WO2005119136A1 - Line focus heliostat and operating method thereof - Google Patents

Line focus heliostat and operating method thereof Download PDF

Info

Publication number
WO2005119136A1
WO2005119136A1 PCT/ES2005/000297 ES2005000297W WO2005119136A1 WO 2005119136 A1 WO2005119136 A1 WO 2005119136A1 ES 2005000297 W ES2005000297 W ES 2005000297W WO 2005119136 A1 WO2005119136 A1 WO 2005119136A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
axis
plane
primary
cylindrical
Prior art date
Application number
PCT/ES2005/000297
Other languages
Spanish (es)
French (fr)
Inventor
Rafael Monterreal Espinosa
Original Assignee
Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas (Ciemat)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas (Ciemat) filed Critical Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas (Ciemat)
Publication of WO2005119136A1 publication Critical patent/WO2005119136A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/455Horizontal primary axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to the realization of a new heliostat of cylindrical optics and pseudo-horizontal mount, whose task is to distribute and stabilize the sunlight reflected on its surface along a defined direction on a certain target throughout the day. It is this direction of concentration of solar radiation that results from projecting the central generatrix of the cylindrical optics of the heliostat on the surface of the target.
  • the field of application of the invention would be the central receiver thermo-solar plants whose design demands that the distribution of solar energy reflected by the heliostat field follow a preferred direction on said receiver.
  • thermo-solar power plants of the tower type, or central receiver base their operation strategy on the contribution of heat to a certain conventional thermodynamic cycle, by concentrating solar radiation by a high number of heliostats.
  • functional characteristics of heliostats is their ability to concentrate solar radiation in the receiver or boiler, for which they are provided with a reflective surface of spherical geometry and mechanical mount of the type called horizontal.
  • the design parameters of a heliostat such as geometry, size, control, or type of mechanism of operation, they have traditionally been imposed by essentially economic criteria. It is striking that the design of the heliostat has not come so far, in any of its parameters, conditioned by the type of solar receiver on which it must distribute the radiant energy it reflects from the Sun. However, the large solar receptors they have a geometry in which at least one of its dimensions is much larger than the others, such as tubular or volumetric cylindrical receivers.
  • - Solar energy radiant energy that comes from the Sun and that reaches the Earth's surface with a characteristic intensity and spectral composition.
  • - Heliostat Mirror of great focal length, equipped with movement in two axes and whose mission is to reflect, concentrate and maintain static the image of the Sun in a certain place throughout the day.
  • Cylindrical optics Reflective surface of revolution obtained by rotating a segment of arbitrary length around an axis parallel to it, called the axis of revolution of cylindrical optics.
  • Cylindrical heliostat heliostat provided with cylindrical optics.
  • Geometric axis of a cylindrical heliostat It is the axis of revolution of its cylindrical optics.
  • Optical axis of a cylindrical heliostat virtual straight line that passes through the centers of the cylindrical optics, white and Sun, assumptions aligned, and cuts orthogonally to the geometric axis of the heliostat.
  • - Central plane of a cylindrical heliostat plane containing the geometric and optical axes.
  • - Central generator of a cylindrical heliostat Of all the generatrices of the cylindrical heliostat, that which is contained in its central plane.
  • Main incident ray the one that comes from the center of the solar disk and cuts at the midpoint of the central generatrix of the heliostat optics.
  • - Reflected main beam the one that comes from the midpoint of the central generatrix of the heliostat optic and cuts at the midpoint of the target.
  • - Reflection plane The one that contains the main incident beam and the main reflected beam.
  • Main plane object of a cylindrical heliostat Plane containing the central generatrix and the main incident beam.
  • - Focal line of a cylindrical heliostat Geometric place of intersection with the central plane of the solar rays reflected on its optical surface, assuming the incidence paths of said rays parallel to the optical axis. In incidence not parallel to the optical axis, the focal line moves to the main image plane and modifies its genuine characteristics due to astigmatism, becoming a pseudo-focal line.
  • Primary axis of a cylindrical heliostat Axis of rotation of the heliostat coinciding with its central generatrix.
  • - Horizontal mount Mechanical device of orientation in two axes of a heliostat with respect to a topocentric system of horizontal coordinates, called azimuth and height.
  • the fundamental plane is the horizon of the observer and the fundamental point is the true North.
  • the orientation of the heliostat depending on the diurnal evolution of the Sun in this same coordinate system, is achieved by azimuthal turns (horizon arches from the fundamental point) and height or zeniths (orthogonal arcs to the horizon plane towards the zenith of the observer).
  • the mechanical axis of azimuthal rotation is orthogonal to the plane of the horizon and of fixed orientation.
  • the axis of zenith rotation is parallel to the plane of the horizon and of variable orientation, due to the existence of a mechanical ligation between both movements, which causes the "dragging" of the zenith axis each time the azimuthal rotation occurs.
  • - Pseudo-horizontal mount Variant of the horizontal mount, whereby the orientation of the heliostat is achieved through turns around the primary and secondary axes of the heliostat, orthogonal to each other but arbitrarily oriented with respect to the plane of the horizon, and assuming the position of the Sun given in horizontal coordinates.
  • the position of the mechanical axis of rotation The zenith is fixed and its orientation no longer refers to the plane of the horizon, but to the main image plane of the heliostat, with respect to which it must necessarily be orthogonal.
  • the mechanical axis of azimuthal rotation must be orthogonal to the aforementioned zenith axis and, therefore, is fully contained in the main image plane of the heliostat, its orientation being variable in said plane due to the existence of a mechanical bond between both movements, which causes the "drag" of the azimuthal axis every time the zenith turn occurs.
  • Heliostat field Also called primary concentrator, it is a set of heliostats arranged in a limited terrain and whose mission is the contribution of radiant energy to a target or receiver.
  • - Solar receiver Device that intercepts and absorbs the solar radiation provided by a field of heliostats, in order to transfer it through a heat exchanger to the power block of the plant.
  • thermo-solar plant electric power production plant that bases its operation strategy on the heat contribution to a certain conventional thermodynamic cycle, by concentrating solar radiation by a high number of heliostats on a single receiver .
  • thermo-solar plant Operation procedure of a thermo-solar plant that consists of defining a set of coordinates on the receiver to which each of the heliostats of the field must aim to achieve the distribution of energy required on it.
  • Dynamic aiming strategy It is an aiming strategy in which the coordinates on the receiver change over time, following certain control criteria.
  • the confined focal line cylindrical heliostat needs two additional requirements, which are immobility and specific axis orientation. Secondary. Said axis, as such, does not exist in any of the reviewed heliostats, since all are spherical.
  • Table 2 shows that only the HELLAS spherical heliostat has a fixed zenith mechanical axis with a non-specific orientation for each heliostat, but a general East-West for all heliostats in the field; Since the secondary axis as such does not exist, its immobility responds only to mechanical criteria, without impact on the optical performance, which is the object of the present invention.
  • the linear focus concentrating device described in Anderson's US Pat. No. 3,861, 379 comprises a plurality of rectangular flat reflectors arranged at different angles of inclination to concentrate sunlight on a domestic hot water collector located above and a short distance from the reflectors.
  • the angle of incidence of the reflectors varies simultaneously during the day so that the reflected image of the sun affects the collector at all times. Since high performance is not pursued, the inclination of the device relative to the plane of the sun's apparent movement is fixed. That is to say, the variation in the decline of the sun during the year is not taken into account, with at most two positions, winter and summer, between which it is manually switched.
  • variable geometry optics such as that described in US Pat. No. 4,141,626 of FMC Corporation in which the curvature of the reflective surface of the heliostat is modified during the day. This modification will be maximum during the summer solstice and minimum in the winter solstice, due to the extreme positions (maximum and minimum, respectively) of the azimuth and height of the Sun on the horizon.
  • the cited document uses a certain type of heliostat with a deformable cylindrical reflective surface, which points to a horizontal target, oriented in an East-West direction, the primary axes of said heliostats being parallel thereto, while the secondary axis as such does not exist, and
  • the deformation of the image by astigmatism is compensated by an action on the cylindrical reflective surface, varying its focal length.
  • Maiden solves the problem of In exchange for making the linear target mobile, which implies that it can only be associated with a single reflector, with the consequent limitation of the power absorbed by it.
  • the problem posed is that of the low performance of photoelectric cells as an electrical power generating device.
  • the proposed solution consists in dividing the light spectrum by means of a diffraction groove, making each wavelength segment affect different groups of photoelectric cells specially adapted to each wavelength.
  • a heliostat so constructed and operated that it is capable of following the sun in its daytime movement, maintaining a linear image without a blank on a fixed linear target located at a considerable distance. It is another objective of the present invention to have a heliostat that, fulfilling the above conditions, can be operated by means of its operation in two axes.
  • the main image plane of the heliostat object of the invention must remain motionless in space and contain the linear blank, which can be achieved by combining the following elements: 1. A reflective surface of cylindrical or cylinder optics - Parabolic, interchangeably, that it must be able to rotate around a primary axis coinciding with the central generatrix of the reflective surface. 2. A structure consisting of a mobile support capable of rotating with respect to a secondary axis perpendicular to the primary axis, the primary axis being integral with the mobile support. 3. Specific orientation of the secondary axis, perpendicular to a main image plane, motionless in space, which at all times contains the linear target and the primary axis. 4.
  • a control device we will focus especially on the geometry of the reflective surface, its diurnal orientation, the structure that relates the primary axis and the secondary axis, and the confinement of the focal line.
  • the reflective surface of the heliostat object of the invention has cylindrical or parabolic trough geometry instead of the conventional spherical, which concentrates the solar radiation not on a focal point but on a focal line, of length consistent with the preferred direction dimension of distribution of the intended energy over a certain target.
  • This surface can be of a piece or faceted, in which case the facets are also cylindrical or parabolic trough and with foreseeable focal length that is predictably identical to that of the surrounding surface resulting from aligning them cylindrically.
  • the central generatrix of this reflective surface (faceted or not) must be coincident with the primary axis of the heliostat and, therefore, orthogonal to its secondary axis. For practical purposes it can be admitted that the central generatrix and the primary axis are not exactly coincident if they are parallel and very close and in this sense the word "coincident" will be used in this document.
  • This geometry is to replace the focal point of conventional heliostats with a focal line, parallel by construction to the central generatrix of the cylinder, and whose length, at normal incidence, coincides with its dimension.
  • the result is a distribution of the radiant energy of the Sun reflected by the heliostat along a preferred direction over the target. Daytime orientation of the reflective surface to achieve the aim.
  • the confined focal line cylindrical needs to be oriented in space in order for the rays from the Sun and reflected on its surface to hit the target. This is achieved through the intervention of two drive mechanisms, which rotate said surface a certain angle around the primary and secondary axes, after calculating the solar vector and direction of the beam reflected by a control device. Structure of the set.
  • the special arrangement of the primary and secondary axes just described constitutes a radical change with respect to the arrangement used in conventional heliostats.
  • the primary axis of azimuthal orientation of the reflective surface is vertical and remains motionless in space.
  • Said pedestal is usually constituted by a vertical metal tube, which can accommodate inside the rotating bearings of the primary shaft, which is thus hidden in the pedestal itself.
  • Such an arrangement is absolutely inadequate to meet the condition of confinement on the target of the focal line.
  • the proposed solution is to relate directly to the pedestal not the primary axis but the secondary axis, with which the primary axis of azimuthal movement is freely dragged during the zenithal movement around the secondary axis, which now remains in a fixed orientation in space .
  • Focal line confinement The confinement (immobility) of the focal line of the cylindrical surface described above is achieved by immobilizing the orientation of the secondary axis of the heliostat in its systematic procedure of aiming at a target during the day. This immobilization of the secondary axis also immobilizes the main image plane and, therefore, its intersection with the surface of the target, which is the geometric place where irradiance is distributed (focal line).
  • the position of the focal line on the target depends on the intersection of the main image plane with the target plane, and that the orientation of said main image plane depends on the orientation of the secondary axis of the heliostat, it follows that the orientation from it it can be modified at will by simply orienting (and immobilizing) said secondary axis.
  • the confinement of the focal line i.e.
  • the cylindrical heliostat object of the invention clearly exceeds the conventional spherical heliostat in those applications in which the radiant energy of the Sun reflected on a given receiver needs to be specifically concentrated along a preferred line or direction.
  • the shape of the flow distribution over the receiver is no longer circular or elliptical Gaussian, but will have a Gaussian profile in one direction and straight in the orthogonal direction, which coincides with that of the heliostat focal line.
  • the advantages that derive from this fact are basically: 1. Individual irradiance profile by default of each heliostat on the target coinciding with the design for the entire field, which avoids the construction of the latter by means of a composition of individual Gaussian irradiance profiles (aiming strategy). 2.
  • Figure 1 shows a central solar thermal receiver plant where the heliostat of the invention can be used.
  • Figure 2 represents a detail of the receiver showing the circular image of the sun produced by a conventional heliostat with a spherical reflective surface.
  • Figure 3 represents a detail of the receiver showing the elongated image of the sun produced by a cylindrical reflective surface at noon.
  • Figure 4a shows the image of the sun produced by a cylindrical reflective surface in conventional assembly, in the morning.
  • Figure 4b shows the image of the sun produced by a cylindrical reflective surface in conventional assembly, at noon.
  • Figure 4c shows the elongated image of the sun produced by a cylindrical reflective surface in conventional assembly, in the afternoon.
  • Figure 5a shows the image of the sun produced by a cylindrical reflective surface in the assembly of the invention, in the morning.
  • Figure 5b shows the image of the sun produced by a cylindrical reflective surface in the assembly of the invention, at noon.
  • Figure 5c shows the image of the sun produced by a cylindrical reflective surface in the assembly of the invention, in the afternoon.
  • Figure 6 shows a rear perspective view of the "horizontal" mount of a heliostat with cylindrical reflective surface.
  • Figure 7 shows a rear perspective view of a "pseudo-horizontal" mount of a variant of the heliostat of the invention with cylindrical reflective surface.
  • Figure 8 shows an elevation of the heliostat object of the invention, in general configuration.
  • Figure 9 shows an elevation of the heliostat object of the invention in a preferred embodiment in which the linear blank is arranged vertically and the mobile support is of the fork type.
  • Figure 10 shows an elevation of the heliostat object of the invention in a preferred embodiment in which the linear blank is arranged vertically and the mobile support is straight, giving rise to a configuration of the reflective surface in "clapper”.
  • Figure 1 1 shows a side view of the heliostat of Figure 9.
  • Figure 12 shows a plan view of the heliostat of Figure 9.
  • Figure 13 shows, schematically, the positions of the earth relative to the sun during the solstices.
  • Figure 14 shows, schematically, one of the devices known in the prior art and its arrangement in relation to the apparent path of the sun with respect to the ground plane for solstices and equinoxes
  • Figure 15 shows, schematically in perspective, spatial geometry on which the invention is based.
  • Figure 16 is an elevation of Figure 15.
  • Figure 17a shows, schematically in perspective, the spatial geometry of a conventional mounting heliostat.
  • Figure 17b shows, schematically in perspective, the spatial geometry of a heliostat with the assembly of the invention.
  • Figure 18a shows, schematically in perspective, the azimuthal movement of a conventional mounting heliostat.
  • Figure 18b shows, schematically in perspective, the azimuthal movement of a heliostat with the assembly of the invention.
  • Figure 19a shows, schematically in perspective, the overhead movement of a conventional mounting heliostat.
  • Figure 19b shows, schematically in perspective, the zenith motion of a heliostat with the assembly of the invention.
  • Figures 1 to 7 correspond to the field of application of the invention, prior art and necessity of the invention
  • Figures 8 to 12 correspond to the structural description of the invention
  • Figures 13 to 19 correspond to the explanation of the mode of operation of the invention.
  • the numerical references correspond to the following parts and elements. 1. Reflective surface. 2. Mobile support. 3. Primary axis. 4. Primary drive. 5. Secondary axis. 6. Secondary drive. 7. Pedestal. 8.
  • FIG. 4a In the morning the image will appear in one direction (figure 4a), while in the afternoon the image will choose in the opposite direction (figure 4c). Since the objective is that the image does not choose throughout the day, as shown in Figures 5a, 5b and 5c, we must modify the assembly of the reflective surface.
  • Figure 6 shows the conventional assembly of a heliostat that has been equipped with a cylindrical reflective surface. The image projected on the target corresponds to that represented in figures 4a, 4b and 4c. Note how the primary axis (3) is inserted into the pedestal (7), while the secondary axis (5) is "dragged" along the primary axis (3) itself. We will call such a configuration "7-3-5" according to the numerical references used.
  • Figure 7 shows the new assembly used in the heliostat of the invention, in which the secondary axis (5) is directly related to the pedestal (7), while the primary axis (3) is "dragged" by the own secondary axis (5).
  • the assembly of Figure 7 is functionally correct, it is not very practical from a constructive point of view.
  • the heliostat object of the invention comprises a reflective surface (1), cylindrical or parabolic trough, capable of rotating by means of a primary drive (4) around a primary geometric axis (3) integral with a movable support (2) which, at in turn, it is capable of rotating around a secondary geometric axis (5) perpendicular to the primary geometric axis (3) and that forms an angle of inclination ⁇ with the zenith axis (9), by means of a secondary drive (6).
  • Both drives (4) (6) are governed by a control device (8).
  • the assembly is supported by a pedestal (7) whose design must be such that it allows the movement of the reflective surface (1) and the mobile support (2) without interfering with the pedestal itself (7).
  • the reflective surface (1) is preferably cylindrical or cylindrical-parabolic.
  • the linear target (11) is arranged vertically on a tower (26) so that the focal line, when coinciding with it, will also be vertical, which leads to a arrangement as shown in figures 9, 10, 11, 12, 15 and 16, in which the secondary axis (5) is horizontal and the primary axis (3) is contained in the so-called main image plane (10), vertical .
  • Figure 10 shows a variant of the heliostat of the invention with a single support point of the reflective surface (1), to constitute a "clapper" type configuration as opposed to the "fork” type configuration shown in Figure 9.
  • the primary axis (3) is contained in the main image plane (10), which in turn contains the heliostat focal line, and the linear target (11) .
  • the secondary axis (5) must be perpendicular to the main image plane (10), and therefore horizontal, so that it is defined during the initial assembly of the heliostat, its orientation not depending on the relative position of the heliostat with respect to the target.
  • the sun's rays (12) affect a point on the surface terrestrial with a variable angle of incidence throughout the year. This angle of incidence will be maximum in the summer solstice (position A) and minimum in the winter solstice (position B).
  • the position of the earth (13) for the equinoxes in this figure would correspond to an axis perpendicular to the plane of the same over the position in which the sun has been represented (12).
  • Figure 14 shows, very schematically, the apparent movement of the sun with respect to the ground (16), the apparent plane having been represented in the equinoxes (17), the apparent plane in the summer solstice (18) and the apparent plane in the winter solstice (19).
  • the observer O will see the ortho and sunset of the sun diverted to the north (N) in the summer solstice (V) and diverted to the south (S) in the winter solstice (I), while in the equinoxes the sun it leaves by the east and it is put by the west with an apparent route of 180 degrees.
  • the Anderson solar concentrator as described in US 3,861,379.
  • the set of flat reflectors (27) is arranged perpendicular and centered with respect to the apparent plane in the equinoxes (17), the image of the sun converted into a line will be projected onto the collector (28) only in the equinoxes, suffering for others days of the year a longitudinal displacement on it that will be maximum in solstices. This penalty is the inevitable result of single-axis control, and in the case of the Anderson concentrator it is admissible due to the small focal length "d".
  • the method of operation resides, basically, in governing the two drives (4) (6) in such a way as to ensure that the Radiant energy reflected by the heliostat affects the linear target (11) at all times throughout each day and for every day of the year.
  • the incident main beam (22) and the reflected main beam (23) are in the same reflection plane (24), and the optical axis (25) of the heliostat must also be on the bisector line of both main rays, this bisector is defined as the intersection of the reflection plane (24) with the bisector plane (21) of the main object plane (20) and the main image plane (10).
  • Figure 17a schematically shows a heliostat of cylindrical optics and conventional horizontal mount, of the type shown in Figure 6, in the rest position, with the vertical primary axis, oriented its reflective surface towards the South which is where it is also assumed that the white (the orientation of said surface is fixed by the direction and direction of the normal unit vector ⁇ passing through its center).
  • the central generatrix g of said cylindrical surface is contained in the plane ⁇ of the meridian of the place and is, by construction, normal to the plane of the local astronomical horizon. According to Figure 17a, if we projected said central generatrix in the South direction on a plane ⁇ 'normal to the horizon, the resulting line would remain contained in the meridian of the place.
  • the heliostat Due to the nature of its mechanical mount, the heliostat is oriented in the Euclidean space by means of two rotation mechanisms: a) the azimuth rotation mechanism ⁇ acim , which runs around a vertical axis to the horizon plane, called the primary axis (3), and which normally coincides with the axis of the heliostat pedestal; and b) the zenith mechanism ⁇ c ⁇ n ⁇ that runs around an axis parallel to the plane of the horizon, called the secondary axis (5) and normally coincides with the horizontal support arm of the heliostat.
  • the azimuth rotation mechanism ⁇ acim which runs around a vertical axis to the horizon plane, called the primary axis (3), and which normally coincides with the axis of the heliostat pedestal
  • the zenith mechanism ⁇ c ⁇ n ⁇ that runs around an axis parallel to the plane of the horizon, called the secondary axis (5) and normally coincides with the horizontal support arm of the
  • the heliostat obeying the laws of Geometric Optics - needs to orient itself in this coordinate system to reflect and maintain the image of the Sun on a fixed solar receiver, with an elongated and vertical shape, located on top of a tower throughout the day.
  • the heliostat must necessarily reach the orientation for the correct aim at the fixed target by executing two well-defined turns.
  • the first of these, according to Figure 18a, is the azimuthal rotation ⁇ acim around the primary axis, whose angle of rotation assumes a magnitude w ac ⁇ m .
  • the orientation of the primary axis is not altered with the rotation but, due to a mechanical bond between them, as a consequence of this first rotation the secondary axis leaves its initial orientation and rotates exactly an angle of magnitude w ⁇ c ⁇ m .
  • the family of solar rays reflected in the central generatrix of the reflective surface of the heliostat will project on the base of the tower, still with all its rays contained in the planq ⁇ of the meridian of the place. Since the solar receiver is on top of the tower, the heliostat should now execute the second turn that is still missing to raise the image to the desired point.
  • Figure 19a shows the zenith rotation ⁇ c ⁇ n of magnitude w C ⁇ n that must be executed around the secondary axis to reach the objective.
  • the fundamental question is now: in what position is the central generatrix g of the heliostat found after this second turn? When the orientation of the secondary axis has been altered due to the azimuthal rotation, and now the reflective surface is rotated around it, the central generatrix g bends over the plane of the horizon while also leaving the plane of the meridian of the place.
  • the family of solar rays reflected in the central generatrix of the cylindrical surface will be projected on the solar receiver at the top of the tower, but its rays are no longer fully contained in the plane of the meridian of the place .
  • the heliostat aiming procedure has had as a geometric consequence the removal of both the central generatrix and its projection on the target from the meridian plane and, consequently for optics, that of selecting the focal line on said target, thus losing the requirement of verticality That is, the linear image given by the heliostat adapts to the solar receiver in terms of shape (elongated), but not in terms of to the orientation requirement (vertical).
  • Figure 17b schematically shows a particular case of cylindrical optics heliostat and pseudo-horizontal mount, similar to that of Figure 10, in rest position, with the vertical primary axis, oriented its reflective surface towards the South (the orientation of said surface it is fixed by the direction and sense of the normal unit vector ⁇ that passes through its center).
  • the central generatrix g of said cylindrical surface is contained in the plane ⁇ of the meridian of the place and is, by construction, normal to the plane of the local astronomical horizon.
  • the primary axis (3) which runs around an axis orthogonal to the plane of the horizon, called the primary axis (3) and whose orientation coincides with that of the central generatrix of the heliostat; and b) the zenith mechanism ⁇ c ⁇ n , which runs around an axis parallel to the horizon plane, called the secondary axis (5) and which coincides in this case with the horizontal support arm of the heliostat.
  • the Sun is now somewhere on the horizon plane, so that the heliostat - obeying the laws of Geometric Optics - needs to be oriented in this coordinate system to reflect and maintain the image of the Sun on a fixed solar receiver. , with an elongated and vertical shape, located on top of a tower.
  • the proposed heliostat must necessarily achieve the proper orientation by executing two well-defined turns.
  • the first of them is the azimuth turn whose angle of rotation we assume a magnitude w az . It also follows from the figure that the orientation of the primary axis is not altered with the rotation; also, due to the special mechanical relationship between both axes, the secondary axis does not alter its initial orientation either as a result of the first ⁇ ac i m turn -
  • the family of solar rays reflected in the central generatrix of the reflective surface of the heliostat is going to project on the base of the tower, but with all its rays still contained in the plane ⁇ of the meridian of the place.
  • the result is that the family of solar rays reflected in the central generatrix of the cylindrical reflective surface will be projected on the solar receiver at the top of the tower, but with all its rays contained in the plane of the meridian of the place.
  • the geometric result of the heliostat aiming procedure has been to confine the central generatrix of the reflective cylindrical surface and its projection on the target on the meridian of the site. consequently, the focal line of the optical system remains vertical over it for any solar position. That is, the image given by the heliostat, adapts to the solar receiver both in shape (elongated) and orientation (vertical) for any time of the day.

Abstract

The invention relates to a line focus heliostat and to the operating method thereof. The line focus heliostat comprises a cylindrical or cylindrical-parabolic reflective surface (1) which can rotate around a primary axis (3) that is solidly connected to a mobile support (2) which, in turn, can rotate around a secondary axis (5) that is perpendicular to the primary axis (3). According to the invention, the secondary axis (5) is oriented in a particular manner such as to be perpendicular to a main image plane (10) which contains a fixed linear target (11) and the primary axis (3). The inventive structure and arrangement enable the line focus to be confined to the linear target (11), without the reflection of the light outside of the optical axis shifting same over the course of the day. The movements are obtained using a primary actuating means (4) and a secondary actuating means (6) which are controlled by a control device (8). In the specific case of a vertical linear target (11), the main image plane (10) is also vertical and, as a result, the secondary axis (5) is horizontal.

Description

HELIÓSTATO DE FOCO LINEAL Y MÉTODO DE OPERACIÓN LINEAR FOCUS HELIOSTAT AND OPERATING METHOD
OBJETO Y CAMPO DE APLICACIÓN La presente invención se refiere a la realización de un nuevo helióstato de óptica cilindrica y montura seudo-horizontal, cuyo cometido es el de distribuir y estabilizar la luz solar reflejada en su superficie a lo largo de una dirección definida sobre un determinado blanco a lo largo del día. Esta dirección de concentración de la radiación solar es la que resulta de proyectar la generatriz central de la óptica cilindrica del helióstato sobre la superficie del blanco. El campo de aplicación de la invención sería las plantas termo-solares de receptor central cuyo diseño demande que la distribución de la energía solar reflejada por el campo de helióstatos siga una dirección preferente sobre dicho receptor. Dado que la imagen del Sol dada por un helióstato convencional sobre un blanco es circular, esta distribución direccional de la energía se ha venido logrando tradicionalmente en centrales termo- solares convencionales mediante técnicas de operación basadas en estrategias de apunte sobre grupos de helióstatos. Las centrales eléctricas termo-solares del tipo torre, o receptor central, basan su estrategia de operación en el aporte de calor a un determinado ciclo termodinámico convencional, mediante la concentración de la radiación solar por un elevado número de helióstatos. Entre las características funcionales de los helióstatos se encuentra su capacidad para concentrar la radiación solar en el receptor o caldera, para lo cual se les dota de una superficie reflectante de geometría esférica y montura mecánica del tipo denominado horizontal. Exceptuando algunos requerimientos muy básicos acerca de la calidad óptica de su superficie reflectante, su capacidad de apunte o su factor de ocupación del terreno, el resto de los parámetros de diseño de un helióstato, tales como geometría, tamaño, control, o tipo de mecanismo de accionamiento, han venido impuestos tradicionalmente por criterios esencialmente económicos. Es llamativo el hecho de que el diseño del helióstato no haya venido hasta ahora, en ninguno de sus parámetros, condicionado por el tipo de receptor solar sobre el que ha de distribuir la energía radiante que refleja del Sol. Sin embargo, los grandes receptores solares presentan una geometría en la que al menos una de sus dimensiones es mucho mayor que las otras, tales como receptores cilindricos tubulares o volumétricos. En todos estos proyectos se ha constatado el hecho de que la imagen del Sol generada por helióstatos esféricos es mucho menor que las dimensiones del propio receptor solar, lo cual es un grave inconveniente, ya que la irradiación completa de éste exige apuntar los helióstatos a lo largo de toda su superficie con algún criterio o estrategia determinados, que se encomiendan al sistema de control de apunte del campo de helióstatos. Puesto que ya no se apunta a un solo lugar sobre el receptor, los algoritmos de control básicamente han de dispersar estratégicamente la radiación que previamente ha sido concentrada por cada helióstato. Este hecho esencialmente contradictorio y de éxito cuestionable, pues pone en riesgo el rendimiento y la propia integridad del receptor solar, ha llevado a reflexionar sobre la conveniencia de revisar los parámetros de diseño del helióstato, de forma que la distribución de irradiancia dada por cada helióstato sobre el receptor solar se adapte en origen a la forma geométrica de éste y que, en consecuencia, las estrategias de control de apunte sean minimizadas o incluso suprimidas. La revisión de estos parámetros de diseño involucra a la óptica, al mecanismo de apunte y a la orientación de su emplazamiento dentro del campo de helióstatos. Como diseño alternativo al convencional, se propone el helióstato de foco lineal y montura seudo - horizontal, objeto de la presente invención. A lo largo del documento se utilizarán los siguientes términos, con el significado que se describe: - Energía solar: energía radiante que proviene del Sol y que llega a la superficie terrestre con una intensidad y composición espectral características. - Helióstato: Espejo de gran distancia focal, dotado de movimiento en dos ejes y cuya misión es reflejar, concentrar y mantener estática la imagen del Sol en un determinado lugar a lo largo del día. - Óptica cilindrica: Superficie reflectante de revolución obtenida al girar un segmento de longitud arbitraria en torno a un eje paralelo a éste, denominado eje de revolución de la óptica cilindrica. - Helióstato cilindrico: helióstato provisto de óptica cilindrica. - Eje geométrico de un helióstato cilindrico: Es el eje de revolución de su óptica cilindrica. - Eje óptico de un helióstato cilindrico: línea recta virtual que pasa por los centros de la óptica cilindrica, blanco y Sol, supuestos alineados, y corta ortogonalmente al eje geométrico del helióstato. - Plano central de un helióstato cilindrico: plano que contiene a los ejes geométrico y óptico. - Generatriz central de un helióstato cilindrico: De todas las generatrices del helióstato cilindrico, aquella que está contenida en su plano central. - Rayo principal incidente: el que proviene del centro del disco solar y corta en el punto medio de la generatriz central de la óptica del helióstato. - Rayo principal reflejado: el que proviene del punto medio de la generatriz central de la óptica del helióstato y corta en el punto medio del blanco.OBJECT AND FIELD OF APPLICATION The present invention relates to the realization of a new heliostat of cylindrical optics and pseudo-horizontal mount, whose task is to distribute and stabilize the sunlight reflected on its surface along a defined direction on a certain target throughout the day. It is this direction of concentration of solar radiation that results from projecting the central generatrix of the cylindrical optics of the heliostat on the surface of the target. The field of application of the invention would be the central receiver thermo-solar plants whose design demands that the distribution of solar energy reflected by the heliostat field follow a preferred direction on said receiver. Since the image of the Sun given by a conventional heliostat on a target is circular, this directional distribution of energy has traditionally been achieved in conventional thermo-solar power plants by operating techniques based on targeting strategies on groups of heliostats. The thermo-solar power plants of the tower type, or central receiver, base their operation strategy on the contribution of heat to a certain conventional thermodynamic cycle, by concentrating solar radiation by a high number of heliostats. Among the functional characteristics of heliostats is their ability to concentrate solar radiation in the receiver or boiler, for which they are provided with a reflective surface of spherical geometry and mechanical mount of the type called horizontal. Except for some very basic requirements about the optical quality of its reflective surface, its pointing capacity or its land occupation factor, the rest of the design parameters of a heliostat, such as geometry, size, control, or type of mechanism of operation, they have traditionally been imposed by essentially economic criteria. It is striking that the design of the heliostat has not come so far, in any of its parameters, conditioned by the type of solar receiver on which it must distribute the radiant energy it reflects from the Sun. However, the large solar receptors they have a geometry in which at least one of its dimensions is much larger than the others, such as tubular or volumetric cylindrical receivers. In all these projects the fact that the image of the Sun generated by spherical heliostats is much smaller than the dimensions of the solar receiver itself has been verified, which is a serious inconvenience, since the complete irradiation of this requires pointing the heliostats to the along its entire surface with some specific criteria or strategy, which are entrusted to the point control system of the heliostat field. Since it is no longer aimed at a single place on the receiver, the control algorithms basically have to strategically disperse the radiation that has previously been concentrated by each heliostat. This essentially contradictory fact and of questionable success, since it jeopardizes the performance and the integrity of the solar receiver itself, has led to reflect on the advisability of reviewing the heliostat design parameters, so that the irradiance distribution given by each heliostat on the solar receiver it adapts in origin to the geometric shape of the latter and, consequently, the point control strategies are minimized or even suppressed. The revision of these design parameters involves the optics, the pointing mechanism and the orientation of its location within the field of heliostats. As an alternative to the conventional design, the linear focus and pseudo-horizontal mount heliostat is proposed, object of the present invention. Throughout the document the following terms will be used, with the meaning described: - Solar energy: radiant energy that comes from the Sun and that reaches the Earth's surface with a characteristic intensity and spectral composition. - Heliostat: Mirror of great focal length, equipped with movement in two axes and whose mission is to reflect, concentrate and maintain static the image of the Sun in a certain place throughout the day. - Cylindrical optics: Reflective surface of revolution obtained by rotating a segment of arbitrary length around an axis parallel to it, called the axis of revolution of cylindrical optics. - Cylindrical heliostat: heliostat provided with cylindrical optics. - Geometric axis of a cylindrical heliostat: It is the axis of revolution of its cylindrical optics. - Optical axis of a cylindrical heliostat: virtual straight line that passes through the centers of the cylindrical optics, white and Sun, assumptions aligned, and cuts orthogonally to the geometric axis of the heliostat. - Central plane of a cylindrical heliostat: plane containing the geometric and optical axes. - Central generator of a cylindrical heliostat: Of all the generatrices of the cylindrical heliostat, that which is contained in its central plane. - Main incident ray: the one that comes from the center of the solar disk and cuts at the midpoint of the central generatrix of the heliostat optics. - Reflected main beam: the one that comes from the midpoint of the central generatrix of the heliostat optic and cuts at the midpoint of the target.
- Plano de reflexión: El que contiene al rayo principal incidente y al rayo principal reflejado. - Plano principal objeto de un helióstato cilindrico: Plano que contiene a la generatriz central y al rayo principal incidente.- Reflection plane: The one that contains the main incident beam and the main reflected beam. - Main plane object of a cylindrical heliostat: Plane containing the central generatrix and the main incident beam.
- Plano principal imagen de un helióstato cilindrico: Plano que contiene a la generatriz central y al rayo principal reflejado.- Main plane image of a cylindrical heliostat: Plane containing the central generatrix and the reflected main beam.
- Línea focal de un helióstato cilindrico: Lugar geométrico de intersección con el plano central de los rayos solares reflejados en su superficie óptica, supuestas las trayectorias de incidencia de dichos rayos paralelas al eje óptico. En incidencia no paralela al eje óptico, la línea focal se desplaza al plano principal imagen y modifica sus características genuinas debido al astigmatismo, pasando a ser una seudo-línea focal. - Eje primario de un helióstato cilindrico: Eje de giro del helióstato coincidente con la generatriz central de éste.- Focal line of a cylindrical heliostat: Geometric place of intersection with the central plane of the solar rays reflected on its optical surface, assuming the incidence paths of said rays parallel to the optical axis. In incidence not parallel to the optical axis, the focal line moves to the main image plane and modifies its genuine characteristics due to astigmatism, becoming a pseudo-focal line. - Primary axis of a cylindrical heliostat: Axis of rotation of the heliostat coinciding with its central generatrix.
- Eje secundario de un helióstato cilindrico: Eje de giro del helióstato que es ortogonal al eje primario.- Secondary axis of a cylindrical heliostat: Axis of rotation of the heliostat that is orthogonal to the primary axis.
- Montura horizontal: Dispositivo mecánico de orientación en dos ejes de un helióstato respecto a un sistema topocéntrico de coordenadas horizontales, denominadas acimut y altura. El plano fundamental es el horizonte del observador y el punto fundamental es el Norte verdadero. La orientación del helióstato, en función de la evolución diurna del Sol en este mismo sistema de coordenadas, se consigue mediante giros acimutales (arcos de horizonte desde el punto fundamental) y de altura o cenitales (arcos ortogonales al plano horizonte en dirección al cénit del observador). El eje mecánico de giro acimutal es ortogonal al plano del horizonte y de orientación fija. Por el contrario, el eje de giro cenital es paralelo al plano del horizonte y de orientación variable, debido a la existencia de una ligadura mecánica entre ambos movimientos, que provoca el "arrastre" del eje cenital cada vez que el giro acimutal acontece.- Horizontal mount: Mechanical device of orientation in two axes of a heliostat with respect to a topocentric system of horizontal coordinates, called azimuth and height. The fundamental plane is the horizon of the observer and the fundamental point is the true North. The orientation of the heliostat, depending on the diurnal evolution of the Sun in this same coordinate system, is achieved by azimuthal turns (horizon arches from the fundamental point) and height or zeniths (orthogonal arcs to the horizon plane towards the zenith of the observer). The mechanical axis of azimuthal rotation is orthogonal to the plane of the horizon and of fixed orientation. On the contrary, the axis of zenith rotation is parallel to the plane of the horizon and of variable orientation, due to the existence of a mechanical ligation between both movements, which causes the "dragging" of the zenith axis each time the azimuthal rotation occurs.
- Montura seudo-horizontal: Variante de la montura horizontal, mediante la cual la orientación del helióstato se consigue a través de giros en torno a los ejes primario y secundario del helióstato, ortogonales entre sí pero arbitrariamente orientados respecto al plano del horizonte, y suponiendo la posición del Sol dada en coordenadas horizontales. La posición del eje mecánico de giro cenital es fija y su orientación no se refiere ya al plano del horizonte, sino al plano principal imagen del helióstato, respecto al que ha de ser necesariamente ortogonal. El eje mecánico de giro acimutal ha de ser ortogonal al mencionado eje cenital y, por tanto, se halla íntegramente contenido en el plano principal imagen del helióstato, siendo su orientación variable en dicho plano debido a la existencia de una ligadura mecánica entre ambos movimientos, que provoca el "arrastre" del eje acimutal cada vez que el giro cenital acontece.- Pseudo-horizontal mount: Variant of the horizontal mount, whereby the orientation of the heliostat is achieved through turns around the primary and secondary axes of the heliostat, orthogonal to each other but arbitrarily oriented with respect to the plane of the horizon, and assuming the position of the Sun given in horizontal coordinates. The position of the mechanical axis of rotation The zenith is fixed and its orientation no longer refers to the plane of the horizon, but to the main image plane of the heliostat, with respect to which it must necessarily be orthogonal. The mechanical axis of azimuthal rotation must be orthogonal to the aforementioned zenith axis and, therefore, is fully contained in the main image plane of the heliostat, its orientation being variable in said plane due to the existence of a mechanical bond between both movements, which causes the "drag" of the azimuthal axis every time the zenith turn occurs.
- Facetas: Elementos especulares individuales de que se compone la superficie reflectante de algunos helióstatos.- Facets: Individual specular elements of which the reflective surface of some heliostats is composed.
- Alineación o canteo de un helióstato: Acción de orientar las facetas de tal forma que la intersección de todos los ejes ópticos de éstas se halle sobre el eje óptico del helióstato, a una distancia al vértice de éste doble de su focal. La alineación dota de focal al helióstato, supuesta faceteada su superficie reflectante.- Alignment or edging of a heliostat: Action to orient the facets in such a way that the intersection of all the optical axes of these is on the optical axis of the heliostat, at a distance to the vertex of this double of its focal. The alignment gives focal to the heliostat, supposedly faceted its reflective surface.
- Declinación: Variación de la altura del Sol sobre el ecuador celeste cuando la tierra, a lo largo del año, recorre su trayectoria (la eclíptica) alrededor del Sol.- Declination: Variation of the height of the Sun over the celestial equator when the earth, throughout the year, travels its trajectory (the ecliptic) around the Sun.
- Campo de helióstatos: También denominado concentrador primario, es un conjunto de helióstatos dispuestos en un terreno acotado y cuya misión es el aporte de energía radiante a un blanco o receptor.- Heliostat field: Also called primary concentrator, it is a set of heliostats arranged in a limited terrain and whose mission is the contribution of radiant energy to a target or receiver.
- Receptor solar: Dispositivo que intercepta y absorbe la radiación solar proporcionada por un campo de helióstatos, con objeto de transferirla mediante un intercambiador de calor al bloque de potencia de la planta.- Solar receiver: Device that intercepts and absorbs the solar radiation provided by a field of heliostats, in order to transfer it through a heat exchanger to the power block of the plant.
- Blanco lineal: Receptor solar que debe recibir la energía radiante a lo largo de una línea (o al menos una de sus dimensiones es mucho mayor que las otras).- Linear target: Solar receiver that must receive radiant energy along a line (or at least one of its dimensions is much larger than the others).
- Planta termo-solar de receptor central: planta de producción de energía eléctrica que basa su estrategia de operación en el aporte de calor a un determinado ciclo termodinámico convencional, mediante la concentración de la radiación solar por un elevado número de helióstatos sobre un único receptor.- Central receiver thermo-solar plant: electric power production plant that bases its operation strategy on the heat contribution to a certain conventional thermodynamic cycle, by concentrating solar radiation by a high number of heliostats on a single receiver .
- Estrategia de apunte: Procedimiento de operación de una planta termo-solar que consiste en definir un conjunto de coordenadas sobre el receptor a donde deben apuntar cada uno de los helióstatos del campo para conseguir la distribución de energía requerida sobre éste. - Estrategia dinámica de apunte: Es una estrategia de apunte en la cual las coordenadas sobre el receptor cambian con el tiempo, siguiendo determinados criterios de control. - Linea focal confinada: Condición determinada por la óptica y el mecanismo de orientación del helióstato respecto al movimiento aparente del Sol, por la que la orientación del plano principal imagen del helióstato permanece invariante y, en consecuencia, la orientación de su línea focal se estabiliza sobre el blanco Es decir, orientando la óptica para seguir al Sol en su movimiento diurno puede conseguirse que la radiación reflejada por el helióstato, agrupada er torno a su línea focal, se distribuya permanentemente sobre un blanco lineal. ANTECEDENTES DE LA INVENCIÓN Los primeros helióstatos considerados como elementos industriales se desarrollaron a inicios de la década de los ochenta para las plantas experimentales termo- solares de receptor central, con el propósito de probar la viabilidad de la energía solai térmica en los procesos de producción de electricidad a escala industrial. La tabla 1 resume los proyectos realizados debido a la iniciativa internacional:- Aiming strategy: Operation procedure of a thermo-solar plant that consists of defining a set of coordinates on the receiver to which each of the heliostats of the field must aim to achieve the distribution of energy required on it. - Dynamic aiming strategy: It is an aiming strategy in which the coordinates on the receiver change over time, following certain control criteria. - Confined focal line: Condition determined by the optics and orientation mechanism of the heliostat with respect to the apparent movement of the Sun, whereby the orientation of the main image plane of the heliostat remains invariant and, consequently, the orientation of its focal line is stabilized on the target That is to say, orienting the optics to follow the Sun in its daytime movement it can be achieved that the radiation reflected by the heliostat, grouped around its focal line, is permanently distributed on a linear target. BACKGROUND OF THE INVENTION The first heliostats considered as industrial elements were developed at the beginning of the eighties for the experimental central solar thermal solar plants, with the purpose of testing the viability of solar thermal energy in the production processes of Industrial scale electricity. Table 1 summarizes the projects carried out due to the international initiative:
Figure imgf000007_0001
Tabla 1. Proyectos internacionales de plantas termo-solares de receptor central Una vez finalizados los proyectos de demostración, la mayoría de estas plantas fueron cerradas. En Europa únicamente continuaron en servicio los campos de helióstatos correspondientes a las plantas CRS y CESA-1 , gracias a un acuerdo de colaborador entre los gobiernos alemán y español, constituyéndose la Plataforma Solar de Almeríé (PSA). En USA la planta Solar One fue remodelada y, con el mismo campo de helióstatos se puso en funcionamiento la planta Solar Two la cual ha estado funcionando hasta abri de 1999. La PSA sigue operando en la actualidad estos campos de helióstatos gracias a una gran diversidad de proyectos que se han llevado a cabo durante los últimos años. El objetivo de estos proyectos ha sido el desarrollo y evaluación de nuevos componentes solares en esta tecnología, fundamentalmente helióstatos y receptores solares. La tabla 2 resume los prototipos de helióstatos desarrollados en la actualidad y sus características ópticas y mecánicas.
Figure imgf000007_0001
Table 1. International projects of central solar thermal-solar plants Once the demonstration projects were completed, most of these plants were closed. In Europe, only the heliostat fields corresponding to the CRS and CESA-1 plants continued in service, thanks to a collaboration agreement between the German and Spanish governments, constituting the Almeríé Solar Platform (PSA). In the USA the Solar One plant was remodeled and, with the same field of heliostats, the Solar Two plant was put into operation, which has been operating until the beginning of 1999. The PSA continues to operate these heliostat fields today thanks to a great diversity of projects that have been carried out in recent years. The objective of these projects has been the development and evaluation of new solar components in this technology, mainly heliostats and solar receivers. Table 2 summarizes the prototypes of heliostats currently developed and their optical and mechanical characteristics.
Figure imgf000008_0001
Tabla 2. Modelo de helióstato y sus características óptica y mecánicas Como se aprecia en la tabla 2, todos los helióstatos descritos han tenido óptica esférica, es decir, cualquier haz de rayos paralelos al eje óptico converge una vez reflejado en un solo punto, denominado foco o punto focal. Su objetivo es, por tanto, la reproducción de la imagen del Sol en un determinado blanco, en contraste con el helióstato de óptica cilindrica, objeto de la invención, cuyo propósito no es la reproducción de la imagen del Sol, sino la distribución de su energía radiante a lo largo de una dirección preferente. Desaparece así el concepto de punto focal, sustituyéndose por el de línea focal; es decir, cualquier haz de rayos paralelos al eje óptico converge una vez reflejado a lo largo de una línea, denominada línea focal. Pero el helióstato cilindrico de línea focal confinada necesita de dos requerimientos adicionales, que son la inmovilidad y la orientación específica del eje secundario. Dicho eje, como tal, no existe en ninguno de los helióstatos reseñados, puesto que todos son esféricos. No obstante, la tabla 2 muestra que únicamente el helióstato esférico HELLAS dispone de eje mecánico cenital fijo de orientación no- específica para cada helióstato, sino general Este-Oeste para todos los helióstatos del campo; ya que el eje secundario como tal no existe, su inmovilidad responde únicamente a criterios mecánicos, sin repercusión en el rendimiento óptico, cual es el objeto de la presente invención. Los problemas que plantea la utilización de helióstatos esféricos quedan perfectamente reflejados en el documento US 3,892,433 de Martin Marietta, en el cual se describe una instalación para producir energía eléctrica utilizando la energía solar concentrada por un campo de helióstatos esféricos sobre un blanco circular. Con objeto de seguir al sol durante su variación diurna de altura y acimut, la superficie reflectora de cada helióstato debe poder pivotar alrededor de un eje horizontal, que es orientable a su vez alrededor de un eje vertical. Como se muestra en la figura 4 de dicho documento, una tal solución introduce diversos errores de astigmatismo debidos a la incidencia de la luz fuera del eje óptico de los helióstatos lo que provoca, por un lado, una dispersión de la energía como consecuencia de que el foco no coincide con el plano del receptor, y por otro lado, un escoramiento de la imagen a lo largo del día. Se comprende que este escoramiento será especialmente perjudicial si se pretende pasar del concepto de punto focal al de línea focal, sustituyendo los reflectores esféricos por reflectores cilindricos. Son conocidos asimismo propuestas de utilización de helióstatos cilindricos con movimiento de orientación en un solo eje en plantas solares con receptor de tipo lineal, tanto a pequeña escala (US 3,861 ,379) como a gran escala (US 4,141 ,626). Así, el dispositivo concentrador de foco lineal descrito en el documento de patente US 3,861 ,379 de Anderson, comprende una pluralidad de reflectores planos rectangulares dispuestos con diferentes ángulos de inclinación para concentrar la luz del sol sobre un colector de agua caliente domestica situado por encima y a corta distancia de los reflectores. El ángulo de incidencia de los reflectores varia simultáneamente durante el día para que la imagen reflejada del sol incida en todo momento sobre el colector. Dado que no se persigue un elevado rendimiento, la inclinación del dispositivo respecto al plano del movimiento aparente del sol es fija. Es decir, no se tiene en cuenta la variación de la declinación del sol durante el año, previéndose a lo sumo dos posiciones, de invierno y verano, entre las que se conmuta manualmente. Como consecuencia, el foco lineal se desplaza longitudinalmente sobre el receptor a lo largo del año, aunque sin graves consecuencias dada la pequeña distancia focal. Una tal solución solo puede funcionar para dispositivos de baja potencia y distancia focal muy corta, como son las aplicaciones de agua caliente domestica. También se ha propuesto corregir los errores de astigmatismo mediante la utilización de ópticas de geometría variable tal como la descrita en el documento de patente US 4,141 ,626 de FMC Corporation en el que se modifica durante el día la curvatura de la superficie reflectante del helióstato. Esta modificación será máxima durante el solsticio de verano y mínima en el de invierno, debido a las posiciones extremas (máximas y mínimas, respectivamente) de los ángulos acimutal y altura del Sol sobre el horizonte. El documento citado utiliza cierto tipo de helióstatos con superficie reflectante cilindrica deformable, que apuntan a un blanco horizontal, orientado en sentido Este-Oeste, siendo paralelos al mismo los ejes primarios de dichos helióstatos, mientras que el eje secundario como tal no existe, y la deformación de la imagen por astigmatismo se compensa mediante una acción sobre la superficie reflectante cilindrica, variando su focal. Una tal solución elimina la dispersión de la imagen, mejorando considerablemente el enfoque y, dada la orientación del eje primario de los helióstatos paralela al blanco, suprime el escoramiento, pero no puede evitar que el foco lineal se desplace longitudinalmente sobre el blanco a lo largo del día. Este desplazamiento es muy importante al trabajarse con distancias focales elevadas por lo que, siendo la longitud del blanco limitada, se reduce considerablemente el numero de horas de operación del dispositivo. Obsérvese que si dotamos a este dispositivo de un segundo eje vertical para seguir el movimiento horario del sol, tal como lo preconizado por Martin Marietta, conseguiríamos la inmovilización longitudinal del foco lineal sobre el blanco a lo largo del día pero, en contrapartida, se produciría un escoramiento del foco lineal al no mantenerse ya el paralelismo del eje primario del helióstato con el blanco. En determinados casos se propone la utilización de helióstatos cilindricos con blanco móvil lineal asociado, y movimiento de orientación en dos ejes para seguimiento del sol. Así, el documento US 5,253,637 de Maíden plantea el problema de los colectores solares de reflector y blanco fijos, los cuales presentan elevadas pérdidas y una severa limitación del número de horas de utilización. La solución propuesta consiste en acoplar un receptor lineal sobre un reflector cilindrico de eje primario horizontal susceptible de girar respecto a un eje secundario vertical. De esta forma el foco lineal no presenta escoramiento dado que se trata de un dispositivo de blanco móvil unido al reflector. Si bien es cierto que en Maiden existe un plano principal imagen (el eje primario y el blanco lineal son paralelos por construcción), este es un plano móvil, necesariamente inclinado, y en consecuencia nunca puede ser perpendicular al eje secundario vertical. Maiden resuelve el problema del escoramiento a cambio de hacer móvil el blanco lineal, lo que implica que este solo puede llevar asociado un único reflector, con la consiguiente limitación de la potencia absorbida por el mismo. Finalmente, en el documento GB 2 063 465 de Jubb, el problema planteado es el del bajo rendimiento de las células fotoeléctricas como dispositivo generador de energía eléctrica. La solución propuesta consiste en dividir el espectro luminoso mediante una ranura de difracción, haciendo incidir cada tramo de longitud de onda sobre distintos grupos de células fotoeléctricas especialmente adaptadas a cada longitud de onda. Como en el documento anterior, se trata de un conjunto de reflector cilindrico con blanco móvil asociado, en disposición horizontal. En conclusión, ninguno de los helióstatos conocidos anteriormente dispone de los requerimientos exigibles a un cilindrico de altas prestaciones y sencillez de construcción y operación como el que es objeto de la invención. El problema planteado es el del escoramiento de la línea focal sobre un blanco fijo independiente del helióstato, y podría resolverse mediante un accionamiento en tres ejes, de tal manera que necesitaríamos dos ejes para seguir al sol en su variación diurna de altura y acimut, y un tercer eje para corregir el escoramiento. Una tal solución es cara y compleja de realización. En consecuencia, es un objetivo de la presente invención el disponer de un helióstato de tal forma construido y operado que sea capaz de seguir al sol en su movimiento diurno, manteniendo una imagen lineal sin escoramiento sobre un blanco lineal fijo situado a considerable distancia. Es otro objetivo de la presente invención el disponer de un helióstato que, cumpliendo las condiciones anteriores, pueda operarse mediante su accionamiento en dos ejes.
Figure imgf000008_0001
Table 2. Heliostat model and its optical and mechanical characteristics As shown in Table 2, all described heliostats have had spherical optics, that is, any beam of rays parallel to the optical axis converges once reflected in a single point, called focus or focal point. Its objective is, therefore, the reproduction of the image of the Sun in a certain target, in contrast to the heliostat of cylindrical optics, object of the invention, whose purpose is not the reproduction of the image of the Sun, but the distribution of its radiant energy along a preferred direction. Thus the concept of focal point disappears, replacing it with that of a focal line; that is, any beam of rays parallel to the optical axis converges once reflected along a line, called the focal line. But the confined focal line cylindrical heliostat needs two additional requirements, which are immobility and specific axis orientation. secondary. Said axis, as such, does not exist in any of the reviewed heliostats, since all are spherical. However, Table 2 shows that only the HELLAS spherical heliostat has a fixed zenith mechanical axis with a non-specific orientation for each heliostat, but a general East-West for all heliostats in the field; Since the secondary axis as such does not exist, its immobility responds only to mechanical criteria, without impact on the optical performance, which is the object of the present invention. The problems posed by the use of spherical heliostats are perfectly reflected in US 3,892,433 by Martin Marietta, in which an installation for producing electrical energy using solar energy concentrated by a field of spherical heliostats on a circular target is described. In order to follow the sun during its daytime variation of height and azimuth, the reflective surface of each heliostat must be able to pivot around a horizontal axis, which is in turn orientable around a vertical axis. As shown in Figure 4 of said document, such a solution introduces various astigmatism errors due to the incidence of light outside the optical axis of heliostats which causes, on the one hand, a dispersion of energy as a result of the focus does not match the plane of the receiver, and on the other hand, a selection of the image throughout the day. It is understood that this selection will be especially harmful if it is intended to move from the concept of focal point to that of focal line, replacing spherical reflectors with cylindrical reflectors. Proposals for the use of cylindrical heliostats with single-axis orientation movement in solar plants with linear type receivers, both small scale (US 3,861, 379) and large scale (US 4,141, 626), are also known. Thus, the linear focus concentrating device described in Anderson's US Pat. No. 3,861, 379, comprises a plurality of rectangular flat reflectors arranged at different angles of inclination to concentrate sunlight on a domestic hot water collector located above and a short distance from the reflectors. The angle of incidence of the reflectors varies simultaneously during the day so that the reflected image of the sun affects the collector at all times. Since high performance is not pursued, the inclination of the device relative to the plane of the sun's apparent movement is fixed. That is to say, the variation in the decline of the sun during the year is not taken into account, with at most two positions, winter and summer, between which it is manually switched. As a consequence, the linear focus moves longitudinally over the receiver throughout the year, although without serious consequences given the small focal length. Such a solution can only work. for low power devices and very short focal length, such as domestic hot water applications. It has also been proposed to correct astigmatism errors through the use of variable geometry optics such as that described in US Pat. No. 4,141,626 of FMC Corporation in which the curvature of the reflective surface of the heliostat is modified during the day. This modification will be maximum during the summer solstice and minimum in the winter solstice, due to the extreme positions (maximum and minimum, respectively) of the azimuth and height of the Sun on the horizon. The cited document uses a certain type of heliostat with a deformable cylindrical reflective surface, which points to a horizontal target, oriented in an East-West direction, the primary axes of said heliostats being parallel thereto, while the secondary axis as such does not exist, and The deformation of the image by astigmatism is compensated by an action on the cylindrical reflective surface, varying its focal length. Such a solution eliminates the dispersion of the image, considerably improving the focus and, given the orientation of the primary axis of the heliostats parallel to the target, suppresses the picking, but cannot prevent the linear focus from moving longitudinally over the target along of the day This displacement is very important when working with high focal lengths, so that the length of the target is limited, the number of hours of operation of the device is considerably reduced. Note that if we provide this device with a second vertical axis to follow the sun's hourly movement, as recommended by Martin Marietta, we would achieve the longitudinal immobilization of the linear focus on the target throughout the day but, in return, would occur a selection of the linear focus, since the parallelism of the primary axis of the heliostat with the target is no longer maintained. In certain cases, the use of cylindrical heliostats with associated linear moving target, and two-axis orientation movement for sun tracking is proposed. Thus, US 5,253,637 of Maíden poses the problem of fixed reflector and white solar collectors, which have high losses and a severe limitation of the number of hours of use. The proposed solution consists of coupling a linear receiver on a horizontal primary axis cylindrical reflector that can rotate with respect to a vertical secondary axis. In this way, the linear focus does not show any color since it is a mobile target device attached to the reflector. While it is true that in Maiden there is a main image plane (the primary axis and the linear target are parallel by construction), this is a mobile plane, necessarily inclined, and therefore can never be perpendicular to the vertical secondary axis. Maiden solves the problem of In exchange for making the linear target mobile, which implies that it can only be associated with a single reflector, with the consequent limitation of the power absorbed by it. Finally, in GB 2 063 465 of Jubb, the problem posed is that of the low performance of photoelectric cells as an electrical power generating device. The proposed solution consists in dividing the light spectrum by means of a diffraction groove, making each wavelength segment affect different groups of photoelectric cells specially adapted to each wavelength. As in the previous document, it is a cylindrical reflector assembly with associated moving target, in horizontal arrangement. In conclusion, none of the previously known heliostats have the requisites required for a high performance cylindrical and simplicity of construction and operation such as that which is the object of the invention. The problem posed is that of the selection of the focal line on a fixed target independent of the heliostat, and could be solved by a three-axis drive, so that we would need two axes to follow the sun in its diurnal variation in height and azimuth, and a third axis to correct the selection. Such a solution is expensive and complex to realize. Accordingly, it is an objective of the present invention to have a heliostat so constructed and operated that it is capable of following the sun in its daytime movement, maintaining a linear image without a blank on a fixed linear target located at a considerable distance. It is another objective of the present invention to have a heliostat that, fulfilling the above conditions, can be operated by means of its operation in two axes.
DESCRIPCIÓN DE LA INVENCIÓN Para alcanzar el objetivo propuesto el plano principal imagen del helióstato objeto de la invención deberá permanecer inmóvil en el espacio y contener al blanco lineal, lo que podrá conseguirse combinando los siguientes elementos: 1. Una superficie reflectante de óptica cilindrica o cilindro-parabólica, indistintamente, que debe poder girar alrededor de un eje primario coincidente con la generatriz central de la superficie reflectante. 2. Una estructura consistente en un soporte móvil susceptible de girar respecto a un eje secundario perpendicular al eje primario, siendo el eje primario solidario del soporte móvil. 3. Orientación específica del eje secundario, perpendicular a un plano principal imagen, inmóvil en el espacio, que contiene en todo momento al blanco lineal y al eje primario. 4. Un accionamiento primario para hacer girar la superficie reflectante alrededor del eje primario y un accionamiento secundario para hacer girar el soporte móvil alrededor del eje secundario, gobernados ambos por un dispositivo de control. Como aspectos relevantes de la realización de la invención nos detendremos especialmente en la geometría de la superficie reflectante, su orientación diurna, la estructura que relaciona el eje primario y el eje secundario, y el confinamiento de la línea focal. Geometría de la superficie reflectante. La superficie reflectante del helióstato objeto de la invención posee geometría cilindrica o cilindro-parabólica en lugar de la esférica convencional, que concentra la radiación solar no sobre un punto focal sino sobre una línea focal, de longitud concordante con la dimensión de la dirección preferente de distribución de la energía pretendida sobre un determinado blanco. Esta superficie puede ser de una pieza o faceteada, en cuyo caso las facetas son asimismo cilindricas o cilindro- parabólicas y con distancia focal previsiblemente idéntica a la de la superficie envolvente que resulta de alinearlas cilindricamente. La generatriz central de esta superficie reflectante (faceteada o no) debe ser coincidente con el eje primario del helióstato y, por tanto, ortogonal al eje secundario de éste. A efectos prácticos puede admitirse que la generatriz central y el eje primario no sean exactamente coincidentes si son paralelos y muy próximos y en este sentido se utilizara la palabra "coincidentes" en el presente documento. El propósito de esta geometría es el de sustituir el punto focal de los helióstatos convencionales por una línea focal, paralela por construcción a la generatriz central del cilindro, y cuya longitud, a incidencia normal, coincide con la dimensión de ésta. El resultado es una distribución de la energía radiante del Sol reflejada por el helióstato a lo largo de una dirección preferente sobre el blanco. Orientación diurna de la superficie reflectante para lograr el apunte. Como cualquier helióstato, el cilindrico de línea focal confinada necesita orientarse en el espacio con objeto de que los rayos procedentes del Sol y reflejados en su superficie impacten en el blanco. Esto se consigue mediante la intervención de sendos mecanismos de accionamiento, que giran dicha superficie un determinado ángulo en torno a los ejes primario y secundario, previo cálculo del vector solar y dirección del rayo reflejado por un dispositivo de control. Estructura del conjunto. La especial disposición de los ejes primario y secundario que se acaba de describir constituye un cambio radical respecto a la disposición utilizada en los helióstatos convencionales. En estos, el eje primario de orientación acimutal de la superficie reflectante es vertical y permanece inmóvil en el espacio. La razón es fundamentalmente económica, ya que es muy favorable soportar dicho eje primario en el propio pedestal del helióstato, que lo sujeta al terreno. Dicho pedestal suele estar constituido por un tubo metálico vertical, el cual puede alojar en su interior los cojinetes de giro del eje primario que, de esta forma, queda oculto en el propio pedestal. Una tal disposición es absolutamente inadecuada para cumplir la condición de confinamiento sobre el blanco de la línea focal. La solución propuesta consiste en relacionar directamente con el pedestal no el eje primario sino el eje secundario, con lo que el eje primario de movimiento acimutal es arrastrado libremente durante el movimiento cenital alrededor del eje secundario, que ahora queda en una orientación fija en el espacio. Confinamiento de la línea focal. El confinamiento (inmovilidad) de la línea focal de la superficie cilindrica descrita anteriormente, se consigue mediante la inmovilización de la orientación del eje secundario del helióstato en su procedimiento sistemático de apunte a un blanco durante el día. Esta inmovilización del eje secundario inmoviliza también al plano principal imagen y, por tanto, a la intersección de éste con la superficie del blanco, que es el lugar geométrico donde se distribuye la irradiancia (línea focal). Como quiera que la posición de la línea focal sobre el blanco depende de la intersección del plano principal imagen con el plano del blanco, y que la orientación de dicho plano principal imagen depende de la orientación del eje secundario del helióstato, se sigue que la orientación de aquélla puede modificarse a voluntad con sólo orientar (e inmovilizar) dicho eje secundario. En resumen, el confinamiento de la línea focal (es decir, inmovilidad y orientación del eje secundario) por los medios anteriores va a posibilitar el que la línea focal de la superficie reflectante se oriente según la dirección a donde se pretende distribuir la luz concentrada por ésta sobre un elemento receptor (blanco lineal) y, lo que es más importante, que la mantenga estática en dicha dirección, sin que la reflexión de la luz fuera del eje óptico logre escorarla ya que, en todo momento, la línea focal yace sobre el plano principal imagen, inmóvil, quedando "confinada" a lo largo del día. El helióstato cilindrico objeto de la invención, aventaja claramente al helióstato esférico convencional en aquellas aplicaciones en que la energía radiante del Sol reflejada sobre un determinado receptor requiera ser específicamente concentrada a lo largo de una línea o dirección preferente. En este caso la forma de la distribución de flujo sobre el receptor ya no es gaussiana circular o elíptica, sino que tendrá un perfil gaussiano en una dirección y recto en la dirección ortogonal, que coincide con la de la línea focal del helióstato. Las ventajas que se derivan de este hecho son, básicamente: 1. Perfil de irradiancia individual por defecto de cada helióstato sobre el blanco coincidente con el de diseño para la totalidad del campo, lo que evita la construcción de éste último mediante una composición de perfiles gaussianos individuales de irradiancia (estrategia de apunte). 2. Distribución global de irradiancia más estable sobre el receptor, por cuanto no hay escoramiento (giro sobre el plano del blanco de cada una de las distribuciones individuales de irradiancia) a lo largo del día, debido a la inmovilidad y orientación del eje geométrico secundario de los helióstatos. 3. Perfil de irradiancia orientable, ya que el mecanismo permite orientar el eje geométrico secundario del helióstato en cualquier dirección. 4. Amortiguamiento de los clásicos picos de irradiancia por causas diversas durante la operación, tales como desenfoques espurios de helíóstatos (averías, pérdidas de control), presencia de nubes sombreando parcialmente el campo de helióstatos, pérdida de comunicaciones, etc. Ello se debe a que el perfil por defecto de cada helióstato no admite la presencia de picos abruptos de concentración. 5. Ausencia de estrategias dinámicas de apunte, lo que permitirá una operación relajada y más segura de la planta, ya que cada helióstato apuntará a lo largo de la operación rutinaria a un solo lugar. 6. Simplificación del procedimiento de alineación o canteo del helióstato faceteado ya que no hay dos direcciones de alineación sino una. Ello reduce el tiempo de puesta a punto del helióstato en campo. 7. Alivio de tensiones en la superficie reflectante del helióstato, ya que, al ser cilindrica, eliminamos una de las curvaturas. Este hecho alargará previsiblemente la vida media de dicha superficie.DESCRIPTION OF THE INVENTION To achieve the proposed objective, the main image plane of the heliostat object of the invention must remain motionless in space and contain the linear blank, which can be achieved by combining the following elements: 1. A reflective surface of cylindrical or cylinder optics - Parabolic, interchangeably, that it must be able to rotate around a primary axis coinciding with the central generatrix of the reflective surface. 2. A structure consisting of a mobile support capable of rotating with respect to a secondary axis perpendicular to the primary axis, the primary axis being integral with the mobile support. 3. Specific orientation of the secondary axis, perpendicular to a main image plane, motionless in space, which at all times contains the linear target and the primary axis. 4. A primary drive to rotate the reflective surface around the primary axis and a secondary drive to rotate the movable support around the secondary axis, both governed by a control device. As relevant aspects of the embodiment of the invention, we will focus especially on the geometry of the reflective surface, its diurnal orientation, the structure that relates the primary axis and the secondary axis, and the confinement of the focal line. Geometry of the reflective surface. The reflective surface of the heliostat object of the invention has cylindrical or parabolic trough geometry instead of the conventional spherical, which concentrates the solar radiation not on a focal point but on a focal line, of length consistent with the preferred direction dimension of distribution of the intended energy over a certain target. This surface can be of a piece or faceted, in which case the facets are also cylindrical or parabolic trough and with foreseeable focal length that is predictably identical to that of the surrounding surface resulting from aligning them cylindrically. The central generatrix of this reflective surface (faceted or not) must be coincident with the primary axis of the heliostat and, therefore, orthogonal to its secondary axis. For practical purposes it can be admitted that the central generatrix and the primary axis are not exactly coincident if they are parallel and very close and in this sense the word "coincident" will be used in this document. The purpose of this geometry is to replace the focal point of conventional heliostats with a focal line, parallel by construction to the central generatrix of the cylinder, and whose length, at normal incidence, coincides with its dimension. The result is a distribution of the radiant energy of the Sun reflected by the heliostat along a preferred direction over the target. Daytime orientation of the reflective surface to achieve the aim. Like any heliostat, the confined focal line cylindrical needs to be oriented in space in order for the rays from the Sun and reflected on its surface to hit the target. This is achieved through the intervention of two drive mechanisms, which rotate said surface a certain angle around the primary and secondary axes, after calculating the solar vector and direction of the beam reflected by a control device. Structure of the set. The special arrangement of the primary and secondary axes just described constitutes a radical change with respect to the arrangement used in conventional heliostats. In these, the primary axis of azimuthal orientation of the reflective surface is vertical and remains motionless in space. The reason is fundamentally economic, since it is very favorable to support said primary axis on the heliostat pedestal itself, which holds it to the ground. Said pedestal is usually constituted by a vertical metal tube, which can accommodate inside the rotating bearings of the primary shaft, which is thus hidden in the pedestal itself. Such an arrangement is absolutely inadequate to meet the condition of confinement on the target of the focal line. The proposed solution is to relate directly to the pedestal not the primary axis but the secondary axis, with which the primary axis of azimuthal movement is freely dragged during the zenithal movement around the secondary axis, which now remains in a fixed orientation in space . Focal line confinement. The confinement (immobility) of the focal line of the cylindrical surface described above is achieved by immobilizing the orientation of the secondary axis of the heliostat in its systematic procedure of aiming at a target during the day. This immobilization of the secondary axis also immobilizes the main image plane and, therefore, its intersection with the surface of the target, which is the geometric place where irradiance is distributed (focal line). Since the position of the focal line on the target depends on the intersection of the main image plane with the target plane, and that the orientation of said main image plane depends on the orientation of the secondary axis of the heliostat, it follows that the orientation from it it can be modified at will by simply orienting (and immobilizing) said secondary axis. In summary, the confinement of the focal line (i.e. immobility and orientation of the secondary axis) by the previous means will enable the focal line of the reflective surface to be oriented according to the direction to which the concentrated light is intended to be distributed by this on a receiving element (linear white) and, what is more important, that it keeps it static in that direction, without the reflection of the light outside the optical axis being able to pick it since, at all times, the focal line lies on the main image plane, motionless, being "confined" throughout the day. The cylindrical heliostat object of the invention clearly exceeds the conventional spherical heliostat in those applications in which the radiant energy of the Sun reflected on a given receiver needs to be specifically concentrated along a preferred line or direction. In this case the shape of the flow distribution over the receiver is no longer circular or elliptical Gaussian, but will have a Gaussian profile in one direction and straight in the orthogonal direction, which coincides with that of the heliostat focal line. The advantages that derive from this fact are basically: 1. Individual irradiance profile by default of each heliostat on the target coinciding with the design for the entire field, which avoids the construction of the latter by means of a composition of individual Gaussian irradiance profiles (aiming strategy). 2. Global distribution of more stable irradiance on the receiver, since there is no stinging (turning on the plane of the target of each of the individual irradiance distributions) throughout the day, due to the immobility and orientation of the secondary geometric axis of heliostats. 3. Adjustable irradiance profile, since the mechanism allows the secondary geometric axis of the heliostat to be oriented in any direction. 4. Damping of the classic irradiance peaks due to various causes during the operation, such as spurious blurring of heliostats (breakdowns, loss of control), presence of clouds partially shading the heliostat field, loss of communications, etc. This is because the default profile of each heliostat does not support the presence of abrupt concentration peaks. 5. Absence of dynamic aiming strategies, which will allow a relaxed and safer operation of the plant, since each heliostat will aim throughout the routine operation to a single place. 6. Simplification of the alignment procedure or edging of the faceted heliostat since there are no two directions of alignment but one. This reduces the set-up time of the heliostat in the field. 7. Relief of stresses on the reflective surface of the heliostat, since, being cylindrical, we eliminate one of the curvatures. This fact will foreseeably extend the average life of said surface.
BREVE DESCRIPCIÓN DE LOS DIBUJOS Para completar la descripción que antecede y con objeto de ayudar a una mejor comprensión de las características de la invención, se va a realizar una descripción detallada de una realización preferida basándose en un juego de dibujos que se acompañan a esta memoria descriptiva, y en donde con carácter meramente orientativo y no limitativo se ha representado lo siguiente: La figura 1 muestra una planta termo-solar de receptor central donde puede utilizarse el helióstato de la invención. La figura 2 representa un detalle del receptor mostrando la imagen circular del sol producida por un helióstato convencional de superficie reflectante esférica. La figura 3 representa un detalle del receptor mostrando la imagen alargada del sol producida por una superficie reflectante cilindrica a mediodía. La figura 4a muestra la imagen del sol producida por una superficie reflectante cilindrica en montaje convencional, por la mañana. La figura 4b muestra la imagen del sol producida por una superficie reflectante cilindrica en montaje convencional, a mediodía. La figura 4c muestra la imagen alargada del sol producida por una superficie reflectante cilindrica en montaje convencional, por la tarde. La figura 5a muestra la imagen del sol producida por una superficie reflectante cilindrica en el montaje de la invención, por la mañana. La figura 5b muestra la imagen del sol producida por una superficie reflectante cilindrica en el montaje de la invención, a mediodía. La figura 5c muestra la imagen del sol producida por una superficie reflectante cilindrica en el montaje de la invención, por la tarde. La figura 6 muestra una vista en perspectiva trasera de la montura "horizontal" de un helióstato con superficie reflectante cilindrica. La figura 7 muestra una vista en perspectiva trasera de una montura "seudo - horizontal" de una variante del helióstato de la invención con superficie reflectante cilindrica. La figura 8 muestra un alzado del helióstato objeto de la invención, en configuración general. La figura 9 muestra un alzado del helióstato objeto de la invención en una realización preferida en el que el blanco lineal se dispone vertical y el soporte móvil es de tipo horquilla. La figura 10 muestra un alzado del helióstato objeto de la invención en una realización preferida en el que el blanco lineal se dispone vertical y el soporte móvil es recto, dando lugar a una configuración de la superficie reflectante en "badajo". La figura 1 1 muestra una vista lateral del helióstato de la figura 9. La figura 12 muestra una vista en planta del helióstato de la figura 9. La figura 13 muestra, esquemáticamente, las posiciones de la tierra respecto al sol durante los solsticios. La figura 14 muestra, esquemáticamente, uno de los dispositivos conocidos en la técnica anterior y su disposición en relación con el recorrido aparente del sol respecto al plano del suelo para los solsticios y equinoccios, La figura 15 muestra, esquemáticamente en perspectiva, la geometría espacial en que se fundamenta la invención. La figura 16 es un alzado de la figura 15. La figura 17a muestra, esquemáticamente en perspectiva, la geometría espacial de un helióstato de montaje convencional. La figura 17b muestra, esquemáticamente en perspectiva, la geometría espacial de un helióstato con el montaje de la invención. La figura 18a muestra, esquemáticamente en perspectiva, el movimiento acimutal de un helióstato de montaje convencional. La figura 18b muestra, esquemáticamente en perspectiva, el movimiento acimutal de un helióstato con el montaje de la invención. La figura 19a muestra, esquemáticamente en perspectiva, el movimiento cenital de un helióstato de montaje convencional. La figura 19b muestra, esquemáticamente en perspectiva, el movimiento cenital de un helióstato con el montaje de la invención. Se hace notar que las figuras 1 a 7 corresponden al campo de aplicación de la invención, técnica anterior y necesidad de la invención, las figuras 8 a 12 corresponden a la descripción estructural de la invención, y las figuras 13 a 19 corresponden a la explicación del modo de funcionamiento de la invención. En dichas figuras las referencias numéricas corresponden a las siguientes partes y elementos. 1. Superficie reflectante. 2. Soporte móvil. 3. Eje primario. 4. Accionamiento primario. 5. Eje secundario. 6. Accionamiento secundario. 7. Pedestal. 8. Dispositivo de control. 9. Eje cenital. 10. Plano principal imagen. 11. Blanco lineal. 12. Sol. 13. Tierra. 14. Eje de giro norte - sur de la tierra. 15. Eclíptica. 16. Suelo. 17. Plano aparente en los equinoccios. 18. Plano aparente en el solsticio de verano. 19. Plano aparente en el solsticio de invierno. 20. Plano principal objeto. 21. Plano bisectriz. 22. Rayo principal incidente. 23. Rayo principal reflejado. 24. Plano de reflexión. 25. Eje óptico. 26. Torre. 27. Reflectores planos. 28. Colector. DESCRIPCIÓN DETALLADA DE UNA REALIZACIÓN PREFERIDA La figura 1 muestra una planta termo - solar de receptor central, donde se ha representado un detalle de la zona de la torre en que se ubica el blanco. En una instalación convencional, con heliostatos de superficie reflectante esférica, la imagen proyectada por cada uno de ellos sobre el blanco es circular, tal como se ve en la figura 2. Si, como es el caso, una dimensión de este es considerablemente mayor que la dimensión transversal será necesario recurrir a una estrategia de apunte de los distintos heliostatos para cubrir el blanco. Alternativamente, y según se aprecia en la figura 3, la utilización de una superficie reflectante cilindrica permite cubrir la totalidad del blanco con un solo heliostato. De esta forma todos los heliostatos del campo apuntan al mismo lugar, simplificándose considerablemente la operación de la planta. Sin embargo, si nos limitamos a equipar un heliostato de montaje convencional con una superficie reflectante cilindrica solo obtendremos una imagen vertical a mediodía tal como se representa en la figura 4b. Por la mañana la imagen aparecerá escorada en un sentido (figura 4a), mientras que por la tarde la imagen escorará en sentido contrario (figura 4c). Puesto que el objetivo es que la imagen no escore a lo largo del día, tal como se representa en las figuras 5a, 5b y 5c, deberemos modificar el montaje de la superficie reflectante. En la figura 6 se muestra el montaje convencional de un heliostato al que se ha equipado de una superficie reflectante cilindrica. La imagen proyectada sobre el blanco corresponde a lo representado en las figuras 4a, 4b y 4c. Obsérvese como el eje primario (3) se introduce en el pedestal (7), mientras que el eje secundario (5) es "arrastrado" por el propio eje primario (3). Denominaremos a una tal configuración como "7-3-5" según las referencias numéricas utilizadas. La solución propuesta, para obtener una imagen sin escoramiento pasa, como condición previa, por inmovilizar el eje secundario tal como se ha explicado anteriormente. En la figura 7 se muestra el nuevo montaje utilizado en el heliostato de la invención, en el que el eje secundario (5) está relacionado directamente con el pedestal (7), mientras que el eje primario (3) es "arrastrado" por el propio eje secundario (5). Denominaremos a una tal configuración como "7-5-3" para distinguirla de la configuración "7-3-5" convencional, resaltando que presenta un comportamiento funcional radicalmente distinto. Mas adelante justificaremos la necesidad de esta elección para alcanzar el objetivo propuesto. Aún cuando el montaje de la figura 7 es funcionalmente correcto, no resulta muy práctico desde un punto de vista constructivo. Además, la no coincidencia entre el eje primario (3) y la generatriz central de la superficie cilindrica reflectante puede introducir ciertas aberraciones de enfoque. Finalmente, tal como puede apreciarse en la figura 7, podría producirse una interferencia del propio pedestal (7) en el movimiento de la superficie reflectante. En la figura 8 se muestra una realización preferida desde el tipo de vista constructivo, en la que no se ha introducido restricción alguna en cuanto a la orientación del blanco. El helióstato objeto de la invención comprende una superficie reflectante (1 ), cilindrica o cilindro-parabólica, capaz de girar mediante un accionamiento primario (4) alrededor de un eje geométrico primario (3) solidario de un soporte móvil (2) que, a su vez, es capaz de girar alrededor de un eje geométrico secundario (5) perpendicular al eje geométrico primario (3) y que forma un ángulo de inclinación α con el eje cenital (9), mediante un accionamiento secundario (6). Ambos accionamientos (4) (6) están gobernados por un dispositivo de control (8). El conjunto esta soportado por un pedestal (7) cuyo diseño debe ser tal que permita el movimiento de la superficie reflectante (1) y del soporte móvil (2) sin interferir con el propio pedestal (7). La superficie reflectante (1) es, preferiblemente, de óptica cilindrica o cilindrico-parabolica. En una realización particular, que denominaremos de montaje cenital, se dispone el blanco lineal (11 ) en posición vertical sobre una torre (26) con lo que la línea focal, al coincidir con el mismo, será también vertical, lo que conduce a una disposición como la mostrada en las figuras 9, 10, 11 , 12, 15 y 16, en la que el eje secundario (5) es horizontal y el eje primario (3) esta contenido en el denominado plano principal imagen (10), vertical. La figura 10 muestra una variante del helióstato de la invención con un solo punto de apoyo de la superficie reflectante (1 ), para constituir una configuración de tipo "badajo" en contraposición a la configuración de tipo "horquilla" mostrada en la figura 9. Una tal solución, muy simple, presenta sin embargo unas mayores solicitaciones en el único punto de sujeción del eje primario (3) al soporte móvil (2). Haciendo referencia ahora a las figuras 12, 15 y 16 podemos observar como el eje primario (3) está contenido en el plano principal imagen (10), que a su vez contiene a la línea focal del helióstato, y al blanco lineal (11 ). Para que el eje primario (3) este contenido en todo momento en el plano principal imagen (10), el eje secundario (5) deberá ser perpendicular al plano principal imagen (10), y por tanto horizontal, por lo que queda definido durante el montaje inicial del helióstato, no dependiendo su orientación mas que de la posición relativa del helióstato respecto al blanco. El montaje inicial de un helióstato como el descrito es muy sencillo, bastando en una primera fase con disponer vertical el eje primario (3) para que quede contenido en un plano vertical que pase por el blanco lineal (11) para, en una segunda fase orientar el eje secundario (5) de forma perpendicular a dicho plano. Para poder explicar el método de operación de un tal helióstato y refiriéndonos a las figuras 13 y 14 realizaremos una introducción somera al movimiento aparente del sol respecto a la tierra, lo que en todo caso será sobradamente conocido por el experto en la materia. En la figura 13 se ha representado, muy esquemáticamente, la posición de la tierra (13) en su movimiento alrededor del sol (12) cuando recorre la eclíptica (15). Debido a la inclinación del eje de giro norte - sur de la tierra (14), respecto al plano de la eclíptica (15) en un ángulo de 23 grados 27 minutos, los rayos del sol (12) inciden sobre un punto de la superficie terrestre con un ángulo de incidencia variable a lo largo del año. Este ángulo de incidencia será máximo en el solsticio de verano (posición A) y mínimo en el solsticio de invierno (posición B). La posición de la tierra (13) para los equinoccios correspondería en esta figura a un eje perpendicular al plano de la misma sobre la posición en la que se ha representado el sol (12). En la figura 14 se muestra, muy esquemáticamente, el movimiento aparente del sol respecto al suelo (16), habiéndose representado el plano aparente en los equinoccios (17), el plano aparente en el solsticio de verano (18) y el plano aparente en el solsticio de invierno (19). El observador O verá el orto y el ocaso del sol desviado hacia el norte (N) en el solsticio de verano (V) y desviado hacia el sur (S) en el solsticio de invierno (I), mientras que en los equinoccios el sol sale por el este y se pone por el oeste con un recorrido aparente de 180 grados. En la figura 14 se ha representado, asimismo, el concentrador solar de Anderson tal como se describe en US 3,861 ,379. Si el conjunto de reflectores planos (27) se dispone perpendicular y centrado respecto al plano aparente en los equinoccios (17), la imagen del sol convertida en una línea será proyectada sobre el colector (28) solo en los equinoccios, sufriendo para los demás dias del año un desplazamiento longitudinal sobre el mismo que será máximo en los solsticios. Esta penalización es el resultado inevitable del control en un solo eje, y en el caso del concentrador de Anderson es admisible debido a la pequeña distancia focal "d". Refiriéndonos ahora a las figuras 11 , 12, 15 y 16, para un helióstato como el descrito en la presente invención el método de operación reside, básicamente, en gobernar los dos accionamientos (4) (6) de tal manera que se asegure que la energía radiante reflejada por el helióstato incida en todo momento sobre el blanco lineal (11 ) a lo largo de cada día y para todos los dias del año. Según la ley de la reflexión especular, el rayo principal incidente (22) y el rayo principal reflejado (23) están en el mismo plano de reflexión (24), y el eje óptico (25) del helióstato debe estar asimismo sobre la recta bisectriz de ambos rayos principales, definida esta bisectriz como intersección del plano de reflexión (24) con el plano bisectriz (21) del plano principal objeto (20) y del plano principal imagen (10). Esto exige: • Un movimiento del accionamiento primario (4) para llevar el eje óptico (25) de la superficie reflectante (1) un ángulo lateral γ sobre el plano bisectriz (21 ). Ver figura 12. • Un movimiento del accionamiento secundario (6) para, teniendo en cuenta que las posiciones del sol y del blanco están predefinidas, variar el ángulo de elevación β del soporte móvil (2), con objeto de llevar al eje óptico (25) de la superficie reflectante (1) sobre el plano de reflexión (24). Ver figura 11. A continuación analizaremos, en un ejemplo simplificado, el funcionamiento paso a paso de un helióstato convencional y del helióstato de la invención resaltando las razones que conducen a la especial estructura y disposición de este ultimo. La figura 17a muestra esquemáticamente un helióstato de óptica cilindrica y montura convencional horizontal, del tipo representado en la figura 6, en posición de reposo, con el eje primario vertical, orientada su superficie reflectante hacia el Sur que es donde además se supone que esta el blanco (la orientación de dicha superficie viene fijada por la dirección y sentido del vector unitario normal ñ que pasa por su centro). La generatriz central g de dicha superficie cilindrica está contenida en el plano π del meridiano del lugar y es, por construcción, normal al plano del horizonte astronómico local. Según la figura 17a, si proyectáramos dicha generatriz central en dirección Sur sobre un plano π' normal al horizonte, la línea resultante seguiría contenida en el meridiano del lugar. Veamos cómo afecta el movimiento de orientación del helióstato a esta proyección de su generatriz central y sus consecuencias desde un punto de vista óptico. Debido a la naturaleza de su montura mecánica, el helióstato se orienta en el espacio euclídeo por medio de dos mecanismos de giro: a) el mecanismo de giro acimutal Ωacim, que se ejecuta en torno a un eje vertical al plano del horizonte, denominado eje primario (3), y que coincide normalmente con el eje del pedestal del helióstato; y b) el mecanismo de giro cenital Ωcβnι que se ejecuta en torno a un eje paralelo al plano del horizonte, denominado eje secundario (5) y que coincide normalmente con el brazo soporte horizontal del helióstato. Supongamos que el Sol se encuentra ahora, por la mañana, en algún lugar sobre el plano del horizonte, de forma que el helióstato -obedeciendo a las leyes de la Óptica Geométrica- necesita orientarse en este sistema coordenado para reflejar y mantener la imagen del Sol sobre un receptor solar fijo, con forma alargada y vertical, situado en lo alto de una torre a lo largo del día. Tal y como se estableció anteriormente, el helióstato debe forzosamente alcanzar la orientación para el correcto apunte al blanco fijo ejecutando dos giros bien definidos. El primero de ellos, de acuerdo con la figura 18a, es el giro acimutal Ωacim en torno al eje primario, cuyo ángulo de giro suponemos de una magnitud wacιm. De la figura se deduce asimismo que la orientación del eje primario no se altera con el giro pero, debido a una ligadura mecánica entre ellos, como consecuencia de este primer giro el eje secundario abandona su orientación inicial y gira exactamente un ángulo de magnitud wβcιm. En la nueva orientación, la familia de rayos solares reflejados en la generatriz central de la superficie reflectante del helióstato va a proyectarse sobre la base de la torre, todavía con todos sus rayos contenidos en el planq π del meridiano del lugar. Como quiera que el receptor solar está arriba de la torre, el helióstato deberá ejecutar ahora el segundo giro que aún le falta para elevar la imagen al punto deseado. La figura 19a muestra el giro cenital Ωcβn de magnitud wCθn que debe ejecutar en torno al eje secundario para alcanzar el objetivo. La cuestión fundamental es ahora: ¿en qué posición se encuentra después de este segundo giro la generatriz central g del helióstato? Al haberse alterado la orientación del eje secundario debido al giro acimutal, y girar ahora la superficie reflectante en torno a éste, la generatriz central g se inclina sobre el plano del horizonte al tiempo que abandona también el plano del meridiano del lugar. Desde un punto de vista óptico, la familia de rayos solares reflejados en la generatriz central de la superficie cilindrica va a proyectarse sobre el receptor solar en lo alto de la torre, pero sus rayos ya no están íntegramente contenidos en el plano del meridiano del lugar. Sumariamente, el procedimiento de apunte del helióstato ha tenido como consecuencia geométrica el sacar del plano meridiano tanto la generatriz central como su proyección sobre el blanco y, en consecuencia para la óptica, el de escorar la línea focal sobre dicho blanco, perdiendo así el requisito de verticalidad. Es decir, la imagen lineal dada por el helióstato se adapta al receptor solar en cuanto a la forma (alargada), pero no en cuanto al requisito de orientación (vertical). Las consecuencias sobre la distribución de irradiancia solar sobre el receptor lineal se muestran en la figura 4 a través del análisis de las líneas de isoflujo de energía. La figura 17b muestra esquemáticamente un caso particular de helióstato de óptica cilindrica y montura seudo - horizontal, similar al de la figura 10, en posición de reposo, con el eje primario vertical, orientada su superficie reflectante hacia el Sur (la orientación de dicha superficie viene fijada por la dirección y sentido del vector unitario normal ñ que pasa por su centro). La generatriz central g de dicha superficie cilindrica está contenida en el plano π del meridiano del lugar y es, por construcción, normal al plano del horizonte astronómico local. Según la figura 17b, si proyectáramos esta generatriz central en dirección Sur sobre un plano TΓ' normal al horizonte, la línea resultante seguiría contenida en el meridiano del lugar. Veamos de nuevo cómo afecta el movimiento de orientación del helióstato objeto de la invención a esta proyección de su generatriz central y sus consecuencias desde un punto de vista óptico. Debido a la naturaleza de su montura mecánica seudo - horizontal, el helióstato se orienta en el espacio euclídeo por medio de dos mecanismos de giro: a) el mecanismo de giro acimutal Ωac¡m. que se ejecuta en torno a un eje ortogonal al plano del horizonte, denominado eje primario (3) y cuya orientación coincide con la de la generatriz central del helióstato; y b) el mecanismo de giro cenital Ωcβn, que se ejecuta en torno a un eje paralelo al plano del horizonte, denominado eje secundario (5) y que coincide en este caso con el brazo soporte horizontal del helióstato. Supongamos que el Sol se encuentra ahora en algún lugar sobre el plano del horizonte, de forma que el helióstato -obedeciendo a las leyes de la Óptica Geométrica- necesita orientarse en este sistema coordenado para reflejar y mantener la imagen del Sol sobre un receptor solar fijo, con forma alargada y vertical, situado en lo alto de una torre. Tal y como sucedió con el modelo convencional, el helióstato propuesto debe forzosamente alcanzar la orientación adecuada ejecutando dos giros bien definidos. El primero de ellos, de acuerdo con la figura 18b, es el giro acimutal
Figure imgf000022_0001
cuyo ángulo de giro suponemos de una magnitud waz. De la figura se deduce también que la orientación del eje primario no se altera con el giro; asimismo, debido a la especial relación mecánica entre ambos ejes, el eje secundario no altera tampoco su orientación inicial como consecuencia del primer giro Ωacim- La familia de rayos solares reflejados en la generatriz central de la superficie reflectante del helióstato va a proyectarse sobre la base de la torre, pero con todos sus rayos contenidos aún en el plano π del meridiano del lugar. Como quiera que el receptor solar está arriba de la torre, el helióstato deberá ejecutar ahora el giro que aún le falta para elevar la imagen al punto deseado. La figura 19b muestra el giro cenital Ωcβn de magnitud wCθn que debe ejecutar en torno al eje secundario para alcanzar el objetivo. La cuestión esencial es ahora: ¿en qué posición se encuentra después de este segundo giro Ωcβn la generatriz central del helióstato? Al no haberse alterado la orientación del eje secundario, y girar ahora la superficie cilindrica en torno a éste, la generatriz central se inclina respecto al horizonte, pero continúa íntegramente contenida en el plano π del meridiano del lugar. Desde un punto de vista óptico, el resultado es que la familia de rayos solares reflejados en la generatriz central de la superficie reflectante cilindrica va a proyectarse sobre el receptor solar en lo alto de la torre, pero con todos sus rayos contenidos en el plano del meridiano del lugar. Sumariamente, el resultado geométrico del procedimiento de apunte del helióstato ha sido el de confinar sobre el meridiano del lugar tanto la generatriz central de la superficie cilindrica reflectante como su proyección sobre el blanco y. en consecuencia, la línea focal del sistema óptico permanece vertical sobre éste para cualquier posición solar. Es decir, la imagen dada por el helióstato, se adapta al receptor solar tanto en forma (alargada) como en orientación (vertical) para cualquier momento del día. Las consecuencias sobre la distribución de irradiancia solar sobre el receptor lineal, para una posición arbitraria del Sol, se muestran en las figuras 5a, 5b y 5c a través del análisis de las líneas de isoflujo de energía. Serán evidentes para un experto en la materia una serie de alternativas de realización que permitan adaptar el diseño a las condiciones especificas técnicas y económicas de cada realización concreta. Así, por ejemplo, en la descripción de una realización preferida, representada en la figura 9, el soporte móvil (2) tiene forma de "horquilla" pero es evidente que podrá obtenerse el mismo resultado practico con cualquier otro montaje de sujeción de los ejes primario y secundario, incluyendo la superficie reflectora colgada en una disposición de tipo "badajo", tal como la representada en la figura 10. Igualmente, el experto conoce sobradamente el movimiento relativo de la tierra y el sol a lo largo del año, por lo que podrá determinar la actuación del dispositivo de control (8) para asegurar que la imagen reflejada del sol incida en todo momento sobre el blanco lineal (11 ), a lo largo de cada día y para todos los dias del año.
BRIEF DESCRIPTION OF THE DRAWINGS To complete the above description and in order to help a better understanding of the features of the invention, a detailed description of a preferred embodiment will be made based on a set of drawings that are attached hereto descriptive, and where the following is merely for guidance and non-limiting purposes: Figure 1 shows a central solar thermal receiver plant where the heliostat of the invention can be used. Figure 2 represents a detail of the receiver showing the circular image of the sun produced by a conventional heliostat with a spherical reflective surface. Figure 3 represents a detail of the receiver showing the elongated image of the sun produced by a cylindrical reflective surface at noon. Figure 4a shows the image of the sun produced by a cylindrical reflective surface in conventional assembly, in the morning. Figure 4b shows the image of the sun produced by a cylindrical reflective surface in conventional assembly, at noon. Figure 4c shows the elongated image of the sun produced by a cylindrical reflective surface in conventional assembly, in the afternoon. Figure 5a shows the image of the sun produced by a cylindrical reflective surface in the assembly of the invention, in the morning. Figure 5b shows the image of the sun produced by a cylindrical reflective surface in the assembly of the invention, at noon. Figure 5c shows the image of the sun produced by a cylindrical reflective surface in the assembly of the invention, in the afternoon. Figure 6 shows a rear perspective view of the "horizontal" mount of a heliostat with cylindrical reflective surface. Figure 7 shows a rear perspective view of a "pseudo-horizontal" mount of a variant of the heliostat of the invention with cylindrical reflective surface. Figure 8 shows an elevation of the heliostat object of the invention, in general configuration. Figure 9 shows an elevation of the heliostat object of the invention in a preferred embodiment in which the linear blank is arranged vertically and the mobile support is of the fork type. Figure 10 shows an elevation of the heliostat object of the invention in a preferred embodiment in which the linear blank is arranged vertically and the mobile support is straight, giving rise to a configuration of the reflective surface in "clapper". Figure 1 1 shows a side view of the heliostat of Figure 9. Figure 12 shows a plan view of the heliostat of Figure 9. Figure 13 shows, schematically, the positions of the earth relative to the sun during the solstices. Figure 14 shows, schematically, one of the devices known in the prior art and its arrangement in relation to the apparent path of the sun with respect to the ground plane for solstices and equinoxes, Figure 15 shows, schematically in perspective, spatial geometry on which the invention is based. Figure 16 is an elevation of Figure 15. Figure 17a shows, schematically in perspective, the spatial geometry of a conventional mounting heliostat. Figure 17b shows, schematically in perspective, the spatial geometry of a heliostat with the assembly of the invention. Figure 18a shows, schematically in perspective, the azimuthal movement of a conventional mounting heliostat. Figure 18b shows, schematically in perspective, the azimuthal movement of a heliostat with the assembly of the invention. Figure 19a shows, schematically in perspective, the overhead movement of a conventional mounting heliostat. Figure 19b shows, schematically in perspective, the zenith motion of a heliostat with the assembly of the invention. It is noted that Figures 1 to 7 correspond to the field of application of the invention, prior art and necessity of the invention, Figures 8 to 12 correspond to the structural description of the invention, and Figures 13 to 19 correspond to the explanation of the mode of operation of the invention. In these figures the numerical references correspond to the following parts and elements. 1. Reflective surface. 2. Mobile support. 3. Primary axis. 4. Primary drive. 5. Secondary axis. 6. Secondary drive. 7. Pedestal. 8. Control device. 9. Zenith axis. 10. Main image plane. 11. Linear white. 12. Sun. 13. Earth. 14. North - south axis of rotation of the earth. 15. Ecliptic. 16. Ground. 17. Apparent plane in the equinoxes. 18. Apparent plane in the summer solstice. 19. Apparent plane in the winter solstice. 20. Main object plane. 21. Bisector plane. 22. Main beam incident. 23. Main beam reflected. 24. Plane of reflection. 25. Optical axis. 26. Tower. 27. Flat reflectors. 28. Collector. DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT Figure 1 shows a thermo-solar central receiver plant, where a detail of the area of the tower where the target is located is shown. In a conventional installation, with spherical reflective surface heliostats, the image projected by each of them on the target is circular, as seen in Figure 2. If, as is the case, a dimension of this is considerably larger than The transversal dimension will be necessary to use a targeting strategy of the different heliostats to cover the target. Alternatively, and as seen in Figure 3, the use of a cylindrical reflective surface allows the entire blank to be covered with a single heliostat. In this way all the heliostats in the field point to the same place, considerably simplifying the operation of the plant. However, if we simply equip a conventional mounting heliostat with a cylindrical reflective surface, we will only obtain a vertical image at noon as shown in Figure 4b. In the morning the image will appear in one direction (figure 4a), while in the afternoon the image will choose in the opposite direction (figure 4c). Since the objective is that the image does not choose throughout the day, as shown in Figures 5a, 5b and 5c, we must modify the assembly of the reflective surface. Figure 6 shows the conventional assembly of a heliostat that has been equipped with a cylindrical reflective surface. The image projected on the target corresponds to that represented in figures 4a, 4b and 4c. Note how the primary axis (3) is inserted into the pedestal (7), while the secondary axis (5) is "dragged" along the primary axis (3) itself. We will call such a configuration "7-3-5" according to the numerical references used. The proposed solution, to obtain an image without staining, passes, as a precondition, by immobilizing the secondary axis as explained above. Figure 7 shows the new assembly used in the heliostat of the invention, in which the secondary axis (5) is directly related to the pedestal (7), while the primary axis (3) is "dragged" by the own secondary axis (5). We will call such a configuration "7-5-3" to distinguish it from the conventional "7-3-5" configuration, highlighting that it has a radically different functional behavior. Later we will justify the need for this election to achieve the proposed objective. Although the assembly of Figure 7 is functionally correct, it is not very practical from a constructive point of view. In addition, the mismatch between the primary axis (3) and the central generatrix of the reflective cylindrical surface may introduce certain focus aberrations. Finally, as can be seen in Figure 7, interference from the pedestal itself (7) could occur in the movement of the reflective surface. A preferred embodiment from the type of constructive view is shown in Figure 8, in which no restriction on the orientation of the target has been introduced. The heliostat object of the invention comprises a reflective surface (1), cylindrical or parabolic trough, capable of rotating by means of a primary drive (4) around a primary geometric axis (3) integral with a movable support (2) which, at in turn, it is capable of rotating around a secondary geometric axis (5) perpendicular to the primary geometric axis (3) and that forms an angle of inclination α with the zenith axis (9), by means of a secondary drive (6). Both drives (4) (6) are governed by a control device (8). The assembly is supported by a pedestal (7) whose design must be such that it allows the movement of the reflective surface (1) and the mobile support (2) without interfering with the pedestal itself (7). The reflective surface (1) is preferably cylindrical or cylindrical-parabolic. In a particular embodiment, which we will call zenith mounting, the linear target (11) is arranged vertically on a tower (26) so that the focal line, when coinciding with it, will also be vertical, which leads to a arrangement as shown in figures 9, 10, 11, 12, 15 and 16, in which the secondary axis (5) is horizontal and the primary axis (3) is contained in the so-called main image plane (10), vertical . Figure 10 shows a variant of the heliostat of the invention with a single support point of the reflective surface (1), to constitute a "clapper" type configuration as opposed to the "fork" type configuration shown in Figure 9. A a very simple solution, however, has greater demands on the single point of attachment of the primary axis (3) to the mobile support (2). Referring now to Figures 12, 15 and 16 we can see how the primary axis (3) is contained in the main image plane (10), which in turn contains the heliostat focal line, and the linear target (11) . For the primary axis (3) to be contained at all times in the main image plane (10), the secondary axis (5) must be perpendicular to the main image plane (10), and therefore horizontal, so that it is defined during the initial assembly of the heliostat, its orientation not depending on the relative position of the heliostat with respect to the target. The initial assembly of a heliostat like the one described is very simple, it is enough in a first phase to have the primary axis (3) vertical so that it is contained in a vertical plane that passes through the linear target (11) to, in a second phase orient the secondary axis (5) perpendicular to said plane. In order to explain the method of operation of such a heliostat and referring to Figures 13 and 14, we will make a brief introduction to the apparent movement of the sun with respect to the earth, which in any case will be well known by the person skilled in the art. Figure 13 shows, very schematically, the position of the earth (13) in its movement around the sun (12) when it travels the ecliptic (15). Due to the inclination of the axis of north-south rotation of the earth (14), with respect to the plane of the ecliptic (15) at an angle of 23 degrees 27 minutes, the sun's rays (12) affect a point on the surface terrestrial with a variable angle of incidence throughout the year. This angle of incidence will be maximum in the summer solstice (position A) and minimum in the winter solstice (position B). The position of the earth (13) for the equinoxes in this figure would correspond to an axis perpendicular to the plane of the same over the position in which the sun has been represented (12). Figure 14 shows, very schematically, the apparent movement of the sun with respect to the ground (16), the apparent plane having been represented in the equinoxes (17), the apparent plane in the summer solstice (18) and the apparent plane in the winter solstice (19). The observer O will see the ortho and sunset of the sun diverted to the north (N) in the summer solstice (V) and diverted to the south (S) in the winter solstice (I), while in the equinoxes the sun it leaves by the east and it is put by the west with an apparent route of 180 degrees. Also shown in Figure 14 is the Anderson solar concentrator as described in US 3,861,379. If the set of flat reflectors (27) is arranged perpendicular and centered with respect to the apparent plane in the equinoxes (17), the image of the sun converted into a line will be projected onto the collector (28) only in the equinoxes, suffering for others days of the year a longitudinal displacement on it that will be maximum in solstices. This penalty is the inevitable result of single-axis control, and in the case of the Anderson concentrator it is admissible due to the small focal length "d". Referring now to Figures 11, 12, 15 and 16, for a heliostat such as that described in the present invention, the method of operation resides, basically, in governing the two drives (4) (6) in such a way as to ensure that the Radiant energy reflected by the heliostat affects the linear target (11) at all times throughout each day and for every day of the year. According to the law of specular reflection, the incident main beam (22) and the reflected main beam (23) are in the same reflection plane (24), and the optical axis (25) of the heliostat must also be on the bisector line of both main rays, this bisector is defined as the intersection of the reflection plane (24) with the bisector plane (21) of the main object plane (20) and the main image plane (10). This requires: • A movement of the primary drive (4) to bring the optical axis (25) of the reflective surface (1) a lateral angle γ on the bisector plane (21). See figure 12. • A movement of the secondary drive (6) for, taking into account that the positions of the sun and the target are predefined, vary the elevation angle β of the mobile support (2), in order to take the optical axis ( 25) of the reflective surface (1) on the reflection plane (24). See figure 11. Next, we will analyze, in a simplified example, the step-by-step operation of a conventional heliostat and the heliostat of the invention highlighting the reasons that lead to the special structure and arrangement of the latter. Figure 17a schematically shows a heliostat of cylindrical optics and conventional horizontal mount, of the type shown in Figure 6, in the rest position, with the vertical primary axis, oriented its reflective surface towards the South which is where it is also assumed that the white (the orientation of said surface is fixed by the direction and direction of the normal unit vector ñ passing through its center). The central generatrix g of said cylindrical surface is contained in the plane π of the meridian of the place and is, by construction, normal to the plane of the local astronomical horizon. According to Figure 17a, if we projected said central generatrix in the South direction on a plane π 'normal to the horizon, the resulting line would remain contained in the meridian of the place. Let's see how the orientation movement of the heliostat affects this projection of its central generatrix and its consequences from an optical point of view. Due to the nature of its mechanical mount, the heliostat is oriented in the Euclidean space by means of two rotation mechanisms: a) the azimuth rotation mechanism Ω acim , which runs around a vertical axis to the horizon plane, called the primary axis (3), and which normally coincides with the axis of the heliostat pedestal; and b) the zenith mechanism Ω cβnι that runs around an axis parallel to the plane of the horizon, called the secondary axis (5) and normally coincides with the horizontal support arm of the heliostat. Suppose that the Sun is now, in the morning, somewhere on the horizon plane, so that the heliostat - obeying the laws of Geometric Optics - needs to orient itself in this coordinate system to reflect and maintain the image of the Sun on a fixed solar receiver, with an elongated and vertical shape, located on top of a tower throughout the day. As stated above, the heliostat must necessarily reach the orientation for the correct aim at the fixed target by executing two well-defined turns. The first of these, according to Figure 18a, is the azimuthal rotation Ω acim around the primary axis, whose angle of rotation assumes a magnitude w acιm . It also follows from the figure that the orientation of the primary axis is not altered with the rotation but, due to a mechanical bond between them, as a consequence of this first rotation the secondary axis leaves its initial orientation and rotates exactly an angle of magnitude w βcιm . In the new orientation, the family of solar rays reflected in the central generatrix of the reflective surface of the heliostat will project on the base of the tower, still with all its rays contained in the planq π of the meridian of the place. Since the solar receiver is on top of the tower, the heliostat should now execute the second turn that is still missing to raise the image to the desired point. Figure 19a shows the zenith rotation Ω cβn of magnitude w Cθn that must be executed around the secondary axis to reach the objective. The fundamental question is now: in what position is the central generatrix g of the heliostat found after this second turn? When the orientation of the secondary axis has been altered due to the azimuthal rotation, and now the reflective surface is rotated around it, the central generatrix g bends over the plane of the horizon while also leaving the plane of the meridian of the place. From an optical point of view, the family of solar rays reflected in the central generatrix of the cylindrical surface will be projected on the solar receiver at the top of the tower, but its rays are no longer fully contained in the plane of the meridian of the place . In summary, the heliostat aiming procedure has had as a geometric consequence the removal of both the central generatrix and its projection on the target from the meridian plane and, consequently for optics, that of selecting the focal line on said target, thus losing the requirement of verticality That is, the linear image given by the heliostat adapts to the solar receiver in terms of shape (elongated), but not in terms of to the orientation requirement (vertical). The consequences on the distribution of solar irradiance on the linear receiver are shown in Figure 4 through the analysis of the energy isoflow lines. Figure 17b schematically shows a particular case of cylindrical optics heliostat and pseudo-horizontal mount, similar to that of Figure 10, in rest position, with the vertical primary axis, oriented its reflective surface towards the South (the orientation of said surface it is fixed by the direction and sense of the normal unit vector ñ that passes through its center). The central generatrix g of said cylindrical surface is contained in the plane π of the meridian of the place and is, by construction, normal to the plane of the local astronomical horizon. According to Figure 17b, if we projected this central generatrix in the South direction on a plane TΓ 'normal to the horizon, the resulting line would remain contained in the meridian of the place. Let's see again how the orientation movement of the heliostat object of the invention affects this projection of its central generatrix and its consequences from an optical point of view. Due to the nature of its pseudo-horizontal mechanical mount, the heliostat is oriented in the Euclidean space by means of two rotation mechanisms: a) the azimuthal rotation mechanism Ω ac ¡ m . which runs around an axis orthogonal to the plane of the horizon, called the primary axis (3) and whose orientation coincides with that of the central generatrix of the heliostat; and b) the zenith mechanism Ω cβn , which runs around an axis parallel to the horizon plane, called the secondary axis (5) and which coincides in this case with the horizontal support arm of the heliostat. Suppose the Sun is now somewhere on the horizon plane, so that the heliostat - obeying the laws of Geometric Optics - needs to be oriented in this coordinate system to reflect and maintain the image of the Sun on a fixed solar receiver. , with an elongated and vertical shape, located on top of a tower. As with the conventional model, the proposed heliostat must necessarily achieve the proper orientation by executing two well-defined turns. The first of them, according to figure 18b, is the azimuth turn
Figure imgf000022_0001
whose angle of rotation we assume a magnitude w az . It also follows from the figure that the orientation of the primary axis is not altered with the rotation; also, due to the special mechanical relationship between both axes, the secondary axis does not alter its initial orientation either as a result of the first Ω ac i m turn - The family of solar rays reflected in the central generatrix of the reflective surface of the heliostat is going to project on the base of the tower, but with all its rays still contained in the plane π of the meridian of the place. Since the solar receiver is on top of the tower, the heliostat should now execute the spin that is still missing to raise the image to the desired point. Figure 19b It shows the zenith rotation Ω cβn of magnitude w Cθn that must be executed around the secondary axis to reach the objective. The essential question is now: in what position is the central generatrix of the heliostat after this second turn Ω cβn ? Since the orientation of the secondary axis has not been altered, and the cylindrical surface is now rotated around it, the central generatrix tilts with respect to the horizon, but remains fully contained in the plane π of the meridian of the place. From an optical point of view, the result is that the family of solar rays reflected in the central generatrix of the cylindrical reflective surface will be projected on the solar receiver at the top of the tower, but with all its rays contained in the plane of the meridian of the place. In summary, the geometric result of the heliostat aiming procedure has been to confine the central generatrix of the reflective cylindrical surface and its projection on the target on the meridian of the site. consequently, the focal line of the optical system remains vertical over it for any solar position. That is, the image given by the heliostat, adapts to the solar receiver both in shape (elongated) and orientation (vertical) for any time of the day. The consequences on the distribution of solar irradiance on the linear receiver, for an arbitrary position of the Sun, are shown in Figures 5a, 5b and 5c through the analysis of the energy isoflow lines. A series of alternative embodiments that allow adapting the design to the specific technical and economic conditions of each specific embodiment will be evident to a person skilled in the art. Thus, for example, in the description of a preferred embodiment, shown in Figure 9, the mobile support (2) is in the form of a "fork" but it is evident that the same practical result can be obtained with any other mounting of axle fasteners primary and secondary, including the reflecting surface hung in a "clapper" type arrangement, such as that shown in figure 10. Similarly, the expert knows the relative movement of the earth and the sun throughout the year, so which may determine the performance of the control device (8) to ensure that the reflected image of the sun strikes at all times on the linear target (11), throughout each day and for every day of the year.

Claims

REIVINDICACIONES
1. Helióstato de foco lineal del tipo de los utilizados para formar campos de helióstatos en plantas termosolares de receptor central consistente en un blanco lineal (1 1 ) fijo sobre una torre (26), caracterizado por comprender; una superficie reflectante (1 ), cilindrica o cilindro-parabólica, susceptible de girar respecto a un eje primario (3), coincidente con la generatriz central de la superficie reflectante (1 ). un soporte móvil (2), susceptible de girar respecto a un eje secundario (5) perpendicular al eje primario (3), siendo el eje primario (3) solidario del soporte móvil (2), y disponiéndose el eje secundario (5) perpendicular a un plano principal imagen (10), inmóvil en el espacio, que contiene en todo momento al blanco lineal (11 ) y al eje primario (3), un accionamiento primario (4) para hacer girar la superficie reflectante (1 ) alrededor del eje primario (3), un accionamiento secundario (6) para hacer girar el soporte móvil (2) alrededor del eje secundario (5), un dispositivo de control (8) para gobernar el accionamiento primario (4) y el accionamiento secundario (6).1. Linear focus heliostat of the type used to form heliostat fields in central receiver solar thermal plants consisting of a linear target (1 1) fixed on a tower (26), characterized by understanding; a reflective surface (1), cylindrical or parabolic trough, capable of rotating relative to a primary axis (3), coinciding with the central generatrix of the reflecting surface (1). a mobile support (2), capable of rotating with respect to a secondary axis (5) perpendicular to the primary axis (3), the primary axis (3) being integral with the mobile support (2), and the secondary axis (5) being arranged perpendicular to a main image plane (10), motionless in space, containing at all times the linear target (11) and the primary axis (3), a primary drive (4) to rotate the reflective surface (1) around the primary shaft (3), a secondary drive (6) to rotate the mobile support (2) around the secondary shaft (5), a control device (8) to govern the primary drive (4) and the secondary drive (6 ).
2. Helióstato de foco lineal de acuerdo con la reivindicación 1 , caracterizado por que el blanco lineal (1 1 ) es vertical.2. Linear focus heliostat according to claim 1, characterized in that the linear blank (1 1) is vertical.
3. Método de operación del helióstato de las reivindicaciones 1 a 2 caracterizado por comprender las siguientes maniobras; movimiento del accionamiento primario (4) para, teniendo en cuenta que las posiciones del sol (12) y del blanco lineal (11 ) están predefinidas, llevar el eje óptico (25) de la superficie reflectante (1 ) un ángulo lateral γ sobre un plano bisectriz (21 ) del plano principal imagen (10) y del plano principal objeto (20) definidos como los que contienen al eje primario (3) y al rayo principal reflejado (23) o al rayo principal incidente (22) respectivamente, movimiento del accionamiento secundario (6) para, teniendo en cuenta que las posiciones del sol (12) y del blanco lineal (11) están predefinidas, variar el ángulo de elevación β del soporte móvil (2), con objeto de llevar al eje óptico (25) de la superficie reflectante (1 ) sobre el plano de reflexión (24), definido como el plano que contiene al rayo principal reflejado (23) y al rayo principal incidente (22);3. Method of operation of the heliostat of claims 1 to 2 characterized by comprising the following maneuvers; movement of the primary drive (4) for, taking into account that the positions of the sun (12) and the linear target (11) are predefined, bring the optical axis (25) of the reflecting surface (1) a lateral angle γ on a bisector plane (21) of the main image plane (10) and of the main object plane (20) defined as those containing the primary axis (3) and the reflected main beam (23) or the incident main beam (22) respectively, movement of the secondary drive (6) for, taking into account that the positions of the sun (12) and the linear target (11) are predefined, vary the elevation angle β of the mobile support (2), in order to take the optical axis (25) of the reflective surface (1) on the reflection plane (24), defined as the plane containing the main reflected ray (23) and the main incident ray (22);
de tal manera que se asegure que la energía radiante reflejada incida en todo momento sobre el blanco lineal (11), a lo largo de cada día y para todos los dias del año. in such a way that it is ensured that the reflected radiant energy affects the linear target (11) at all times, throughout each day and for every day of the year.
PCT/ES2005/000297 2004-05-26 2005-05-25 Line focus heliostat and operating method thereof WO2005119136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200401270A ES2244339B1 (en) 2004-05-26 2004-05-26 LINEAR FOCUS HELIOSTATE AND OPERATING METHOD.
ESP200401270 2004-05-26

Publications (1)

Publication Number Publication Date
WO2005119136A1 true WO2005119136A1 (en) 2005-12-15

Family

ID=35453094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000297 WO2005119136A1 (en) 2004-05-26 2005-05-25 Line focus heliostat and operating method thereof

Country Status (2)

Country Link
ES (1) ES2244339B1 (en)
WO (1) WO2005119136A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001448A3 (en) * 2009-07-01 2012-08-02 Ravindra Patwardhan A solar central receiver system employing common positioning mechanism for heliostats
WO2012117123A1 (en) * 2011-03-03 2012-09-07 Aplicaciones Renovables Integradas, S.L. Heliostat with a drive shaft pointing at the target, reflection sensor and a closed-loop control system
US8378280B2 (en) 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
US8739512B2 (en) 2007-06-06 2014-06-03 Areva Solar, Inc. Combined cycle power plant
US8807128B2 (en) 2007-08-27 2014-08-19 Areva Solar, Inc. Linear fresnel solar arrays
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586488A (en) * 1983-12-15 1986-05-06 Noto Vincent H Reflective solar tracking system
NL9401370A (en) * 1994-08-24 1996-04-01 Paul Marie Van Groenewoud Heliostat provided with an aligning instrument which instrument is light-tight apart from one opening and makes use of the reflected beam of sunlight and is pointed at the target object
US6284968B1 (en) * 2000-06-19 2001-09-04 Joseph Z. Niesyn Solar-tracking system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253637A (en) * 1992-03-12 1993-10-19 Maiden Miles M Hyperfocal tracking solar thermal collector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586488A (en) * 1983-12-15 1986-05-06 Noto Vincent H Reflective solar tracking system
NL9401370A (en) * 1994-08-24 1996-04-01 Paul Marie Van Groenewoud Heliostat provided with an aligning instrument which instrument is light-tight apart from one opening and makes use of the reflected beam of sunlight and is pointed at the target object
US6284968B1 (en) * 2000-06-19 2001-09-04 Joseph Z. Niesyn Solar-tracking system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378280B2 (en) 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
US8739512B2 (en) 2007-06-06 2014-06-03 Areva Solar, Inc. Combined cycle power plant
US8807128B2 (en) 2007-08-27 2014-08-19 Areva Solar, Inc. Linear fresnel solar arrays
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor
WO2011001448A3 (en) * 2009-07-01 2012-08-02 Ravindra Patwardhan A solar central receiver system employing common positioning mechanism for heliostats
WO2012117123A1 (en) * 2011-03-03 2012-09-07 Aplicaciones Renovables Integradas, S.L. Heliostat with a drive shaft pointing at the target, reflection sensor and a closed-loop control system

Also Published As

Publication number Publication date
ES2244339B1 (en) 2007-02-16
ES2244339A1 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
KR101840497B1 (en) Concentrating daylight collector
US4226502A (en) Self-contained solar tracking device
ES2745116T3 (en) Solar energy collector system
ES2525834T3 (en) Solar central receiver system with a heliostat field and procedure for the production of a heliostat field of such a system
EP0222740B1 (en) Solar energy collecting system using a primary reflector based on a pyramid structure
WO2005119136A1 (en) Line focus heliostat and operating method thereof
ES2559880T3 (en) Solar collector with Fresnel mirrors
ES2880461T3 (en) Optomechanical system to capture and transmit incident light with a variable incidence direction towards at least one collecting element and corresponding procedure
US4352350A (en) Means for tracking the sun
WO2013190154A1 (en) Mixed heliostat field
WO2012117123A1 (en) Heliostat with a drive shaft pointing at the target, reflection sensor and a closed-loop control system
PT2135014E (en) Method and device for the utilization of solar energy
BR112013020168B1 (en) element of capture and concentration of direct solar radiation
ES2345427B2 (en) SOLAR RADIATION CONCENTRATION DEVICE, WITH LONGITUDINAL MIRRORS AND RECEIVER.
ES2358815B2 (en) HELIOSTATE WITH A DRIVE SHAFT AIMING AT THE OBJECTIVE, REFLECTION SENSOR AND CONTROL IN CLOSED LOOP.
ES2831649T3 (en) Low cost focusing system allowing high concentrations
CN101625432B (en) Fixed-point condensing reflector
ES2537607B2 (en) Horizontal rotary device for concentrating solar radiation
ES2370939T3 (en) PROCEDURE AND DEVICE FOR THE USE OF SOLAR ENERGY.
Tamaura et al. Cross linear solar concentration system for CSP
ES2726673T3 (en) Solar concentrator with separate pivot connections
ES2917627T3 (en) Asymmetric solar receiver
CN204648126U (en) A kind of guide-lighting control system
BR112020020612A2 (en) TRACKING DEVICE
WO2015193523A1 (en) Heliostat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase