WO2005101097A2 - Horizontal perspective display - Google Patents

Horizontal perspective display Download PDF

Info

Publication number
WO2005101097A2
WO2005101097A2 PCT/US2005/011254 US2005011254W WO2005101097A2 WO 2005101097 A2 WO2005101097 A2 WO 2005101097A2 US 2005011254 W US2005011254 W US 2005011254W WO 2005101097 A2 WO2005101097 A2 WO 2005101097A2
Authority
WO
WIPO (PCT)
Prior art keywords
eyepoint
display
input device
image
display system
Prior art date
Application number
PCT/US2005/011254
Other languages
French (fr)
Other versions
WO2005101097A3 (en
Inventor
Michael A. Vesely
Nancy Clemens
Original Assignee
Vesely Michael A
Nancy Clemens
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vesely Michael A, Nancy Clemens filed Critical Vesely Michael A
Priority to EP05733693A priority Critical patent/EP1749232A2/en
Priority to JP2007507395A priority patent/JP2007531951A/en
Publication of WO2005101097A2 publication Critical patent/WO2005101097A2/en
Publication of WO2005101097A3 publication Critical patent/WO2005101097A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/40Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images giving the observer of a single two-dimensional [2D] image a perception of depth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/275Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
    • H04N13/279Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals the virtual viewpoint locations being selected by the viewers or determined by tracking

Definitions

  • This invention relates to a three-dimensional display system, and in particular, to a display system capable of adjusting the displayed images to accommodate the viewer's vision.
  • the answer is three dimensional illusions.
  • the two dimensional pictures must provide a numbers of cues of the third dimension to the brain to create the illusion of three dimensional images.
  • This effect of third dimension cues can be realistically achievable due to the fact that the brain is quite accustomed to it.
  • the three dimensional real world is always and already converted into two dimensional (e.g. height and width) projected image at the retina, a concave surface at the back of the eye.
  • the brain through experience and perception, generates the depth information to form the three dimension visual image from two types of depth cues: monocular (one eye perception) and binocular (two eye perception).
  • binocular depth cues are innate and biological while monocular depth cues are learned and environmental.
  • the major binocular depth cues are convergence and retinal disparity.
  • the brain measures the amount of convergence of the eyes to provide a rough estimate of the distance since the angle between the line of sight of each eye is larger when an object is closer.
  • the disparity of the retinal images due to the separation of the two eyes is used to create the perception of depth.
  • the effect is called stereoscopy where each eye receives a slightly different view ot a scene, ana tne Dram ruses em xogemer using these differences to determine the ratio of distances between nearby objects.
  • Binocular cues are very powerful perception of depth. However, there are also depth cues with only one eye, called monocular depth cues, to create an impression of depth on a flat image.
  • the major monocular cues are: overlapping, relative size, linear perspective and light and shadow. When an object is viewed partially covered, this pattern of blocking is used as a cue to determine that the object is farther away. When two objects known to be the same size and one appears smaller than the other, this pattern of relative size is used as a cue to assume that the smaller object is farther away.
  • the cue of relative size also provides the basis for the cue of linear perspective where the farther away the lines are from the observer, the closer together they will appear since parallel lines in a perspective image appear to converge towards a single point. The light falling on an object from a certain angle could provide the cue for the form and depth of an object.
  • the distribution of light and shadow on a objects is a powerful monocular cue for depth provided by the biologically correct assumption that light comes from above.
  • Perspective drawing is most often used to achieve the illusion of three dimension depth and spatial relationships on a flat (two dimension) surface, such as paper or canvas.
  • a flat (two dimension) surface such as paper or canvas.
  • three dimension objects are depicted on a two dimension plane, but "trick" the eye into appearing to be in three dimension space.
  • the first theoretical treatise for constructing perspective, Depictura was published in the early 1400's by the architect, Leone Battista Alberti. Since the introduction of his book, the details behind "general” perspective have been very well documented. However, the fact that there are a number of other types of perspectives is not well known. Some examples are military 1, cavalier 2, isometric 3, dimetric 4, central perspective 5 and two-point perspective 6 as shown in Figure 1.
  • central perspective 5 Of special interest is the most common type of perspective, called central perspective 5, shown at the bottom left of Figure 1.
  • Central perspective also called one-point perspective, is the simplest kind of "genuine" perspective construction, and is often taught in art and drafting classes for beginners.
  • Figure 2 further illustrates central perspective.
  • Central perspective uses central perspective, the chess board and chess pieces look like three dimension objects, even though they are drawn on a two dimensional flat piece of paper.
  • Central perspective has a central vanishing point 21, and rectangular objects are placed so their front sides are parallel to the picture plane. The depth of the objects is perpendicular to the picture plane. All parallel receding edges run towards a central vanishing point. The viewer looks towards this vanishing point with a straight view.
  • an architect or artist creates a drawing using central perspective they must use a single-eye view. That is, the artist creating the drawing captures the image by looking through only one eye, which is perpendicular to the drawing surface.
  • the angle between the viewing surface and the line of vision is preferably 45° but can be almost any angle, and the viewing surface is preferably horizontal (wherein the name "horizontal perspective"), but it can be any surface, as long as the line of vision forming a not-perpendicular angle to it.
  • Horizontal perspective images offer realistic three dimensional illusion, but are little known primarily due to the narrow viewing location (the viewer's eyepoint has to be coincide precisely with the image projection eyepoint), and the complexity involving in projecting the two dimensional image or the three dimension model into the horizontal perspective image.
  • the present invention recognizes that the personal computer is perfectly suitable for horizontal perspective display. It is personal, thus it is designed for the operation of one person, and the computer, with its powerful microprocessor, is well capable of rendering various horizontal perspective images to the viewer.
  • the present invention discloses a real time electronic display that can adjust the horizontal perspective images to accommodate the position of the viewer.
  • the display can accept manual input such as a computer mouse, trackball, joystick, tablet, etc. to re-position the horizontal perspective images.
  • the display can also automatically re-position the images based on an input device automatically providing the viewer's viewpoint location.
  • the display is not limited to project two dimensional images but also three dimensional models. Multiple inputs would also be included, one to keep the image in proper perspective, and one to manipulate the images such as rotation, movement or amplification. Brief description of the drawings
  • FIG. 1 shows the various perspective drawings.
  • Figure 2 shows a typical central perspective drawing.
  • Figure 3 shows the comparison of central perspective (Image A) and horizontal perspective (Image B).
  • Figure 4 shows the central perspective drawing of three stacking blocks.
  • Figure 5 shows the horizontal perspective drawing of three stacking blocks.
  • Figure 6 shows the method of drawing a horizontal perspective drawing.
  • Figure 7 shows an embodiment of the present invention, including a horizontal perspective display and an viewer input device.
  • Figure 8 shows another embodiment of the present invention, including a horizontal perspective display, a computational device and an viewer input device.
  • Figure 9 shows mapping of the 3-d object onto the horizontal plane.
  • Figure 10 shows the projection of 3-d object by horizontal perspective.
  • Figure IT shows the simulation time of the horizontal perspective.
  • the present invention discloses a horizontal perspective display system capable of projecting three dimensional illusion based on horizontal perspective projection.
  • horizontal perspective Normally, as in central perspective, the plane of vision, at right angle to the line of sight, is also the projected plane of the picture, and depth cues are used to give the illusion of depth to this flat image.
  • the plane of vision remains the same, but the projected image is not on this plane. It is on a plane angled to the plane of vision. Typically, the image would be on the ground level surface. This means the image will be physically in the third dimension relative to the plane of vision.
  • horizontal perspective can be called horizontal projection.
  • the object In horizontal perspective, the object is to separate the image from the paper, and fuse the image to the three dimension object that projects the horizontal perspective image.
  • the horizontal perspective image must be distorted so that the visual image fuses to form the free standing three dimensional figure. It is also essential the image is viewed from the correct eye points, otherwise the three dimensional illusion is lost.
  • the horizontal perspective images In contrast to central perspective images which have height and width, and project an illusion of depth, and therefore the objects are usually abruptly projected and the images appear to be in layers, the horizontal perspective images have actual depth and width, and illusion gives them height, and therefore there is usually a graduated shifting so the images appear to be continuous.
  • Figure 3 compares key characteristics that differentiate central perspective and horizontal perspective.
  • Image A shows key pertinent characteristics of central perspective
  • Image B shows key pertinent characteristics of horizontal perspective.
  • Image A the real-life three dimension object (three blocks stacked slightly above each other) was drawn by the artist closing one eye, and viewing along a line of sight 31 perpendicular to the vertical drawing plane 32.
  • the resulting image when viewed vertically, straight on, and through one eye, looks the same as the original image.
  • Image B the real-life three dimension object was drawn by the artist closing one eye, and viewing along a line of sight 33 45° to the horizontal drawing plane 34.
  • the resulting image when viewed horizontally, at 45° and through one eye, looks the same as the original image.
  • Figures 4 and 5 illustrate the visual difference between using central and horizontal perspective. To experience this visual difference, first look at Figure 4, drawn with central perspective, through one open eye. Hold the piece of paper vertically in front of you, as you would a traditional drawing, perpendicular to your eye. You can see that central perspective provides a good representation of three dimension objects on a two dimension surface.
  • Figure 6 is an architectural-style illustration that demonstrates a method for making simple geometric drawings on paper or canvas utilizing horizontal perspective.
  • Figure 6 is a side view of the same three blocks used in Figures 5. It illustrates the actual mechanics of horizontal perspective.
  • Each point that makes up the object is drawn by projecting the point onto the horizontal drawing plane.
  • Figure 6 shows a few of the coordinates of the blocks being drawn on the horizontal drawing plane through projection lines. These projection lines start at the eye point (not shown in Figure 6 due to scale), intersect a point 63 on the object, then continue in a straight line to where they intersect the horizontal drawing plane 62, which is where they are physically drawn as a single dot 64 on the paper.
  • the horizontal perspective drawing is complete, and looks like Figure 5.
  • the present invention horizontal perspective display system promotes horizontal perspective projection viewing by providing the viewer with the means to adjust the displayed images to maximize the illusion viewing experience.
  • the horizontal perspective display of the present invention is shown in Fig. 7, comprising a real time electronic display 100 capable of re-drawing the projected image, together with a viewer's input device 102 to adjust the horizontal perspective image.
  • the horizontal perspective display of the present invention can ensure the minimum distortion in rendering the three dimension illusion from the horizontal perspective method.
  • the input device can be manually operated where the viewer manually inputs his or her eyepoint location, or change the projection image eyepoint to obtain the optimum three dimensional illusion.
  • the input device can also be automatically operated where the display automatically tracks the viewer's eyepoint and adjust the projection image accordingly.
  • the present invention removes the constraint that the viewers keeping their heads in relatively fixed positions, a constraint that create much difficulty in the acceptance of precise eyepoint location such as horizontal perspective or hologram display.
  • the horizontal perspective display system can further a computation device 110 in addition to the real time electronic display device 100 and projection image input device 112 providing input to the computational device 110 to calculating the projectional images for display to providing a realistic, minimum distortion three dimensional illusion to the viewer by coincide the viewer's eyepoint with the projection image eyepoint.
  • the system can further comprise an image enlargement/reduction input device 115, or an image rotation input device 117, or an image movement device 119 to allow the viewer to adjust the view of the projection images.
  • the input device can be operated manually or automatically.
  • the input device can detect the position and orientation of the viewer eyepoint, to compute and to project the image onto the display according to the detection result.
  • the input device can be made to detect the position and orientation of the viewer's head along with the orientation of the eyeballs.
  • the input device can comprise an infrared detection system to detect the position the viewer's head to allow the viewer freedom of head movement.
  • Other embodiments of the input device can be the triangulation method of detecting the viewer eyepoint location, such as a CCD camera providing position data suitable for the head tracking objectives of the invention.
  • the input device can be manually operated by the viewer, such as a keyboard, mouse, trackball, joystick, or the like, to indicate the correct display of the horizontal perspective display images.
  • the disclosed invention comprises a number of new computer hardware and software elements and processes, and together with existing components creates a
  • the computer hardware viewing surface is preferably situated horizontally, such that the viewer's line of sight is at a 45° angle to the surface. Typically, this means that the viewer is standing or seated vertically, and the viewing surface is horizontal to the ground.
  • the viewer can experience hands-on simulations at viewing angles other than 45° (e.g. 55°, 30° etc.), it is the optimal angle for the brain to recognize the maximum amount of spatial information in an open space image. Therefore, for simplicity's sake, we use "45°” throughout this document to mean “an approximate 45 degree angle”.
  • horizontal viewing surface is preferred since it simulates viewers' experience with the horizontal ground, any viewing surface could offer similar three dimensional illusion experience.
  • the horizontal perspective illusion can appear to be hanging from a ceiling by projecting the horizontal perspective images onto a ceiling surface, or appear to be floating from a wall by projecting the horizontal perspective images onto a vertical wall surface.
  • the viewing simulations are generated within a three dimensional graphics view volume, both situated above and below the physical viewing surface.
  • the computer-generated x, y, z coordinates of the Angled Camera point form the vertex of an infinite "pyramid", whose sides pass through the x, y, z coordinates of the Reference/Horizontal Plane.
  • Figure 9 illustrates this infinite pyramid, which begins at the Angled Camera point and extending through the Far Clip Plane 95.
  • the viewing volume 96 is defined by a Comfort Plane 92, a plane on top of the viewing volume 96, and is appropriately named because its location within the pyramid determines the viewer's personal comfort, i.e. how their eyes, head, body, etc. are situated while viewing and interacting with simulations.
  • the 3D object 93 is horizontal perspectively projected from the horizontal plane 94.
  • the viewer For the viewer to view open space images on their physical viewing device it must be positioned properly, which usually means the physical Reference Plane is placed horizontally to the ground. Whatever the viewing device's position relative to the ground, the Reference/Horizontal Plane must be at approximately a 45° angle to the viewer's line-of-site 91 for optimum viewing.
  • One way the viewer might perform this step is to position their CRT computer monitor on the floor in a stand, so that the Reference/Horizontal Plane is horizontal to the floor.
  • This example uses a CRT-type television or computer monitor, but it could be any type of viewing device, display screen, monochromic or color display, luminescent, TFT, phosphorescent, computer projectors and other method of image generation in general, providing a viewing surface at approximately a 45° angle to the viewer's line-of-sight.
  • the display needs to know the view's eyepoint to proper display the horizontal perspective images.
  • One way to do this is for the viewer to supply the horizontal perspective display with their eye's real-world x, y, z location and line-of-site information relative to the center of the physical Reference/Horizontal Plane. For example, the viewer tells the horizontal perspective display that their physical eye will be located 12 inches up, and 12 inches back, while looking at the center of the Reference/Horizontal Plane.
  • the horizontal perspective display maps the computer-generated Angled Camera point to the viewer's eyepoint physical coordinates and line-of-site.
  • Another way is for the viewer to manually adjusting an input device such as a mouse, and the horizontal perspective display adjust its image projection eyepoint until the proper eyepoint location is experienced by the viewer.
  • Another way is using triangulation with infrared device or camera to automatically locate the viewer's eyes locations.
  • Figure 10 is an illustration of the horizontal perspective display that includes all of the new computer-generated and real physical elements as described in the steps above. It also shows that a real-world element and its computer-generated equivalent are mapped 1:1 and together share a common Reference Plane 123.
  • the full implementation of this horizontal perspective display results in a real-time computer- generated three dimensional graphics 122 appearing in open space on and above a viewing device's surface in the hands-on volume 128, and a three dimensional graphics 126 appearing under the viewing device's surface in the inner-access volume 127, which are oriented approximately 45° to the viewer's line-of-sight.
  • the present invention also allows the viewer to move around the three dimensional display and yet suffer no great distortion since the display can track the viewer eyepoint and re-display the images correspondingly, in contrast to the conventional prior art three dimensional image display where it would be projected and computed as seen from a singular viewing point, and thus any movement by the viewer away from the intended viewing point in space would cause gross distortion.
  • the display system can further comprise a computer capable of re-calculate the projected image given the movement of the eyepoint location.
  • the horizontal perspective images can be very complex, tedious to create, or created in ways that are not natural for artists or cameras, and therefore require the use of a computer system for the tasks.
  • To display a three-dimensional image of an object with complex surfaces or to create an animation sequences would demand a lot of computational power and time, and therefore it is a task well suited to the computer.
  • Three dimensional capable electronics and computing hardware devices and real-time computer-generated three dimensional computer graphics have advanced significantly recently with marked innovations in visual, audio and tactile systems, and have producing excellent hardware and software products to generate realism and more natural computer-human interfaces.
  • the horizontal perspective display system of the present invention are not only in demand for entertainment media such as televisions, movies, and video games but are also needed from various fields such as education (displaying three-dimensional structures), technological training (displaying three-dimensional equipment).
  • entertainment media such as televisions, movies, and video games
  • various fields such as education (displaying three-dimensional structures), technological training (displaying three-dimensional equipment).
  • three-dimensional image displays which can be viewed from various angles to enable observation of real objects using object-like images.
  • the horizontal perspective display system is also capable of substitute a computer- generated reality for the viewer observation.
  • the systems may include audio, visual, motion and inputs from the user in order to create a complete experience of three dimensional illusion.
  • the input for the horizontal perspective system can be two dimensional image, several images combined to form one single three dimensional image, or three dimensional model.
  • the three dimensional image or model conveys much more information than that a two dimensional image and by changing viewing angle, the viewer will get the impression of seeing the same object from different perspectives continuously.
  • the horizontal perspective display can further provide multiple views or "Multi- flew" capability.
  • Multi-View provides the viewer with multiple and/or separate left- and right-eye views of the same simulation.
  • Multi-View capability is a significant visual and interactive improvement over the single eye view.
  • both the left eye and right eye images are fused by the viewer's brain into a single, three-dimensional illusion.
  • the problem of the discrepancy between accommodation and convergence of eyes, inherent in stereoscopic images, leading to the viewer's eye fatigue with large discrepancy, can be reduced with the horizontal perspective display, especially for motion images, since the position of the viewer's gaze point changes when the display scene changes.
  • Multi-View devices that can be used in the present invention include methods with glasses such as anaglyph method, special polarized glasses or shutter glasses, methods without using glasses such as a parallax stereogram, a lenticular method, and mirror method (concave and convex lens).
  • a display image for the right eye and a display image for the left eye are respectively superimpose-displayed in two colors, e.g., red and blue, and observation images for the right and left eyes are separated using color filters, thus allowing a viewer to recognize a stereoscopic image.
  • the images are displayed using horizontal perspective technique with the viewer looking down at an angle.
  • the eyepoint of the projected images has to be coincide with the eyepoint of the viewer, and therefore the viewer input device is essential in allowing the viewer to observe the three dimensional horizontal perspective illusion. From the early days of the anaglyph method, there are much improvements such as the spectrum of the red/blue glasses and display to generate much more realism and comfort to the viewers.
  • the left eye image and the right eye image are separated by the use of mutually extinguishing polarizing filters such as orthogonally linear polarizer, circular polarizer, elliptical polarizer.
  • the images are normally projected onto screens with polarizing filters and the viewer is then provided with corresponding polarized glasses.
  • the left and right eye images appear on the screen at the same time, but only the left eye polarized light is transmitted through the left eye lens of the eyeglasses and only the right eye polarized light is transmitted through the right eye lens.
  • Another way for stereoscopic display is the image sequential system.
  • the images are displayed sequentially between left eye and right eye images rather than superimposing them upon one another, and the viewer's lenses are synchronized with the screen display to allow the left eye to see only when the left image is displayed, and the right eye to see only when the right image is displayed.
  • the shuttering of the glasses can be achieved by mechanical shuttering or with liquid crystal electronic shuttering.
  • display images for the right and left eyes are alternately displayed on a CRT in a time sharing manner, and observation images for the right and left eyes are separated using time sharing shutter glasses which are opened/closed in a time sharing manner in synchronism with the display images, thus allowing an observer to recognize a stereoscopic image.
  • optical method Other way to display stereoscopic images is by optical method.
  • display images for the right and left eyes which are separately displayed on a viewer using optical means such as prisms, mirror, lens, and the like, are superimpose- displayed as observation images in front of an observer, thus allowing the observer to recognize a stereoscopic image.
  • Large convex or concave lenses can also be used where two image projectors, projecting left eye and right eye images, are providing focus to the viewer's left and right eye respectively.
  • a variation of the optical method is the lenticular method where the images form on cylindrical lens elements or two dimensional array of lens elements.
  • Figure 11 is a horizontal perspective display focusing on how the computer- generated person's two eye views are projected onto the Horizontal Plane and then displayed on a stereoscopic 3D capable viewing device.
  • Figure 11 represents one complete display time period. During this display time period, the horizontal perspective display needs to generate two different eye views, because in this example the stereoscopic JD viewing device requires a separate left- and right-eye view.
  • the illustration in the upper left of Figure 11 shows the Angled Camera point for the right eye 132 after the first (right) eye-view to be generated.
  • the horizontal perspective display starts the process of rendering the computer-generated person's second eye (left-eye) view.
  • the illustration in the lower left of Figure 11 shows the Angled Camera point for the left eye 134 after the completion of this time.
  • the horizontal perspective display makes an adjustment to the Angled Camera point. This is illustrated in Figure 11 by the left eye's x coordinate being incremented by two inches. This difference between the right eye's x value and the left eye's x + 2" is what provides the two-inch separation between the eyes, which is required for stereoscopic 3D viewing. The distances between people's eyes vary but in the above example we are using the average of 2 inches. It is also possible for the view to supply the horizontal perspective display with their personal eye separation value. This would make the x value for the left and right eyes highly accurate for a given viewer and thereby improve the quality of their stereoscopic 3D view.
  • the rendering continues by displaying the second (left-eye) view.
  • the horizontal " perspective display continues to display the left- and right-eye images, as described above, until it needs to move to the next display time period.
  • An example of when this may occur is if the bear cub moves his paw or any part of his body. Then a new and second Simulated Image would be required to show the bear cub in its new position.
  • This new Simulated Image of the bear cub in a slightly different location, gets rendered during a new display time period. This process of generating multiple views via the nonstop incrementing of display time continues as long as the horizontal perspective display is generating real-time simulations in stereoscopic 3D.
  • the display rate is the number of images per second that the display uses to completely generate and display one image. This is similar to a movie projector where 24 times a second it displays an image. Therefore, 1/24 of a second is required for one image to be displayed by the projector. But the display time could be a variable, meaning that depending on the complexity of the view volumes it could take 1/12 or Vi a second for the computer to complete just one display image. Since the display was generating a separate left and right eye view of the same image, the total display time is twice the display time for one eye image.

Abstract

A real time electronic display (100) that can adjust the horizontal perspective images to accommodate the position of the viewer. By changing the displayed images to keep the eye point of the horizontal perspective image in the same position as the viewer's eye point, the viewer's eye is always positioned at the proper viewing position to perceive the three dimensional illusion. The display can accept manual input (122) to reposition the horizontal perspective images (93). The display can also automatically re-position the images based on an input device automatically providing the viewer's viewpoint location (91).

Description

Horizontal Perspective Display
Inventors: Michael A. Nesely and Nancy L. Clemens
This application claims priority from U.S. provisional application Ser. No. 60/559,781 filed 04/05/2004, which is incorporated herein by reference.
Field of invention
This invention relates to a three-dimensional display system, and in particular, to a display system capable of adjusting the displayed images to accommodate the viewer's vision.
Background of the invention
Ever since humans began to communicate through pictures, they faced a dilemma of how to accurately represent the three-dimensional world they lived in. Sculpture was used to successfully depict three-dimensional objects, but was not adequate to communicate spatial relationships between objects and within environments. To do this, early humans attempted to "flatten" what they saw around them onto two- dimensional, vertical planes (e.g. paintings, drawings, tapestries, etc.). Scenes where a person stood upright, surrounded by trees, were rendered relatively successfully on a vertical plane. But how could they represent a landscape, where the ground extended out horizontally from where the artist was standing, as far as the eye could see?
The answer is three dimensional illusions. The two dimensional pictures must provide a numbers of cues of the third dimension to the brain to create the illusion of three dimensional images. This effect of third dimension cues can be realistically achievable due to the fact that the brain is quite accustomed to it. The three dimensional real world is always and already converted into two dimensional (e.g. height and width) projected image at the retina, a concave surface at the back of the eye. And from this two dimensional image, the brain, through experience and perception, generates the depth information to form the three dimension visual image from two types of depth cues: monocular (one eye perception) and binocular (two eye perception). In general, binocular depth cues are innate and biological while monocular depth cues are learned and environmental.
The major binocular depth cues are convergence and retinal disparity. The brain measures the amount of convergence of the eyes to provide a rough estimate of the distance since the angle between the line of sight of each eye is larger when an object is closer. The disparity of the retinal images due to the separation of the two eyes is used to create the perception of depth. The effect is called stereoscopy where each eye receives a slightly different view ot a scene, ana tne Dram ruses em xogemer using these differences to determine the ratio of distances between nearby objects.
Binocular cues are very powerful perception of depth. However, there are also depth cues with only one eye, called monocular depth cues, to create an impression of depth on a flat image. The major monocular cues are: overlapping, relative size, linear perspective and light and shadow. When an object is viewed partially covered, this pattern of blocking is used as a cue to determine that the object is farther away. When two objects known to be the same size and one appears smaller than the other, this pattern of relative size is used as a cue to assume that the smaller object is farther away. The cue of relative size also provides the basis for the cue of linear perspective where the farther away the lines are from the observer, the closer together they will appear since parallel lines in a perspective image appear to converge towards a single point. The light falling on an object from a certain angle could provide the cue for the form and depth of an object. The distribution of light and shadow on a objects is a powerful monocular cue for depth provided by the biologically correct assumption that light comes from above.
Perspective drawing, together with relative size, is most often used to achieve the illusion of three dimension depth and spatial relationships on a flat (two dimension) surface, such as paper or canvas. Through perspective, three dimension objects are depicted on a two dimension plane, but "trick" the eye into appearing to be in three dimension space. The first theoretical treatise for constructing perspective, Depictura, was published in the early 1400's by the architect, Leone Battista Alberti. Since the introduction of his book, the details behind "general" perspective have been very well documented. However, the fact that there are a number of other types of perspectives is not well known. Some examples are military 1, cavalier 2, isometric 3, dimetric 4, central perspective 5 and two-point perspective 6 as shown in Figure 1. Of special interest is the most common type of perspective, called central perspective 5, shown at the bottom left of Figure 1. Central perspective, also called one-point perspective, is the simplest kind of "genuine" perspective construction, and is often taught in art and drafting classes for beginners. Figure 2 further illustrates central perspective. Using central perspective, the chess board and chess pieces look like three dimension objects, even though they are drawn on a two dimensional flat piece of paper. Central perspective has a central vanishing point 21, and rectangular objects are placed so their front sides are parallel to the picture plane. The depth of the objects is perpendicular to the picture plane. All parallel receding edges run towards a central vanishing point. The viewer looks towards this vanishing point with a straight view. When an architect or artist creates a drawing using central perspective, they must use a single-eye view. That is, the artist creating the drawing captures the image by looking through only one eye, which is perpendicular to the drawing surface.
The vast majority of images, including central perspective images, are displayed, viewed and captured in a plane perpendicular to the line of vision. Viewing the images at angle different from 90° would result in image distortion, meaning a square would be seen as a rectangle when the viewing surface is not perpendicular to the line of vision. However, there is a little known class of images that we called it "horizontal perspective" where the image appears distorted when viewing head on, but displaying a three dimensional illusion when viewing from the correct viewing position. In horizontal perspective, the angle between the viewing surface and the line of vision is preferably 45° but can be almost any angle, and the viewing surface is preferably horizontal (wherein the name "horizontal perspective"), but it can be any surface, as long as the line of vision forming a not-perpendicular angle to it.
Horizontal perspective images offer realistic three dimensional illusion, but are little known primarily due to the narrow viewing location (the viewer's eyepoint has to be coincide precisely with the image projection eyepoint), and the complexity involving in projecting the two dimensional image or the three dimension model into the horizontal perspective image.
The generation of horizontal perspective images require considerably more expertise to create than conventional perpendicular images. The conventional perpendicular images can be produced directly from the viewer or camera point. One need simply open one's eyes or point the camera in any direction to obtain the images. Further, with much experience in viewing three dimensional depth cues from perpendicular images, viewers can tolerate significant amount of distortion generated by the deviations from the camera point. In contrast, the creation of a horizontal perspective image does require much manipulation. Conventional camera, by projecting the image into the plane perpendicular to the line of sight, would not produce a horizontal perspective image. Making a horizontal drawing requires much effort and very time consuming. Further, since human has limited experience with horizontal perspective images, the viewer's eye must be positioned precisely where the projection eyepoint point is to avoid image distortion. And therefore horizontal perspective, with its difficulties, has received little attention. Summary of the invention
The present invention recognizes that the personal computer is perfectly suitable for horizontal perspective display. It is personal, thus it is designed for the operation of one person, and the computer, with its powerful microprocessor, is well capable of rendering various horizontal perspective images to the viewer.
Thus the present invention discloses a real time electronic display that can adjust the horizontal perspective images to accommodate the position of the viewer. By changing the displayed images to keep the eyepoint point of the horizontal perspective image in the same position as the viewer's eye point, the viewer's eye is always positioned at the proper viewing position to perceive the three dimensional illusion, thus minimizing viewer's discomfort and distortion. The display can accept manual input such as a computer mouse, trackball, joystick, tablet, etc. to re-position the horizontal perspective images. The display can also automatically re-position the images based on an input device automatically providing the viewer's viewpoint location.
Further, the display is not limited to project two dimensional images but also three dimensional models. Multiple inputs would also be included, one to keep the image in proper perspective, and one to manipulate the images such as rotation, movement or amplification. Brief description of the drawings
Figure 1 shows the various perspective drawings.
Figure 2 shows a typical central perspective drawing.
Figure 3 shows the comparison of central perspective (Image A) and horizontal perspective (Image B).
Figure 4 shows the central perspective drawing of three stacking blocks.
Figure 5 shows the horizontal perspective drawing of three stacking blocks.
Figure 6 shows the method of drawing a horizontal perspective drawing.
Figure 7 shows an embodiment of the present invention, including a horizontal perspective display and an viewer input device.
Figure 8 shows another embodiment of the present invention, including a horizontal perspective display, a computational device and an viewer input device.
Figure 9 shows mapping of the 3-d object onto the horizontal plane.
Figure 10 shows the projection of 3-d object by horizontal perspective.
Figure ITshows the simulation time of the horizontal perspective.
Detailed description of the invention
The present invention discloses a horizontal perspective display system capable of projecting three dimensional illusion based on horizontal perspective projection.
Horizontal perspective is a little-known perspective, of which we found only two books that describe its mechanics: Stereoscopic Drawing (©1990) and How to Make Anaglyphs (©1979, out of print). Although these books describe this obscure perspective, they do not agree on its name. The first book refers to it as a "freestanding anaglyph," and the second, a "phantogram." Another publication called it "projective anaglyph" (U.S. patent 5,795,154 by G. M. Woods, Aug. 18, 1998). Since there is no agreed-upon name, we have taken the liberty of calling it "horizontal perspective." Normally, as in central perspective, the plane of vision, at right angle to the line of sight, is also the projected plane of the picture, and depth cues are used to give the illusion of depth to this flat image. In horizontal perspective, the plane of vision remains the same, but the projected image is not on this plane. It is on a plane angled to the plane of vision. Typically, the image would be on the ground level surface. This means the image will be physically in the third dimension relative to the plane of vision. Thus horizontal perspective can be called horizontal projection.
In horizontal perspective, the object is to separate the image from the paper, and fuse the image to the three dimension object that projects the horizontal perspective image. Thus the horizontal perspective image must be distorted so that the visual image fuses to form the free standing three dimensional figure. It is also essential the image is viewed from the correct eye points, otherwise the three dimensional illusion is lost. In contrast to central perspective images which have height and width, and project an illusion of depth, and therefore the objects are usually abruptly projected and the images appear to be in layers, the horizontal perspective images have actual depth and width, and illusion gives them height, and therefore there is usually a graduated shifting so the images appear to be continuous.
Figure 3 compares key characteristics that differentiate central perspective and horizontal perspective. Image A shows key pertinent characteristics of central perspective, and Image B shows key pertinent characteristics of horizontal perspective.
In other words, in Image A, the real-life three dimension object (three blocks stacked slightly above each other) was drawn by the artist closing one eye, and viewing along a line of sight 31 perpendicular to the vertical drawing plane 32. The resulting image, when viewed vertically, straight on, and through one eye, looks the same as the original image.
In Image B, the real-life three dimension object was drawn by the artist closing one eye, and viewing along a line of sight 33 45° to the horizontal drawing plane 34. The resulting image, when viewed horizontally, at 45° and through one eye, looks the same as the original image.
Figures 4 and 5 illustrate the visual difference between using central and horizontal perspective. To experience this visual difference, first look at Figure 4, drawn with central perspective, through one open eye. Hold the piece of paper vertically in front of you, as you would a traditional drawing, perpendicular to your eye. You can see that central perspective provides a good representation of three dimension objects on a two dimension surface.
Now look at Figure 5, drawn using horizontal perspective, by sifting at your desk and placing the paper lying flat (horizontally) on the desk in front of you. Again, view the image through only one eye. This puts your one open eye, called the eye point at approximately a 45° angle to the paper, which is the angle that the artist used to make the drawing. To get your open eye and its line-of-sight to coincide with the artist's, move your eye downward and forward closer to the drawing, about six inches out and down and at a 45° angle. This will result in the ideal viewing experience where the top and middle blocks will appear above the paper in open space.
Again, the reason your one open eye needs to be at this precise location is because both central and horizontal perspective not only define the angle of the line of sight from the eye point; they also define the distance from the eye point to the drawing. This means that Figures 4 and 5 are drawn with an ideal location and direction for your open eye relative to the drawing surfaces. However, unlike central perspective where deviations from position and direction of the eye point create little distortion, when viewing a horizontal perspective drawing, the use of only one eye and the position and direction of that eye relative to the viewing surface are essential to seeing the open space three dimension horizontal perspective illusion.
Figure 6 is an architectural-style illustration that demonstrates a method for making simple geometric drawings on paper or canvas utilizing horizontal perspective. Figure 6 is a side view of the same three blocks used in Figures 5. It illustrates the actual mechanics of horizontal perspective. Each point that makes up the object is drawn by projecting the point onto the horizontal drawing plane. To illustrate this, Figure 6 shows a few of the coordinates of the blocks being drawn on the horizontal drawing plane through projection lines. These projection lines start at the eye point (not shown in Figure 6 due to scale), intersect a point 63 on the object, then continue in a straight line to where they intersect the horizontal drawing plane 62, which is where they are physically drawn as a single dot 64 on the paper. When an architect repeats this process for each and every point on the blocks, as seen from the drawing surface to the eye point along the 45° line-of- sight 61, the horizontal perspective drawing is complete, and looks like Figure 5.
Notice that in Figure 6, one of the three blocks appears below the horizontal drawing plane. With horizontal perspective, points located below the drawing surface are also drawn onto the horizontal drawing plane, as seen from the eye point along the line-of-site. Therefore when the final drawing is viewed, objects not only appear above the horizontal drawing plane, but may also appear below it as well — giving the appearance that they are receding into the paper. If you look again at Figure 5, you will notice that the bottom box appears to be below, or go into, the paper, while the other two boxes appear above the paper in open space.
The generation of horizontal perspective images require considerably more expertise to create than central perspective images. Even though both methods seek to provide the viewer the three dimension illusion that resulted from the two dimensional image, central perspective images produce directly the three dimensional landscape from the viewer or camera point. In contrast, the horizontal perspective image appears distorted when viewing head on, but this distortion has to be precisely rendered so that when viewing at a precise location, the horizontal perspective produces a three dimensional illusion.
The present invention horizontal perspective display system promotes horizontal perspective projection viewing by providing the viewer with the means to adjust the displayed images to maximize the illusion viewing experience. By employing the computation power of the microprocessor and a real time display, the horizontal perspective display of the present invention is shown in Fig. 7, comprising a real time electronic display 100 capable of re-drawing the projected image, together with a viewer's input device 102 to adjust the horizontal perspective image. By re-display the horizontal perspective image so that its projection eyepoint coincides with the eyepoint of the viewer, the horizontal perspective display of the present invention can ensure the minimum distortion in rendering the three dimension illusion from the horizontal perspective method. The input device can be manually operated where the viewer manually inputs his or her eyepoint location, or change the projection image eyepoint to obtain the optimum three dimensional illusion. The input device can also be automatically operated where the display automatically tracks the viewer's eyepoint and adjust the projection image accordingly. The present invention removes the constraint that the viewers keeping their heads in relatively fixed positions, a constraint that create much difficulty in the acceptance of precise eyepoint location such as horizontal perspective or hologram display.
The horizontal perspective display system, shown in Figure 8, can further a computation device 110 in addition to the real time electronic display device 100 and projection image input device 112 providing input to the computational device 110 to calculating the projectional images for display to providing a realistic, minimum distortion three dimensional illusion to the viewer by coincide the viewer's eyepoint with the projection image eyepoint. The system can further comprise an image enlargement/reduction input device 115, or an image rotation input device 117, or an image movement device 119 to allow the viewer to adjust the view of the projection images.
The input device can be operated manually or automatically. The input device can detect the position and orientation of the viewer eyepoint, to compute and to project the image onto the display according to the detection result. Alternatively, the input device can be made to detect the position and orientation of the viewer's head along with the orientation of the eyeballs. The input device can comprise an infrared detection system to detect the position the viewer's head to allow the viewer freedom of head movement. Other embodiments of the input device can be the triangulation method of detecting the viewer eyepoint location, such as a CCD camera providing position data suitable for the head tracking objectives of the invention. The input device can be manually operated by the viewer, such as a keyboard, mouse, trackball, joystick, or the like, to indicate the correct display of the horizontal perspective display images.
The disclosed invention comprises a number of new computer hardware and software elements and processes, and together with existing components creates a
horizontal perspective viewing simulator. For the viewer to experience these unique viewing simulations the computer hardware viewing surface is preferably situated horizontally, such that the viewer's line of sight is at a 45° angle to the surface. Typically, this means that the viewer is standing or seated vertically, and the viewing surface is horizontal to the ground. Note that although the viewer can experience hands-on simulations at viewing angles other than 45° (e.g. 55°, 30° etc.), it is the optimal angle for the brain to recognize the maximum amount of spatial information in an open space image. Therefore, for simplicity's sake, we use "45°" throughout this document to mean "an approximate 45 degree angle". Further, while horizontal viewing surface is preferred since it simulates viewers' experience with the horizontal ground, any viewing surface could offer similar three dimensional illusion experience. The horizontal perspective illusion can appear to be hanging from a ceiling by projecting the horizontal perspective images onto a ceiling surface, or appear to be floating from a wall by projecting the horizontal perspective images onto a vertical wall surface.
The viewing simulations are generated within a three dimensional graphics view volume, both situated above and below the physical viewing surface. Mathematically, the computer-generated x, y, z coordinates of the Angled Camera point form the vertex of an infinite "pyramid", whose sides pass through the x, y, z coordinates of the Reference/Horizontal Plane. Figure 9 illustrates this infinite pyramid, which begins at the Angled Camera point and extending through the Far Clip Plane 95. The viewing volume 96 is defined by a Comfort Plane 92, a plane on top of the viewing volume 96, and is appropriately named because its location within the pyramid determines the viewer's personal comfort, i.e. how their eyes, head, body, etc. are situated while viewing and interacting with simulations. The 3D object 93 is horizontal perspectively projected from the horizontal plane 94.
For the viewer to view open space images on their physical viewing device it must be positioned properly, which usually means the physical Reference Plane is placed horizontally to the ground. Whatever the viewing device's position relative to the ground, the Reference/Horizontal Plane must be at approximately a 45° angle to the viewer's line-of-site 91 for optimum viewing.
One way the viewer might perform this step is to position their CRT computer monitor on the floor in a stand, so that the Reference/Horizontal Plane is horizontal to the floor. This example uses a CRT-type television or computer monitor, but it could be any type of viewing device, display screen, monochromic or color display, luminescent, TFT, phosphorescent, computer projectors and other method of image generation in general, providing a viewing surface at approximately a 45° angle to the viewer's line-of-sight.
The display needs to know the view's eyepoint to proper display the horizontal perspective images. One way to do this is for the viewer to supply the horizontal perspective display with their eye's real-world x, y, z location and line-of-site information relative to the center of the physical Reference/Horizontal Plane. For example, the viewer tells the horizontal perspective display that their physical eye will be located 12 inches up, and 12 inches back, while looking at the center of the Reference/Horizontal Plane. The horizontal perspective display then maps the computer-generated Angled Camera point to the viewer's eyepoint physical coordinates and line-of-site. Another way is for the viewer to manually adjusting an input device such as a mouse, and the horizontal perspective display adjust its image projection eyepoint until the proper eyepoint location is experienced by the viewer. Another way is using triangulation with infrared device or camera to automatically locate the viewer's eyes locations.
Figure 10 is an illustration of the horizontal perspective display that includes all of the new computer-generated and real physical elements as described in the steps above. It also shows that a real-world element and its computer-generated equivalent are mapped 1:1 and together share a common Reference Plane 123. The full implementation of this horizontal perspective display results in a real-time computer- generated three dimensional graphics 122 appearing in open space on and above a viewing device's surface in the hands-on volume 128, and a three dimensional graphics 126 appearing under the viewing device's surface in the inner-access volume 127, which are oriented approximately 45° to the viewer's line-of-sight.
The present invention also allows the viewer to move around the three dimensional display and yet suffer no great distortion since the display can track the viewer eyepoint and re-display the images correspondingly, in contrast to the conventional prior art three dimensional image display where it would be projected and computed as seen from a singular viewing point, and thus any movement by the viewer away from the intended viewing point in space would cause gross distortion.
The display system can further comprise a computer capable of re-calculate the projected image given the movement of the eyepoint location. The horizontal perspective images can be very complex, tedious to create, or created in ways that are not natural for artists or cameras, and therefore require the use of a computer system for the tasks. To display a three-dimensional image of an object with complex surfaces or to create an animation sequences would demand a lot of computational power and time, and therefore it is a task well suited to the computer. Three dimensional capable electronics and computing hardware devices and real-time computer-generated three dimensional computer graphics have advanced significantly recently with marked innovations in visual, audio and tactile systems, and have producing excellent hardware and software products to generate realism and more natural computer-human interfaces.
The horizontal perspective display system of the present invention are not only in demand for entertainment media such as televisions, movies, and video games but are also needed from various fields such as education (displaying three-dimensional structures), technological training (displaying three-dimensional equipment). There is an increasing demand for three-dimensional image displays, which can be viewed from various angles to enable observation of real objects using object-like images. The horizontal perspective display system is also capable of substitute a computer- generated reality for the viewer observation. The systems may include audio, visual, motion and inputs from the user in order to create a complete experience of three dimensional illusion.
The input for the horizontal perspective system can be two dimensional image, several images combined to form one single three dimensional image, or three dimensional model. The three dimensional image or model conveys much more information than that a two dimensional image and by changing viewing angle, the viewer will get the impression of seeing the same object from different perspectives continuously.
The horizontal perspective display can further provide multiple views or "Multi- flew" capability. Multi-View provides the viewer with multiple and/or separate left- and right-eye views of the same simulation. Multi-View capability is a significant visual and interactive improvement over the single eye view. In Multi-View mode, both the left eye and right eye images are fused by the viewer's brain into a single, three-dimensional illusion. The problem of the discrepancy between accommodation and convergence of eyes, inherent in stereoscopic images, leading to the viewer's eye fatigue with large discrepancy, can be reduced with the horizontal perspective display, especially for motion images, since the position of the viewer's gaze point changes when the display scene changes.
In Multi-View mode, the objective is to simulate the actions of the two eyes to create the perception of depth, namely the left eye and the right eye sees slightly different images. Thus Multi-View devices that can be used in the present invention include methods with glasses such as anaglyph method, special polarized glasses or shutter glasses, methods without using glasses such as a parallax stereogram, a lenticular method, and mirror method (concave and convex lens).
In anaglyph method, a display image for the right eye and a display image for the left eye are respectively superimpose-displayed in two colors, e.g., red and blue, and observation images for the right and left eyes are separated using color filters, thus allowing a viewer to recognize a stereoscopic image. The images are displayed using horizontal perspective technique with the viewer looking down at an angle. As with one eye horizontal perspective method, the eyepoint of the projected images has to be coincide with the eyepoint of the viewer, and therefore the viewer input device is essential in allowing the viewer to observe the three dimensional horizontal perspective illusion. From the early days of the anaglyph method, there are much improvements such as the spectrum of the red/blue glasses and display to generate much more realism and comfort to the viewers.
In polarized glasses method, the left eye image and the right eye image are separated by the use of mutually extinguishing polarizing filters such as orthogonally linear polarizer, circular polarizer, elliptical polarizer. The images are normally projected onto screens with polarizing filters and the viewer is then provided with corresponding polarized glasses. The left and right eye images appear on the screen at the same time, but only the left eye polarized light is transmitted through the left eye lens of the eyeglasses and only the right eye polarized light is transmitted through the right eye lens.
Another way for stereoscopic display is the image sequential system. In such a system, the images are displayed sequentially between left eye and right eye images rather than superimposing them upon one another, and the viewer's lenses are synchronized with the screen display to allow the left eye to see only when the left image is displayed, and the right eye to see only when the right image is displayed. The shuttering of the glasses can be achieved by mechanical shuttering or with liquid crystal electronic shuttering. In shuttering glass method, display images for the right and left eyes are alternately displayed on a CRT in a time sharing manner, and observation images for the right and left eyes are separated using time sharing shutter glasses which are opened/closed in a time sharing manner in synchronism with the display images, thus allowing an observer to recognize a stereoscopic image.
Other way to display stereoscopic images is by optical method. In this method, display images for the right and left eyes, which are separately displayed on a viewer using optical means such as prisms, mirror, lens, and the like, are superimpose- displayed as observation images in front of an observer, thus allowing the observer to recognize a stereoscopic image. Large convex or concave lenses can also be used where two image projectors, projecting left eye and right eye images, are providing focus to the viewer's left and right eye respectively. A variation of the optical method is the lenticular method where the images form on cylindrical lens elements or two dimensional array of lens elements.
Figure 11 is a horizontal perspective display focusing on how the computer- generated person's two eye views are projected onto the Horizontal Plane and then displayed on a stereoscopic 3D capable viewing device. Figure 11 represents one complete display time period. During this display time period, the horizontal perspective display needs to generate two different eye views, because in this example the stereoscopic JD viewing device requires a separate left- and right-eye view. There are existing stereoscopic 3D viewing devices that require more than a separate left- and right-eye view, and because the method described here can generate multiple views it works for these devices as well. The illustration in the upper left of Figure 11 shows the Angled Camera point for the right eye 132 after the first (right) eye-view to be generated. Once the first (right) eye view is complete, the horizontal perspective display starts the process of rendering the computer-generated person's second eye (left-eye) view. The illustration in the lower left of Figure 11 shows the Angled Camera point for the left eye 134 after the completion of this time. But before the rendering process can begin, the horizontal perspective display makes an adjustment to the Angled Camera point. This is illustrated in Figure 11 by the left eye's x coordinate being incremented by two inches. This difference between the right eye's x value and the left eye's x + 2" is what provides the two-inch separation between the eyes, which is required for stereoscopic 3D viewing. The distances between people's eyes vary but in the above example we are using the average of 2 inches. It is also possible for the view to supply the horizontal perspective display with their personal eye separation value. This would make the x value for the left and right eyes highly accurate for a given viewer and thereby improve the quality of their stereoscopic 3D view.
Once the horizontal perspective display has incremented the Angled Camera point's x coordinate by two inches, or by the personal eye separation value supplied by the viewer, the rendering continues by displaying the second (left-eye) view.
Depending on the stereoscopic 3D viewing device used, the horizontal" perspective display continues to display the left- and right-eye images, as described above, until it needs to move to the next display time period. An example of when this may occur is if the bear cub moves his paw or any part of his body. Then a new and second Simulated Image would be required to show the bear cub in its new position. This new Simulated Image of the bear cub, in a slightly different location, gets rendered during a new display time period. This process of generating multiple views via the nonstop incrementing of display time continues as long as the horizontal perspective display is generating real-time simulations in stereoscopic 3D.
By rapidly display the horizontal perspective images, three dimensional illusion of motion can be realized. Typically, 30 to 60 images per second would be adequate for the eye to perceive motion. For stereoscopy, the same display rate is needed for superimposed images, and twice that amount would be needed for time sequential method.
The display rate is the number of images per second that the display uses to completely generate and display one image. This is similar to a movie projector where 24 times a second it displays an image. Therefore, 1/24 of a second is required for one image to be displayed by the projector. But the display time could be a variable, meaning that depending on the complexity of the view volumes it could take 1/12 or Vi a second for the computer to complete just one display image. Since the display was generating a separate left and right eye view of the same image, the total display time is twice the display time for one eye image.

Claims

What is claimed is
1. A horizontal perspective display system comprising a real time display to display horizontal perspective images according to a predetermined projection eyepoint; and an eyepoint input device for accepting an input eyepoint location wherein the displayed images can be adjusted using the input eyepoint as the projection eyepoint.
2. A display system as in claim 1 wherein the eyepoint input device is a manual input device whereby the eyepoint input location is manually entered.
3. A display system as in claim 1 wherein the eyepoint input device is an automatic input device whereby the automatic input device automatically extracts the eyepoint location from the viewer.
4. A horizontal perspective display system comprising a real time display to display horizontal perspective images according to a predetermined projection eyepoint; an eyepoint input device for accepting an input eyepoint location; and a computer system for receiving the input eyepoint location from the eyepoint input device, calculating the horizontal perspective projection images according to the input eyepoint location, and outputting the images to the display; whereby the displayed images is real time adjusted using the input eyepoint as the projection eyepoint.
5. A display system as in claim 4 wherein the horizontal perspective image is calculated from a flat two dimensional picture.
6. A display system as in claim 4 wherein the horizontal perspective image is calculated from a three dimensional model.
7. A display system as in claim 4 wherein the eyepoint input device is a manual input device whereby the eyepoint input location is manually entered.
8. A display system as in claim 7 wherein the manual input device is a computer peripheral or a wireless computer peripheral.
9. A display system as in claim 7 wherein the manual input device is selected from a group consisted of a keyboard, a stylus, a keypad, a computer mouse, a computer trackball, a tablet, a pointing device.
10. A display system as in claim 4 wherein the eyepoint input device is an automatic input device whereby the automatic input device automatically extracts the eyepoint location from the viewer.
11. A display system as in claim 10 wherein the automatic input device is selected from a group consisted of radio-frequency tracking device, infrared tracking device, camera tracking device.
12. A display system as in claim 10 wherein the angle between the projection eyepoint and the display surface is between 35 and 55 degree.
13. A display system as in claim 4 wherein the display screen is a CRT display, a LCD display or a projector display.
14. A display system as in claim 4 wherein the display surface is substantially horizontal.
15. A display system as in claim 4 wherein the horizontal perspective image is stereoscopic images.
16. A display system as in claim 4 wherein the displayed image is continuously updated to form motion images.
17. A horizontal perspective display system comprising a real time display to display horizontal perspective images according to a predetermined projection eyepoint; an eyepoint input device for accepting an input eyepoint location; an image input device for accepting an image command; a computer system for accepting an input eyepoint location from the eyepoint input device; and for accepting an image command from the image input device, calculating a horizontal perspective projection image according to the image command using the input eyepoint location as the projection eyepoint; and for outputting the image to the display.
18. A display system as in claim 17 wherein the image command includes image magnification, image movement, image rotation command and command to display another predetermined image.
19. A display system as in claim 17 wherein the eyepoint input device is a manual input device whereby the eyepoint input location is manually entered.
20. A display system as in claim 17 wherein the eyepoint input device is an automatic input device whereby the automatic input device automatically extracts the eyepoint location from the viewer.
PCT/US2005/011254 2004-04-05 2005-04-04 Horizontal perspective display WO2005101097A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05733693A EP1749232A2 (en) 2004-04-05 2005-04-04 Horizontal perspective display
JP2007507395A JP2007531951A (en) 2004-04-05 2005-04-04 Horizontal perspective display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55978104P 2004-04-05 2004-04-05
US60/559,781 2004-04-05

Publications (2)

Publication Number Publication Date
WO2005101097A2 true WO2005101097A2 (en) 2005-10-27
WO2005101097A3 WO2005101097A3 (en) 2007-07-05

Family

ID=35125719

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2005/011254 WO2005101097A2 (en) 2004-04-05 2005-04-04 Horizontal perspective display
PCT/US2005/011253 WO2005098516A2 (en) 2004-04-05 2005-04-04 Horizontal perspective hand-on simulator
PCT/US2005/011255 WO2005098517A2 (en) 2004-04-05 2005-04-04 Horizontal perspective hand-on simulator
PCT/US2005/011252 WO2006104493A2 (en) 2004-04-05 2005-04-04 Horizontal perspective display

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/US2005/011253 WO2005098516A2 (en) 2004-04-05 2005-04-04 Horizontal perspective hand-on simulator
PCT/US2005/011255 WO2005098517A2 (en) 2004-04-05 2005-04-04 Horizontal perspective hand-on simulator
PCT/US2005/011252 WO2006104493A2 (en) 2004-04-05 2005-04-04 Horizontal perspective display

Country Status (6)

Country Link
US (2) US20050219695A1 (en)
EP (2) EP1740998A2 (en)
JP (2) JP2007531951A (en)
KR (2) KR20070044394A (en)
CN (2) CN101065783A (en)
WO (4) WO2005101097A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9189885B2 (en) 2009-09-16 2015-11-17 Knorr-Bremse Systeme Fur Schienenfahrzeuge Gmbh Visual presentation system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358861B2 (en) * 1999-05-04 2008-04-15 Intellimats Electronic floor display with alerting
US7009523B2 (en) * 1999-05-04 2006-03-07 Intellimats, Llc Modular protective structure for floor display
JP2007531951A (en) * 2004-04-05 2007-11-08 マイケル エー. ベセリー Horizontal perspective display
US20050275915A1 (en) * 2004-06-01 2005-12-15 Vesely Michael A Multi-plane horizontal perspective display
US8717423B2 (en) 2005-05-09 2014-05-06 Zspace, Inc. Modifying perspective of stereoscopic images based on changes in user viewpoint
US20060250391A1 (en) * 2005-05-09 2006-11-09 Vesely Michael A Three dimensional horizontal perspective workstation
JP4725595B2 (en) * 2008-04-24 2011-07-13 ソニー株式会社 Video processing apparatus, video processing method, program, and recording medium
EP2279469A1 (en) * 2008-05-09 2011-02-02 Mbda Uk Limited Display of 3-dimensional objects
JP2010122879A (en) * 2008-11-19 2010-06-03 Sony Ericsson Mobile Communications Ab Terminal device, display control method, and display control program
CN101931823A (en) * 2009-06-24 2010-12-29 夏普株式会社 Method and equipment for displaying 3D image
US8717360B2 (en) 2010-01-29 2014-05-06 Zspace, Inc. Presenting a view within a three dimensional scene
JP5573426B2 (en) * 2010-06-30 2014-08-20 ソニー株式会社 Audio processing apparatus, audio processing method, and program
EP2656181B1 (en) * 2010-12-22 2019-10-30 zSpace, Inc. Three-dimensional tracking of a user control device in a volume
JP2012208705A (en) * 2011-03-29 2012-10-25 Nec Casio Mobile Communications Ltd Image operation apparatus, image operation method and program
US8786529B1 (en) 2011-05-18 2014-07-22 Zspace, Inc. Liquid crystal variable drive voltage
WO2013059358A2 (en) 2011-10-17 2013-04-25 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
WO2013074997A1 (en) 2011-11-18 2013-05-23 Infinite Z, Inc. Indirect 3d scene positioning control
US20130336640A1 (en) * 2012-06-15 2013-12-19 Efexio, Inc. System and method for distributing computer generated 3d visual effects over a communications network
US9336622B2 (en) 2012-07-17 2016-05-10 Sony Corporation System and method to achieve better eyelines in CG characters
US9667889B2 (en) 2013-04-03 2017-05-30 Butterfly Network, Inc. Portable electronic devices with integrated imaging capabilities
EP3291896A4 (en) 2015-05-08 2019-05-01 Myrl Rae Douglass II Structures and kits for displaying two-dimensional images in three dimensions
CN105376553B (en) * 2015-11-24 2017-03-08 宁波大学 A kind of 3 D video method for relocating
US10523929B2 (en) * 2016-04-27 2019-12-31 Disney Enterprises, Inc. Systems and methods for creating an immersive video content environment
US11137884B2 (en) * 2016-06-14 2021-10-05 International Business Machines Corporation Modifying an appearance of a GUI to improve GUI usability
CN106162162B (en) * 2016-08-01 2017-10-31 宁波大学 A kind of reorientation method for objectively evaluating image quality based on rarefaction representation
CN110035270A (en) * 2019-02-28 2019-07-19 努比亚技术有限公司 A kind of 3D rendering display methods, terminal and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287437A (en) * 1992-06-02 1994-02-15 Sun Microsystems, Inc. Method and apparatus for head tracked display of precomputed stereo images
US5795154A (en) * 1995-07-07 1998-08-18 Woods; Gail Marjorie Anaglyphic drawing device
US20020140698A1 (en) * 2001-03-29 2002-10-03 Robertson George G. 3D navigation techniques

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1592034A (en) * 1924-09-06 1926-07-13 Macy Art Process Corp Process and method of effective angular levitation of printed images and the resulting product
US4182053A (en) * 1977-09-14 1980-01-08 Systems Technology, Inc. Display generator for simulating vehicle operation
US4291380A (en) * 1979-05-14 1981-09-22 The Singer Company Resolvability test and projection size clipping for polygon face display
US4677576A (en) * 1983-06-27 1987-06-30 Grumman Aerospace Corporation Non-edge computer image generation system
US4795248A (en) * 1984-08-31 1989-01-03 Olympus Optical Company Ltd. Liquid crystal eyeglass
US4763280A (en) * 1985-04-29 1988-08-09 Evans & Sutherland Computer Corp. Curvilinear dynamic image generation system
GB8701288D0 (en) * 1987-01-21 1987-02-25 Waldern J D Perception of computer-generated imagery
US5079699A (en) * 1987-11-27 1992-01-07 Picker International, Inc. Quick three-dimensional display
JP2622620B2 (en) * 1989-11-07 1997-06-18 プロクシマ コーポレイション Computer input system for altering a computer generated display visible image
US5502481A (en) * 1992-11-16 1996-03-26 Reveo, Inc. Desktop-based projection display system for stereoscopic viewing of displayed imagery over a wide field of view
US5537144A (en) * 1990-06-11 1996-07-16 Revfo, Inc. Electro-optical display system for visually displaying polarized spatially multiplexed images of 3-D objects for use in stereoscopically viewing the same with high image quality and resolution
US5327285A (en) * 1990-06-11 1994-07-05 Faris Sadeg M Methods for manufacturing micropolarizers
US5276785A (en) * 1990-08-02 1994-01-04 Xerox Corporation Moving viewpoint with respect to a target in a three-dimensional workspace
US6392689B1 (en) * 1991-02-21 2002-05-21 Eugene Dolgoff System for displaying moving images pseudostereoscopically
US5168531A (en) * 1991-06-27 1992-12-01 Digital Equipment Corporation Real-time recognition of pointing information from video
US5381158A (en) * 1991-07-12 1995-01-10 Kabushiki Kaisha Toshiba Information retrieval apparatus
US5264964A (en) * 1991-12-18 1993-11-23 Sades Faris Multi-mode stereoscopic imaging system
US5438623A (en) * 1993-10-04 1995-08-01 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Multi-channel spatialization system for audio signals
US6111598A (en) * 1993-11-12 2000-08-29 Peveo, Inc. System and method for producing and displaying spectrally-multiplexed images of three-dimensional imagery for use in flicker-free stereoscopic viewing thereof
US5400177A (en) * 1993-11-23 1995-03-21 Petitto; Tony Technique for depth of field viewing of images with improved clarity and contrast
US5381127A (en) * 1993-12-22 1995-01-10 Intel Corporation Fast static cross-unit comparator
JPH08163603A (en) * 1994-08-05 1996-06-21 Tomohiko Hattori Stereoscopic video display device
US5652617A (en) * 1995-06-06 1997-07-29 Barbour; Joel Side scan down hole video tool having two camera
US6005607A (en) * 1995-06-29 1999-12-21 Matsushita Electric Industrial Co., Ltd. Stereoscopic computer graphics image generating apparatus and stereoscopic TV apparatus
KR100378112B1 (en) * 1995-07-25 2003-05-23 삼성전자주식회사 Automatic locking/unlocking system using wireless communication and method for the same
US6640004B2 (en) * 1995-07-28 2003-10-28 Canon Kabushiki Kaisha Image sensing and image processing apparatuses
US6331856B1 (en) * 1995-11-22 2001-12-18 Nintendo Co., Ltd. Video game system with coprocessor providing high speed efficient 3D graphics and digital audio signal processing
US6028593A (en) * 1995-12-01 2000-02-22 Immersion Corporation Method and apparatus for providing simulated physical interactions within computer generated environments
US5574836A (en) * 1996-01-22 1996-11-12 Broemmelsiek; Raymond M. Interactive display apparatus and method with viewer position compensation
US6252707B1 (en) * 1996-01-22 2001-06-26 3Ality, Inc. Systems for three-dimensional viewing and projection
US5880733A (en) * 1996-04-30 1999-03-09 Microsoft Corporation Display system and method for displaying windows of an operating system to provide a three-dimensional workspace for a computer system
JPH1063470A (en) * 1996-06-12 1998-03-06 Nintendo Co Ltd Souond generating device interlocking with image display
US6100903A (en) * 1996-08-16 2000-08-08 Goettsche; Mark T Method for generating an ellipse with texture and perspective
JP4086336B2 (en) * 1996-09-18 2008-05-14 富士通株式会社 Attribute information providing apparatus and multimedia system
US6139434A (en) * 1996-09-24 2000-10-31 Nintendo Co., Ltd. Three-dimensional image processing apparatus with enhanced automatic and user point of view control
US6317127B1 (en) * 1996-10-16 2001-11-13 Hughes Electronics Corporation Multi-user real-time augmented reality system and method
JP3034483B2 (en) * 1997-04-21 2000-04-17 核燃料サイクル開発機構 Object search method and apparatus using the method
US6226008B1 (en) * 1997-09-04 2001-05-01 Kabushiki Kaisha Sega Enterprises Image processing device
US5956046A (en) * 1997-12-17 1999-09-21 Sun Microsystems, Inc. Scene synchronization of multiple computer displays
GB9800397D0 (en) * 1998-01-09 1998-03-04 Philips Electronics Nv Virtual environment viewpoint control
US6529210B1 (en) * 1998-04-08 2003-03-04 Altor Systems, Inc. Indirect object manipulation in a simulation
US6466185B2 (en) * 1998-04-20 2002-10-15 Alan Sullivan Multi-planar volumetric display system and method of operation using psychological vision cues
US6211848B1 (en) * 1998-05-15 2001-04-03 Massachusetts Institute Of Technology Dynamic holographic video with haptic interaction
US6064354A (en) * 1998-07-01 2000-05-16 Deluca; Michael Joseph Stereoscopic user interface method and apparatus
US6552722B1 (en) * 1998-07-17 2003-04-22 Sensable Technologies, Inc. Systems and methods for sculpting virtual objects in a haptic virtual reality environment
US6351280B1 (en) * 1998-11-20 2002-02-26 Massachusetts Institute Of Technology Autostereoscopic display system
US6373482B1 (en) * 1998-12-23 2002-04-16 Microsoft Corporation Method, system, and computer program product for modified blending between clip-map tiles
US6614427B1 (en) * 1999-02-01 2003-09-02 Steve Aubrey Process for making stereoscopic images which are congruent with viewer space
US6452593B1 (en) * 1999-02-19 2002-09-17 International Business Machines Corporation Method and system for rendering a virtual three-dimensional graphical display
US6198524B1 (en) * 1999-04-19 2001-03-06 Evergreen Innovations Llc Polarizing system for motion visual depth effects
US6346938B1 (en) * 1999-04-27 2002-02-12 Harris Corporation Computer-resident mechanism for manipulating, navigating through and mensurating displayed image of three-dimensional geometric model
US6690337B1 (en) * 1999-06-09 2004-02-10 Panoram Technologies, Inc. Multi-panel video display
US6898307B1 (en) * 1999-09-22 2005-05-24 Xerox Corporation Object identification method and system for an augmented-reality display
US6593924B1 (en) * 1999-10-04 2003-07-15 Intel Corporation Rendering a non-photorealistic image
US6431705B1 (en) * 1999-11-10 2002-08-13 Infoeye Eyewear heart rate monitor
US6476813B1 (en) * 1999-11-30 2002-11-05 Silicon Graphics, Inc. Method and apparatus for preparing a perspective view of an approximately spherical surface portion
WO2001059749A1 (en) * 2000-02-07 2001-08-16 Sony Corporation Multiple-screen simultaneous displaying apparatus, multiple-screen simultaneous displaying method, video signal generating device, and recorded medium
EP1264281A4 (en) * 2000-02-25 2007-07-11 Univ New York State Res Found Apparatus and method for volume processing and rendering
JP2001326947A (en) * 2000-05-12 2001-11-22 Sony Corp Stereoscopic image display device
US6956576B1 (en) * 2000-05-16 2005-10-18 Sun Microsystems, Inc. Graphics system using sample masks for motion blur, depth of field, and transparency
US6803928B2 (en) * 2000-06-06 2004-10-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Extended virtual table: an optical extension for table-like projection systems
US6977630B1 (en) * 2000-07-18 2005-12-20 University Of Minnesota Mobility assist device
US7227526B2 (en) * 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US6680735B1 (en) * 2000-10-04 2004-01-20 Terarecon, Inc. Method for correcting gradients of irregular spaced graphic data
GB2370738B (en) * 2000-10-27 2005-02-16 Canon Kk Image processing apparatus
JP3705739B2 (en) * 2000-12-11 2005-10-12 株式会社ナムコ Information storage medium and game device
US6774869B2 (en) * 2000-12-22 2004-08-10 Board Of Trustees Operating Michigan State University Teleportal face-to-face system
JP2003085586A (en) * 2001-06-27 2003-03-20 Namco Ltd Image display, image displaying method, information storage medium, and image displaying program
US6478432B1 (en) * 2001-07-13 2002-11-12 Chad D. Dyner Dynamically generated interactive real imaging device
US20040135744A1 (en) * 2001-08-10 2004-07-15 Oliver Bimber Virtual showcases
US7084838B2 (en) * 2001-08-17 2006-08-01 Geo-Rae, Co., Ltd. Method and system for controlling the motion of stereoscopic cameras using a three-dimensional mouse
US6715620B2 (en) * 2001-10-05 2004-04-06 Martin Taschek Display frame for album covers
JP3576521B2 (en) * 2001-11-02 2004-10-13 独立行政法人 科学技術振興機構 Stereoscopic display method and apparatus
US6700573B2 (en) * 2001-11-07 2004-03-02 Novalogic, Inc. Method for rendering realistic terrain simulation
US7466307B2 (en) * 2002-04-11 2008-12-16 Synaptics Incorporated Closed-loop sensor on a solid-state object position detector
US20040196359A1 (en) * 2002-05-28 2004-10-07 Blackham Geoffrey Howard Video conferencing terminal apparatus with part-transmissive curved mirror
US6943805B2 (en) * 2002-06-28 2005-09-13 Microsoft Corporation Systems and methods for providing image rendering using variable rate source sampling
JP4115188B2 (en) * 2002-07-19 2008-07-09 キヤノン株式会社 Virtual space drawing display device
WO2004021151A2 (en) * 2002-08-30 2004-03-11 Orasee Corp. Multi-dimensional image system for digital image input and output
JP4467267B2 (en) * 2002-09-06 2010-05-26 株式会社ソニー・コンピュータエンタテインメント Image processing method, image processing apparatus, and image processing system
US6943754B2 (en) * 2002-09-27 2005-09-13 The Boeing Company Gaze tracking system, eye-tracking assembly and an associated method of calibration
US7321682B2 (en) * 2002-11-12 2008-01-22 Namco Bandai Games, Inc. Image generation system, image generation method, program, and information storage medium
US20040130525A1 (en) * 2002-11-19 2004-07-08 Suchocki Edward J. Dynamic touch screen amusement game controller
JP4100195B2 (en) * 2003-02-26 2008-06-11 ソニー株式会社 Three-dimensional object display processing apparatus, display processing method, and computer program
KR100526741B1 (en) * 2003-03-26 2005-11-08 김시학 Tension Based Interface System for Force Feedback and/or Position Tracking and Surgically Operating System for Minimally Incising the affected Part Using the Same
US7324121B2 (en) * 2003-07-21 2008-01-29 Autodesk, Inc. Adaptive manipulators
US20050093859A1 (en) * 2003-11-04 2005-05-05 Siemens Medical Solutions Usa, Inc. Viewing direction dependent acquisition or processing for 3D ultrasound imaging
US7667703B2 (en) * 2003-12-19 2010-02-23 Palo Alto Research Center Incorporated Systems and method for turning pages in a three-dimensional electronic document
US7312806B2 (en) * 2004-01-28 2007-12-25 Idelix Software Inc. Dynamic width adjustment for detail-in-context lenses
JP4522129B2 (en) * 2004-03-31 2010-08-11 キヤノン株式会社 Image processing method and image processing apparatus
US20050219693A1 (en) * 2004-04-02 2005-10-06 David Hartkop Scanning aperture three dimensional display device
JP2007531951A (en) * 2004-04-05 2007-11-08 マイケル エー. ベセリー Horizontal perspective display
US20050219240A1 (en) * 2004-04-05 2005-10-06 Vesely Michael A Horizontal perspective hands-on simulator
US20060126926A1 (en) * 2004-11-30 2006-06-15 Vesely Michael A Horizontal perspective representation
US7812815B2 (en) * 2005-01-25 2010-10-12 The Broad of Trustees of the University of Illinois Compact haptic and augmented virtual reality system
US7843470B2 (en) * 2005-01-31 2010-11-30 Canon Kabushiki Kaisha System, image processing apparatus, and information processing method
US20060221071A1 (en) * 2005-04-04 2006-10-05 Vesely Michael A Horizontal perspective display
JP4738870B2 (en) * 2005-04-08 2011-08-03 キヤノン株式会社 Information processing method, information processing apparatus, and remote mixed reality sharing apparatus
US20070040905A1 (en) * 2005-08-18 2007-02-22 Vesely Michael A Stereoscopic display using polarized eyewear
US20070043466A1 (en) * 2005-08-18 2007-02-22 Vesely Michael A Stereoscopic display using polarized eyewear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287437A (en) * 1992-06-02 1994-02-15 Sun Microsystems, Inc. Method and apparatus for head tracked display of precomputed stereo images
US5795154A (en) * 1995-07-07 1998-08-18 Woods; Gail Marjorie Anaglyphic drawing device
US20020140698A1 (en) * 2001-03-29 2002-10-03 Robertson George G. 3D navigation techniques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9189885B2 (en) 2009-09-16 2015-11-17 Knorr-Bremse Systeme Fur Schienenfahrzeuge Gmbh Visual presentation system

Also Published As

Publication number Publication date
KR20070047736A (en) 2007-05-07
WO2006104493A3 (en) 2006-12-21
WO2005098516A3 (en) 2006-07-27
KR20070044394A (en) 2007-04-27
US20050219695A1 (en) 2005-10-06
EP1740998A2 (en) 2007-01-10
US20050219694A1 (en) 2005-10-06
WO2005098517A2 (en) 2005-10-20
WO2005101097A3 (en) 2007-07-05
JP2007536608A (en) 2007-12-13
WO2005098517A3 (en) 2006-04-27
CN101065783A (en) 2007-10-31
CN101006110A (en) 2007-07-25
EP1749232A2 (en) 2007-02-07
WO2005098516A2 (en) 2005-10-20
JP2007531951A (en) 2007-11-08
WO2006104493A2 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US7796134B2 (en) Multi-plane horizontal perspective display
US20050219694A1 (en) Horizontal perspective display
US9684994B2 (en) Modifying perspective of stereoscopic images based on changes in user viewpoint
US20060221071A1 (en) Horizontal perspective display
US20050219240A1 (en) Horizontal perspective hands-on simulator
US7907167B2 (en) Three dimensional horizontal perspective workstation
US20060250390A1 (en) Horizontal perspective display
US20060126925A1 (en) Horizontal perspective representation
US20070291035A1 (en) Horizontal Perspective Representation
US20050248566A1 (en) Horizontal perspective hands-on simulator
US20110216160A1 (en) System and method for creating pseudo holographic displays on viewer position aware devices
EP3607530B1 (en) System, method and software for producing virtual three dimensional images that appear to project forward of or above an electronic display
WO2017062730A1 (en) Presentation of a virtual reality scene from a series of images
CN102063735A (en) Method and device for manufacturing three-dimensional image source by changing viewpoint angles
JP2004178579A (en) Manufacturing method of printed matter for stereoscopic vision, and printed matter for stereoscopic vision
Nacenta et al. The effects of changing projection geometry on perception of 3D objects on and around tabletops
WO2006121955A2 (en) Horizontal perspective display
ASL et al. A new implementation of head-coupled perspective for virtual architecture
Low Creating Better Stereo 3D For Animated Movies
Peddie et al. Stereoscopic 3D in Computers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507395

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005733693

Country of ref document: EP

Ref document number: 1020067023226

Country of ref document: KR

Ref document number: 6556/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580018260.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005733693

Country of ref document: EP