WO2005117534A2 - Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging - Google Patents

Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging Download PDF

Info

Publication number
WO2005117534A2
WO2005117534A2 PCT/US2004/023585 US2004023585W WO2005117534A2 WO 2005117534 A2 WO2005117534 A2 WO 2005117534A2 US 2004023585 W US2004023585 W US 2004023585W WO 2005117534 A2 WO2005117534 A2 WO 2005117534A2
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
image
processing arrangement
spectral
instructions
Prior art date
Application number
PCT/US2004/023585
Other languages
French (fr)
Other versions
WO2005117534A3 (en
Inventor
Johannes Deboer
Seok-Hyun Yun
Abraham J. Cense
Original Assignee
The General Hospital Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The General Hospital Corporation filed Critical The General Hospital Corporation
Priority to KR1020067027699A priority Critical patent/KR101239250B1/en
Priority to EP04822169.1A priority patent/EP1754016B1/en
Priority to JP2007515029A priority patent/JP4750786B2/en
Priority to US11/569,790 priority patent/US8018598B2/en
Priority to AU2004320269A priority patent/AU2004320269B2/en
Publication of WO2005117534A2 publication Critical patent/WO2005117534A2/en
Publication of WO2005117534A3 publication Critical patent/WO2005117534A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • G01B9/02069Synchronization of light source or manipulator and detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium

Definitions

  • the present invention relates generally to chromatic dispersion compensation in optical coherence tomography (“OCT”) imaging, and more particularly to processes, systems and software arrangements which can compensate for dispersions in OCT images.
  • OCT optical coherence tomography
  • the spectral-domain variant of optical coherence tomography is a technique is a technology that is suitable for ultrahigh-resolution ophthalmic imaging.
  • This technique has been described in Cense, B. et al, "Ultrahigh-resolution highspeed retinal imaging using spectral-domain optical coherence tomography", Optics Express, 2004 and in International Patent Publication No. WO 03/062802.
  • U.S. Patent Application Serial No. 10/272,171 filed on October 16, 2002 also relates to this subject matter.
  • the axial resolution of an OCT system may be defined in terms of the coherence length (L coh ), which can be determined by the center wavelength and bandwidth of the source and the index of refraction of the medium, as described in greater detail in Swanson, E.A. et al., "High-Speed Optical Coherence Domain Reflectometry", Optics Letters, 1992, 17(2), pp. 151-153.
  • the axial resolution of the OCT system can be improved by using an ultra broadband source, as provided in further detail in Drexler, W.
  • Chromatic dispersion can lead to smearing of the coherence function and/or point spread function in the axial direction, which can significantly affect the image quality.
  • Considerable amounts of dispersion can be tolerated if the dispersion in the two arms of the interferometer is balanced, thus creating a coherence function that would likely to be free from dispersion artifacts.
  • sample and reference arms contain different lengths of optical fiber or other dispersive media, a dispersion mismatch can occur.
  • the analysis of an eye as a sample with unknown axial length may introduce an unknown amount of chromatic dispersion.
  • the coherence function may be broadened by an unbalanced dispersion, and the peak intensity of the coherence function can decrease as well.
  • a second order or a group-velocity dispersion can be compensated for using hardware by, e.g., changing the lens to grating distance in a rapid scanning optical delay line.
  • variable-thickness optical materials with different dispersion properties such as BK7 and fused silica prisms
  • the number of materials with different optical properties that are inserted in the path of the reference arm or the sample arm may determine the number of orders of dispersion one can compensate.
  • the axial length of an eye can vary from one person to another, thus changing the amount of dispersion between patients. Therefore a flexible technique for a dispersion compensation is desirable. It is possible that, instead of using hardware for such compensation, to use software, and thereby a more flexible compensation easy to adapt to different eyes.
  • Another publication describes a dispersion compensation which is induced by a glass sample. See Fercher, A.F.
  • the exemplary embodiment of a system, process and software arrangement according to the present invention is capable of using a dispersion broadened reflection of a layer or structure in the biological sample (e.g., retina, skin, coronary artery) to derive parameters to compensate for the chromatic dispersion.
  • a layer or structure in the biological sample e.g., retina, skin, coronary artery
  • One of the advantages of the exemplary system, process and software arrangement according to the present invention is the ease of its implementation, the flexibility thereof, and its adaptation to individual patients or sample locations without the need to make hardware changes so as to compensate for the chromatic dispersion.
  • a process, system and software arrangement which can compensate for a dispersion using a numerical technique (e.g., without the need to modify hardware), and can be configured to remove artifacts from OCT images.
  • the spectrometer data can be acquired as a function of a wavelength. Such data may be transformed to ⁇ -space.
  • the relation between the phase ⁇ (k) and the multiple orders of dispersion can be described by a Taylor series expansion: with ⁇ o being the center wavelength, and k 0 being equal to 2 ⁇ z /lo.
  • the first two terms generally describe a constant offset and group velocity, respectively, and are likely not related to dispersive broadening.
  • the third term represents a second order or a group-velocity dispersion. A dispersion mismatch in the sample arm and the reference arm can to a large extend be attributed to this term.
  • the dispersion can be removed by multiplying the dispersed cross- spectral density function I(k) with a phase term e 'l ⁇ (k) .
  • data may be obtained with the interferometer using an object in the sample arm with a reflection. This object can be a mirror or a biological sample with a distinct reflection.
  • the spectrum, I(k), acquired with the spectral domain OCT system is Fourier transformed to z-space, resulting in a depth profile of the reflectivity of the sample.
  • a single reflective peak is determined in the depth profile, and the remaining points in the depth profile are set to zero.
  • An inverse transform can be performed to obtain cross spectral density for this single reflective peak.
  • the phase term ⁇ (k) can be approximately equal to the arctangent of the imaginary component divided by the real component.
  • this function can be fit to a polynomial expression yielding a set of N coefficients
  • Individual spectra may be multiplied with a phase e ⁇ ' ⁇ (k) as determined from the polynomial coefficients, where the first two coefficients of the polynomial fit that correspond to a phase offset and a group velocity are omitted.
  • the chromatic dispersion corrected spectra may then be Fourier transformed to z-space into A-lines, thus resulting in A- lines or depth profiles, where the dispersion has been removed substantially.
  • a system, method and software arrangement can be provided to compensate for a dispersion in at least one portion of an image.
  • information associated with the portion of the image is obtained.
  • the portion of the image can be associated with an interference signal that includes a first electro-magnetic radiation received from a sample and a second electro-magnetic radiation received from a reference.
  • the dispersion in the at least one portion of the image can be compensated by controlling a phase of at least one spectral component of the interference signal.
  • the dispersion may be an indication of a difference between the first and second electro-magnetic radiations.
  • the dispersion may be compensated by reducing and/or removing the dispersion in the portion of the image.
  • data associated with reflective layers in a tissue of the sample may be determined from the interference signal, and information associated with the dispersion that is provided in the data can be obtained. Such information may be used to reduce and/or remove the dispersion from the data.
  • the phase of the spectral component of the portion of the image can be controlled using software.
  • the dispersion prior to controlling the phase of the at least one spectral component of the interference signal, the dispersion may be quantified, and the dispersion may be corrected for in the image based on the quantification.
  • the dispersion can be a chromatic dispersion.
  • Data associated with the dispersion of the image may also be determined, the dispersion quantified using the data, and the dispersion in the image corrected for based on the quantification.
  • the sample may be a retina of an eye, and the information may include data associated with spectral reflections obtained from the retina. Further, an operator may be enable to select at least one dispersed spectral reflection of the spectral reflections. The dispersed spectral reflection may be selected using a graphical user interface, e.g., during an acquisition of the image and/or after the acquisition of the image. .
  • the dispersion can be quantified using the dispersed spectral reflection, and corrected for in the image based on the quantification.
  • a brightest one of the spectral reflections may be interactively searched for, the dispersion quantified using the brightest one of the spectral reflections, and corrected for in the image based on the quantification.
  • the dispersion can be a depth dependent chromatic dispersion.
  • the information may include dispersed image data, and the dispersion may be quantified using the dispersed image data, and corrected for in the image based on the quantification.
  • the sample may be a retina of an eye, and the dispersed image data may includes spectral reflections. The dispersion may be quantified using the spectral reflections.
  • the dispersion can be compensated for by correcting the dispersion in the image using predetermined constant chromatic dispersion parameters, e.g., based on an estimate of an axial eye length and/or an estimate of an axial eye length.
  • Fig. 1 is a block diagram of an exemplary embodiment of a spectral domain optical coherence tomography (“SD-OCT”) arrangement according to the present invention which is capable of implementing the exemplary embodiments of the system, process and software arrangement according to the present invention
  • Fig. 2 is a block diagram of an exemplary embodiment of an optical frequency domain intereferometry (“OFDI”) arrangement according to the present invention which is capable of implementing the exemplary embodiments of the system, process and software arrangement according to the present invention
  • Fig. 1 is a block diagram of an exemplary embodiment of a spectral domain optical coherence tomography (“SD-OCT”) arrangement according to the present invention which is capable of implementing the exemplary embodiments of the system, process and software arrangement according to the present invention
  • SD-OCT spectral domain optical coherence tomography
  • OFDI optical frequency domain intereferometry
  • FIG. 3 is an exemplary graph illustrating an absolute value/depth which can be used for the exemplary embodiments of the system, process and software arrangement according to the present invention
  • Fig. 4 is an exemplary graph illustrating curves without dispersion compensation, and with the dispersion compensation applied according to the exemplary embodiment of the present invention
  • Fig. 5 is an exemplary graph of a phase ⁇ (k) obtained according to an exemplary embodiment of the present invention from a model eye and from a spectral reflection in a fovea
  • Fig. 6 is a retinal image of a human subject which include spectral reflections that may be utilized according to an exemplary embodiment of the present invention
  • FIG. 7 is an exemplary image that may be obtained from a human subject, which illustrates the fovea after the dispersion compensation according to an exemplary embodiment of the present invention has been applied;
  • Fig. 8 is an exemplary graph of a coherence function obtained from a reflective spot in the fovea obtained using an exemplary embodiment of the present invention;
  • Fig. 9 is a high level flow diagram of a process according to an exemplary embodiment of the present invention;
  • Fig. 10 is another exemplary image that may be obtained from a human subject, in which a portion of dispersion can be selected via software by an operator; and
  • Fig. 1 1 is a detailed flow diagram of a process according to yet another exemplary embodiment of the present invention.
  • FIG. 1 shows an exemplary embodiment of a sample configuration of a spectral domain optical coherence tomography (“SD-OCT”) arrangement which can be used for implementing the exemplary embodiments of the system, process and software arrangement according to the present invention.
  • SD-OCT spectral domain optical coherence tomography
  • HP-SLD high-powered superluminescent diode source
  • PC first polarization controller
  • optical isolator 30 so as to facititate a one way propegation of an electro-magnetic energy to reach a signal splitter 40.
  • the signal splitter forwards one portion of the split signal to a reference arm (which includes a second PC 20", a reference, certain optics and a neutral density filter ("NFD") 50) and another portion of the split signal to a sample arm (which includes a third PC 20'", certain optics and a sample 60 such as the eye). Thereafter, an electro-magnetic signal is reflected from the sample 60 and is combined with the light from the reference arm to form an interference signal.
  • a reference arm which includes a second PC 20", a reference, certain optics and a neutral density filter (“NFD”) 50
  • a sample arm which includes a third PC 20'", certain optics and a sample 60 such as the eye.
  • This interference signal is forwarded to a fourth PC 20"", and forwarded to a collimator ("Col") 70, a transmission grating ("TG") 80, an air-spaced focusing lens (“ASL”) 90, and a linescan camera (“LSC”) 100 to be detected by a detecting arrangement (e.g., provided in the linescan camera), and then analyzed by a processing arrangement, e.g., a computer (not shown).
  • a processing arrangement e.g., a computer (not shown).
  • processing arrangement is capable of implementing the various exemplary embodiments of the system, process and software arrangement according to the present invention.
  • the light source may be a wavelength-swept source 110.
  • a portion of the laser output (for example - 20%) is obtained, and detected using a fast InGaAs photo-detector through a narrowband fixed-wavelength filter.
  • the detector generates a pulse when the output spectrum of the laser sweeps through the narrow passband of the filter.
  • the detector pulse is fed to a digital circuit 120, e.g., a synchronous TTL pulse generator, for converting the resultant signal to a TTL pulse train.
  • the TTL pulses are used to generate gating pulses for signal sampling. 90% of the remaining light is directed to the sample arm and 10% to the reference mirror 130.
  • This exemplary arrangement can utilize an optical probe based on a galvanometer mirror (e.g., scanner) 140 and an imaging lens.
  • the galvanometer-mounted mirror 140 is controlled by a glava-driver 145 so as to scan the probe light transversely on the sample 60.
  • the total optical power illuminated on the sample 60 may be approximately 3.5 mW.
  • the light reflected from the reference mirror 130 and the sample 60 is received through magneto-optic circulators 150', 150", and combined by a 50/50 coupler 160.
  • a fiber-optic polarization controller may be used in the reference arm to align polarization states of the reference and sample arms.
  • a relative intensity noise (“RIN") of the received light signal may be proportional to a reciprocal of the linewidth, and the relatively high RIN can be reduced by dual balanced detection (e.g., using a dual balanced receiver 170).
  • the differential current of two InGaAs detectors Dl and D2 in the receiver 170 may be amplified using trans-impedance amplifiers ("TIA") having a total gain of 56 dB, and passed through a low pass filter (“LPF”) with a 3-dB cutoff frequency at approximately half the sampling rate.
  • TIA trans-impedance amplifiers
  • LPF low pass filter
  • the common-noise rejection efficiency of the receiver 170 may be typically greater than 20 dB.
  • the balanced detection may provide other significant benefits - a suppression of a self-interference noise originating from multiple reflections within the sample and optical components; an improvement in the dynamic range; and a reduction of a fixed-pattern noise by greatly reducing the strong background signal from the reference light.
  • a detecting arrangement 180 receives such signals, and forward them to a processing arrangement 190 (e.g., a computer) which implements the exemplary embodiments of the system, process and software arrangement according to the present invention to reduce dispersion, and assist in displaying a resultant image that is based on the original image and the reduction of the dispersion.
  • a processing arrangement 190 e.g., a computer
  • Both of these exemplary arrangements e.g., the SD-OCT arrangement described above with reference to Fig. 1 and the OFDI arrangement described above with reference to Fig. 2, are capable of generating a spectrum I(k) as a function of wave vector k. To determine the phase term, the spectrum I(k) can be Fourier transformed to z-space.
  • a dispersion broadened peak may be observed at a depth of approximately 0.6 mm.
  • the function I(z) may be shifted such that the coherence function is centered on the origin.
  • a window can be selected around the coherence function so as to possibly eliminate coherence functions from other reflective structures in the depth profile, and all values outside the window may be set equal to zero.
  • a complex spectrum in ft-space may be obtained after an inverse Fourier transformation.
  • phase term ⁇ (k) can be equal to the arctangent of the imaginary component divided by the real component. Such term can indicate by how much are the subsequent wave numbers k out of phase with each other.
  • this function can be provided to a polynomial expression of 9 th order, yielding a set of coefficients ⁇ - 9 .
  • individual spectra may be multiplied with a phase e ' as determined from the previous seven polynomial coefficients, where the first two polynomial coefficients may be set to zero, and then inversely Fourier transformed into A-lines, thus removing dispersion.
  • the original and resulting exemplary coherence functions are illustrated in Fig. 4. In particular, the curve of Fig.
  • Fig. 4 shows the results without the dispersion compensation is shown as a dashed line, and referred to by numeral 210, and the curve illustrating the results after the dispersion compensation has been successfully applied which is shown as a solid line, and referred to by numeral 220.
  • Fig. 5 shows a an illustration which aids in the determination of the phase function ⁇ (k) based on certain measurements according to an exemplary embodiment of the present invention, as well as the phase function that subtracts the polynomial fit of 9 th order to the phase function.
  • the phase ⁇ (k) may be obtained from a mirror in a model eye and from a spectral reflection in the fovea (e.g., the left axis).
  • in vivo human data may be used to determine the phase function for an optimal dispersion compensation.
  • Fig. 6 shows an exemplary retinal image of a human subject, in which three spectral reflections 300, 310, 320 are marked with arrows. These exemplary reflections 300, 310, 320 originate from an internal limiting membrane on top of the retinal nerve fiber layer and the foveolar umbo • nd' ' from the external limiting membrane. Unmarked, still visible is art exemplary spectral reflection on ithe interlace between the inner and outer segments of the photore ⁇ e tor layer, just below the external- limiting ⁇ embrane.
  • Fig. 6 shows an exemplary retinal image of a human subject, in which three spectral reflections 300, 310, 320 are marked with arrows. These exemplary reflections 300, 310, 320 originate from an internal limiting membrane on top of the retinal nerve fiber layer and the foveolar umbo • nd' ' from the external limiting membrane. Unmarked, still visible
  • FIG. 6 shows typical examples of jstrong .reflections in an image that can be used to determine the phase function for the optimal dispersion compensation.
  • a coherence function obtained from a well-reflecting reference point in the eye.
  • the reflection of the foveal umbo can be used.
  • Other regions in the eye may also create spectral reflections. Spectral reflections may be present from the interface between the inner and outer segments of the photoreceptor layer ("IPRL”) and retinaL pigmented epitheleum (“RPE").
  • spectral reflections may also be found on the inner limiting membrane, e.g., on top of the retinal nerve fiber layer.
  • five depth profiles may be selected that can illustrate a strong reflection from the foveal umbo.
  • a window can be selected such that it is centered at these strong reflections, and the remaining points may be set to zero.
  • the phase function ⁇ (k) may then be determined as described herein above.
  • the phase function ⁇ (k) as shown in Fig. 5 can be determined from this measurement, as well as based on the phase function minus the polynomial fit of 9 th order to the phase function.
  • Individual spectra of the image can be first multiplied with a phase e ⁇ , ⁇ (k) as determined from the last seven polynomial coefficients, and then inversely Fourier transformed into A-lines, thus removing dispersion.
  • the fit to the dispersion data as determined from the well reflecting reference point in the eye can be a polynomial of any order. Use of a 9 th order polynomial was demonstrated. Instead of a polynomial, the data can be fitted to a Fourier series or any other known function set so as to determine a set of coefficients.
  • a polynomial of limited order to filter the dispersion curve is a better immunity to noise of the determined phase correction function.
  • FIG. 7 shows an exemplary image that may be obtained from a human subject, which illustrates the fovea after the dispersion compensation.
  • the spectral reflection marked with an R can be first used to determine the amount of a chromatic dispersion (as described above), and to remove the chromatic dispersion.
  • the dimensions of the image illustrated in Fig. 7 are 3.1 mm x 0.61 mm.
  • Layers in this image are labeled as follows: RNFL - retinal nerve fiber layer; GCL - ganglion cell layer; IPL - inner plexiform layer; INL - inner nuclear layer; OPL - outer plexiform layer; ONL -outer nuclear layer; ELM - external limiting membrane; IPRL - interface between the inner and outer segments of the photoreceptor layer; RPE - retinal pigmented epithelium; C - choriocapiUaris and choroid.
  • a highly reflective spot in the center of the fovea is marked with an R.
  • a blood vessel is marked with a large circle (BV) and structures in the outer plexiform layer are marked with smaller circles.
  • the coherence length is equal to 4.8 ⁇ m in air.
  • the phase term ⁇ (k) obtained from a mirror in a water-filled model eye (averaged over 100 A-lines) and from a spectral reflective spot in the human fovea (averaged over 5 A-lines, see Fig. 7) are illustrated.
  • the differences between the measured phase terms and polynomial fits (9 th order) to the data are also shown, with the corresponding axis provided on a right side thereof. Both phases show approximately the same pattern, which indicates that the model eye and the real eye generally experience similar amounts of dispersion.
  • the phase term obtained from the spectral reflection of the fovea can be used (e.g., curve 270 of Fig. 5) to remove chromatic dispersion artifacts in data obtained from a human subject in vivo, as shown in the graph of Fig. 7 and quantified in the graph of Fig. 8.
  • Fig. 8 shows the results without the dispersion compensation is illustrated as a dashed line, and referred to by numeral 410, and the curve illustrating the results after the dispersion compensation has been successfully applied which is shown as a solid line, and referred to by numeral 420.
  • Fig. 9 illustrates a flow diagram according to one exemplary embodiment of the present invention.
  • an area in the image containing a spectral reflection is selected (step 510).
  • the existing algorithm determines the amount of chromatic dispersion (step 520) and removes such dispersion from the image (step 530).
  • the dispersion can be removed by multiplying spectra in k-space with a phase e ⁇ ' 0(k) .
  • the earlier described polynomial fit can be used. Since the polynomial fit and the original phase are approximately similar (as shown in Fig. 5), it is also possible to use a measured phase curve.
  • the selection procedure for selecting the location of the spectral reflection can be either a manual procedure or an automated procedure.
  • a new image may be generated based on the originally-selected image, but with the dispersions that was removed according to the exemplary technique of the present invention (step 540).
  • the previously-described exemplary results may be obtained using a simple manual procedure, where the operator generally selects the specific portion of the image by hand, e.g., by determining the coordinates of the reflecting spots.
  • Such procedure can be simplified with, e.g., MatLab software, in which the operator may be requested to draw a rectangular shape around a reflecting spot, (see numeral 600 in Fig. 10), thus selecting the location of the spectral spot.
  • the dispersion can be compensated using the compensation described above.
  • spectral reflections can also be located automatically by using a particular technique.
  • This exemplary technique can be based on an algorithm that finds a maximum signal For example, the signal returning from the spectral reflection, e.g., in the center of the fovea generally has a higher value than any of the other reflections.
  • a feedback signal can be forwarded to the scanning apparatus, so that this apparatus monitors for the brightest spectral reflection in the sample 60 (e.g., the eye).
  • a series of smaller and smaller three-dimensional raster scans can be acquired, until the center of the fovea is located. If the subject moves during this operation, the raster scanning can expanded and confined the target image again.
  • an exemplary technique used to track the surface of the retina and compensate for motion artifacts has been described. See Cense, B. et al., "In Vivo Birefringence and Thickness Measurements of the Human Retinal Nerve Fiber Layer Using Polarization-Sensitive Optical Coherence Tomography", Journal of Biomedical Optics, 2004, 9(1), pp. 121-125.
  • Another exemplary embodiment of the present invention uses compensated dispersion in dependence of depth.
  • the technique according to the exemplary embodiment of the present invention described above is capable of compensating for a constant dispersion mismatch between the sample and the reference arm.
  • dispersion broadening between superficial and deeper layers within an image may becomes important.
  • the dispersion broadening may be due to the accumulated dispersion between the superficial and deeper layer.
  • Described herein below is a technique according to another exemplary embodiment of the present invention which is capable of depth dependent dispersion compensation, i.e., a correction for the dispersion that varies with depth.
  • I r (k) and I ⁇ k) are the wavelength-dependent intensities reflected from the reference and sample arms, respectively, and k is the wave number.
  • the second term on the right hand side of Eq. (2) represents the interference between the light signal returning from the reference and sample arms.
  • a n is the square root of the sample reflectivity at depth z n .
  • T(z) representing the envelope of the coherence function.
  • the first term in the brackets on the right hand side refers to an autocorrelation signal from the reference arm, and has magnitude unity.
  • the second and third terms are reflect the interference between light returning from the reference and sample arms and from two images, where each has magnitude on the order of /, //, . These two terms provide mirror images.
  • the final term, with magnitude on the order of / 2 // 2 describes autocorrelation noise due to interference within the sample arm.
  • I s and I t represent the total intensity reflected from sample and reference arms, respectively.
  • a n constant dispersion mismatch can be described by introducing a phase term ⁇ (k) in the cosine term, 2 s (k)I r (k) y ]a n cos(k ⁇ n + ⁇ (k)) .
  • the constant dispersion mismatch can n be compensated for with the method described before.
  • a depth dependent dispersion term is described by introducing a depth dependent phase term, f(k)z n in the cosine term, 2 j 1 s ⁇ k)l r ⁇ k) ⁇ responsibly cos(kz n + f(k)z n ) .
  • the depth dependent dispersion term can be n compensated for by a remapping operation of the data in k-space.
  • the data can be linearized in k-space before the Fourier transform resulting in Eq. (3).
  • the z m ⁇ z n locations for determining F(k) n and F(k) m are preferably locations in the material (tissue, vitrious, retina, coronary artery, etc) with strong reflections.
  • Filtering the function f(k) to reject noise can be performed by retaining only a limited or predetermined number of coefficients from a polynomial or Fourier series fit to the data.
  • This exemplary technique can be used to predetermine the dispersion in various materials or biological tissues, and utilize the determined values to implement depth dependent dispersion compensation during imaging or post processing of SD-OCT and OFDI data.
  • several locations can provide strong reflections that can be used to determine the dispersion, such as the center of the fovea (fovealar umbo), external limiting membrane, interface between the inner and outer segments of the photoreceptor layer (“IPRL”) and retinal pigmented epitheleum (“RPE”).
  • Spectral reflections can also be located on the inner limiting membrane, on top of the retinal nerve fiber layer.
  • the sample e.g., the eye
  • the sample should be tilted such that the surface thereof is exactly perpendicular to the beam.
  • a further technique according to yet another exemplary embodiment of the present invention can be used to determine a constant and depth dependent dispersion.
  • the third-term on right hand side, a constant phase error can be differentiated from the 1 st and 2 nd terms which are both dependent on k.
  • Fig. 11 shows another exemplary embodiment of the process according to the present invention which can be used to control the dispersion of the data associated with the image obtained from the reference and sample arms.
  • a detector e.g., the detectors of the arrangements shown in Figs. 1 and/or 2 received and detect an interference signal which contains data associated with the electro-magnetic radiation received from the sample arm and the reference arm (step 605), and then generates a spectrum signal I(k) based on the detected interference signal (step 610).
  • This spectrum signal I(k) is forwarded to the processing arrangement, e.g., as data, which performs a Fast Fourrier Transform ("FFT") on the spectrum signal l(k) (step 615). Thereafter, an initial signal I(z) associated with the spectrum signal I(k) is set to 0 for z>0 and z ⁇ 0 (step 620), and in step 625, an absolute values for the initial signal I(z) is set. In step 630, a signal I(k) is generated based on the detected signal, a window of interest of the image may be determined in step 635.
  • FFT Fast Fourrier Transform
  • Such are of interest can be a region of the peak of the absolute value signal (ABS(I(z))) , a center peak at around z-0 by shifting the signal, etc.
  • the window can be obtained automatically by the processing arrangement and/or manually by an operator.
  • an inverse FFT is performed on the signal I(z), and a phase term ⁇ (k) of the transformed I(z) signal is determined (step 645).
  • the phase function that can apply a polynomial of the order of N to ⁇ (k), e.g., by subtracting the polynomial fit of 9 th order, yielding a set of coefficients ⁇ r ⁇ -9 .
  • the phase ⁇ (k) may be obtained from a mirror in a model eye and from a spectral reflection in the fovea.
  • the filtered phase term can then be determined from the polynomial fit parameters/coefficients, e.g., by setting the first two polynomial coefficients to zero.
  • the filtered phase of the signal e ⁇ ' ⁇ (k> can be stored for use in multiple images.
  • a correction curve of the filtered phase term ⁇ (k) can be applied, e.g., by multiplying all spectra of the image may be multiplied by e 'l ⁇ (kj '.

Abstract

A system, process and software arrangement are provided to compensate for a dispersion in at least one portion of an image. In particular, information associated with the portion of the image is obtained. The portion of the image can be associated with an interference signal that includes a first electro­magnetic radiation received from a sample and a second electromagnetic radiation received from a reference. The dispersion in the at least one portion of the image can be compensated by controlling a phase of at least one spectral component of the interference signal.

Description

PROCESS, SYSTEM AND SOFTWARE ARRANGEMENT FOR A CHROMATIC DISPERSION COMPENSATION USING REFLECTIVE LAYERS IN OPTICAL COHERENCE TOMOGRAPHY (OCT) IMAGING
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority from U.S. Patent Application Serial No. 60/575,773 filed on May 29, 2004, the entire disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTION The present invention relates generally to chromatic dispersion compensation in optical coherence tomography ("OCT") imaging, and more particularly to processes, systems and software arrangements which can compensate for dispersions in OCT images.
BACKGROUND OF THE INVENTION The spectral-domain variant of optical coherence tomography ("OCT"), called spectral-domain optical coherence tomography (SD-OCT), is a technique is a technology that is suitable for ultrahigh-resolution ophthalmic imaging. This technique has been described in Cense, B. et al, "Ultrahigh-resolution highspeed retinal imaging using spectral-domain optical coherence tomography", Optics Express, 2004 and in International Patent Publication No. WO 03/062802. In addition, U.S. Patent Application Serial No. 10/272,171 filed on October 16, 2002 also relates to this subject matter. The axial resolution of an OCT system may be defined in terms of the coherence length (Lcoh), which can be determined by the center wavelength and bandwidth of the source and the index of refraction of the medium, as described in greater detail in Swanson, E.A. et al., "High-Speed Optical Coherence Domain Reflectometry", Optics Letters, 1992, 17(2), pp. 151-153. The axial resolution of the OCT system can be improved by using an ultra broadband source, as provided in further detail in Drexler, W. et al., "Enhanced Visualization of Macular PPaatthhoollooggyy wwiitthh tthhee UUssee ooff UUllttrraahhiigghh--RReessόόllϋϋttiioonn OOppttiiccaall ' Coherence Tomography" Archives of Ophthalmology, 2003, 121(5), pp. 695-706. One potential difficulty that may arises from using ultra-broadband sources in a fiber-based OCT setup in, e.g., ophthalmic imaging is the presence of a chromatic dispersion in optically-dense materials like glass, tissue and water. Chromatic dispersion can lead to smearing of the coherence function and/or point spread function in the axial direction, which can significantly affect the image quality. Considerable amounts of dispersion can be tolerated if the dispersion in the two arms of the interferometer is balanced, thus creating a coherence function that would likely to be free from dispersion artifacts. However, when sample and reference arms contain different lengths of optical fiber or other dispersive media, a dispersion mismatch can occur. For example, in the sample arm of an OCT system, the analysis of an eye as a sample with unknown axial length may introduce an unknown amount of chromatic dispersion. Thus, the coherence function may be broadened by an unbalanced dispersion, and the peak intensity of the coherence function can decrease as well. A second order or a group-velocity dispersion can be compensated for using hardware by, e.g., changing the lens to grating distance in a rapid scanning optical delay line. The above has been described in detail in Tearney, GJ. et al., "High- Speed Phase- and Group-Delay Scanning with a Grating-Based Phase Control Delay Line", Optics Letters, 1997, 22(23), pp. 1811-1813. However, this technique generally does not compensate for higher orders of dispersion. Alternatively, it is possible to balance a dispersion in the OCT system by inserting variable-thickness optical materials with different dispersion properties (such as BK7 and fused silica prisms) in the path of the reference arm or the sample arm. The number of materials with different optical properties that are inserted in the path of the reference arm or the sample arm may determine the number of orders of dispersion one can compensate. The axial length of an eye can vary from one person to another, thus changing the amount of dispersion between patients. Therefore a flexible technique for a dispersion compensation is desirable. It is possible that, instead of using hardware for such compensation, to use software, and thereby a more flexible compensation easy to adapt to different eyes. Another publication describes a technique to provide an induced dispersion in the delay line of a time domain OCT system that equipped with an optical amplifier based source (e.g., AFC technologies, λ0= 1310 nm, Δλ = 75 nm) and compensated for dispersion artifacts in structural intensity images obtained of an onion. See de Boer, J.F. et al, "Stable Carrier Generation and Phase-Resolved Digital Data Processing in Optical Coherence Tomography", Applied Optics, 2001, 40(31), pp. 5787-5790. Another publication describes a dispersion compensation which is induced by a glass sample. See Fercher, A.F. et al., "Dispersion Compensation For Optical Coherence Tomography Depth- Scan Signals By A Numerical Technique", Optics Communications, 2002, 204(1-6), pp. 67-74. Their broadband spectrum is generated using a high-pressure mercury lamp. Other dispersion compensation techniques are described in Marks, D.L. et al., "Autofocus Algorithm for Dispersion Correction in Optical Coherence Tomography", Applied Optics, 2003. 42(16), pp. 3038-3046, Marks, D.L. et al., "Digital Algorithm for Dispersion Correction in Optical Coherence Tomography for Homogeneous and Stratified Media", Applied Optics, 2003, 42(2), pp. 204-217, and U.S. Patent No. 5,994,690 which describe an algorithm that used an autocorrelation function to correct image data. However, the above-described problems have not been addressed adequately. Accordingly, there is a need to overcome such deficiencies.
SUMMARY OF THE INVENTION In contrast to the conventional techniques, the exemplary embodiment of a system, process and software arrangement according to the present invention is capable of using a dispersion broadened reflection of a layer or structure in the biological sample (e.g., retina, skin, coronary artery) to derive parameters to compensate for the chromatic dispersion. One of the advantages of the exemplary system, process and software arrangement according to the present invention is the ease of its implementation, the flexibility thereof, and its adaptation to individual patients or sample locations without the need to make hardware changes so as to compensate for the chromatic dispersion. According to exemplary embodiments of the present invention, a process, system and software arrangement is provided which can compensate for a dispersion using a numerical technique (e.g., without the need to modify hardware), and can be configured to remove artifacts from OCT images. In general, a dispersion mismatch between the sample arm and the reference arm of an interferometer may introduce a phase shift e (k) in the cross- spectral density /(ft,) as a function of wave vector k (k = 2n/X) . In a spectral-domain OCT or optical frequency domain interferometry ("OFDI") setup (as described in Wojtkowski et al., "In Vivo Human Retinal Imaging by Fourier Domain Optical Coherence Tomography", Journal of Biomedical Optics, 2002, 7(3), pp. 457-463, Nassif, N. et al, "In Vivo Human Retinal Imaging by Ultrahigh-Speed Spectral Domain Optical Coherence Tomography", Optics Letters, 2004, 29(5), pp. 480-482, Yun, S.H. et al, "High-Speed Optical Frequency-Domain Imaging", Optics Express, 2003, 11(22), pp. 2953-2963, International Publication No. WO 03/062802 and U.S. Patent Application Serial No. 60/514,769 filed on October 27, 2004, the spectrometer data can be acquired as a function of a wavelength. Such data may be transformed to Λ-space. The relation between the phase θ(k) and the multiple orders of dispersion can be described by a Taylor series expansion:
Figure imgf000006_0001
with λo being the center wavelength, and k0 being equal to 2τz /lo. The first two terms generally describe a constant offset and group velocity, respectively, and are likely not related to dispersive broadening. The third term represents a second order or a group-velocity dispersion. A dispersion mismatch in the sample arm and the reference arm can to a large extend be attributed to this term. However, higher order dispersion terms may contribute to the dispersion mismatch as well, for example when an ultra- broadband source is used. The dispersion can be removed by multiplying the dispersed cross- spectral density function I(k) with a phase term e'lθ(k) . In order to determine the phase term e~'θ(k) to remove the chromatic dispersion and the resulting broadening of the coherence function, data may be obtained with the interferometer using an object in the sample arm with a reflection. This object can be a mirror or a biological sample with a distinct reflection. The spectrum, I(k), acquired with the spectral domain OCT system is Fourier transformed to z-space, resulting in a depth profile of the reflectivity of the sample. A single reflective peak is determined in the depth profile, and the remaining points in the depth profile are set to zero. An inverse transform can be performed to obtain cross spectral density for this single reflective peak. The phase term θ(k) can be approximately equal to the arctangent of the imaginary component divided by the real component. In order to reduce noise on the phase function and avoid distortion in the image by introducing a group velocity and/or offset in the phase, this function can be fit to a polynomial expression yielding a set of N coefficients
Figure imgf000007_0001
Individual spectra may be multiplied with a phase e~'θ(k) as determined from the polynomial coefficients, where the first two coefficients of the polynomial fit that correspond to a phase offset and a group velocity are omitted. The chromatic dispersion corrected spectra may then be Fourier transformed to z-space into A-lines, thus resulting in A- lines or depth profiles, where the dispersion has been removed substantially. In one exemplary embodiment of the present invention, a system, method and software arrangement can be provided to compensate for a dispersion in at least one portion of an image. For example, information associated with the portion of the image is obtained. The portion of the image can be associated with an interference signal that includes a first electro-magnetic radiation received from a sample and a second electro-magnetic radiation received from a reference. The dispersion in the at least one portion of the image can be compensated by controlling a phase of at least one spectral component of the interference signal. The dispersion may be an indication of a difference between the first and second electro-magnetic radiations. In addition, the dispersion may be compensated by reducing and/or removing the dispersion in the portion of the image. Further, data associated with reflective layers in a tissue of the sample may be determined from the interference signal, and information associated with the dispersion that is provided in the data can be obtained. Such information may be used to reduce and/or remove the dispersion from the data. The phase of the spectral component of the portion of the image can be controlled using software. According to another exemplary embodiment of the present invention, prior to controlling the phase of the at least one spectral component of the interference signal, the dispersion may be quantified, and the dispersion may be corrected for in the image based on the quantification. The dispersion can be a chromatic dispersion. Data associated with the dispersion of the image may also be determined, the dispersion quantified using the data, and the dispersion in the image corrected for based on the quantification. The sample may be a retina of an eye, and the information may include data associated with spectral reflections obtained from the retina. Further, an operator may be enable to select at least one dispersed spectral reflection of the spectral reflections. The dispersed spectral reflection may be selected using a graphical user interface, e.g., during an acquisition of the image and/or after the acquisition of the image. . The dispersion can be quantified using the dispersed spectral reflection, and corrected for in the image based on the quantification. A brightest one of the spectral reflections may be interactively searched for, the dispersion quantified using the brightest one of the spectral reflections, and corrected for in the image based on the quantification. According to still another exemplary embodiment of the present invention, the dispersion can be a depth dependent chromatic dispersion. The information may include dispersed image data, and the dispersion may be quantified using the dispersed image data, and corrected for in the image based on the quantification. The sample may be a retina of an eye, and the dispersed image data may includes spectral reflections. The dispersion may be quantified using the spectral reflections. In a further exemplary embodiment of the present invention, the dispersion can be compensated for by correcting the dispersion in the image using predetermined constant chromatic dispersion parameters, e.g., based on an estimate of an axial eye length and/or an estimate of an axial eye length. Other features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which: Fig. 1 is a block diagram of an exemplary embodiment of a spectral domain optical coherence tomography ("SD-OCT") arrangement according to the present invention which is capable of implementing the exemplary embodiments of the system, process and software arrangement according to the present invention; Fig. 2 is a block diagram of an exemplary embodiment of an optical frequency domain intereferometry ("OFDI") arrangement according to the present invention which is capable of implementing the exemplary embodiments of the system, process and software arrangement according to the present invention; Fig. 3 is an exemplary graph illustrating an absolute value/depth which can be used for the exemplary embodiments of the system, process and software arrangement according to the present invention; Fig. 4 is an exemplary graph illustrating curves without dispersion compensation, and with the dispersion compensation applied according to the exemplary embodiment of the present invention; Fig. 5 is an exemplary graph of a phase θ(k) obtained according to an exemplary embodiment of the present invention from a model eye and from a spectral reflection in a fovea; Fig. 6 is a retinal image of a human subject which include spectral reflections that may be utilized according to an exemplary embodiment of the present invention; Fig. 7 is an exemplary image that may be obtained from a human subject, which illustrates the fovea after the dispersion compensation according to an exemplary embodiment of the present invention has been applied; Fig. 8 is an exemplary graph of a coherence function obtained from a reflective spot in the fovea obtained using an exemplary embodiment of the present invention; Fig. 9 is a high level flow diagram of a process according to an exemplary embodiment of the present invention; Fig. 10 is another exemplary image that may be obtained from a human subject, in which a portion of dispersion can be selected via software by an operator; and Fig. 1 1 is a detailed flow diagram of a process according to yet another exemplary embodiment of the present invention. DETAILED DESCRIPTION Fig. 1 shows an exemplary embodiment of a sample configuration of a spectral domain optical coherence tomography ("SD-OCT") arrangement which can be used for implementing the exemplary embodiments of the system, process and software arrangement according to the present invention. A detailed description of operation of this arrangement is described in detail in International Patent Publication No. WO 03/062802. In particular, as shown in Fig. 1, a high-powered superluminescent diode source ("HP-SLD") 10 generates an electro-magnetic radiation or light signal which is transmitted through a first polarization controller ("PC") 20' and an optical isolator 30 so as to facititate a one way propegation of an electro-magnetic energy to reach a signal splitter 40. The signal splitter forwards one portion of the split signal to a reference arm (which includes a second PC 20", a reference, certain optics and a neutral density filter ("NFD") 50) and another portion of the split signal to a sample arm (which includes a third PC 20'", certain optics and a sample 60 such as the eye). Thereafter, an electro-magnetic signal is reflected from the sample 60 and is combined with the light from the reference arm to form an interference signal. This interference signal is forwarded to a fourth PC 20"", and forwarded to a collimator ("Col") 70, a transmission grating ("TG") 80, an air-spaced focusing lens ("ASL") 90, and a linescan camera ("LSC") 100 to be detected by a detecting arrangement (e.g., provided in the linescan camera), and then analyzed by a processing arrangement, e.g., a computer (not shown). Such processing arrangement is capable of implementing the various exemplary embodiments of the system, process and software arrangement according to the present invention. Fig. 2 shows an exemplary embodiment of an optical imaging frequency domain intereferometry ("OFDI") arrangement according to the present invention which is capable of implementing the exemplary embodiments of the system, process and software arrangement according to the present invention. A detailed description of various embodiments of the OFDI arrangement is provided in U.S. Patent Application Serial No. 60/514,769. For example, the light source may be a wavelength-swept source 110. In order to generate a synchronization signal, a portion of the laser output (for example - 20%) is obtained, and detected using a fast InGaAs photo-detector through a narrowband fixed-wavelength filter. The detector generates a pulse when the output spectrum of the laser sweeps through the narrow passband of the filter. The detector pulse is fed to a digital circuit 120, e.g., a synchronous TTL pulse generator, for converting the resultant signal to a TTL pulse train. The TTL pulses are used to generate gating pulses for signal sampling. 90% of the remaining light is directed to the sample arm and 10% to the reference mirror 130. This exemplary arrangement can utilize an optical probe based on a galvanometer mirror (e.g., scanner) 140 and an imaging lens. The galvanometer-mounted mirror 140 is controlled by a glava-driver 145 so as to scan the probe light transversely on the sample 60. The total optical power illuminated on the sample 60 may be approximately 3.5 mW. The light reflected from the reference mirror 130 and the sample 60 is received through magneto-optic circulators 150', 150", and combined by a 50/50 coupler 160. A fiber-optic polarization controller may be used in the reference arm to align polarization states of the reference and sample arms. In general, a relative intensity noise ("RIN") of the received light signal may be proportional to a reciprocal of the linewidth, and the relatively high RIN can be reduced by dual balanced detection (e.g., using a dual balanced receiver 170). The differential current of two InGaAs detectors Dl and D2 in the receiver 170 may be amplified using trans-impedance amplifiers ("TIA") having a total gain of 56 dB, and passed through a low pass filter ("LPF") with a 3-dB cutoff frequency at approximately half the sampling rate. The common-noise rejection efficiency of the receiver 170 may be typically greater than 20 dB. In addition to the RIN reduction, the balanced detection may provide other significant benefits - a suppression of a self-interference noise originating from multiple reflections within the sample and optical components; an improvement in the dynamic range; and a reduction of a fixed-pattern noise by greatly reducing the strong background signal from the reference light. Thereafter, a detecting arrangement 180 receives such signals, and forward them to a processing arrangement 190 (e.g., a computer) which implements the exemplary embodiments of the system, process and software arrangement according to the present invention to reduce dispersion, and assist in displaying a resultant image that is based on the original image and the reduction of the dispersion. Both of these exemplary arrangements, e.g., the SD-OCT arrangement described above with reference to Fig. 1 and the OFDI arrangement described above with reference to Fig. 2, are capable of generating a spectrum I(k) as a function of wave vector k. To determine the phase term, the spectrum I(k) can be Fourier transformed to z-space. Fig. 3 shows an exemplary graph 200 providing an illustration of the curve of an absolute value Abs(I(z)) for z>0 of the Fourier transformed spectrum I(k) vs. depth, with I(z) = FFT(I(k)). As shown in Fig. 3, a dispersion broadened peak may be observed at a depth of approximately 0.6 mm. The function I(z) may be shifted such that the coherence function is centered on the origin. A window can be selected around the coherence function so as to possibly eliminate coherence functions from other reflective structures in the depth profile, and all values outside the window may be set equal to zero. A complex spectrum in ft-space may be obtained after an inverse Fourier transformation. The phase term θ(k) can be equal to the arctangent of the imaginary component divided by the real component. Such term can indicate by how much are the subsequent wave numbers k out of phase with each other. According to one example, this function can be provided to a polynomial expression of 9th order, yielding a set of coefficients αι-9. According to one exemplary embodiment of the present invention, individual spectra may be multiplied with a phase e ' as determined from the previous seven polynomial coefficients, where the first two polynomial coefficients may be set to zero, and then inversely Fourier transformed into A-lines, thus removing dispersion. The original and resulting exemplary coherence functions are illustrated in Fig. 4. In particular, the curve of Fig. 4 shows the results without the dispersion compensation is shown as a dashed line, and referred to by numeral 210, and the curve illustrating the results after the dispersion compensation has been successfully applied which is shown as a solid line, and referred to by numeral 220. Fig. 5 shows a an illustration which aids in the determination of the phase function θ(k) based on certain measurements according to an exemplary embodiment of the present invention, as well as the phase function that subtracts the polynomial fit of 9th order to the phase function. The phase θ(k) may be obtained from a mirror in a model eye and from a spectral reflection in the fovea (e.g., the left axis). In another example according to the present invention, in vivo human data may be used to determine the phase function for an optimal dispersion compensation. Fig. 6 shows an exemplary retinal image of a human subject, in which three spectral reflections 300, 310, 320 are marked with arrows. These exemplary reflections 300, 310, 320 originate from an internal limiting membrane on top of the retinal nerve fiber layer and the foveolar umbo • nd'' from the external limiting membrane. Unmarked, still visible is art exemplary spectral reflection on ithe interlace between the inner and outer segments of the photoreέe tor layer, just below the external- limiting ή embrane. Fig. 6 shows typical examples of jstrong .reflections in an image that can be used to determine the phase function for the optimal dispersion compensation. In order to determine this phase term for the dispersion compensation of data ootaineα in tne sample (e.g., the human eye) in vivo, it is preferable to use a coherence function obtained from a well-reflecting reference point in the eye. In this example, the reflection of the foveal umbo can be used. Other regions in the eye may also create spectral reflections. Spectral reflections may be present from the interface between the inner and outer segments of the photoreceptor layer ("IPRL") and retinaL pigmented epitheleum ("RPE"). In addition, spectral reflections may also be found on the inner limiting membrane, e.g., on top of the retinal nerve fiber layer. For example, five depth profiles may be selected that can illustrate a strong reflection from the foveal umbo. A window can be selected such that it is centered at these strong reflections, and the remaining points may be set to zero. The phase function θ(k) may then be determined as described herein above. In particular, the phase function θ(k) as shown in Fig. 5, can be determined from this measurement, as well as based on the phase function minus the polynomial fit of 9th order to the phase function. Individual spectra of the image can be first multiplied with a phase e~ ,θ(k) as determined from the last seven polynomial coefficients, and then inversely Fourier transformed into A-lines, thus removing dispersion. The fit to the dispersion data as determined from the well reflecting reference point in the eye can be a polynomial of any order. Use of a 9th order polynomial was demonstrated. Instead of a polynomial, the data can be fitted to a Fourier series or any other known function set so as to determine a set of coefficients. One of the advantages of using e.g., a polynomial of limited order to filter the dispersion curve is a better immunity to noise of the determined phase correction function. Fig. 7 shows an exemplary image that may be obtained from a human subject, which illustrates the fovea after the dispersion compensation. The spectral reflection marked with an R can be first used to determine the amount of a chromatic dispersion (as described above), and to remove the chromatic dispersion. The dimensions of the image illustrated in Fig. 7 are 3.1 mm x 0.61 mm. Layers in this image are labeled as follows: RNFL - retinal nerve fiber layer; GCL - ganglion cell layer; IPL - inner plexiform layer; INL - inner nuclear layer; OPL - outer plexiform layer; ONL -outer nuclear layer; ELM - external limiting membrane; IPRL - interface between the inner and outer segments of the photoreceptor layer; RPE - retinal pigmented epithelium; C - choriocapiUaris and choroid. A highly reflective spot in the center of the fovea is marked with an R. A blood vessel is marked with a large circle (BV) and structures in the outer plexiform layer are marked with smaller circles. Fig. 8 shows a graph of a coherence function obtained from a reflective spot in the fovea. For example, the coherence length is equal to 4.8μm in air. To summarize, in the graph shown in Fig. 5, the phase term θ(k) obtained from a mirror in a water-filled model eye (averaged over 100 A-lines) and from a spectral reflective spot in the human fovea (averaged over 5 A-lines, see Fig. 7) are illustrated. The differences between the measured phase terms and polynomial fits (9th order) to the data are also shown, with the corresponding axis provided on a right side thereof. Both phases show approximately the same pattern, which indicates that the model eye and the real eye generally experience similar amounts of dispersion. The phase term obtained from the spectral reflection of the fovea can be used (e.g., curve 270 of Fig. 5) to remove chromatic dispersion artifacts in data obtained from a human subject in vivo, as shown in the graph of Fig. 7 and quantified in the graph of Fig. 8. The coherence length can be determined in vivo from the spectral reflection in the center of the fovea labeled as R in Fig. 7, averaged over 5 A-lines. This coherence function is shown as a graph in Fig. 8, and the coherence length after dispersion compensation as shown in Fig. 8 as being equal to 4.8 μm in air and 3.5 ' μm in tissue {n = 1.38). It is clear that without dispersion compensation, the coherence length is significantly longer (e.g., by a factor of 2-3), thus reducing the axial resolution considerably. In particular, the curve of Fig. 8 (similarly to the graph in Fig. 4) shows the results without the dispersion compensation is illustrated as a dashed line, and referred to by numeral 410, and the curve illustrating the results after the dispersion compensation has been successfully applied which is shown as a solid line, and referred to by numeral 420. Practically, an exemplary embodiment of the system, process and', software arrangement according to the present invention can also be described with reference to Fig. 9 which illustrates a flow diagram according to one exemplary embodiment of the present invention. As previously described, an area in the image containing a spectral reflection is selected (step 510). After such selection, the existing algorithm determines the amount of chromatic dispersion (step 520) and removes such dispersion from the image (step 530). As previously described, the dispersion can be removed by multiplying spectra in k-space with a phase e~'0(k). The earlier described polynomial fit can be used. Since the polynomial fit and the original phase are approximately similar (as shown in Fig. 5), it is also possible to use a measured phase curve. The selection procedure for selecting the location of the spectral reflection can be either a manual procedure or an automated procedure. Thereafter, a new image may be generated based on the originally-selected image, but with the dispersions that was removed according to the exemplary technique of the present invention (step 540). The previously-described exemplary results may be obtained using a simple manual procedure, where the operator generally selects the specific portion of the image by hand, e.g., by determining the coordinates of the reflecting spots. Such procedure can be simplified with, e.g., MatLab software, in which the operator may be requested to draw a rectangular shape around a reflecting spot, (see numeral 600 in Fig. 10), thus selecting the location of the spectral spot. Using such exemplary selection of the portion of the image, the dispersion can be compensated using the compensation described above. According to another exemplary embodiment of the present invention, spectral reflections can also be located automatically by using a particular technique. This exemplary technique can be based on an algorithm that finds a maximum signal For example, the signal returning from the spectral reflection, e.g., in the center of the fovea generally has a higher value than any of the other reflections. Using such exemplary technique, it is possible to select this reflecting spot automatically, and therefor manual input from an operator would not be necessary, with this technique, a feedback signal can be forwarded to the scanning apparatus, so that this apparatus monitors for the brightest spectral reflection in the sample 60 (e.g., the eye). For example, a series of smaller and smaller three-dimensional raster scans can be acquired, until the center of the fovea is located. If the subject moves during this operation, the raster scanning can expanded and confined the target image again. In another publication, an exemplary technique used to track the surface of the retina and compensate for motion artifacts has been described. See Cense, B. et al., "In Vivo Birefringence and Thickness Measurements of the Human Retinal Nerve Fiber Layer Using Polarization-Sensitive Optical Coherence Tomography", Journal of Biomedical Optics, 2004, 9(1), pp. 121-125. Another exemplary embodiment of the present invention uses compensated dispersion in dependence of depth. The technique according to the exemplary embodiment of the present invention described above is capable of compensating for a constant dispersion mismatch between the sample and the reference arm. However, with an increasing bandwidth available in the OCT imaging, dispersion broadening between superficial and deeper layers within an image may becomes important. The dispersion broadening may be due to the accumulated dispersion between the superficial and deeper layer. Described herein below is a technique according to another exemplary embodiment of the present invention which is capable of depth dependent dispersion compensation, i.e., a correction for the dispersion that varies with depth. As is well known, the signal in SD-OCT and OFDI is defined by, /(*) = /.(A) + 2J/, (*)/.(*)£<_„ cos(* z„ ) + /, (*) (2) n where Ir(k) and I^k) are the wavelength-dependent intensities reflected from the reference and sample arms, respectively, and k is the wave number. The second term on the right hand side of Eq. (2) represents the interference between the light signal returning from the reference and sample arms. an is the square root of the sample reflectivity at depth zn. As described in Hausler, G. et al., "Coherence Radar and Spectral Radar - New Tools for Dermatological Diagnosis", J. Biomed. Opt., 1998, 3(1), pp. 21-31, depth information can be obtained by performing an inverse Fourier transform of Eq. (2), yielding the following convolution -'[/(*) = r2 (z)®J 5(0) + ∑α.2 ϊ(z - z +∑α^(z + z + θ[/,V/r 2] (3)
with T(z) representing the envelope of the coherence function. The first term in the brackets on the right hand side refers to an autocorrelation signal from the reference arm, and has magnitude unity. The second and third terms are reflect the interference between light returning from the reference and sample arms and from two images, where each has magnitude on the order of /, //, . These two terms provide mirror images. The final term, with magnitude on the order of /2 //2 , describes autocorrelation noise due to interference within the sample arm. Is and It represent the total intensity reflected from sample and reference arms, respectively. Retaining only the interference term
Figure imgf000017_0001
cos(kzn) , a n constant dispersion mismatch can be described by introducing a phase term θ(k) in the cosine term, 2 s(k)Ir(k) y ]an cos(k∑n + Θ(k)) . The constant dispersion mismatch can n be compensated for with the method described before. A depth dependent dispersion term is described by introducing a depth dependent phase term, f(k)zn in the cosine term, 2 j 1 s{k)l r{k) α„ cos(kzn + f(k)zn) . The depth dependent dispersion term can be n compensated for by a remapping operation of the data in k-space. The cosine term can be rewritten as 2 s (k)lr (k) a„ cos(k'zπ ) with k' = k + f[k) . After the remapping
operation, the data can be linearized in k-space before the Fourier transform resulting in Eq. (3). The function f(k) can be determined by measuring the dispersion F(k)n and F(k)m at two different locations, zn and zm using the method described for a F(k) — F(k) constant dispersion term, where the function f(k)\s given by f{k) = '" —^- . The zm ~ zn locations for determining F(k)n and F(k)m are preferably locations in the material (tissue, vitrious, retina, coronary artery, etc) with strong reflections. Filtering the function f(k) to reject noise can be performed by retaining only a limited or predetermined number of coefficients from a polynomial or Fourier series fit to the data. This exemplary technique can be used to predetermine the dispersion in various materials or biological tissues, and utilize the determined values to implement depth dependent dispersion compensation during imaging or post processing of SD-OCT and OFDI data. For use in retinal data, several locations can provide strong reflections that can be used to determine the dispersion, such as the center of the fovea (fovealar umbo), external limiting membrane, interface between the inner and outer segments of the photoreceptor layer ("IPRL") and retinal pigmented epitheleum ("RPE"). Spectral reflections can also be located on the inner limiting membrane, on top of the retinal nerve fiber layer. In order to see these reflections, the sample (e.g., the eye) should be tilted such that the surface thereof is exactly perpendicular to the beam. A further technique according to yet another exemplary embodiment of the present invention can be used to determine a constant and depth dependent dispersion. For example, in the presence of constant and depth-dependent dispersion, the interference signal associated with the n-th reflection point in the sample can be defined by I(k, zs,„ ,zr) = 2ψ,(k)I,(k) an cos[£ (z. ,„ - z,. ) + f(k)z, „ + θ{k)} , (4) where zs>n refers to the distance of the reflection point from the surface of the sample, and zr refers to the position of the reference mirror with respect to the sample surface. Shifting the position of the reference mirror to zr ' = 2zs n - zr provides the following
I(k,zs ιι,Z;) = 2 s(k)Ir(k) an cos[-k(zs n - zr) + f(k)zs n +θ (k) + δ ] = 2 s(k)Ir(k) α„ cos[ k (zJιB - z, ) - f{k)zs n -θ (k) -δ ] ' where δ refers to any possible phase error introduced in the measurement. It is possible to determine the phase functions, φ(k, zs n,zr) and φ{k,zs n,zr ) of the interference signals in Eq. (4) and (5), respectively. It follows that ^{k, zs n,zr) -^k,z^,zr ') = 2f{k)z^ + 2Q {k) + (6) The third-term on right hand side, a constant phase error, can be differentiated from the 1st and 2nd terms which are both dependent on k. By measuring the differential phase for multiple reflection points in the sample or for multiple zs n where n = 1 to N, it is possible to determine f(k) and θ (k) . If the constant dispersion is negligible or has been canceled, it is possible to locate the best or preferable mapping function that leads to transform- limited point spread function for each position of the reference mirror. The preferable mapping function may be defined by k' = k +βk) for the signal represented in Eq. (4) and k' = k - βk) for Eq. (5). Therefore, subtracting the two mapping functions can yield the depth-dependent dispersion βk). Instead of shifting the reference mirror, the mirror can be placed so that the zero delay corresponds to (either approximately or exactly) the middle of the two reflection points in the sample. The interference signal associated with the two reflections can be simultaneously measured and analyzed to determine the dispersion. Fig. 11 shows another exemplary embodiment of the process according to the present invention which can be used to control the dispersion of the data associated with the image obtained from the reference and sample arms. For example, a detector (e.g., the detectors of the arrangements shown in Figs. 1 and/or 2) received and detect an interference signal which contains data associated with the electro-magnetic radiation received from the sample arm and the reference arm (step 605), and then generates a spectrum signal I(k) based on the detected interference signal (step 610). This spectrum signal I(k) is forwarded to the processing arrangement, e.g., as data, which performs a Fast Fourrier Transform ("FFT") on the spectrum signal l(k) (step 615). Thereafter, an initial signal I(z) associated with the spectrum signal I(k) is set to 0 for z>0 and z<0 (step 620), and in step 625, an absolute values for the initial signal I(z) is set. In step 630, a signal I(k) is generated based on the detected signal, a window of interest of the image may be determined in step 635. Such are of interest can be a region of the peak of the absolute value signal (ABS(I(z))) , a center peak at around z-0 by shifting the signal, etc. The window can be obtained automatically by the processing arrangement and/or manually by an operator. In step 640, an inverse FFT is performed on the signal I(z), and a phase term θ(k) of the transformed I(z) signal is determined (step 645). In step 650, the exemplary process according to the present invention the phase function that can apply a polynomial of the order of N to θ(k), e.g., by subtracting the polynomial fit of 9th order, yielding a set of coefficients αrι-9. As described herein, the phase θ(k) may be obtained from a mirror in a model eye and from a spectral reflection in the fovea. The filtered phase term can then be determined from the polynomial fit parameters/coefficients, e.g., by setting the first two polynomial coefficients to zero. In step 260, the filtered phase of the signal e~'θ(k> can be stored for use in multiple images. Then, in step 665, a correction curve of the filtered phase term θ(k) can be applied, e.g., by multiplying all spectra of the image may be multiplied by e'lθ(kj '. Finally, in step 670, dispersion corrected spectrum S'(k) = S(k) e"' Θ(k) may be used to calculate image intensity, birefringence and/or flow information. The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. For example, the invention described herein is usable with the exemplary methods, systems and apparatus described in U.S. Patent Application No. 60/514,769. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, all publications, patents and patent applications referenced above are incorporated herein by reference in their entireties.

Claims

WHAT IS CLAIMED IS:
1. A system to compensate for a dispersion in at least one portion of an image, comprising: a processing arrangement capable of obtaining information associated with the at least one portion of the image, the at least one portion of the image being associated with an interference signal that includes a first electro-magnetic radiation received from a sample and a second electro-magnetic radiation received from a reference, wherein the processing arrangement is further capable of compensating for the dispersion in the at least one portion of the image by controlling a phase of at least one spectral component of the interference signal.
2. The system according to claim 1, wherein the dispersion is an indication of a difference between the first and second electro-magnetic radiations.
3. The system according to claim 1, wherein the processing arrangement is capable of controlling the dispersion by at least one of reducing and removing the dispersion in the at least one portion of the image.
4. The system according to claim 1, wherein the processing arrangement is further capable of determining data associated with reflective layers in a tissue of the sample from the interference signal, and determining information associated with the dispersion that is provided in the data.
5. The system according to claim 4, wherein the processing arrangement is further capable of utilizing the information to at least one of reduce and remove the dispersion from the data.
6. The system according to claim 1, wherein, when the processing arrangement executes software instructions, the processing arrangement is configured to control the phase of the at least one spectral component of the interference signal.
7. The system according to claim 1, wherein, prior to controlling the phase of the at least one spectral component of the interference signal, the processing arrangement is capable of quantifying the dispersion, and correcting for the dispersion in the image based on the quantification.
8. The system according to claim 1, wherein the dispersion is a chromatic dispersion.
9. The system according to claim 1, wherein the processing arrangement is further capable of determining data associated with the dispersion of the image, quantifying the dispersion using the data, and correcting for the dispersion in the image based on the quantification.
10. The system according to claim 9, wherein the sample is a retina of an eye.
11. The system according to claim 10, wherein the information includes data associated with spectral reflections obtained from the retina.
12. The system according to claim 11, wherein the processing arrangement is capable of enabling an operator to select at least one dispersed spectral reflection of the spectral reflections.
13. The system according to claim 12, wherein the at least one dispersed spectral reflection is selected using a graphical user interface.
14. The system according to claim 12, wherein the at least one dispersed spectral reflection is selected at least one of during an acquisition of the image and after the acquisition of the image.
15. The system according to claim 12, wherein the processing arrangement is further adapted to quantify the dispersion using the at least one dispersed spectral reflection , and correct for the dispersion in the image based on the quantification.
16. The system according to claim 12, wherein the processing arrangement is further adapted to interactively search for a brightest one of the spectral reflections, quantify the dispersion using the brightest one of the spectral reflections, and correct for the dispersion in the image based on the quantification.
17. The system according to claim 1, wherein the dispersion is a depth dependent chromatic dispersion.
18. The system according to claim 17, wherein the information includes dispersed image data, and wherein the processing arrangement is further adapted to quantify the dispersion using the dispersed image data, and correct for the dispersion in the image based on the quantification.
19. The system according to claim 18, wherein the sample is a retina of an eye.
20. The system according to claim 17, wherein the dispersed image data includes spectral reflections, and wherein the processing arrangement is adapted to quantify the dispersion using the spectral reflections.
21. The system according to claim 1, wherein the processing arrangement is adapted to control the dispersion by correcting the dispersion in the image using predetermined constant chromatic dispersion parameters.
22. The system according to claim 21, wherein the dispersion is compensated based on an estimate of an axial eye length.
23. The system according to claim 1, wherein the dispersion is compensated based on an estimate of an axial eye length.
24. A process to compensate for a dispersion in at least one portion of an image, comprising the steps of: obtaining information associated with the at least one portion of the image, the at least one portion of the image being associated with an interference signal that includes a first electro-magnetic radiation received from a sample and a second electro-magnetic radiation received from a reference; and compensating for the dispersion in the at least one portion of the image by controlling a phase of at least one spectral component of the interference signal.
25. The method according to claim 24, wherein the dispersion is an indication of a difference between the first and second electro-magnetic radiations.
26. The method according to claim 24, wherein the controlling step includes the substep of at least one of reducing and removing the dispersion in the at least one portion of the image.
27. The method according to claim 24, further comprising the steps of: determining data associated with reflective layers in a tissue of the sample from the interference signal; and determining information associated with the dispersion that is provided in the data.
28. The method according to claim 27, further comprising the step of utilizing the information to at least one of reduce and remove the dispersion from the data.
29. The method according to claim 24, wherein the controlling step is performed using software instructions.
30. The method according to claim 24, further comprising the steps of, prior to the controlling step, quantifying the dispersion; and correcting for the dispersion in the image based on the quantification.
31. The method according to claim 24, wherein the dispersion is a chromatic dispersion.
32. The method according to claim 24, further comprising the steps of: determining data associated with the dispersion of the image; quantifying the dispersion using the data; and correcting for the dispersion in the image based on the quantification.
33. The method according to claim 32, wherein the sample is a retina of an eye.
34. The method according to claim 33, wherein the information includes data associated with spectral reflections obtained from the retina.
35. The method according to claim 33, further comprising the step of enabling an operator to select at least one dispersed spectral reflection of the spectral reflections.
36. The method according to claim 35, wherein the at least one dispersed spectral reflection is selected using a graphical user interface.
37. The method according to claim 35, wherein the at least one dispersed spectral reflection is selected at least one of during an acquisition of the image and after the acquisition of the image.
38. The method according to claim 35, further comprising the steps of: quantifying the dispersion using the at least one dispersed spectral reflection; and correcting for the dispersion in the image based on the quantification.
39. The method according to claim 35, further comprising the steps of: interactively searching for a brightest one of the spectral reflections; quantifying the dispersion using the brightest one of the spectral reflections; and correcting for the dispersion in the image based on the quantification.
40. The method according to claim 24, wherein the dispersion is a depth dependent chromatic dispersion.
41. The method according to claim 40, wherein the information includes dispersed image data, and further comprising the steps of: quantifying the dispersion using the dispersed image data; and correcting for the dispersion in the image based on the quantification.
42. The method according to claim 41 , wherein the sample is a retina of an eye.
43. The method according to claim 40, wherein the dispersed image data includes spectral reflections, and wherein the processing arrangement is adapted to quantify the dispersion using the spectral reflections.
44. The method according to claim 43, further comprising the step of controlling the dispersion by correcting the dispersion in the image using predetermined constant chromatic dispersion parameters.
45. The method according to claim 44, wherein the dispersion is compensated based on an estimate of an axial eye length.
46. The method according to claim 24, wherein the dispersion is compensated based on an estimate of an axial eye length.
47. A software arrangement adapted to compensate for a dispersion in at least one portion of an image, comprising: a first set of instructions which, when executed by a processing arrangement, obtain information associated with the at least one portion of the image, the at least one portion of the image being associated with an interference signal that includes a first electro-magnetic radiation received from a sample and a second electro-magnetic radiation received from a reference; and a second set of instructions which, when executed by the processing arrangement, compensate for the dispersion in the at least one portion of the image by controlling a phase of at least one spectral component of the interference signal.
48. The software arrangement according to claim 47, wherein the dispersion is an indication of a difference between the first and second electro-magnetic radiations.
49. The software arrangement according to claim 47, wherein the second set of instructions are executable to at least one of reduce and remove the dispersion in the at least one portion of the image.
50. The software arrangement according to claim 47, further comprising: a third set of instructions which, when executed by the processing arrangement, determine data associated with reflective layers in a tissue of the sample from the interference signal; and a fourth set of instructions which, when executed by the processing arrangement, determine information associated with the dispersion that is provided in the data.
51. The software arrangement according to claim 50, further comprising: a fifth set of instructions which, when executed by the processing arrangement, utilize the information to at least one of reduce and remove the dispersion from the data.
52. The software arrangement according to claim 47, wherein the second set of instructions performs the controlling procedure using software instructions.
53. The software arrangement according to claim 47, further comprising, a sixth set of instructions which, when executed by the processing arrangement, quantify the dispersion; and a seventh set of instructions which, when executed by the processing arrangement, correct for the dispersion in the image based on the quantification.
54. The software arrangement according to claim 47, wherein the dispersion is a chromatic dispersion.
55. The software arrangement according to claim 47, further comprising: an eighth set of instructions which, when executed by the processing arrangement, determine data associated with the dispersion of the image; a ninth set of instructions which, when executed by the processing arrangement, quantify the dispersion using the data; and a tenth set of instructions which, when executed by the processing arrangement, correct for the dispersion in the image based on the quantification.
56. The software arrangement according to claim 55, wherein the sample is a retina of an eye.
57. The software arrangement according to claim 56, wherein the information includes data associated with spectral reflections obtained from the retina.
58. The software arrangement according to claim 56, further comprising: an eleventh set of instructions which, when executed by the processing arrangement, enable an operator to select at least one dispersed spectral reflection of the spectral reflections.
59. The software arrangement according to claim 58, wherein the at least one dispersed spectral reflection is selected using a graphical user interface.
60. The software arrangement according to claim 58, wherein the at least one dispersed spectral reflection is selected at least one of during an acquisition of the image and after the acquisition of the image.
61. The software arrangement according to claim 58, further comprising: a twelfth set of instructions which, when executed by the processing arrangement, quantify the dispersion using the at least one dispersed spectral reflection; and a thirteenth set of instructions which, when executed by the processing arrangement, correct for the dispersion in the image based on the quantification.
62. The software arrangement according to claim 58, further comprising: a fourteenth set of instructions which, when executed by the processing arrangement, interactively search for a brightest one of the spectral reflections; a fifteenth set of instructions which, when executed by the processing arrangement, quantify the dispersion using the brightest one of the spectral reflections; and a sixteenth set of instructions which, when executed by the processing arrangement, correct for the dispersion in the image based on the quantification.
63. The software arrangement according to claim 47, wherein the dispersion is a depth dependent chromatic dispersion.
64. The software arrangement according to claim 63, wherein the information includes dispersed image data, and further comprising: a seventeenth set of instructions which, when executed by the processing arrangement, quantify the dispersion using the dispersed image data; and an eighteenth set of instructions which, when executed by the processing arrangement, correct for the dispersion in the image based on the quantification.
65. The software arrangement according to claim 64, wherein the sample is a retina of an eye.
66. The software arrangement according to claim 63, wherein the dispersed image data includes spectral reflections, and wherein the processing arrangement is adapted to quantify the dispersion using the spectral reflections.
67. The software arrangement according to claim 66, further comprising: a nineteenth set of instructions which, when executed by the processing arrangement, control the dispersion by correcting the dispersion in the image using predetermined constant chromatic dispersion parameters.
68. The software arrangement according to claim 67, wherein the dispersion is compensated based on an estimate of an axial eye length.
69. The software arrangement according to claim 47, wherein the dispersion is compensated based on an estimate of an axial eye length.
PCT/US2004/023585 2004-05-29 2004-07-23 Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging WO2005117534A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020067027699A KR101239250B1 (en) 2004-05-29 2004-07-23 Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
EP04822169.1A EP1754016B1 (en) 2004-05-29 2004-07-23 Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
JP2007515029A JP4750786B2 (en) 2004-05-29 2004-07-23 Chromatic dispersion compensation process, system and software configuration using refractive layer in optical coherence tomography (OCT) imaging
US11/569,790 US8018598B2 (en) 2004-05-29 2004-07-23 Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
AU2004320269A AU2004320269B2 (en) 2004-05-29 2004-07-23 Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57577304P 2004-05-29 2004-05-29
US60/575,773 2004-05-29

Publications (2)

Publication Number Publication Date
WO2005117534A2 true WO2005117534A2 (en) 2005-12-15
WO2005117534A3 WO2005117534A3 (en) 2006-11-30

Family

ID=35463245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/023585 WO2005117534A2 (en) 2004-05-29 2004-07-23 Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging

Country Status (6)

Country Link
US (1) US8018598B2 (en)
EP (1) EP1754016B1 (en)
JP (1) JP4750786B2 (en)
KR (1) KR101239250B1 (en)
AU (1) AU2004320269B2 (en)
WO (1) WO2005117534A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127395A2 (en) * 2006-04-28 2007-11-08 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (oct) using automatic dispersion compensation
EP1872713A1 (en) * 2006-06-28 2008-01-02 Kabushiki Kaisha Topcon A fundus observation device and a program controlling the same
WO2008088868A2 (en) * 2007-01-19 2008-07-24 Bioptigen, Inc. Methods, systems and computer program products for processing images generated using fourier domain optical coherence tomography (fdoct)
EP2141447A1 (en) * 2008-07-04 2010-01-06 Nidek Co., Ltd Optical tomographic image photographing apparatus
EP2153771A1 (en) * 2007-05-24 2010-02-17 Kabushiki Kaisha TOPCON Eye fundus observation device and its control program
WO2010031163A1 (en) * 2008-09-17 2010-03-25 Institut National De La Recherche Scientifique Cross-chirped interferometry system and method for light detection and ranging
US7880895B2 (en) 2008-07-04 2011-02-01 Nidek Co., Ltd. Optical tomographic image photographing apparatus
US8180131B2 (en) 2007-05-04 2012-05-15 Bioptigen, Inc. Methods, systems and computer program products for mixed-density optical coherence tomography (OCT) imaging
WO2012123122A1 (en) 2011-03-15 2012-09-20 Medlumics, S.L. Integrated system for active equalization of chromatic dispersion
WO2019168982A1 (en) * 2018-02-28 2019-09-06 Zygo Corporation Metrology of multi-layer stacks

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE454845T1 (en) 2000-10-30 2010-01-15 Gen Hospital Corp OPTICAL SYSTEMS FOR TISSUE ANALYSIS
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
DE10297689B4 (en) 2001-05-01 2007-10-18 The General Hospital Corp., Boston Method and device for the determination of atherosclerotic coating by measurement of optical tissue properties
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
EP1611470B1 (en) 2003-03-31 2015-10-14 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
EP2011434A3 (en) 2003-06-06 2009-03-25 The General Hospital Corporation Process and apparatus for a wavelength tuned light source
EP2278287B1 (en) 2003-10-27 2016-09-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
JP4750786B2 (en) * 2004-05-29 2011-08-17 ザ ジェネラル ホスピタル コーポレイション Chromatic dispersion compensation process, system and software configuration using refractive layer in optical coherence tomography (OCT) imaging
US7447408B2 (en) 2004-07-02 2008-11-04 The General Hospital Corproation Imaging system and related techniques
EP1782020B1 (en) 2004-08-06 2012-10-03 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006024014A2 (en) 2004-08-24 2006-03-02 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
JP5324095B2 (en) 2004-08-24 2013-10-23 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for imaging blood vessel segments
KR101269455B1 (en) 2004-09-10 2013-05-30 더 제너럴 하스피탈 코포레이션 System and method for optical coherence imaging
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US7365856B2 (en) 2005-01-21 2008-04-29 Carl Zeiss Meditec, Inc. Method of motion correction in optical coherence tomography imaging
US7805009B2 (en) 2005-04-06 2010-09-28 Carl Zeiss Meditec, Inc. Method and apparatus for measuring motion of a subject using a series of partial images from an imaging system
JP5684452B2 (en) 2005-04-28 2015-03-11 ザ ジェネラル ホスピタル コーポレイション System, method and software apparatus for evaluating information related to anatomical structures by optical interferometry
EP1889037A2 (en) 2005-06-01 2008-02-20 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
KR101387454B1 (en) 2005-08-09 2014-04-22 더 제너럴 하스피탈 코포레이션 Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US7872759B2 (en) 2005-09-29 2011-01-18 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
WO2007084995A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
WO2007084903A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements
WO2007149603A2 (en) 2006-02-01 2007-12-27 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
WO2007092911A2 (en) 2006-02-08 2007-08-16 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
WO2007101026A2 (en) 2006-02-24 2007-09-07 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
EP3150110B1 (en) 2006-05-10 2020-09-02 The General Hospital Corporation Processes, arrangements and systems for providing frequency domain imaging of a sample
DE102006028238B3 (en) * 2006-06-20 2007-07-19 Benecke-Kaliko Ag Three dimensionally structured original surface e.g. grained surface, reflection characteristics analysis and specification method, involves storing reflection value in data record that is provided to processing or verification system
US8838213B2 (en) * 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
WO2008118781A2 (en) 2007-03-23 2008-10-02 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
WO2008131082A1 (en) 2007-04-17 2008-10-30 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques
US8079711B2 (en) * 2008-04-24 2011-12-20 Carl Zeiss Meditec, Inc. Method for finding the lateral position of the fovea in an SDOCT image volume
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
JP5607610B2 (en) 2008-05-07 2014-10-15 ザ ジェネラル ホスピタル コーポレイション Apparatus for determining structural features, method of operating apparatus and computer-accessible medium
EP2288948A4 (en) 2008-06-20 2011-12-28 Gen Hospital Corp Fused fiber optic coupler arrangement and method for use thereof
US9254089B2 (en) 2008-07-14 2016-02-09 The General Hospital Corporation Apparatus and methods for facilitating at least partial overlap of dispersed ration on at least one sample
KR101000974B1 (en) * 2008-12-01 2010-12-13 인하대학교 산학협력단 Measurement Method of Chromatic Dispersion of Optical Beam Waveguide Using Interference Fringe Measurement system
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
WO2010090837A2 (en) 2009-01-20 2010-08-12 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
EP2382456A4 (en) 2009-01-26 2012-07-25 Gen Hospital Corp System, method and computer-accessible medium for providing wide-field superresolution microscopy
CA2749670A1 (en) 2009-02-04 2010-08-12 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
AU2010253912B2 (en) 2009-05-28 2015-03-05 Avinger, Inc. Optical Coherence Tomography for biological imaging
BR112012001042A2 (en) 2009-07-14 2016-11-22 Gen Hospital Corp fluid flow measurement equipment and method within anatomical structure.
HUE051135T2 (en) 2010-03-05 2021-03-01 Massachusetts Gen Hospital Systems which provide microscopic images of at least one anatomical structure at a particular resolution
JP5801577B2 (en) * 2010-03-25 2015-10-28 キヤノン株式会社 Optical tomographic imaging apparatus and control method for optical tomographic imaging apparatus
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
JP5778762B2 (en) 2010-05-25 2015-09-16 ザ ジェネラル ホスピタル コーポレイション Apparatus and method for spectral analysis of optical coherence tomography images
WO2011149972A2 (en) 2010-05-25 2011-12-01 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
JP6066901B2 (en) 2010-06-03 2017-01-25 ザ ジェネラル ホスピタル コーポレイション Method for apparatus and device for imaging structures in or in one or more luminal organs
CA2805256C (en) * 2010-07-21 2019-03-05 Diopsys, Inc. Method and system for analyzing optical coherence tomography (oct) results using color reflectivity discrelization analysis
EP2632324A4 (en) 2010-10-27 2015-04-22 Gen Hospital Corp Apparatus, systems and methods for measuring blood pressure within at least one vessel
JP5926281B2 (en) * 2010-12-13 2016-05-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for analyzing region of interest of object using X-ray
EP2662683B1 (en) * 2011-01-05 2016-05-04 Nippon Telegraph And Telephone Corporation Wavelength swept light source
US9279659B2 (en) * 2011-01-21 2016-03-08 Duke University Systems and methods for complex conjugate artifact resolved optical coherence tomography
EP2691038B1 (en) 2011-03-28 2016-07-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9033510B2 (en) 2011-03-30 2015-05-19 Carl Zeiss Meditec, Inc. Systems and methods for efficiently obtaining measurements of the human eye using tracking
JP5690193B2 (en) 2011-04-18 2015-03-25 株式会社ニデック Optical tomography system
US8857988B2 (en) 2011-07-07 2014-10-14 Carl Zeiss Meditec, Inc. Data acquisition methods for reduced motion artifacts and applications in OCT angiography
JP5787255B2 (en) * 2011-07-12 2015-09-30 国立大学法人 筑波大学 Program for correcting measurement data of PS-OCT and PS-OCT system equipped with the program
WO2013013049A1 (en) 2011-07-19 2013-01-24 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
WO2013029047A1 (en) 2011-08-25 2013-02-28 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9101294B2 (en) 2012-01-19 2015-08-11 Carl Zeiss Meditec, Inc. Systems and methods for enhanced accuracy in OCT imaging of the cornea
DE202012002375U1 (en) 2012-03-08 2012-04-23 Wavelight Gmbh Device for optical coherence tomography
EP2833776A4 (en) 2012-03-30 2015-12-09 Gen Hospital Corp Imaging system, method and distal attachment for multidirectional field of view endoscopy
WO2013172972A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
JP6227652B2 (en) 2012-08-22 2017-11-08 ザ ジェネラル ホスピタル コーポレイション System, method, and computer-accessible medium for fabricating a miniature endoscope using soft lithography
JP6195334B2 (en) * 2012-08-30 2017-09-13 キヤノン株式会社 Imaging apparatus, imaging method, and program
US9115974B2 (en) * 2012-09-14 2015-08-25 The Johns Hopkins University Motion-compensated optical coherence tomography system
WO2014085911A1 (en) 2012-12-05 2014-06-12 Tornado Medical Systems, Inc. System and method for wide field oct imaging
WO2014105911A1 (en) * 2012-12-24 2014-07-03 Luna Innovations Incorporated Dispersion correction in optical frequency-domain reflectometry
WO2014117130A1 (en) 2013-01-28 2014-07-31 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
WO2014120791A1 (en) 2013-01-29 2014-08-07 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
EP2967491B1 (en) 2013-03-15 2022-05-11 The General Hospital Corporation A transesophageal endoscopic system for determining a mixed venous oxygen saturation of a pulmonary artery
WO2014142958A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Optical pressure sensor assembly
WO2014143064A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Chronic total occlusion crossing devices with imaging
EP2997354A4 (en) 2013-05-13 2017-01-18 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
WO2015010133A1 (en) 2013-07-19 2015-01-22 The General Hospital Corporation Determining eye motion by imaging retina. with feedback
EP4349242A2 (en) 2013-07-19 2024-04-10 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
WO2015042093A1 (en) 2013-09-17 2015-03-26 The Johns Hopkins University Device and methods for color corrected oct imaging endoscope/catheter to achieve high-resolution
US9347872B1 (en) * 2013-09-23 2016-05-24 Kla-Tencor Corporation Meta-model based measurement refinement
WO2015105870A1 (en) 2014-01-08 2015-07-16 The General Hospital Corporation Method and apparatus for microscopic imaging
US10188808B2 (en) 2014-01-24 2019-01-29 The Johns Hopkins University Fiber optic distal sensor controlled drug injector
WO2015116986A2 (en) 2014-01-31 2015-08-06 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US9907696B2 (en) 2014-04-18 2018-03-06 The Johns Hopkins University Fiber optic distal sensor controlled micro-manipulation systems and methods
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
CN112998664A (en) 2015-04-16 2021-06-22 Gentuity有限责任公司 Low-light level probe for neurology
JP6896699B2 (en) 2015-07-13 2021-06-30 アビンガー・インコーポレイテッドAvinger, Inc. Microformed anamorphic reflector lens for image-guided therapy / diagnostic catheter
WO2017027844A1 (en) 2015-08-13 2017-02-16 Wang Ruikang K Systems and methods of forming enhanced medical images
JP6981967B2 (en) 2015-08-31 2021-12-17 ジェンテュイティ・リミテッド・ライアビリティ・カンパニーGentuity, LLC Imaging system including imaging probe and delivery device
EP3435892B1 (en) 2016-04-01 2024-04-03 Avinger, Inc. Atherectomy catheter with serrated cutter
JP6776076B2 (en) * 2016-09-23 2020-10-28 株式会社トプコン OCT device
WO2019014767A1 (en) 2017-07-18 2019-01-24 Perimeter Medical Imaging, Inc. Sample container for stabilizing and aligning excised biological tissue samples for ex vivo analysis
JP6556199B2 (en) * 2017-08-10 2019-08-07 キヤノン株式会社 Imaging apparatus and imaging method
US20190101489A1 (en) * 2017-09-29 2019-04-04 Michael John Darwin Method and Apparatus for Simultaneously Measuring 3Dimensional Structures and Spectral Content of Said Structures
JP7160935B2 (en) 2017-11-28 2022-10-25 ジェンテュイティ・リミテッド・ライアビリティ・カンパニー Imaging system
JP7243023B2 (en) 2018-03-06 2023-03-22 株式会社ニデック OCT device
US11357399B2 (en) 2018-08-02 2022-06-14 Nidek Co., Ltd. OCT apparatus
US11883100B2 (en) 2019-09-30 2024-01-30 Nidek Co., Ltd. Ophthalmologic image processing method and OCT apparatus
EP4044942A4 (en) 2019-10-18 2023-11-15 Avinger, Inc. Occlusion-crossing devices
JP7412229B2 (en) * 2020-03-10 2024-01-12 株式会社トプコン Ophthalmology information processing device, ophthalmology device, ophthalmology information processing method, and program
CN116669613A (en) 2020-11-19 2023-08-29 徕卡显微系统股份有限公司 Processing system for OCT imaging, OCT imaging system and method for OCT imaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
US20030025917A1 (en) 2001-07-18 2003-02-06 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
WO2003105678A2 (en) 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy

Family Cites Families (470)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339754A (en) 1941-03-04 1944-01-25 Westinghouse Electric & Mfg Co Supervisory apparatus
US3090753A (en) * 1960-08-02 1963-05-21 Exxon Research Engineering Co Ester oil compositions containing acid anhydride
GB1257778A (en) 1967-12-07 1971-12-22
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
JPS4932484U (en) 1972-06-19 1974-03-20
US3872407A (en) * 1972-09-01 1975-03-18 Us Navy Rapidly tunable laser
JPS584481Y2 (en) * 1973-06-23 1983-01-26 オリンパス光学工業株式会社 Naishikiyoushiyahenkankogakkei
FR2253410A5 (en) 1973-12-03 1975-06-27 Inst Nat Sante Rech Med
US3941121A (en) 1974-12-20 1976-03-02 The University Of Cincinnati Focusing fiber-optic needle endoscope
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US3973219A (en) 1975-04-24 1976-08-03 Cornell Research Foundation, Inc. Very rapidly tuned cw dye laser
US4030831A (en) 1976-03-22 1977-06-21 The United States Of America As Represented By The Secretary Of The Navy Phase detector for optical figure sensing
US4141362A (en) 1977-05-23 1979-02-27 Richard Wolf Gmbh Laser endoscope
US4224929A (en) 1977-11-08 1980-09-30 Olympus Optical Co., Ltd. Endoscope with expansible cuff member and operation section
GB2030313A (en) 1978-06-29 1980-04-02 Wolf Gmbh Richard Endoscopes
FR2448728A1 (en) 1979-02-07 1980-09-05 Thomson Csf ROTATING JOINT DEVICE FOR OPTICAL CONDUCTOR CONNECTION AND SYSTEM COMPRISING SUCH A DEVICE
US4300816A (en) 1979-08-30 1981-11-17 United Technologies Corporation Wide band multicore optical fiber
US4295738A (en) 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
US4428643A (en) 1981-04-08 1984-01-31 Xerox Corporation Optical scanning system with wavelength shift correction
US5065331A (en) 1981-05-18 1991-11-12 Vachon Reginald I Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
GB2106736B (en) 1981-09-03 1985-06-12 Standard Telephones Cables Ltd Optical transmission system
US4479499A (en) 1982-01-29 1984-10-30 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible light
US5302025A (en) * 1982-08-06 1994-04-12 Kleinerman Marcos Y Optical systems for sensing temperature and other physical parameters
US4601036A (en) 1982-09-30 1986-07-15 Honeywell Inc. Rapidly tunable laser
HU187188B (en) 1982-11-25 1985-11-28 Koezponti Elelmiszeripari Device for generating radiation of controllable spectral structure
CH663466A5 (en) * 1983-09-12 1987-12-15 Battelle Memorial Institute METHOD AND DEVICE FOR DETERMINING THE POSITION OF AN OBJECT IN RELATION TO A REFERENCE.
US4639999A (en) * 1984-11-02 1987-02-03 Xerox Corporation High resolution, high efficiency I.R. LED printing array fabrication method
US4763977A (en) 1985-01-09 1988-08-16 Canadian Patents And Development Limited-Societe Optical fiber coupler with tunable coupling ratio and method of making
EP0590268B1 (en) 1985-03-22 1998-07-01 Massachusetts Institute Of Technology Fiber Optic Probe System for Spectrally Diagnosing Tissue
US5318024A (en) * 1985-03-22 1994-06-07 Massachusetts Institute Of Technology Laser endoscope for spectroscopic imaging
DE3610165A1 (en) * 1985-03-27 1986-10-02 Olympus Optical Co., Ltd., Tokio/Tokyo OPTICAL SCAN MICROSCOPE
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4631498A (en) 1985-04-26 1986-12-23 Hewlett-Packard Company CW Laser wavemeter/frequency locking technique
US4650327A (en) 1985-10-28 1987-03-17 Oximetrix, Inc. Optical catheter calibrating assembly
US5040889A (en) 1986-05-30 1991-08-20 Pacific Scientific Company Spectrometer with combined visible and ultraviolet sample illumination
CA1290019C (en) 1986-06-20 1991-10-01 Hideo Kuwahara Dual balanced optical signal receiver
US4770492A (en) 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
JPH0824665B2 (en) * 1986-11-28 1996-03-13 オリンパス光学工業株式会社 Endoscope device
US4744656A (en) 1986-12-08 1988-05-17 Spectramed, Inc. Disposable calibration boot for optical-type cardiovascular catheter
US4751706A (en) 1986-12-31 1988-06-14 The United States Of America As Represented By The Secretary Of The Army Laser for providing rapid sequence of different wavelengths
US4834111A (en) 1987-01-12 1989-05-30 The Trustees Of Columbia University In The City Of New York Heterodyne interferometer
GB2209221B (en) 1987-09-01 1991-10-23 Litton Systems Inc Hydrophone demodulator circuit and method
US5202931A (en) * 1987-10-06 1993-04-13 Cell Analysis Systems, Inc. Methods and apparatus for the quantitation of nuclear protein
US4909631A (en) * 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
US4890901A (en) 1987-12-22 1990-01-02 Hughes Aircraft Company Color corrector for embedded prisms
US4892406A (en) 1988-01-11 1990-01-09 United Technologies Corporation Method of and arrangement for measuring vibrations
FR2626367B1 (en) 1988-01-25 1990-05-11 Thomson Csf MULTI-POINT FIBER OPTIC TEMPERATURE SENSOR
FR2626383B1 (en) 1988-01-27 1991-10-25 Commissariat Energie Atomique EXTENDED FIELD SCAN AND DEPTH CONFOCAL OPTICAL MICROSCOPY AND DEVICES FOR CARRYING OUT THE METHOD
US4925302A (en) 1988-04-13 1990-05-15 Hewlett-Packard Company Frequency locking device
US4998972A (en) * 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US5730731A (en) * 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US4905169A (en) 1988-06-02 1990-02-27 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US5242437A (en) 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
ATE158659T1 (en) 1988-07-13 1997-10-15 Optiscan Pty Ltd CONFOCAL SCANNING ENDOSCOPE
GB8817672D0 (en) 1988-07-25 1988-09-01 Sira Ltd Optical apparatus
US5214538A (en) * 1988-07-25 1993-05-25 Keymed (Medical And Industrial Equipment) Limited Optical apparatus
US4868834A (en) 1988-09-14 1989-09-19 The United States Of America As Represented By The Secretary Of The Army System for rapidly tuning a low pressure pulsed laser
DE3833602A1 (en) 1988-10-03 1990-02-15 Krupp Gmbh SPECTROMETER FOR SIMULTANEOUS INTENSITY MEASUREMENT IN DIFFERENT SPECTRAL AREAS
US4940328A (en) 1988-11-04 1990-07-10 Georgia Tech Research Corporation Optical sensing apparatus and method
US4966589A (en) 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
ATE133545T1 (en) 1988-12-21 1996-02-15 Massachusetts Inst Technology METHOD FOR LASER-INDUCED FLUORESCENCE OF TISSUE
US5046501A (en) 1989-01-18 1991-09-10 Wayne State University Atherosclerotic identification
US5085496A (en) * 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
US5317389A (en) 1989-06-12 1994-05-31 California Institute Of Technology Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US4965599A (en) 1989-11-13 1990-10-23 Eastman Kodak Company Scanning apparatus for halftone image screen writing
US4984888A (en) * 1989-12-13 1991-01-15 Imo Industries, Inc. Two-dimensional spectrometer
KR930003307B1 (en) * 1989-12-14 1993-04-24 주식회사 금성사 Three dimensional projector
US5251009A (en) 1990-01-22 1993-10-05 Ciba-Geigy Corporation Interferometric measuring arrangement for refractive index measurements in capillary tubes
DD293205B5 (en) 1990-03-05 1995-06-29 Zeiss Carl Jena Gmbh Optical fiber guide for a medical observation device
US5039193A (en) 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
US5262644A (en) 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
US5197470A (en) 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
GB9015793D0 (en) 1990-07-18 1990-09-05 Medical Res Council Confocal scanning optical microscope
US5845639A (en) 1990-08-10 1998-12-08 Board Of Regents Of The University Of Washington Optical imaging methods
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
US5305759A (en) 1990-09-26 1994-04-26 Olympus Optical Co., Ltd. Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
US5241364A (en) 1990-10-19 1993-08-31 Fuji Photo Film Co., Ltd. Confocal scanning type of phase contrast microscope and scanning microscope
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5202745A (en) 1990-11-07 1993-04-13 Hewlett-Packard Company Polarization independent optical coherence-domain reflectometry
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
JP3035336B2 (en) 1990-11-27 2000-04-24 興和株式会社 Blood flow measurement device
US5228001A (en) 1991-01-23 1993-07-13 Syracuse University Optical random access memory
US5784162A (en) 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US6198532B1 (en) 1991-02-22 2001-03-06 Applied Spectral Imaging Ltd. Spectral bio-imaging of the eye
US5293872A (en) 1991-04-03 1994-03-15 Alfano Robert R Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6501551B1 (en) * 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US5321501A (en) 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5441053A (en) 1991-05-03 1995-08-15 University Of Kentucky Research Foundation Apparatus and method for multiple wavelength of tissue
US5281811A (en) * 1991-06-17 1994-01-25 Litton Systems, Inc. Digital wavelength division multiplex optical transducer having an improved decoder
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
DE4128744C1 (en) 1991-08-29 1993-04-22 Siemens Ag, 8000 Muenchen, De
US5353790A (en) 1992-01-17 1994-10-11 Board Of Regents, The University Of Texas System Method and apparatus for optical measurement of bilirubin in tissue
US5212667A (en) * 1992-02-03 1993-05-18 General Electric Company Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US5217456A (en) * 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
JP3236055B2 (en) * 1992-03-24 2001-12-04 オリンパス光学工業株式会社 Optical CT device
US5283795A (en) * 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5486701A (en) 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5716324A (en) 1992-08-25 1998-02-10 Fuji Photo Film Co., Ltd. Endoscope with surface and deep portion imaging systems
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
ES2102187T3 (en) 1992-11-18 1997-07-16 Spectrascience Inc DIAGNOSTIC DEVICE FOR IMAGE FORMATION.
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
JP3325061B2 (en) * 1992-11-30 2002-09-17 オリンパス光学工業株式会社 Optical tomographic imaging system
JPH06222242A (en) * 1993-01-27 1994-08-12 Shin Etsu Chem Co Ltd Optical fiber coupler and its manufacture
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
JP3112595B2 (en) 1993-03-17 2000-11-27 安藤電気株式会社 Optical fiber strain position measuring device using optical frequency shifter
FI93781C (en) 1993-03-18 1995-05-26 Wallac Oy Biospecific multiparametric assay method
DE4309056B4 (en) 1993-03-20 2006-05-24 Häusler, Gerd, Prof. Dr. Method and device for determining the distance and scattering intensity of scattering points
US5485079A (en) 1993-03-29 1996-01-16 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
DE4310209C2 (en) 1993-03-29 1996-05-30 Bruker Medizintech Optical stationary imaging in strongly scattering media
US5424827A (en) * 1993-04-30 1995-06-13 Litton Systems, Inc. Optical system and method for eliminating overlap of diffraction spectra
DE4314189C1 (en) 1993-04-30 1994-11-03 Bodenseewerk Geraetetech Device for the examination of optical fibres made of glass by means of heterodyne Brillouin spectroscopy
SE501932C2 (en) * 1993-04-30 1995-06-26 Ericsson Telefon Ab L M Apparatus and method for dispersion compensation in a fiber optic transmission system
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
DE69418248T2 (en) 1993-06-03 1999-10-14 Hamamatsu Photonics Kk Optical laser scanning system with Axikon
JP3234353B2 (en) 1993-06-15 2001-12-04 富士写真フイルム株式会社 Tomographic information reader
US5803082A (en) 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
US5983125A (en) 1993-12-13 1999-11-09 The Research Foundation Of City College Of New York Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
US5450203A (en) 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
CA2180941A1 (en) * 1994-01-24 1995-07-27 Gregg M. Gallatin Grating-grating interferometric alignment system
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
DE4411017C2 (en) 1994-03-30 1995-06-08 Alexander Dr Knuettel Optical stationary spectroscopic imaging in strongly scattering objects through special light focusing and signal detection of light of different wavelengths
TW275570B (en) 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
DE69528024T2 (en) 1994-08-18 2003-10-09 Zeiss Carl Surgical apparatus controlled with optical coherence tomography
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US6033721A (en) 1994-10-26 2000-03-07 Revise, Inc. Image-based three-axis positioner for laser direct write microchemical reaction
US5566267A (en) 1994-12-15 1996-10-15 Ceram Optec Industries Inc. Flat surfaced optical fibers and diode laser medical delivery devices
US5600486A (en) 1995-01-30 1997-02-04 Lockheed Missiles And Space Company, Inc. Color separation microlens
US5648848A (en) 1995-02-01 1997-07-15 Nikon Precision, Inc. Beam delivery apparatus and method for interferometry using rotatable polarization chucks
DE19506484C2 (en) 1995-02-24 1999-09-16 Stiftung Fuer Lasertechnologie Method and device for selective non-invasive laser myography (LMG)
RU2100787C1 (en) 1995-03-01 1997-12-27 Геликонов Валентин Михайлович Fibre-optical interferometer and fiber-optical piezoelectric transducer
US5526338A (en) 1995-03-10 1996-06-11 Yeda Research & Development Co. Ltd. Method and apparatus for storage and retrieval with multilayer optical disks
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US5735276A (en) 1995-03-21 1998-04-07 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
CA2215975A1 (en) 1995-03-24 1996-10-03 Optiscan Pty. Ltd. Optical fibre confocal imager with variable near-confocal control
US5565983A (en) 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5621830A (en) 1995-06-07 1997-04-15 Smith & Nephew Dyonics Inc. Rotatable fiber optic joint
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
WO1997001167A1 (en) 1995-06-21 1997-01-09 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
ATA107495A (en) 1995-06-23 1996-06-15 Fercher Adolf Friedrich Dr COHERENCE BIOMETRY AND TOMOGRAPHY WITH DYNAMIC COHERENT FOCUS
AU1130797A (en) 1995-08-24 1997-03-19 Purdue Research Foundation Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media
US6016197A (en) 1995-08-25 2000-01-18 Ceramoptec Industries Inc. Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
FR2738343B1 (en) 1995-08-30 1997-10-24 Cohen Sabban Joseph OPTICAL MICROSTRATIGRAPHY DEVICE
US6567582B1 (en) * 1995-08-31 2003-05-20 Biolase Tech Inc Fiber tip fluid output device
ATE221338T1 (en) 1995-09-20 2002-08-15 Texas Heart Inst YINDICATION OF THERMAL DISCONTINUITY ON VESSEL WALLS
US6763261B2 (en) 1995-09-20 2004-07-13 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
DE19542955C2 (en) 1995-11-17 1999-02-18 Schwind Gmbh & Co Kg Herbert endoscope
US5719399A (en) 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
JP3699761B2 (en) * 1995-12-26 2005-09-28 オリンパス株式会社 Epifluorescence microscope
US5748318A (en) * 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5642194A (en) * 1996-02-05 1997-06-24 The Regents Of The University Of California White light velocity interferometer
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
ATA84696A (en) 1996-05-14 1998-03-15 Adolf Friedrich Dr Fercher METHOD AND ARRANGEMENTS FOR INCREASING CONTRAST IN OPTICAL COHERENCE TOMOGRAPHY
US6020963A (en) * 1996-06-04 2000-02-01 Northeastern University Optical quadrature Interferometer
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US5842995A (en) 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US6245026B1 (en) * 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US5840075A (en) 1996-08-23 1998-11-24 Eclipse Surgical Technologies, Inc. Dual laser device for transmyocardial revascularization procedures
US6396941B1 (en) * 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US6544193B2 (en) * 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
JPH1090603A (en) * 1996-09-18 1998-04-10 Olympus Optical Co Ltd Endscopic optical system
US5801831A (en) 1996-09-20 1998-09-01 Institute For Space And Terrestrial Science Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
EP0928433A1 (en) * 1996-09-27 1999-07-14 Vincent Lauer Microscope generating a three-dimensional representation of an object
DE19640495C2 (en) 1996-10-01 1999-12-16 Leica Microsystems Device for confocal surface measurement
US5843052A (en) 1996-10-04 1998-12-01 Benja-Athon; Anuthep Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
US5752518A (en) * 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US6044288A (en) 1996-11-08 2000-03-28 Imaging Diagnostics Systems, Inc. Apparatus and method for determining the perimeter of the surface of an object being scanned
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US6249630B1 (en) * 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US5760901A (en) 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
US5801826A (en) 1997-02-18 1998-09-01 Williams Family Trust B Spectrometric device and method for recognizing atomic and molecular signatures
US5836877A (en) 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US6010449A (en) * 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
CA2283949A1 (en) 1997-03-13 1998-09-17 Haishan Zeng Methods and apparatus for detecting the rejection of transplanted tissue
US6078047A (en) * 1997-03-14 2000-06-20 Lucent Technologies Inc. Method and apparatus for terahertz tomographic imaging
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US5887009A (en) 1997-05-22 1999-03-23 Optical Biopsy Technologies, Inc. Confocal optical scanning system employing a fiber laser
AU7711498A (en) 1997-06-02 1998-12-21 Joseph A. Izatt Doppler flow imaging using optical coherence tomography
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US6208415B1 (en) 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
US5920390A (en) 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
US5892583A (en) 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US6014214A (en) 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5955737A (en) 1997-10-27 1999-09-21 Systems & Processes Engineering Corporation Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
US6037579A (en) * 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6107048A (en) 1997-11-20 2000-08-22 Medical College Of Georgia Research Institute, Inc. Method of detecting and grading dysplasia in epithelial tissue
GB2349730B (en) * 1998-01-28 2003-04-09 Ht Medical Systems Inc Interface device and method for interfacing instruments to medical procedure simulation system
US6165170A (en) 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
JP4709969B2 (en) 1998-02-26 2011-06-29 ザ ジェネラル ホスピタル コーポレイション Confocal microscopy using multispectral coding
US6048742A (en) 1998-02-26 2000-04-11 The United States Of America As Represented By The Secretary Of The Air Force Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
US6134033A (en) 1998-02-26 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
US6831781B2 (en) 1998-02-26 2004-12-14 The General Hospital Corporation Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US6174291B1 (en) 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6066102A (en) 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6151522A (en) 1998-03-16 2000-11-21 The Research Foundation Of Cuny Method and system for examining biological materials using low power CW excitation raman spectroscopy
US6384915B1 (en) 1998-03-30 2002-05-07 The Regents Of The University Of California Catheter guided by optical coherence domain reflectometry
DE19814057B4 (en) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Arrangement for optical coherence tomography and coherence topography
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
US6996549B2 (en) * 1998-05-01 2006-02-07 Health Discovery Corporation Computer-aided image analysis
JPH11326826A (en) 1998-05-13 1999-11-26 Sony Corp Illuminating method and illuminator
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
US5995223A (en) 1998-06-01 1999-11-30 Power; Joan Fleurette Apparatus for rapid phase imaging interferometry and method therefor
JPH11352409A (en) 1998-06-05 1999-12-24 Olympus Optical Co Ltd Fluorescence detector
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
EP1100392B1 (en) 1998-07-15 2009-02-25 Corazon Technologies, Inc. devices for reducing the mineral content of vascular calcified lesions
US6166373A (en) 1998-07-21 2000-12-26 The Institute For Technology Development Focal plane scanner with reciprocating spatial window
AU6417599A (en) 1998-10-08 2000-04-26 University Of Kentucky Research Foundation, The Methods and apparatus for (in vivo) identification and characterization of vulnerable atherosclerotic plaques
US6274871B1 (en) 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US6324419B1 (en) 1998-10-27 2001-11-27 Nejat Guzelsu Apparatus and method for non-invasive measurement of stretch
US6516014B1 (en) * 1998-11-13 2003-02-04 The Research And Development Institute, Inc. Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
DE69932485T2 (en) 1998-11-20 2007-01-11 Fuji Photo Film Co. Ltd., Minamiashigara Blood vessel imaging system
US5975697A (en) 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
US6191862B1 (en) 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6272376B1 (en) 1999-01-22 2001-08-07 Cedars-Sinai Medical Center Time-resolved, laser-induced fluorescence for the characterization of organic material
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6615072B1 (en) 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6185271B1 (en) 1999-02-16 2001-02-06 Richard Estyn Kinsinger Helical computed tomography with feedback scan control
DE19908883A1 (en) 1999-03-02 2000-09-07 Rainer Heintzmann Process for increasing the resolution of optical imaging
JP3492543B2 (en) * 1999-03-15 2004-02-03 金子工業有限会社 Injection needle and its manufacturing method
US6859275B2 (en) 1999-04-09 2005-02-22 Plain Sight Systems, Inc. System and method for encoded spatio-spectral information processing
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
US6353693B1 (en) 1999-05-31 2002-03-05 Sanyo Electric Co., Ltd. Optical communication device and slip ring unit for an electronic component-mounting apparatus
US6993170B2 (en) 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
US6611833B1 (en) 1999-06-23 2003-08-26 Tissueinformatics, Inc. Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
US6208887B1 (en) 1999-06-24 2001-03-27 Richard H. Clarke Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions
US7426409B2 (en) 1999-06-25 2008-09-16 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
GB9915082D0 (en) 1999-06-28 1999-08-25 Univ London Optical fibre probe
US6359692B1 (en) 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
JP4624618B2 (en) 1999-07-30 2011-02-02 ボストン サイエンティフィック リミテッド Rotation / translation drive coupling of catheter assembly
JP2001046321A (en) 1999-08-09 2001-02-20 Asahi Optical Co Ltd Endoscope device
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
JP3869589B2 (en) 1999-09-02 2007-01-17 ペンタックス株式会社 Fiber bundle and endoscope apparatus
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US6198956B1 (en) 1999-09-30 2001-03-06 Oti Ophthalmic Technologies Inc. High speed sector scanning apparatus having digital electronic control
US6308092B1 (en) 1999-10-13 2001-10-23 C. R. Bard Inc. Optical fiber tissue localization device
US6393312B1 (en) 1999-10-13 2002-05-21 C. R. Bard, Inc. Connector for coupling an optical fiber tissue localization device to a light source
US6538817B1 (en) * 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
JP2001125009A (en) 1999-10-28 2001-05-11 Asahi Optical Co Ltd Endoscope
CN1409818A (en) 1999-11-19 2003-04-09 乔宾伊冯公司 Compact spectrofluorometer
ATE263356T1 (en) 1999-11-24 2004-04-15 Haag Ag Streit METHOD AND DEVICE FOR MEASURING OPTICAL PROPERTIES OF AT LEAST TWO DISTANCED AREAS IN A TRANSPARENT AND/OR DIFFUSIVE OBJECT
US7236637B2 (en) 1999-11-24 2007-06-26 Ge Medical Systems Information Technologies, Inc. Method and apparatus for transmission and display of a compressed digitized image
US6738144B1 (en) * 1999-12-17 2004-05-18 University Of Central Florida Non-invasive method and low-coherence apparatus system analysis and process control
US6680780B1 (en) 1999-12-23 2004-01-20 Agere Systems, Inc. Interferometric probe stabilization relative to subject movement
US6445485B1 (en) 2000-01-21 2002-09-03 At&T Corp. Micro-machine polarization-state controller
CA2398278C (en) 2000-01-27 2012-05-15 National Research Council Of Canada Visible-near infrared spectroscopy in burn injury assessment
US6475210B1 (en) 2000-02-11 2002-11-05 Medventure Technology Corp Light treatment of vulnerable atherosclerosis plaque
US6556305B1 (en) 2000-02-17 2003-04-29 Veeco Instruments, Inc. Pulsed source scanning interferometer
US6751490B2 (en) 2000-03-01 2004-06-15 The Board Of Regents Of The University Of Texas System Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
US6687013B2 (en) 2000-03-28 2004-02-03 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus
WO2001072215A1 (en) 2000-03-28 2001-10-04 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US6567585B2 (en) 2000-04-04 2003-05-20 Optiscan Pty Ltd Z sharpening for fibre confocal microscopes
US6692430B2 (en) * 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
EP1299057A2 (en) * 2000-04-27 2003-04-09 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
WO2001082786A2 (en) 2000-05-03 2001-11-08 Flock Stephen T Optical imaging of subsurface anatomical structures and biomolecules
US6441959B1 (en) 2000-05-19 2002-08-27 Avanex Corporation Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
US6301048B1 (en) 2000-05-19 2001-10-09 Avanex Corporation Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
JP4460117B2 (en) 2000-06-29 2010-05-12 独立行政法人理化学研究所 Grism
US6757467B1 (en) * 2000-07-25 2004-06-29 Optical Air Data Systems, Lp Optical fiber system
US6441356B1 (en) * 2000-07-28 2002-08-27 Optical Biopsy Technologies Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
US6882432B2 (en) 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
US6972894B2 (en) 2000-08-11 2005-12-06 Crystal Fibre A/S Optical wavelength converter
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
DE10042840A1 (en) * 2000-08-30 2002-03-14 Leica Microsystems Device and method for exciting fluorescence microscope markers in multiphoton scanning microscopy
US6459487B1 (en) 2000-09-05 2002-10-01 Gang Paul Chen System and method for fabricating components of precise optical path length
ATE454845T1 (en) 2000-10-30 2010-01-15 Gen Hospital Corp OPTICAL SYSTEMS FOR TISSUE ANALYSIS
JP3842101B2 (en) 2000-10-31 2006-11-08 富士写真フイルム株式会社 Endoscope device
US6687036B2 (en) 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
AU2002216035A1 (en) * 2000-11-13 2002-05-21 Gnothis Holding Sa Detection of nucleic acid polymorphisms
US6665075B2 (en) 2000-11-14 2003-12-16 Wm. Marshurice University Interferometric imaging system and method
DE10057539B4 (en) 2000-11-20 2008-06-12 Robert Bosch Gmbh Interferometric measuring device
US6558324B1 (en) 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US7027633B2 (en) * 2000-11-30 2006-04-11 Foran David J Collaborative diagnostic systems
JP4786027B2 (en) 2000-12-08 2011-10-05 オリンパス株式会社 Optical system and optical apparatus
US6501878B2 (en) 2000-12-14 2002-12-31 Nortel Networks Limited Optical fiber termination
US6687007B1 (en) 2000-12-14 2004-02-03 Kestrel Corporation Common path interferometer for spectral image generation
CA2433022C (en) 2000-12-28 2016-12-06 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic emr treatment of the skin
US7230708B2 (en) * 2000-12-28 2007-06-12 Dmitri Olegovich Lapotko Method and device for photothermal examination of microinhomogeneities
EP1221581A1 (en) 2001-01-04 2002-07-10 Universität Stuttgart Interferometer
CA2433797A1 (en) 2001-01-11 2002-07-18 The Johns Hopkins University Assessment of tooth structure using laser based ultrasonics
US7177491B2 (en) * 2001-01-12 2007-02-13 Board Of Regents The University Of Texas System Fiber-based optical low coherence tomography
US6697652B2 (en) * 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
US7826059B2 (en) 2001-01-22 2010-11-02 Roth Jonathan E Method and apparatus for polarization-sensitive optical coherence tomography
US20020140942A1 (en) 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
US6654127B2 (en) * 2001-03-01 2003-11-25 Carl Zeiss Ophthalmic Systems, Inc. Optical delay line
US6721094B1 (en) 2001-03-05 2004-04-13 Sandia Corporation Long working distance interference microscope
IL142773A (en) 2001-03-08 2007-10-31 Xtellus Inc Fiber optical attenuator
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US6552796B2 (en) 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US7139598B2 (en) 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
US20020158211A1 (en) 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
DE10118760A1 (en) 2001-04-17 2002-10-31 Med Laserzentrum Luebeck Gmbh Procedure for determining the runtime distribution and arrangement
EP2333521B1 (en) 2001-04-30 2019-12-04 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US6701181B2 (en) * 2001-05-31 2004-03-02 Infraredx, Inc. Multi-path optical catheter
US6615062B2 (en) 2001-05-31 2003-09-02 Infraredx, Inc. Referencing optical catheters
US20030103995A1 (en) 2001-06-04 2003-06-05 Hamblin Michael R. Detection and therapy of vulnerable plaque with photodynamic compounds
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
DE10129651B4 (en) * 2001-06-15 2010-07-08 Carl Zeiss Jena Gmbh Method for compensation of the dispersion in signals of short-coherence and / or OCT interferometers
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US20040166593A1 (en) 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
US6685885B2 (en) 2001-06-22 2004-02-03 Purdue Research Foundation Bio-optical compact dist system
DE10137530A1 (en) 2001-08-01 2003-02-13 Presens Prec Sensing Gmbh Arrangement and method for multiple fluorescence measurement
AU2002337666A1 (en) 2001-08-03 2003-02-17 Joseph A. Izatt Aspects of basic oct engine technologies for high speed optical coherence tomography and light source and other improvements in oct
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
US6900899B2 (en) * 2001-08-20 2005-05-31 Agilent Technologies, Inc. Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios
EP1293925A1 (en) * 2001-09-18 2003-03-19 Agfa-Gevaert Radiographic scoring method
US6961123B1 (en) * 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
DE10150934A1 (en) * 2001-10-09 2003-04-10 Zeiss Carl Jena Gmbh Depth resolved measurement and imaging of biological samples using laser scanning microscopy, whereby heterodyne detection and optical modulation is used to allow imaging of deep sample regions
US6980299B1 (en) * 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US6658278B2 (en) 2001-10-17 2003-12-02 Terumo Cardiovascular Systems Corporation Steerable infrared imaging catheter having steering fins
US7006231B2 (en) * 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
WO2003052883A2 (en) 2001-12-14 2003-06-26 Agilent Technologies, Inc. Retro-reflecting device in particular for tunable lasers
US7365858B2 (en) 2001-12-18 2008-04-29 Massachusetts Institute Of Technology Systems and methods for phase measurements
US6975891B2 (en) 2001-12-21 2005-12-13 Nir Diagnostics Inc. Raman spectroscopic system with integrating cavity
US6947787B2 (en) 2001-12-21 2005-09-20 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
EP1324051A1 (en) 2001-12-26 2003-07-02 Kevin R. Forrester Motion measuring device
US20080154090A1 (en) 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
US7355716B2 (en) * 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
CN1623085A (en) * 2002-01-24 2005-06-01 通用医疗公司 Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
WO2003069272A1 (en) 2002-02-14 2003-08-21 Imalux Corporation Method for studying an object and an optical interferometer for carrying out said method
US20030165263A1 (en) 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
US7116887B2 (en) 2002-03-19 2006-10-03 Nufern Optical fiber
US7006232B2 (en) * 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US7113818B2 (en) 2002-04-08 2006-09-26 Oti Ophthalmic Technologies Inc. Apparatus for high resolution imaging of moving organs
US7016048B2 (en) 2002-04-09 2006-03-21 The Regents Of The University Of California Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US7503904B2 (en) 2002-04-25 2009-03-17 Cardiac Pacemakers, Inc. Dual balloon telescoping guiding catheter
JP4135551B2 (en) 2002-05-07 2008-08-20 松下電工株式会社 Position sensor
JP3834789B2 (en) * 2002-05-17 2006-10-18 独立行政法人科学技術振興機構 Autonomous ultra-short optical pulse compression, phase compensation, waveform shaping device
US7272252B2 (en) 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
AU2003261158A1 (en) 2002-07-12 2004-02-02 Joe Izatt Method and device for quantitative image correction for optical coherence tomography
US7283247B2 (en) 2002-09-25 2007-10-16 Olympus Corporation Optical probe system
WO2004029566A1 (en) * 2002-09-26 2004-04-08 Bio Techplex Corporation Method and apparatus for screening using a waveform modulated led
US6842254B2 (en) 2002-10-16 2005-01-11 Fiso Technologies Inc. System and method for measuring an optical path difference in a sensing interferometer
US7734332B2 (en) 2002-10-18 2010-06-08 Ariomedica Ltd. Atherectomy system with imaging guidewire
US6847449B2 (en) 2002-11-27 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing speckle in optical coherence tomography images
EP1426799A3 (en) 2002-11-29 2005-05-18 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
DE10260256B9 (en) 2002-12-20 2007-03-01 Carl Zeiss Interferometer system and measuring / machining tool
GB0229734D0 (en) * 2002-12-23 2003-01-29 Qinetiq Ltd Grading oestrogen and progesterone receptors expression
JP4148771B2 (en) 2002-12-27 2008-09-10 株式会社トプコン Laser device for medical machine
US7123363B2 (en) 2003-01-03 2006-10-17 Rose-Hulman Institute Of Technology Speckle pattern analysis method and system
US8054468B2 (en) * 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7075658B2 (en) * 2003-01-24 2006-07-11 Duke University Method for optical coherence tomography imaging with molecular contrast
CN1741768A (en) 2003-01-24 2006-03-01 通用医疗有限公司 System and method for identifying tissue using low-coherence interferometry
US6943892B2 (en) 2003-01-29 2005-09-13 Sarnoff Corporation Instrument having a multi-mode optical element and method
JP4338412B2 (en) 2003-02-24 2009-10-07 Hoya株式会社 Confocal probe and confocal microscope
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
EP1611470B1 (en) 2003-03-31 2015-10-14 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
JP4135550B2 (en) 2003-04-18 2008-08-20 日立電線株式会社 Semiconductor light emitting device
US7110109B2 (en) 2003-04-18 2006-09-19 Ahura Corporation Raman spectroscopy system and method and specimen holder therefor
WO2004098396A2 (en) 2003-05-01 2004-11-18 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
WO2004100068A2 (en) 2003-05-05 2004-11-18 D3D, L.P. Optical coherence tomography imaging
CN101785656B (en) 2003-05-12 2012-08-15 富士胶片株式会社 Balloon controller for a balloon type endoscope
US7376455B2 (en) 2003-05-22 2008-05-20 Scimed Life Systems, Inc. Systems and methods for dynamic optical imaging
US7697145B2 (en) 2003-05-28 2010-04-13 Duke University System for fourier domain optical coherence tomography
EP1644697A4 (en) 2003-05-30 2006-11-29 Univ Duke System and method for low coherence broadband quadrature interferometry
US6943881B2 (en) 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
US7263394B2 (en) 2003-06-04 2007-08-28 Tomophase Corporation Coherence-gated optical glucose monitor
EP2011434A3 (en) * 2003-06-06 2009-03-25 The General Hospital Corporation Process and apparatus for a wavelength tuned light source
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
US20040260182A1 (en) 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
WO2005017495A2 (en) 2003-08-14 2005-02-24 University Of Central Florida Interferometric sensor for characterizing materials
US7539530B2 (en) * 2003-08-22 2009-05-26 Infraredx, Inc. Method and system for spectral examination of vascular walls through blood during cardiac motion
US20050083534A1 (en) 2003-08-28 2005-04-21 Riza Nabeel A. Agile high sensitivity optical sensor
JP2005077964A (en) * 2003-09-03 2005-03-24 Fujitsu Ltd Spectroscope apparatus
US20050057680A1 (en) 2003-09-16 2005-03-17 Agan Martin J. Method and apparatus for controlling integration time in imagers
US20050059894A1 (en) * 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US7935055B2 (en) * 2003-09-19 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US6949072B2 (en) 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US7142835B2 (en) 2003-09-29 2006-11-28 Silicon Laboratories, Inc. Apparatus and method for digital image correction in a receiver
EP2278287B1 (en) 2003-10-27 2016-09-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
DE10351319B4 (en) 2003-10-31 2005-10-20 Med Laserzentrum Luebeck Gmbh Interferometer for optical coherence tomography
US7130320B2 (en) 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
WO2005054780A1 (en) 2003-11-28 2005-06-16 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
DE10358735B4 (en) 2003-12-15 2011-04-21 Siemens Ag Catheter device comprising a catheter, in particular an intravascular catheter
WO2005082225A1 (en) 2004-02-27 2005-09-09 Optiscan Pty Ltd Optical element
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US7190464B2 (en) 2004-05-14 2007-03-13 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
JP4750786B2 (en) * 2004-05-29 2011-08-17 ザ ジェネラル ホスピタル コーポレイション Chromatic dispersion compensation process, system and software configuration using refractive layer in optical coherence tomography (OCT) imaging
US7447408B2 (en) 2004-07-02 2008-11-04 The General Hospital Corproation Imaging system and related techniques
KR101269455B1 (en) 2004-09-10 2013-05-30 더 제너럴 하스피탈 코포레이션 System and method for optical coherence imaging
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
US7113625B2 (en) 2004-10-01 2006-09-26 U.S. Pathology Labs, Inc. System and method for image analysis of slides
SE0402435L (en) 2004-10-08 2006-04-09 Trajan Badju Process and system for generating three-dimensional images
US20080007734A1 (en) * 2004-10-29 2008-01-10 The General Hospital Corporation System and method for providing Jones matrix-based analysis to determine non-depolarizing polarization parameters using polarization-sensitive optical coherence tomography
US7382949B2 (en) * 2004-11-02 2008-06-03 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
US7417740B2 (en) * 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
GB0426609D0 (en) 2004-12-03 2005-01-05 Ic Innovations Ltd Analysis
JP2006162366A (en) 2004-12-06 2006-06-22 Fujinon Corp Optical tomographic imaging system
US7450242B2 (en) * 2004-12-10 2008-11-11 Fujifilm Corporation Optical tomography apparatus
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US7342659B2 (en) * 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
US7330270B2 (en) * 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
HU227859B1 (en) 2005-01-27 2012-05-02 E Szilveszter Vizi Real-time 3d nonlinear microscope measuring system and its application
US7267494B2 (en) 2005-02-01 2007-09-11 Finisar Corporation Fiber stub for cladding mode coupling reduction
US7860555B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue visualization and manipulation system
US7664300B2 (en) * 2005-02-03 2010-02-16 Sti Medical Systems, Llc Uterine cervical cancer computer-aided-diagnosis (CAD)
EP1910996A1 (en) * 2005-02-23 2008-04-16 Lyncee Tec S.A. Wave front sensing method and apparatus
JP4628820B2 (en) 2005-02-25 2011-02-09 サンテック株式会社 Wavelength scanning fiber laser light source
US7530948B2 (en) * 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
JP2008538612A (en) * 2005-04-22 2008-10-30 ザ ジェネラル ホスピタル コーポレイション Configuration, system, and method capable of providing spectral domain polarization sensitive optical coherence tomography
US9599611B2 (en) * 2005-04-25 2017-03-21 Trustees Of Boston University Structured substrates for optical surface profiling
WO2006124860A1 (en) 2005-05-13 2006-11-23 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
JP2008542758A (en) 2005-05-31 2008-11-27 ザ ジェネラル ホスピタル コーポレイション System, method and apparatus capable of using spectrally encoded heterodyne interferometry for imaging
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
JP4376837B2 (en) 2005-08-05 2009-12-02 サンテック株式会社 Wavelength scanning laser light source
US7668342B2 (en) 2005-09-09 2010-02-23 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
KR100743591B1 (en) 2005-09-23 2007-07-27 한국과학기술원 Confocal Self-Interference Microscopy Which Excluding Side Lobes
US7872759B2 (en) 2005-09-29 2011-01-18 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US7400410B2 (en) * 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
US7545504B2 (en) * 2005-10-07 2009-06-09 Biotigen, Inc. Imaging systems using unpolarized light and related methods and controllers
EP2950065A1 (en) 2005-10-11 2015-12-02 Duke University Method for fiber-based endoscopic angle-resolved low coherence interferometry
US7636168B2 (en) 2005-10-11 2009-12-22 Zygo Corporation Interferometry method and system including spectral decomposition
US7408649B2 (en) * 2005-10-26 2008-08-05 Kla-Tencor Technologies Corporation Method and apparatus for optically analyzing a surface
JP5028007B2 (en) * 2005-12-01 2012-09-19 ラピスセミコンダクタ株式会社 Nonvolatile storage device and writing method thereof
WO2007084903A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements
WO2007084945A1 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Systems and methods for performing rapid fluorescense lifetime, excitation and emission spectral measurements
WO2007084995A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
GB0601183D0 (en) 2006-01-20 2006-03-01 Perkinelmer Ltd Improvements in and relating to imaging
JP2007271761A (en) 2006-03-30 2007-10-18 Fujitsu Ltd Spectrometer and wavelength dispersion controller
WO2007118129A1 (en) 2006-04-05 2007-10-18 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US7719692B2 (en) * 2006-04-28 2010-05-18 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (OCT) using automatic dispersion compensation
WO2007133964A2 (en) * 2006-05-12 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7599074B2 (en) 2006-06-19 2009-10-06 The Board Of Trustees Of The Leland Stanford Junior University Grating angle magnification enhanced angular sensor and scanner
US20070291277A1 (en) 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
US7496220B2 (en) 2006-08-28 2009-02-24 Thermo Electron Scientific Instruments Llc Spectroscopic microscopy with image-driven analysis
US8838213B2 (en) * 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
EP2082463B1 (en) * 2006-10-26 2019-05-15 Cornell Research Foundation, Inc. A system and method for producing optical pulses of a desired wavelength using cherenkov radiation in higher-order mode fibers
US20080204762A1 (en) * 2007-01-17 2008-08-28 Duke University Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets
JP5192247B2 (en) 2008-01-29 2013-05-08 並木精密宝石株式会社 OCT probe
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
US8184298B2 (en) 2008-05-21 2012-05-22 The Board Of Trustees Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
US8133127B1 (en) * 2008-07-21 2012-03-13 Synder Terrance W Sports training device and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
US20030025917A1 (en) 2001-07-18 2003-02-06 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
WO2003105678A2 (en) 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DE BOER, J.F. ET AL.: "Stable Carrier Generation and Phase-Resolved Digital Data Processing in Optical Coherence Tomography", APPLIED OPTICS, vol. 40, no. 31, 2001, pages 5787 - 5790, XP007903890, DOI: doi:10.1364/AO.40.005787
FERCHER, A.F. ET AL.: "Dispersion Compensation For Optical Coherence Tomography Depth-Scan Signals By A Numerical Technique", OPTICS COMMUNICATIONS, vol. 204, no. 1-6, 2002, pages 67 - 74, XP004347576, DOI: doi:10.1016/S0030-4018(02)01137-9
JOSHUA, FOX ET AL.: "Measuring Primate RNFL Thickness with OCT", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 7, no. 6, 1 November 2001 (2001-11-01)
MARKS, D.L. ET AL.: "Autofocus Algorithm for Dispersion Correction in Optical Coherence Tomography", APPLIED OPTICS, vol. 42, no. 16, 2003, pages 3038 - 3046, XP055187686, DOI: doi:10.1364/AO.42.003038
MARKS, D.L. ET AL.: "Digital Algorithm for Dispersion Correction in Optical Coherence Tomography for Homogeneous and Stratified Media", APPLIED OPTICS, vol. 42, no. 2, 2003, pages 204 - 217
See also references of EP1754016A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127395A3 (en) * 2006-04-28 2008-01-10 Bioptigen Inc Methods, systems and computer program products for optical coherence tomography (oct) using automatic dispersion compensation
WO2007127395A2 (en) * 2006-04-28 2007-11-08 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (oct) using automatic dispersion compensation
US7719692B2 (en) 2006-04-28 2010-05-18 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (OCT) using automatic dispersion compensation
EP1872713A1 (en) * 2006-06-28 2008-01-02 Kabushiki Kaisha Topcon A fundus observation device and a program controlling the same
US7905597B2 (en) 2006-06-28 2011-03-15 Kabushiki Kaisha Topcon Fundus observation device and a program controlling the same
WO2008088868A2 (en) * 2007-01-19 2008-07-24 Bioptigen, Inc. Methods, systems and computer program products for processing images generated using fourier domain optical coherence tomography (fdoct)
WO2008088868A3 (en) * 2007-01-19 2008-12-31 Bioptigen Inc Methods, systems and computer program products for processing images generated using fourier domain optical coherence tomography (fdoct)
US9404730B2 (en) 2007-01-19 2016-08-02 Bioptigen, Inc. Methods for processing images generated using fourier domain optical coherence tomography (FDOCT)
US8977023B2 (en) 2007-01-19 2015-03-10 Bioptigen, Inc. Methods, systems and computer program products for processing images generated using Fourier domain optical coherence tomography (FDOCT)
US8644572B2 (en) 2007-01-19 2014-02-04 Bioptigen, Inc. Systems for processing images generated using fourier domain optical coherence tomography (FDOCT)
US8401257B2 (en) 2007-01-19 2013-03-19 Bioptigen, Inc. Methods, systems and computer program products for processing images generated using Fourier domain optical coherence tomography (FDOCT)
US8180131B2 (en) 2007-05-04 2012-05-15 Bioptigen, Inc. Methods, systems and computer program products for mixed-density optical coherence tomography (OCT) imaging
EP2153771A1 (en) * 2007-05-24 2010-02-17 Kabushiki Kaisha TOPCON Eye fundus observation device and its control program
EP2153771A4 (en) * 2007-05-24 2011-02-09 Topcon Corp Eye fundus observation device and its control program
US8403482B2 (en) 2007-05-24 2013-03-26 Kabushiki Kaisha Topcon Fundus oculi observation device and program controlling the same
US7954946B2 (en) 2008-07-04 2011-06-07 Nidek Co., Ltd. Optical tomographic image photographing apparatus
US7880895B2 (en) 2008-07-04 2011-02-01 Nidek Co., Ltd. Optical tomographic image photographing apparatus
EP2141447A1 (en) * 2008-07-04 2010-01-06 Nidek Co., Ltd Optical tomographic image photographing apparatus
US8094292B2 (en) 2008-09-17 2012-01-10 Institut National De La Recherche Scientifique Cross-chirped interferometry system and method for light detection and ranging
WO2010031163A1 (en) * 2008-09-17 2010-03-25 Institut National De La Recherche Scientifique Cross-chirped interferometry system and method for light detection and ranging
WO2012123122A1 (en) 2011-03-15 2012-09-20 Medlumics, S.L. Integrated system for active equalization of chromatic dispersion
US9310563B2 (en) 2011-03-15 2016-04-12 Medlumics S.L. Integrated system for active equalization of chromatic dispersion
EP3882606A1 (en) 2011-03-15 2021-09-22 Medlumics S.L. Integrated system for active equalization of chromatic dispersion
WO2019168982A1 (en) * 2018-02-28 2019-09-06 Zygo Corporation Metrology of multi-layer stacks
US10591284B2 (en) 2018-02-28 2020-03-17 Zygo Corporation Metrology of multi-layer stacks

Also Published As

Publication number Publication date
US20090196477A1 (en) 2009-08-06
AU2004320269B2 (en) 2011-07-21
AU2004320269A1 (en) 2005-12-15
US8018598B2 (en) 2011-09-13
JP2008501118A (en) 2008-01-17
KR20070062456A (en) 2007-06-15
JP4750786B2 (en) 2011-08-17
EP1754016A4 (en) 2012-11-07
WO2005117534A3 (en) 2006-11-30
KR101239250B1 (en) 2013-03-05
EP1754016A2 (en) 2007-02-21
EP1754016B1 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
AU2004320269B2 (en) Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
EP1782020B1 (en) Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
JP6523349B2 (en) Apparatus for swept source optical coherence domain reflectometry
Ju et al. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging
US9492078B2 (en) Extended range imaging
US8472028B2 (en) Optical coherence tomographic apparatus
WO2012107307A1 (en) Optimized device for swept source optical coherence domain reflectometry and tomography
JP6491540B2 (en) Optical coherence tomography and control method thereof
WO2009059034A1 (en) System and method for cladding mode detection
Poddar et al. In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography
Kim et al. Complex conjugate artifact-free adaptive optics optical coherence tomography of in vivo human optic nerve head
Ding et al. A new spectral calibration method for Fourier domain optical coherence tomography
Grajciar et al. High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry
Huang et al. Physical compensation method for dispersion of multiple materials in swept source optical coherence tomography
EP4215103A1 (en) Imaging apparatus and method for in vivo full-field interference imaging of a sample
Duan et al. A novel spectral calibration method in spectral domain optical coherence tomography
Ma et al. Spectral optical coherence tomography using three-phase shifting method
Kolbitsch et al. Quantitative volume angiograms of human retinal blood flow using histogram-based filtering

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004320269

Country of ref document: AU

Ref document number: 2007515029

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004822169

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004320269

Country of ref document: AU

Date of ref document: 20040723

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020067027699

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004822169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11569790

Country of ref document: US