamide, polyamic acid, polyester, and polyphenylene ether. In the case of a solid resin at 20 ° C., those which can be dissolved in a solvent are particularly preferred.
  • the preferred range of the number average molecular weight of the resin (a) is 1000 or more and 300,000 or less, more preferably 50 or less. It is from 00 to 100,000, and more preferably from 7000 to 50,000.
  • the number average molecular weight in the present invention is measured by gel permeation chromatography (GPC method), and a value obtained by converting polystyrene having a known molecular weight into a standard is used.
  • the polymerizable unsaturated group is preferably a functional group involved in a radical polymerization reaction, an addition polymerization reaction, or a ring-opening addition polymerization reaction.
  • examples of the polymerizable unsaturated group that undergoes a radical polymerization reaction include a butyl group, an acetylene group, a methacryl group, and an acryl group.
  • examples of the polymerizable unsaturated group that undergoes the addition polymerization reaction include a cinnamoyl group, a thiol group, and an azide group.
  • epoxy group, oxetane group, cyclic ester group, dioxysilane group, spiro orthocarbonate group, spiro ortho ester group, bicyclo ortho ester group, cyclosiloxane group, cyclic Examples include an iminoether group.
  • the resin (a) is an aryl group, a linear or branched alkyl group substituted with at least one aryl group in the molecule, an alkyl group , An alkoxycarbon group, a hydroxyl group, and a formyl group force having at least one type of organic group selected, or a carbonate bond or an ester bond, and the organic group or the bond is directly bonded. It is preferable to have at least 2% of hydrogen atoms ( ⁇ -position hydrogen) bonded to the carbon atoms with respect to all hydrogen atoms in the molecule.
  • a photo-curable photosensitive resin composition is provided.
  • Preferred examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a biphenyl group, a naphthyl group, an anthryl group, a pyrenyl group, and a phenanthryl group. Further, a linear or branched alkyl group substituted with an aryl group, such as a methylstyryl group or a styryl group, is preferred.
  • the content of ⁇ -position hydrogen can be analyzed by nuclear magnetic resonance spectroscopy (NMR) focusing on hydrogen atoms.
  • NMR nuclear magnetic resonance spectroscopy
  • the content of the resin (a) component is preferably in the range of 10 to 90 wt%, more preferably, based on the total weight of the nonvolatile components. Is from 20 to 80% by weight, more preferably from 30 to 70% by weight.
  • the organic compound (b) having a polymerizable unsaturated group contained in the photosensitive resin composition (6) is a compound that undergoes a radical polymerization reaction, an addition polymerization reaction, and a ring-opening addition polymerization reaction, and known compounds may also be used. It can be used and is not particularly limited.
  • radical-reactive compounds unsaturated-tolyls such as ethylene, propylene, styrene, dibutylbenzene and other olefins, acetylenes, (meth) acrylic acid and derivatives thereof, haloolefins and acrylonitrile, and (meth) Acrylamide and its derivatives, unsaturated dicarboxylic acids such as maleic anhydride, maleic acid, fumaric acid and its derivatives, vinyl acetate, N-bulpyrrolidone, N-vinylcarbazole, etc. (Meth) acrylic acid and its derivatives are preferred examples.
  • the derivative examples include an aliphatic compound having a cycloalkyl group, a bicycloalkyl group, a cycloalkenyl group, a bicycloalkenyl group, a benzyl group, a fuel group, a phenoxy group, a naphthalene skeleton, an anthracene skeleton, Aromatic compounds having a biphenyl skeleton, a phenanthrene skeleton, a fluorene skeleton, etc., compounds having an alkyl group, a halogenated alkyl group, an alkoxyalkyl group, a hydroxyalkyl group, an aminoalkyl group, a glycidyl group, etc., alkylene glycol, poly Examples thereof include ester compounds with polyhydric alcohols such as oxyalkylene glycol and polyalkylene glycol / trimethylolpropane, and compounds having a polysiloxane structure such as polydimethyls
  • Examples of the polymerizable unsaturated group having addition polymerization reactivity include a compound having a cinnamoyl group, a thiol group, and an azide group.
  • a polymerizable unsaturated group having ring-opening addition reactivity epoxy group, oxetane group, cyclic ester group, dioxysilane group, spiro orthocarbonate group, spiro ortho ester group, bicyclo ortho ester group, cyclosiloxane group, cyclic imino ether Compounds having a group or the like can be given.
  • Particularly useful compounds having an epoxy group As compounds having an epoxy group, compounds obtained by reacting epichlorohydrin with various polyols such as diols and triols, and peracids reacting with ethylene bonds in the molecule And epoxy conjugates obtained by the above method.
  • Epoxy compounds such as glycidyl ether, polytetramethylene glycol diglycidyl ether, poly (propylene glycol adipate) diol diglycidyl ether, poly (ethylene glycol adipate) diol diglycidyl ether, poly (force prolataton) diol diglycidyl ether, epoxy-modified silicone Oils can be mentioned.
  • an alicyclic group is used as the resin (a) or the organic compound (b). It is preferable to contain at least one or more hydrocarbon compounds or aromatic hydrocarbon compounds, and these alicyclic hydrocarbon compounds or aromatic hydrocarbon compounds can be used as the entirety of the resin (a) or the organic compound (b).
  • the content is preferably 20% by weight or more, more preferably 50% by weight or more.
  • the derivative of the aromatic hydrocarbon compound may be an aromatic hydrocarbon compound having an element such as nitrogen or sulfur.
  • the ratio of the resin (a) and the organic compound (b) in the photosensitive resin composition (6) is preferably 5 to 200 parts by weight based on 100 parts by weight of the resin (a).
  • Magusu 20-: L00 parts by weight is more preferable.
  • a known photopolymerization initiator can be used as the photopolymerization initiator (c) contained in the photosensitive resin composition (6).
  • known radical polymerization initiators such as aromatic ketones and benzoyl ethers can be used.
  • a combination of a hydrogen abstraction type photopolymerization initiator such as benzophenone and a collapse type photopolymerization initiator such as 2,2-dimethoxyphenylacetophenone is particularly preferable. Furthermore, even when a compound having a site acting as a hydrogen abstraction type polymerization initiator and a site acting as a decay type photopolymerization initiator in the same molecule is used, the effect of photohardening in the atmosphere can be seen. a-Aminoacetophenones can be mentioned.
  • each R independently represents a hydrogen atom or an alkyl group of 1 to LO carbon atoms.
  • X represents an alkylene group having 1 to 10 carbon atoms.
  • photoinitiated thione polymerization initiators such as aromatic diazonium salts, aromatic odonium salts, aromatic sulfo-pam salts that absorb light to generate acids, or generate bases by absorbing light And a photopolymerization initiator.
  • the addition amount of the photopolymerization initiator is preferably in the range of 0.01 to 10 wt% of the total amount of the resin (a) and the organic compound (b).
  • a resin layer (D) can be provided as an optional layer.
  • the resin layer (D) is provided on the inner surface of a hollow cylindrical core material (A) (reference numeral 2) composed of a photosensitive resin cured material layer (1) as shown by reference numeral 1 in FIG. It has a composition different from that of the photosensitive resin composition (6) that forms the photosensitive resin cured material layer (1), and has a thickness of 0.01 mm or more and 1 mm or less, more preferably 0.05 mm or more and 0.5 mm or less. .
  • the resin layer (D) is used for the purpose of reducing unevenness on the inner surface of the photosensitive resin cured layer (1) containing a reinforcing material. Use fiber as reinforcement It is effective when you are.
  • the material constituting the resin layer (D) may be a resin film or a resin tube formed into a cylindrical shape. When wrapping a resin film around a cylindrical support, it is preferable that the resin film be wrapped so that both ends do not overlap and the seam generated at the joint between the both ends is 2 mm or less. . Further, the cured photosensitive resin layer (4) having a different composition from the cured photosensitive resin layer (1) containing a reinforcing material may be used. In particular, the resin layer (D), which is a joint, is preferred. When the thickness of the resin layer (D) is not less than 0.5 Olmm and not more than 0.5 mm, it is sufficient to reduce unevenness on the inner surface of the cured photosensitive resin layer (1) having a reinforcing material.
  • fine particles may be contained as a reinforcing material for the purpose of reducing friction on the inner surface of the resin layer (D).
  • the average particle diameter of the fine particles to be contained is preferably from 0.01 ⁇ m to 100 ⁇ m, more preferably from 0.05 ⁇ m to 20 ⁇ m, and still more preferably from 0.1 ⁇ m to 10 ⁇ m. m or less.
  • the shape of the fine particles is preferably spherical.
  • spherical fine particles having a sphericity in the range of 0.5 to 1 are contained in 70% or more of the total number of particles.
  • the sphericity of the present invention is defined as the radius R1 of the largest circle completely falling within the projected shape of the fine particles and the smallest circle completely including the projected shape when the fine particles are observed with a scanning electron microscope. Defined as the ratio to the radius R2, ie R1ZR2.
  • the number of spherical microparticles is observed with a scanning electron microscope and measured at a magnification at which at least about 100 particles enter the microscope field of view. It is preferable to use image recognition software for the measurement.
  • the spherical fine particles referred to in the present invention include those having a smooth surface without projections or the like on the surface which does not need to be perfectly spherical. Examples of the material of the fine particles include hard ceramics such as silicon nitride, boron nitride and silicon carbide; hard metals such as titanium and chromium; and organic substances having a fluorine atom or a silicon atom such as polytetrafluoroethylene and polydimethylsiloxane.
  • a perimeter adjusting layer (F) can be provided as an optional layer.
  • the circumferential length adjusting layer (F) can be provided on the hollow cylindrical core material (A) according to the circumferential length of the printing plate to be used.
  • the circumference of the printing plate varies widely depending on the printed material to be produced. Conventionally, adjust the circumference
  • a method was generally used in which a hard rubber was wound on a cylindrical core material, a vulcanization crosslinking, surface polishing, and a crosslinking stabilization process were performed, and a layer was formed over a considerable time.
  • the circumference adjusting layer (F) has a function of adjusting the circumference of the printing plate and also a function of smoothing irregularities on the surface of the hollow cylindrical core material (A).
  • the unevenness of the surface is extremely large.
  • the process of polishing the surface of the hollow cylindrical core material requires additional work to increase the smoothness, and if it takes time, there is a demerit that the production cost is greatly increased without the need for force.
  • the hollow cylindrical core material (A) has a very good conformability to irregularities on the surface. There is no need to polish the surface of the core material (A). Of course, a polishing treatment may be performed to finish the surface.
  • the material of the circumference adjusting layer (F) of the present invention is not particularly limited, but is preferably a cured product of the photosensitive resin composition (9).
  • the cured product preferably has a Shore D hardness of 5 to 100 degrees, more preferably 20 to 100 degrees, and still more preferably 30 to 100 degrees. If the Shore D hardness is 5 degrees or more and 100 degrees or less, dimensional stability in the thickness direction during printing can be sufficiently ensured.
  • the photosensitive resin composition (9) constituting the circumference adjusting layer (F) may be a solid photosensitive resin composition at 20 ° C., but may be a liquid photosensitive resin composition. Liquid photosensitive resin compositions are particularly preferred from the viewpoint that the thickness of the circumference adjusting layer (F) can be arbitrarily changed. A solvent may be contained in the liquid photosensitive resin composition. However, a solvent removing step is required, and therefore, a solventless liquid photosensitive resin composition is more preferable. When a liquid photosensitive resin composition is used, a seamless layer having a uniform thickness can be formed.
  • the liquid photosensitive resin composition preferably has a viscosity at 20 ° C.
  • the method of forming the circumference adjusting layer (F) includes a step of applying the photosensitive resin composition (9) on the hollow cylindrical core material (A), and a step of irradiating light to cure the resin. It is preferable to include a step of adjusting the thickness of the obtained cured photosensitive resin layer.
  • the method of applying the photosensitive resin composition (9) on the hollow cylindrical core material (A) is not particularly limited, but includes spray coating, blade coating, gravure coating, reverse roller coating, and the like. Commonly used coating methods such as a kistastic coating method and a high-pressure air knife coating method can be used. When the photosensitive resin composition (9) is applied and applied, rotating the hollow cylindrical core material (A) around the axis is effective for uniform application.
  • the light source used for photocuring the formed photosensitive resin layer is preferably a light source that generates a light beam including light having a wavelength of 200 nm or more and 450 nm or less.
  • a light source that generates a light beam including light having a wavelength of 200 nm or more and 450 nm or less.
  • metal halide lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, chemical lamps, germicidal lamps, and the like can be given.
  • the light irradiation can be performed simultaneously with the application of the photosensitive resin composition, or the light irradiation may be performed after the application.
  • the thickness of the cured photosensitive resin layer obtained by light irradiation can be adjusted by cutting with a cutting tool such as a turning tool, cutting with a rotating polishing wheel, or polishing with a polishing cloth. Can be implemented in combination.
  • processing can be performed while fixing the long axis of the hollow cylindrical core material (A) and rotating in the
  • the surface of the hollow cylindrical core material (A) can be treated to improve the adhesiveness with the circumference adjusting layer (F).
  • the method include a method of forming a thin adhesive layer on the surface of the hollow cylindrical core material (A), a method of forming a primer layer for improving adhesion, and a method of performing physical and chemical treatment.
  • the physical treatment include a method of irradiating high energy rays such as plasma, light in a vacuum ultraviolet region, an electron beam, an ion beam, and the like, and a method of exposing to an atmosphere of high energy rays.
  • an excimer UV wavelength: 172 nm
  • the adhesion improving primer layer is specifically a silane coupling agent or a titanium coupling. Forming a thin layer with an agent, a silicone-based adhesion aid, or the like.
  • the circumferential length adjusting layer (F) can be easily formed on the hollow cylindrical core material (A) without a seam containing bubbles.
  • the hollow cylindrical printing substrate can be lightened.
  • the cells contained in the layer may be open cells, but closed cells are more preferable in terms of mechanical strength.
  • the open cells can be formed by a method of mixing a gas such as air into the photosensitive resin composition (9), a method of mixing a compound which generates nitrogen by heat or light, or the like.
  • closed cells can be formed using hollow fine particles. Examples thereof include inorganic hollow fine particles such as hollow glass fine particles and hollow silica fine particles, and organic fine particles in the form of microcapsules.
  • microcapsules having a thermal expansion property whose volume expands when heated it is preferable to use microcapsules having a thermal expansion property whose volume expands when heated.
  • This type of thermally expandable microcapsule contains a volatile organic liquid inside, and when mixed with the photosensitive resin composition (9), ensures light transmittance that does not hinder photocurability. can do. Therefore, by performing the curing of the photosensitive resin composition (9) by light irradiation in combination with the thermal expansion of the thermally expandable microcapsules by heating, light curing of a thick film becomes possible.
  • the photosensitive resin composition is mixed with hollow microparticles, it generally becomes cloudy because there is a large difference in the refractive index between the air layer inside and the photosensitive resin composition. Even if such a cloudy resin is applied, a thick-film photocured product can be obtained by repeatedly applying the photocured process while applying the film in a thin film state.
  • the thickness of the perimeter adjusting layer (F) formed by thermal expansion is preferably 1.1 to 100 times, more preferably 1.1 to 100 times the thickness of the thermally expanded microcapsules before expansion. The range is 50 times. 1. If it is 1 time or more, it is possible to secure the lightweight adjustment of the circumference adjustment layer (F), and if it is 100 times or less, it is possible to obtain the mechanical strength of the circumference adjustment layer (F). .
  • the thickness of the circumference adjusting layer (F) is preferably observed by using a scanning electron microscope or an optical microscope while exposing the cross section.
  • the average diameter of the bubbles having the partition walls present in the circumference adjusting layer (F) is preferably from 0.5 m to 500 m. If it is 0.5 m or more, the circumference adjustment layer (F) is reduced in weight If it is 500 m or less, mechanical properties can be ensured even in the circumference adjusting layer (F) having a thickness of several mm.
  • the size of the bubbles in the perimeter adjusting layer (F) is preferably observed using an optical microscope or a laser confocal microscope.
  • the average value of the partition wall thickness is preferably 0.05 m or more and 10 m or less.
  • the thickness of the partition wall can be evaluated by cutting the perimeter adjusting layer (F) and observing the cross section using a high-resolution scanning electron microscope.
  • the heat-expandable microcapsules are fine particles containing a thermoplastic elastomer as a partition and containing a volatile organic liquid therein, preferably at 60 to 250 ° C, more preferably at 100 to 200 ° C.
  • a thermoplastic elastomer examples include polychloride bilidene, polyacrylonitrile, polymethyl methacrylate, and the like.
  • the volatile organic liquid examples include hydrocarbons such as butane, isobutane, butene, isobutene, pentane, isopentane, neopentane, hexane, and heptene.
  • the partition walls may be coated with inorganic fine particles.
  • the inorganic fine particles include silica, calcium carbonate, and titanium oxide.
  • a preferred density range of the circumference adjustment layer (F) is, 0. lgZcm 3 or 0. 9gZcm 3 below, good Ri preferably 0. 3gZcm 3 or 0. 7gZcm 3 below. If it is 0.9 lgZcm 3 or more, the mechanical strength of the circumference adjustment layer (F) can be secured. If it is 0.9 gZcm 3 or less, the circumference adjustment layer (F) can have a light weight. Can be.
  • the photosensitive resin composition (9) contains heat-expandable microcapsules, it is difficult to thermally expand the microcapsules if the photosensitive resin composition is completely light-cured. Therefore, the amount of energy of light to be irradiated is adjusted so that the photosensitive resin composition is in a semi-cured state, and thereafter, a heat treatment is performed to expand the heat-expandable microcapsules. Preferably, the photosensitive resin composition is completely cured. Alternatively, when the content of the heat-expandable microcapsules is large, the photosensitive resin composition is thinly applied on the hollow cylindrical core material (A), and the microcapsules are thermally expanded. Irradiate By repeatedly performing the operation of completing the photo-curing, the circumference adjustment layer (F) having a predetermined thickness can be formed. Also, microcapsules that have already been thermally expanded may be added to the photosensitive resin composition!
  • the hollow cylindrical core material Rotating the hollow cylindrical core (A) between A) and the plate or roll-shaped object (h) placed at a certain distance while heating the photosensitive resin layer (g) For this reason, it is preferable that the photosensitive resin layer (g) is passed through the object (h) while being in contact with the object (h), as a method for forming a circumferential length adjusting layer (F) having a uniform thickness.
  • Examples of the heating method include a method of blowing hot air, a method of irradiating infrared rays, and a method of heating a plate-shaped or roll-shaped object (h) using a heater, and a combination of these methods. Can also be used. Examples of a method for rapidly stopping foaming by heating include a method of blowing and cooling cold air, and a method of contacting with a cooling roll or a cooling plate.
  • the photosensitive resin composition (9) for forming the perimeter adjusting layer (F) of the present invention comprises at least one kind of binder (i) and at least one kind of polymerizable unsaturated group. It is preferable that the organic compound G) has at least one or more photopolymerization initiators (k).
  • a seamless layer having a uniform film thickness can be formed in which the liquid state at 20 ° C. is preferable from the viewpoint of moldability.
  • the thickness to be formed is very thin, it is desirable to keep the viscosity low. As a method of lowering the viscosity, a method of adding a solvent is convenient.
  • a known polymer compound can be used as the noinder (i). Specifically, a rubber-based polymer compound with rubber elasticity such as synthetic rubber or thermoplastic elastomer, a solid resin at 20 ° C such as a thermoplastic resin with a high elastic modulus, or polymerizable in the molecule.
  • a rubber-based polymer compound with rubber elasticity such as synthetic rubber or thermoplastic elastomer
  • a solid resin at 20 ° C such as a thermoplastic resin with a high elastic modulus
  • Preferred examples of the high molecular compound include resins and the like which are liquid at 20 ° C., such as unsaturated polyurethane having an unsaturated group, unsaturated polyester, and liquid polybutadiene.
  • Preferred rubber-based polymer compounds are natural rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, polybutadiene rubber, polyisoprene rubber, ethylene propylene rubber, and a polymer of a monobutyl-substituted aromatic hydrocarbon and a conjugated gen monomer.
  • the monobule replacement Styrene, a-methylstyrene, p-methylstyrene, p-methoxystyrene, etc. are used as aromatic hydrocarbon monomers, butadiene, isoprene, etc. are used as conjugated diene monomers.
  • thermoplastic elastomers include: Examples include styrene butagen block copolymer and styrene isoprene block copolymer.
  • thermoplastic resin having a high elastic modulus include polycarbonate, polysulfone, polyether sulfone, polyether ether ketone, polyamide, polyamic acid, polyester, and polyphenylene ether. In the case of a solid resin at 20 ° C., those which can be dissolved in a solvent are particularly preferred.
  • the preferred range of the number average molecular weight of the binder (i) is from 1,000 to 300,000, more preferably from 5,000 to 100,000, and still more preferably from 7000 to 50,000.
  • the number average molecular weight of the present invention is a value measured by gel permeation chromatography (GPC) and converted based on polystyrene having a known molecular weight.
  • the binder (i) is a linear or branched alkyl machine substituted with an aryl group, at least one aryl group in the molecule, an alkyl group, an alkoxy group. It has at least one organic group selected from the group consisting of a carbonyl group, a hydroxyl group, and a formyl group, or has a carbonate bond or an ester bond, and the organic group or the bond is directly bonded! It is preferable to have at least 2% of hydrogen atoms ( ⁇ -position hydrogen) bonded to carbon atoms relative to all hydrogen atoms in the molecule.
  • a compound having the specific functional group and having a hydrogen atom bonded to a carbon atom to which the organic group is directly bonded allows the compound to be exposed to the air.
  • Preferred examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a biphenyl group, a naphthyl group, an anthryl group, a pyrenyl group, and a phenanthryl group.
  • a linear or branched alkyl group substituted with an aryl group, such as a methylstyryl group or a styryl group is preferred.
  • the content of ⁇ -position hydrogen can be analyzed by nuclear magnetic resonance spectroscopy H-NMR method focusing on hydrogen atoms.
  • the content of the binder (i) is preferably in the range of 10 to 90 wt%, more preferably 20 to 80 wt%, and more preferably 20 to 80 wt%. Preferably it is 30 to 69 wt%.
  • the organic compound (j) having a polymerizable unsaturated group contained in the photosensitive resin composition (9) is a compound that undergoes a radical polymerization reaction, an addition polymerization reaction, and a ring-opening addition polymerization reaction. Compounds can also be used and are not particularly limited.
  • radical reactive compounds ethylene, propylene, styrene, dibutylbenzene, etc., olefins, acetylenes, (meth) acrylic acid and derivatives thereof, haloolefins, acrylonitrile and other unsaturated-tolyls, (meth) acrylamide and the like
  • unsaturated dicarboxylic acids such as maleic anhydride, maleic acid, fumaric acid, and derivatives thereof, vinyl acetates, N-butylpyrrolidone, N-vinylcarbazole, etc.
  • acrylic acid and its derivatives are preferred examples.
  • the derivative examples include an aliphatic compound having a cycloalkyl group, a bicycloalkyl group, a cycloalkenyl group, a bicycloalkenyl group, a benzyl group, a fuel group, a phenoxy group, a naphthalene skeleton, an anthracene skeleton, Aromatic compounds having a biphenyl skeleton, a phenanthrene skeleton, a fluorene skeleton, etc., compounds having an alkyl group, a halogenated alkyl group, an alkoxyalkyl group, a hydroxyalkyl group, an aminoalkyl group, a glycidyl group, etc., alkylene glycol, poly Examples thereof include ester compounds with polyhydric alcohols such as oxyalkylene glycol and polyalkylene glycol / trimethylolpropane, and compounds having a polysiloxane structure such as polydimethyls
  • Examples of the polymerizable unsaturated group having addition polymerization reactivity include a compound having a cinnamoyl group, a thiol group, and an azide group.
  • a polymerizable unsaturated group having ring-opening addition reactivity epoxy group, oxetane group, cyclic ester group, dioxysilane group, spiro orthocarbonate group, spiro ortho ester group, bicyclo ortho ester group, cyclosiloxane group, cyclic imino ether Compounds having a group or the like can be given.
  • Particularly useful compounds having an epoxy group As compounds having an epoxy group, compounds obtained by reacting epichlorohydrin with various polyols such as diols and triols, and peracids reacting with ethylene bonds in the molecule And epoxy conjugates obtained by the above method.
  • Epoxy compounds such as glycidyl ether, polytetramethylene glycol diglycidyl ether, poly (propylene glycol adipate) diol diglycidyl ether, poly (ethylene glycol adipate) diol diglycidyl ether, poly (force prolataton) diol diglycidyl ether, epoxy-modified silicone Oil (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "HF-105”) can be mentioned.
  • the organic compound (j) has at least one kind of an alicyclic or aromatic derivative.
  • the content of (j) is preferably at least 20 wt%, more preferably at least 50 wt%.
  • the aromatic derivative may be an aromatic compound having an element such as nitrogen or sulfur.
  • the ratio of the binder (i) and the organic compound (j) in the photosensitive resin composition (9) is usually 5 to 200 parts by weight of the organic compound (j) based on 100 parts by weight of the binder (i).
  • the preferred range is 20 to 100 parts by weight.
  • a known photopolymerization initiator can be used as the photopolymerization initiator (k) contained in the photosensitive resin composition (9).
  • known radical polymerization initiators such as aromatic ketones and benzoyl ethers can be used.
  • benzophenone, Michler's ketone, benzoin methyl ether, benzoin E chill ether, benzoin isopropyl ether, a Mechiroru base emission zone in ether, a Metokishi base Nzoinmechi ether, 2, 2-dimethoxy Hue - the force in such Ruasetofuenon be used Can also be used in combination.
  • a combination of a hydrogen abstraction type photopolymerization initiator such as phenone and a collapse type photopolymerization initiator such as 2,2-dimethoxyphenylacetophenone is particularly preferred. Furthermore, even when a compound having a site acting as a hydrogen abstraction-type polymerization initiator and a site acting as a collapse-type photopolymerization initiator in the same molecule is used, the effect of photocuring in the atmosphere can be seen.
  • a photoinitiated thione polymerization initiator such as an aromatic diazonium salt, an aromatic odonium salt, or an aromatic sulfodium salt that absorbs light to generate an acid, or a polymerization initiator that generates a base by absorbing light. I can do it.
  • the addition amount of the polymerization initiator is preferably in the range of 0.01 to 10 wt% of the total amount of the binder (i) and the organic compound (j)!
  • a circumference adjusting layer (F) (reference numeral 3), a resin layer (B) (reference numeral 6) capable of forming a pattern on the surface, or a resin having a pattern formed on the surface. It may be a laminate in which a cushion layer (E) (reference numeral 4) having cushioning properties is formed between the layers (C) (reference numeral 6). If there is no circumference adjusting layer (F), the hollow cylindrical core material (A) (reference numeral 2) and a resin layer (B) or a resin layer on which a pattern can be formed are formed. The laminate may have a cushion layer (E) having cushioning properties between (C).
  • the cushion layer (E) formed on the circumferential length adjusting layer (F) or the hollow cylindrical core material (A) is obtained by forming a cushion tape with an adhesive layer on the circumferential length adjusting layer (F) or the hollow cylindrical shape.
  • the photosensitive resin composition layer can be formed on the adjustment layer (F) or the hollow cylindrical core material (A), and cured by photo-curing to form a rubber-elastic cushion layer. .
  • a simple method of forming a seamless cushion layer is a method of photo-curing a photosensitive resin composition. Of course, as described in the section of the perimeter adjusting layer (F), open cells and closed cells can be contained.
  • the hardness of the cushion layer (E) of the present invention is preferably from 10 to 70 degrees in Shore A hardness, more preferably from 10 to 60 degrees, still more preferably from 10 to 50 degrees. If the cushion layer (E) contains air bubbles and it is difficult to measure with a Shore A hardness meter, ASKER —C hardness can be used as the hardness of the cushion layer (E).
  • the preferred range of ASKER-C hardness is 20 to 70 degrees, more preferably 20 to 60 degrees.
  • the hardness of the cushion layer (E) is preferably lower than the hardness of the resin layer (B) capable of forming a pattern on the surface or the resin layer (C) having a pattern formed on the surface.
  • a resin layer (B) or a pattern capable of forming a pattern is formed on the hollow cylindrical core material (A), the circumference adjusting layer (F), or the cushion layer (E).
  • the fat layer (C) can be laminated.
  • the method of forming a noturn is a method using photoengraving technology through an exposure and development process, and a laser engraving method in which a concave portion is formed by irradiating a laser beam and removing the resin in the portion irradiated with the laser beam. Can be used.
  • the laser engraving method is a method that can form a pattern on a resin layer based on image data using a computer, since a pattern can be formed without undergoing a developing step, and is preferable.
  • the resin layer (B) or resin layer (C) has a hardness of 20 to 75 degrees in the area of Shore A hardness, paper, film, and building material surface irregularity pattern in normal printing plate applications.
  • Shore A hardness a hardness of 20 to 75 degrees in the area of Shore A hardness, paper, film, and building material surface irregularity pattern in normal printing plate applications.
  • relatively hard materials are required, with a Shore D hardness range of 30-80 degrees.
  • the laser-engravable photosensitive resin cured material layer (3) contains an inorganic porous material (f) to form a laser. Liquid scum generated in one engraving process can be absorbed and removed.
  • the photosensitive resin composition (10) before photocuring is a resin (d) having a number average molecular weight of 1,000 to 200,000 and an organic compound having a number average molecular weight of less than 1000 and having a polymerizable unsaturated group in the molecule. (e) and an inorganic porous material (f).
  • the type of resin (d) may be an elastomer or a non-elastomer, and may be a solid polymer or a liquid polymer at 20 ° C. .
  • a thermoplastic resin When a thermoplastic resin is used, it is desirably contained in an amount of 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight or more of the total weight of the polymer. If the content of the thermoplastic resin is S30 wt% or more, the resin is sufficiently fluidized by laser beam irradiation, and is absorbed by the inorganic porous material described later.
  • Solvent-soluble resin is dissolved in solvent and applied It is preferable to use them.
  • the photosensitive resin composition to be formed is also liquid, and thus can be molded at a low temperature.
  • the number average molecular weight of the resin (d) used in the present invention is preferably in the range of 1,000 to 200,000. A more preferable range is 5000 to 100,000. When the number average molecular weight is in the range of 1,000 to 200,000, the mechanical strength of the printing original plate can be ensured, and the resin can be sufficiently melted or decomposed during laser engraving.
  • the number average molecular weight of the present invention is measured by gel permeation chromatography (GPC) and evaluated with respect to a standard polystyrene having a known molecular weight.
  • the scum liquified by laser beam irradiation can be absorbed and removed using the inorganic porous material.
  • the photosensitive resin cured product (10) to be used a resin that easily liquefies and is easily decomposed is preferable.
  • easily decomposable resins include styrene, ⁇ -methylstyrene, ⁇ -methoxystyrene, acrylic esters, methacrylic esters, ester compounds, ether compounds, nitro compounds as monomer units which are easily decomposed in a molecular chain.
  • polyethers such as polyethylene glycol, polypropylene glycol, polytetraethylene dalicol, aliphatic polycarbonates, aliphatic cellulose, polymethyl methacrylate, polystyrene, nitrocellulose, polyoxyethylene, polynorbornene, polycyclohexene hydrogenated
  • a polymer having a molecular structure such as a substance or a dendrimer having many branched structures is a typical example of a substance which is easily decomposed.
  • a polymer containing a large number of oxygen atoms in the molecular chain is preferable from the viewpoint of decomposability.
  • a compound having a carbonate group, a sulfamate group, and a methacryl group in the polymer main chain is preferable because of its high thermal decomposability.
  • polyesters and polyurethanes synthesized from (poly) carbonate diol and (poly) carbonate dicarboxylic acid as raw materials, and polyamides synthesized from (poly) carbonate diamine as raw materials are examples of polymers having good thermal decomposability. It can be mentioned as.
  • These polymer main chains and side chains may contain a polymerizable unsaturated group.
  • the terminal has a reactive functional group such as a hydroxyl group, an amino group or a carboxyl group, it is easy to introduce a polymerizable unsaturated group at the terminal of the main chain.
  • thermoplastic elastomer used in the present invention is not particularly limited, SBS (polystyrene polybutadiene polystyrene), SIS (polystyrene polyisoprene polystyrene), and SEBS (polystyrene polyethylene Z polybutylene, which are styrene-based thermoplastic elastomers, may be used.
  • SBS polystyrene polybutadiene polystyrene
  • SIS polystyrene polyisoprene polystyrene
  • SEBS polystyrene polyethylene Z polybutylene, which are styrene-based thermoplastic elastomers
  • Polyolefin or other thermoplastic elastomers, urethane-based thermoplastic elastomers, ester-based thermoplastic elastomers, amide-based thermoplastic elastomers, silicone-based thermoplastic elastomers, and the like.
  • thermoplastic elastomer is fluidized by heating, it can be mixed with the inorganic porous material used in the present invention.
  • Thermoplastic elastomer is a material that flows when heated, can be molded in the same manner as ordinary thermoplastics, and exhibits rubber elasticity at room temperature.
  • the molecular structure is composed of soft segments such as polyether or rubber molecules, and hard segments that prevent plastic deformation at around room temperature, similar to vulcanized rubber.
  • the hard segments include a frozen phase, a crystalline phase, hydrogen bonds, There are various types such as ionic crosslinking.
  • thermoplastic elastomer can be selected depending on the use of the printing plate. For example, urethane-based, ester-based, amide-based, and fluorine-based thermoplastic elastomers are preferred in fields where solvent resistance is required. A fluorinated thermoplastic elastomer is preferred. Further, the hardness can be greatly changed depending on the type of the thermoplastic elastomer.
  • Non-elastomeric thermoplastic resin is not particularly limited. Polyester resin, unsaturated polyester resin, polyamide resin, polyamideimide resin, polyurethane resin, unsaturated polyurethane resin, polysulfone Resin, polyethersulfone resin, polyimide resin, polycarbonate resin, wholly aromatic polyester resin, etc. You can do it.
  • the softening temperature of the thermoplastic resin is preferably from 50 ° C to 300 ° C. A more preferable range is 80 ° C or more and 250 ° C or less, more preferably 100 ° C or more and 200 ° C or less. If the softening temperature is 50 ° C or higher, it can be handled as a solid at room temperature, and can be handled without deforming a sheet or a cylinder. When the softening temperature is 300 ° C or less, when processing into a cylindrical shape, it is not necessary to heat the thermoplastic resin to an extremely high temperature. .
  • the measurement of the softening temperature of the present invention uses a dynamic viscoelasticity measuring device, and when the room temperature force temperature is increased, the first temperature at which the viscosity changes greatly (the slope of the viscosity curve changes).
  • the resin (d) may be a solvent-soluble resin. Specific examples include polysulfone resin, polyethersulfone resin, epoxy resin, alkyd resin, polyolefin resin, polyester resin and the like.
  • the resin (d) generally does not have a highly reactive polymerizable unsaturated group, but even if it has a highly reactive and polymerizable unsaturated group at the terminal or side chain of the molecular chain, I don't care.
  • a polymer having high reactivity and having a polymerizable unsaturated group is used, a printing master having extremely high mechanical strength can be produced.
  • polyurethane-based or polyester-based thermoplastic elastomers it is possible to relatively easily introduce highly reactive polymerizable unsaturated groups into the molecule.
  • introduction includes the case where a polymerizable unsaturated group is directly attached to the terminal of the polymer main chain, the terminal of the polymer side chain, the polymer main chain or the side chain.
  • a polymerizable unsaturated group is directly introduced into the molecular terminal may be used.
  • reactive groups such as hydroxyl, amino, epoxy, carboxyl, anhydride, ketone, hydrazine, isocyanate, isothiosinate, cyclic carbonate, and ester groups
  • a method of reacting the group reacting with the terminal bonding group with an organic compound having a polymerizable unsaturated group to introduce a polymerizable unsaturated group into the terminal etc.
  • the method of (1) is preferred.
  • the organic compound (e) is a compound having an unsaturated bond involved in a radical polymerization reaction or an addition polymerization reaction, and has a number average molecular weight of less than 1000 in consideration of the ease of dilution with the resin (d). It is preferable that.
  • Preferred examples of the functional group having an unsaturated bond involved in the radical polymerization reaction include a vinyl group, an acetylene group, an acryl group, a methacryl group, and an aryl group.
  • Examples of the functional group having an unsaturated bond involved in the addition polymerization reaction include a cinnamoyl group, a thiol group, an azide group, an epoxy group that undergoes a ring-opening addition reaction, an oxetane group, a cyclic ester group, a dioxysilane group, and a spiro orthocarbonate group. And a spiroorthoester group, a bicycloorthoester group, a cyclosiloxane group, a cyclic iminoether group and the like.
  • organic compound (e) examples include olefins such as ethylene, propylene, styrene, and dibutylbenzene, acetylenes, (meth) acrylic acid and its derivatives, halolefins, and unsaturated-tolyl such as acrylonitrile.
  • olefins such as ethylene, propylene, styrene, and dibutylbenzene
  • acetylenes examples include (meth) acrylic acid and its derivatives, halolefins, and unsaturated-tolyl such as acrylonitrile.
  • (Meth) acrylamide and its derivatives aryl compounds such as aryl alcohol and aryl isocyanate, unsaturated dicarboxylic acids such as maleic anhydride, maleic acid and fumaric acid and derivatives thereof, vinyl acetates, N-vinyl (Meth) acrylic acid and its derivatives are preferred in terms of their abundance, cost, and decomposability upon irradiation with a laser beam, and examples thereof are U, and examples thereof include pyrrolidone and N-butyl rubazole.
  • the derivative examples include an aliphatic compound having a cycloalkyl group, a bicycloalkyl group, a cycloalkenyl group, a bicycloalkenyl group, a benzyl group, a phenyl group, a phenoxy group, or a naphthalene skeleton, an anthracene skeleton, biphenyl Aromatic compounds having skeleton, phenanthrene skeleton, fluorene skeleton, etc., compounds having alkyl group, halogenated alkyl group, alkoxyalkyl group, hydroxyalkyl group, aminoalkyl group, glycidyl group, etc., alkylene glycol, polyoxyalkylene Examples thereof include ester compounds with polyhydric alcohols such as glycol, polyalkylene glycol, and trimethylolpropane, and compounds having a polysiloxane structure such as polydimethylsiloxane and polydimethylsilox
  • Examples of the compound having an epoxy group that undergoes a ring-opening addition reaction include compounds obtained by reacting epichlorohydrin with various polyols such as diol and triol; Epoxy conjugates obtained by reacting a peracid with an ethylene bond of the above.
  • ethylene glycol diglycidyl ether diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, tetraethylene daryl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol resid glycidinoleate, glycerin diglycidinoleate, glycerin triglycidyl ether, trimethylolpropane triglycidylate Bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol Diglycidyl ether, polytetramethylene glycol diglycidyl ether, poly (propylene glycol adipate
  • one or more of these organic compounds (e) having a polymerizable unsaturated bond can be selected according to the purpose.
  • organic compound (e) used to suppress swelling in organic solvents such as alcohols and esters, which are solvents for printing ink
  • organic solvents such as alcohols and esters, which are solvents for printing ink
  • the organic compound (e) preferably has at least one alicyclic or aromatic derivative.
  • the aromatic derivative may be an aromatic compound having an element such as nitrogen or sulfur.
  • a methacrylic monomer described in JP-A-7-239548 may be used, or a known photosensitive resin for printing may be used. It can be selected using technical knowledge and the like.
  • the inorganic porous material (f) refers to a non-porous material having fine pores or fine voids in particles. Machine particles. It is an additive for absorbing and removing viscous liquid residue generated in large quantities in laser engraving, and also has an effect of preventing tack on the plate surface. In addition to not being melted even by laser irradiation, when photocuring using ultraviolet light or visible light, the addition of black fine particles significantly reduces the light transmittance inside the photosensitive resin composition, Black fine particles such as carbon black, activated carbon, and graphite are not suitable as the inorganic porous material (f) of the present invention, although they are not particularly excluded as a material because they cause deterioration in physical properties.
  • the pore volume of the inorganic porous material (f) is preferably from 0.1 mlZg to 10 mlZg, more preferably from 0.2 mlZg to 5 mlZg.
  • the pore volume is 0.1 lmZg or more, the absorption amount of the viscous liquid scum is sufficient, and when the pore volume is 10 OmZg or less, the mechanical strength of the particles can be secured.
  • the nitrogen adsorption method is used for measuring the pore volume.
  • the pore volume of the present invention is determined from the adsorption isotherm of nitrogen at -196 ° C.
  • the average pore diameter of the inorganic porous material (f) has a very large effect on the absorption amount of liquid scum generated during laser engraving.
  • the preferred range of the average pore diameter is 1 nm or more and 100 nm or less, more preferably 2 nm or more and 200 nm or less, and further preferably 2 nm or more and 50 nm or less.
  • the average pore diameter is 1 nm or more, the absorbability of liquid scum generated during laser engraving can be ensured.
  • the average pore diameter is 100 nm or less, the specific surface area of the particles is large and the liquid scum absorption amount can be sufficiently ensured.
  • the average pore diameter in the present invention is a value measured using a nitrogen adsorption method. Those having an average pore diameter of 2 to 50 nm are particularly called mesopores, and the ability of porous particles having mesopores to absorb liquid residue is extremely high.
  • the pore size distribution of the present invention also requires the nitrogen isotherm at 196 ° C.
  • the present invention preferably employs a resin having a relatively low molecular weight so as to be easily cut by laser irradiation. Therefore, when a molecule is cut, a large amount of low molecular monomers and oligomers are generated.
  • U a new concept
  • U the number average particle diameter of the inorganic porous material
  • the inorganic porous material (f) preferably has a number average particle size of 0.1 to: LOO / zm.
  • the porosity is the ratio of the specific surface area P to the surface area S per unit weight calculated from the average particle diameter D (unit: zm) and the density d (unit: gZcm 3 ) of the substance constituting the particles, ie, PZS Defined by
  • the surface area per particle is ⁇ ⁇ 2 ⁇ 10 _12 (unit: m 2 ), and the weight of one particle is ( ⁇ ⁇ 3 (! ⁇ 6) X 10 _ 12 (unit: g).
  • the specific surface area P is a value measured by adsorbing nitrogen molecules on the surface.
  • the porosity of the inorganic porous material (f) is preferably 20 or more, more preferably 50 or more, and even more preferably 100 or more. If the porosity is 20 or more, it is effective in removing and removing liquid residues. Since the specific surface area P increases as the particle diameter decreases, the specific surface area alone is not appropriate as an index indicating the properties of the porous body. Therefore, taking into account the particle size, porosity was adopted as a dimensionless index. For example, carbon black, which is widely used as a reinforcing material for rubber and the like, has a very large specific surface area of 150 m 2 / g to 20 m 2 / g and a very small force average particle size, usually 10 nm to 100 nm.
  • the porosity of the porous silica used in the present invention is a high value well over 500.
  • the inorganic porous material (f) used in the present invention preferably has a specific specific surface area and a specific oil absorption in order to obtain even better adsorptivity.
  • the range of the specific surface area of the inorganic porous material (f) is preferably from 10 m 2 Zg to 1500 m 2 Zg. A more preferred range is 100 m 2 Zg or more and 800 m 2 Zg or less.
  • the specific surface area of the present invention is determined from the adsorption isotherm of nitrogen at ⁇ 196 ° C. based on the BET equation.
  • an oil absorption amount As an index for evaluating the amount of adsorbed liquid residue, there is an oil absorption amount. This is defined as the amount of oil absorbed by 100 g of the inorganic porous material.
  • the preferred range of the oil absorption of the inorganic porous material (f) used in the present invention is from lOmlZlOOg to 2000mlZl00g, more preferably from 50ml / lOOg to lOOOmlZlOOg, more preferably ⁇ 200mlZl00g to 800mlZl00g.
  • the oil absorption is lOmlZlOOg or more, it is effective in removing liquid scum generated during laser engraving, and when the oil absorption is 2000mlZl00g or less, the mechanical strength of the inorganic porous material (f) can be sufficiently ensured.
  • the measurement of the oil absorption is preferably performed according to JIS-K5101.
  • the inorganic porous body (f) needs to maintain its porosity without being deformed or melted by laser light irradiation particularly in the infrared wavelength region.
  • the loss on ignition when treated at 950 ° C for 2 hours is preferably 15 wt% or less, more preferably 10% or less.
  • the particle shape of the inorganic porous material (f) is not particularly limited, and spherical particles, flat particles, needle-like particles, amorphous particles, or particles having projections on the surface can be used. Among them, spherical particles are particularly preferable from the viewpoint of abrasion resistance of the printing plate. In addition, it is also possible to use spherical particles having a uniform pore diameter, such as hollow particles or silica sponge, in which the inside of the particles becomes hollow.
  • porous silica, mesoporous silica, silica-zircoa porous gel, mesoporous molecular sieve, porous alumina, porous glass and the like can be mentioned.
  • organic pigments such as pigments and dyes that absorb light having a wavelength of laser light can be incorporated into these pores or voids.
  • Sphericity is defined as an index for defining spherical particles.
  • the sphericity used in the present invention is defined as the ratio (D / ⁇ ) of the maximum value D of a circle completely entering a projected figure when a particle is projected and the minimum value D of a circle completely entering a projected figure. I do. For a true sphere, the sphericity is 1.0
  • the sphericity of the preferred spherical particles used in the present invention is 0.5 or more and 1.0 or less, more preferably 0.7 or more and 1.0 or less. If it is 0.5 or more, the abrasion resistance of the printing plate is good.
  • the sphericity 1.0 is the upper limit of the sphericity.
  • the spherical particles preferably have a particle force of 70% or more, more preferably 90% or more, and a sphericity of 0.5 or more.
  • a method for measuring sphericity a method for measuring based on a photograph taken using a scanning electron microscope can be used. At this time, it is preferable to take a photograph at a magnification at which at least 100 or more particles enter the monitor screen. Also, the above D and D are measured based on the photograph,
  • the surface of the inorganic porous material (f) is coated with a silane coupling agent, a titanium coupling agent, or another organic compound and subjected to a surface modification treatment to make the surface more hydrophilic or hydrophobic. It is possible to use particles that have been prepared.
  • one or more of these inorganic porous bodies (f) can be selected.
  • the generation of liquid scum during laser engraving can be suppressed, and the relief can be achieved. Improvements such as tack prevention of the printing plate are effectively performed.
  • the ratio of the resin (d), the organic compound (e), and the inorganic porous material (f) in the photosensitive resin composition (10) of the present invention is usually based on 100 parts by weight of the resin (d).
  • the organic compound is preferably in the range of 5 to 200 parts by weight, more preferably in the range of 20 to 100 parts by weight.
  • the inorganic porous material (f) is from 1 to: LOO parts by weight is preferred 2 to 50 parts by weight is more preferred The range is more preferred Is from 2 to 20 parts by weight.
  • the proportion of the organic compound (e) is in the above range, the hardness of the resulting printing plate or the like and the tensile strength and elongation are easily balanced, and the shrinkage during crosslinking and curing is small, and the thickness accuracy is secured. Can be.
  • the amount of the inorganic porous material (f) is in the above range, the effect of preventing tackiness of the plate surface and the effect of suppressing the generation of engraved liquid scum during laser engraving are sufficiently exhibited. Can secure the mechanical strength, and can also maintain transparency. In particular, when used as a flexographic plate, the hardness can be prevented from becoming too high.
  • a photosensitive resin composition is cured using light, particularly ultraviolet light, to produce a laser engraving printing original plate, the light transmittance affects the curing reaction. Therefore, it is effective to use an inorganic porous material whose refractive index is close to that of the photosensitive resin composition.
  • the photosensitive resin composition (10) is cross-linked by light irradiation to exhibit physical properties as a printing plate or the like.
  • a polymerization initiator can be added.
  • the polymerization initiator can be selected from commonly used ones. For example, radical polymerization, cationic polymerization, and tertiary polymerization exemplified in “Polymer Data 'Handbook, One Basic Edition”, edited by The Society of Polymer Science, Japan, 1986 (published by Baifukan). An initiator for dion polymerization can be used.
  • Cross-linking by photopolymerization using a photopolymerization initiator is useful as a method for producing a printing plate with high productivity while maintaining the storage stability of the resin composition of the present invention.
  • Suitable initiators can be used in this case.
  • benzoin alkyl ethers such as benzoin and benzoinethyl ether, 2-hydroxy-2-methylpropiophenone, 4'isopropyl-2-hydroxy-2-methylpropiophenone, 2,2-dimethoxy-2-phenylacetophenone, and diethyl Acetophenones such as xyacetophenone; 1-hydroxycyclohexylphenol ketone, 2 methyl 1 [4 (methylthio) phenyl] 2 morpholinopropane 1-one, methyl phenylglyoxylate, benzophenone, benzyl Aromatic diazonium salts, aromatic rhododium salts, and aromatic sulfo- ⁇ salts that absorb light from photo-radical polymerization initiators such as diacetyl, diacetyl sulfide, eosine, thionine, and anthraquinone to generate an acid.
  • Thione polymerization initiator such as salt Such that the weight initiator, and the like.
  • the amount of the polymerization initiator to be added depends on the sum of the resin (d) and the organic compound (e). 0.01 to weighing: L0 wt% range is preferred.
  • a polymerization inhibitor, an ultraviolet absorber, a dye, a pigment, a lubricant, a surfactant, a plasticizer, a fragrance, and the like may be added to the photosensitive resin composition (10) according to the application and purpose.
  • an existing resin molding method can be used as a method for molding the photosensitive resin composition (10) into a cylindrical shape.
  • a casting method, a method in which resin is extruded from a nozzle and a die using a machine such as a pump or an extruder, the thickness is adjusted by a blade, and the thickness is adjusted by calendering with a roll, and the like can be exemplified.
  • the molding while heating with calo as long as the performance of the resin is not deteriorated. Further, a rolling process, a grinding process, and the like may be performed as necessary. Further, after the photosensitive resin composition (10) is applied in a cylindrical shape, light is irradiated to cure and solidify the photosensitive resin composition (10).
  • the printing plate can also be formed using the cylindrical printing plate precursor molding 'engraving apparatus incorporated. When such a device is used, a conventional rubber sleeve, which can engrave a laser immediately after forming a cylindrical printing plate precursor and form a printing plate, requiring several weeks for molding. In short, it is possible to realize short-time processing that cannot be considered.
  • the photosensitive resin composition (10) in the step of producing the hollow cylindrical printing original plate, the hollow cylindrical printing original plate can be produced in an extremely short time.
  • the adhesiveness between the circumference adjusting layer (F) and the cured photosensitive resin layer (3) capable of laser engraving can also be improved.
  • the physical treatment method include a sand blast method, a wet blast method for injecting a liquid containing fine particles, a corona discharge treatment method, a plasma treatment method, and an ultraviolet or vacuum ultraviolet irradiation method.
  • the chemical treatment method there are a strong acid / strong alkali treatment method, an oxidizing agent treatment method, a coupling agent treatment method and the like.
  • the molded photosensitive resin composition (10) is cross-linked by irradiation with light or an electron beam to form a laser-engravable printing original plate.
  • crosslinking can be performed by light or electron beam irradiation while molding.
  • the method of cross-linking using light is preferable because it has advantages such as simple apparatus and high thickness accuracy.
  • High pressure mercury as the light source used for curing Lamps, ultra-high pressure mercury lamps, ultraviolet fluorescent lamps, carbon arc lamps, xenon lamps, etc., and curing can be performed by other known methods. Further, light from a plurality of types of light sources may be irradiated.
  • the surface When the photosensitive resin composition is cured with light, the surface may be covered with a transparent cover film and irradiated with light in a state where oxygen is blocked.
  • the cover film can also be used to protect the surface of the printing plate. However, it is used after laser engraving.
  • the atmosphere in which the photosensitive resin composition layer is irradiated with light is preferably a gas atmosphere, particularly an air atmosphere. This is because it is not necessary to attach a cover film covering mechanism for blocking oxygen, an oxygen deficiency preventing mechanism when using an inert gas, and the like to the apparatus.
  • the thickness of the laser-engravable photosensitive resin cured material layer (3) may be arbitrarily set according to the intended use, but when used as a printing plate, it is generally 0.1 l. It is in the range of ⁇ 7mm. In some cases, a plurality of materials having different compositions may be stacked.
  • a portion irradiated with the light beam is photo-cured by using a mask exposure method or a high energy single-line scanning exposure method to form a latent image, It may be a photosensitive resin layer from which uncured portions are removed in a subsequent development step.
  • a method is used in which a thin layer containing a black pigment such as carbon black called a black layer is formed on the surface of the photosensitive resin layer, and a pattern is formed using a near-infrared laser, and the pattern is used as an exposure mask. You can also.
  • a developing solution in which the uncured resin is dissolved or dispersed can be used, and a heat developing method in which the uncured resin is melted by heat and absorbed by a nonwoven fabric without using a developing solution can also be used.
  • the mask exposure method is a method in which a photosensitive resin is irradiated with a light beam including light in a wavelength region of 200 nm to 450 nm through a negative film having a light-shielding pattern.
  • the high-energy one-line scanning exposure method is a method in which a beam energy beam such as an ultraviolet laser beam or an electron beam is scanned using an optical system such as a galvanometer mirror or an electron lens to irradiate the photosensitive resin. It is.
  • the resin layer (C) having a pattern formed on the surface is provided with a hollow cylindrical core material (A), a circumference adjusting layer (F), or a cushion layer (E) via an adhesive layer or an adhesive layer. Alternatively, it may be stuck on the rigid body layer (G).
  • a cushion layer (E) (reference numeral 4 in the figure) Functional resin layer (B) or patterned resin layer (C) (symbol 6 in the figure) and a rigid body layer (G) with a thickness of at least Olmm to at most 0.5 mm (in the figure) , 5) may be present.
  • the preferred range of the linear thermal expansion coefficient of the rigid body layer (G) is 10 ppmZ ° C or more and 150 1117 when measured in the temperature range of 20 ° C to 80 ° C using the thermomechanical measurement method (TMA method). Below, more preferably OppmZ ° C or more and 100 ppmZ ° C or less.
  • a hollow cylindrical printing substrate can be produced by a method of sequentially laminating and laminating a plurality of photosensitive resin composition layers, and a plurality of photosensitive resin compositions can be produced. After laminating the material layers, photo-curing can be performed at once to produce a hollow cylindrical printing substrate.
  • the resin layer (C) on which is formed is preferably formed by photocrosslinking and curing a photosensitive resin composition.
  • the polymerizable unsaturated group present in the photosensitive resin composition reacts to form a three-dimensional cross-linked structure, which is commonly used for ester, ketone, aromatic, ether, alcohol, and halogen. Insoluble in solvent. This reaction takes place between the polymerizable unsaturated groups and consumes the polymerizable unsaturated groups.
  • the photopolymerization initiator When crosslinking and curing using a photopolymerization initiator, the photopolymerization initiator is decomposed by light.Therefore, the crosslinked cured product is extracted with a solvent and separated by GC-MS (mass separation is performed by gas chromatography. Analysis method), LC MS method (method of mass spectrometry of liquid separated by liquid chromatography), GPC-MS method (method of separation and mass spectrometry by gel permeation chromatography), LC NMR method (liquid chromatography) The unreacted photopolymerization initiator and decomposition products can be identified by analyzing using a method for analyzing the product separated by the above using a nuclear magnetic resonance spectrum).
  • Pyrolysis GC-MS method is a method in which a sample is thermally decomposed, the generated gas components are separated by gas chromatography, and then mass spectrometry is performed.
  • the crosslinked cured product decomposition products derived from the photopolymerization initiator and unreacted photopolymerization initiator together with the unreacted polymerizable unsaturated group or the site obtained by the reaction of the polymerizable unsaturated group are included. If detected, it can be concluded that the photosensitive resin composition was obtained by photocrosslinking and curing.
  • the amount of the inorganic porous material fine particles present in the cross-linked cured product can be determined by heating the cross-linked cured product in the air, burning off the organic component, and measuring the weight of the residue. it can.
  • the presence of the inorganic porous material fine particles in the residue was confirmed by morphological observation with a field emission type high resolution scanning electron microscope, particle size distribution with a laser scattering type particle size distribution measuring device, and nitrogen adsorption method. The measurement power of pore volume, pore diameter distribution, and specific surface area can be identified.
  • a relief image is created on an original by operating a laser device using a combi- ter, using the formed image as digital data.
  • Laser As the laser used for engraving, any laser may be used as long as it contains a wavelength at which the original plate has absorption. However, in order to perform engraving at a high speed, a laser with a high output is desirable. Lasers having an oscillation wavelength in the infrared or near-infrared region, such as lasers, YAG lasers, semiconductor lasers, and fiber lasers, are one of the preferred lasers.
  • Ultraviolet lasers having an oscillation wavelength in the ultraviolet region such as excimer lasers, YAG lasers converted to the third or fourth harmonic, copper vapor lasers, and the like, are subjected to an abrasion process for breaking bonds of organic molecules. It is possible and suitable for fine processing.
  • a laser having a very high peak output such as a femtosecond laser can also be used.
  • the laser beam may be continuous irradiation or pulse irradiation.
  • resin absorbs around 10 m of a carbon dioxide laser, so it is not necessary to add a component that helps to absorb laser light.
  • YAG lasers, semiconductor lasers, and fiber lasers have oscillation wavelengths around 1 ⁇ m, but few organic substances have light absorption in this wavelength range.
  • dyes and pigments which are components that help absorb this.
  • dyes include poly (substituted) phthalocyanine conjugates and metal-containing phthalocyanine conjugates; cyanine compounds; squarylium dyes; chalcogenopyrroloarylidene dyes; Metal thiolate dyes; bis (chalcogenopyri) polymethine dyes; oxyindolizine dyes; bis (aminoaryl) polymethine dyes; merocyanine dyes; and quinoid dyes.
  • pigments include dark inorganic pigments such as carbon black, graphitic copper chromite, oxidized chromium, cobalt chrom aluminate, iron oxide, and metal powders such as iron, aluminum, copper, and zinc. And those doped with Si, Mg, P, Co, Ni, Y, and the like. These dyes and pigments may be used alone, may be used in combination of two or more, and may be combined in any form such as a multilayer structure. However, when curing the photosensitive resin composition using ultraviolet light or visible light, in order to cure the inside of the printing plate precursor, the addition amount of dyes and pigments that absorb in the used light region should be kept low. preferable.
  • Laser engraving is performed under an oxygen-containing gas, generally in the presence of air or in an air stream, but can also be performed under carbon dioxide gas or nitrogen gas.
  • powdery or liquid substances that are slightly generated on the relief printing plate surface can be washed by an appropriate method, for example, by washing with water containing a solvent or a surfactant, or by irradiating a water-based detergent with a high-pressure spray. Alternatively, it may be removed using a method of irradiating high-pressure steam.
  • a wavelength of 200 ⁇ ! Post-exposure with ⁇ 450 nm light can also be performed.
  • Post-exposure may be performed in the atmosphere, in an inert gas atmosphere, in water, or in an offset environment. It is particularly effective when the photosensitive resin composition used contains a hydrogen abstraction type photopolymerization initiator.
  • the surface of the printing plate may be treated with a treatment liquid containing a hydrogen abstraction type photopolymerization initiator and exposed. Further, the exposure may be performed in a state where the printing plate is immersed in a processing solution containing a hydrogen abstraction type photopolymerization initiator.
  • the original plate of the present invention can be used for stamping stamps, design rolls for embossing, and insulators, resistors, and conductor paste used for making electronic components, in addition to relief images for printing plates. It can be applied and used in various applications such as relief images for Jung, relief images for moldings of ceramic products, relief images for displays such as advertisements and display boards, and prototypes for various molded products.
  • Laser engraving was performed using a carbon dioxide laser engraving machine (trade name "ZED-mini-1000", manufactured by ZED, UK), and engraving was performed using halftone dots, line drawings with 500 m wide convex lines, and 500 m wide A pattern including a white line was created and implemented. If the engraving depth is set to a large value, the area of the top of the fine halftone dot pattern cannot be secured, and the shape will collapse and become unclear, so the engraving depth is set to 0.55 mm.
  • the shape of the halftone dot area with an area ratio of about 10% at 801 pi (Lines per inch) was observed with an electron microscope at a magnification of 200 to 500 times.
  • the halftone dot is conical or pseudo-conical (a divergent shape in which the vicinity of the apex of the cone is cut by a plane parallel to the bottom of the cone), it is good as a printing plate.
  • the weight of the porous or non-porous material for measurement was recorded.
  • the sample for measurement is placed in a high-temperature electric furnace (FG31; manufactured by Yamato Scientific Co., Ltd. in Japan), and placed in an air atmosphere at 950 ° C. Time processed.
  • the change in weight after the treatment was defined as a loss on ignition.
  • the average particle diameter of the porous body and the non-porous body was measured using a laser diffraction type particle size distribution analyzer (trademark, SALD-2000J type; manufactured by Shimadzu Corporation, Japan).
  • SALD-2000J type manufactured by Shimadzu Corporation, Japan.
  • the specification of the instrument states in the force catalog that it is possible to measure a particle size range from 0.03 ⁇ m force to 500 ⁇ m.
  • ultrasonic waves were irradiated for about 2 minutes to disperse the particles and prepare a measurement solution.
  • the viscosity of the photosensitive resin composition was measured at 20 ° C. using a B-type viscometer (trademark, type B8H; manufactured by Tokyo Keiki, Japan).
  • the number average molecular weight of the resin (a) was determined by gel permeation chromatography (GPC) using a polystyrene having a known molecular weight. The measurement was carried out using a high-speed GPC apparatus (HLC 8020 manufactured by Tosoh Corporation, Japan) and a column packed with polystyrene (trademark: TSKgel GMHXL; manufactured by Tosoh Corporation, Japan) with tetrahydrofuran (THF). The column temperature was set at 40 ° C. As a sample to be injected into the GPC device,
  • the injection volume was 10 ⁇ l.
  • an ultraviolet absorption detector was used for resin (a), and light of 254 nm was used as monitor light.
  • the average number of polymerizable unsaturated groups present in the molecule of the synthesized resin (a) can be determined by nuclear magnetic resonance spectroscopy (NMR method) after removing unreacted low molecular components by liquid chromatography. ) was used to determine the molecular structure.
  • the Shore D hardness of the perimeter adjusting layer (F) was measured using Tek-lock's trademark “GS-720G TypeDj.” The value immediately after the start of the measurement was adopted as the Shore D hardness, which was formed on a cylindrical support. The Shore D hardness of the cylindrical core material (A) was measured with the cylindrical support attached. The weight used for the measurement was 8 kg.
  • thermomechanical measurement method (10) Measurement of linear thermal expansion coefficient
  • the linear thermal expansion coefficient of the film-like reinforcing material was measured using a thermomechanical measurement method (TMA).
  • TMA thermomechanical measurement method
  • the measurement temperature range was from room temperature to 80 ° C using a thermomechanical measuring device (trademark “TMA-50” manufactured by Shimadzu Corporation).
  • Resins (dl), (d2) and (d3) were produced as Resin (d) in Production Examples 1 to 3 below.
  • the mixture was further reacted for about 3 hours to produce a resin (d3) having a number-average molecular weight of about 3000, which is a terminally acryl group (an average of about 2 polymerizable unsaturated groups per molecule).
  • the resin was syrupy at 20 ° C, flowed when an external force was applied, and did not recover its original shape even when the external force was removed.
  • a PET film with a thickness of 125 m is wound around the surface of an air cylinder with a thickness of 213.384 mm, which is thinly coated with polydimethylsiloxane as a release agent. . Aligned to 5mm or less and temporarily fastened. A glass cloth tape having a width of 25 mm and a thickness of 0.13 mm coated with an adhesive was spirally wound around the PET film to cover the surface of the PET film to obtain a cylindrical laminated body.
  • the lamp illuminance on the surface of the photosensitive resin composition layer was measured using a UV meter (trade name “UV-M02” manufactured by Oak Manufacturing Co., Ltd.). Filter (Oak Seisakusho Co., Ltd., trademark "UV- 35- APR filter one") lamp illumination was measured using a can, lOOmW / cm 2, using a filter (Oak Seisakusho Co., Ltd., trademark "UV- 25 Filter”) The lamp illuminance measured was 14 mW / cm 2 Met. After that, cutting was performed using a carbide tool so that the thickness became 1.5 mm, and the surface was further roughened using a cutting gantry, and then a film with fine munitions attached to the surface was used.
  • the Shore D hardness of the obtained hollow cylindrical core material ( ⁇ ) was 55 degrees.
  • the height difference of the surface measured using a contact-type displacement sensor (trade name “ ⁇ 3-010” manufactured by KEYENCE CORPORATION) was within 20 / zm.
  • the time required to produce the hollow cylindrical core material (ex) was within 30 minutes.
  • a liquid photosensitive resin composition (XII) was prepared by adding 1 part by weight of benzophenone to 99 parts by weight of a liquid photosensitive resin composition (trade name “APR-G-42” manufactured by Asahi Kasei Chemicals Corporation). did.
  • Liquid photosensitive resin composition (trade name "APR-G-42", manufactured by Asahi Kasei Chemicals Corporation) contains unsaturated polyurethane resin, an organic compound having several kinds of polymerizable unsaturated groups, and a photopolymerization initiator. Resin.
  • the photosensitive resin composition (XII) used in Example 1 is impregnated in a nylon mesh sheet (150 mesh) having a thickness of 110 m and an opening of about 60 m, in which nylon fibers are knitted vertically and horizontally. After the photosensitive resin composition was removed with a blade, light of a chemical lamp (center wavelength: 370 ⁇ m) was irradiated at 50 miZcm 2 in the air to form a cured photosensitive resin in a semi-cured state. The surface remained sticky. When the surface tack was measured, it was larger than 200 NZm.
  • a nylon mesh sheet containing a photosensitive resin cured product in a semi-cured state was spirally wound twice on a PET film coated on an air cylinder having an outer diameter of 213.384 mm. Further, a photosensitive resin composition ( ⁇ ) was applied on this nylon mesh sheet using a doctor blade to form a photosensitive resin composition layer. Light from a metal halide lamp was irradiated to obtain a photosensitive resin cured product. A hollow cylindrical core material
  • a photosensitive resin composition (XIII) was prepared by mixing 5 parts by weight of silicon nitride spherical fine particles having an average particle diameter of 5 ⁇ m with 100 parts by weight of the photosensitive resin composition (XII). As a result of observation using a scanning electron microscope, 90% or more of the spherical particles of silicon nitride have a sphericity of 0.8 or more. Particles.
  • the photosensitive resin composition (XIII) is applied to a 213.384 mm air cylinder subjected to a mold release treatment using a doctor blade, and is irradiated with light from a metal halide lamp to be light-cured and cured. D) was formed.
  • the photosensitive resin composition (XII) was impregnated into a nylon mesh sheet, and irradiated with a chemical lamp at 50 mjZcm 2 in the air to obtain a cured photosensitive resin in a semi-cured state.
  • the surface was sticky.
  • the resulting semi-cured photosensitive resin cured product was pressed onto the resin layer (D) by pressing with a roller, and after being wound with a force S, the light of a metal nitride lamp was irradiated at 4000 mi / cm 2 , A cured photosensitive resin layer constituting a hollow cylindrical core material in which a nylon mesh sheet was wound three times was formed.
  • the Shore D hardness of the hollow cylindrical core material ( ⁇ ) comprising the obtained cured photosensitive resin layer was as high as over 60 degrees.
  • the thickness of the circumference adjustment layer was determined by calculating backward from the thickness of the material used.
  • the thickness of the photosensitive resin cured layer that can be engraved with a laser is 1.14 mm
  • the thickness of the cushion tape with adhesive layers on both sides is 0.55 mm (the thickness of the adhesive layer is 25 zm)
  • the set value of the thickness of the circumference adjustment layer will be 1.526 mm.
  • a photosensitive resin composition (XIV) was prepared for producing a circumference adjusting layer (a).
  • the liquid photosensitive resin composition (XIV) was placed on a hollow cylindrical core material having an inner diameter of 213.384 mm and a width of 300 mm obtained as described above, and the thickness was measured using a doctor blade. about 1. was applied with a 1mm, then, Metaruno ⁇ halide lamp (eye 'graphics Co., Ltd., trademark "M0 56 -L21J) 4000mjZcm 2 (UV meter (Oak Seisakusho Co., Ltd.
  • UV —M02 a light under a nitrogen atmosphere
  • a filter a value obtained by integrating the illuminance measured with a filter (trade name“ UV-35—APR filter ”manufactured by Oak Manufacturing Co., Ltd.)) over time to obtain a cured photosensitive resin layer.
  • the lamp illuminance on the surface of the photosensitive resin composition layer was measured using a UV meter (manufactured by Oak Manufacturing Co., Ltd., trade name “UV-M02”).
  • a liquid photosensitive resin composition (trade name “APR-G-42” manufactured by Asahi Kasei Chemicals Co., Ltd.) is added to a thermally expandable capsule (trade name “Matsumoto Microsphere F—trade name, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.”).
  • a thermally expandable capsule (trade name “Matsumoto Microsphere F—trade name, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.”).
  • the obtained photosensitive resin composition (XV) is applied onto a hollow cylindrical core material attached to an air cylinder while rotating the air cylinder in the circumferential direction using a doctor blade, and a seamless photosensitive composition is applied.
  • a resin composition layer was obtained.
  • the thickness of the obtained photosensitive resin composition layer was 50 m.
  • the light of a chemical lamp was applied to the obtained photosensitive resin composition layer with a lOOmjZcm 2 (UV meter (manufactured by Oak Manufacturing Co., Ltd., trade name “UV-MO 2”) and a filter (Oak Prototype Co., Ltd., trade name “UV-35 -APR filter ”) is irradiated with energy amount) were totalized was used to obtain a cured product in a semi-cured state (until hardness reaches arrives at a constant value, it is necessary at least 200MjZcm 2 energy) Then, the semi-cured resin layer was heated using an infrared lamp while rotating, and heated to 150 ° C.
  • the heat-expandable microcapsules were expanded to have a circumferential length of about 200 m.
  • a metal halide lamp was irradiated with light of 2000 mj / cm 2 (UV meter (manufactured by Oak Works, trademark “UV-M02”) and a filter (manufactured by Oak Works, trade name “UV-35—APR filter”). ) Irradiation) Thereafter, cutting and shaping were performed using a carbide tool so that the thickness of the circumference adjusting layer was 1.026 mm, and a circumference adjusting layer ( ⁇ ) was obtained. The time required to produce the adjustment layer ( ⁇ ) was within 20 minutes.
  • the circumference adjusting layer having closed cells obtained by thermal expansion was devitrified, and it was confirmed that the thermally expandable microcapsule capsule was expanded. Observation of the bubble diameter near the surface using an optical microscope showed that in the obtained circumference adjustment layer, more than 70% of the bubbles were in the range of 30 to 60 m, and the average value was 48 ⁇ m.
  • the Shore D hardness of the circumference adjusting layers (a) and ( ⁇ ) were 55 degrees and 58 degrees.
  • a 0.55 mm thick cushion tape (manufactured by 3M, trademark "1820") having a double-sided adhesive layer is carefully placed on the circumference adjustment layer obtained as described above so that no air bubbles enter. By pasting, a cushion layer (a) was formed.
  • a liquid photosensitive resin composition (XVI) was prepared by adding 1 part by weight of benzophenone to 99 parts by weight of a liquid photosensitive resin composition (trade name “APR-F320” manufactured by Asahi Kasei Chemicals Corporation).
  • the obtained liquid photosensitive resin composition (XVI) is applied on the circumference adjusting layer using a doctor blade, and is light-cured by irradiating light from a metal halide lamp, and further has a thickness of 0.55 mm.
  • a planetary vacuum defoaming kneader trade name "Mazerustar DD-300" manufactured by Kurashiki Boseki Co., Ltd.
  • the obtained photosensitive resin composition was used for producing a resin layer (B) capable of laser engraving.
  • the circumference adjusting layer (O) was laminated on the hollow cylindrical core material (O) produced as described above, and the cushion layer (oc) was further laminated thereon.
  • a 100- ⁇ m-thick PET film (rigid body layer (G)) was attached on the cushion layer (a) with an adhesive layer on one side so that the adhesive layer was exposed on the front side.
  • the photosensitive resin composition for forming the laser engravable resin layer (B) prepared as described above was placed in a circumferential direction by an air cylinder as a cylindrical support.
  • a hollow cylindrical printing plate precursor capable of laser engraving was prepared.
  • the total processing time required to produce the hollow cylindrical printing plate precursor was within 70 minutes.
  • An irregular pattern was formed on the surface of the thus obtained hollow cylindrical printing original plate using a carbon dioxide laser engraving machine.
  • the number of scum removals after laser engraving was good at 3 times or less, and the shape of the halftone dot was conical and good.
  • the number of times of scrap removal after engraving is the number of times of wiping processing necessary to remove viscous liquid residue generated after engraving.
  • the linear thermal expansion coefficient of the PET film used as the rigid body layer (G) was 100 ppm Z ° C by a thermomechanical measurement method (TMA (manufactured by Shimadzu Corporation, trademark “TMA-50”)).
  • the photosensitive resin composition shown in Table 1 was applied on the cushion layer with a doctor blade to a thickness of about 1.5 mm while rotating the air cylinder as a cylindrical support in the circumferential direction using a doctor blade.
  • a photosensitive resin composition layer having no odor was formed.
  • the ultraviolet light of a metallometer and a ride lamp (trade name “M056-L21” manufactured by Eye Graphics Co., Ltd.) was 4000 mi / cm 2 (UV meter).
  • UV-M02 UV Seisakusho's trademark “UV-M02”
  • a filter Oak Seisakusho's trademark “UV-35-APR filter”.
  • the number of scum wipings after engraving in Table 2 is the number of wiping treatments required to remove viscous liquid scum generated after engraving.
  • styrene-butadiene copolymer manufactured by Asahi Kasei Chemicals Co., Ltd., trade name “Taphrene A”, number average molecular weight: 73,000), liquid polybutadiene (Nippon Petrochemical Co., trade name “B-2000”, number average) Molecular weight: 2000) 29 parts by weight, 1,9-nonanediol diatalylate (molecular weight: 268) 7 parts by weight, 2,2 dimethoxy-phenyl-acetophenone 2 parts by weight, and 2,6-di-tert-butyl p-talesol 1 Parts by weight are kneaded with a kneader, and the resulting kneaded material 10 Toluene was mixed with 20 parts by weight of toluene to obtain a highly viscous liquid photosensitive resin composition.
  • a PET film was stuck on the cushion layer (a) in the same manner as in Example 1, and the obtained liquid photosensitive resin composition was applied thereon using a doctor blade, and the cylindrical support was slowly put on.
  • the solvent, toluene, was scattered while rotating, and dried to obtain a seamless solid photosensitive resin layer having a thickness of 1.14 mm.
  • a film-like exposure mask having a release layer on the surface was wound around the obtained solid photosensitive resin layer, and a chemical lamp was irradiated through the exposure mask to form a latent image.
  • the film-shaped exposure mask was peeled off, and developed using a hydrocarbon solvent to form a concavo-convex pattern on the surface, thereby producing a cylindrical printing plate. In the fine halftone dot pattern portion, a good conical pattern was formed.
  • the liquid photosensitive resin composition (XI) was applied to one side of a PET film having a width of 50 mm and a thickness of 25 ⁇ m to a thickness of 50 ⁇ m, and the surface was subjected to a release treatment.
  • the PET film was spirally wound three times from the surface on which the photosensitive resin composition was applied so that the edges of the PET film slightly overlapped.
  • light from a metal nitride lamp (trade name “M056-L21”, manufactured by Eye Graphics Co., Ltd.) was applied to a 2000 mjZcm 2 (UV meter (trade name, “UV-M02” manufactured by Oak Manufacturing Co., Ltd.)) and filter under a nitrogen atmosphere.
  • the photosensitive resin composition was light-cured to form a hollow cylindrical core material.
  • the height difference of the thickness of the obtained hollow cylindrical core material was 80 / zm.
  • the inner surface of the obtained hollow cylindrical core material had a smooth surface, as if copying the smoothness of the air cylinder surface.
  • the linear thermal expansion coefficient of the PET film used to produce the hollow cylindrical core material was 90 ppmZ ° C.
  • the light transmittance was 90% in the wavelength range from 360 nm to 370 nm.
  • a photosensitive resin composition (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name “APR-G-42”) is applied on the obtained hollow cylindrical core material with a doctor blade to a thickness of about 1.1 mm. , off then, Metaruno ⁇ halide lamp (eye 'graphics Co., Ltd., trademark "M056- L21”) and 4000miZcm 2 a light under a nitrogen atmosphere of (UV meter (Oak Seisakusho Co., Ltd., trademark "UV-M02”) Illuminance measured with a filter (Oak Mfg. Co., Ltd., trademark "UV-35-APR filter”) Irradiation was performed to obtain a cured photosensitive resin layer.
  • the lamp illuminance on the surface of the photosensitive resin composition layer was measured using a UV meter (trade name “UV-M02” manufactured by Oak Manufacturing Co., Ltd.).
  • Filter (Oak Seisakusho Co., Ltd., trademark "UV- 35- APR filter”) lamp illumination was measured by use is, lOOmW / cm 2, using a filter (Oak Seisakusho Co., Ltd., trademark "UV- 25 Filter”)
  • the measured lamp illuminance was 14 mWZcm 2 . Thereafter, cutting was performed using a carbide tool so that the thickness became 1.026 mm, and a circumferential length adjusting layer was obtained.
  • a cushion tape with a double-sided adhesive layer (manufactured by 3M, trademark “1820”) was attached on the obtained circumference adjustment layer for one circumference while taking care not to allow air bubbles to enter.
  • the used photosensitive resin composition for forming the resin layer (B) was applied and cured by light to obtain a cured photosensitive resin that can be engraved with a laser. Furthermore, by grinding and polishing to adjust the film thickness, a laser engravable hollow cylindrical printing original plate with a surface height difference of 20 m or less was prepared.
  • An irregular pattern was formed on the surface of the prepared hollow cylindrical printing original plate using a carbon dioxide laser engraving machine.
  • the shape of the formed halftone dot pattern was conical and good.
  • a printing test was performed using a hollow cylindrical printing substrate having a pattern formed on its surface and a flexographic printing machine, it was possible to obtain a printed material having an excellent halftone dot pattern.
  • the printing test was performed using a combination of UV ink and coated paper at a printing speed of 200 mZ. The UV ink transferred onto the coated paper was cured by irradiating light from an ultraviolet lamp, and fixed on the coated paper.
  • a liquid photosensitive resin composition (trade name "APR-G-42", manufactured by Asahi Kasei Chemicals Co., Ltd.) with a thickness of about 0.5 mm was placed on an air cylinder with an outer diameter of 213.384 mm whose surface was released. A glass cloth having a width of 50 mm and a thickness of 300 m was spirally wound thereon three times. Further, the liquid photosensitive resin composition was applied to the surface of the glass cloth and the mesh of the glass cloth, and the glass cloth was not present at a depth of 0.5 mm from the surface.
  • APR-G-42 manufactured by Asahi Kasei Chemicals Co., Ltd.
  • the light of a metal nitride lamp (trade name “M056-L21” manufactured by I-Darafix Co., Ltd.) is emitted in the atmosphere at 4000 mj / cm 2 (UV meter Irradiation with a UV-M02 (trade name, manufactured by Oak Manufacturing Co., Ltd.) and a UV-35-APR filter were performed to obtain a cured photosensitive resin layer (1).
  • the lamp illuminance on the surface of the photosensitive resin composition layer was measured using a UV meter (trade name “UV-M02” manufactured by Oak Manufacturing Co., Ltd.).
  • Example 2 Using the same photosensitive resin as in Example 1, a resin layer (B) capable of laser engraving was formed on the obtained hollow cylindrical core material in the same manner as in Example 1.
  • thermosetting two-part epoxy resin was used, and the same procedure as in Example 1 was repeated except that the mixture was heated to 50 ° C. Attempted fabrication. It took a day for the epoxy resin to completely cure.
  • styrene-butadiene copolymer manufactured by Asahi Kasei Chemicals Co., Ltd., trade name “Taphrene A”, number average molecular weight: 73,000
  • liquid polybutadiene Nippon Petrochemical Co., trade name “B-2000”, number average
  • Molecular weight: 2000 20 parts by weight were kneaded in one step, and 10 parts by weight of the obtained kneaded product was mixed with 20 parts by weight of toluene to obtain a highly viscous liquid resin composition.
  • the obtained liquid resin composition is applied to one side of a 50 mm, 25 ⁇ m thick polysulfone film to a thickness of 50 m, and the surface is released on a 213.384 mm outer diameter cylinder with an outer diameter of 213.384 mm. While heating with an infrared heater, polish from the surface where the resin composition was applied. The film was spirally wound three times with the ends of the film slightly overlapping. After cooling, a hollow cylindrical core material was obtained.
  • styrene-butadiene copolymer manufactured by Asahi Kasei Chemicals Co., Ltd., trade name “Taphrene A”, number average molecular weight: 73,000), liquid polybutadiene (Nippon Petrochemical Co., trade name “B-2000”, number average) Molecular weight: 2000) 29 parts by weight, 1,9-nonanediol diatalylate (molecular weight: 268) 7 parts by weight, 2,2 dimethoxy-phenyl-acetophenone 2 parts by weight, 2,6 di-t-butyl p-talesol 1 part by weight Parts were kneaded in a kneader to obtain a solid photosensitive resin composition at 20 ° C.
  • the solid photosensitive resin composition was applied using an extruder while being heated to 140 ° C. After cooling, it was visually observed that the hollow cylindrical core material was greatly deformed due to the generation of bubbles and the like.
  • a liquid unsaturated polyester resin containing a volatile solvent is applied to a thickness of about 0.5 mm on an air cylinder with an outer diameter of 213.384 mm, the surface of which has been release-molded.
  • a 300 m thick glass cloth was spirally wound five times. Further, the liquid unsaturated polyester resin was applied to the surface of the glass cloth and the mesh of the glass cloth.
  • a 25 m-thick PET film that had been release-treated was wound around the surface thus obtained, and cured for 1 day in an oven heated to 70 ° C. After cooling, the PET film on the surface was peeled off to obtain a hollow cylindrical core material. The difference in height of the surface was greater than 500 / zm, and the surface was polished to obtain a smooth surface. The time required for this step was 60 minutes. There was a part where the glass cloth was exposed, and it was difficult to polish due to the scattering of dust.
  • a thin adhesive is applied to the surface of the hollow cylindrical core material whose surface has been polished, and a hard urethane rubber sheet mixed with a cross-linking agent with a width of 50 mm and a thickness of 200 m is used to adjust the circumference. It was wound while heating and pressing. Thereafter, the release-treated PET film was wound around the obtained rubber surface, heated in an oven, and left for one day. After cooling, the rubber surface was polished and smoothed. The time required for this step was 40 minutes. After that, when left at room temperature for several days, the thickness of the rubber layer was partially reduced by about 30 m, so the surface was polished again.
  • a resin layer (B) capable of laser engraving was formed on the surface of the obtained rubber layer.
  • Example 2 aa ⁇ 3 Conical shape good
  • Example 3 aaa ⁇ 3 Conical shape good
  • Example 4 ⁇ a ⁇ ⁇ 3 Conical shape good
  • Example 5 ⁇ ⁇ ⁇ 3 Conical shape good
  • Example 6 r ⁇ ⁇ ⁇ 3 Conical shape is good
  • the present invention relates to a method for forming a relief image for a flexographic printing plate by laser engraving, forming a surface processing pattern such as embossed color, forming a relief image for printing such as a tile, and forming a pattern of a conductor, semiconductor, or insulator in forming an electronic circuit.
  • Printing, patterning of functional materials such as anti-reflective coatings for optical components, color filters, (near) infrared cut filters, etc., and alignment films in the manufacture of display devices such as liquid crystal displays or organic electroluminescent displays. It is suitable for a cylindrical printing original plate used for forming a coating film 'pattern' of an underlayer, a light emitting layer, an electron transporting layer, and a sealing material layer, and a production method thereof.
  • FIG. 1 is a conceptual sectional view of a hollow cylindrical printing substrate of the present invention.

Abstract

 厚さ0.05mm以上50mm以下の感光性樹脂硬化物層(1)を含んでなる中空円筒状芯材(A)であって、該感光性樹脂硬化物層(1)が繊維状、布状又はフィルム状の補強材を含有し、かつ、該感光性樹脂硬化物層(1)のショアD硬度が30度以上100度以下である上記中空円筒状芯材(A)、及び  該中空円筒状芯材(A)の上に積層されてなる、厚さ0.1mm以上100mm以下の、表面にパターン形成可能な樹脂層(B)又は表面にパターンが形成された樹脂層(C) を含んでなる円筒状印刷基材。

Description

明 細 書
中空円筒状印刷基材
技術分野
[0001] 本発明は、レーザー彫刻によるフレキソ印刷版又はグラビア印刷用レリーフ画像作 成、ァニロックスロール、エンボス加工等の表面加工用パターンの形成、タイル等の 印刷用レリーフ画像形成、電子回路形成における導体、半導体、絶縁体のパターン 印刷、光学部品の反射防止膜、カラーフィルター、(近)赤外線カットフィルタ一等の 機能性材料のパターン形成、更には液晶ディスプレイ又は有機エレクト口ルミネッセ ンスディスプレイ等の表示素子の製造における配向膜、下地層、発光層、電子輸送 層、封止材層の塗膜'パターン形成等に適した円筒状印刷原版及びその製造方法 に関するものである。
背景技術
[0002] 印刷分野においては、印刷機で円筒状の基材を使用することが広く行われている。
例えば、フレキソ印刷分野では、版を貼り込む版胴、版にインキを転移させるァ -ロッ タスロールがあり、グラビア印刷、オフセット印刷分野においてもブランケットロールな どがある。
特に最近、フレキソ印刷分野においては、版胴上に正確に位置合わせをしながら シート状の版を貼り込む方法ではなぐ剛直又はフレキシブルな円筒状支持体上に 版を貼り込み、貼り込んだものを版胴に挿入する方法、更に円筒状支持体上にバタ ーン形成可能な榭脂版を形成した円筒状印刷原版を形成し、その後表面にパター ンを形成して版胴に挿入する方法が採られるようになってきた。ノ ターンを形成した シート状の印刷版を版胴に取り付ける際に、精度良く位置合わせするためには相当 な時間を要すること、厚み精度を確保するために、版胴とシート状印刷版との間に貼 り込むクッションテープに気泡が入らないように慎重に作業することが必要であり、こ の作業にも多大な時間を要することが問題であった。
[0003] 円筒状印刷基材の芯となる中空状の円筒状芯材として、熱硬化性榭脂を染み込ま せたガラス繊維布を円筒状支持体表面に巻き付け加圧しながら熱硬化させて円筒 状芯材を形成する方法は、非特許文献 1 (実用プラスチック成形加工事典、産業調 查会、事典出版センター)に FRP成形として記載があるように、既に公知である。この ような中空円筒状芯材は、複数のスリーブ製造メーカーからガラス繊維強化プラスチ ック製スリーブ(中空円筒状芯材)として入手することができる。し力しながら、この方 法は、熱硬化性榭脂を用いているため、硬化させるのに多大な時間を要する問題が あった。また、印刷工程では、繊維強化プラスチック製スリーブ表面に、シート状の印 刷基材を貼り付けて使用する。そのため、スリーブ表面の平滑性を確保する必要が あり、繊維強化プラスチック製スリーブの製造工程において、熱硬化工程の後に、スリ ーブ表面を研磨して表面精度を確保することが行われて 、た。この表面の研磨にも、 多大な時間を要するだけでなぐ補強用のガラス繊維が細力べ飛散する問題も抱えて いた。更に、ガラス繊維を研磨するため、研磨ホイールの消耗も早力つた。
特許文献 1 (日本国特許 3391794号)には、可撓性印刷プレートを支持するため のスリーブ(中空円筒状芯材)をポリエステルフィルムと熱可塑性接着剤を用いて形 成する記載がある。しかし、ポリエステルフィルムを固定ィ匕するために、熱可塑性接着 剤を用いており、熱により変形するという大きな課題があった。
特許文献 2 (特表平 7— 506780号公報)には、感光性榭脂ではない合成樹脂を繊 維で補強した円筒状芯材の上に、フレキシブル支持体上にシート状に成形されたレ 一ザ一感光性榭脂層を積層するレーザー彫刻可能な印刷基材の記載がある。しか し、シート状の感光性榭脂層を積層するため、使用する円筒状芯材の表面精度が良 V、ものを用いることが前提となる。
特許文献 3 (特表平 5— 505352号公報)には、繊維状物に感光性榭脂を含浸させ 、光硬化によりパイプ等の任意の形状の構造物を得ることが記載されている。しかし、 この構造物を印刷用基材として使用することは記載がない。また、特定の光重合開 始剤の使用につ ヽての記載はなく、従来から使用されて ヽる繊維強化プラスチックの 製造で用いられている合成樹脂に代えて、特許文献 3に記載の感光性榭脂の繊維 含浸物を使用した場合、酸素が存在する大気中で光を照射しても、得られる光硬化 物の表面がベとついた粘着性のあるものになるという大きな課題があった。硬化に対 する酸素による阻害作用を抑制する方法としては、未硬化状態の感光性榭脂表面に 光線を透過するフィルムを被覆し酸素を遮断する方法、不活性ガス雰囲気又は水中 の雰囲気で光を照射する方法が採られてきた。しかし、これらの方法には特別な装置 上の工夫が必要となる。
[0005] これまで種々の中空円筒状芯材が提案され、印刷工程において用いられている。
しかし、感光性榭脂組成物を光硬化させて得られる印刷用の中空円筒状芯材は知ら れていな力つた。したがって、この中空円筒状芯材の表面にパターン形成可能な榭 脂層又はパターンを形成した榭脂層が積層された中空円筒状印刷基材も知られて いなかった。更に、繊維強化されたプラスチック層を研磨しないで使用する方法につ V、ても知られて 、なかった。
非特許文献 1:産業調査会「実用プラスチック成形加工事典」(事典出版センター) 特許文献 1 :日本国特許 3391794号
特許文献 2:特表平 7 - 506780号公報
特許文献 3:特表平 5— 505352号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、版厚精度、寸法精度が良ぐかつ、簡単に、短時間に中空円筒状印刷 基材を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは鋭意検討し、厚さ 0. 05mm以上 50mm以下の感光性榭脂硬化物層
(1)を含んでなり、中空円筒状印刷基材の芯となる中空円筒状芯材 (A)上に、厚さ 0 . 1mm以上 100mm以下のパターン形成可能な榭脂層(B)又は表面にパターンが 形成された榭脂層 (C)が積層された円筒状構成体であって、該感光性榭脂硬化物 層(1)が繊維状、布状又はフィルム状の補強材を含有し、該感光性榭脂硬化物層(1 )のショァ D硬度が 30度以上 100度以下であることを特徴とする中空円筒状印刷基 材を用いることにより上記の課題を解決できることを見出し、本発明を完成するに至 つた o
すなわち、本発明は、任意に周長調整層 (F)、クッション層 (E)、又は剛性体層 (G )を含む上記中空円筒状印刷基材のうち、少なくとも中空円筒状芯材 (A)を、感光性 榭脂組成物を光硬化させて形成することが、本発明の技術思想である。感光性榭脂 を用いることにより極めて短時間の内に中空円筒状芯材 (A)を含む構成体を形成す ることが可能となる。また、本発明の中空円筒状印刷基材表面に凹凸パターンを形 成した中空円筒状印刷版を印刷機に設置するだけで印刷が実施できるため、従来 行われていた版胴上での印刷版の位置合わせ工程、印刷版の固定工程を省略する ことができ、工程を大幅に簡略ィ匕することが可能である。
本発明は下記の通りである。
1. 厚さ 0. 05mm以上 50mm以下の感光性榭脂硬化物層(1)を含んでなる中空 円筒状芯材 (A)であって、該感光性榭脂硬化物層(1)が繊維状、布状又はフィルム 状の補強材を含有し、かつ、該感光性榭脂硬化物層(1)のショァ D硬度が 30度以上 100度以下である上記中空円筒状芯材 (A)、及び
該中空円筒状芯材 (A)の上に積層されてなる、厚さ 0. 1mm以上 100mm以下の 、表面にパターン形成可能な榭脂層(B)又は表面にパターンが形成された榭脂層( C)
を含んでなる円筒状印刷基材。
2. パターン形成可能な榭脂層 (B)が、写真製版技術でパターンを形成することが 可能な感光性榭脂組成物層又はレーザー彫刻可能な感光性榭脂硬化物層(3)で ある上記 1.に記載の円筒状印刷基材。
3. 中空円筒状芯材 (A)の内面に、さらに、少なくとも 1層の榭脂層(D)が積層され た円筒状構成体であって、該榭脂層(D)の厚さが 0. Olmm以上 0. 5mm以下であ ることを特徴とする上記 1.に記載の中空円筒状印刷基材。
4. 中空円筒状芯材 (A)と、パターン形成可能な榭脂層(B)又は表面にパターンが 形成された榭脂層(C)との間に、さらに、クッション層 (E)が積層されている円筒状構 成体であって、該クッション層(E)の厚さ力 0. 05mm以上 50mm以下である上記 1
.力 3.のいずれか一項に記載の中空円筒状印刷基材。
5. 中空円筒状芯材 (A)とクッション層 (E)の間に、さらに、周長調整層 (F)が積層 されている円筒状構成体であって、該周長調整層(F)の厚さが 0. 1mm以上 100m m以下である上記 4.に記載の中空円筒状印刷基材。 [0009] 6. パターン形成可能な榭脂層(B)又は表面にパターンが形成された榭脂層(C)と 、クッション層(E)との間に、さらに、剛性体層(G)が積層されている中空円筒状構成 体であって、該剛性体層(G)の厚さが 0. Olmm以上 0. 5mm以下である上記 4.に 記載の中空円筒状印刷基材。
7. 中空円筒状芯材 (A)、周長調整層 (F)、クッション層 (E)、剛性体層 (G)、榭脂 層 (B)、及び榭脂層 (C)の内、少なくとも中空円筒状芯材 (A)を構成する感光性榭 脂硬化物が、 20°Cにお!/ヽて液状の感光性榭脂組成物を光硬化させて形成されたも のである上記 1.力 6.のいずれか一項に記載の中空円筒状印刷基材。
8. レーザー彫刻可能な感光性榭脂硬化物層(3)力もなる榭脂層(B)が、カーボネ ート結合、ウレタン結合、及びエステル結合力 なる群力 選ばれる少なくとも 1種類 の結合を有する化合物及び無機多孔質体を含有する上記 2.に記載の中空円筒状 印刷基材。
9. 中空円筒状芯材 (A)、周長調整層 (F)、クッション層 (E)、剛性体層 (G)、榭脂 層 (B)、及び榭脂層 (C)の内、少なくとも中空円筒状芯材 (A)を構成する感光性榭 脂硬化物が、光重合開始剤又は該光重合開始剤の分解生成物を含有し、該光重合 開始剤が、水素引き抜き型光重合開始剤と崩壊型光重合開始剤、又は同一分子内 に水素引き抜き型光重合開始剤として作用する部位と崩壊型光重合開始剤として作 用する部位を有する化合物を含む上記 1.力 8.のいずれか一項に記載の中空円 筒状印刷基材。
[0010] 10. 中空円筒状芯材 (A)が表面に凹凸を有し、凹凸の高低差が 20 m以上 500 μ m以下である上記 1.に記載の中空円筒状印刷基材。
11. 厚さ 0. 05mm以上 50mm以下の感光性榭脂硬化物層(1)を含んでなる、中 空円筒状印刷基材形成用の中空円筒状芯材であって、該感光性榭脂硬化物層(1) が繊維状、布状又はフィルム状の補強材を含有し、かつ、該感光性榭脂硬化物層(1 )のショァ D硬度が 30度以上 100度以下である上記中空円筒状芯材。
12. 円筒状支持体表面に繊維状、布状又はフィルム状の補強材を設ける工程、そ の上に液状感光性榭脂組成物を塗布する工程、形成された感光性榭脂組成物層に 200nm以上 450nm以下の波長の光を含む光線を大気中で照射し、該感光性榭脂 組成物層を光硕化させ感光性樹脂硬化物層(1)を形成する工程、上記工程により形 成された中空円筒状芯材 (A)上にパターンを形成可能な樹脂層(B)又は表面にパ ターンが形成された樹脂層(C)を積層する工程を含む中空円筒状印刷基材の製造 方法。
13. 繊維状、布状又はフィルム状の補強材に液状感光性樹脂組成物又は液状感 光性樹脂組成物の半硬化物を含有させて得られるシート状物を円筒状支持体表面 に卷装する工程、形成された感光性樹脂組成物層に 200nm以上 450nm以下の波 長の光を含む光線を大気中で照射し、該感光性樹脂組成物層を光硬化させ感光性 樹脂硬化物層(1)を形成する工程、上記工程により形成された中空円筒状芯材 (A) 上にパターンを形成可能な樹脂層(B)又は表面にパターンが形成された樹脂層(C) を積層する工程を含む中空円筒状印刷基材の製造方法。
[0011] 14. 樹脂層(B)の積層方法が、感光性樹脂組成物を塗布する工程、又は感光性 樹脂組成物を塗布した後に光硬化させる工程、又はシート状に形成された感光性榭 脂組成物層を接着剤若しくは粘着剤を介して貼り付ける工程を含み、表面にパター ンを形成された樹脂層(C)の積層方法がパターンを形成されたシート状物を接着剤 又は粘着剤を介して貼り付ける工程を含む上記 12.又は 13.に記載の方法。
15. 中空円筒状芯材 (A)を形成する工程の前に、円筒状支持体上に、さらに、少 なくとも 1層の樹脂層(D)を形成する工程を含み、該樹脂層 (D)を形成する工程が、 円筒状支持体上に樹脂製フィルムを卷きつける際に、該樹脂製フィルムの両端部が 重ならないよう (こ、かつ両端部の接合部位に生じる継ぎ目が 2mm以下となるように卷 きつける工程、又は円筒状に形成された継ぎ目のない樹脂製チューブをかぶせるェ 程、又は円筒伏支持体上に液状感光性樹脂組成物を塗布し光照射により光硬化さ せる工程を含む上記 12.又は 13.に記載の方法。
16. 樹脂層(B)又は樹脂層(C)を積層する工程の前に、中空円筒状芯材 (A)上 に周長調整層(F)を積層する工程を含み、該周長調整層(F)を積層する工程が、中 空円筒状芯材(A)上に液状感光性樹脂を塗布し光照射により光硬化させる工程を 含む上記 12.力ら 15.のいずれか一項に記載の方法。
[0012] 17. 樹脂層(B)又は樹脂層(C)を積層する工程の前に、中空円筒状芯材 (A)又 は周長調整層(F)上にクッション層 (E)を積層する工程を含み、該クッション層 (E)を 積層する方法が、中空円筒状芯材 (A)若しくは周長調整層 (F)上に液状感光性榭 脂を塗布し光照射により光硬化させる工程、又は接着剤層若しくは粘着剤層を介し てクッションテープを貼り付ける工程を含む上記 16.に記載の方法。
18. 榭脂層(B)又は榭脂層(C)を積層する工程の前に、クッション層(E)上に剛性 体層 (G)を積層する工程を含み、該剛性体層 (G)を積層する方法が、クッション層 ( E)上に榭脂製フィルムを接着剤層若しくは粘着剤層を介して貼り付ける工程、又は 液状感光性榭脂組成物を塗布し光照射により光硬化させる工程を含む上記 17.に 記載の方法。
19. 感光性榭脂硬化物層(1)を形成する工程の後に、更に表面を切削する工程、 表面を研削する工程、及び表面を研磨する工程力 なる群力 選ばれる少なくとも 1 種類の工程を含む上記 12.力ら 18.のいずれか一項に記載の方法。
20. 感光性榭脂硬化物層(1)を形成する工程において、前記感光性榭脂組成物 層に大気中で光が照射される上記 12.力も 19.のいずれか一項に記載の方法。
21. 中空円筒状印刷基材の形成後に、該中空円筒状印刷基材を円筒状支持体か ら取り外す工程を含む上記 12.力 20.のいずれか一項に記載の方法。
発明の効果
[0013] 本発明の中空円筒状印刷基材は、版厚精度、寸法精度が良ぐかつ、簡単、短時 間に形成することができる。
発明を実施するための最良の形態
[0014] 以下、本発明について、特にその好ましい実施態様を中心に、詳細に説明する。
本発明の中空円筒状芯材 (A)は、厚さ 0. 05mm以上 50mm以下、好ましくは 0. 1 mm以上 20mm以下、より好ましくは 0. 2mm以上 10mm以下の感光性榭脂硬化物 層(1)から形成されていることが好ましい。更に、該感光性榭脂硬化物層(1)中には 、繊維状、布状又はフィルム状の補強材を有していることが好ましい。
本発明の円筒状芯材の厚さが 0. 05mm以上 50mm以下であれば、形状安定性を 確保することができ、重量も極端に重くなく持ち運びが容易である。
本発明において、繊維状とは、糸状のものを指し、細い繊維を束ねたり蹉つたりした ものも含む。また、布状とは、繊維を編んだ織布、又は短繊維を不規則に接合した不 織布を指す。本発明で用いる布状の補強材は、織布であっても不織布であっても構 わない。特に限定するものではないが、有機系繊維の具体例として、ァラミド繊維、ポ リイミド繊維、ポリエステル繊維、アクリル繊維などを挙げることができる。また、ノクテ リアが生産するセルロースナノ繊維力も形成された不織布を用いても構わない。無機 系繊維の具体例として、ガラス繊維、カーボン繊維等を挙げることができる。また、前 記の有機系繊維又は無機系繊維からなる繊維状の補強材を円筒状支持体表面に 巻きつけて使用することもできる。
[0015] 本発明で用いるフィルム状の補強材は、厚みが 1 μ m以上 100 μ m以下であること が好ましい。より好ましい範囲は 5 m以上 80 m以下、更に好ましい範囲は 10 m以上 50 μ m以下である。フィルム状の補強材の厚みが 1 μ m以上 100 μ m以下で あれば、フィルム状の補強材の取り扱いも容易であり、感光性榭脂硬化物層(1)の補 強効果も充分に得ることができる。フィルム状の補強剤は、特に限定するものではな いが、ポリエステル、ポリイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリエーテル エーテルケトン、ポリフエ二レンエーテル、ポリフエ二レンチォエーテル、ポリオレフイン の群カゝら選択される少なくとも 1種類の材料カゝら形成されていることが好ましぐ 2種類 以上の積層体であっても構わない。また、該フィルム状の補強材の線熱膨張係数は 、— 10ppmZ°C以上 150ppmZ°C以下であることが好ましぐより好ましい範囲は— 10ppmZ°C以上 100ppmZ°C以下である。フィルム状の補強材の線熱膨張係数が 上記範囲であれば、感光性榭脂硬化物層(1)の寸法安定性を十分に確保すること ができる。フィルム状補強材の線熱膨張係数は、熱機械測定法 (TMA)を用いて 20 °Cから 80°Cの温度範囲で測定することが好ましい。
[0016] 本発明にお ヽてフィルム状補強材を用いる場合、該フィルム状補強材と、感光性榭 脂硬化物(1)を形成する感光性榭脂硬化物とが、交互に積層された積層構造である ことが好ましい。フィルム状補強材上に積層される感光性榭脂硬化物の厚さは、 1 μ m以上 100 μ m以下であることが好ましい。より好ましい範囲は 5 μ m以上 80 μ m以 下、更に好ましい範囲は、 10 m以上 50 m以下である。該感光性榭脂硬化物の 厚さが上記範囲であれば、フィルム状補強材との接着性又は粘着性を充分に確保す ることができ、感光性榭脂硬化物層(1)の寸法安定性を確保することができる。フィル ム状補強材と該感光性榭脂硬化物との接着性又は粘着性は、 50NZm以上である ことが好ましぐより好ましくは 200NZm以上、更に好ましくは 500NZm以上である 。本明細書において粘着性とは、剥離することが可能な性質を指し、剥離すると界面 が破壊される接着性とは区別して使用する。
本発明で用いるフィルム状補強材の光線透過率は、波長 350nm力ら 370nmの範 囲において、 10%以上 100%以下であることが好ましぐより好ましい範囲は 30%以 上 100%以下、更に好ましい範囲は 50%以上 100%以下である。光線透過率が上 記範囲であれば、光照射により形成される感光性榭脂硬化物の機械的強度を確保 することができる。特にフィルム状補強材を複数回に巻きつける場合に、内側の感光 性榭脂組成物を充分に光硬化させることが可能である。
本発明で用いる補強材の表面を重合性不飽和基を有する化合物で表面修飾する こともできる。例えば、アクリル基、メタクリル基、メルカプト基、ビニル基等の官能基を 有するシランカップリング剤、チタンカップリング剤等を用いて補強剤表面に露出する 水酸基等の官能基に化学反応させることもできる。また、有機系補強材の場合、ブラ ズマ、真空紫外線等を照射する表面処理により表面に水酸基等の活性官能基を形 成し、前記シランカップリング剤やチタンカップリング剤を反応させることもできる。 本発明の感光性榭脂硬化物層(1)のショァ D硬度は、 30度以上 100度以下、より 好ましくは 40度以上 100度以下、更に好ましくは 50度以上 100度以下である。ショァ D硬度が 30度以上 100度以下であれば、円筒状に形状を維持することが容易であり 、寸法安定性も確保することができる。感光性榭脂組成物 (6)は、成分として、数平 均分子量が 1000以上 30万以下の榭脂 (a)、及び数平均分子量が 1000未満で分 子内に重合性不飽和基を有する有機化合物 (b)を含む。上記硬度範囲の感光性榭 脂硬化物層(1)を得るためには、これら榭脂 (a)及び有機化合物 (b)の分子内に 2個 以上、より好ましくは 3個以上の重合性不飽和基を含有する化合物構造を、榭脂 (a) 及び Z又は有機化合物 (b)全体量の 10wt%以上、より好ましくは 20wt%以上含有 することが望ましい。また、榭脂 (a)及び Z又は有機化合物 (b)の分子内に芳香族炭 化水素基及び Z又は脂環族炭化水素基等の剛直な骨格部位を有する化合物を、 榭脂(a)及び Z又は有機化合物 (b)全体量の 10wt%以上、より好ましくは 20wt% 以上含有することが好ましい。更に、剛直部位を有するモノマー単位が、榭脂 (a)を 構成するモノマー単位の 1%以上、より好ましくは 5%以上、更に好ましくは 10%以上 含有されて 、ることが望まし 、。
また、本発明の中空円筒状芯材 (A)の表面を研磨する場合には、その表面上に存 在する凹凸の高低差は、好ましくは最大値が 30 m以下、より好ましくは 20 m以 下、更に好ましくは 10 m以下である。高低差の最大値が 30 m以下であれば、シ ート状の印刷原版、印刷版、ブランケット等を直接貼り付けることができる。また、中空 円筒状芯材 (A)の表面は、研磨することにより平滑ィ匕する必要はなぐ表面に凹凸が 存在していても構わない。この場合、研磨工程を経ないので中空円筒状芯材 (A)の 製造時間を大幅短縮することができ、ガラス繊維等の無機系補強材の粉末が飛散す ることもない。表面に凹凸が存在する場合、凹凸の高低差が 20 m以上 500 m以 下であることが好ましい。高低差が上記範囲であれば、前記中空円筒状芯材 (A)上 に液状感光性榭脂を塗布し、上に積層する層を形成する際に、気泡の巻き込み等を 防ぐことができる。本発明の円筒状芯材 (A)表面に存在する凹凸の高低差は、接触 式変位センサ (キーエンス社製、商標「AT3— 010」)を用いて測定し、該接触式変 位センサを固定し、エアーシリンダー等の円筒状支持体に固定された円筒状芯材( A)を 1回転させて 1箇所の円周を測定するものとする。円筒状芯材 (A)の回転速度 は、接触式センサの応答が追従できる速度に設定することが好ましぐ毎秒 1回転以 下が望ましい。更に、測定箇所は 3箇所とし、円筒状芯材 (A)の中央部 1箇所と、端 部から lcmの部分 2箇所とし、円筒状支持体表面の任意に選んだ 1点の位置を基準 点と設定する。測定箇所 3箇所は、円筒状支持体表面の任意に選んだ 1点を基準点 に高低差を測定することになる。測定箇所 3箇所の基準点に対する高低差の最大値 を、本発明における凹凸の高低差の最大値と定義する。この測定法では、円筒状支 持体の 1点を基準点としているため、円筒状支持体の全表面の高低差が、この基準 位置に対し 10 /z m以下、より好ましくは 5 /z m以下であることが望ましい。したがって、 エアーシリンダー、及びエアーシリンダーを固定し回転させる機器の作製精度も 10 μ m未満、好ましくは 5 μ m未満であることが望ましい。 [0019] 中空円筒状芯材 (A)を構成する感光性榭脂硬化物層(1)、及び榭脂層 (D)を構 成する層(4)は、それぞれ、 20°Cにお 、て液状の感光性榭脂組成物(6)及び(7)を 大気中で光硬化させて形成されたものであることが好まし 、。好まし 、液状の感光性 榭脂組成物の 20°Cにおける粘度は、 lOPa' s以上 50kPa' s以下、より好ましくは 50 ?& ' 5以上201^½ ' 5以下、更に好ましくは lOOPa' s以上 lOkPa' s以下である。液状 榭脂は、円筒状に塗布することが容易であり、前記の粘度範囲であれば、重力により 液ダレを起こすことなく容易に成形することが可能である。
[0020] 本発明の中空円筒状芯材 (A)を構成する感光性榭脂硬化物層(1)を形成する方 法は、円筒状支持体上に前記感光性榭脂組成物(6)を塗布する工程、 200nm以上 450nm以下の光を含む光線を照射することにより光硬化させる工程、得られた感光 性榭脂硬化物層の膜厚を調整する工程を含む。円筒状支持体上に感光性榭脂組 成物(6)を塗布する方法は、特に限定するものではないが、スプレーコート法、ブレ ードコート法、グラビアコート法、リバースローラー塗工法、キスタツチ塗工法、高圧ェ ァナイフ塗工法など、一般的に用いられている塗布方法を挙げることができる。感光 性榭脂組成物(6)を塗布している際に円筒状支持体を軸の廻りに回転させることが 均一塗布に効果的である。更に、形成された感光性榭脂組成物層(1)の光硬化に 用いる光源は、 200nm以上 450nm以下の光を含む光線を発生するものが好まし!/ヽ 。特に限定するものではないが、メタルノ、ライドランプ、高圧水銀灯、超高圧水銀灯、 カーボンアークランプ、ケミカルランプ、殺菌灯等を挙げることができる。光照射は、 感光性榭脂組成物 (6)の塗布と同時に実施することもでき、また塗布後に光照射し ても構わない。光照射により得られた感光性榭脂硬化物層(1)の厚さの調整は、旋 盤のバイト等の刃物を用いて切削する方法、回転する研磨ホイールで切削する方法
、研磨布を用いて研磨する方法を組み合わせて実施することができる。もちろん、円 筒状支持体の軸の廻りに回転させながら処理することもできる。更に、前記感光性榭 脂硬化物層(1)の厚さを調整する工程を実施しなくても構わない。
[0021] 感光性榭脂組成物(6)を塗布する前に、さらに繊維状物、布状物又はフィルム状 物を円筒状支持体表面に巻き付ける工程を含んでいても構わない。繊維状物、布状 物又はフィルム状物の巻き付け方法を特に限定するものではないが、リボン状に成 形したものを螺旋状に巻き付ける方法が、中空円筒状芯材 (A)の強度を保持する効 果が大きく好ましい。円筒状支持体上に巻き付けられる繊維状物又は布状物の表面 又は内部に、フィルム状物の表面に感光性榭脂組成物(6)又は該感光性榭脂組成 物(6)の半硬化物を含有して!/ヽるものを用いることもできる。特に半硬化物は表面の 粘着性を有するので、円筒状支持体上に巻き付ける工程が容易に実施できる効果 がある。感光性榭脂組成物 (6)の半硬化物とは、感光性榭脂組成物 (6)を完全に硬 ィ匕させ、硬度等の物性が変化しなくなる段階より前の感光性榭脂硬化物の光硬化状 態を指し、照射する光の量を少なく設定することにより容易に得ることができる。半硬 化物を形成できる光の量の目安は、硬度等の物性が変化しなくなる最少光量の 80 %以下、より好ましくは 50%以下、更に好ましくは 30%以下である。繊維状物、布状 物又はフィルム状物の表面に感光性榭脂組成物(6)を塗布したものを、円筒状支持 体上に巻きつける場合、感光性榭脂組成物 (6)を塗布する方法は、特に限定するも のではなく公知の方法を用いることができる。均一に塗布するためには、ドクターブレ ード法、ロールコート法、スプレーコート法が好ましい。また、繊維状物又は布状物の 内部 (繊維と繊維の間の空間)に感光性榭脂組成物 (6)を染み込ませたもの、含浸 することにより充填したものであっても構わない。感光性榭脂組成物(6)の半硬化物 を含有する繊維状物又は布状物を円筒状支持体上に巻きつけながら、光硬化させる こともできる。この方法は、繊維状物又は布状物を積層する場合、光線透過性を確保 するために効果的である。
本発明の中空円筒状芯材 (A)を構成する感光性榭脂硬化物層(1)は、芳香族炭 化水素基及び Z又は脂環族炭化水素基等の剛直な骨格部位を有する化合物を有 することが好ましい。ここで、芳香族炭化水素基とは、フエ-ル基、トリル基、キシリル 基、ビフエ-ル基、ナフチル基、アントリル基、フエナントリル基、ピレニル基等の、芳 香族化合物の骨格の 1個の水素原子を除いた原子団を有する官能基を指す。脂環 族炭化水素基とは、炭素原子が環状に結合した構造をもつ炭素環式化合物のうち、 芳香族化合物に属さない化合物の水素原子を 1個除いた残りの原子団を有する官 能基をいう。例えば、シクロへキシル基、ビシクロォクチル基、シクロペンタジェ -ル基 、シクロォクチル基などを挙げることができる。これらの骨格部位を有することにより感 光性榭脂硬化物層(1)のショァ D硬度を高くすることができ、剛性の保持、寸法安定 性確保に効果がある。
本発明の感光性榭脂硬化物層(1)を形成するための感光性榭脂組成物 (6)は、数 平均分子量が 1000以上 30万以下の榭脂 (a)、数平均分子量が 1000未満で分子 内に重合性不飽和基を有する有機化合物 (b)、及び光重合開始剤を含むことが好ま しい。また、該光重合開始剤が、水素引き抜き型光重合開始剤と崩壊型光重合開始 剤を含有するか、又は同一分子内に水素引き抜き型光重合開始剤として作用する部 位と崩壊型光重合開始剤として作用する部位を有する化合物である場合には、ラジ カル重合反応により光硬化する感光性榭脂組成物が大気中で光硬化することができ るため特に好ましい。
榭脂 (a)としては、特に限定するものではなぐ公知の高分子化合物を用いることが できる。特に分子内に芳香族炭化水素化合物及び Z又は脂環族炭化水素化合物 等の剛直な分子構造を有する化合物が好ましい。具体的には、合成ゴム、熱可塑性 エラストマ一等の硬度の高いゴム弾性のあるゴム系高分子化合物、弾性率の高い熱 可塑性榭脂等の 20°Cにおいて固体状の榭脂、又は分子内に重合性不飽和基を有 する不飽和ポリウレタン、不飽和ポリエステル、液状ポリブタジエン等の 20°Cにおい て液状の榭脂等を好ましい高分子化合物として挙げることができる。ゴム系高分子化 合物として、天然ゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、ポリ ブタジエンゴム、ポリイソプレンゴム、エチレンプロピレンゴム、モノビュル置換芳香族 炭化水素モノマーと共役ジェンモノマーとの重合物が好まし 、。該モノビニル置換芳 香族炭化水素モノマーとしては、スチレン、 a—メチルスチレン、 p—メチルスチレン、 p—メトキシスチレンなどが、また共役ジェンモノマーとしてはブタジエン、イソプレン などが用いられる。熱可塑性エラストマ一の代表的な例としてはスチレンーブタジェ ンブロック共重合体、スチレン イソプレンブロック共重合体などが挙げられる。弾性 率の高い熱可塑性榭脂としては、ポリカーボネート、ポリスルホン、ポリエーテルスル ホン、ポリアミド、ポリアミック酸、ポリエステル、ポリフエ-レンエーテル等を挙げること 力 Sできる。 20°Cにおいて固体状榭脂の場合、溶剤に溶解できるものが特に好ましい 。榭脂(a)の数平均分子量の好ましい範囲は 1000以上 30万以下、より好ましくは 50 00以上 10万以下、更に好ましくは 7000以上 5万以下である。本発明の数平均分子 量とは、ゲル浸透クロマトグラフ法 (GPC法)で測定し、分子量既知のポリスチレンを 基準に換算した値を用いる。
[0024] 前記の重合性不飽和基は、ラジカル重合反応、付加重合反応、開環付加重合反 応に関与する官能基であることが好まし 、。ラジカル重合反応する重合性不飽和基 として、ビュル基、アセチレン基、メタクリル基、アクリル基等を挙げることができる。ま た、付加重合反応する重合性不飽和基として、シンナモイル基、チオール基、アジド 基を挙げることができる。更に、開環付加反応性を有する重合性不飽和基として、ェ ポキシ基、ォキセタン基、環状エステル基、ジォキシラン基、スピロオルトカーボネート 基、スピロオルトエステル基、ビシクロオルトエステル基、シクロシロキサン基、環状イミ ノエーテル基等を挙げることができる。
[0025] 大気中で感光性榭脂を光硬化させる観点から、榭脂 (a)は、分子内にァリール基、 少なくとも 1つのァリール基で置換された直鎖状又は分岐状アルキル機、アルキル基 、アルコキシカルボ-ル基、ヒドロキシル基、及びホルミル基力 なる群力 選ばれる 少なくとも 1種類の有機基を有する力、又はカーボネート結合又はエステル結合を有 し、かつ該有機基又は該結合が直接結合している炭素原子に結合した水素原子( α 位水素)を分子内の全水素原子に対し 2%以上有していることが好ましい。理由は明 確ではないが、前記特定の官能基を有し、かつ該有機基が直接結合している炭素原 子に結合した水素原子を有して 、る化合物を用いることにより、大気中にぉ ヽても光 硬化可能な感光性榭脂組成物を与える。ァリール基の好ましい例としては、フエニル 基、トリル基、キシリル基、ビフヱ-ル基、ナフチル基、アントリル基、ピレニル基、フエ ナントリル基等を挙げることができる。また、ァリール基で置換された直鎖状又は分岐 状アルキル基、例えばメチルスチリル基、スチリル基などが好ましい。 α位水素の含 有率は、水素原子に着目した核磁気共鳴スペクトル法 ( NMR法)により分析す ることが可能である。
感光性榭脂組成物 (6)が溶剤成分を含有する場合には、不揮発成分全重量に基 づいて、榭脂(a)成分は 10〜90wt%の範囲であることが好ましぐより好ましくは 20 〜80wt%、さらに好ましくは 30〜70wt%である。 感光性榭脂組成物 (6)に含まれる重合性不飽和基を有する有機化合物 (b)は、ラ ジカル重合反応、付加重合反応、開環付加重合反応する化合物であり、公知の化合 物も使用することができ、特に限定するものではない。
[0026] ラジカル反応性化合物として、エチレン、プロピレン、スチレン、ジビュルベンゼン等 のォレフイン類、アセチレン類、(メタ)アクリル酸及びその誘導体、ハロォレフイン類、 アクリロニトリル等の不飽和-トリル類、(メタ)アクリルアミド及びその誘導体、無水マ レイン酸、マレイン酸、フマル酸等の不飽和ジカルボン酸及びその誘導体、酢酸ビニ ル類、 N—ビュルピロリドン、 N—ビ-ルカルバゾール等が挙げられる力 その種類の 豊富さ、価格等の観点力 (メタ)アクリル酸及びその誘導体が好ましい例である。誘 導体の例としては、シクロアルキル基、ビシクロアルキル基、シクロアルケン-ル基、ビ シクロアルケニル基などを有する脂肪族化合物、ベンジル基、フエ-ル基、フエノキシ 基、又はナフタレン骨格、アントラセン骨格、ビフヱ-ル骨格、フ ナントレン骨格、フ ルオレン骨格などを有する芳香族化合物、アルキル基、ハロゲンィ匕アルキル基、アル コキシアルキル基、ヒドロキシアルキル基、アミノアルキル基、グリシジル基等を有する 化合物、アルキレングリコール、ポリオキシアルキレングリコール、ポリアルキレングリコ ールゃトリメチロールプロパン等の多価アルコールとのエステル化合物、ポリジメチル シロキサン、ポリジェチルシロキサン等のポリシロキサン構造を有する化合物などが 挙げられる。また、窒素、硫黄等の元素を含有した複素芳香族化合物であっても構 わない。
[0027] また、付加重合反応性を有する重合性不飽和基として、シンナモイル基、チオール 基、アジド基を有する化合物を挙げることができる。更に、開環付加反応性を有する 重合性不飽和基として、エポキシ基、ォキセタン基、環状エステル基、ジォキシラン 基、スピロオルトカーボネート基、スピロオルトエステル基、ビシクロオルトエステル基 、シクロシロキサン基、環状ィミノエーテル基等を有する化合物を挙げることができる。 特に有用なエポキシ基を有する化合物エポキシ基を有する化合物として、種々のジ オールやトリオールなどのポリオールにェピクロルヒドリンを反応させて得られる化合 物、分子中のエチレン結合に過酸を反応させて得られるエポキシィ匕合物などを挙げ ることができる。具体的には、エチレングリコールジグリシジルエーテル、ジエチレング リコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、テトラ エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテ ル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジル エーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコール ジグリシジルエーテル、 1, 6—へキサンジオールジグリシジルエーテル、グリセリンジ グリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリダリ シジルエーテル、ビスフエノール Aジグリシジルエーテル、水添化ビスフエノール Aジ グリシジルエーテル、ビスフエノール Aにエチレンオキサイド又はプロピレンオキサイド が付カ卩したィ匕合物のジグリシジルエーテル、ポリテトラメチレングリコールジグリシジル エーテル、ポリ(プロピレングリコールアジペート)ジオールジグリシジルエーテル、ポリ (エチレングリコールアジペート)ジオールジグリシジルエーテル、ポリ(力プロラタトン) ジオールジグリシジルエーテル等のエポキシ化合物、エポキシ変性シリコーンオイル を挙げることができる。
[0028] 中空円筒状芯材 (A)を構成する感光性榭脂硬化物層(1)の機械強度を高めるた めには、榭脂 (a)又は有機化合物 (b)として、脂環族炭化水素化合物又は芳香族炭 化水素化合物を少なくとも 1種類以上含有することが好ましく、これらの脂環族炭化 水素化合物又は芳香族炭化水素化合物を、榭脂 (a)又は有機化合物 (b)の全体量 の 20wt%以上含有していることが好ましぐ更に好ましくは 50wt%以上である。また 、前記芳香族炭化水素化合物の誘導体として、窒素、硫黄等の元素を有する芳香族 炭化水素化合物であっても構わな 、。
感光性榭脂組成物 (6)における榭脂 (a)及び有機化合物 (b)の割合は、榭脂 (a) 1 00重量部に対して、有機化合物お)は 5〜200重量部が好ましぐ 20〜: L00重量部 の範囲がより好ましい。
[0029] 感光性榭脂組成物(6)に含まれる光重合開始剤(c)としては、公知の光重合開始 剤を使用することができる。例えば、芳香族ケトン類やベンゾィルエーテル類などの 公知のラジカル重合開始剤を使用することができる。例えば、ベンゾフエノン、ミヒラー ケトン、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソプロピ ルエーテル、 α—メチロールべンゾインメチルエーテル、 α—メトキシべンゾインメチ ルエーテル、 2, 2—ジメトキシフエ-ルァセトフエノン、ァシルホスフィンォキシドなど の中から使用することができ、それらを組み合わせても使用できる。特に大気中で光 硬化させる場合には、ベンゾフエノン等の水素引き抜き型光重合開始剤と、 2, 2—ジ メトキシフエ二ルァセトフエノン等の崩壊型光重合開始剤との組み合わせが特に好ま しい。更に、同一、分子内に水素引き抜き型重合開始剤として作用する部位と崩壊 型光重合開始剤として作用する部位が存在する化合物を用いても、大気中での光硬 化に効果が見られる。 a—アミノアセトフエノン類を挙げることができる。例えば、 2- メチルー 1一(4—メチルチオフエ-ル) 2 モルホリノ一プロパン一 1 オン、 2 ベ ンジル—2—ジメチルァミノ— 1— (4—モルフォリノフエ-ル)—ブタノン等の下記一 般式 (I)で示される化合物を挙げることができる。
[化 1]
Figure imgf000018_0001
(式中、 Rは各々独立に、水素原子又は炭素数 1〜: LOのアルキル基を表す。また、
2
Xは炭素数 1〜10のアルキレン基を表す。)
また、光を吸収して酸を発生する芳香族ジァゾ -ゥム塩、芳香族ョードニゥム塩、芳 香族スルホ -ゥム塩等の光力チオン重合開始剤、又は光を吸収して塩基を発生する 光重合開始剤などが挙げられる。光重合開始剤の添加量は、榭脂 (a)と有機化合物 (b)の合計量の 0. 01〜10wt%の範囲が好ましい。
本発明においては、任意の層として榭脂層(D)を設けることができる。榭脂層(D) は、図 1の符号 1で示すように、感光性榭脂硬化物層(1)からなる中空円筒状芯材( A) (符号 2)の内側表面に設けられ、該感光性榭脂硬化物層(1)を形成する感光性 榭脂組成物(6)とは異なる組成で、厚さ 0. 01mm以上 lmm以下、より好ましくは 0. 05mm以上 0. 5mm以下である。榭脂層(D)は、補強材を含有する感光性榭脂硬 化物層(1)の内側表面の凹凸を緩和する目的で使用される。補強材として繊維を用 いる際に有効である。榭脂層(D)を構成する材料は、榭脂製フィルムであっても円筒 状に成形された榭脂製製チューブであっても構わな 、。榭脂製フィルムを円筒状支 持体に巻きつける場合には、榭脂製フィルムの両端部が重ならないように、かつ両端 部の接合部位に生じる継ぎ目が 2mm以下となるように巻き付けることが好ましい。ま た、補強材を含有する感光性榭脂硬化物層(1)と組成の異なる感光性榭脂硬化物 層 (4)であっても構わな ヽ。特につなぎ目のな ヽ榭脂層(D)が好まし ヽ。榭脂層(D) の厚みが 0. Olmm以上 0. 5mm以下であれば、補強材を有する感光性榭脂硬化物 層(1)内側表面の凹凸を緩和するのに十分である。
[0031] 更に、榭脂層(D)の内側表面の摩擦を低減する目的で微粒子を補強材として含有 させることもできる。含有させる微粒子の平均粒子径は、好ましくは 0. 01 μ m以上 10 0 μ m以下、より好ましく ίま 0. 05 μ m以上 20 μ m以下、更に好ましく ίま 0. 1 μ m以上 10 μ m以下である。平均粒子径が 0. 01 μ m以上 100 μ m以下であれば、榭脂層( D)内側表面の摩擦を低減するに効果がある。更に、微粒子の形状は球形が好まし い。真球度が 0. 5から 1の範囲の球状微粒子を、粒子全体数の 70%以上含むことが 好ましい。前記球状微粒子の数が、この範囲にあれば、榭脂層(D)内側表面の摩擦 を低減する効果がある。本発明の真球度とは、走査型電子顕微鏡で微粒子を観察し た場合に、微粒子の投影される形状に完全に入る最大円の半径 R1と投影される形 状を完全に含む最小円の半径 R2との比、すなわち R1ZR2と定義する。球状微粒 子の数は、走査型電子顕微鏡で観察して、顕微鏡視野に少なくとも 100個程度の粒 子が入る倍率にぉ 、て計測する。計測には画像認識ソフトウェアーを使用することが 好ましい。本発明でいう球状微粒子とは、完全な球状である必要はなぐ表面に突起 等のない滑らから表面を有するものも含む。微粒子の材質としては、窒化珪素、窒化 ホウ素、炭化珪素等の硬質セラミックス、チタン、クロム等の硬質金属、ポリテトラフル ォロエチレン、ポリジメチルシロキサン等のフッ素原子又は珪素原子を有する有機物 を挙げることができる。
[0032] 本発明においては、任意の層として、周長調整層(F)を設けることができる。周長調 整層 (F)は、使用する印刷版の周長に応じて、中空円筒状芯材 (A)上に設けること 力 Sできる。印刷版の周長は、作製する印刷物により千差万別である。従来、周長を調 整するには、円筒状芯材上に硬質ゴムを巻き、加硫架橋、表面研磨、架橋安定化工 程を経て、相当な時間をかけて層を作製する方法が一般的であった。あるいは、周 長に合わせた非常に多くの種類の中空円筒状芯材 (A)を準備、保管しておく必要が あった。本発明は、この課題を解決できる。
また、周長調整層 (F)は、印刷版の周長を調整する機能の他、中空円筒状芯材 (A )の表面の凹凸を平滑にする機能も併せ持つ。例えば、一般的に用いられているガ ラス繊維強化プラスチック製の円筒状芯材の場合、表面の凹凸は極めて大きぐこの 上に硬質ゴムを巻き付けゴム付の円筒状積層体を作製するには、中空円筒状芯材 の表面を研磨する工程により平滑性を上げる作業が別途必要になり、時間を要する ば力りでなく作製コストを大幅に引き上げるデメリットもある。周長調整層(F)では、特 に液状感光性榭脂を用いて作製する場合には、中空円筒状芯材 (A)表面の凹凸へ の追従性は極めて良好であるので、中空円筒状芯材 (A)の表面を研磨する必要も ない。もちろん、表面の仕上げに研磨処理を行っても構わない。
本発明の周長調整層 (F)の材質は特に限定するものではないが、感光性榭脂組 成物(9)の硬化物であることが好ましい。その硬化物の硬度は、好ましくはショァ D硬 度で 5度以上 100度以下、より好ましくは 20度以上 100度以下、更に好ましくは 30度 以上 100度以下である。ショァ D硬度が 5度以上 100度以下であれば、印刷時の厚 み方向の寸法安定性を十分に確保することができる。
周長調整層(F)を構成する感光性榭脂組成物(9)としては、 20°Cにお 、て固体状 の感光性榭脂組成物であっても液状の感光性榭脂であってもよいが、周長調整層( F)の厚さを任意に変えられる観点から、液状の感光性榭脂組成物が特に好ま U、。 液状感光性榭脂組成物中に溶剤が含まれて 、ても構わな 、が、溶剤の除去工程が 必要となるため、無溶剤型の液状感光性榭脂組成物がより好ましい。液状感光性榭 脂組成物を用いた場合、膜厚の均一な継ぎ目のない層を形成することができる。液 状感光性榭脂組成物の好まし 、粘度は、 20°Cにお 、て lOPa' s以上 lOkPa · s以下 、より好ましくは 500Pa' s以上 5kPa' s以下である。厚膜を形成するためには、重力 により液だれが発生し膜厚が変化してしまう可能性もあるので、前記のような粘度範 囲が好ましい。また、成形する膜厚が非常に薄い場合には、粘度を低く抑えることが 望ましい。粘度を低くする方法としては、溶剤を添加する方法も簡便な方法として用 いることがでさる。
[0034] 周長調整層 (F)を形成する方法は、中空円筒状芯材 (A)上に前記感光性榭脂組 成物(9)を塗布する工程、光を照射することにより光硬化させる工程、得られた感光 性榭脂硬化物層の厚さを調整する工程を含むことが好ましい。中空円筒状芯材 (A) 上に感光性榭脂組成物(9)を塗布する方法は、特に限定するものではないが、スプ レーコート法、ブレードコート法、グラビアコート法、リバースローラー塗工法、キスタツ チ塗工法、高圧エアナイフ塗工法など、一般的に用いられている塗布方法を挙げる ことができる。感光性榭脂組成物(9)を塗布して ヽる際に中空円筒状芯材 (A)を軸 の廻りに回転させることが均一塗布に効果的である。更に、形成された感光性榭脂 層の光硬化に用いる光源は、 200nm以上 450nm以下の光を含む光線を発生する ものが好ましい。特に限定するものではないが、メタルハライドランプ、高圧水銀灯、 超高圧水銀灯、カーボンアークランプ、ケミカルランプ、殺菌灯等を挙げることができ る。光照射は、感光性榭脂組成物の塗布と同時に実施することもでき、また塗布後に 光照射しても構わない。光照射により得られた感光性榭脂硬化物層の厚さの調整は 、旋盤のバイト等の刃物を用いて切削する方法、回転する研磨ホイールで切削する 方法、研磨布を用いて研磨する方法を組み合わせて実施することができる。もちろん 、中空円筒状芯材 (A)の長軸を固定し周方向に回転させながら処理することもできる
[0035] また、中空円筒状芯材 (A)の表面を処理し、周長調整層 (F)との接着性を上げるこ ともできる。例えば、中空円筒状心材 (A)表面に薄く接着剤層を形成する方法、接着 性向上プライマー層を形成する方法、又は物理的、化学的に処理する方法などを挙 げることができる。物理的に処理する方法としては、プラズマ、真空紫外線領域の光、 電子線、イオン線等の高エネルギー線を照射する方法、又は高エネルギー線の雰囲 気にさらす方法などを挙げることができる。簡便に実施できる方法として、エキシマー UV (波長 172nm)ランプを照射する方法を挙げることができる。また、化学的に処理 する法としては、中空円筒状芯材 (A)表面を薬液で酸ィ匕処理する方法などである。 接着性向上プライマー層とは、具体的にはシランカップリング剤、チタンカップリング 剤、シリコーン系の接着助剤等で薄い層を形成することを挙げることができる。
[0036] 本発明では、気泡を含有する継ぎ目のな 、周長調整層(F)を中空円筒状芯材 (A) 上に容易に形成することもできる。前記周長調整層(F)中に気泡を有させることにより 中空円筒状印刷基材の軽量ィ匕を図ることができる。層中に含有する気泡は、連続気 泡でも構わないが、機械的強度の観点力 独立気泡がより好ましい。連続気泡は、 感光性榭脂組成物(9)中に空気等の気体を混合する方法、熱又は光により窒素を 発生する化合物を混合する方法等により形成できる。また、独立気泡は、中空微粒 子を用いて形成することが可能である。例えば、中空ガラス微粒子、中空シリカ微粒 子等の無機系中空微粒子、又はマイクロカプセル状の有機系微粒子などを挙げるこ とができる。特に有機系微粒子の中でも、加熱することにより体積が膨張する熱膨張 性のあるマイクロカプセルを用いることが好まし 、。この種の熱膨張性マイクロカプセ ルは内部に揮発性有機系液体を含有しているため、感光性榭脂組成物(9)に混合 した場合、光硬化性に支障のない光線透過率を確保することができる。したがって、 光照射による感光性榭脂組成物(9)の硬化と加熱による熱膨張性マイクロカプセル の熱膨張を組み合わせて実施することにより、厚膜での光硬化が可能となる。感光性 榭脂組成物に中空微粒子を混合する場合、内部の空気層と感光性榭脂組成物の屈 折率に大きな差があるため、一般的に白濁した状態になる。し力しながら、このような 白濁した榭脂であっても、薄膜状態で塗布し、塗布しながら光硬化させる工程を繰り 返し行うことにより厚膜の光硬化物を得ることができる。
[0037] 前記熱膨張性マイクロカプセルを含有する感光性榭脂組成物を用いて、独立気泡 を層内に含む周長調整層 (F)を作製する場合につ!、て記載する。熱膨張させて形 成した周長調整層 (F)の厚さは、熱膨張マイクロカプセルを膨張させる前の厚さの 1 . 1倍から 100倍が好ましぐより好ましくは 1. 1倍から 50倍の範囲である。 1. 1倍以 上であれば、周長調整層(F)の軽量ィ匕を確保することができ、 100倍以下であれば 周長調整層 (F)の機械的強度を得ることができる。周長調整層 (F)の厚さは、断面を 露出させ走査型電子顕微鏡又は光学顕微鏡を用いて観察することが好ましい。 周長調整層(F)内に存在する隔壁を有する気泡の平均径は 0. 5 m以上 500 m以下であることが好ましい。 0. 5 m以上であれば、周長調整層(F)を軽量化する ことができ、 500 m以下であれば厚さ数 mmの周長調整層(F)においても機械的 物性の確保が可能である。周長調整層(F)内の気泡の大きさは、光学顕微鏡、又は レーザー共焦点顕微鏡を用いて観察することが好まし 、。 隔壁の厚さの平均値は、 0. 05 m以上 10 m以下であることが好ましい。 0. 05 μ m以上であれば気泡を保持することができ、 10 μ m以下であれば周長調整層(F) の軽量ィ匕を確保することが可能である。隔壁の厚さは、周長調整層 (F)を切断し、そ の断面を高分解能走査型電子顕微鏡を用いて観察し、評価することができる。
[0038] 熱膨張性マイクロカプセルは、熱可塑性エラストマ一を隔壁とし、内部に揮発性有 機系液体を含有する微粒子であり、好ましくは 60から 250°C、より好ましくは 100から 200°Cに加熱することにより体積膨張する。通常用いられる熱可塑性エラストマ一とし ては、ポリ塩ィ匕ビユリデン、ポリアクリロニトリル、ポリメチルメタタリレートなどを挙げるこ とができる。また、揮発性有機系液体としては、ブタン、イソブタン、ブテン、イソブテン 、ペンタン、イソペンタン、ネオペンタン、へキサン、ヘプテン等の炭化水素を挙げる ことができる。熱膨張性マイクロカプセルを用いることにより、熱膨張した時に比較的 粒子径の揃った独立気泡を形成できる。また、隔壁は無機系微粒子でコーティングさ れていても構わない。無機系微粒子としては、シリカ、炭酸カルシウム、酸化チタン等 を挙げることができる。
周長調整層(F)の好ましい密度の範囲は、 0. lgZcm3以上 0. 9gZcm3以下、よ り好ましくは 0. 3gZcm3以上 0. 7gZcm3以下である。 0. lgZcm3以上であれば、 周長調整層(F)の機械的強度を確保することができ、 0. 9gZcm3以下であれば周 長調整層 (F)の軽量ィ匕を確保することができる。
[0039] 感光性榭脂組成物(9)が熱膨張性マイクロカプセルを含有する場合、該感光性榭 脂組成物を完全に光硬化させてしまっては、マイクロカプセルを熱膨張させることが 困難となるため、感光性榭脂組成物が半硬化状態になるように照射する光のエネル ギー量を調整し、その後、加熱処理を実施し熱膨張性マイクロカプセルを膨張させ、 更に、光を照射し、前記感光性榭脂組成物を完全に硬化させることが好ましい。ある いは、熱膨張性マイクロカプセルの含有率が多い場合には、中空円筒状芯材 (A)上 に感光性榭脂組成物を薄く塗布し、該マイクロカプセルを熱膨張させた後、光を照射 して光硬化を完了させる操作を繰り返し実施することにより、所定厚さの周長調整層( F)を形成することができる。また、既に熱膨張させたマイクロカプセルを感光性榭脂 組成物に添加しても構わな!/、。
[0040] 中空円筒状芯材 (A)上に形成した熱膨張性マイクロカプセルを含有する半硬化状 態の感光性榭脂層 (g)を熱膨張させる工程において、該中空円筒状芯材 (A)と一定 の間隔を離して設置された板状又はロール状物体 (h)との間を、感光性榭脂層 (g) を加熱しながら中空円筒状芯材 (A)を回転させることにより前記感光性榭脂層 (g)を 、前記物体 (h)に接触させながら通過させることが、均一な厚さの周長調整層 (F)を 形成させる方法として好ましい。加熱する方法としては、熱風を吹付ける方法、赤外 線を照射する方法、板状又はロール状物体 (h)を、ヒーターを用いて加熱する方法 などを挙げることができ、これらの方法を組み合わせて使用することもできる。また、加 熱による発泡を急速に停止させる方法として、冷風を吹付け冷却する方法、又は冷 却ロール又は冷却板に接触させる方法を挙げることができる。
[0041] 本発明の周長調整層(F)を形成するための感光性榭脂組成物(9)は、少なくとも 1 種類以上のバインダー (i)、少なくとも 1種類以上の重合性不飽和基を有する有機化 合物 G)、少なくとも 1種類以上の光重合開始剤 (k)を有する化合物であることが好ま しい。また、 20°Cにおいて液状であることが成形性の観点力も好ましぐ膜厚の均一 な継ぎ目のない層を形成することができる。また、成形する膜厚が非常に薄い場合に は、粘度を低く抑えることが望ましい。粘度を低くする方法としては、溶剤を添加する 方法が簡便である。
[0042] ノインダー (i)としては、公知の高分子化合物を用いることができる。具体的には、 合成ゴム、熱可塑性エラストマ一等のゴム弾性のあるゴム系高分子化合物、弾性率 の高い熱可塑性榭脂等の 20°Cにおいて固体状の榭脂、又は分子内に重合性不飽 和基を有する不飽和ポリウレタン、不飽和ポリエステル、液状ポリブタジエン等の 20 °Cにおいて液状の榭脂等を好ましい高分子化合物として挙げることができる。ゴム系 高分子化合物として、天然ゴム、スチレンブタジエンゴム、アクリロニトリルブタジエン ゴム、ポリブタジエンゴム、ポリイソプレンゴム、エチレンプロピレンゴム、モノビュル置 換芳香族炭化水素と共役ジェンモノマーとの重合物が好まし 、。該モノビュル置換 芳香族炭化水素モノマーとしては、スチレン、 aーメチルスチレン、 p—メチルスチレ ン、 p—メトキシスチレンなどが、また共役ジェンモノマーとしてはブタジエン、イソプレ ンなどが用いられ、熱可塑性エラストマ一の代表的な例としてはスチレンーブタジェ ンブロック共重合体、スチレン イソプレンブロック共重合体などが挙げられる。弾性 率の高い熱可塑性榭脂としては、ポリカーボネート、ポリスルホン、ポリエーテルスル ホン、ポリエーテルエーテルケトン、ポリアミド、ポリアミック酸、ポリエステル、ポリフエ 二レンエーテル等を挙げることができる。 20°Cにおいて固体状榭脂の場合、溶剤に 溶解できるものが特に好ましい。バインダー (i)の数平均分子量の好ましい範囲は 10 00以上 30万以下、より好ましくは 5000以上 10万以下、更に好ましくは 7000以上 5 万以下である。本発明の数平均分子量とは、ゲル浸透クロマトグラフ法 (GPC法)で 測定し、分子量既知のポリスチレンを基準に換算した値を用いる。
感光性榭脂を大気中で光硬化させる観点から、バインダー (i)は、分子内にァリー ル基、少なくとも 1つのァリール基で置換された直鎖状又は分岐状アルキル機、アル キル基、アルコキシカルボ-ル基、ヒドロキシル基、及びホルミル基からなる群から選 ばれる少なくとも 1種類の有機基を有するか、又はカーボネート結合若しくはエステル 結合を有し、かつ該有機基若しくは該結合が直接結合して!/ヽる炭素原子に結合した 水素原子( α位水素)を分子内の全水素原子に対し 2%以上有していることが好まし い。理由は明確ではないが、前記特定の官能基を有し、かつ該有機基が直接結合し て 、る炭素原子に結合した水素原子を有して 、る化合物を用いることにより、大気中 にお 、ても光硬化可能な感光性榭脂組成物を与える。ァリール基の好ま 、例とし ては、フエ-ル基、トリル基、キシリル基、ビフエ-ル基、ナフチル基、アントリル基、ピ レニル基、フエナントリル基等を挙げることができる。また、ァリール基で置換された直 鎖状あるいは分岐状アルキル基、例えばメチルスチリル基、スチリル基などが好まし い。 α位水素の含有率については、水素原子に着目した核磁気共鳴スペクトル法 H— NMR法)により分析することが可能である。
感光性榭脂組成物(9)の不揮発成分全重量に基づ!/、て、バインダー (i)成分は 10 〜90wt%の範囲であることが好ましぐより好ましくは 20〜80wt%、さらに好ましく は 30〜69wt%である。 [0044] 感光性榭脂組成物(9)に含まれる重合性不飽和基を有する有機化合物 (j)は、ラ ジカル重合反応、付加重合反応、開環付加重合反応する化合物であり、公知の化合 物も使用することができ、特に限定するものではない。
ラジカル反応性化合物として、エチレン、プロピレン、スチレン、ジビュルベンゼン等 のォレフイン類、アセチレン類、(メタ)アクリル酸及びその誘導体、ハロォレフイン類、 アクリロニトリル等の不飽和-トリル類、(メタ)アクリルアミド及びその誘導体、無水マ レイン酸、マレイン酸、フマル酸等の不飽和ジカルボン酸及びその誘導体、酢酸ビニ ル類、 N—ビュルピロリドン、 N—ビ-ルカルバゾール等が挙げられる力 その種類の 豊富さ、価格等の観点力 (メタ)アクリル酸及びその誘導体が好ましい例である。誘 導体の例としては、シクロアルキル基、ビシクロアルキル基、シクロアルケン-ル基、ビ シクロアルケニル基などを有する脂肪族化合物、ベンジル基、フエ-ル基、フエノキシ 基、又はナフタレン骨格、アントラセン骨格、ビフヱ-ル骨格、フ ナントレン骨格、フ ルオレン骨格などを有する芳香族化合物、アルキル基、ハロゲンィ匕アルキル基、アル コキシアルキル基、ヒドロキシアルキル基、アミノアルキル基、グリシジル基等を有する 化合物、アルキレングリコール、ポリオキシアルキレングリコール、ポリアルキレングリコ ールゃトリメチロールプロパン等の多価アルコールとのエステル化合物、ポリジメチル シロキサン、ポリジェチルシロキサン等のポリシロキサン構造を有する化合物などが 挙げられる。また、窒素、硫黄等の元素を含有した複素芳香族化合物であっても構 わない。
[0045] また、付加重合反応性を有する重合性不飽和基として、シンナモイル基、チオール 基、アジド基を有する化合物を挙げることができる。更に、開環付加反応性を有する 重合性不飽和基として、エポキシ基、ォキセタン基、環状エステル基、ジォキシラン 基、スピロオルトカーボネート基、スピロオルトエステル基、ビシクロオルトエステル基 、シクロシロキサン基、環状ィミノエーテル基等を有する化合物を挙げることができる。 特に有用なエポキシ基を有する化合物エポキシ基を有する化合物として、種々のジ オールやトリオールなどのポリオールにェピクロルヒドリンを反応させて得られる化合 物、分子中のエチレン結合に過酸を反応させて得られるエポキシィ匕合物などを挙げ ることができる。具体的には、エチレングリコールジグリシジルエーテル、ジエチレング リコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、テトラ エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテ ル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジル エーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコール ジグリシジルエーテル、 1, 6—へキサンジオールジグリシジルエーテル、グリセリンジ グリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリダリ シジルエーテル、ビスフエノール Aジグリシジルエーテル、水添化ビスフエノール Aジ グリシジルエーテル、ビスフエノール Aにエチレンオキサイド又はプロピレンオキサイド が付カ卩したィ匕合物のジグリシジルエーテル、ポリテトラメチレングリコールジグリシジル エーテル、ポリ(プロピレングリコールアジペート)ジオールジグリシジルエーテル、ポリ (エチレングリコールアジペート)ジオールジグリシジルエーテル、ポリ(力プロラタトン) ジオールジグリシジルエーテル等のエポキシ化合物、エポキシ変性シリコーンオイル (信越化学工業社製、商標名「HF— 105」)を挙げることができる。
[0046] 周長調整層 (F)の機械強度を高めるためには、有機化合物 (j)としては脂環族又は 芳香族の誘導体を少なくとも 1種類以上有することが好ましぐこの場合、有機化合物 (j)の全体量の 20wt%以上であることが好ましぐ更に好ましくは 50wt%以上である 。また、前記芳香族の誘導体として、窒素、硫黄等の元素を有する芳香族化合物で あっても構わない。
感光性榭脂組成物(9)におけるバインダー (i)、有機化合物 (j)、の割合は、通常、 バインダー (i) 100重量部に対して、有機化合物 (j)は 5〜200重量部が好ましぐ 20 〜 100重量部の範囲がより好ましい。
[0047] 感光性榭脂組成物(9)に含まれる光重合開始剤 (k)としては、公知の光重合開始 剤を使用することができる。例えば、芳香族ケトン類やベンゾィルエーテル類などの 公知のラジカル重合開始剤を使用することができる。例えば、ベンゾフエノン、ミヒラー ケトン、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソプロピ ルエーテル、 aーメチロールべンゾインメチルエーテル、 aーメトキシべンゾインメチ ルエーテル、 2, 2—ジメトキシフエ-ルァセトフエノンなどの中力も使用することができ 、それらを組み合わせても使用できる。特に大気中で光硬化させる場合には、ベンゾ フエノン等の水素引き抜き型光重合開始剤と、 2, 2—ジメトキシフエ二ルァセトフエノ ン等の崩壊型光重合開始剤との組み合わせが特に好ましい。更に、同一、分子内に 水素引き抜き型重合開始剤として作用する部位と崩壊型光重合開始剤として作用す る部位が存在する化合物を用いても大気中光硬化に効果が見られる。光を吸収して 酸を発生する芳香族ジァゾニゥム塩、芳香族ョードニゥム塩、芳香族スルホ -ゥム塩 等の光力チオン重合開始剤又は光を吸収して塩基を発生する重合開始剤などが挙 げられる。重合開始剤の添加量はバインダー (i)と有機化合物 (j)の合計量の 0. 01 〜10wt%範囲が好まし!/、。
本発明では、図 1に示すように、周長調整層(F) (符号 3)と、表面にパターン形成 可能な榭脂層 (B) (符号 6)又は表面にパターンが形成された榭脂層 (C) (符号 6)の 間にクッション性を有するクッション層 (E) (符号 4)を形成した積層体であっても構わ ない。また、周長調整層 (F)がない場合には、中空円筒状芯材 (A) (符号 2)と、バタ ーン形成可能な榭脂層(B)又はパターンが形成された榭脂層(C)の間にクッション 性を有するクッション層 (E)を形成した積層体であっても構わない。
周長調整層 (F)上、又は中空円筒状芯材 (A)上に形成するクッション層 (E)は、接 着剤層付きのクッションテープを該周長調整層 (F)又は中空円筒状芯材 (A)に接着 剤層を向けて貼り合わせる方法、周長調整層 (F)又は中空円筒状芯材 (A)の上にゴ ムを貼り付け熱架橋させて硬化させる方法、周長調整層 (F)又は中空円筒状芯材( A)上に感光性榭脂組成物層を形成し、光硬化させることによりゴム弾性のあるクッシ ヨン層を形成する方法などにより形成することができる。継ぎ目のないクッション層を 形成する簡便な方法は、感光性榭脂組成物を光硬化させる方法である。もちろん、 周長調整層 (F)の箇所で記載したように連続気泡、独立気泡を含有させることもでき る。
本発明のクッション層(E)の硬度は、ショァ A硬度で 10度以上 70度以下が好ましく 、より好ましい範囲は 10度以上 60度以下、更に好ましくは 10度以上 50度以下であ る。クッション層 (E)が気泡を含有し、ショァ A硬度計で測定が困難な場合、 ASKER —C硬度をクッション層(E)の硬度として使用することもできる。 ASKER— C硬度の 好ましい範囲は、 20度以上 70度以下であり、より好ましくは 20度以上 60度以下であ る。また、クッション層(E)の硬度は、表面にパターン形成可能な榭脂層(B)あるいは 表面にパターンが形成された榭脂層(C)の硬度より低いことが好ましい。
[0049] 本発明では、中空円筒状芯材 (A)又は周長調整層(F)又はクッション層 (E)の上 に、パターン形成可能な榭脂層 (B)又はパターンが形成された榭脂層 (C)を積層す ることができる。ノターン形成の形成方法は、露光、現像工程を経る写真製版技術を 用いる方法、レーザー光を照射してレーザー光が照射された部分の榭脂が除去され ることにより凹部が形成されるレーザー彫刻法を用いる方法を挙げることができる。特 にレーザー彫刻法は、現像工程を経ることなくパターンを形成することが可能であり、 コンピュータを用いて画像データを基に榭脂層にパターンを形成できる方法であり好 ましい。
榭脂層(B)又は榭脂層(C)の硬度は、通常の印刷版での用途では、ショァ A硬度 が 20〜75度の領域、紙、フィルム、建築材料の表面凹凸パターンを形成するェンボ ス加工の用途、又はレタープレス印刷版やドライオフセット印刷版の用途では、比較 的硬い材料が必要であり、ショァ D硬度で、 30〜80度の領域である。
本発明では、レーザー彫刻可能な円筒状印刷原版を形成する場合、レーザー彫 刻可能な感光性榭脂硬化物層(3)中に無機多孔質体 (f)を含有させることにより、レ 一ザ一彫刻工程で発生する液状カスを吸収除去することができる。光硬化前の感光 性榭脂組成物(10)は、数平均分子量 1000以上 20万以下の榭脂 (d)、数平均分子 量 1000未満でその分子内に重合性不飽和基を有する有機化合物 (e)、及び無機 多孔質体 (f )を含有することが好ま ヽ。
[0050] 榭脂(d)の種類は、エラストマ一であっても非エラストマ一であっても構わな 、し、 2 0°Cにおいて固体状ポリマーであっても液状ポリマーであっても構わない。また、熱可 塑性榭脂を用いる場合、ポリマー全重量の 30wt%以上、好ましくは 50wt%以上、 更に好ましくは 70wt%以上含有されていることが望ましい。熱可塑性榭脂の含有率 力 S30wt%以上であれば、レーザー光線照射により樹脂が充分に流動化するため、 後述する無機多孔質体に吸収される。ただし、軟ィ匕温度が 300°Cを超えて大きい榭 脂を用いる場合、円筒状に成形する温度も当然高くなるため、他の有機物が熱で変 性、分解することが懸念されるため、溶剤可溶性榭脂を溶剤に溶カゝした状態で塗布 し使用することが好ましい。
特に、円筒状榭脂版への加工の容易性の観点、また、熱に対する分解のし易さの 点から、榭脂(d)として 20°Cにおいて液状のポリマーを使用することが好ましい。榭 脂(d)として、 20°Cにおいて液状のポリマーを使用した場合、形成される感光性榭脂 組成物も液状となるので、低 ヽ温度で成形することができる。
本発明で用いる榭脂(d)の数平均分子量は、 1000から 20万の範囲が好ましい。よ り好ましい範囲としては、 5000力ら 10万である。数平均分子量が 1000から 20万の 範囲であれば、印刷原版の機械的強度を確保することができ、レーザー彫刻時、榭 脂を充分に溶融又は分解させることができる。本発明の数平均分子量とは、ゲル浸 透クロマトグラフィー(GPC)を用いて測定し、分子量既知のポリスチレン標品に対し て評価したものである。
無機多孔質体を用いた場合、レーザー光線の照射により液状ィ匕したカスを、無機 多孔質体を用いて吸収除去することができる。用いる感光性榭脂硬化物(10)として は、液状化し易い榭脂ゃ分解し易い樹脂が好ましい。分解し易い榭脂としては、分 子鎖中に分解し易いモノマー単位としてスチレン、 α—メチルスチレン、 α—メトキシ スチレン、アクリルエステル類、メタクリルエステル類、エステル化合物類、エーテル化 合物類、ニトロ化合物類、カーボネート化合物類、力ルバモイル化合物類、へミアセ タールエステル化合物類、ォキシエチレンィ匕合物類、脂肪族環状化合物類等が含ま れていることが好ましい。特にポリエチレングリコール、ポリプロピレングリコール、ポリ テトラエチレンダリコール等のポリエーテル類、脂肪族ポリカーボネート類、脂肪族力 ルバメート類、ポリメタクリル酸メチル、ポリスチレン、ニトロセルロース、ポリオキシェチ レン、ポリノルボルネン、ポリシクロへキサジェン水添物、又は分岐構造の多いデンド リマー等の分子構造を有するポリマーは、分解し易いものの代表例である。また、分 子鎖中に酸素原子を多数含有するポリマーが分解性の観点から好ましい。これらの 中でも、カーボネート基、力ルバメート基、メタクリル基をポリマー主鎖中に有する化合 物は、熱分解性が高く好ましい。例えば、(ポリ)カーボネートジオールや (ポリ)カー ボネートジカルボン酸を原料として合成したポリエステルやポリウレタン、(ポリ)カーボ ネートジァミンを原料として合成したポリアミドなどを熱分解性の良好なポリマーの例 として挙げることができる。これらのポリマー主鎖、側鎖に重合性不飽和基を含有して いるものであっても構わない。特に、末端に水酸基、アミノ基、カルボキシル基等の反 応性官能基を有する場合には、主鎖末端に重合性不飽和基を導入することも容易 である。
[0052] 本発明で用いる熱可塑性エラストマ一を特に限定するものではないが、スチレン系 熱可塑性エラストマ一である SBS (ポリスチレン ポリブタジエン ポリスチレン)、 SI S (ポリスチレン ポリイソプレン ポリスチレン)、 SEBS (ポリスチレン ポリエチレン Zポリブチレン一ポリスチレン)等、ォレフィン系熱可塑性エラストマ一、ウレタン系熱 可塑性エラストマ一、エステル系熱可塑性エラストマ一、アミド系熱可塑性エラストマ 一、シリコーン系熱可塑性エラストマ一等を挙げることができる。より熱分解性を向上 させるために、分子骨格中に分解性の高い力ルバモイル基、カーボネート基等の易 分解性官能基を主鎖に導入したポリマーを用いることもできる。また、より熱分解性の 高 、ポリマーと混合して用いても構わな、。熱可塑性エラストマ一は加熱することによ り流動化するため、本発明で用いる無機多孔質体と混合することが可能となる。熱可 塑性エラストマ一とは、加熱することにより流動し、通常の熱可塑性プラスチック同様 成形加工ができ、常温ではゴム弾性を示す材料である。分子構造としては、ポリエー テル又はゴム分子のようなソフトセグメントと、常温付近では加硫ゴムと同じく塑性変 形を防止するハードセグメントからなり、ハードセグメントとしては凍結相、結晶相、水 素結合、イオン架橋など種々のタイプが存在する。
[0053] 印刷版の用途により、熱可塑性エラストマ一の種類を選択できる。例えば、耐溶剤 性が要求される分野では、ウレタン系、エステル系、アミド系、フッ素系熱可塑性エラ ストマーが好ましぐ耐熱性が要求される分野では、ウレタン系、ォレフィン系、エステ ル系、フッ素系熱可塑性エラストマ一が好ましい。また、熱可塑性エラストマ一の種類 により、硬度を大きく変えることができる。
熱可塑性榭脂において非エラストマ一性のものとして、特に限定するものではない 力 ポリエステル榭脂、不飽和ポリエステル榭脂、ポリアミド榭脂、ポリアミドイミド榭脂 、ポリウレタン榭脂、不飽和ポリウレタン榭脂、ポリスルホン樹脂、ポリエーテルスルホ ン榭脂、ポリイイミド榭脂、ポリカーボネート榭脂、全芳香族ポリエステル榭脂等を挙 げることがでさる。
熱可塑性榭脂の軟化温度は、 50°C以上 300°C以下であることが好ましい。より好ま しい範囲としては 80°C以上 250°C以下、更に好ましくは 100°C以上 200°C以下であ る。軟ィ匕温度が 50°C以上であれば常温で固体として取り扱うことができ、シート状又 は円筒状にカ卩ェしたものを変形させずに取り扱うことができる。また軟ィ匕温度が 300 °C以下である場合、円筒状に加工する際に、熱可塑性榭脂を極めて高い温度に加 熱する必要がなぐ混合する他の化合物を変質、分解させずに済む。本発明の軟ィ匕 温度の測定は、動的粘弾性測定装置を用い、室温力 温度を上昇していった場合、 粘性率が大きく変化する (粘性率曲線の傾きが変化する)最初の温度として定義する また、榭脂(d)は溶剤可溶性榭脂であっても構わない。具体的には、ポリスルホン 榭脂、ポリエーテルスルホン榭脂、エポキシ榭脂、アルキッド榭脂、ポリオレフイン榭 脂、ポリエステル榭脂等を挙げることができる。
榭脂 (d)は、通常反応性の高い重合性不飽和基を持たないものが多いが、分子鎖 の末端又は側鎖に反応性の高 、重合性不飽和基を有して 、ても構わな 、。反応性 の高 、重合性不飽和基を有するポリマーを用いた場合、極めて機械的強度の高!ヽ 印刷原版を作製することができる。特にポリウレタン系、ポリエステル系熱可塑性エラ ストマーでは、比較的簡単に分子内に反応性の高い重合性不飽和基を導入すること が可能である。ここで言う分子内とは高分子主鎖の末端、高分子側鎖の末端や高分 子主鎖中や側鎖中に直接、重合性不飽和基が付いている場合なども含まれる。例え ば直接、重合性の不飽和基をその分子末端に導入したものを用いてもよい。別法と して、水酸基、アミノ基、エポキシ基、カルボキシル基、酸無水物基、ケトン基、ヒドラ ジン残基、イソシァネート基、イソチオシァネート基、環状カーボネート基、エステル基 などの反応性基を複数有する数千程度の分子量の成分と、上記成分の反応性基と 結合しうる基を複数有する結合剤(例えば水酸基ゃァミノ基の場合のポリイソシァネ ートなど)とを反応させ、分子量の調節、及び末端の結合性基への変換を行った後、 この末端結合性基と反応する基と重合性不飽和基を有する有機化合物と反応させて 末端に重合性不飽和基を導入する方法などの方法が好適に挙げられる。 [0055] 有機化合物(e)は、ラジカル重合反応又は付加重合反応に関与する不飽和結合を 有する化合物であり、榭脂 (d)との希釈のし易さを考慮すると数平均分子量は 1000 未満であることが好まし 、。ラジカル重合反応に関与する不飽和結合を有する官能 基としては、ビニル基、アセチレン基、アクリル基、メタクリル基、ァリル基などが好まし い例である。また、付加重合反応に関与する不飽和結合を有する官能基としては、シ ンナモイル基、チオール基、アジド基、開環付加反応するエポキシ基、ォキセタン基 、環状エステル基、ジォキシラン基、スピロオルトカーボネート基、スピロオルトエステ ル基、ビシクロオルトエステル基、シクロシロキサン基、環状ィミノエーテル基等を挙 げることができる。
[0056] 有機化合物(e)の具体例としては、エチレン、プロピレン、スチレン、ジビュルベン ゼン等のォレフィン類、アセチレン類、(メタ)アクリル酸及びその誘導体、ハロォレフ イン類、アクリロニトリル等の不飽和-トリル類、(メタ)アクリルアミド及びその誘導体、 ァリルアルコール、ァリルイソシァネート等のァリル化合物、無水マレイン酸、マレイン 酸、フマル酸等の不飽和ジカルボン酸及びその誘導体、酢酸ビニル類、 N—ビニル ピロリドン、 N—ビュル力ルバゾール等が挙げられる力 その種類の豊富さ、価格、レ 一ザ一光照射時の分解性等の観点から (メタ)アクリル酸及びその誘導体が好ま U、 例である。誘導体の例としては、シクロアルキル基、ビシクロアルキル基、シクロアルケ ンニル基、ビシクロアルケ-ル基などを有する脂肪族化合物、ベンジル基、フ ニル 基、フエノキシ基、又はナフタレン骨格、アントラセン骨格、ビフエ-ル骨格、フエナン トレン骨格、フルオレン骨格などを有する芳香族化合物、アルキル基、ハロゲン化ァ ルキル基、アルコキシアルキル基、ヒドロキシアルキル基、アミノアルキル基、グリシジ ル基等を有する化合物、アルキレングリコール、ポリオキシアルキレングリコール、ポリ アルキレングリコールやトリメチロールプロパン等の多価アルコールとのエステル化合 物、ポリジメチルシロキサン、ポリジェチルシロキサン等のポリシロキサン構造を有す る化合物などが挙げられる。また、窒素、硫黄等の元素を含有した複素芳香族化合 物であっても構わない。
[0057] また、開環付加反応するエポキシ基を有する化合物としては、種々のジオールゃト リオールなどのポリオールにェピクロルヒドリンを反応させて得られる化合物、分子中 のエチレン結合に過酸を反応させて得られるエポキシィ匕合物などを挙げることができ る。具体的には、エチレングリコールジグリシジルエーテル、ジエチレングリコールジ グリシジルエーテル、トリエチレングリコールジグリシジルエーテル、テトラエチレンダリ コールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレ ングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、 ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジル エーテル、 1, 6—へキサンジォーノレジグリシジノレエーテノレ、グリセリンジグリシジノレエ 一テル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテ ル、ビスフエノール Aジグリシジルエーテル、水添化ビスフエノール Aジグリシジルェ 一テル、ビスフエノール Aにエチレンオキサイド又はプロピレンオキサイドが付カ卩した 化合物のジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、 ポリ(プロピレングリコールアジペート)ジオールジグリシジルエーテル、ポリ(エチレン グリコールアジペート)ジオールジグリシジルエーテル、ポリ(力プロラタトン)ジオール ジグリシジルエーテル等を挙げることができる。
[0058] 本発明にお 、て、これら重合性の不飽和結合を有する有機化合物 (e)はその目的 に応じて 1種又は 2種以上のものを選択できる。例えば印刷版として用いる場合、印 刷インキの溶剤であるアルコールやエステル等の有機溶剤に対する膨潤を抑えるた めに用いる有機化合物 (e)として長鎖脂肪族、脂環族又は芳香族の誘導体を少なく とも 1種類以上有することが好ましい。
榭脂組成物力 得られる印刷原版の機械強度を高めるためには、有機化合物 (e) としては脂環族又は芳香族の誘導体を少なくとも 1種類以上有することが好ましぐこ の場合、有機化合物(e)の全体量の 20wt%以上であることが好ましぐ更に好ましく は 50wt%以上である。また、前記芳香族の誘導体として、窒素、硫黄等の元素を有 する芳香族化合物であっても構わな 、。
榭脂層 (B)又は榭脂層 (C)の反撥弾性を高めるため、例えば特開平 7— 239548 号に記載されているようなメタクリルモノマーを使用するとか、公知の印刷用感光性榭 脂の技術知見等を利用して選択することができる。
[0059] 無機多孔質体 (f)とは、粒子中に微小細孔を有する、又は微小な空隙を有する無 機粒子である。レーザー彫刻にお 、て多量に発生する粘稠性の液状カスを吸収除 去するための添加剤であり、版面のタック防止効果も有する。レーザー照射されても 溶融しないことの他、紫外線又は可視光線を用いて光硬化させる場合、黒色の微粒 子を添加すると感光性榭脂組成物内部への光線透過性が著しく低下し、硬化物の 物性低下をもたらすため、特に材質として排除されるものではないが、カーボンブラッ ク、活性炭、グラフアイト等の黒色微粒子は、本発明の無機多孔質体 (f)としては適当 でない。
無機多孔質体 (f)の細孔容積は、好ましくは 0. lmlZg以上 lOmlZg以下、より好 ましくは 0. 2mlZg以上 5mlZg以下である。細孔容積が 0. lmZg以上の場合、粘 稠性液状カスの吸収量は十分であり、また lOmlZg以下の場合、粒子の機械的強 度を確保することができる。本発明において細孔容積の測定には、窒素吸着法を用 いる。本発明の細孔容積は、—196°Cにおける窒素の吸着等温線から求められる。
[0060] 無機多孔質体 (f)の平均細孔径は、レーザー彫刻時に発生する液状カスの吸収量 に極めて大きく影響を及ぼす。平均細孔径の好ましい範囲は、 lnm以上 lOOOnm以 下、より好ましくは 2nm以上 200nm以下、更に好ましくは 2nm以上 50nm以下であ る。平均細孔径が lnm以上であれば、レーザー彫刻時に発生する液状カスの吸収 性が確保でき、 lOOOnm以下である場合、粒子の比表面積も大きく液状カスの吸収 量を十分に確保できる。平均細孔径が lnm未満の場合、液状カスの吸収量が少な い理由については明確になっていないが、液状カスが粘稠性であるため、ミクロ孔に 入り難いのではないかと推定している。本発明の平均細孔径は、窒素吸着法を用い て測定した値である。平均細孔径が 2〜50nmのものは特にメソ孔と呼ばれ、メソ孔を 有する多孔質粒子が液状カスを吸収する能力が極めて高い。本発明の細孔径分布 は、 196°Cにおける窒素の吸着等温線力も求められる。
[0061] 本発明は、好ましくはレーザー照射により切断され易いように比較的分子量の低い 榭脂を採用し、それ故、分子の切断時に多量に低分子のモノマー、オリゴマー類が 発生するため、この粘稠性の液状カスの除去を多孔質無機吸収剤を用いて行うとい う、これまでの技術思想に全くな 、新 U、概念を導入して!/、ることに最大の特徴があ る。粘稠性液状カスの除去を効果的に行うために、無機多孔質体の数平均粒子径、 無機多孔質体 (f)は数平均粒径が 0. 1〜: LOO /z mであることが好ましい。この数平 均粒径の範囲より小さいものを用いた場合、本発明の榭脂組成物より得られる原版を レーザーで彫刻する際に粉塵が舞いやすぐ彫刻装置を汚染するほか、榭脂 (d)及 び有機化合物 (e)との混合を行う際に粘度の上昇、気泡の巻き込み、粉塵の発生等 を生じやすい。他方、上記数平均粒径の範囲より大きなものを用いた場合、レーザー 彫刻した際レリーフ画像に欠損が生じやすぐ印刷物の精細さを損ないやすい傾向 がある。より好ましい平均粒子径の範囲は、 0. 5〜20 /ζ πιであり、更に好ましい範囲 は 3〜: LO /z mである。本発明で用いる無機多孔質体の平均粒子径は、レーザー散 乱式粒子径分布測定装置を用いて測定することができる。
多孔質体の特性を評価する上で、多孔度と!/、う新たな概念を導入する。多孔度とは 、平均粒子径 D (単位:; z m)と粒子を構成する物質の密度 d (単位: gZcm3)から算 出される単位重量あたりの表面積 Sに対する、比表面積 Pの比、すなわち PZSで定 義する。粒子 1個あたりの表面積は、 π ϋ2 Χ 10_12 (単位: m2)であり、粒子 1個の重 量は(π ϋ3(!Ζ6) X 10_ 12 (単位: g)であるので、単位重量あたりの表面積 Sは、 S = 6/ (Dd) (単位: m2Zg)となる。比表面積 Pは、窒素分子を表面に吸着させ測定した 値を用いる。
無機多孔質体 (f)の多孔度は、好ましくは 20以上、より好ましくは 50以上、更に好 ましくは 100以上である。多孔度が 20以上であれば、液状カスの吸着除去に効果が ある。粒子径が小さくなればなるほど比表面積 Pは大きくなるため、比表面積単独で は多孔質体の特性を示す指標として不適当である。そのため、粒子径を考慮し、無 次元化した指標として多孔度を取り入れた。例えば、ゴム等の補強材として広く用い られているカーボンブラックは、比表面積は 150m2/gから 20m2/gと非常に大きい 力 平均粒子径は極めて小さぐ通常 10nmから lOOnmの大きさであるので、密度を グラフアイトと同じ 2. 25gZcm3として多孔度を算出すると、 0. 8から 1. 0の範囲の値 となり、粒子内部に多孔構造のない無孔質体であると推定される。カーボンブラック はグラフアイト構造を有することは一般的に知られているので、前記密度にグラフアイ トの値を用いた。一方、本発明で用いている多孔質シリカの多孔度は、 500を優に超 えた高い値となる。
[0063] 本発明で用いる無機多孔質体 (f)は、さらに良好な吸着性を得るためには、特定の 比表面積、吸油量を持つことが好ましい。
無機多孔質体 (f)の比表面積の範囲は、好ましくは 10m2Zg以上 1500m2Zg以 下である。より好ましい範囲は、 100m2Zg以上 800m2Zg以下である。比表面積が 10m2Zg以上であれば、レーザー彫刻時の液状カスの除去が十分となり、また、 15 00m2Zg以下であれば、感光性榭脂組成物の粘度上昇を抑え、また、チキソトロピ 一性を抑えることができる。本発明の比表面積は、— 196°Cにおける窒素の吸着等 温線から BET式に基づいて求められる。
液状カス吸着量を評価する指標として、吸油量がある。これは、無機多孔質体 100 gが吸収する油の量として定義する。本発明で用いる無機多孔質体 (f)の吸油量の 好ましい範囲は、 lOmlZlOOg以上 2000mlZl00g以下、より好ましくは 50ml/l OOg以上 lOOOmlZlOOg以下、更に好まし <は 200mlZl00g以上 800mlZl00g 以下である。吸油量が lOmlZlOOg以上であれば、レーザー彫刻時に発生する液 状カスの除去に効果があり、また 2000mlZl00g以下であれば、無機多孔質体 (f) の機械的強度を十分に確保できる。吸油量の測定は、 JIS— K5101にて行うことが 好ましい。
[0064] 無機多孔質体 (f)は、特に赤外線波長領域のレーザー光照射により変形又は溶融 せずに多孔質性を保持することが必要である。 950°Cにお 、て 2時間処理した場合 の灼熱減量は、好ましくは 15wt%以下、より好ましくは 10 %以下である。
無機多孔質体 (f)の粒子形状は特に限定するものではなぐ球状、扁平状、針状、 無定形、又は表面に突起のある粒子などを使用することができる。その中でも、印刷 版の耐摩耗性の観点から、球状粒子が特に好ましい。また、粒子の内部が空洞にな つて 、る粒子、シリカスポンジ等の均一な細孔径を有する球状顆粒体など使用するこ とも可能である。特に限定するものではないが、例えば、多孔質シリカ、メソポーラス シリカ、シリカージルコ-ァ多孔質ゲル、メソポーラスモレキュラーシーブ、ポーラスァ ルミナ、多孔質ガラス等を挙げることができる。 また、層状粘土ィ匕合物などのように、層間に数 ηπ!〜 lOOnmの空隙が存在するもの については、細孔径を定義できないため、本発明においては層間に存在する空隙す なわち面間隔を細孔径と定義する。また、層間に存在する空間の総量を細孔容積と 定義する。これらの値は、窒素の吸着等温線から求めることができる。
更にこれらの細孔又は空隙にレーザー光の波長の光を吸収する顔料、染料等の有 機色素を取り込ませることもできる。
[0065] 球状粒子を規定する指標として、真球度を定義する。本発明で用いる真球度とは、 粒子を投影した場合に投影図形内に完全に入る円の最大値 Dの、投影図形が完全 に入る円の最小値 Dの比(D /Ό )で定義する。真球の場合、真球度は 1. 0となる
2 1 2
。本発明で用いる好ましい球状粒子の真球度は、 0. 5以上 1. 0以下、より好ましくは 0. 7以上 1. 0以下である。 0. 5以上であれば、印刷版としての耐磨耗性が良好であ る。真球度 1. 0は、真球度の上限値である。球状粒子として、 70%以上、より好ましく は 90%以上の粒子力 真球度 0. 5以上であることが望ましい。真球度を測定する方 法としては、走査型電子顕微鏡を用いて撮影した写真を基に測定する方法を用いる ことができる。その際、少なくとも 100個以上の粒子がモニター画面に入る倍率にお いて写真撮影を行うことが好ましい。また、写真を基に前記 D及び Dを測定するが、
1 2
写真をスキャナ一等のデジタル化する装置を用いて処理し、その後画像解析ソフトゥ エアーを用いてデータ処理することが好まし 、。
[0066] また、無機多孔質体 (f)の表面をシランカップリング剤、チタンカップリング剤、その 他の有機化合物で被覆し表面改質処理を行!ヽ、より親水性化又は疎水性化した粒 子を用いることちできる。
本発明において、これらの無機多孔質体 (f)は 1種類又は 2種類以上のものを選択 でき、無機多孔質体 (f)を添加することによりレーザー彫刻時の液状カスの発生抑制 、及びレリーフ印刷版のタック防止等の改良が有効に行われる。
本発明の感光性榭脂組成物(10)における榭脂 (d)、有機化合物 (e)、及び無機多 孔質体 (f)の割合は、通常、榭脂 (d) 100重量部に対して、有機化合物お)は 5〜20 0重量部が好ましぐ 20〜: L00重量部の範囲がより好ましい。また、無機多孔質体 (f) は 1〜: LOO重量部が好ましぐ 2〜50重量部の範囲がより好ましぐ更に好ましい範囲 は、 2〜 20重量部である。
有機化合物 (e)の割合が、上記の範囲であれば、得られる印刷版などの硬度と引 張強伸度のバランスがとり易ぐ架橋硬化の際の収縮が小さくなり、厚み精度を確保 することができる。
また、無機多孔質体 (f)の量が上記の範囲であれば、版面のタック防止効果、及び レーザー彫刻した際に、彫刻液状カスの発生を抑制するなどの効果が十分発揮され 、印刷版の機械的強度を確保することができ、透明性を保持することもできる。また、 特にフレキソ版として利用する際にも、硬度が高くなりすぎないように抑えることができ る。光、特に紫外線を用いて感光性榭脂組成物を硬化させレーザー彫刻印刷原版 を作製する場合、光線透過性が硬化反応に影響する。したがって、用いる無機多孔 質体の屈折率が感光性榭脂組成物の屈折率に近 、ものを用いることが有効である。 感光性榭脂組成物(10)を光照射により架橋して印刷版などとしての物性を発現さ せるが、その際に重合開始剤を添加することができる。重合開始剤は一般に使用さ れているものから選択でき、例えば高分子学会編「高分子データ'ハンドブック一基 礎編」 1986年 (培風館発行)、に例示されているラジカル重合、カチオン重合、了二 オン重合の開始剤等が使用できる。また、光重合開始剤を用いて光重合により架橋 を行うことは、本発明の榭脂組成物の貯蔵安定性を保ちながら、生産性良く印刷原 版を生産できる方法として有用である。その際に用いる開始剤も公知のものが使用で きる。例えばべンゾイン、ベンゾインェチルエーテル等のベンゾインアルキルエーテ ル類、 2 ヒドロキシ 2 メチルプロピオフエノン、 4' イソプロピル 2 ヒドロキシ 2—メチルプロピオフエノン、 2、 2—ジメトキシー 2—フエニルァセトフエノン、ジエト キシァセトフエノンなどのァセトフエノン類; 1—ヒドロキシシクロへキシルフエ-ルケトン 、 2 メチル 1 [4 (メチルチオ)フエ-ル] 2 モルフオリノープロパン 1ーォ ン、フエ-ルグリオキシル酸メチル、ベンゾフエノン、ベンジル、ジァセチル、ジフエ- ルスルフイド、ェォシン、チォニン、アントラキノン類等の光ラジカル重合開始剤のほ 力 光を吸収して酸を発生する芳香族ジァゾ -ゥム塩、芳香族ョードニゥム塩、芳香 族スルホ -ゥム塩等の光力チオン重合開始剤又は光を吸収して塩基を発生する重 合開始剤などが挙げられる。重合開始剤の添加量は榭脂 (d)と有機化合物 (e)の合 計量の 0. 01〜: L0wt%範囲が好ましい。
[0068] その他、感光性榭脂組成物(10)には、用途や目的に応じて重合禁止剤、紫外線 吸収剤、染料、顔料、滑剤、界面活性剤、可塑剤、香料などを添加することができる 感光性榭脂組成物(10)を円筒状に成形する方法としては、既存の榭脂の成形方 法を用いることができる。例えば、注型法、ポンプや押し出し機等の機械で榭脂をノ ズルゃダイスから押し出し、ブレードで厚みを合わせ、ロールによりカレンダー加工し て厚みを合わせる方法等が例示できる。その際、榭脂の性能を落とさない範囲でカロ 熱しながら成形を行うことも可能である。また、必要に応じて圧延処理、研削処理など を施してもよい。また、感光性榭脂組成物(10)を円筒状に塗布した後、光を照射し 該感光性榭脂組成物(10)を硬化 ·固化させる装置内に、レーザー彫刻用のレーザ 一光源を組み込んだ円筒状印刷原版成形'彫刻装置を用いて印刷版を形成するこ ともできる。このような装置を用いた場合、円筒状印刷原版を形成した後、直ちにレー ザ一彫刻し、印刷版を形成することができ、成形加工に数週間の期間を必要としてい た従来のゴムスリーブでは到底考えられな 、短時間加工が実現可能となる。中空円 筒状印刷原版を作製する工程において、感光性榭脂組成物(10)を用いることにより 該中空円筒状印刷原版を極めて短時間で作製することが可能である。
[0069] 本発明で用いる中空円筒状芯材 (A)の表面に物理的、化学的処理を行うことによ り、周長調整層 (F)との接着性を向上させることができる。また同様にして、周長調整 層 (F)とレーザー彫刻可能な感光性榭脂硬化物層(3)との接着性を向上させること もできる。物理的処理方法としては、サンドブラスト法、微粒子を含有した液体を噴射 するウエットブラスト法、コロナ放電処理法、プラズマ処理法、紫外線又は真空紫外線 照射法などを挙げることができる。また、化学的処理方法としては、強酸 '強アルカリ 処理法、酸化剤処理法、カップリング剤処理法などがある。
成形された感光性榭脂組成物(10)は、光又は電子線の照射により架橋せしめ、レ 一ザ一彫刻可能な印刷原版を形成する。また、成型しながら光又は電子線の照射に より架橋させることができる。光を使って架橋させる方法は、装置が簡便で厚み精度 が高くできるなどの利点を有し好適である。硬化に用いられる光源としては高圧水銀 灯、超高圧水銀灯、紫外線蛍光灯、カーボンアーク灯、キセノンランプ等が挙げられ 、その他公知の方法で硬化を行うことができる。また、複数の種類の光源の光を照射 しても構わない。感光性榭脂組成物を光で硬化させる場合、表面に透明なカバーフ イルムを被覆し、酸素を遮断した状態で光を照射することもできる。カバーフィルムは 、印刷原版の表面を保護するために使用することもできる。ただし、レーザー彫刻時 には剥離して用いる。感光性榭脂組成物層に光を照射する雰囲気は、気体雰囲気、 特に大気雰囲気が好ましい。酸素を遮断するためのカバーフィルム被覆機構、不活 性ガスを用いる際の酸欠防止機構等を装置に装着する必要がないためである。
[0070] レーザー彫刻可能な感光性榭脂硬化物層(3)の厚みは、その使用目的に応じて 任意に設定して構わないが、印刷版として用いる場合には、一般的に 0. l〜7mmの 範囲である。場合によっては、組成の異なる材料を複数積層しても構わない。
本発明で用いる表面にパターンが形成された榭脂層(C)は、マスク露光方式又は 高工ネルギ一線走査露光方式を用いて、光線が照射された部分が光硬化し潜像が 形成され、その後の現像工程により未硬化部が除去される感光性榭脂層であっても 構わない。また、感光性榭脂層表面にブラックレーヤーと呼ばれるカーボンブラック 等の黒色顔料を含む薄い層を形成し、その後、近赤外線レーザーを用いてパターン を形成し、このパターンを露光マスクとして用いる方法を採ることもできる。また、現像 工程では、未硬化樹脂が溶解又は分散する現像液を用いることもでき、更に現像液 を用いずに熱で溶融させ不織布で吸 、取る熱現像方法を用いることもできる。マスク 露光方式とは、遮光性パターンを有するネガフィルムを通して 200nm以上 450nm 以下の波長領域の光を含む光線を感光性榭脂に照射する方法である。また、高エネ ルギ一線走査露光方式とは、紫外線レーザー光、電子線等のビーム状エネルギー 線を、ガルバノミラー又は電子レンズ等の光学系を用いて走査し、感光性榭脂に照 射する方法である。
[0071] 表面にパターンが形成された榭脂層 (C)を接着剤層又は粘着剤層を介して、中空 円筒状芯材 (A)又は周長調整層 (F)又はクッション層 (E)又は剛性体層 (G)上に貼 り付けても構わない。
本発明では、図 1に示すように、クッション層 (E) (図中、符号 4)と、パターン形成可 能な榭脂層 (B)又はパターンが形成された榭脂層 (C) (図中、符号 6)の間に厚さ 0. Olmm以上 0. 5mm以下の剛性体層(G) (図中、符号 5)が存在していても構わない 。剛性体層(G)の線熱膨張係数の好ましい範囲は、熱機械測定法 (TMA法)を用い て 20°Cから 80°Cの温度範囲で測定した場合、 10ppmZ°C以上 150 1117で以 下、より好ましくは OppmZ°C以上 100ppmZ°C以下である。線熱膨張係数がこの範 囲であれば、印刷時の細線、細字のインキ付着不良の抑制に効果が見られる。 本発明では、前述したように複数の感光性榭脂組成物層を順次光硬化させて積層 する方法で中空円筒状印刷基材を作製することもでき、また、複数の感光性榭脂組 成物層を積層した後に、一度に光硬化させて中空円筒状印刷基材を作製することも できる。
中空円筒状芯材 (A)、周長調整層 (F)、クッション層 (E)、剛性体層 (G)、及びレ 一ザ一彫刻法によりパターン形成可能な榭脂層(B)又はパターンが形成された榭脂 層(C)は、感光性榭脂組成物を光架橋硬化させて形成したものであることが好ましい 。感光性榭脂組成物中に存在する重合性不飽和基が反応することにより 3次元架橋 構造が形成され、通常用いるエステル系、ケトン系、芳香族系、エーテル系、アルコ ール系、ハロゲン系溶剤に不溶ィ匕する。この反応は、重合性不飽和基間で起こり、重 合性不飽和基が消費される。また、光重合開始剤を用いて架橋硬化させる場合、光 重合開始剤が光により分解されるため、前記架橋硬化物を溶剤で抽出し、 GC-MS 法 (ガスクロマトグラフィーで分離したものを質量分析する方法)、 LC MS法 (液体 クロマトグラフィーで分離したものを質量分析する方法)、 GPC— MS法 (ゲル浸透ク 口マトグラフィ一で分離し質量分析する方法)、 LC NMR法 (液体クロマトグラフィー で分離したものを核磁気共鳴スペクトルで分析する方法)を用いて解析することにより 、未反応の光重合開始剤及び分解生成物を同定することができる。更に、 GPC-M S法、 LC MS法、 GPC— NMR法を用いることにより、溶剤抽出物中の未反応成 分、及び重合性不飽和基が反応して得られる比較的低分子量の生成物についても 溶剤抽出物の分析から同定することができる。 3次元架橋構造を形成した溶剤に不 溶の高分子量成分については、熱分解 GC— MS法を用いることにより、高分子量体 を構成する成分として、重合性不飽和基が反応して生成した部位が存在するかどう かを検証することが可能である。例えば、メタタリレート基、アタリレート基、ビニル基等 の重合性不飽和基が反応した部位が存在することを質量分析スペクトルパターンか ら推定することができる。熱分解 GC— MS法とは、試料を加熱分解させ、生成するガ ス成分をガスクロマトグラフィーで分離した後、質量分析を行う方法である。架橋硬化 物中に、未反応の重合性不飽和基又は重合性不飽和基が反応して得られた部位と 共に、光重合開始剤に由来する分解生成物や未反応の光重合開始剤が検出される と、感光性榭脂組成物を光架橋硬化させて得られたものであると結論付けることがで きる。
[0073] 更に、架橋硬化物中に存在する無機多孔質体微粒子の量は、架橋硬化物を空気 中で加熱することにより、有機物成分を焼き飛ばし、残渣の重量を測定することにより 求めることができる。また、前記残渣中に無機多孔質体微粒子が存在することは、電 界放射型高分解能走査型電子顕微鏡での形態観察、レーザー散乱式粒子径分布 測定装置での粒子径分布、及び窒素吸着法による細孔容積、細孔径分布、比表面 積の測定力 同定することができる。
[0074] レーザー彫刻にお 、ては、形成した 、画像をデジタル型のデータとしてコンビユー ターを利用してレーザー装置を操作し、原版上にレリーフ画像を作成する。レーザー 彫刻に用いるレーザーは、原版が吸収を有する波長を含むものであればどのようなも のを用いてもよいが、彫刻を高速度で行うためには出力の高いものが望ましぐ炭酸 ガスレーザー、 YAGレーザー、半導体レーザー、ファイバーレーザー等の赤外線又 は近赤外線領域に発振波長を有するレーザーが好ま 、ものの一つである。また、 紫外線領域に発振波長を有する紫外線レーザー、例えばエキシマレーザー、第 3又 は第 4高調波に波長変換した YAGレーザー、銅蒸気レーザー等は、有機分子の結 合を切断するアブレ一ジョン加工が可能であり、微細加工に適する。フェムト秒レー ザ一など極めて高い尖頭出力を有するレーザーを用いることもできる。また、レーザ 一は連続照射でも、パルス照射でもよい。一般には榭脂は炭酸ガスレーザーの 10 m近傍に吸収を持っため、特にレーザー光の吸収を助けるような成分の添カ卩は必須 ではない。 YAGレーザー、半導体レーザー、ファイバーレーザーは 1 μ m近辺に発 振波長を有するが、この波長領域に光吸収を有する有機物はあまりない。その場合、 これの吸収を助ける成分である、染料、顔料の添カ卩が好ましい。このような染料の例 としては、ポリ(置換)フタロシア-ンィ匕合物及び金属含有フタロシア-ンィ匕合物、;シ ァニン化合物;スクァリリウム染料;カルコゲノピリロアリリデン染料;クロ口-ゥム染料; 金属チォレート染料;ビス (カルコゲノピリ口)ポリメチン染料;ォキシインドリジン染料; ビス (アミノアリール)ポリメチン染料;メロシアニン染料;及びキノイド染料などが挙げら れる。顔料の例としてはカーボンブラック、グラフアイト亜クロム酸銅、酸ィ匕クロム、コバ ルトクロームアルミネート、酸化鉄等の暗色の無機顔料や鉄、アルミニウム、銅、亜鉛 のような金属粉及びこれら金属に Si、 Mg、 P、 Co、 Ni、 Y等をドープしたもの等が挙 げられる。これら染料、顔料は単独で使用してもよいし、複数を組み合わせて使用し てもよいし、複層構造にするなどのあらゆる形態で組み合わせてもよい。ただし、紫外 線又は可視光線を用いて感光性榭脂組成物を硬化させる場合、印刷原版内部まで 硬化させるためには、用いる光線領域に吸収のある色素、顔料の添加量は低く抑え ることが好ましい。
レーザーによる彫刻は酸素含有ガスの下、一般には空気存在下又は気流下に実 施するが、炭酸ガス、窒素ガス下でも実施できる。彫刻終了後、レリーフ印刷版面に わずかに発生する粉末状又は液状の物質は適当な方法、例えば溶剤や界面活性 剤の入った水等で洗い取る方法、高圧スプレー等により水系洗浄剤を照射する方法 、高圧スチームを照射する方法などを用いて除去してもよ 、。
本発明において、凹凸パターンを形成した後に、パターンを形成した印刷版表面 に波長 200ηπ!〜 450nmの光を照射する後露光を実施することもできる。これは表 面のタック除去に効果がある方法である。後露光は大気中、不活性ガス雰囲気中、 水中の 、ずれの環境で行っても構わな!/、。用いる感光性榭脂組成物中に水素引き 抜き型光重合開始剤が含まれている場合、特に効果的である。更に、後露光工程前 に印刷版表面を、水素引き抜き型光重合開始剤を含む処理液で処理し露光しても 構わない。また、水素引き抜き型光重合開始剤を含む処理液中に印刷版を浸漬した 状態で露光しても構わな 、。
本発明の原版は、印刷版用レリーフ画像の他、スタンプ '印章、エンボス加工用の デザインロール、電子部品作成に用いられる絶縁体、抵抗体、導電体ペーストのバタ 一ユング用レリーフ画像、窯業製品の型材用レリーフ画像、広告'表示板などのディ スプレイ用レリーフ画像、各種成型品の原型'母型など各種の用途に応用し、利用す ることがでさる。
実施例
以下、本発明を実施例に基づいて説明する力 本発明はこれらによって制限される ものではない。
(1)レーザー彫刻
レーザー彫刻は炭酸ガスレーザー彫刻機 (英国、 ZED社製、商標「ZED— mini— 1000」)を用いて行い、彫刻は、網点、 500 m幅の凸線による線画、及び、 500 m幅の白抜き線を含むパターンを作成して実施した。彫刻深さを大きく設定すると、 微細な網点部パターンのトップ部分の面積が確保できず、形状も崩れて不鮮明とな るため、彫刻深さは 0. 55mmとした。
(2)網点部の形状
彫刻した部位のうち、 801pi (Lines per inch)で面積率約 10%の網点部の形状 を電子顕微鏡で、 200倍〜 500倍の倍率で観察した。網点が円錐形又は擬似円錐 形(円錐の頂点付近を円錐の底面に平行な面で切った、末広がりの形状)の場合に は、印刷版として良好である。
(3)多孔質体及び無孔質体の細孔容積、平均細孔径及び比表面積
多孔質体又は無孔質体 2gを試料管に取り、前処理装置で 150°C、 1. 3Pa以下の 条件で 12時間減圧乾燥した。乾燥した多孔質体又は無孔質体の細孔容積、平均細 孔径及び比表面積は、米国、カンタクローム社製、オートソープ 3MP (商標)を用い、 液体窒素温度雰囲気下、窒素ガスを吸着させて測定した。具体的には、比表面積は BET式に基づいて算出した。細孔容積及び平均細孔径は、窒素の脱着時の吸着等 温線から円筒モデルを仮定し、 BJH (Brrett -Joyner - Halenda)法と!/、う細孔分 布解析法に基づいて算出した。
(4)多孔質体及び無孔質体の灼熱減量
測定用の多孔質体又は無孔質体の重量を記録した。次に測定用試料を高温電気 炉 (FG31型;日本国、ャマト科学社製)に入れ、空気雰囲気、 950°Cの条件下で 2 時間処理した。処理後の重量変化を灼熱減量とした。
[0077] (5)微粒子の平均粒子径
多孔質体及び無孔質体の平均粒子径の測定は、レーザー回折式粒度分布測定 装置 (商標、 SALD— 2000J型;日本国、島津製作所製)を用いて行った。装置の仕 様では、 0. 03 μ m力ら 500 μ mまでの粒子径範囲の測定が可能であること力 カタ ログに記載されている。分散媒体としてメチルアルコールを用い、超音波を約 2分間 照射し粒子を分散させ測定液を調製した。
(6)粘度
感光性榭脂組成物の粘度は、 B型粘度計 (商標、 B8H型;日本国、東京計器社製 )を用い、 20°Cで測定した。
(7)数平均分子量の測定
榭脂(a)の数平均分子量は、ゲル浸透クロマトグラフ法 (GPC法)を用いて、分子量 既知のポリスチレンで換算して求めた。高速 GPC装置(日本国、東ソ一社製の HLC 8020)とポリスチレン充填カラム(商標: TSKgel GMHXL ;日本国、東ソ一社製) を用い、テトラヒドロフラン (THF)で展開して測定した。カラムの温度は 40°Cに設定 した。 GPC装置に注入する試料としては、榭脂濃度が
Figure imgf000046_0001
注入量 10 μ 1とした。また、検出器としては、榭脂 (a)に関しては紫外吸収検出器を 使用し、モニター光として 254nmの光を用いた。
(8)重合性不飽和基の数の測定
合成した榭脂 (a)の分子内に存在する重合性不飽和基の平均数は、未反応の低 分子成分を液体クロマトグラフ法を用いて除去した後、核磁気共鳴スペクトル法 (NM R法)を用いて分子構造解析し求めた。
[0078] (9)ショァ D硬度の測定
周長調整層(F)のショァ D硬度は、テクロック社製、商標「GS - 720G TypeDjを 用いて測定した。測定開始直後の値をショァ D硬度に採用した。円筒状支持体上に 形成した円筒状芯材 (A)のショァ D硬度を、円筒状支持体を装着したまま測定した。 測定に用いた錘の重量は、 8kgであった。
(10)線熱膨張係数の測定 フィルム状補強材の線熱膨張係数は、熱機械測定法 (TMA)を用いて実施した。 測定温度範囲は、室温から 80°Cの範囲で、熱機械測定装置 (島津製作所社製、商 標「TMA— 50」 )を用いて実施した。
(パターン形成可能な感光性榭脂組成物の製造例)
樹脂 (d)として、下記製造例 1〜3で、榭脂 (dl)、 (d2)及び (d3)を製造した。
[0079] (製造例 1)
温度計、攪拌機、及び還流器を備えた 1Lのセパラブルフラスコに旭化成株式会社 製ポリカーボネートジオールである、商標「PCDL L4672」(数平均分子量 1990、 OH価 56. 4) 447. 24gとトリレンジイソシアナート 30. 83gをカロえ、 80°Cにカロ温下に 約 3時間反応させた後、 2—メタクリロイルォキシイソシァネート 14. 83gを添カ卩し、さ らに約 3時間反応させて、末端カ^タアクリル基 (分子内の重合性不飽和基力 ^分子 あたり平均約 2個)である数平均分子量約 10000の樹脂 (dl)を製造した。この樹脂 は 20°Cでは水飴状であり、外力をカ卩えると流動し、かつ外力を除いても元の形状を 回復しなかった。
[0080] (製造例 2)
温度計、攪拌機、及び還流器を備えた 1Lのセパラブルフラスコに旭化成株式会社 製ポリカーボネートジオールである、商標「PCDL L4672」(数平均分子量 1990、 O i価 56. 4) 447. 24gと卜リレンジイソシアナ一卜 30. 83gをカロ免、 80。Cにカ卩温下に 約 3時間反応させた後、 2—メタクリロイルォキシイソシァネート 7. 42gを添カ卩し、さら に約 3時間反応させて、末端がメタアクリル基 (分子内の重合性不飽和基が 1分子あ たり平均約 1個)である数平均分子量約 10000の榭脂 (d2)を製造した。この榭脂は 20°Cでは水飴状であり、外力を加えると流動し、かつ外力を除いても元の形状を回 復しなかった。
[0081] (製造例 3)
温度計、攪拌機、及び還流器を備えた 1Lのセパラブルフラスコに旭化成株式会社 製ポリカーボネートジオールである、商標「PCDL L4672」(数平均分子量 1990、 OH価 56. 4) 449. 33gとトリレンジイソシアナート 12. 53gをカロえ、 80°Cにカロ温下に 約 3時間反応させた後、 2—メタクリロイルォキシイソシァネート 47. 77gを添カ卩し、さ らに約 3時間反応させて、末端力 タアクリル基 (分子内の重合性不飽和基が 1分子 あたり平均約 2個)である数平均分子量約 3000の榭脂 (d3)を製造した。この榭脂は 20°Cでは水飴状であり、外力を加えると流動し、かつ外力を除いても元の形状を回 復しなかった。
(中空円筒状芯材の形成)
榭脂 (a)として得られた榭脂 (dl) 100重量部、有機化合物 (b)としてフエノキシェチ ルメタタリレート(分子量: 206) 25重量部、ポリプロピレングリコールモノメタクリレート( 分子量: 400) 5重量部、トリメチロールプロパントリメタタリレート(分子量: 339) 10重 量部、光重合開始剤として 2, 2—ジメトキシー 2—フエ-ルァセトフエノン 0. 6重量部 及びべンゾフエノン 1重量部、その他の添加剤として 2, 6—ジー t—ブチルァセトフエ ノン 0. 5重量部を混合し、 20°Cにおいて液状の感光性榭脂組成物 (XI)を得た。 表面に離型剤としてポリジメチルシロキサンで薄く被覆されている外形 213. 384m mのエアーシリンダー表面上に、厚さ 125 mの PETフィルムを巻き付け、 PETフィ ルム両端部の接合部位にできる隙間が 0. 5mm以下になるように位置合わせをし、 仮留めした。この PETフィルム上に幅 25mm、厚さ 0. 13mmの片面に粘着剤が被覆 されたガラスクロステープを螺旋状に巻き付け、 PETフィルム表面を覆い、円筒状積 層体を得た。
ガラスクロステープで覆われた円筒状積層体の表面に、エアーシリンダーを回転さ せながらドクターブレードを用いて液状感光性榭脂組成物 (XI)を塗布し、 PETフィ ルムの表面カゝら測定した積層物全体の厚さを約 2mmとなるように感光性榭脂組成物 層を形成した。更に、エアーシリンダーを周方向に回転させながら、メタルハライドラ ンプ(アイ ·グラフィックス社製、商標「M056 -L21J )の光を 4000mjZcm2 (UVメ 一ター(オーク製作所社製、商標「UV—M02」)とUV—35—APRフィルターで測 定した照度を時間積分した値)照射し、感光性榭脂硬化物層を得た。感光性榭脂組 成物層表面でのランプ照度は、 UVメーター (オーク製作所社製、商標「UV— M02」 )を用いて測定した。フィルター (オーク製作所社製、商標「UV— 35— APRフィルタ 一」)を使用して測定したランプ照度は、 lOOmW/cm2,フィルター (オーク製作所 社製、商標「UV— 25フィルター」)を使用して測定したランプ照度は、 14mW/cm2 であった。その後、厚さが 1. 5mmになるように、超硬バイトを用いて切削を行い、更 に、切削砲石を用いて表面を荒削りした後、表面に微細な砲石が付着したフィルムを 用いて精密研磨を行い、中空円筒状芯材(《)を得た。得られた中空円筒状芯材(α )のショァ D硬度は、 55度であった。また、接触式変位センサ (キーエンス社製、商標 「ΑΤ3— 010」)を用いて測定した表面の高低差は 20 /z m以内であった。中空円筒 状芯材( ex )を作製するのに要した時間は、 30分以内であった。
また、液状感光性榭脂組成物 (旭化成ケミカルズ社製、商標「APR— G— 42」)99 重量部に対し、ベンゾフエノン 1重量部を添加した液状の感光性榭脂組成物 (XII)を 調製した。液状感光性榭脂組成物 (旭化成ケミカルズ社製、商標「APR— G— 42」) は、不飽和ポリウレタン榭脂、数種類の重合性不飽和基を有する有機化合物、光重 合開始剤を含有する樹脂である。
ナイロン繊維を縦横に編んだ厚さ 110 m、開口部の寸法が約 60 mのナイロンメ ッシュシート(150メッシュ)に、実施例 1で用いた感光性榭脂組成物 (XII)を含浸し、 余分な感光性榭脂組成物をブレードで除去した後、ケミカルランプ(中心波長: 370η m)の光を大気中で 50miZcm2照射し、半硬化状態の感光性榭脂硬化物を形成し た。表面には粘着性が残っていた。表面タックを測定したところ、 200NZmを超えて 大きかった。
半硬化状態の感光性榭脂硬化物を含有するナイロンメッシュシートを、外形 213. 3 84mmのエアーシリンダー上に被覆した PETフィルム上に螺旋状に 2重に巻き付け た。更に、このナイロンメッシュシート上に、感光性榭脂組成物 (ΧΠ)を、ドクターブレ ードを用いて塗布し、感光性榭脂組成物層を形成した。メタルハライドランプの光を 照射し、感光性榭脂硬化物を得た。得られた感光性榭脂硬化物層の厚さが約 1. 5m mの中空円筒状芯材 |8を形成した。形成された中空円筒状芯材( )のショァ D硬度 は、 60度であった。また、表面の凹凸の高低差は 100 mであった。中空円筒状芯 材( j8 )を作製するのに要した時間は、 30分以内であった。
感光性榭脂組成物 (XII) 100重量部に対して、平均粒子径が 5 μ mの窒化珪素球 状微粒子 5重量部を混合した感光性榭脂組成物 (XIII)を調製した。窒化珪素球状 微粒子は、走査型電子顕微鏡を用いて観察した結果、 90%以上が真球度 0. 8以上 の粒子であった。
離型処理された外形 213. 384mmのエアーシリンダー上に、感光性榭脂組成物( XIII)をドクターブレードを用いて塗布し、メタルハライドランプの光を照射することに より光硬化させ榭脂層 (D)を形成した。
更に、ナイロンメッシュシートに該感光性榭脂組成物 (XII)を含浸させ、ケミカルラン プの光を大気中で 50mjZcm2照射し、半硬化状態の感光性榭脂硬化物を得た。表 面には粘着性があった。
得られた半硬化状態の感光性榭脂硬化物を榭脂層(D)上にローラーで圧着しな 力 Sら卷き付けた後、メタルノヽライドランプの光を 4000mi/cm2照射し、ナイロンメッシ ュシートが 3重に巻き付けられた中空円筒状芯材を構成する感光性榭脂硬化物層を 形成した。得られた感光性榭脂硬化物層からなる中空円筒状芯材( γ )のショァ D硬 度は 60度を超えて高 、ものであった。
(周長調整層の形成)
外形 213. 384mmのエアーシリンダーがあり、印刷版の周長を 700mmと設計した 場合、用いる材料の厚さから逆算して、周長調整層の厚さを決定した。例えば、レー ザ一彫刻可能な感光性榭脂硬化物層の厚さを 1. 14mm,両面に接着剤層を有する クッションテープの厚さを 0. 55mm (接着剤層の厚さは片面 25 /z mとする)、中空円 筒状芯材の厚さを 1. 50mmと設計すると、周長調整層の厚さの設定値は、 1. 526 mmとなる。
前記感光性榭脂組成物(サ) 99重量部に対し、メチルスチリル変性シリコーンオイ ル (信越化学工業社製、商標「KF410」)を 1重量部加え、混合した。感光性榭脂組 成物 (XIV)を、周長調整層( a )作製用に調製した。
上記のようにして得られた、内径 213. 384mm,幅 300mmの中空円筒状芯材上 に 20°Cにお 、て液状感光性榭脂組成物 (XIV)を、ドクターブレードを用いて厚さ約 1. 1mmで塗布し、その後、メタルノヽライドランプ (アイ'グラフィックス社製、商標「M0 56 -L21J )の光を窒素雰囲気下で 4000mjZcm2 (UVメーター(オーク製作所社 製、商標「UV—M02」)とフィルター(オーク製作所社製、商標「UV— 35— APRフィ ルター」 )で測定した照度を時間積分した値)照射し、感光性榭脂硬化物層を得た。 感光性榭脂組成物層表面でのランプ照度は、 UVメーター (オーク製作所社製、商 標「UV— M02」)を用いて測定した。フィルター (オーク製作所社製、商標「UV— 35 APRフィルター」)を使用して測定したランプ照度は、 lOOmWZcm2であり、フィ ルター (オーク製作所社製、商標「UV— 25フィルター」)を使用して測定したランプ 照度は、 14mWZcm2であった。その後、厚さが 1. 026mmになるように、超硬バイト を用いて切削し、周長調整層(α )を得た。周長調整層(ひ)を作製するのに要した時 間は、 20分以内であった。感光性榭脂組成物 (XIV)は、メチルスチリル変性シリコー ンオイルを含有しているため、切肖 ij、研磨性を大幅に向上させることができた。
また、液状感光性榭脂組成物 (旭化成ケミカルズ社製、商標「APR— G— 42」)99 重量部に対し、熱膨張性カプセル (松本油脂製薬株式会社製、商標「マツモトマイク ロスフェアー F— 30VS」、最適発泡温度 110〜120°C、乾燥重量) 1重量部を混合し 、感光性榭脂組成物 (XV)を得た。
得られた感光性榭脂組成物 (XV)を、エアーシリンダーに装着した中空円筒状芯 材上に、ドクターブレードを用いて前記エアーシリンダーを周方向へ回転させながら 塗布し、継ぎ目のない感光性榭脂組成物層を得ることができた。得られた感光性榭 脂組成物層の厚さは、 50 mであった。その後、得られた感光性榭脂組成物層にケ ミカルランプの光を lOOmjZcm2 (UVメーター(オーク製作所社製、商標「UV—MO 2」とフィルター(オーク試作所社製、商標「UV— 35—APRフィルター」 )を用いて積 算したエネルギー量)を照射し、半硬化状態の硬化物を得た (硬度が一定の値に到 達するまでには、少なくとも 200mjZcm2のエネルギーが必要である)。その後、半 硬化榭脂層を回転させながら赤外線ランプを用いて加熱し、 150°Cまで加熱した。こ の加熱処理により、熱膨張性マイクロカプセルを膨張させ、厚さ約 200 mの周長調 整層を得た。更に、メタルハライドランプの光を 2000mj/cm2 (UVメーター(オーク 製作所社製、商標「UV— M02」)とフィルター (オーク製作所社製、商標「UV— 35 —APRフィルター」)を用いて積算したエネルギー量)照射し、後露光を実施した。そ の後、周長調整層の厚さが 1. 026mmになるように超硬バイトを用いて切削し整形し 、周長調整層( β )を得た。周長調整層( β )を作製するのに要した時間は、 20分以 内であった。 熱膨張により得られた独立気泡を有する周長調整層は、失透しており熱膨張性マ イク口カプセルが膨張していることを確認した。表面近傍の気泡径を、光学顕微鏡を 用いて観察したところ、得られた周長調整層では、 70%以上の気泡が 30から 60 m の範囲に入り、平均値は 48 μ mであった。
作製された周長調整層付きの円筒状積層体の径を 10箇所測定したところ、精度は 10 m以内に入っていた。
周長調整層( a )及び( β )のショァ D硬度は、 55度と 58度であった。
[0086] (クッション層の形成)
上記のようにして得られた周長調整層上に、両面接着剤層を有する厚さ 0. 55mm のクッションテープ(3M社製、商標「1820」 )を気泡が入らな 、ように注意して貼り付 け、クッション層( a )を形成した。
また、液状感光性榭脂組成物 (旭化成ケミカルズ社製、商標「APR— F320」)99 重量部に対し、ベンゾフエノン 1重量部を添加した液状感光性榭脂組成物 (XVI)を 調製した。得られた液状感光性榭脂組成物 (XVI)を周長調整層上にドクターブレー ドを用いて塗布し、メタルハライドランプの光を照射することにより光硬化させ、更に、 厚さが 0. 55mmとなるように研削により調整し、クッション層 ( β )を得た。
[0087] (円筒状印刷原版の作製)
(実施例 1)
製造例で得られた榭脂(dl) 100重量部、フエノキシェチルメタタリレート 37重量部 、ブトキシジエチレングリコールメタタリレート 12重量部、無機多孔質体として富士シリ シァ化学株式会社製、多孔質性微粉末シリカである、商標「サイロスフエア C— 1504 」(以下略して C— 1504と言う。数平均粒子径 4. 5 /ζ πι、比表面積 520m2Zg、平均 細孔径 12nm、細孔容積 1. 5mlZg、灼熱減量 2. 5wt%、吸油量 290mlZlOOg) を 7. 7重量部、 2, 2 ジメトキシー 2 フエ-ルァセトフエノン 0. 9重量部、ベンゾフ ェノン 1. 5重量部、及び 2, 6 ジー t ブチルァセトフエノン 0. 5重量部を、遊星式 真空脱泡混練装置 (倉敷紡績社製、商標「マゼルスター DD— 300」 )を用いて混合 し、感光性榭脂組成物を得た。得られた感光性榭脂組成物を、レーザー彫刻可能な 樹脂層 (B)の作製に用いた。 上記のように作製した中空円筒状芯材( O )上に、周長調整層( O )を積層し、更に その上にクッション層( oc )を積層した。その後、クッション層 ( a )上に、片面に接着剤 層が付 、た厚さ 100 μ mの PETフィルム(剛性体層 (G) )を接着剤層が表側露出す るように貼り付け、 PET付き円筒状積層体を作製した。得られた円筒状積層体の上 に、上記のように調製したレーザー彫刻可能な榭脂層 (B)形成用の感光性榭脂組成 物を、円筒状支持体であるエアーシリンダーを周方向に回転させながらドクターブレ 一ドを用 、て厚さ約 1. 5mmで塗布し、継ぎ目のな 、感光性榭脂組成物層を形成し た。更にその後、得られた感光性榭脂組成物層に支持体を回転させながらメタルハ ライドランプ (アイ'グラフィックス社製、商標「M056— L21」)の紫外線を 4000mjZc m2 (UVメーター(オーク製作所社製、商標「UV— M02」 )とフィルター(オーク製作 所社製。商標「UV— 35—APRフィルター」)を用いて積算したエネルギー量)照射し 、感光性榭脂硬化物層を得た。その後、感光性榭脂硬化物層の厚さを調整するため 、超硬ノイトを用いて切削し、研磨布を用いて研磨することにより、厚さ 1. 14mmの 感光性榭脂硬化物層を有するレーザー彫刻可能な中空円筒状印刷原版を作製した 。中空円筒状印刷原版を作製するのに要した全工程時間は、 70分以内であった。 このようにして得られた中空円筒状印刷原版の表面に、炭酸ガスレーザー彫刻機 を用いて凹凸パターンを形成した。レーザー彫刻後のカス拭き取り回数は 3回以下と 良好であり、また、網点部の形状も円錐状で良好であった。彫刻後のカス拭き取り回 数とは、彫刻後発生する粘稠性の液状カスを除去するのに必要な拭き取り処理の回 数であり、この回数が多!、と液状カスの量が多 、ことを意味する。
剛性体層 (G)として用いた PETフィルムの線熱膨張係数は、熱機械測定法 (TMA (島津製作所社製、商標「TMA— 50」)法)で、 100ppmZ°Cであった。
(実施例 2〜6)
前記の製造例で得られた榭脂 (dl)、(d2)、(d3)を用い、表 1に示すように有機化 合物 (e)、無機多孔質体として富士シリシァ化学株式会社製、多孔質性微粉末シリカ である、商標「サイロスフエア C— 1504」(以下略して C— 1504と言う。数平均粒子径 4. 5 /ζ πι、比表面積 520m2Zg、平均細孔径 12nm、細孔容積 1. 5mlZg、灼熱減 量 2. 5wt%、吸油量 290mlZlOOg)、商標「サイシリア 450」(以下略して CH— 45 0と言う。数平均粒子径 8. O ^ m,比表面積 300m2Zg、平均細孔径 17nm、細孔容 積 1. 25ml/g,灼熱減量 5. Owt%、吸油量 200mlZl00g) )、光重合開始剤、そ の他添加剤を加えて感光性榭脂組成物を作成した。これらの感光性榭脂組成物を、 レーザー彫刻可能な榭脂層(B)の作製に用いた。また、前述のようにして得られた中 空円筒状芯材(ひ)、中空円筒状芯材( β )又は中空円筒状芯材( γ )と、周長調整 層 )又は周長調整層( j8 )と、クッション層 ( a )又はクッション層 ( β )の、各実施例 での組み合わせを、表 2に示す。更に、表 1に示す感光性榭脂組成物をクッション層 の上にドクターブレードを用いて、円筒状支持体であるエアーシリンダーを周方向へ 回転させながら厚さ約 1. 5mmで塗布し、継ぎ目のない感光性榭脂組成物層を形成 した。更にその後、得られた感光性榭脂組成物層に支持体を回転させながらメタル ノ、ライドランプ (アイ.グラフィックス社製、商標「M056— L21」)の紫外線を 4000mi /cm2 (UVメーター(オーク製作所社製、商標「UV—M02」 )とフィルター(オーク製 作所社製。商標「UV— 35—APRフィルター」)を用いて積算したエネルギー量)照 射し、感光性榭脂硬化物を作製した。その後、得られた感光性榭脂硬化物の厚さを 調整するため、超硬バイトを用いて切削し、研磨布を用いて研磨することにより、厚さ 1. 14mmの感光性榭脂硬化物層を有するレーザー彫刻可能な中空円筒状印刷原 版を作製した。
このようにして得られた中空円筒状印刷原版の表面に、炭酸ガスレーザー彫刻機 を用いて凹凸パターンを形成した。その評価結果を表 2に示す。
表 2の彫刻後のカス拭き取り回数とは、彫刻後発生する粘稠性の液状カスを除去す るのに必要な拭き取り処理の回数であり、この回数が多 、と液状カスの量が多 、こと を意味する。
(実施例 7)
スチレン ブタジエン共重合体 (旭化成ケミカルズ社製、商標「タフプレン A」、数平 均分子量: 7. 3万) 60重量部、液状ポリブタジエン(日本石油化学社製、商標「B— 2 000」、数平均分子量: 2000) 29重量部、 1 , 9ーノナンジオールジアタリレート(分子 量: 268) 7重量部、 2, 2 ジメトキシ—フエ-ルァセトフエノン 2重量部、及び 2, 6— ジー t ブチル p タレゾール 1重量部をニーダーにて混練し、得られた混練物 10 重量部に対して、トルエン 20重量部を混合し、粘性の高い液状感光性榭脂組成物を 得た。
実施例 1と同じようにクッション層 ( a )上に PETフィルムを貼り付け、その上に得ら れた液状感光性榭脂組成物を、ドクターブレードを用いて塗布し、円筒状支持体を ゆっくりと回転させながら溶剤であるトルエンを飛散させ乾燥し、厚さ 1. 14mmの継 ぎ目のない固体状の感光性榭脂層を得た。次に、得られた固体状感光性榭脂層上 に、表面に離型層を有するフィルム状露光マスクを巻きつけ、露光マスクを通してケミ カルランプの光を照射し、潜像を形成した。フィルム状露光マスクを剥がし、炭化水 素系溶剤を用いて現像し表面に凹凸パターンを形成し、円筒状印刷版を作製した。 微細な網点パターン部では、円錐状の良好なパターンが形成されて ヽた。
(実施例 8)
幅 50mm、厚み 25 μ mの PETフィルムの片面に、前記液状の感光性榭脂組成物( XI)を厚さ 50 μ mに塗布し、表面を離型処理された外形 213. 384mmのエアーシリ ンダー上に感光性榭脂組成物が塗布された面から、 PETフィルムの端部が若干重な るようにして螺旋状に 3回巻き付けた。この状態でメタルノヽライドランプ (アイ'グラフィ ックス社製、商標「M056— L21」)の光を窒素雰囲気下で 2000mjZcm2 (UVメー ター (オーク製作所社製、商標「UV— M02」)とフィルター (オーク製作所社製、商標 「UV— 35—APRフィルター」)で測定した照度を時間積分した値)照射し、感光性榭 脂組成物を光硬化させ、中空円筒状芯材を形成した。得られた中空円筒状芯材の 厚さの高低差は、 80 /z mであった。得られた中空円筒状芯材の内側の面は、エアー シリンダー表面の滑らかさを写し取ったように、滑らかな表面をしていた。中空円筒状 芯材を作製するために用いた PETフィルムの線熱膨張係数は、 90ppmZ°Cであつ た。また、 360nm〜370nmの波長範囲において、光線透過率は 90%であった。 得られた中空円筒状芯材の上に、感光性榭脂組成物 (旭化成ケミカルズ社製、商 標「APR—G—42」)を、ドクターブレードを用いて厚さ約 1. 1mmで塗布し、その後 、メタルノヽライドランプ (アイ'グラフィックス社製、商標「M056— L21」)の光を窒素雰 囲気下で 4000miZcm2 (UVメーター(オーク製作所社製、商標「UV—M02」 )とフ ィルター (オーク製作所社製、商標「UV— 35— APRフィルター」)で測定した照度を 時間積分した値)照射し、感光性榭脂硬化物層を得た。感光性榭脂組成物層表面 でのランプ照度は、 UVメーター (オーク製作所社製、商標「UV—M02」)を用いて 測定した。フィルター (オーク製作所社製、商標「UV— 35— APRフィルター」)を使 用して測定したランプ照度は、 lOOmW/cm2,フィルター (オーク製作所社製、商標 「UV— 25フィルター」)を使用して測定したランプ照度は、 14mWZcm2であった。 その後、厚さが 1. 026mmになるように、超硬バイトを用いて切削し、周長調整層を 得た。
得られた周長調整層の上に、両面接着剤層付きクッションテープ (3M社製、商標「 1820」)を気泡が入らないように注意しながら 1周貼り付け、その上に実施例 1で用い た榭脂層(B)形成用の感光性榭脂組成物を塗布し、光硬化させることによりレーザ 一彫刻可能な感光性榭脂硬化物を得た。更に、膜厚を調整するため研削、研磨する ことにより表面の高低差が 20 m以内のレーザー彫刻可能な中空円筒状印刷原版 を作製した。
作製された中空円筒状印刷原版の表面に、炭酸レーザー彫刻機を用いて凹凸パ ターンを形成した。形成された網点パターンの形状は、円錐型で良好であった。 表面にパターンが形成された中空円筒状印刷基材と、フレキソ印刷機を用いて印 刷テストを実施したところ、網点パターンの良好な印刷物を得ることができた。印刷テ ストは、 UVインキとコート紙の組み合わせで、印刷速度 200mZ分の条件で実施し た。コート紙上に転写された UVインキは、紫外線ランプの光を照射することにより硬 化させ、コート紙上に固定ィ匕した。
(実施例 9)
表面を離型処理された外径 213. 384mmのエアーシリンダー上に、液状の感光性 榭脂組成物 (旭化成ケミカルズ社製、商標「APR— G— 42」)を、厚さ約 0. 5mmで 塗布し、その上に幅 50mm、厚さ 300 mのガラスクロスを 3回螺旋状に巻き付けた。 更に、ガラスクロスの表面とガラスクロスの網目内に前記液状の感光性榭脂組成物を 塗布し、表面から 0. 5mmの深さまでは、ガラスクロスが存在していない状況であった 。更に、エアーシリンダーを周方向へ回転させながら、メタルノヽライドランプ (アイ 'ダラ フィックス社製、商標「M056— L21」)の光を、大気中で 4000mj/cm2 (UVメータ 一(オーク製作所社製、商標「UV—M02」)と UV—35—APRフィルターで測定した 照度を時間積分した値)照射し、感光性榭脂硬化物層(1)を得た。感光性榭脂組成 物層表面でのランプ照度は、 UVメーター (オーク製作所社製、商標「UV— M02」) を用いて測定した。フィルター (オーク製作所社製、商標「UV— 35— APRフィルタ 一」)を使用して測定したランプ照度は、 lOOmW/cm2,フィルター (オーク製作所 社製、商標「UV— 25フィルター」)を使用して測定したランプ照度は、 14mW/cm2 であった。表面にはタックが残っており、表面を研磨するのに時間を要した。また、研 磨中に研磨カスが研磨ホイールに絡みつくことがあった。
得られた中空円筒状芯材の上に、実施例 1と同じ感光性榭脂を用いて、実施例 1と 同じ方法でレーザー彫刻可能な榭脂層 (B)を形成した。
[0092] (比較例 1)
液状感光性榭脂組成物を光硬化させる代わりに、熱硬化型 2液性のエポキシ榭脂 を用い、 50°Cに加熱する以外は、実施例 1と同様にして、中空円筒状芯材の作製を 試みた。エポキシ榭脂が完全に硬化するのに 1日の時間を要した。
また、 50°Cを超えて加熱すると、寸法が一様でなく大小様々な気泡が多数発生し てしまった。また、用いたエポキシ榭脂の 20°Cにおける粘度は lOPa' s未満であり、 エポキシ榭脂を円筒状支持体上に塗布する工程において、円筒形状を維持するの が困難であった。気泡が多数混入した中空円筒状芯材は、強度的に弱ぐ手で力を 加えただけで部分的に壊れてしまった。
[0093] (比較例 2)
スチレン ブタジエン共重合体 (旭化成ケミカルズ社製、商標「タフプレン A」、数平 均分子量: 7. 3万) 80重量部、液状ポリブタジエン(日本石油化学社製、商標「B— 2 000」、数平均分子量: 2000) 20重量部を-一ダ一にて混練し、得られた混練物 10 重量部に対して、トルエン 20重量部を混合し、粘性の高い液状の榭脂組成物を得た 幅 50mm、厚み 25 μ mのポリスルホンフィルムの片面に、得られた液状の榭脂組 成物を厚さ 50 mに塗布し、表面を離型処理された外径 213. 384mmのェアーシ リンダ一上に、赤外線ヒータで加熱しながら、榭脂組成物が塗布された面から、ポリス ルホンフィルムの端部が若干重なるようにして螺旋状に 3回巻き付けた。冷却後、中 空円筒状芯材を得ることができた。
スチレン ブタジエン共重合体 (旭化成ケミカルズ社製、商標「タフプレン A」、数平 均分子量: 7. 3万) 60重量部、液状ポリブタジエン(日本石油化学社製、商標「B— 2 000」、数平均分子量: 2000) 29重量部、 1, 9ーノナンジオールジアタリレート(分子 量: 268) 7重量部、 2, 2 ジメトキシ—フエ-ルァセトフエノン 2重量部、 2, 6 ジ—t ブチル p タレゾール 1重量部を-一ダーにて混練し、 20°Cにお 、て固体状の 感光性榭脂組成物を得た。
得られた中空円筒状芯材の上に、上記固体状の感光性榭脂組成物を押し出し装 置を用いて、 140°Cに加熱した状態で塗布した。冷却後、中空円筒状芯材が気泡の 発生等の原因で大きく変形して!/ヽることが目視で観察された。
(比較例 3)
表面を離型処理された外径 213. 384mmのエアーシリンダー上に、揮発性溶剤を 含んだ液状の不飽和ポリエステル榭脂を、厚さ約 0. 5mmで塗布し、その上に幅 50 mm、厚さ 300 mのガラスクロスを 5回螺旋状に巻き付けた。更に、ガラスクロスの表 面とガラスクロスの網目内に前記液状の不飽和ポリエステル榭脂を塗布した。このよう にして得られた表面に、離型処理された厚さ 25 mの PETフィルムを巻き付け、 70 °Cに加熱したオーブン内で 1日硬化させた。冷却後、表面の PETフィルムを剥離して 、中空円筒状芯材を得た。表面の高低差は、 500 /z mを越えて大きぐ表面を研磨 することにより平滑ィ匕させた。この工程に要した時間は、 60分であった。ガラスクロス が露出する部分があり、粉塵が舞ったりして研磨し難い状況であった。
表面を研磨した中空円筒状芯材の表面に接着剤を薄く塗布し、周長を調整するた めに、幅 50mm、厚さ 200 mの架橋剤を混合してある硬質のウレタン系ゴムシート を加熱、加圧しながら巻き付けた。その後、離型処理された PETフィルムを、得られ たゴム表面に巻き付け、オーブンで加熱し、 1日放置した。冷却後、ゴム表面を研磨 し平滑ィ匕した。この工程に要した時間は 40分であった。その後、数日間、室温で放 置したところ、ゴム層の膜厚が部分的に 30 m程度減少していたため、再度表面の 研磨を実施した。 実施例 1と同じ感光性榭脂組成物を用いて、また実施例 1と同様の方法を用いて、 得られたゴム層の表面にレーザー彫刻可能な榭脂層(B)を形成した。
[表 1]
Figure imgf000060_0001
表中の配合量の単位: 重量部
(略語の説明)
LMA ラウリルメタクリレート(Mn254)
PPMA ポリプロピレングリコ一ルモノメタクリレ一KMn400)
DEEHEA ジエチレングリコールー2—ェチルへキシルメタクリレート(Mn286)
TEGDMA テトラエチレングリコールジメタクリレート(Mn330)
TMPTMA 卜リメチロールプロパントリメタクリレート(Mn339)
BZMA ベンジルメタクリレート(Mnl 76)
CHMA シクロへキシルメタクリレート(Mn1 67)
BDEGMA ブトキシジエチレングリコールメタクリレート(Mn230)
PEMA フエノキシェチルメタクリレート(Mn206)
DMPAP 2 2—ジメトキシ一 2—フエニルァセトフエノン
BP ベンゾフエノン
BHT 2, 6—ジー t—ブチルァセトフ:!:ノン
表 2 中空円筒状芯材 fa]長調; IE J¾" クッション層 彫刻後のカス拭き
取り回数 網点部の形状 (エタノール付き B EM COT)
実施例 2 a a ≤3 円錐状で良好 実施例 3 a a a ≤3 円錐状で良好 実施例 4 β a β ≤3 円錐状で良好 実施例 5 β β β ≤3 円錐状で良好 実施例 6 r β β ≤3 円錐状で良好
産業上の利用可能性
[0096] 本発明は、レーザー彫刻によるフレキソ印刷版用レリーフ画像作成、エンボスカロェ 等の表面加工用パターンの形成、タイル等の印刷用レリーフ画像形成、電子回路形 成における導体、半導体、絶縁体のパターン印刷、光学部品の反射防止膜、カラー フィルター、(近)赤外線カットフィルタ一等の機能性材料のパターン形成、更には液 晶ディスプレイ又は有機エレクト口ルミネッセンスディスプレイ等の表示素子の製造に おける配向膜、下地層、発光層、電子輸送層、封止材層の塗膜'パターン形成に用 V、る円筒状印刷原版及びその製造方法に好適である。
図面の簡単な説明
[0097] [図 1]本発明の中空円筒状印刷基材の断面概念図。

Claims

請求の範囲
[1] 厚さ 0. 05mm以上 50mm以下の感光性榭脂硬化物層(1)を含んでなる中空円筒 状芯材 (A)であって、該感光性榭脂硬化物層(1)が繊維状、布状又はフィルム状の 補強材を含有し、かつ、該感光性榭脂硬化物層(1)のショァ D硬度が 30度以上 100 度以下である上記中空円筒状芯材 (A)、及び
該中空円筒状芯材 (A)の上に積層されてなる、厚さ 0. 1mm以上 100mm以下の 、表面にパターン形成可能な榭脂層(B)又は表面にパターンが形成された榭脂層( C)
を含んでなる円筒状印刷基材。
[2] パターン形成可能な榭脂層 (B)が、写真製版技術でパターンを形成することが可 能な感光性榭脂組成物層又はレーザー彫刻可能な感光性榭脂硬化物層(3)である 請求項 1に記載の円筒状印刷基材。
[3] 中空円筒状芯材 (A)の内面に、さらに、少なくとも 1層の榭脂層(D)が積層された 円筒状構成体であって、該榭脂層(D)の厚さが 0. 01mm以上 0. 5mm以下である 請求項 1に記載の中空円筒状印刷基材。
[4] 中空円筒状芯材 (A)と、パターン形成可能な榭脂層(B)又は表面にパターンが形 成された榭脂層(C)との間に、さらに、クッション層 (E)が積層されている円筒状構成 体であって、該クッション層(E)の厚さ力 0. 05mm以上 50mm以下である請求項 1 から 3の ヽずれか一項に記載の中空円筒状印刷基材。
[5] 中空円筒状芯材 (A)とクッション層 (E)の間に、さらに、周長調整層 (F)が積層され ている円筒状構成体であって、該周長調整層(F)の厚さが 0. 1mm以上 100mm以 下である請求項 4に記載の中空円筒状印刷基材。
[6] パターン形成可能な榭脂層(B)又は表面にパターンが形成された榭脂層(C)と、ク ッシヨン層 (E)との間に、さらに、剛性体層(G)が積層されている中空円筒状構成体 であって、該剛性体層(G)の厚さが 0. 01mm以上 0. 5mm以下である請求項 4に記 載の中空円筒状印刷基材。
[7] 中空円筒状芯材 (A)、周長調整層 (F)、クッション層 (E)、剛性体層 (G)、榭脂層(
B)、及び榭脂層 (C)の内、少なくとも中空円筒状芯材 (A)を構成する感光性榭脂硬 化物が、 20°Cにお!/ヽて液状の感光性榭脂組成物を光硬化させて形成されたもので ある請求項 1から 6のいずれか一項に記載の中空円筒状印刷基材。
[8] レーザー彫刻可能な感光性榭脂硬化物層(3)力もなる榭脂層(B)が、カーボネー ト結合、ウレタン結合、及びエステル結合力 なる群力 選ばれる少なくとも 1種類の 結合を有する化合物及び無機多孔質体を含有する請求項 2に記載の中空円筒状印 刷基材。
[9] 中空円筒状芯材 (A)、周長調整層 (F)、クッション層 (E)、剛性体層 (G)、榭脂層( B)、及び榭脂層 (C)の内、少なくとも中空円筒状芯材 (A)を構成する感光性榭脂硬 化物が、光重合開始剤又は該光重合開始剤の分解生成物を含有し、該光重合開始 剤が、水素引き抜き型光重合開始剤と崩壊型光重合開始剤、又は同一分子内に水 素引き抜き型光重合開始剤として作用する部位と崩壊型光重合開始剤として作用す る部位を有する化合物を含む請求項 1から 8のいずれか一項に記載の中空円筒状 印刷基材。
[10] 中空円筒状芯材 (A)が表面に凹凸を有し、凹凸の高低差が 20 /z m以上 500 /z m 以下である請求項 1に記載の中空円筒状印刷基材。
[11] 厚さ 0. 05mm以上 50mm以下の感光性榭脂硬化物層(1)を含んでなる、中空円 筒状印刷基材形成用の中空円筒状芯材であって、該感光性榭脂硬化物層(1)が繊 維状、布状又はフィルム状の補強材を含有し、かつ、該感光性榭脂硬化物層(1)の ショァ D硬度が 30度以上 100度以下である上記中空円筒状芯材。
[12] 円筒状支持体表面に繊維状、布状又はフィルム状の補強材を設ける工程、その上 に液状感光性榭脂組成物を塗布する工程、形成された感光性榭脂組成物層に 200 nm以上 450nm以下の波長の光を含む光線を大気中で照射し、該感光性榭脂組成 物層を光硬化させ感光性榭脂硬化物層(1)を形成する工程、上記工程により形成さ れた中空円筒状芯材 (A)上にパターンを形成可能な榭脂層(B)又は表面にパター ンが形成された榭脂層 (C)を積層する工程を含む中空円筒状印刷基材の製造方法
[13] 繊維状、布状又はフィルム状の補強材に液状感光性榭脂組成物又は液状感光性 榭脂組成物の半硬化物を含有させて得られるシート状物を円筒状支持体表面に卷 装する工程、形成された感光性樹脂組成物層に 200nm以上 450nm以下の波長の 光を含む光線を大気中で照射し、該感光性樹脂組成物層を光硬化させ感光性樹脂 硬化物層(1)を形成する工程、上記工程により形成された中空円筒状芯材 (A)上に パターンを形成可能な樹脂層(B)又は表面にパターンが形成された樹脂層(C)を積 層する工程を含む中空円筒状印刷基材の製造方法。
[14] 樹脂層 (B)の積層方法が、感光性樹脂組成物を塗布する工程、又は感光性樹脂 組成物を塗布した後に光硬化させる工程、又はシート状に形成された感光性樹脂組 成物層を接着剤若しくは粘着剤を介して貼り付ける工程を含み、表面にパターンを 形成された樹脂層(C)の積層方法がパターンを形成されたシート状物を接着剤又は 粘着剤を介して貼り付ける工程を含む請求項 12又は 13に記載の方法。
[15] 中空円筒状芯材 (A)を形成する工程の前に、円筒状支持体上に、さらに、少なくと も 1層の樹脂層(D)を形成する工程を含み、該樹脂層 (D)を形成する工程が、円筒 状支持体上に樹脂製フィルムを巻きつける際に、該樹脂製フィルムの両端部が重な らなレ、ように、かつ両端部の接合部位に生じる継ぎ目が 2mm以下となるように巻きつ ける工程、又は円筒状に形成された継ぎ目のない樹脂製チューブをかぶせる工程、 又は円简状支持体上に液状感光性樹脂組成物を塗布し光照射により光硬化させる 工程を含む請求項 12又は 13に記載の方法。
[16] 樹脂層(B)又は樹脂層(C)を積層する工程の前に、中空円筒状芯材 (A)上に周 長調整層(F)を積層する工程を含み、該周長調整層 (F)を積層する工程が、中空円 筒状芯材 (A)上に液状感光性樹脂を塗布し光照射により光硬化させる工程を含む 請求項 12から 15のいずれか一項に記載の方法。
[17] 樹脂層(B)又は樹脂層(C)を積層する工程の前に、中空円筒状芯材 (A)又は周 長調整層(F)上にクッション層 (E)を積層する工程を含み、該クッション層 (E)を積層 する方法が、中空円筒状芯材 (A)若しくは周長調整層 (F)上に液状感光性樹脂を 塗布し光照射により光硬化させる工程、又は接着剤層若しくは粘着剤層を介してタツ シヨンテープを貼り付ける工程を含む請求項 16に記載の方法。
[18] 樹脂層(B)又は樹脂層(C)を積層する工程の前に、クッション層 (E)上に剛性体層 (G)を積層する工程を含み、該剛性体層(G)を積層する方法が、クッション層 (E)上
釘正された用銃 (纖 》 に榭脂製フィルムを接着剤層若しくは粘着剤層を介して貼り付ける工程、又は液状 感光性榭脂組成物を塗布し光照射により光硬化させる工程を含む請求項 17に記載 の方法。
[19] 感光性榭脂硬化物層(1)の膜厚を調整する(を形成する)工程の後に、更に表面を 切削する工程、表面を研削する工程、及び表面を研磨する工程からなる群から選ば れる少なくとも 1種類の工程を含む請求項 12から 18のいずれか一項に記載の方法。
[20] 感光性榭脂硬化物層(1)を形成する工程において、前記感光性榭脂組成物層に 大気中で光が照射される請求項 12から 19のいずれか一項に記載の方法。
[21] 中空円筒状印刷基材の形成後に、該中空円筒状印刷基材を円筒状支持体力 取 り外す工程を含む請求項 12から 20のいずれか一項に記載の方法。
PCT/JP2005/005751 2004-03-30 2005-03-28 中空円筒状印刷基材 WO2005095115A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2005800108551A CN1938162B (zh) 2004-03-30 2005-03-28 中空圆柱状印刷元件及其生产方法、中空圆柱状芯材料
AT05727408T ATE458624T1 (de) 2004-03-30 2005-03-28 Hohlzyindrisches druckelement
DE602005019550T DE602005019550D1 (de) 2004-03-30 2005-03-28 Hohlzyindrisches druckelement
EP05727408A EP1731325B1 (en) 2004-03-30 2005-03-28 Hollow cylindrical printing element
JP2006511646A JP4530367B2 (ja) 2004-03-30 2005-03-28 中空円筒状印刷基材
US10/592,867 US20080156212A1 (en) 2004-03-30 2005-03-28 Hollow Cylindrical Printing Element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004099099 2004-03-30
JP2004-099099 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005095115A1 true WO2005095115A1 (ja) 2005-10-13

Family

ID=35063615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005751 WO2005095115A1 (ja) 2004-03-30 2005-03-28 中空円筒状印刷基材

Country Status (7)

Country Link
US (1) US20080156212A1 (ja)
EP (1) EP1731325B1 (ja)
JP (1) JP4530367B2 (ja)
CN (1) CN1938162B (ja)
AT (1) ATE458624T1 (ja)
DE (1) DE602005019550D1 (ja)
WO (1) WO2005095115A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160788A (ja) * 2005-12-15 2007-06-28 Asahi Kasei Chemicals Corp ドライオフセット印刷用円筒状印刷版
JP2007168246A (ja) * 2005-12-21 2007-07-05 Asahi Kasei Chemicals Corp 印刷基材
JP2007175953A (ja) * 2005-12-27 2007-07-12 Asahi Kasei Chemicals Corp シート状あるいは中空円筒状印刷基材
WO2007129704A1 (ja) * 2006-05-08 2007-11-15 Asahi Kasei Chemicals Corporation 印刷用クッション材料
JP2008094030A (ja) * 2006-10-13 2008-04-24 Asahi Kasei Chemicals Corp 印刷基材用中空円筒状支持体
JP2009090662A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd グラビア印刷装置
JP2009226876A (ja) * 2008-03-25 2009-10-08 Universal Seikan Kk スリーブ印刷版及びスリーブ印刷版の製造方法
JP2009541786A (ja) * 2006-06-22 2009-11-26 フリント グループ ジャーマニー ゲーエムベーハー フレキソ印刷要素を製造するための光重合可能な積層体
US20100189916A1 (en) * 2006-08-09 2010-07-29 Miyoshi Watanabe Method of manufacturing cylindrical printing substrate and manufacturing device
US20110303110A1 (en) * 2007-09-12 2011-12-15 Felix Boettcher Gmbh & Co. Kg Sleeve for flexo printing
WO2013176029A1 (ja) * 2012-05-25 2013-11-28 株式会社シンク・ラボラトリー パターン付ロール及びその製造方法
US10889100B2 (en) 2014-10-16 2021-01-12 Windmöller & Hölscher Kg Method for producing an image structure

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250043A1 (en) * 2004-05-07 2005-11-10 Mclean Michael E Method of making a photopolymer sleeve blank for flexographic printing
ITMI20070929A1 (it) * 2007-05-08 2008-11-09 Sitma Spa Gruppo perfezionato di distribuzione di una sostanza a comportamento fluido, in particolare per buste di lettere dotate di un lembo di chiusura
DE102007039949B3 (de) * 2007-08-23 2008-12-04 Flooring Technologies Ltd. Vorrichtung zum Auftragen einer Suspension auf eine Trägerplatte
US8361702B2 (en) * 2007-11-08 2013-01-29 Fujifilm Corporation Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for production of relief printing plate
CN101868760B (zh) * 2007-11-21 2013-01-16 分子制模股份有限公司 用于纳米刻印光刻的多孔模板及方法、以及刻印层叠物
US20090165662A1 (en) * 2007-12-31 2009-07-02 Nim-Cor, Inc. Bridge mandrels for anilox and print roller applications and techniques for making them
JP5500831B2 (ja) 2008-01-25 2014-05-21 富士フイルム株式会社 レリーフ印刷版の作製方法及びレーザー彫刻用印刷版原版
JP5241252B2 (ja) * 2008-01-29 2013-07-17 富士フイルム株式会社 レーザー彫刻用樹脂組成物、レーザー彫刻用レリーフ印刷版原版、レリーフ印刷版及びレリーフ印刷版の製造方法
JP5409045B2 (ja) * 2008-02-29 2014-02-05 富士フイルム株式会社 レーザー彫刻用樹脂組成物、レーザー彫刻用樹脂印刷版原版、レリーフ印刷版およびレリーフ印刷版の製造方法
JP5322575B2 (ja) * 2008-03-28 2013-10-23 富士フイルム株式会社 レーザー彫刻用樹脂組成物、画像形成材料、レーザー彫刻用レリーフ印刷版原版、レリーフ印刷版、及びレリーフ印刷版の製造方法
DE102009010354A1 (de) * 2009-02-25 2010-09-09 Contitech Elastomer-Beschichtungen Gmbh Verfahren zur Herstellung eines mehrschichtigen Drucktuches
WO2011115452A2 (ko) * 2010-03-19 2011-09-22 주식회사 엘지화학 오프셋 인쇄용 블랭킷 및 이의 제조방법
US20130055913A1 (en) * 2010-05-07 2013-03-07 Ingvar Andersson Plate cylinder
JP5622564B2 (ja) 2010-06-30 2014-11-12 富士フイルム株式会社 感光性組成物、パターン形成材料、並びに、これを用いた感光性膜、パターン形成方法、パターン膜、低屈折率膜、光学デバイス、及び、固体撮像素子
JP4737342B1 (ja) * 2010-09-24 2011-07-27 富士ゼロックス株式会社 環状体の製造方法
DE102012011636A1 (de) * 2012-06-12 2013-12-12 Automatik Plastics Machinery Gmbh Einzugswalze für Stranggranulatoren
CN104661822A (zh) * 2012-09-27 2015-05-27 富士胶片株式会社 圆筒状印刷原版的制造方法、及圆筒状印刷版的制版方法
CN104661821A (zh) * 2012-09-28 2015-05-27 富士胶片株式会社 圆筒状印刷版原版的制造方法、以及圆筒状印刷版及其制版方法
TWI548005B (zh) * 2014-01-24 2016-09-01 環旭電子股份有限公司 選擇性電子封裝模組的製造方法
CN104589782A (zh) * 2015-01-20 2015-05-06 淄博朗达复合材料有限公司 夹层式玻璃纤维印刷胶辊套筒
US20170182830A1 (en) * 2015-02-12 2017-06-29 LCY Chemical Corp. Blanket for transferring a paste image from engraved plate to substrate
US9573405B2 (en) * 2015-02-17 2017-02-21 LCY Chemical Corp. Method and blanket for transferring a paste image from engraved plate to substrate
CN106183370A (zh) * 2016-07-06 2016-12-07 浙江炜冈机械有限公司 一种版辊轴、一种版辊套以及柔印机版辊装置
CN115260749A (zh) * 2016-10-17 2022-11-01 捷普有限公司 沉淀聚醚嵌段酰胺和热塑性聚乙烯以增强用于三维打印的操作窗口
IT201700107541A1 (it) * 2017-09-26 2019-03-26 Printgraph Finito S P A Processo per la realizzazione di una blanket o lastra di verniciatura di sovrastampa
CN114074473B (zh) * 2020-08-11 2023-03-14 光群雷射科技股份有限公司 转印滚轮的制造方法、及滚轮母膜与其制造方法
WO2024044175A1 (en) * 2022-08-22 2024-02-29 Colorado State University Research Foundation Hydrophilic and hydrophobic porous elastomers

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276947A (en) 1961-04-17 1966-10-04 Us Rubber Co Lithographic printer's blanket and method of making same
GB1250912A (ja) 1968-08-10 1971-10-27
JPS5134322B1 (ja) * 1969-10-27 1976-09-25
JPS5427801A (en) * 1977-08-01 1979-03-02 Mitsubishi Paper Mills Ltd Flat printing plate
GB2089288A (en) 1980-11-28 1982-06-23 Porvair Ltd Printing blankets
JPS6278466U (ja) * 1985-11-05 1987-05-19
JPH05505352A (ja) * 1990-01-11 1993-08-12 クック・コンポジッツ・アンド・ポリマーズ・カンパニー 光硬化バインダーを用いる繊維強化成形プラスチック製品及びそのプレフォームの製造法
WO1997000169A1 (en) 1995-06-16 1997-01-03 Reeves Brothers, Inc. Digital printing blanket carcass
US5716714A (en) 1995-12-15 1998-02-10 Eastman Kodak Company Low wrinkle performance fuser member
US6190771B1 (en) 1998-12-28 2001-02-20 Jiann H. Chen Fuser assembly with donor roller having reduced release agent swell
EP1195264A1 (en) 2000-10-03 2002-04-10 ROSSINI S.p.A. Improved sleeve for blanket cylinder of an indirect or offset printing machine
JP2002240456A (ja) 2001-02-16 2002-08-28 Meiwa Rubber Kogyo Kk 印刷用スリーブ及びその製法
JP2003025749A (ja) * 2001-07-12 2003-01-29 Asahi Kasei Corp シームレススリーブ印刷版構成体
WO2003022594A1 (en) 2001-09-05 2003-03-20 Asahi Kasei Chemicals Corporation Photosensitive resin composition for printing plate precursor capable of laser engraving
EP1431842A1 (en) 2002-12-20 2004-06-23 NexPress Solutions LLC Fusing roller comprising a fluoroelastomer layer containing microspheres

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524303A (en) * 1975-06-27 1977-01-13 Asahi Shimbun Publishing Typographic plate material
JPS5419001U (ja) * 1977-07-08 1979-02-07
JPS5652064Y2 (ja) * 1978-04-18 1981-12-04
GB8700599D0 (en) * 1987-01-12 1987-02-18 Vickers Plc Printing plate precursors
JP2653458B2 (ja) * 1988-03-26 1997-09-17 旭化成工業株式会社 凸版印刷版用感光性樹脂組成物
US5798202A (en) * 1992-05-11 1998-08-25 E. I. Dupont De Nemours And Company Laser engravable single-layer flexographic printing element
US5301610A (en) * 1993-04-30 1994-04-12 E. I. Du Pont De Nemours And Company Method and apparatus for making spiral wound sleeves for printing cylinders and product thereof
US6703095B2 (en) * 2002-02-19 2004-03-09 Day International, Inc. Thin-walled reinforced sleeve with integral compressible layer
US7157535B2 (en) * 2002-06-19 2007-01-02 National Starch And Chemical Investment Holding Corporation Polymeric photoinitiators
US6966259B2 (en) * 2004-01-09 2005-11-22 Kanga Rustom S Printing sleeve with an integrated printing surface
US8505451B2 (en) * 2004-05-07 2013-08-13 Day International, Inc. Method of making a photopolymer sleeve blank having an integral cushion layer for flexographic printing

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276947A (en) 1961-04-17 1966-10-04 Us Rubber Co Lithographic printer's blanket and method of making same
GB1250912A (ja) 1968-08-10 1971-10-27
JPS5134322B1 (ja) * 1969-10-27 1976-09-25
JPS5427801A (en) * 1977-08-01 1979-03-02 Mitsubishi Paper Mills Ltd Flat printing plate
GB2089288A (en) 1980-11-28 1982-06-23 Porvair Ltd Printing blankets
JPS6278466U (ja) * 1985-11-05 1987-05-19
JPH05505352A (ja) * 1990-01-11 1993-08-12 クック・コンポジッツ・アンド・ポリマーズ・カンパニー 光硬化バインダーを用いる繊維強化成形プラスチック製品及びそのプレフォームの製造法
WO1997000169A1 (en) 1995-06-16 1997-01-03 Reeves Brothers, Inc. Digital printing blanket carcass
US5716714A (en) 1995-12-15 1998-02-10 Eastman Kodak Company Low wrinkle performance fuser member
US6190771B1 (en) 1998-12-28 2001-02-20 Jiann H. Chen Fuser assembly with donor roller having reduced release agent swell
EP1195264A1 (en) 2000-10-03 2002-04-10 ROSSINI S.p.A. Improved sleeve for blanket cylinder of an indirect or offset printing machine
JP2002240456A (ja) 2001-02-16 2002-08-28 Meiwa Rubber Kogyo Kk 印刷用スリーブ及びその製法
JP2003025749A (ja) * 2001-07-12 2003-01-29 Asahi Kasei Corp シームレススリーブ印刷版構成体
WO2003022594A1 (en) 2001-09-05 2003-03-20 Asahi Kasei Chemicals Corporation Photosensitive resin composition for printing plate precursor capable of laser engraving
EP1431842A1 (en) 2002-12-20 2004-06-23 NexPress Solutions LLC Fusing roller comprising a fluoroelastomer layer containing microspheres

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160788A (ja) * 2005-12-15 2007-06-28 Asahi Kasei Chemicals Corp ドライオフセット印刷用円筒状印刷版
JP2007168246A (ja) * 2005-12-21 2007-07-05 Asahi Kasei Chemicals Corp 印刷基材
JP2007175953A (ja) * 2005-12-27 2007-07-12 Asahi Kasei Chemicals Corp シート状あるいは中空円筒状印刷基材
JPWO2007129704A1 (ja) * 2006-05-08 2009-09-17 旭化成イーマテリアルズ株式会社 印刷用クッション材料
WO2007129704A1 (ja) * 2006-05-08 2007-11-15 Asahi Kasei Chemicals Corporation 印刷用クッション材料
JP2009541786A (ja) * 2006-06-22 2009-11-26 フリント グループ ジャーマニー ゲーエムベーハー フレキソ印刷要素を製造するための光重合可能な積層体
US9599902B2 (en) 2006-06-22 2017-03-21 Flint Group Germany Gmbh Photopolymerisable layered composite for producing flexo printing elements
US20100189916A1 (en) * 2006-08-09 2010-07-29 Miyoshi Watanabe Method of manufacturing cylindrical printing substrate and manufacturing device
JP2008094030A (ja) * 2006-10-13 2008-04-24 Asahi Kasei Chemicals Corp 印刷基材用中空円筒状支持体
US20110303110A1 (en) * 2007-09-12 2011-12-15 Felix Boettcher Gmbh & Co. Kg Sleeve for flexo printing
JP2009090662A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd グラビア印刷装置
JP2009226876A (ja) * 2008-03-25 2009-10-08 Universal Seikan Kk スリーブ印刷版及びスリーブ印刷版の製造方法
WO2013176029A1 (ja) * 2012-05-25 2013-11-28 株式会社シンク・ラボラトリー パターン付ロール及びその製造方法
JPWO2013176029A1 (ja) * 2012-05-25 2016-01-12 株式会社シンク・ラボラトリー パターン付ロール及びその製造方法
US10889100B2 (en) 2014-10-16 2021-01-12 Windmöller & Hölscher Kg Method for producing an image structure

Also Published As

Publication number Publication date
CN1938162A (zh) 2007-03-28
EP1731325A4 (en) 2008-06-25
CN1938162B (zh) 2011-06-01
DE602005019550D1 (de) 2010-04-08
EP1731325A1 (en) 2006-12-13
EP1731325B1 (en) 2010-02-24
JP4530367B2 (ja) 2010-08-25
US20080156212A1 (en) 2008-07-03
ATE458624T1 (de) 2010-03-15
JPWO2005095115A1 (ja) 2008-02-21

Similar Documents

Publication Publication Date Title
WO2005095115A1 (ja) 中空円筒状印刷基材
KR100796869B1 (ko) 레이저 조각 가능한 인쇄 기재용 감광성 수지 조성물
JPWO2003022594A1 (ja) レーザー彫刻可能な印刷原版用感光性樹脂組成物
WO2005070692A1 (ja) レーザー彫刻可能な印刷基材の製造方法
JP4475505B2 (ja) レーザー彫刻可能な円筒状印刷原版
JP4323186B2 (ja) レーザー彫刻可能な円筒状フレキソ印刷原版
JP4024136B2 (ja) レーザー彫刻印刷原版
JP4425551B2 (ja) レーザー彫刻可能な印刷原版用感光性樹脂組成物
JP4502367B2 (ja) レーザー彫刻可能な円筒状フレキソ印刷原版の製造方法
JP4391260B2 (ja) 周長調整層を有する円筒状印刷原版
JP4220272B2 (ja) レーザー彫刻印刷版の製造方法
JP2010115792A (ja) レーザー彫刻用円筒状印刷原版の製造方法
JP4180314B2 (ja) 印刷版の製造方法
JP2005221735A (ja) レーザー彫刻可能な円筒状印刷原版の製造方法
JP5240968B2 (ja) レーザー彫刻印刷版または印刷原版の再生方法
JP2005219378A (ja) 円筒状印刷原版
JP4220221B2 (ja) フレキソ印刷原版の作製方法
JP4024135B2 (ja) レーザー彫刻印刷版
JP2008221471A (ja) 印刷基材
JP2005212144A (ja) 表面処理されたレーザー彫刻印刷版の製造方法
JP5000682B2 (ja) レーザー彫刻可能な円筒状フレキソ印刷原版
JP2004262076A (ja) レーザー彫刻可能なシームレス印刷原版およびその成形方法
JP2004148587A (ja) レーザー彫刻印刷原版
JP2004314334A (ja) レーザー彫刻印刷原版の製造方法
JP5046598B2 (ja) 半球状光硬化物パターンの形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580010855.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511646

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005727408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10592867

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005727408

Country of ref document: EP