WO2006016574A1 - ANTINEOPLASTIC AGENT APPLYING RNAi - Google Patents

ANTINEOPLASTIC AGENT APPLYING RNAi Download PDF

Info

Publication number
WO2006016574A1
WO2006016574A1 PCT/JP2005/014566 JP2005014566W WO2006016574A1 WO 2006016574 A1 WO2006016574 A1 WO 2006016574A1 JP 2005014566 W JP2005014566 W JP 2005014566W WO 2006016574 A1 WO2006016574 A1 WO 2006016574A1
Authority
WO
WIPO (PCT)
Prior art keywords
hsp105
sirna
expression
cancer
rnai
Prior art date
Application number
PCT/JP2005/014566
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuharu Nishimura
Tetsuya Nakatsura
Seiji Hosaka
Original Assignee
Kumamoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University filed Critical Kumamoto University
Priority to JP2006531647A priority Critical patent/JPWO2006016574A1/en
Publication of WO2006016574A1 publication Critical patent/WO2006016574A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to an antitumor agent using RNAi. More specifically, the present invention relates to an antitumor agent using a factor capable of suppressing the expression of HSP105 by RNAi.
  • RNAi functions are inhibited! /
  • a double-stranded RNA consisting of sense RNA and antisense RNA that is homologous to a specific region of a gene interferes with the homologous portion of the target gene transcript mRNA. It was first proposed in 1998 by an experiment using nematodes. Later in 2001, it was found that 21-23 base pair double stranded RNA can induce RNAi effect in mammalian cells without cytotoxicity.
  • RNA interference method is simple and inexpensive, has the advantage that gene function can be analyzed in a short time, and the gene sequence to be inhibited should have at least 19 bases. It is.
  • siRNA expression vectors have been developed, and delivery methods using viral vectors are also in the development stage for medical applications. As described above, the RNA interference method is used as a technique for specifically suppressing the synthesis of gene products, and its application to medicine has been reported, but there are few reports that it has actually been effective.
  • HSP105 is a heat shock protein belonging to the HSP105 / HSP110 family, and it is known that its expression is induced by various stresses such as heat shock and other drugs. Although its function has not yet been fully elucidated, it is thought to bind to various proteins and to be involved in the activity of protecting against degradation and suppressing function. In mouse embryos, it has been shown that expression is transiently increased during embryonic period (Hatayama. T. et al. Cell Struct. Funct. 22,517-525. (1997)) 0 rat neurons It has also been shown that overexpression of HSP105 suppresses apoptosis induced by various stresses (Hatayama. T Et al. Biochem. Biophys. Res. Commun.
  • the present inventors have identified the ability to identify HSP105 in the SEREX method using serum from patients with spleen cancer and colon cancer. This indicates that IgG antibodies against HSP105 exist in the serum of cancer patients! (Nakatsura. T. et al. Biochem. Biophys. Res. Commun. 281, 936-944. (2001)).
  • the present inventors have also found that HSP105 is overexpressed in various human tumors as well as spleen and colon cancers (Kai. M. et al. Oncol. Rep. 10.1777- 1782. (2003)). On the other hand, it was found that in normal human tissues, expression was highest in the testis and weak expression was observed in some organs such as the brain.
  • An object of the present invention is to provide a novel antitumor agent utilizing the RNAi phenomenon. More specifically, an object of the present invention is to suppress the expression of HSP105 using siRNA of HSP105, study the effect on tumor, and provide a novel antitumor agent.
  • the present inventors transformed the mouse NIH3T3 cells by introducing the HSP105 gene, the present inventors thought that HSP105 has an oncogene-like function, and the main one is to suppress apoptosis.
  • the present inventors succeeded in causing the cells to undergo apoptosis. The effect was more prominent in the cancer cells expressing wild-type p53, and the effect was increased when used in combination with the pile cancer agent adriamycin.
  • HSP105 siRNA is considered to be effective against cancers that express phenotypes, and in addition, this gene therapy also has a synergistic effect on cancers with mutant P53. I can expect.
  • an antitumor agent comprising a factor capable of suppressing the expression of HSP105 by RNAi.
  • an apoptosis inducer in cancer cells comprising a factor capable of suppressing the expression of HSP105 by RNAi.
  • the factor capable of suppressing the expression of HSP105 by RNAi is siRNA or shRNA.
  • the agent of the present invention is used in combination with an anticancer agent.
  • the agents of the present invention are used against cancer cells that express wild-type p53.
  • the siRNA is a double-stranded RNA consisting of an RNA having the base sequence set forth in SEQ ID NO: 1 and an RNA having the base sequence set forth in SEQ ID NO: 2.
  • the agent of the present invention is used for the treatment of colorectal cancer, knee cancer, esophageal cancer, breast cancer, malignant melanoma and the like that highly express HSP105.
  • RNA having the base sequence set forth in SEQ ID NO: 1 and RNA having the base sequence set forth in SEQ ID NO: 2.
  • a method for suppressing a tumor comprising administering a factor capable of suppressing the expression of HSP105 by RNAi to a mammal including a human.
  • a method for inducing apoptosis in cancer cells comprising administering a factor capable of suppressing the expression of HSP105 by RNAi to a mammal including a human.
  • a factor capable of suppressing the expression of HSP105 by RNAi for the production of an apoptosis inducer in cancer cells.
  • the present invention relates to an antitumor agent and an apoptosis-inducing agent in cancer cells (hereinafter, these may be collectively referred to as the drug of the present invention) containing a factor capable of suppressing the expression of HSP105 by RNAi.
  • a factor capable of suppressing the expression of HSP105 by RNAi include siRNA and shRNA as described below.
  • double-stranded RNA having a length of about 20 bases (for example, about 21 to 23 bases) or less, called siRNA can be used in the present invention.
  • siRNA can suppress gene expression by being expressed in cells, and can suppress expression of a target gene of the siRNA (in the present invention, HSP105 gene).
  • siRNA used in the present invention may be in any form as long as it can cause RNAi.
  • siRNA is an abbreviation for short interfering RNA, which is artificially chemically synthesized, biochemically synthesized, or synthesized in organisms, or about This is short double-stranded RNA of 10 base pairs or more, which is formed by decomposing double-stranded RNA of 40 bases or more in the body, and usually has a 5'-phosphate or 3'-OH structure. The 3 'end protrudes about 2 bases.
  • a specific protein binds to this siRNA, and RISC (RNA-induced-silencing-complex) is established. This complex recognizes and binds to mRNA having the same sequence as that of siRNA, and cleaves mRNA at the center of siRNA by RNaselll-like enzyme activity.
  • the siRNA sequence and the mRNA sequence to be cleaved as a target match 100%.
  • the cleavage activity by RNAi often remains partially, so it does not necessarily have to match 100%.
  • the region having homology between the nucleotide sequence of siRNA and the nucleotide sequence of HSP105 gene whose expression should be suppressed preferably does not include the translation initiation region of HSP105 gene. Since various transcription factors and translation factors are expected to bind to the translation initiation region, siRNA This is because it cannot be effectively bound to mRNA and the effect is expected to be reduced. Therefore, the homologous sequence is preferably 20 bases away from the translation start region of the HSP105 gene! /, More preferably 70 bases away from the translation start region of the HSP105 gene.
  • the sequence having homology may be, for example, a sequence near the 3 ′ end of the HSP105 gene.
  • siRNA can be used as a factor that causes RNAi, and a factor that generates siRNA (for example, dsRNA of about 40 bases or more) can be used as such a factor.
  • a factor that generates siRNA for example, at least about 70%, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, even more preferably 90% or more, particularly preferably 95% or more of a part of the nucleic acid sequence of the HSP105 gene.
  • RNA containing a double-stranded portion or a variant thereof containing a sequence having a homology of at least%, most preferably 100% can be used.
  • sequence portion having homology is usually at least about 15 nucleotides or more, preferably at least about 19 nucleotides, more preferably at least about 20 nucleotides in length, and even more preferably at least about 21 nucleotides in length. .
  • siRNA examples include RNA having a 21-base base sequence corresponding to the 138th to 158th positions of HSP105 mRNA, specifically, SEQ ID NO: 1 Forces including, for example, RNA having the nucleotide sequence described and RNA having the nucleotide sequence set forth in SEQ ID NO: 2 are not limited thereto.
  • the base sequence of the HSP105 gene is known, and is described in, for example, NCBI, Nucleotide Sequence Data base accession No. AB003334.
  • a shRNA short hair pin RNA
  • a shRNA is a molecule of about 20 base pairs or more that has a double-stranded structure within the molecule and has a hairpin-like structure by including a partially palindromic base sequence with single-stranded RNA.
  • shRNAi can be digested in the same manner as siRNA. Can cause.
  • shRNA causes RNAi as well as siRNA, and can be used effectively in the present invention.
  • the shRNA preferably has a 3 'protruding end.
  • the length of the double-stranded part is not particularly limited, but is preferably about 10 nucleotides or more, more preferably about 20 nucleotides or more.
  • the 3 ′ protruding end is preferably DNA, more preferably DNA of at least 2 nucleotides, and further preferably DNA of 2 to 4 nucleotides.
  • siRNA or shRNA can be used as a factor capable of suppressing the expression of HSP105 by RNAi.
  • the advantages of siRNA are as follows: (1) Even if it is introduced into cells, RNA itself is not integrated into the chromosome of normal cells! /, so it is safer than treatment that causes mutations transmitted to offspring, And (2) short double-stranded RNA is relatively easy to chemically synthesize and is more stable when double-stranded.
  • shRNA when treatment is performed by suppressing gene expression for a long time, a vector that transcribes shRNA in a cell can be prepared and introduced into the cell.
  • the factor capable of suppressing the expression of HSP105 by RNAi used in the present invention may be artificially chemically synthesized, sense strand and antisense. It can also be prepared by synthesizing RNA in vitro with T7 RNA polymerase, which has a hairpin structure in which the DNA sequences of the strands are ligated in the opposite direction.
  • T7 RNA polymerase which has a hairpin structure in which the DNA sequences of the strands are ligated in the opposite direction.
  • antisense and sense RNAs can be synthesized from the truncated DNA using T7 RNA polymerase and T7 promoter. When these are annealed in vitro and then introduced into cells, RNAi is triggered and HSP1 05 expression is suppressed.
  • such RNA can be introduced into cells using, for example, the calcium phosphate method or various transfection reagents (eg, oligofectamine, Lipofectamine, lipofection, etc.).
  • an expression vector comprising a nucleic acid sequence encoding a factor (preferably siRNA or shRNA) capable of suppressing the expression of HSP105 by RNAi.
  • a cell containing the above-described expression vector is provided.
  • the cells of the present invention may transiently or stably express a factor that causes RNAi.
  • the expression vectors and cell types described above are not particularly limited, but are preferably used for treatment. It can be done.
  • the agent of the present invention can be widely used for tumor suppression. More specifically, tumor suppression includes prevention of tumor development, suppression of tumor growth, tumor regression, and suppression of tumor migration. Clinically, cancer and Z or tumor prevention and Z Or means to encompass all of the treatment.
  • the types of cancer for which the antitumor agent of the present invention can be used are not particularly limited, and include all of benign tumors and malignant tumors.
  • Specific examples of cancer include malignant melanoma, malignant lymphoma, digestive cancer, lung cancer, esophageal cancer, gastric cancer, colon cancer, rectal cancer, colon cancer, ureteral tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, breast cancer, Liver cancer, spleen cancer, testicular tumor, maxillary cancer, tongue cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, ovarian cancer, uterine cancer, prostate cancer, thyroid cancer, brain tumor, force positive sarcoma, hemangioma, leukemia , Polycythemia vera, neuroblastoma, retinoblastoma, myeloma, cystoma, sarcoma, osteosarcoma, myoma, skin cancer
  • the agent of the present invention can be used in combination with other anticancer agents.
  • the agent of the present invention can be administered together with certain anticancer agents or separately before and after.
  • cancer cells that have been resistant to such an anticancer agent can be effectively treated or prevented.
  • Alkylating agents for example, cyclophosphamide, busulfan, thiotepa, dacarbazine, etc.
  • Antimetabolite eg, methotrexate, 6-mercaptopurine, fluorouracil (5 FU), etc.
  • DNA topoisomerase inhibitors for example, camptothecin, etoposide, etc.
  • Tubulin agonists (vinblastine, vincristine, etc.)
  • Anticancer antibiotics (adriamycin, daunorubicin, mitomycin C, bleomycin, etc.)
  • Hormonal agents tamoxifen, leuprorelin, etc.
  • Biologics asparaginase, interferon, etc.
  • the administration method of the drug of the present invention includes oral administration and parenteral administration (for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, intravaginal administration, administration to the affected area. Topical administration, dermal administration, etc.) and direct administration to the affected area.
  • parenteral administration for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, intravaginal administration, administration to the affected area.
  • Topical administration, dermal administration, etc. direct administration to the affected area.
  • a pharmaceutically acceptable additive can be blended as necessary.
  • pharmaceutically acceptable additives include antioxidants, preservatives, colorants, flavors, and diluents, emulsifiers, suspending agents, solvents, fillers, bulking agents, buffering agents, Powers including, but not limited to, delivery vehicles, diluents, carriers, excipients and / or pharmaceutical adjuvants.
  • the dosage form of the drug of the present invention is not particularly limited! Examples of sputum include liquids, injections, sustained-release agents and the like.
  • the solvent used for formulating the drug of the present invention as the above-mentioned preparation may be either aqueous or non-aqueous.
  • Injections can be prepared by methods well known in the art. For example, after being dissolved in a suitable solvent (saline, buffer solution such as PBS, sterilized water, etc.), sterilized by filtration with a filter or the like, and then filled into a sterile container (for example, an ampule). Can be prepared. This injection may contain a conventional pharmaceutical carrier, if necessary. Administration methods using non-invasive catheters can also be used. Examples of the carrier that can be used in the present invention include neutral buffered physiological saline or physiological saline mixed with serum albumin.
  • the factor capable of suppressing the expression of HSP105 by RNAi which is an active ingredient of the drug of the present invention, can be administered in the form of a non-viral vector or a viral vector.
  • Such administration forms are known in the art, for example, a separate volume of experimental medicine “Basic technology of gene therapy” Yodosha, 1996; a separate volume of experimental medicine “Gene transfer & expression analysis experiment method” Yodosha, It is described in 1997.
  • a method of introducing a nucleic acid molecule using ribosome liposome method, HVJ-ribosome method, catonic ribosome method, lipofussion method, ribosome Effuction method, etc.
  • microinjection method and method of transferring nucleic acid molecules to cells together with carriers (metal particles) using a gene gun.
  • the originating expression vector for example, P CAGGS, pBJ- CMV, pcDNA3 . 1, pZeoSV (lnv itrogen Company or Stratagene Inc. force available), and the like.
  • lipofusion for example, lipofectamine 2000, oligofectamine
  • the HVJ-ribosome method encapsulates a nucleic acid molecule in a ribosome made of a lipid bilayer, and fuses the ribosome with an inactivated Sendai Winores (Hemagglutinating virus of Japan, HVJ). Include.
  • the HVJ-ribosome preparation method is described, for example, in a separate volume of experimental medicine “Basic Technology of Gene Therapy” Yodosha, 1996; a separate volume of experimental medicine “Gene Transfer & Expression Analysis Experiment Method” Yodosha, 1997.
  • RNAi HSP105 A gene can be introduced into a cell or tissue by introducing a DNA that expresses a factor capable of suppressing the expression of the gene and infecting the cell or tissue with the recombinant virus.
  • a factor capable of suppressing the expression of HSP105 by RNAi can be directly injected into a living organ or tissue.
  • the dosage of the drug of the present invention is a factor that can suppress the expression of HSP105 by the purpose of use, the severity of the disease, the patient's age, weight, sex, medical history, or RNAi as an active ingredient. It can be determined by those skilled in the art in consideration of the type of the above.
  • the dose of the factor capable of suppressing the expression of HSP105 by RNAi as an active ingredient is not particularly limited, and is, for example, about 0.1 ng to about 100 mgZkg, preferably about 1 ng to about 10 mg.
  • the frequency of administration of the drug of the present invention is, for example, once a day to once every several months (for example,
  • RNAi is generally effective for 1-3 days after administration. Therefore, it is preferable to administer daily to once every 3 days. When using an expression vector, it can be administered about once a week.
  • HSP105 mRNA expression was examined using reverse transcription-PCR (RT-PCR).
  • the human colon cancer cell line HCT116 was obtained from Dr. B. Vogelstein of Johns Hopkins University. Normal colon mucosa cDNA was purchased from Clontech.
  • RT-PCR was performed according to a known method.
  • a human HSP105 gene PCR primer that amplifies a 407 bp fragment was designed and used to perform an RT-PCR reaction consisting of 33 amplification cycles at 94 ° C, 5 minutes of initial denaturation, and an annealing temperature of 58 ° C. It was.
  • the HSP105 PCR primer sequence used was Sense: 5′-AGAGTAAAAGTCAAAGTG-3 ′ (SEQ ID NO: 5), Antisense: 5′-TTAGAAGGTCTTTCCCT-3 ′ (SEQ ID NO: 6).
  • the j8-actin PCR primer sequences for the control experiments are sense: 5′-CCTCGCCTTTGCCGATCC-3 ′ (SEQ ID NO: 7), antisense: 5′-GGATCTTC ATGAGGTAGTC AGTC-3 ′ (SEQ ID NO: 8).
  • HSP105 mRNA was strongly expressed in the HCT116 cell line compared to normal colon mucosa (Fig. 1).
  • siRNA small interference RNA
  • mRNA mRNA
  • HEP105 heat shock protein 105
  • Fig. 2 Luciferase siRNA was also purchased from Dharmacon. All were dissolved in an annealing buffer (100 mM KOAc, 30 mM HEPES-KOH pH 7.4, 2 mM MgOAc) to 20 ⁇ 20.
  • HSP105 siRNA sequence is sense: 5'-UUGGCUGCAACUCCGAUUGdTdT-3 '(SEQ ID NO: 1), and antisense: 5'-CAAUCGGAGUUGCAGCCAAdTdT-3' (SEQ ID NO: 2).
  • the Luciferase siRNA sequence is sense: 5'-CGUACGCGGAAUACUUCGAdTdT-3 '(SEQ ID NO: 3), antisense: 5'-UCGAAGUAUUCCGCGUACGdTdT-3' (SEQ ID NO: 4).
  • HCT116 strain with wild type p53
  • HCT116 wild type p53 deficient strain
  • FCS DMEM medium After 4 hours, add 2 ml of 10% FCS DMEM medium.After 24 and 48 hours, collect cells by trypsin treatment.A part of the cells for flowcytometry and the rest for Western blotting are lysis buffer (20 mM Tris-HC1 pH7 .4, 10% glycerol, 1% NP-40 [Roche], 200 mM NaCl, ImM Na VO, Protease inhibitor cocktail tablet 1 tablet (Roche))
  • a cell lysate was prepared.
  • HCT116 wild type p53-bearing strain
  • HCT116 wild type p53 deficient
  • HCT116 wild type p53-bearing strain
  • HCT116 wild type p53-deficient strain
  • HCT116 p53- /-Oligofectamine only 12.0% Luciferase- siRNA treatment
  • HSP105- siRNA treatment 18.1% HCT116 p53 + / + Oligofectamine only 11.2% Luciferase- siRNA treatment 9.6% HSP105- siRNA treatment 51.1%) ( Figures 4 and 5).
  • Example 2 12 hours after addition of siRNA, adriamycin was added to each well at a concentration of 200 ng / ml, and the effect was examined.
  • GFP siRNA was purchased from QIAGEN and used as a control siRNA.
  • the GFP siRNA sequence is sense: 5′-GCAAGCUGAC CCUGAAGUUCAU-3 ′ (SEQ ID NO: 9), antisense: 5′-GAACUUCAGGGUCAGCU UGCCG-3 ′ (SEQ ID NO: 10).
  • the human colon cancer cell line SW620 showed the most decreased expression of HSP105 protein after 24 hours, and apoptosis was strongly induced at this time. This is probably due to the rapid growth of SW620, and after 48 hours, cells with strong enough siRNAs proliferated, so this result was relatively obtained.
  • human liver cancer SK-Hepl the expression of HSP105 was suppressed most and apoptosis was strongly induced 48 hours later (Figs. 7 to 9).
  • siRNA HSP105 siRNA represented by SEQ ID NO: 1 and SEQ ID NO: 2 described in Example 2
  • siRNA 1 nmol + 20 ⁇ 1 oligofectamin + glucose water was synthesized with siRNA 1 nmol + 20 ⁇ 1 oligofectamin + glucose water to a final concentration of 5% grape solution 60 1. Following the volume of 4 tumors each with control siRNA.
  • V LXW 2 X 0.5
  • Figure 11 shows the measurement results. As shown in Fig. 11, HSP105-siRNA clearly inhibited tumor growth.
  • HSP105-siRNA suppressed the expression of HSP105 protein even in normal cells, but did not induce apoptosis. Furthermore, this protein expression suppression was also transient, and the strength recovered after about 10 days after the introduction of siRNA.
  • the antitumor agent of the present invention is expected to have a conventional antitumor effect by targeting a tumor-specific antigen using a new means.
  • the effect of the antitumor agent of the present invention was enhanced by the combined use with other anticancer agents.
  • the therapeutic effect is low in malignant tumors expressing wild-type P53, but the antitumor agent of the present invention is Expresses wild-type p53 It has been demonstrated to be more effective in cancer cell lines.
  • combined use with this gene therapy can be expected to have a synergistic effect on cancer with mutant p53.
  • the antitumor agent of the present invention can be used as a new malignant tumor therapeutic agent in the field of medical therapeutic agents.
  • FIG. 1 shows the results of examining the expression of HSP105 in normal human colon and human colon cancer cell line HCT116 by RT-PCR.
  • the expression of HSP105 mRNA was clearly higher in HCT116 than in normal colon.
  • FIG. 2 shows the siRNA sequence of human HSP105.
  • FIG. 3 shows the result of confirming the expression of HSP105 protein after siRNA treatment by Western blotting.
  • HSP105 expression was not decreased by treatment with the control luciferase siRNA.
  • FIG. 4 shows detection of apoptosis 48 hours after siRNA treatment of HCT116 cell line by ANNEXIN V staining using flowcytometry.
  • apoptosis was clearly induced by HSP1 05 siRNA treatment compared to treatment with Oligofectamine alone or luciferase siRNA, which was more prominent in HCT116 wild type.
  • FIG. 5 shows a graph of the results of FIG. 4 together with 24 hours later.
  • FIG. 6 shows detection of apoptosis 48 hours after siRNA treatment of HCT116 cell line by ANNEXIN V staining using flowcytometry (36 hours after addition of adriamycin 200 ng / ml). In combination with adriamycin, the cells could be more induced to apoptosis.
  • FIG. 7 shows the results of confirming protein expression of HSP105 by Western blotting after siRNA treatment of human colon cancer cell line SW620.
  • SW620 showed the lowest HSP105 expression 24 hours after siRNA treatment.
  • FIG. 8 shows detection of apoptosis by ANNEXIN V staining of SW 620 using flowcytometry after siRNA treatment of human colon cancer cell line SW620. Apoptosis is treated with siRNA 2
  • FIG. 9 shows the protein expression of HSP 105 by Western blotting 48 hours after siRNA treatment of SK-Hepl and the detection of apoptosis by ANNEXIN V staining. SK_Hep 1 had a marked decrease in HSP105 protein expression 48 hours after siRNA treatment, and apoptosis was induced.
  • FIG. 10 shows protein expression of HSP105 by Western blotting 48 hours after siRNA treatment and apoptosis detection by ANNEXIN V staining in human spleen cancer cell line PK8, gastric cancer cell line M- ⁇ , and MKN28 .
  • FIG. 11 shows the results of measuring the tumor volume over time after injecting HSP105 siRNA into the tumor on the back of the mouse. HSP105-siRNA suppressed tumor growth.
  • Fig. 12 shows the results of HSP105 protein expression by Western blotting after siRNA treatment of human normal fibroblast TURU and MORI, and flowcytometry after siRNA treatment of human normal fibroblast TURU and MORI. Shows detection of apoptosis by ANNEXIN V staining.

Abstract

Disclosed is a novel antineoplastic agent applying RNAi phenomenon. Specifically disclosed is an antineoplastic agent containing a factor which is capable of suppressing expression of HSP105 through RNAi.

Description

RNAiを利用した抗腫瘍剤  Antitumor agents using RNAi
技術分野  Technical field
[0001] 本発明は、 RNAiを利用した抗腫瘍剤に関する。より詳細には、本発明は、 RNAi により HSP105の発現を抑制することができる因子を用いた抗腫瘍剤に関する。  [0001] The present invention relates to an antitumor agent using RNAi. More specifically, the present invention relates to an antitumor agent using a factor capable of suppressing the expression of HSP105 by RNAi.
背景技術  Background art
[0002] RNAiは機能阻害した!/、遺伝子の特定領域と相同な sense RNAと antisense RNA力 らなる 2本鎖 RNAが、標的遺伝子の転写産物である mRNAの相同部分を干渉破壊す るという現象で、 1998年に線虫を用いた実験によって初めて提唱された。その後 2001 年になって、哺乳類細胞においても 21〜23塩基対の二本鎖 RNAが細胞毒性を示す ことなく RNAi効果を誘導できることがわかった。  [0002] RNAi functions are inhibited! / A double-stranded RNA consisting of sense RNA and antisense RNA that is homologous to a specific region of a gene interferes with the homologous portion of the target gene transcript mRNA. It was first proposed in 1998 by an experiment using nematodes. Later in 2001, it was found that 21-23 base pair double stranded RNA can induce RNAi effect in mammalian cells without cytotoxicity.
[0003] これまでの塩基配列が分力つて 、る遺伝子の機能を抑制する方法としては、相同 組換え遺伝子ノックアウト法、アンチセンス法、リボザィム法などがある力 このような 従来の遺伝子機能解析法に比べ、 RNA interference法は簡便で安価で、短時間で 遺伝子の機能が解析でき、また、機能阻害したい遺伝子の配列は最低 19塩基わか つていればよいという利点があり、非常に有用な手法である。さらに、 siRNA発現べク ターも開発され、医療への応用にむけウィルスベクターを使ったデリバリー法も開発 の段階である。上記の通り、 RNA interference法は特異的に遺伝子産物の合成を抑 える技術として利用され、医療への応用も報告されているが、実際に効果があつたと の報告はあまりない。  [0003] Conventional methods for analyzing gene function include methods such as homologous recombination gene knockout method, antisense method, and ribozyme method as methods for suppressing the function of genes that have been divided by conventional nucleotide sequences. Compared with RNA interference method, RNA interference method is simple and inexpensive, has the advantage that gene function can be analyzed in a short time, and the gene sequence to be inhibited should have at least 19 bases. It is. In addition, siRNA expression vectors have been developed, and delivery methods using viral vectors are also in the development stage for medical applications. As described above, the RNA interference method is used as a technique for specifically suppressing the synthesis of gene products, and its application to medicine has been reported, but there are few reports that it has actually been effective.
[0004] HSP105は HSP105/HSP110 familyに属する heat shock proteinで、熱ショックほか薬 剤などの様々なストレスによりその発現が誘導される蛋白であることが知られている。 その機能はまだ十分に解明されていないが、種々の蛋白と結合し、分解保護作用や 機能の抑制'活性ィ匕に関わることが考えられている。また、マウスの embryoにおいて は胎生期に一過性に発現が上昇していることが示されている(Hatayama. T.ら. Cell Struct. Funct. 22,517-525. (1997)) 0 rat神経細胞に HSP105を過剰発現させると様々 なストレスにより誘導されるアポトーシスが抑制されることも示されている(Hatayama. T .ら. Biochem. Biophys. Res. Commun. 288, 528-534. (2001))。本発明者らは、脾癌 •大腸癌患者の血清を用いた SEREX法において、 HSP105を同定した力 このことは 癌患者の血清中に HSP105に対する IgG抗体が存在することを示して!/、る (Nakatsura. T.ら. Biochem. Biophys. Res. Commun. 281, 936-944. (2001))。また本発明者らは HSP105が脾癌 ·大腸癌だけでなく様々なヒト腫瘍にぉ 、ても過剰発現して!/、ることを 発見した(Kai. M.ら. Oncol. Rep. 10.1777-1782. (2003))。一方、ヒト正常組織にお いては精巣で最も発現が高ぐその他、脳などの一部の臓器に弱い発現を認めること が分かった。 [0004] HSP105 is a heat shock protein belonging to the HSP105 / HSP110 family, and it is known that its expression is induced by various stresses such as heat shock and other drugs. Although its function has not yet been fully elucidated, it is thought to bind to various proteins and to be involved in the activity of protecting against degradation and suppressing function. In mouse embryos, it has been shown that expression is transiently increased during embryonic period (Hatayama. T. et al. Cell Struct. Funct. 22,517-525. (1997)) 0 rat neurons It has also been shown that overexpression of HSP105 suppresses apoptosis induced by various stresses (Hatayama. T Et al. Biochem. Biophys. Res. Commun. 288, 528-534. (2001)). The present inventors have identified the ability to identify HSP105 in the SEREX method using serum from patients with spleen cancer and colon cancer. This indicates that IgG antibodies against HSP105 exist in the serum of cancer patients! (Nakatsura. T. et al. Biochem. Biophys. Res. Commun. 281, 936-944. (2001)). The present inventors have also found that HSP105 is overexpressed in various human tumors as well as spleen and colon cancers (Kai. M. et al. Oncol. Rep. 10.1777- 1782. (2003)). On the other hand, it was found that in normal human tissues, expression was highest in the testis and weak expression was observed in some organs such as the brain.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 癌にぉ 、ては手術困難例や術後の治療手段として、様々な方法を駆使した集学的 治療が行われているが、副作用の問題も含めて決定的な治療法は未だ確立されて いないのが現状である。本発明は、 RNAi現象を利用した新規な抗腫瘍剤を提供す ることを解決すべき課題とした。より具体的には、本発明は、 HSP105の siRNAを用い て HSP105の発現を抑制し、腫瘍に与える影響を検討し、新規な抗腫瘍剤を提供する ことを解決すべき課題とした。 [0005] For cancer, multidisciplinary treatment using various methods has been performed as a treatment method for patients with difficult surgery or postoperative treatment, but there is still no definitive treatment method including the problem of side effects. The current situation is that it has not been established. An object of the present invention is to provide a novel antitumor agent utilizing the RNAi phenomenon. More specifically, an object of the present invention is to suppress the expression of HSP105 using siRNA of HSP105, study the effect on tumor, and provide a novel antitumor agent.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、マウス NIH3T3細胞に HSP105遺伝子を導入すると形質転換したこと から、 HSP105は癌遺伝子様の機能を有し、その主なものはアポトーシスの抑制にあ ると考えた。上記の仮説に基づいて本発明者らは、 HSP105の siRNAを用いて、 HSP1 05を発現する様々な癌における HSP105の発現を抑制した結果、その細胞をアポトー シスに陥れることに成功した。その効果は、野生型の p53を発現している癌細胞にお いてより顕著であり、また杭がん剤アドリアマイシンと併用することでその効果は増大 した。 [0006] Since the present inventors transformed the mouse NIH3T3 cells by introducing the HSP105 gene, the present inventors thought that HSP105 has an oncogene-like function, and the main one is to suppress apoptosis. Based on the above hypothesis, as a result of suppressing the expression of HSP105 in various cancers expressing HSP105 using the siRNA of HSP105, the present inventors succeeded in causing the cells to undergo apoptosis. The effect was more prominent in the cancer cells expressing wild-type p53, and the effect was increased when used in combination with the pile cancer agent adriamycin.
[0007] 以上の結果から見て、野生型の p53遺伝子導入により癌細胞をアポトーシスに陥れ ることを用いた遺伝子治療は既に行われているが、この遺伝子治療が効きにくいとさ れる野生型 p53を発現した癌に対して HSP105 siRNAは有効であると考えられ、さらに 変異型 P53を有する癌に対してもこの遺伝子治療と併用することで相加'相乗効果が 期待できる。 [0007] In view of the above results, gene therapy using the introduction of wild-type p53 gene into cancer cells to apoptosis has already been performed, but wild-type p53 is considered to be difficult to use. HSP105 siRNA is considered to be effective against cancers that express phenotypes, and in addition, this gene therapy also has a synergistic effect on cancers with mutant P53. I can expect.
[0008] 即ち、本発明によれば、 RNAiにより HSP105の発現を抑制することができる因子を 含む、抗腫瘍剤が提供される。  [0008] That is, according to the present invention, there is provided an antitumor agent comprising a factor capable of suppressing the expression of HSP105 by RNAi.
本発明の別の態様によれば、 RNAiにより HSP105の発現を抑制することができる因 子が含む、癌細胞におけるアポトーシス誘導剤が提供される。  According to another aspect of the present invention, there is provided an apoptosis inducer in cancer cells, comprising a factor capable of suppressing the expression of HSP105 by RNAi.
[0009] 好ましくは、 RNAiにより HSP105の発現を抑制することができる因子は、 siRNA又 は shRNAである。 [0009] Preferably, the factor capable of suppressing the expression of HSP105 by RNAi is siRNA or shRNA.
好ましくは、本発明の薬剤は、抗癌剤と組み合わせて使用される。  Preferably, the agent of the present invention is used in combination with an anticancer agent.
好ましくは、本発明の薬剤は、野生型 p53を発現する癌細胞に対して使用される。  Preferably, the agents of the present invention are used against cancer cells that express wild-type p53.
[0010] 好ましくは、上記 siRNAは、配列番号 1に記載の塩基配列を有する RNAと配列番 号 2に記載の塩基配列を有する RNAと力 成る二本鎖 RNAである。 [0010] Preferably, the siRNA is a double-stranded RNA consisting of an RNA having the base sequence set forth in SEQ ID NO: 1 and an RNA having the base sequence set forth in SEQ ID NO: 2.
好ましくは、本発明の薬剤は、 HSP105を高発現している大腸癌、膝癌、食道癌、乳 癌、悪性黒色腫などの治療のために使用する。  Preferably, the agent of the present invention is used for the treatment of colorectal cancer, knee cancer, esophageal cancer, breast cancer, malignant melanoma and the like that highly express HSP105.
[0011] 本発明のさらに別の態様によれば、配列番号 1に記載の塩基配列を有する RNAと 配列番号 2に記載の塩基配列を有する RNAとから成る二本鎖 RNAが提供される。 [0011] According to yet another aspect of the present invention, there is provided a double-stranded RNA comprising RNA having the base sequence set forth in SEQ ID NO: 1 and RNA having the base sequence set forth in SEQ ID NO: 2.
[0012] 本発明のさらに別の態様によれば、 RNAiにより HSP105の発現を抑制することがで きる因子をヒトを含む哺乳動物に投与することを含む、腫瘍を抑制する方法が提供さ れる、 [0012] According to still another aspect of the present invention, there is provided a method for suppressing a tumor, comprising administering a factor capable of suppressing the expression of HSP105 by RNAi to a mammal including a human.
本発明のさらに別の態様によれば、 RNAiにより HSP105の発現を抑制することがで きる因子をヒトを含む哺乳動物に投与することを含む、癌細胞においてアポトーシス を誘導する方法が提供される。  According to still another aspect of the present invention, there is provided a method for inducing apoptosis in cancer cells, comprising administering a factor capable of suppressing the expression of HSP105 by RNAi to a mammal including a human.
[0013] 本発明のさらに別の態様によれば、抗腫瘍剤の製造のための、 RNAiにより HSP10 5の発現を抑制することができる因子の使用が提供される。  [0013] According to still another aspect of the present invention, there is provided use of a factor capable of suppressing the expression of HSP105 by RNAi for the production of an antitumor agent.
本発明のさらに別の態様によれば、癌細胞におけるアポトーシス誘導剤の製造の ための、 RNAiにより HSP105の発現を抑制することができる因子の使用が提供される  According to yet another aspect of the present invention, there is provided use of a factor capable of suppressing the expression of HSP105 by RNAi for the production of an apoptosis inducer in cancer cells.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施の形態について詳細に説明する。 本発明は、 RNAiにより HSP105の発現を抑制することができる因子を含む、抗腫瘍 剤並びに癌細胞におけるアポトーシス誘導剤(以下、これらを総称して、本発明の薬 剤と称することがある)に関する。 RNAiにより HSP105の発現を抑制することができる 因子の具体例としては、下記に説明するような siRNA又は shRNAなどが挙げられる 。このような因子が細胞に導入されると、 RNAi現象が生じ、相同な配列を有する RN Aが分解される。このような RNAi現象は、線虫,昆虫、原虫、ヒドラ、植物、脊椎動物 (哺乳動物を含む)において見られる現象である。 Hereinafter, embodiments of the present invention will be described in detail. The present invention relates to an antitumor agent and an apoptosis-inducing agent in cancer cells (hereinafter, these may be collectively referred to as the drug of the present invention) containing a factor capable of suppressing the expression of HSP105 by RNAi. . Specific examples of factors that can suppress the expression of HSP105 by RNAi include siRNA and shRNA as described below. When such a factor is introduced into a cell, an RNAi phenomenon occurs and RNA having a homologous sequence is degraded. Such RNAi phenomenon is a phenomenon observed in nematodes, insects, protozoa, hydra, plants, vertebrates (including mammals).
[0015] 好ましい態様によれば、本発明においては siRNAと呼ばれる、約 20塩基 (例えば 、約 21〜23塩基)またはそれ未満の長さの二本鎖 RNAを用いることができる。このよ うな siRNAは、細胞に発現させることにより遺伝子発現を抑制し、その siRNAの標 的となる遺伝子 (本発明においては、 HSP105遺伝子)の発現を抑制することができる [0015] According to a preferred embodiment, double-stranded RNA having a length of about 20 bases (for example, about 21 to 23 bases) or less, called siRNA, can be used in the present invention. Such siRNA can suppress gene expression by being expressed in cells, and can suppress expression of a target gene of the siRNA (in the present invention, HSP105 gene).
[0016] 本発明において用いられる siRNAは、 RNAiを引き起こすことができる限り、どのよ うな形態のものでもよい。ここで、「siRNA」とは、 short interfering RNAの略称で あり、人工的に化学合成されるカゝまたは生化学的に合成されたものカゝ、あるいは生物 体内で合成されたものか、あるいは約 40塩基以上の二本鎖 RNAが体内で分解され てできた 10塩基対以上の短鎖二本鎖 RNAをいい、通常、 5 '—リン酸、 3'— OHの構 造を有しており、 3'末端は約 2塩基突出している。この siRNAに特異的なタンパク質 が結合して、 RISC (RNA— induced— silencing— complex)が开成される。この複 合体は、 siRNAと同じ配列を有する mRNAを認識して結合し、 RNaselll様の酵素 活性によって siRNAの中央部で mRNAを切断する。 [0016] The siRNA used in the present invention may be in any form as long as it can cause RNAi. Here, “siRNA” is an abbreviation for short interfering RNA, which is artificially chemically synthesized, biochemically synthesized, or synthesized in organisms, or about This is short double-stranded RNA of 10 base pairs or more, which is formed by decomposing double-stranded RNA of 40 bases or more in the body, and usually has a 5'-phosphate or 3'-OH structure. The 3 'end protrudes about 2 bases. A specific protein binds to this siRNA, and RISC (RNA-induced-silencing-complex) is established. This complex recognizes and binds to mRNA having the same sequence as that of siRNA, and cleaves mRNA at the center of siRNA by RNaselll-like enzyme activity.
[0017] siRNAの配列と、標的として切断する mRNAの配列とは 100%—致することが好 ましい。し力し、 siRNAの中央力 外れた位置の塩基が一致していない場合につい ては、 RNAiによる切断活性は部分的には残存することが多いので、必ずしも 100% 一致していなくてもよい。  [0017] It is preferable that the siRNA sequence and the mRNA sequence to be cleaved as a target match 100%. However, when the base at the position outside the central force of the siRNA does not match, the cleavage activity by RNAi often remains partially, so it does not necessarily have to match 100%.
[0018] siRNAの塩基配列と、発現を抑制すべき HSP105遺伝子の塩基配列との間で相同 性のある領域は、 HSP105遺伝子の翻訳開始領域を含まないことが好ましい。翻訳開 始領域には種々の転写因子や翻訳因子が結合することが予想されるため、 siRNA が効果的に mRNAに結合することができず、効果が低減することが予測されるから である。従って、相同性を有する配列は、 HSP105遺伝子の翻訳開始領域から 20塩 基離れて!/、ることが好ましく、より好ましくは HSP105遺伝子の翻訳開始領域から 70塩 基離れている。相同性を有する配列としては、例えば、 HSP105遺伝子の 3'末端付近 の配列でもよい。 [0018] The region having homology between the nucleotide sequence of siRNA and the nucleotide sequence of HSP105 gene whose expression should be suppressed preferably does not include the translation initiation region of HSP105 gene. Since various transcription factors and translation factors are expected to bind to the translation initiation region, siRNA This is because it cannot be effectively bound to mRNA and the effect is expected to be reduced. Therefore, the homologous sequence is preferably 20 bases away from the translation start region of the HSP105 gene! /, More preferably 70 bases away from the translation start region of the HSP105 gene. The sequence having homology may be, for example, a sequence near the 3 ′ end of the HSP105 gene.
[0019] 本発明では、 siRNAを RNAiを引き起こす因子として用いることができるし、 siRNA を生成するような因子 (例えば、約 40塩基以上の dsRNA)をそのような因子として用 いることができる。例えば、 HSP105遺伝子の核酸配列の一部に対して少なくとも約 7 0%、好ましくは 75%以上、より好ましくは 80%以上、より好ましくは 85%以上、さらに 好ましくは 90%以上、特に好ましくは 95%以上、最も好ましくは 100%の相同性を有 する配列を含む、二本鎖部分を含む RNAまたはその改変体を使用することができる 。相同性を有する配列部分は、通常は、少なくとも約 15ヌクレオチド以上であり、好ま しくは少なくとも約 19ヌクレオチドであり、より好ましくは少なくとも約 20ヌクレオチド長 であり、さらに好ましくは少なくとも約 21ヌクレオチド長である。  [0019] In the present invention, siRNA can be used as a factor that causes RNAi, and a factor that generates siRNA (for example, dsRNA of about 40 bases or more) can be used as such a factor. For example, at least about 70%, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, even more preferably 90% or more, particularly preferably 95% or more of a part of the nucleic acid sequence of the HSP105 gene. RNA containing a double-stranded portion or a variant thereof containing a sequence having a homology of at least%, most preferably 100%, can be used. The sequence portion having homology is usually at least about 15 nucleotides or more, preferably at least about 19 nucleotides, more preferably at least about 20 nucleotides in length, and even more preferably at least about 21 nucleotides in length. .
[0020] 本発明で用いることができる siRNAの具体例としては、 HSP105の mRNAの 138〜15 8番目に対応する 21塩基の塩基配列を有する RNAが挙げられ、具体的には、配列 番号 1に記載の塩基配列を有する RNAと配列番号 2に記載の塩基配列を有する R NAと力 成る二本鎖 RNAが挙げられる力 これに限定されるものではない。なお、 H SP105遺伝子の塩基配列は公知であり、例えば、 NCBI, Nucleotide Sequence Databa se accession No. AB003334などに記載されている。  [0020] Specific examples of siRNA that can be used in the present invention include RNA having a 21-base base sequence corresponding to the 138th to 158th positions of HSP105 mRNA, specifically, SEQ ID NO: 1 Forces including, for example, RNA having the nucleotide sequence described and RNA having the nucleotide sequence set forth in SEQ ID NO: 2 are not limited thereto. The base sequence of the HSP105 gene is known, and is described in, for example, NCBI, Nucleotide Sequence Data base accession No. AB003334.
[0021] 本発明の別の態様によれば、 RNAiにより HSP105の発現を抑制することができる因 子として、 3'末端に突出部を有する短いヘアピン構造カゝら成る shRNA (short hair pin RNA)を使用することができる。 shRNAとは、一本鎖 RN Aで部分的に回文状の 塩基配列を含むことにより、分子内で二本鎖構造をとり、ヘアピンのような構造となる 約 20塩基対以上の分子のことを言う。そのような shRNAは、細胞内に導入された後 、細胞内で約 20塩基 (代表的には例えば、 21塩基、 22塩基、 23塩基)の長さに分 解され、 siRNAと同様に RNAiを引き起こすことができる。上記の通り shRNAは、 si RNAと同様に RNAiを引き起こすことから、本発明において有効に用いることができ る。 [0021] According to another aspect of the present invention, as a factor capable of suppressing the expression of HSP105 by RNAi, a shRNA (short hair pin RNA) comprising a short hairpin structure having a protruding portion at the 3 'end Can be used. A shRNA is a molecule of about 20 base pairs or more that has a double-stranded structure within the molecule and has a hairpin-like structure by including a partially palindromic base sequence with single-stranded RNA. Say. After such shRNA is introduced into the cell, it is decomposed into a length of about 20 bases (typically, for example, 21 bases, 22 bases, 23 bases) in the cell, and RNAi can be digested in the same manner as siRNA. Can cause. As mentioned above, shRNA causes RNAi as well as siRNA, and can be used effectively in the present invention. The
[0022] shRNAは好ましくは、 3'突出末端を有している。二本鎖部分の長さは特に限定さ れないが、好ましくは約 10ヌクレオチド以上であり、より好ましくは約 20ヌクレオチド以 上である。ここで、 3'突出末端は、好ましくは DNAであり、より好ましくは少なくとも 2ヌ クレオチド以上の DNAであり、さらに好ましくは 2〜4ヌクレオチドの DNAである。  [0022] The shRNA preferably has a 3 'protruding end. The length of the double-stranded part is not particularly limited, but is preferably about 10 nucleotides or more, more preferably about 20 nucleotides or more. Here, the 3 ′ protruding end is preferably DNA, more preferably DNA of at least 2 nucleotides, and further preferably DNA of 2 to 4 nucleotides.
[0023] 上記の通り、本発明では、 RNAiにより HSP105の発現を抑制することができる因子 として、 siRNAまたは shRNAを使用することができる。 siRNAの長所としては、(1) 細胞内に導入しても RNA自体は正常細胞の染色体内に組み込まれな!/、ので、子孫 に伝わる変異を起こすような治療ではなぐ安全性が高いこと、及び (2)短鎖二本鎖 RNAは化学合成が比較的容易であり二本鎖にするとより安定であること、などが挙 げられる。また、 shRNAの長所としては、遺伝子発現を長期間抑制することによって 治療を行う場合、細胞内で shRNAを転写するようなベクターを作製して細胞内に導 人することができることなどが挙げられる。  [0023] As described above, in the present invention, siRNA or shRNA can be used as a factor capable of suppressing the expression of HSP105 by RNAi. The advantages of siRNA are as follows: (1) Even if it is introduced into cells, RNA itself is not integrated into the chromosome of normal cells! /, so it is safer than treatment that causes mutations transmitted to offspring, And (2) short double-stranded RNA is relatively easy to chemically synthesize and is more stable when double-stranded. In addition, as an advantage of shRNA, when treatment is performed by suppressing gene expression for a long time, a vector that transcribes shRNA in a cell can be prepared and introduced into the cell.
[0024] 本発明で用いる RNAiにより HSP105の発現を抑制することができる因子(即ち、上 記したような siRNA又は shRNAなど)は、人工的に化学合成してもよいし、センス鎖 およびアンチセンス鎖の DNA配列を逆向きに連結したヘアピン構造の DNAを T7 RNAポリメラーゼによってインビトロで RNAを合成することによって作製することもで きる。インビトロで合成する場合は、 T7 RNAポリメラーゼおよび T7プロモーターを用 いて、铸型 DNAからアンチセンスおよびセンスの RNAを合成することができる。これ らをインビトロでアニーリングした後、細胞に導入すると、 RNAiが引き起こされ、 HSP1 05の発現が抑制される。ここでは、例えば、リン酸カルシウム法、又は各種のトランス フエクシヨン試薬(例えば、 oligofectamine、 Lipofectamineおよび lipofectionなど)を用 いてそのような RNAを細胞内に導入することができる。  [0024] The factor capable of suppressing the expression of HSP105 by RNAi used in the present invention (that is, siRNA or shRNA as described above) may be artificially chemically synthesized, sense strand and antisense. It can also be prepared by synthesizing RNA in vitro with T7 RNA polymerase, which has a hairpin structure in which the DNA sequences of the strands are ligated in the opposite direction. When synthesized in vitro, antisense and sense RNAs can be synthesized from the truncated DNA using T7 RNA polymerase and T7 promoter. When these are annealed in vitro and then introduced into cells, RNAi is triggered and HSP1 05 expression is suppressed. Here, such RNA can be introduced into cells using, for example, the calcium phosphate method or various transfection reagents (eg, oligofectamine, Lipofectamine, lipofection, etc.).
[0025] さらに本発明によれば、 RNAiにより HSP105の発現を抑制することができる因子 (好 ましくは、 siRNA又は shRNA)をコードする核酸配列を含む発現ベクターが提供さ れる。さらに本発明によれば、上記した発現ベクターを含む細胞が提供される。本発 明の細胞は、 RNAiを引き起こす因子を一過性発現しても安定に発現してもよい。上 記した発現ベクターや細胞の種類は特に限定されないが、好ましくは、治療に使用 できるものである。 [0025] Furthermore, according to the present invention, there is provided an expression vector comprising a nucleic acid sequence encoding a factor (preferably siRNA or shRNA) capable of suppressing the expression of HSP105 by RNAi. Furthermore, according to the present invention, a cell containing the above-described expression vector is provided. The cells of the present invention may transiently or stably express a factor that causes RNAi. The expression vectors and cell types described above are not particularly limited, but are preferably used for treatment. It can be done.
[0026] 本発明の薬剤は、腫瘍の抑制のために広く使用することができる。腫瘍の抑制とは より具体的には、腫瘍発生の防止、腫瘍増大の抑制、腫瘍の退縮、並びに腫瘍の転 移の抑制などが含まれ、臨床的には癌及び Z又は腫瘍の予防及び Z又は治療の全 てを包含することを意味する。  [0026] The agent of the present invention can be widely used for tumor suppression. More specifically, tumor suppression includes prevention of tumor development, suppression of tumor growth, tumor regression, and suppression of tumor migration. Clinically, cancer and Z or tumor prevention and Z Or means to encompass all of the treatment.
[0027] 本発明の抗腫瘍剤を用いることができる癌の種類は特には限定されず、良性腫瘍 及び悪性腫瘍の全てを包含する。癌の具体例としては、悪性黒色腫、悪性リンパ腫、 消化器癌、肺癌、食道癌、胃癌、大腸癌、直腸癌、結腸癌、尿管腫瘍、胆嚢癌、胆 管癌、胆道癌、乳癌、肝臓癌、脾臓癌、睾丸腫瘍、上顎癌、舌癌、口唇癌、口腔癌、 咽頭癌、喉頭癌、卵巣癌、子宮癌、前立腺癌、甲状腺癌、脳腫瘍、力ポジ肉腫、血 管腫、白血病、真性多血症、神経芽腫、網膜芽腫、骨髄腫、膀胱腫、肉腫、骨肉腫 、筋肉腫、皮膚癌、基底細胞癌、皮膚付属器癌、皮膚転移癌、皮膚黒色腫などが挙 げられる力 これらに限定されるものではない。  [0027] The types of cancer for which the antitumor agent of the present invention can be used are not particularly limited, and include all of benign tumors and malignant tumors. Specific examples of cancer include malignant melanoma, malignant lymphoma, digestive cancer, lung cancer, esophageal cancer, gastric cancer, colon cancer, rectal cancer, colon cancer, ureteral tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, breast cancer, Liver cancer, spleen cancer, testicular tumor, maxillary cancer, tongue cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, ovarian cancer, uterine cancer, prostate cancer, thyroid cancer, brain tumor, force positive sarcoma, hemangioma, leukemia , Polycythemia vera, neuroblastoma, retinoblastoma, myeloma, cystoma, sarcoma, osteosarcoma, myoma, skin cancer, basal cell cancer, skin appendage cancer, skin metastasis cancer, skin melanoma, etc. It is not limited to these.
[0028] 本発明の薬剤は、他の抗癌剤と併用することもできる。そのような場合、本発明の薬 剤は、ある種の抗癌剤と一緒に、または前後に別々に投与することができる。このよう に別の抗癌剤を投与することによって、そのような抗癌剤に対して耐性のできた癌細 胞にも効果的に治療または予防効果を発揮することができる。  [0028] The agent of the present invention can be used in combination with other anticancer agents. In such a case, the agent of the present invention can be administered together with certain anticancer agents or separately before and after. By administering another anticancer agent in this manner, cancer cells that have been resistant to such an anticancer agent can be effectively treated or prevented.
[0029] 本発明の薬剤と併用できる抗癌剤の具体例としては、以下のものが挙げられるが、 これらに限定されるものではない。  [0029] Specific examples of the anticancer agent that can be used in combination with the drug of the present invention include, but are not limited to, the following.
(1)アルキル化剤(例えば、シクロホスフアミド、ブスルファン、チォテパ、ダカルバジン など)  (1) Alkylating agents (for example, cyclophosphamide, busulfan, thiotepa, dacarbazine, etc.)
(2)代謝拮抗剤(例えば、メトトレキサート、 6—メルカプトプリン、フルォロウラシル(5 FU)など)  (2) Antimetabolite (eg, methotrexate, 6-mercaptopurine, fluorouracil (5 FU), etc.)
(3) DNAトポイソメラーゼ阻害剤(例えば、カンプトテシン、エトポシドなど)  (3) DNA topoisomerase inhibitors (for example, camptothecin, etoposide, etc.)
(4)チューブリン作用薬 (ビンブラスチン、ビンクリスチンなど)  (4) Tubulin agonists (vinblastine, vincristine, etc.)
(5)白金化合物(シスブラチン、カルボブラチンなど)  (5) Platinum compounds (cisbratine, carbobratin, etc.)
(6)抗がん抗生物質(アドリアマイシン、ダウノルビシン、マイトマイシン C、ブレオマイ シンなど) (7)ホルモン剤(タモキシフェン、リュープロレリンなど) (6) Anticancer antibiotics (adriamycin, daunorubicin, mitomycin C, bleomycin, etc.) (7) Hormonal agents (tamoxifen, leuprorelin, etc.)
(8)生物製剤(ァスパラギナーゼ、インターフェロンなど)  (8) Biologics (asparaginase, interferon, etc.)
(9)免疫賦活剤 (シィタケ由来のレンチナンなど)  (9) Immunostimulants (such as lentinans from Shitake)
[0030] 本発明の薬剤の投与方法は、経口投与、非経口投与 (例えば、静脈内投与、筋肉 内投与、皮下投与、皮内投与、粘膜投与、直腸内投与、膣内投与、患部への局所投 与、皮膚投与など)、患部への直接投与などが挙げられる。  [0030] The administration method of the drug of the present invention includes oral administration and parenteral administration (for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, intravaginal administration, administration to the affected area. Topical administration, dermal administration, etc.) and direct administration to the affected area.
[0031] 本発明の薬剤は、医薬組成物として使用する場合、必要に応じて薬学的に許容可 能な添加剤を配合することができる。 薬学的に許容可能な添加剤の具体例としては 、抗酸化剤、保存剤、着色料、風味料、および希釈剤、乳化剤、懸濁化剤、溶媒、フ イラ一、増量剤、緩衝剤、送達ビヒクル、希釈剤、キャリア、賦形剤および/または薬 学的アジュバントなどが挙げられる力 これらに限定されない。  [0031] When the agent of the present invention is used as a pharmaceutical composition, a pharmaceutically acceptable additive can be blended as necessary. Specific examples of pharmaceutically acceptable additives include antioxidants, preservatives, colorants, flavors, and diluents, emulsifiers, suspending agents, solvents, fillers, bulking agents, buffering agents, Powers including, but not limited to, delivery vehicles, diluents, carriers, excipients and / or pharmaceutical adjuvants.
[0032] 本発明の薬剤の製剤形態は特に限定されな!ヽが、例えば、液剤、注射剤、徐放剤 などが挙げられる。本発明の薬剤を上記製剤として処方するために使用される溶媒と しては、水性または非水性のいずれでもよい。  [0032] The dosage form of the drug of the present invention is not particularly limited! Examples of sputum include liquids, injections, sustained-release agents and the like. The solvent used for formulating the drug of the present invention as the above-mentioned preparation may be either aqueous or non-aqueous.
[0033] 注射剤は当該分野において周知の方法により調製することができる。例えば、適切 な溶剤(生理食塩水、 PBSのような緩衝液、滅菌水など)に溶解した後、フィルターな どで濾過滅菌し、次いで無菌容器 (例えば、アンプルなど)に充填することにより注射 剤を調製することができる。この注射剤には、必要に応じて、慣用の薬学的キャリアを 含めてもよい。非侵襲的なカテーテルを用いる投与方法も使用され得る。本発明で 用いることができるキャリアとしては、中性緩衝化生理食塩水、または血清アルブミン と混合された生理食塩水などが挙げられる。  [0033] Injections can be prepared by methods well known in the art. For example, after being dissolved in a suitable solvent (saline, buffer solution such as PBS, sterilized water, etc.), sterilized by filtration with a filter or the like, and then filled into a sterile container (for example, an ampule). Can be prepared. This injection may contain a conventional pharmaceutical carrier, if necessary. Administration methods using non-invasive catheters can also be used. Examples of the carrier that can be used in the present invention include neutral buffered physiological saline or physiological saline mixed with serum albumin.
[0034] さらに、本発明の薬剤の有効成分である RNAiにより HSP105の発現を抑制すること ができる因子は、非ウィルスベクターまたはウィルスベクターの形態で投与することが できる。このような投与形態は、当該分野において公知であり、例えば、別冊実験医 学「遺伝子治療の基礎技術」羊土社、 1996 ;別冊実験医学「遺伝子導入 &発現解 析実験法」羊土社、 1997などに記載されている。  [0034] Furthermore, the factor capable of suppressing the expression of HSP105 by RNAi, which is an active ingredient of the drug of the present invention, can be administered in the form of a non-viral vector or a viral vector. Such administration forms are known in the art, for example, a separate volume of experimental medicine “Basic technology of gene therapy” Yodosha, 1996; a separate volume of experimental medicine “Gene transfer & expression analysis experiment method” Yodosha, It is described in 1997.
[0035] 非ウィルスベクター形態の場合、リボソームを用いて核酸分子を導入する方法 (リポ ソーム法、 HVJ—リボソーム法、カチォニックリボソーム法、リポフエクシヨン法、リボフ エタトァミン法など)、マイクロインジェクション法、遺伝子銃(Gene Gun)でキャリア( 金属粒子)とともに核酸分子を細胞に移入する方法などを利用することができる。発 現ベクターとしては、例えば、 PCAGGS、 pBJ— CMV、 pcDNA3. 1、 pZeoSV(lnv itrogen社又は Stratagene社力 入手可能)などが挙げられる。 [0035] In the case of a non-viral vector form, a method of introducing a nucleic acid molecule using ribosome (liposome method, HVJ-ribosome method, catonic ribosome method, lipofussion method, ribosome Etatamine method, etc.), microinjection method, and method of transferring nucleic acid molecules to cells together with carriers (metal particles) using a gene gun. The originating expression vector, for example, P CAGGS, pBJ- CMV, pcDNA3 . 1, pZeoSV (lnv itrogen Company or Stratagene Inc. force available), and the like.
[0036] リポフエクシヨンを用いる場合、例えば、リポフエクトァミン 2000、オリゴフエクトァミン [0036] When using lipofusion, for example, lipofectamine 2000, oligofectamine
(.silencer siRNA TransfectionKit.ueneSilencer siRNA Transfection Reagent)など 用!/、ることができる。  (.silencer siRNA TransfectionKit.ueneSilencer siRNA Transfection Reagent)!
[0037] HVJ—リボソーム法は、脂質二重膜で作製されたリボソーム中に核酸分子を封入し 、このリボソームと不活ィ匕したセンダイウイノレス(Hemagglutinating virus of Japan 、 HVJ)とを融合させることを包含する。 HVJ—リボソーム調製法は、例えば、別冊実 験医学「遺伝子治療の基礎技術」羊土社、 1996 ;別冊実験医学「遺伝子導入 &発 現解析実験法」羊土社、 1997に記載されている。  [0037] The HVJ-ribosome method encapsulates a nucleic acid molecule in a ribosome made of a lipid bilayer, and fuses the ribosome with an inactivated Sendai Winores (Hemagglutinating virus of Japan, HVJ). Include. The HVJ-ribosome preparation method is described, for example, in a separate volume of experimental medicine “Basic Technology of Gene Therapy” Yodosha, 1996; a separate volume of experimental medicine “Gene Transfer & Expression Analysis Experiment Method” Yodosha, 1997.
[0038] RNAiにより HSP105の発現を抑制することができる因子をウィルスベクターを用い て生体に投与する場合は、組換えアデノウイルス、レトロウイルスなどのウィルスべク ターを利用することができる。無毒化したレトロウイルス、アデノウイルス、アデノ随伴 ウイノレス、へノレぺスゥイノレス、ワクシニアウイノレス、ボックスウイノレス、ポリオウイノレス、シ ンドビスゥイノレス、センダイウィルス、 SV40などの DNAウィルスまたは RNAウィルス に、 RNAiにより HSP105の発現を抑制することができる因子を発現する DNAを導入 し、細胞または組織にこの組換えウィルスを感染させることにより、細胞または組織内 に遺伝子を導入することができる。  [0038] When a factor capable of suppressing the expression of HSP105 by RNAi is administered to a living body using a viral vector, a viral vector such as a recombinant adenovirus or a retrovirus can be used. Detoxified retroviruses, adenoviruses, adeno-associated winoles, henorepesuinores, vaccinia winoles, box winenores, poliowinoles, sindbiswinores, sendai virus, SV40, and other DNA viruses or RNA viruses, RNAi HSP105 A gene can be introduced into a cell or tissue by introducing a DNA that expresses a factor capable of suppressing the expression of the gene and infecting the cell or tissue with the recombinant virus.
[0039] さらにまた、 RNAiにより HSP105の発現を抑制することができる因子は、生体の器官 や組織などに直接注入することもできる。  [0039] Furthermore, a factor capable of suppressing the expression of HSP105 by RNAi can be directly injected into a living organ or tissue.
[0040] 本発明の薬剤の投与量は、使用目的、疾患の重篤度、患者の年齢、体重、性別、 既往歴、又は有効成分である RNAiにより HSP105の発現を抑制することができる因 子の種類などを考慮して、当業者が決定することができる。  [0040] The dosage of the drug of the present invention is a factor that can suppress the expression of HSP105 by the purpose of use, the severity of the disease, the patient's age, weight, sex, medical history, or RNAi as an active ingredient. It can be determined by those skilled in the art in consideration of the type of the above.
[0041] 有効成分である RNAiにより HSP105の発現を抑制することができる因子の投与量 は特に限定されないが、例えば、約 0. lng〜約 100mgZkg、好ましくは約 lng〜約 10mgである。ウィルスベクターまたは非ウィルスベクターとして投与される場合は、 成人一人当たり、通常、 0. 0001〜100mg、好ましくは 0. 001〜10mg、より好まし くは 0. 01〜: Lmgである。 [0041] The dose of the factor capable of suppressing the expression of HSP105 by RNAi as an active ingredient is not particularly limited, and is, for example, about 0.1 ng to about 100 mgZkg, preferably about 1 ng to about 10 mg. When administered as a viral or non-viral vector, Per adult, it is usually from 0.0001 to 100 mg, preferably from 0.001 to 10 mg, more preferably from 0.01 to Lmg.
[0042] また本発明の薬剤の投与頻度としては、例えば、一日一回〜数ケ月に 1回(例えば[0042] The frequency of administration of the drug of the present invention is, for example, once a day to once every several months (for example,
、 1週間に 1回〜 1ヶ月に 1回)の頻度で投与することができる。 RNAiは、一般に投与 後 1〜3日間効果が見られる。したがって、毎日〜 3日に 1回の頻度で投与することが 好ましい。発現ベクターを用いる場合、 1週間に 1回程度投与することも可能である。 , Once a week to once a month). RNAi is generally effective for 1-3 days after administration. Therefore, it is preferable to administer daily to once every 3 days. When using an expression vector, it can be administered about once a week.
[0043] 以下の実施例により本発明をさらに具体的に説明するが本発明は実施例によって 限定されるものではない。 [0043] The following examples further illustrate the present invention, but the present invention is not limited to the examples.
実施例  Example
[0044] 〔実施例 1〕ヒト細胞系における HSP105 mRNAの発現  [Example 1] Expression of HSP105 mRNA in a human cell line
逆転写- PCR (RT-PCR)を用いた HSP105 mRNA発現を検討した。ヒト大腸癌細胞株 HCT116は Johns Hopkins Universityの B. Vogelstein博士より入手した。正常大腸粘 膜の cDNAは Clontech社より購入した。  HSP105 mRNA expression was examined using reverse transcription-PCR (RT-PCR). The human colon cancer cell line HCT116 was obtained from Dr. B. Vogelstein of Johns Hopkins University. Normal colon mucosa cDNA was purchased from Clontech.
[0045] RT-PCRは公知の方法に従って行った。 407bpの断片を増幅するヒト HSP105遺伝子 PCRプライマーを設計し、これを用いて 94°C、 5分の初期変性、及び 58°Cのァニーリ ング温度での 33増幅サイクルからなる RT-PCR反応を行った。用いた HSP105 PCRプ ライマー配列は、センス: 5'-AGAGTAAAAGTCAAAGTG-3' (配列番号 5)、アンチセ ンス: 5'- TTAAGAAGGTCTTTCCCT- 3' (配列番号 6)である。対照実験のための j8 - ァクチン PCRプライマー配列は、センス: 5'- CCTCGCCTTTGCCGATCC- 3' (配列 番号 7)、アンチセンス: 5 ' -GGATCTTC ATGAGGTAGTC AGTC-3 ' (配列番号 8)で ある。  [0045] RT-PCR was performed according to a known method. A human HSP105 gene PCR primer that amplifies a 407 bp fragment was designed and used to perform an RT-PCR reaction consisting of 33 amplification cycles at 94 ° C, 5 minutes of initial denaturation, and an annealing temperature of 58 ° C. It was. The HSP105 PCR primer sequence used was Sense: 5′-AGAGTAAAAGTCAAAGTG-3 ′ (SEQ ID NO: 5), Antisense: 5′-TTAGAAGGTCTTTCCCT-3 ′ (SEQ ID NO: 6). The j8-actin PCR primer sequences for the control experiments are sense: 5′-CCTCGCCTTTGCCGATCC-3 ′ (SEQ ID NO: 7), antisense: 5′-GGATCTTC ATGAGGTAGTC AGTC-3 ′ (SEQ ID NO: 8).
[0046] 対照である β -ァクチン mRNAによる標準化の後、ヒト細胞系にお 、て HSP105 mRN Aの発現を比較した。その結果、 HCT116細胞株においては正常大腸粘膜と比較し て HSP105 mRNAは強く発現していた(図 1)。  [0046] After normalization with β-actin mRNA as a control, the expression of HSP105 mRNA was compared in human cell lines. As a result, HSP105 mRNA was strongly expressed in the HCT116 cell line compared to normal colon mucosa (Fig. 1).
[0047] 〔実施例 2〕 small interference RNAを用いた HSP105蛋白の発現抑制と apoptosisの誘 導  [Example 2] Inhibition of HSP105 protein expression and induction of apoptosis using small interference RNA
heat shock protein 105 (HSP105)の mRNA(138〜158)の 21塩基からなる small interf erence RNA (siRNA)を設計し、 Dharmacon社より購入した(図 2)。また、対照用として の Luciferase siRNAも Dharmacon社より購入した。いずれも 20 μ Μとなるように anneali ng buffer(100mM KOAc, 30mM HEPES- KOH pH7.4, 2mM MgOAc)にて溶解した。 A small interference RNA (siRNA) consisting of 21 bases of mRNA (138-158) of heat shock protein 105 (HSP105) was designed and purchased from Dharmacon (Fig. 2). Also as a control Luciferase siRNA was also purchased from Dharmacon. All were dissolved in an annealing buffer (100 mM KOAc, 30 mM HEPES-KOH pH 7.4, 2 mM MgOAc) to 20 μ 20.
[0048] HSP105 siRNA配列は、センス: 5'- UUGGCUGCAACUCCGAUUGdTdT- 3' (配列 番号 1)、アンチセンス: 5 '-CAAUCGGAGUUGCAGCCAAdTdT-3 ' (配列番号 2)で ある。 [0048] The HSP105 siRNA sequence is sense: 5'-UUGGCUGCAACUCCGAUUGdTdT-3 '(SEQ ID NO: 1), and antisense: 5'-CAAUCGGAGUUGCAGCCAAdTdT-3' (SEQ ID NO: 2).
Luciferase siRNA配列は、センス: 5'- CGUACGCGGAAUACUUCGAdTdT- 3' (配 列番号 3)、アンチセンス: 5'- UCGAAGUAUUCCGCGUACGdTdT- 3' (配列番号 4) である。  The Luciferase siRNA sequence is sense: 5'-CGUACGCGGAAUACUUCGAdTdT-3 '(SEQ ID NO: 3), antisense: 5'-UCGAAGUAUUCCGCGUACGdTdT-3' (SEQ ID NO: 4).
[0049] opti-MEM (GIBCO)16 μ 1に oligofectamine(invitrogen)4 μ 1を加え 5分間室温放置 ののち、これを、対照としての opt卜 MEM 180 μ 1、および opti- MEM175 μ 1に対照用 Lu ciferase- siRNAおよび HSP105-siRNAをそれぞれ lOOpmol (5 μ 1)加えた溶液と混ぜ 2 0分室温放置。この溶液 (200 μ 1)を、前日に 6穴 plateに 1 X 105 /wellで 10%FCS DME M medium 2 mlで撒き、 opti-MEMにて一度 washし、 300 μ 1の optト MEMを入れた、ヒ ト大腸癌細胞株 HCT116(wild type p53保有株)および HCT116(wild type p53欠損 株)の各 wellに加えた。 4時間後に 2mlの 10%FCS DMEM mediumをさらに加え、 24、 4 8時間後に trypsin処理にて細胞を回収し、一部を flowcytometry用に、残りを Western blotting用に lysis buffer(20mM Tris- HC1 pH7.4, 10% glycerol, 1% NP-40 [Roche] , 200mM NaCl, ImM Na VO , Protease inhibitor cocktail tablet 1個〔Roche〕)に溶解 [0049] Add 4 μ 1 of oligofectamine (invitrogen) to 16 μ 1 of opti-MEM (GIBCO) and let stand at room temperature for 5 minutes, then control this to opt MEM 180 μ 1 and opti-MEM 175 μ 1 Mix with a solution containing lOOpmol (5 μ 1) each of luciferase-siRNA and HSP105-siRNA for 20 minutes at room temperature. Apply this solution (200 μ1) to a 6-well plate the day before with 2 ml of 10% FCS DME M medium at 1 × 10 5 / well, wash once with opti-MEM, and add 300 μ1 of opt-MEM. It was added to each well of human colon cancer cell lines HCT116 (strain with wild type p53) and HCT116 (wild type p53 deficient strain). After 4 hours, add 2 ml of 10% FCS DMEM medium.After 24 and 48 hours, collect cells by trypsin treatment.A part of the cells for flowcytometry and the rest for Western blotting are lysis buffer (20 mM Tris-HC1 pH7 .4, 10% glycerol, 1% NP-40 [Roche], 200 mM NaCl, ImM Na VO, Protease inhibitor cocktail tablet 1 tablet (Roche))
3 4  3 4
し cell lysateを作製した。  A cell lysate was prepared.
[0050] Western blottingは公知の方法で行った。サンプルを 7%アクリルアミドゲルにて電 気泳動ののち、ニトロセルロースメンブレン (Bio Rad)へ transferし、 5%スキムミルク、 1 %BSAをカ卩えた 0.2%Tween20-TBS溶液にて blocking (4°C, overnight)した。 HSP105 ゥサギポリクローナル抗体 (Santa Cruz, California)および、対照としてマウスモノクロ ーナル j8 -ァクチン抗体 (Sigma)を 1次抗体として 1時間室温でインキュベーションし、 洗浄の後 HRP標識抗マウス抗体、 HRP標識抗ゥサギ抗体 (Amersham Bioscience)に て 30分インキュベーションし,洗净の後、 ECL Western Blottiong detection Reagents ( Amersham Bioscience)〖こ 恢出した。  [0050] Western blotting was performed by a known method. The sample was electrophoresed on a 7% acrylamide gel, transferred to a nitrocellulose membrane (Bio Rad), and blocked with a 0.2% Tween20-TBS solution containing 5% skim milk and 1% BSA (4 ° C, overnight). HSP105 Usagi polyclonal antibody (Santa Cruz, California) and mouse monoclonal j8-actin antibody (Sigma) as a primary antibody were incubated at room temperature for 1 hour at room temperature. After washing, HRP-labeled anti-mouse antibody, HRP-labeled anti-rabbit The antibody (Amersham Bioscience) was incubated for 30 minutes. After washing, ECL Western Blottiong detection Reagents (Amersham Bioscience) was extracted.
[0051] ヒト大腸癌細胞株 HCT116(wild type p53保有株)および HCT116(wild type p53欠 損株)の HSP105蛋白の発現は同等に経時的に低下していた。対照として用いた Ludf erase siRNA処理群では HSP105の発現は低下しなかった(図 3)。 [0051] Human colon cancer cell lines HCT116 (wild type p53-bearing strain) and HCT116 (wild type p53 deficient) The expression of HSP105 protein in the losing strain was equally decreased over time. In the Ludf erase siRNA treatment group used as a control, HSP105 expression did not decrease (Fig. 3).
ANNEXIN V-FITC detection kit (Bio Vision Inc.)を用いて flowcytometerで早期の アポトーシス変化を調べた。ヒト大腸癌細胞株 HCT116(wild type p53保有株)および HCT116(wild type p53欠損株)はいずれもアポトーシスが誘導された力 wild type p5 3保有株のほうがよりその効果が顕著であった (48時間後の% of apoptosis : HCT116 p53- /- Oligofectamineのみ 12.0% Luciferase- siRNA処理 8.4% HSP105- siRNA処 理 18.1% HCT116 p53+/+ Oligofectamineのみ 11.2% Luciferase- siRNA処理 9.6 % HSP105- siRNA処理 51.1%) (図 4及び図 5)。  Early apoptosis changes were examined with a flowcytometer using the ANNEXIN V-FITC detection kit (Bio Vision Inc.). Human colon cancer cell lines HCT116 (wild type p53-bearing strain) and HCT116 (wild type p53-deficient strain) were more effective in the wild-type p53-bearing strain in which apoptosis was induced (48 hours) % Of apoptosis: HCT116 p53- /-Oligofectamine only 12.0% Luciferase- siRNA treatment 8.4% HSP105- siRNA treatment 18.1% HCT116 p53 + / + Oligofectamine only 11.2% Luciferase- siRNA treatment 9.6% HSP105- siRNA treatment 51.1%) ( Figures 4 and 5).
[0052] 〔実施例 3〕 siRNAと抗がん剤の併用実験  [0052] [Example 3] Combination experiment of siRNA and anticancer agent
実施例 2においてさらに、 siRNA添加 12時間後に各 wellに 200 ng/mlの濃度でァドリ アマイシンを添加し、その効果を検討した。  Furthermore, in Example 2, 12 hours after addition of siRNA, adriamycin was added to each well at a concentration of 200 ng / ml, and the effect was examined.
[0053] アドリアマイシンの添カ卩により、より効果的にアポトーシスを誘導できた (HSP105- siR NA処理 48時間後〔アドリアマイシン添加後 36時間後〕の% of apoptosis : HCT116 p53- /- 27.8% HCT116 p53+/+ 78.4%) (図 6)。  [0053]% of apoptosis after HSP105-siRNA treatment [36 hours after addition of adriamycin]% of apoptosis: HCT116 p53- /-27.8% HCT116 p53 + / + 78.4%) (Figure 6).
[0054] 〔実施例 4〕そのほかのヒト細胞株でのアポトーシス誘導実験  [Example 4] Apoptosis induction experiment in other human cell lines
ヒト大腸癌細胞株 SW620、ヒト肝臓癌 SK-Heplにお 、て実施例 2の要領で siRNAを 用いてその効果を検討した。 SK-Heplの実験に際しては、対照 siRNAとして GFP siR NAを QIAGENより購入して用いた。 GFP siRNA配列は、センス: 5'- GCAAGCUGAC CCUGAAGUUCAU-3' (配列番号 9)、アンチセンス: 5'- GAACUUCAGGGUCAGCU UGCCG-3' (配列番号 10)である。  In human colon cancer cell line SW620 and human liver cancer SK-Hepl, the effect was examined using siRNA as described in Example 2. In the SK-Hepl experiment, GFP siRNA was purchased from QIAGEN and used as a control siRNA. The GFP siRNA sequence is sense: 5′-GCAAGCUGAC CCUGAAGUUCAU-3 ′ (SEQ ID NO: 9), antisense: 5′-GAACUUCAGGGUCAGCU UGCCG-3 ′ (SEQ ID NO: 10).
[0055] ヒト大腸癌細胞株 SW620は 24時間後において HSP105蛋白の発現力もっとも低下し ており、このときにアポトーシスも強く誘導されていた。これは SW620の増殖が早い為 、 48時間後には siRNAが充分に効かな力つた細胞が増殖したため、相対的にこのよう な結果が得られたと考えられる。ヒト肝臓癌 SK-Heplは 48時間後に HSP105の発現が もっとも抑制されアポトーシスも強く誘導されていた(図 7〜図 9)。  [0055] The human colon cancer cell line SW620 showed the most decreased expression of HSP105 protein after 24 hours, and apoptosis was strongly induced at this time. This is probably due to the rapid growth of SW620, and after 48 hours, cells with strong enough siRNAs proliferated, so this result was relatively obtained. In human liver cancer SK-Hepl, the expression of HSP105 was suppressed most and apoptosis was strongly induced 48 hours later (Figs. 7 to 9).
[0056] また、ヒト脾癌細胞株 PK8、胃癌細胞株 ΚΑΤΟ-ΠΙ、及び ΜΚΝ28において上記と 同様にしてアポトーシス誘導実験を行った。ヒト脾癌細胞株 ΡΚ8、胃癌細胞株 ΚΑΤ 0-111、及び MKN28においても、 48時間後に、 HSP105の発現が抑制され、アポトーシ スが誘導された(図 10)。 [0056] In addition, apoptosis induction experiments were performed in the same manner as described above in human spleen cancer cell line PK8, gastric cancer cell lines 細胞 -ΠΙ, and ΜΚΝ28. Human spleen cancer cell line ΡΚ8, gastric cancer cell line ΚΑΤ In 0-111 and MKN28, the expression of HSP105 was suppressed 48 hours later, and apoptosis was induced (FIG. 10).
[0057] 〔実施例 5〕 in vivo実験 [Example 5] In vivo experiment
2 X 106のヒト胃癌細胞株 KATO- IIIを 100 μ 1の HBSSに溶き、 NOD SCIDマウスの背 部の皮下に注射した。腫瘍が約 6mm大になったところで、 3日毎に腫瘍内に siRNA( 実施例 2に記載した配列番号 1及び配列番号 2で表される HSP105 siRNA)溶液を注 射した。 siRNA 1 nmol +20 μ 1 oligofectamin +ブドウ糖水で最終濃度 5%ブドウ溶液 60 1となるように合成した。コントロール siRNAとの各 4匹ずつの腫瘍の体積を追って いった。 2 × 10 6 human gastric cancer cell line KATO-III was dissolved in 100 μl of HBSS and injected subcutaneously into the back of NOD SCID mice. When the tumor became about 6 mm in size, a siRNA (HSP105 siRNA represented by SEQ ID NO: 1 and SEQ ID NO: 2 described in Example 2) solution was injected into the tumor every 3 days. It was synthesized with siRNA 1 nmol + 20 μ1 oligofectamin + glucose water to a final concentration of 5% grape solution 60 1. Following the volume of 4 tumors each with control siRNA.
V = L X W2 X 0. 5 V = LXW 2 X 0.5
(Vは体積を示し、 Lは長さを示し、 Wは幅を示す)  (V indicates volume, L indicates length, W indicates width)
測定結果を図 11に示す。図 11の結果力 分力るように、 HSP105-siRNAは明らかに 腫瘍の増殖を抑制した。  Figure 11 shows the measurement results. As shown in Fig. 11, HSP105-siRNA clearly inhibited tumor growth.
[0058] 〔実施例 6〕正常細胞における siRNAの効果 [Example 6] Effect of siRNA in normal cells
ヒト正常細胞における HSP105-siRNAの効果(副作用の検索)をみた。ヒト正常 fibrob last TURUおよび MORI (熊本大学の山泉教授より供与していただいた)を用いて、 実施例 2に記載した方法と同様の方法により、 control GFP-siRNAおよび HSP105-si RNAを各 100 pmol加え、 3日後に Western blottingと Annexin Vを用いた flowcytom etry(HSP105-siRNA群)を行った。得られた結果を図 12に示す。図 12の結果力も分 かるように、 HSP105_siRNAは正常細胞においても HSP105蛋白の発現を抑制したが 、アポトーシスは誘導しな力つた。さらにこの蛋白発現抑制も一過性で、 siRNAを導 入して力も約 10日ほどで回復した。  We examined the effect of HSP105-siRNA on human normal cells (search for side effects). Using normal human fibrob last TURU and MORI (provided by Prof. Yamazumi of Kumamoto University), 100 pmol each of control GFP-siRNA and HSP105-si RNA in the same manner as described in Example 2 In addition, 3 days later, Western blotting and flowcytom etry (HSP105-siRNA group) using Annexin V were performed. The obtained results are shown in FIG. As can be seen from the results shown in FIG. 12, HSP105_siRNA suppressed the expression of HSP105 protein even in normal cells, but did not induce apoptosis. Furthermore, this protein expression suppression was also transient, and the strength recovered after about 10 days after the introduction of siRNA.
産業上の利用可能性  Industrial applicability
[0059] 本発明の抗腫瘍剤では、新たな手段を用いて腫瘍特異的抗原を標的とすること〖こ より、これまでなカゝつた抗腫瘍効果が期待される。また本発明の抗腫瘍剤の効果は、 他の抗癌剤との併用により増強された。また、最先端治療としての野生型 p53発現べ クタ一を用いた遺伝子治療においては野生型 P53を発現する悪性腫瘍においては 治療効果が低いのが現状であるが、本発明の抗腫瘍剤は、野生型 p53を発現する 癌細胞株においてより高い効果を示すことが実証された。また、変異型 p53を有する 癌に対してもこの遺伝子治療と併用することで相カロ'相乗効果が期待できる。上記の 通り、本発明の抗腫瘍剤は、医療治療薬の分野において新たな悪性腫瘍治療薬とし て利用することができる。 [0059] The antitumor agent of the present invention is expected to have a conventional antitumor effect by targeting a tumor-specific antigen using a new means. The effect of the antitumor agent of the present invention was enhanced by the combined use with other anticancer agents. In addition, in the gene therapy using the wild-type p53 expression vector as a state-of-the-art treatment, the therapeutic effect is low in malignant tumors expressing wild-type P53, but the antitumor agent of the present invention is Expresses wild-type p53 It has been demonstrated to be more effective in cancer cell lines. In addition, combined use with this gene therapy can be expected to have a synergistic effect on cancer with mutant p53. As described above, the antitumor agent of the present invention can be used as a new malignant tumor therapeutic agent in the field of medical therapeutic agents.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、 RT-PCRによるヒト正常大腸とヒト大腸癌細胞株 HCT116の HSP105の発 現を調べた結果を示す。正常大腸と比べて明らかに HCT116では HSP105の mRNAの 発現が高力つた。 FIG. 1 shows the results of examining the expression of HSP105 in normal human colon and human colon cancer cell line HCT116 by RT-PCR. The expression of HSP105 mRNA was clearly higher in HCT116 than in normal colon.
[図 2]図 2は、ヒト HSP105の siRNA配列を示す。  FIG. 2 shows the siRNA sequence of human HSP105.
[図 3]図 3は、ウェスタン 'ブロッテイングにより siRNA処理後の HSP105蛋白の発現を確 認した結果を示す。 A: HCT116 p53-/-B: HCT116 p53+/+(wild type) HCT116 wil d type、 HCT116 p53-/- ともに経時的に同等に HSP105蛋白の発現が低下している 。一方、コントロールの luciferase siRNA処理では HSP105の発現は低下していない。  FIG. 3 shows the result of confirming the expression of HSP105 protein after siRNA treatment by Western blotting. A: HCT116 p53-/-B: HCT116 p53 + / + (wild type) Both HCT116 wild type and HCT116 p53-/-decrease in HSP105 protein expression over time. On the other hand, HSP105 expression was not decreased by treatment with the control luciferase siRNA.
[図 4]図 4は、 flowcytometryを用いた ANNEXIN V染色による HCT116細胞株の siRNA 処理 48時間後のアポトーシスの検出を示す。 HCT116 wild type、 HCT116 p53- /- ともにコントロールの Oligofectamineのみ、または luciferase siRNA処理と比べて HSP1 05 siRNA処理では明らかにアポトーシスが誘導されており、それは HCT116 wild type ではより顕著であった。 FIG. 4 shows detection of apoptosis 48 hours after siRNA treatment of HCT116 cell line by ANNEXIN V staining using flowcytometry. In both HCT116 wild type and HCT116 p53- /-, apoptosis was clearly induced by HSP1 05 siRNA treatment compared to treatment with Oligofectamine alone or luciferase siRNA, which was more prominent in HCT116 wild type.
[図 5]図 5は、図 4の結果を 24時間後と併せてグラフ化したものを示す。  [FIG. 5] FIG. 5 shows a graph of the results of FIG. 4 together with 24 hours later.
[図 6]図 6は、 flowcytometryを用いた ANNEXIN V染色による HCT116細胞株の siRNA 処理 48時間後(アドリアマイシン 200ng/ml添加 36時間後)のアポトーシスの検出を示 す。アドリアマイシンを併用することでより細胞をアポトーシスへと誘導することができ た。  [FIG. 6] FIG. 6 shows detection of apoptosis 48 hours after siRNA treatment of HCT116 cell line by ANNEXIN V staining using flowcytometry (36 hours after addition of adriamycin 200 ng / ml). In combination with adriamycin, the cells could be more induced to apoptosis.
[図 7]図 7は、ヒト大腸癌細胞株 SW620の siRNA処理後のウェスタン.ブロッテイングに よる HSP105の蛋白発現を確認した結果を示す。 SW620は siRNA処理 24時間後に最 も HSP105の発現が低下した。  FIG. 7 shows the results of confirming protein expression of HSP105 by Western blotting after siRNA treatment of human colon cancer cell line SW620. SW620 showed the lowest HSP105 expression 24 hours after siRNA treatment.
[図 8]図 8は、ヒト大腸癌細胞株 SW620の siRNA処理後の、 flowcytometryを用いた SW 620の ANNEXIN V染色によるアポトーシスの検出を示す。アポトーシスは siRNA処理 2 [図 9]図 9は、 SK-Heplの siRNA処理 48時間後のウェスタン 'ブロッテイングによる HSP 105の蛋白発現ならびに ANNEXIN V染色によるアポトーシスの検出を示す。 SK_Hep 1は siRNA処理 48時間後で HSP105蛋白発現が著明に低下しており、アポトーシスが 誘導されていた。 FIG. 8 shows detection of apoptosis by ANNEXIN V staining of SW 620 using flowcytometry after siRNA treatment of human colon cancer cell line SW620. Apoptosis is treated with siRNA 2 [FIG. 9] FIG. 9 shows the protein expression of HSP 105 by Western blotting 48 hours after siRNA treatment of SK-Hepl and the detection of apoptosis by ANNEXIN V staining. SK_Hep 1 had a marked decrease in HSP105 protein expression 48 hours after siRNA treatment, and apoptosis was induced.
[図 10]図 10は、ヒト脾癌細胞株 PK8、胃癌細胞株 ΚΑΤΟ-ΠΙ、及び MKN28において siRNA処理 48時間後のウェスタン 'ブロッテイングによる HSP105の蛋白発現ならびに ANNEXIN V染色によるアポトーシスの検出を示す。  [FIG. 10] FIG. 10 shows protein expression of HSP105 by Western blotting 48 hours after siRNA treatment and apoptosis detection by ANNEXIN V staining in human spleen cancer cell line PK8, gastric cancer cell line M-ΠΙ, and MKN28 .
[図 11]図 11は、マウス背部の腫瘍に HSP105 siRNAを注入した後、腫瘍の体積を経 時的に測定した結果を示す。 HSP105-siRNAは腫瘍の増殖を抑制した。  FIG. 11 shows the results of measuring the tumor volume over time after injecting HSP105 siRNA into the tumor on the back of the mouse. HSP105-siRNA suppressed tumor growth.
[図 12]図 12は、ヒト正常 fibroblast TURUおよび MORIの siRNA処理後のウェスタン' ブロッテイングによる HSP105の蛋白発現を確認した結果、並びに、ヒト正常 fibroblast TURUおよび MORIの siRNA処理後の flowcytometryを用いた ANNEXIN V染色による アポトーシスの検出を示す。 [Fig. 12] Fig. 12 shows the results of HSP105 protein expression by Western blotting after siRNA treatment of human normal fibroblast TURU and MORI, and flowcytometry after siRNA treatment of human normal fibroblast TURU and MORI. Shows detection of apoptosis by ANNEXIN V staining.

Claims

請求の範囲 The scope of the claims
[1] RNAiにより HSP105の発現を抑制することができる因子を含む、抗腫瘍剤。  [1] An antitumor agent comprising a factor capable of suppressing the expression of HSP105 by RNAi.
[2] RNAiにより HSP105の発現を抑制することができる因子が含む、癌細胞におけるアポ トーシス誘導剤。 [2] An agent for inducing apoptosis in cancer cells, comprising a factor capable of suppressing the expression of HSP105 by RNAi.
[3] RNAiにより HSP105の発現を抑制することができる因子が、 siRNA又は shRNAであ る、請求項 1又は 2に記載の薬剤。  [3] The agent according to claim 1 or 2, wherein the factor capable of suppressing the expression of HSP105 by RNAi is siRNA or shRNA.
[4] 抗癌剤と組み合わせて使用される、請求項 1から 3の何れかに記載の薬剤。 [4] The drug according to any one of claims 1 to 3, which is used in combination with an anticancer drug.
[5] 野生型 p53を発現する癌細胞に対して使用される、請求項 1から 4の何れかに記載 の薬剤。 [5] The agent according to any one of claims 1 to 4, which is used for a cancer cell expressing wild-type p53.
[6] 上記 siRNA力 配列番号 1に記載の塩基配列を有する RNAと配列番号 2に記載の 塩基配列を有する RNAと力も成る二本鎖 RNAである、請求項 1から 5の何れかに記 載の薬剤。  [6] The siRNA force according to any one of claims 1 to 5, wherein the siRNA force is a double-stranded RNA having the same force as the RNA having the base sequence described in SEQ ID NO: 1 and the RNA having the base sequence described in SEQ ID NO: 2. Drugs.
[7] 大腸癌、膝癌、食道癌、乳癌、又は悪性黒色腫の治療のために使用する、請求項 1 力 6の何れかに記載の薬剤。  7. The drug according to any one of claims 1 to 6, which is used for the treatment of colorectal cancer, knee cancer, esophageal cancer, breast cancer, or malignant melanoma.
[8] 配列番号 1に記載の塩基配列を有する RNAと配列番号 2に記載の塩基配列を有す る RNAとから成る二本鎖 RNA。 [8] A double-stranded RNA comprising RNA having the base sequence set forth in SEQ ID NO: 1 and RNA having the base sequence set forth in SEQ ID NO: 2.
PCT/JP2005/014566 2004-08-12 2005-08-09 ANTINEOPLASTIC AGENT APPLYING RNAi WO2006016574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531647A JPWO2006016574A1 (en) 2004-08-12 2005-08-09 Antitumor agent using RNAi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004235087 2004-08-12
JP2004-235087 2004-08-12

Publications (1)

Publication Number Publication Date
WO2006016574A1 true WO2006016574A1 (en) 2006-02-16

Family

ID=35839343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014566 WO2006016574A1 (en) 2004-08-12 2005-08-09 ANTINEOPLASTIC AGENT APPLYING RNAi

Country Status (2)

Country Link
JP (1) JPWO2006016574A1 (en)
WO (1) WO2006016574A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381208B2 (en) 2006-08-08 2016-07-05 Rheinische Friedrich-Wilhelms-Universität Structure and use of 5′ phosphate oligonucleotides
US9399658B2 (en) 2011-03-28 2016-07-26 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US9738680B2 (en) 2008-05-21 2017-08-22 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10059943B2 (en) 2012-09-27 2018-08-28 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISHIHARA K. ET AL: "Molecular cloning, expression and localization of human 105 kDa heat shock protein, hsp105", BIOCHIM.BIOPHYS.ACTA., vol. 1444, no. 1, 1999, pages 138 - 142, XP001024442 *
NISHIMURA Y.: "Hito T-saibo ga Ninshiki suru Shuyo Tokui Kogen no Dotei", HEISEI 15 NENDO GAN KENKYU NI KAKAWARU TOKUTEI RYOIKI KENKYU (GAN TOKUTEI) KENKYU HOKOKUSHO SHU ROKU, HEISEI 16 NEN, MARCH, pages 348 - 351, XP002999841 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381208B2 (en) 2006-08-08 2016-07-05 Rheinische Friedrich-Wilhelms-Universität Structure and use of 5′ phosphate oligonucleotides
US10238682B2 (en) 2006-08-08 2019-03-26 Rheinische Friedrich-Wilhelms-Universität Bonn Structure and use of 5′ phosphate oligonucleotides
US9738680B2 (en) 2008-05-21 2017-08-22 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10036021B2 (en) 2008-05-21 2018-07-31 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10196638B2 (en) 2008-05-21 2019-02-05 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US9399658B2 (en) 2011-03-28 2016-07-26 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US9896689B2 (en) 2011-03-28 2018-02-20 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US10059943B2 (en) 2012-09-27 2018-08-28 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US10072262B2 (en) 2012-09-27 2018-09-11 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US11142763B2 (en) 2012-09-27 2021-10-12 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them

Also Published As

Publication number Publication date
JPWO2006016574A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP6023709B2 (en) Apoptosis inducer
WO2010006239A2 (en) Regulation of apoptosis by neural specific splice variants of ig20
Zhai et al. MicroRNA‐98 attenuates cardiac ischemia‐reperfusion injury through inhibiting DAPK1 expression
US20160175339A1 (en) Methods for detecting and modulating the sensitivity of tumor cells to anti-mitotic agents and for modulating tumorigenicity
Li et al. Sinomenine hydrochloride suppresses the stemness of breast cancer stem cells by inhibiting Wnt signaling pathway through down-regulation of WNT10B
US20130237584A1 (en) CANCER THERAPY USING Bcl-XL-SPECIFIC siNA
WO2006016574A1 (en) ANTINEOPLASTIC AGENT APPLYING RNAi
JP2008525005A (en) New substances and their use
Wang et al. shRNA-mediated silencing of Y-box binding protein-1 (YB-1) suppresses growth of neuroblastoma cell SH-SY5Y in vitro and in vivo
JP4467559B2 (en) Compositions and methods for inhibiting cell proliferation
WO2012023345A1 (en) Method and composition for treating, preventing and diagnosing cancer containing cancer stem cells or derived therefrom
KR101913693B1 (en) SS18-SSX fusion gene specific siRNA and pharmaceutical composition for preventing or treating of cancer containing the same
WO2006106599A1 (en) Pharmaceutical for preventing and/or treating disease caused by abnormal enhancement of extracellular domain shedding
JP6768979B2 (en) Suppression of cancer metastasis using HSP47 inhibitor
JP2022550954A (en) treatment
Fang et al. Growth inhibition of a tongue squamous cell carcinoma cell line (Tca8113) in vitro and in vivo via siRNA-mediated down-regulation of skp2
JP2013039036A (en) NUCLEIC ACID INHIBITING EXPRESSION OF HIF-2α
US20210054382A1 (en) Methods and compositions for diagnosing and treating prostate cancer based on long noncoding rna overlapping the lck gene that regulates prostate cancer cell growth
JP2009535391A (en) Inhibitors of hCAP18 / LL-37 for use in the treatment of breast cancer
US20210324385A1 (en) Compositions and Methods for Treating Endometriosis
JP2016088884A (en) Composition for treating tumors
US20130190240A1 (en) Tumor growth controlling method targeting galactosylceramide expression factor-1
JP2011093896A (en) Cancer therapeutic agent
EP3999644A2 (en) Inhibitors of microrna 451a for treatment of endometriosis
CN116769828A (en) Method for regulating and controlling activity of NRF2 transcription factor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase