WO2006025262A1 - 導電性組成物及び導電性架橋体、コンデンサ及びその製造方法、並びに帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体 - Google Patents

導電性組成物及び導電性架橋体、コンデンサ及びその製造方法、並びに帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体 Download PDF

Info

Publication number
WO2006025262A1
WO2006025262A1 PCT/JP2005/015482 JP2005015482W WO2006025262A1 WO 2006025262 A1 WO2006025262 A1 WO 2006025262A1 JP 2005015482 W JP2005015482 W JP 2005015482W WO 2006025262 A1 WO2006025262 A1 WO 2006025262A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
nitrogen
antistatic
conductive polymer
capacitor
Prior art date
Application number
PCT/JP2005/015482
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Yoshida
Tailu Ning
Yasushi Masahiro
Yutaka Higuchi
Rika Abe
Original Assignee
Shin-Etsu Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005090322A external-priority patent/JP4932174B2/ja
Priority claimed from JP2005090323A external-priority patent/JP4987239B2/ja
Priority claimed from JP2005096599A external-priority patent/JP4762587B2/ja
Priority claimed from JP2005108539A external-priority patent/JP2006117906A/ja
Application filed by Shin-Etsu Polymer Co., Ltd. filed Critical Shin-Etsu Polymer Co., Ltd.
Priority to CN2005800345932A priority Critical patent/CN101040002B/zh
Publication of WO2006025262A1 publication Critical patent/WO2006025262A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a conductive composition containing a ⁇ -conjugated conductive polymer and a conductive crosslinked body.
  • the present invention also relates to capacitors such as aluminum electrolytic capacitors, tantalum electrolytic capacitors, niobium electrolytic capacitors, and methods for manufacturing the same.
  • the present invention relates to an antistatic coating for imparting antistatic properties to a film, an antistatic film having antistatic properties, an antistatic film used for packaging materials for foods and electronic parts, a liquid crystal display and a plasma. It relates to optical filters used on the front of displays and optical information recording media such as CDs and DVDs.
  • a ⁇ -conjugated conductive polymer whose main chain is composed of a conjugated system containing ⁇ electrons is synthesized by an electrolytic polymerization method and a chemical oxidative polymerization method.
  • a support such as a previously formed electrode material is immersed in a mixed solution of an electrolyte serving as a dopant and a precursor monomer that forms a ⁇ -conjugated conductive polymer, and ⁇ is formed on the support.
  • a conjugated conductive polymer is formed into a film. Therefore, it is difficult to manufacture in large quantities.
  • an oxidant and an oxidative polymerization catalyst are added to the precursor monomer of the ⁇ -conjugated conductive polymer, which is not subject to such restrictions, and a large amount of ⁇ -conjugated conductive in solution. Functional polymer can be produced.
  • an oxidant is used in the presence of polystyrene sulfonic acid, which is a polymer acid having a molecular weight of 000 to 500,000, in the presence of a cation group.
  • a method for producing an aqueous poly (3,4-dialkoxythiophene) solution by chemically oxidizing polymerization of alkoxythiophene has been proposed (see Patent Document 1).
  • a method for producing an aqueous ⁇ -conjugated conductive polymer colloid solution by chemical oxidative polymerization in the presence of polyacrylic acid has been proposed (see Patent Document 2).
  • an aqueous dispersion solution containing a ⁇ -conjugated conductive polymer can be easily produced.
  • a large amount of a cation group-containing polymer acid is included in order to ensure the dispersibility of the ⁇ -conjugated conductive polymer in water. Therefore, the obtained conductive composition contains a large number of compounds that do not contribute to conductivity, and there is a problem that it is difficult to obtain high conductivity.
  • binder resin when contained in the conductive composition, it can be obtained by a chemical oxidative polymerization method.
  • the ⁇ -conjugated conductive polymer thus obtained has low compatibility with the binder resin.
  • An example of using a ⁇ -conjugated conductive polymer is a capacitor.
  • capacitors used in electronic devices are required to reduce the impedance in the high frequency region.
  • capacitors that use an oxide film of valve metal such as aluminum, tantalum, or niobium that meets this requirement as a dielectric and a ⁇ -conjugated conductive polymer on the surface have been used. ing.
  • the capacitor has a structure in which an anode having a porous valve metal force, a dielectric layer formed by oxidizing the surface of the anode, a solid electrolyte layer, and a carbon layer formed on the dielectric layer. And a cathode having a silver layer laminated thereon are common.
  • the solid electrolyte layer of the capacitor is a layer that also has a ⁇ -conjugated conductive polymer force such as pyrrole or thiophene, penetrates into the porous body, and comes into contact with a larger area of the dielectric layer. In addition to cutting out the capacitance, it plays a role in preventing leakage due to leakage current by repairing the defect in the dielectric layer.
  • Patent Document 4 As a method for forming a ⁇ -conjugated conductive polymer, an electrolytic polymerization method (see Patent Document 4) and a chemical oxidation polymerization method (see Patent Document 5) are widely known.
  • the polymerization time is long, and it is necessary to repeat the polymerization in order to ensure the thickness, so that the production efficiency of the capacitor is low and the conductivity is also low.
  • Patent Document 6 water-soluble polyarine is prepared by polymerizing arlin in the presence of a polymer acid having a sulfo group, a carboxy group, etc., and the polyarin aqueous solution is placed on the dielectric layer. A method of applying and drying is described. This manufacturing method is simple.
  • a ⁇ -conjugated conductive polymer is used as an organic material having electronic conduction as a conduction mechanism.
  • the resin film is an insulator as it is, it is easily charged with static electricity due to electrification or friction. Moreover, the static electricity accumulates in a way that escapes to the outside, causing various problems.
  • the optical filter and the optical information recording medium are required to have a surface having high hardness and high transparency, and to have antistatic properties in order to prevent dust from adhering due to static electricity.
  • the antistatic property is required to have a stable resistance value (that is, a stable antistatic property) in the region where the surface resistance is 10 6 to 10 1 (> ⁇ ).
  • a stable resistance value that is, a stable antistatic property
  • an antistatic film having high antistatic properties and high hardness is provided on the surface of the optical filter or optical information recording medium.
  • metal oxides such as ITO (Indium Tin Oxide) are transparent and use electronic conduction as a conduction mechanism, which is suitable in that respect, but a sputtering device or the like was used for the film formation.
  • the process was unavoidable and not only the process was complicated, but also the manufacturing cost was high.
  • the coating film might be severely cracked and no conductivity was exhibited.
  • peeling may occur at the interface between them and the transparency may be lowered.
  • ⁇ -conjugated conductive polymers are known as an organic material having electronic conduction as a conductive mechanism.
  • ⁇ -conjugated conductive polymers generally have insoluble and infusible properties and are polymerized. It was difficult to apply on the base film later. Therefore, it has been attempted to apply and dry on a base film using a mixture obtained by polymerizing a phosphorus in the presence of a polymer acid having a sulfo group to form a water-soluble poly-aline. (For example, see Patent Document 8).
  • an antistatic film can be formed by direct polymerization on a substrate, but in that case, the antistatic film has low conductivity and is water-soluble. As a result, the adhesion to the base material made of resin is low, and the manufacturing process becomes complicated.
  • Patent Document 1 Japanese Patent No. 2636968
  • Patent Document 2 JP-A-7-165892
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-37024
  • Patent Document 4 JP-A 63-158829
  • Patent Document 5 Japanese Unexamined Patent Publication No. 63-173313
  • Patent Document 6 JP-A-7-105718
  • Patent Document 7 JP-A-11 74157
  • Patent Document 8 Japanese Patent Laid-Open No. 1-254764
  • Non-Patent Document 1 “Chemical Antistatic Agents Recent Market Trends (above)” issued by CMC, Vol. 16, No. 15, 1987, p. 24-36
  • an object of the present invention is to provide a conductive composition and a conductive crosslinked body having excellent conductivity. Another object of the present invention is to provide a capacitor having excellent conductivity and low impedance of the solid electrolyte layer of the cathode, and a method for easily producing such a capacitor. Furthermore, the present invention provides an antistatic coating material that can be formed by coating an antistatic film that is highly conductive, flexible, and highly adhesive to the base material, and has high electrical conductivity, flexibility, and high adhesiveness to the substrate. It is an object of the present invention to provide an antistatic film that can be produced by a simple production method, an antistatic film excellent in antistatic properties, an optical filter, and an optical information recording medium.
  • the conductive composition of the present invention contains a ⁇ -conjugated conductive polymer, a dopant, and a nitrogen-containing aromatic cyclic compound.
  • the dopant is preferably an organic sulfonic acid.
  • the organic sulfonic acid is preferably a sulfo group-containing solubilized polymer.
  • the nitrogen-containing aromatic cyclic compound is a nitrogen-containing aromatic cyclic compound cation in which a substituent is introduced into the nitrogen atom to form a cation. Even so.
  • the nitrogen-containing aromatic cyclic compound is preferably a substituted or unsubstituted imidazole.
  • the nitrogen-containing aromatic cyclic compound is a substituted or unsubstituted pyridine. It is preferable.
  • the capacitor of the present invention includes an anode having a porous body strength of a valve metal, a dielectric layer formed by oxidizing the surface of the anode, and disposed on the dielectric layer.
  • a capacitor having a cathode provided with a solid electrolyte layer containing a high molecule includes an electron donating compound layer containing an electron donating element disposed between the dielectric layer and the cathode.
  • the electron-donating element layer of the electron-donating compound layer is at least one selected from nitrogen, oxygen, sulfur, and phosphorus.
  • the electron donating compound in the electron donating compound layer is preferably at least one selected from pyrroles, thiophenes, and francs.
  • the electron donating compound in the electron donating compound layer is preferably an amine.
  • the method for producing a capacitor according to the present invention includes a step of forming a dielectric layer by oxidizing the surface of an anode, which is a porous body of a valve metal, and an electron donating element containing an electron donating element on the surface of the dielectric layer.
  • the method for producing a capacitor of the present invention includes a step of forming the solid electrolyte layer, and a step of applying a conductive polymer solution containing a ⁇ -conjugated conductive polymer to the surface of the electron donating compound layer. Is preferred ⁇ .
  • the capacitor of the present invention includes an anode having a porous body strength of a valve metal, a dielectric layer formed by oxidizing the surface of the anode, and a cathode formed on the dielectric layer.
  • the cathode includes a solid electrolyte layer containing a ⁇ -conjugated conductive polymer, a dopant, and a nitrogen-containing aromatic cyclic compound.
  • the cathode preferably further contains an electrolytic solution.
  • the dopant is preferably a solubilized polymer having a cation group. .
  • the nitrogen-containing aromatic cyclic compound is substituted.
  • it is an unsubstituted imidazole, or a substituted or unsubstituted pyridine.
  • the nitrogen-containing aromatic cyclic compound in the solid electrolyte layer of the cathode is crosslinked.
  • the method for producing a capacitor of the present invention includes a ⁇ -conjugated system on the surface of a dielectric layer in a capacitor intermediate having a porous metal anode and a dielectric layer formed by oxidizing the surface of the anode. It has the process of apply
  • the nitrogen-containing aromatic cyclic compound in the conductive polymer solution preferably has a crosslinkable functional group.
  • the conductive polymer solution further contains a crosslinkable compound.
  • the nitrogen-containing aromatic cyclic compound has a crosslinkable functional group
  • the antistatic coating material of the present invention includes a ⁇ -conjugated conductive polymer, a solubilized polymer having an anion group and a ⁇ or an electron withdrawing group, a nitrogen-containing aromatic cyclic compound, and a solvent. It is characterized by that.
  • the antistatic paint of the present invention preferably further contains a dopant.
  • the antistatic paint of the present invention preferably further contains a binder resin.
  • the binder resin is polyurethane.
  • polyester acrylic resin, polyamide, polyimide, epoxy resin, and polyimide silicone are preferable.
  • the antistatic film of the present invention is characterized by being formed by applying the above-described antistatic coating.
  • the antistatic film of the present invention includes a base film and the above-described antistatic film formed on at least one side of the base film.
  • the optical filter of the present invention has the above-described antistatic film.
  • the optical information recording medium of the present invention has the above-described antistatic film. The invention's effect
  • the conductive composition of the present invention has high conductivity (electrical conductivity) and excellent heat resistance and moisture resistance.
  • the dopant is an organic sulfonic acid, particularly a sulfo group-containing solubilizing polymer, the dispersibility and compatibility with the binder resin can be increased.
  • the nitrogen-containing aromatic cyclic compound is a nitrogen-containing aromatic cyclic compound cation in which a substituent is introduced into the nitrogen atom to form a cation, the dope is further increased. It becomes easier to bind or coordinate with the punt.
  • the nitrogen-containing aromatic cyclic compound is a substituted or unsubstituted imidazole or a substituted or unsubstituted pyridine, the solvent solubility is excellent.
  • the nitrogen-containing aromatic cyclic compound preferably has a crosslinkable functional group.
  • the conductive composition of the present invention preferably further contains a crosslinkable compound.
  • the conductive crosslinked body of the present invention is formed by subjecting a conductive composition containing a nitrogen-containing aromatic cyclic compound having a crosslinkable functional group to heat treatment and Z or ultraviolet irradiation treatment. .
  • the capacitor of the present invention has a low equivalent series resistance because of the high conductivity of the cathode.
  • the capacitance drawing rate is increased.
  • the dopant is a soluble polymer having a cation
  • the solvent solubility of the ⁇ -conjugated conductive polymer can be increased.
  • the nitrogen-containing aromatic cyclic compound is a substituted or unsubstituted imidazole or a substituted or unsubstituted pyridine, the solvent solubility is excellent.
  • the antistatic coating material of the present invention can be formed by coating an antistatic film having high conductivity, flexibility, and high adhesion to a substrate.
  • an antistatic coating material can exhibit sufficient antistatic properties when used in a small amount, an antistatic film can be produced at a low cost.
  • the antistatic coating material of the present invention further contains a dopant, the conductivity of the antistatic film can be further increased, and the heat resistance is also improved.
  • binder resin is included, adhesiveness with a base material can be made higher.
  • the binder resin is at least one selected from the group force that can be polyurethane, polyester, acrylic resin, polyamide, polyimide, epoxy resin, and polyimide silicone, it is mixed with the essential components of the antistatic paint. Cheap.
  • the antistatic film of the present invention can be produced by a simple production method such as coating with high conductivity, flexibility, and adhesion to a substrate.
  • the antistatic film, the optical filter, and the optical information recording medium of the present invention are excellent in antistatic properties, and generation of static electricity is prevented.
  • FIG. 1 is a cross-sectional view showing an embodiment of a capacitor according to the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of an optical filter of the present invention.
  • FIG. 3 is a cross-sectional view showing an embodiment of the optical information recording medium of the present invention.
  • the ⁇ -conjugated conductive polymer of the present invention can be used as long as it is an organic polymer whose main chain is composed of a ⁇ -conjugated system.
  • examples thereof include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyarenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of stability in air, polypyrroles, polythiophenes and polyarines are preferred.
  • ⁇ -conjugated conductive polymer Even if the ⁇ -conjugated conductive polymer remains unsubstituted, sufficient conductivity and strength to obtain compatibility with binder resin can be obtained by using alkyl groups, force groups, and alkoxy groups to further improve conductivity and compatibility.
  • a functional group such as a sulfo group, an alkoxy group, or a hydroxy group into the ⁇ -conjugated conductive polymer.
  • ⁇ -conjugated conductive polymer examples include polypyrrole, poly ( ⁇ ⁇ ⁇ -methylpyrrole), poly (3-methylpyrrole), poly (3-ethyrylpyrrole), and poly (3- ⁇ -propylene).
  • a (co) polymer having one or two selected forces is preferably used from the viewpoint of resistance and reactivity.
  • polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable because they have higher conductivity and improved heat resistance.
  • those having an alkyl group having 6 or more carbon atoms as a substituent can impart solvent solubility without using a later-described soluble polymer containing a cation group.
  • Preferred ⁇ a ⁇ -conjugated conductive polymer having a ⁇ -on group in the molecule as a substituent is preferable because it itself dissolves in water.
  • the ⁇ -conjugated conductive polymer can be easily obtained by chemical oxidative polymerization of a precursor monomer of the ⁇ -conjugated conductive polymer in a solvent in the presence of an oxidizing agent or an oxidation polymerization catalyst. Can do.
  • pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like can be used as precursor monomers for the ⁇ -conjugated conductive polymer.
  • the oxidizing agent is not particularly limited as long as it can oxidize the precursor monomer to obtain a ⁇ -conjugated conductive polymer.
  • peroxodisulfate ammonium peroxodisulfate sodium, peroxodisulfate potassium.
  • Peroxodisulfate such as salt; transition metal compounds such as ferric sulfate, ferric sulfate, ferric nitrate and cupric chloride; metal halide compounds such as boron trifluoride and aluminum chloride; acid Metal acids such as silver and acid cesium; Peracids such as hydrogen peroxide and ozone; Organic peracids such as peroxybenzoyl; Oxygen and the like I can get lost.
  • the solvent used in the chemical acid-polymerization is not particularly limited, and is a solvent capable of dissolving or dispersing the precursor monomer, and can maintain the oxidizing power of the oxidizing agent and the oxidation catalyst. Anything is acceptable.
  • polar solvents such as water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylene phosphortriamide, acetonitrile, benzo-tolyl; cresol, phenol Phenols such as methanol and xylenol; alcohols such as methanol, ethanol, propanol and butanol; ketones such as acetone and methyl ethyl ketone; hydrocarbons such as hexane, benzene and toluene; carboxyls such as formic acid and acetic acid Acid; carbonate compounds such as ethylene carbonate and propylene carbonate; ether compounds such as dioxane and jetyl ether; ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polyethylene Chain ethers such as propylene glycol
  • the dopant may be used. It may be an acceptor type.
  • donor dopants include alkali metals such as sodium and potassium; alkaline earth metals such as calcium and magnesium; tetramethyl ammonium, tetraethynoleum molybdenum, tetrapropyl ammonium, Quaternary amine compounds such as tetraptyl ammonium, methyltriethyl ammonium, dimethyl jetyl ammonium and the like can be mentioned.
  • acceptor dopants include halogen compounds, Lewis acids, proton acids, An organic cyano compound, an organometallic compound, etc. can be used.
  • halogen compound includes, for example, chlorine (C1), bromine (Br), iodine (I), salt
  • Iodine (IC1) iodine bromide (IBr), iodine fluoride (IF) and the like.
  • Lewis acids examples include PF, AsF, SbF, BF, BC1, BBr, SO and the like.
  • organic cyano compound a compound containing two or more cyano groups in a conjugated bond can be used.
  • organic cyano compound a compound containing two or more cyano groups in a conjugated bond.
  • tetracyanethylene, tetracyanethylene oxide, tetracyanobenzene, dichlorodisianobenzoquinone (DDQ), tetracyanoquinodimethane, tetracyanazanaphthalene and the like can be mentioned.
  • Examples of the protonic acid include inorganic acids and organic acids. Furthermore, examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, borohydrofluoric acid, hydrofluoric acid, perchloric acid, and the like. Examples of organic acids include organic carboxylic acids, phenols, and organic sulfonic acids.
  • organic carboxylic acid aliphatic, aromatic, cycloaliphatic and the like containing one or more carboxy groups
  • organic carboxylic acid aliphatic, aromatic, cycloaliphatic and the like containing one or more carboxy groups
  • examples include acetic acid and triphenyl acetic acid.
  • organic sulfonic acid one containing one or two or more sulfo groups in aliphatic, aromatic, cycloaliphatic and the like can be used.
  • examples of those containing one sulfo group include methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 1-butanesulfonic acid, 1-hexanesulfonic acid, 1-heptanesulfonic acid, and 1-octanesulfonic acid.
  • Examples of those containing two or more sulfo groups include ethanedisulfonic acid, butanedisulfonic acid, pentanedisulfonic acid, decanedisulfonic acid, m-benzenedisulfonic acid, o-benzenedisulfonic acid, p benzenedisulfonic acid, and toluenedisulfonic acid.
  • Xylendisulfonic acid black benzene disulfonic acid, fluorobenzene disulfonic acid, arylene-2,4 disulfonic acid, arrin-2,5-disulfonic acid, dimethylbenzenedisulfonic acid, jetylbenzenedisulfone Acid, dibutylbenzene sulfonic acid, naphthalene disulfonic acid, methyl naphthalene disulfonic acid, ethyl naphthalene disulfonic acid, dodecyl naphthalene disulfonic acid, pentadecyl naphthalene disulfonic acid, butyl naphthalene disulfonic acid, 2 amino-1, 4 benzenedisulfonic acid 1-amino-3, 8-naphthalene Disulfonic acid, 3-amino-1,5 naphthalenedisulfonic acid, 8-amino-1- 1-naphtho
  • a soluble polymer having an anion group (hereinafter referred to as an anion group-containing soluble polymer) is preferable.
  • the ion-containing soluble polymer does not only play a role as a dopant, but also has a function to solubilize the ⁇ -conjugated conductive polymer well in a solvent, and enables paints. Particularly preferably used.
  • Examples of the soluble ionic polymer containing a cation group include substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, Examples thereof include a substituted or unsubstituted polyester, which is a polymer having only a structural unit having a terion group, and a polymer having a structural unit having a teron group and a structural unit having no arion group.
  • Polyalkylene is a polymer composed of repeating main chain force methylene.
  • polyalkenes examples include polymers composed of structural units containing one vinyl group in the main chain. Among them, there is an interaction between an unsaturated bond and a ⁇ -conjugated conductive polymer. Alternatively, substituted or unsubstituted butylene is preferred because it can be easily synthesized using unsubstituted butadiene as a starting material.
  • Polyimides include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, 2, 2, 3, 3 tetracarboxydiphenyl ether dianhydride, 2 , 2- [4,4'-di (dicarboxyphenoxy) phenol] propanic anhydride, etc., oxydialin, para-phenylenediamine, metaphenylenediamine, benzophenonediamine, etc.
  • Examples of the polyamide include polyamide 6, polyamide 6, 6, polyamide 6, 10, and the like.
  • Examples of the polyester include polyethylene terephthalate and polybutylene terephthalate.
  • examples of the substituent include an alkyl group, a hydroxy group, a carboxy group, a cyan group, a phenol group, a phenol group, an ester group, an alkoxy group, and a carbonyl group.
  • Alkyl groups can increase solubility and dispersibility in polar or non-polar solvents, compatibility and dispersibility in resin, etc., and hydroxy groups can form hydrogen bonds with other hydrogen atoms, etc. Can be easily formed, and the solubility in an organic solvent, the compatibility with a resin, the dispersibility, and the adhesiveness can be increased.
  • the cyan group and hydroxyphenol group can increase the compatibility and solubility in polar resins, and can also increase the heat resistance.
  • an alkyl group, a hydroxy group, an ester group, and a cyan group are preferable.
  • alkyl group examples include alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, decyl, and dodecyl, and cyclopropyl such as cyclopropyl, cyclopentyl, and cyclohexyl.
  • alkyl group is mentioned. In view of solubility in an organic solvent, dispersibility in a resin, steric hindrance, etc., an alkyl group having 1 to 12 carbon atoms is more preferable.
  • the hydroxy group includes a hydroxy group directly bonded to the main chain of the soluble ⁇ polymer containing a ⁇ ⁇ -on group, and a 1 to 7 carbon atom bonded to the main chain of the soluble ⁇ ⁇ polymer containing a ⁇ -on group.
  • Examples thereof include a hydroxy group bonded to the terminal of the alkyl group, and a hydroxy group bonded to the terminal of the alkenyl group having 2 to 7 carbon atoms bonded to the main chain of the solubilized polymer containing a-on group.
  • a hydroxy group bonded to the terminal of an alkyl group having 1 to 6 carbon atoms bonded to the main chain is more preferable from the viewpoint of compatibility with rosin and solubility in an organic solvent.
  • the ester group may be an alkyl ester group, an aromatic ester group, an alkyl ester group that is directly bonded to the main chain of the ionic group-containing soluble polymer, or an alkyl ester group having another functional group interposed therebetween, or Aromatic ester groups can be mentioned.
  • cyano group examples include a cyano group directly bonded to the main chain of the cation-containing soluble polymer, and an alkyl group having 1 to 7 carbon atoms bonded to the main chain of the cation-containing soluble polymer. 2-7 carbon atoms bonded to the main chain of the solubilized polymer containing cyano group and cation group bonded to the terminal of the group And a cyano group bonded to the terminal of the alkenyl group.
  • the ⁇ ⁇ -on group in the ⁇ ⁇ -group-containing soluble polymer may be any functional group capable of undergoing chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate group, a monosubstituted phosphate group, a carboxyl group, a sulfo group and the like are preferable.
  • a sulfo group is more preferable from the viewpoint of the doping effect of the functional group on the ⁇ - conjugated conductive polymer. That is, among the solubilized polymers containing a cation group, a sulfo group-containing soluble polymer is more preferred.
  • the sulfo group-containing solubilized polymer is one in which a sulfo group is introduced into the side chain of the polymer.
  • the main chain of the soluble polymer include a polyalkylene composed of repeating methylene, and a polyalkylene composed of a structural unit containing one vinyl group in the main chain.
  • the introduction of the sulfo group include a direct sulfonation / sulfation method using fuming sulfuric acid, a sulfonation method using a sulfonating agent, a sulfonation method using sulfo group transfer, and a method of polymerizing a sulfo group-containing polymerizable monomer.
  • any sulfo group-containing polymerizable monomer may be used as long as the sulfo group is substituted at an appropriate site of the polymerizable monomer.
  • a substituted or unsubstituted ethylene sulfonic acid compound, a substituted or unsubstituted styrene sulfonic acid compound, a substituted heterocyclic sulfonic acid compound, a substituted acrylamide sulfonic acid compound, a substituted or unsubstituted cyclovinylene sulfonic acid compound examples thereof include substituted or unsubstituted butadiene sulfonic acid compounds and bull aromatic sulfonic acid compounds.
  • substituted or unsubstituted ethylene sulfonic acid compound examples include butyl sulfonic acid, butyl sulfonate, allyl sulfonic acid, allyl sulfonate, methallyl sulfonic acid, methallyl sulfonate, sulfoethyl methacrylate.
  • Specific examples of the substituted or unsubstituted styrene sulfonic acid compound include styrene sulfonic acid, styrene sulphonate, a-methino styrene sulphonate, a-methino styrene sulfonate, and the like.
  • substituted acrylamide sulfonic acid compounds include acrylamide-butyl sulfonic acid, acrylamide-tert-butyl sulfonate, 2-acrylamide-2-methylpropane sulfonic acid, 2-acrylamide 2-methylpropane sulfonate, and the like. It is.
  • substituted or unsubstituted cyclovinylene sulfonic acid compound include cyclobutene-3-sulfonic acid, cyclobutene-3-sulfonate, and the like.
  • substituted or unsubstituted butadiene sulfonic acid compounds include isoprene sulfonic acid, isoprene sulfonate, 1,3 butadiene 1-sulfonic acid, 1,3 butadiene-1-sulfonate, 1- Examples thereof include methyl 1,3 butadiene-2-sulfonic acid, 1-methyl-1,3 butadiene 3-sulfonate, 1-methyl-1,3 butadiene-4 sulfonic acid, 1-methyl-1,3 butadiene-4-sulfonate.
  • polymerizable monomers that do not contain a sulfo group include substituted or unsubstituted ethylene compounds, substituted acrylic acid compounds, substituted or unsubstituted styrene, substituted or unsubstituted vinylamine, and unsaturated groups.
  • heterocyclic compounds substituted or unsubstituted acrylamide compounds, substituted or unsubstituted cyclovinylene compounds, substituted or unsubstituted butadiene compounds, substituted or unsubstituted vinyl aromatic compounds, substituted Alternatively, an unsubstituted dibulubenzene compound, a substituted buphenol compound, an arbitrary substituted silylstyrene, an arbitrary substituted phenol compound, and the like can be given.
  • the oxidizing agent, the oxidation catalyst, and the solvent used in the polymerization of the cation group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ -conjugated conductive polymer. is there.
  • solubilized polymer containing a cation group examples include polybutyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, polyacrylic sulfone. Acid, polymethallylsulfonic acid, poly-2-acrylamido-2-methylpropanesulfonic acid, polyisoprenesulfonic acid, polystyrene strength rubonic acid, poly-2-acrylamide-2-methylpropanecarboxylic acid, polyisoprene strength Examples include rubonic acid and polyacrylic acid. These homopolymers may be used, or two or more types of copolymers may be used.
  • the content of the dopant in the conductive composition is preferably 0.1 to 10 moles relative to 1 mole of the ⁇ -conjugated conductive polymer, and more preferably in the range of 0.5 to 7 moles. preferable. If the dopant content is less than 0.1 mol, the doping effect of the dopant on the ⁇ -conjugated conductive polymer tends to be weak, and the conductivity may be insufficient. On the other hand, when the dopant content exceeds 10 mol, the content of the ⁇ -conjugated conductive polymer in the conductive composition decreases, and it is difficult to obtain sufficient conductivity.
  • the solubilized polymer in the antistatic coating is a polymer having an anion group and a cage or an electron-withdrawing group in the molecule, and solubilizes the ⁇ -conjugated conductive polymer in a solvent. is there.
  • the soluble polymer exhibits a function as a dopant.
  • the soluble polymer having an anion group in the molecule is as described above.
  • the soluble polymer having an electron withdrawing group in the molecule (hereinafter referred to as an electron withdrawing group-containing solubilized polymer) is selected from a cyano group, a nitro group, a formyl group, a carbol group, and an acetyl group. Examples thereof include a polymer having a compound having at least one compound as a structural unit.
  • the electron-withdrawing group-containing solubilized polymer include polyacrylonitrile, polymethacrylo-tolyl, acrylonitrile-styrene styrene resin, acrylonitrile-butadiene resin, atta-tolyl-butadiene-styrene resin, Examples thereof include succinylated succinic acid of hydroxyl group or amino group-containing coconut resin (for example, cyanoethyl cellulose), polybutyl pyrrolidone, alkylated poly butyl pyrrolidone, nitrocellulose and the like.
  • acrylonitrile and metatalonitrile having a compound having a cyano group as a structural unit are preferable. Since the cyan group has a high polarity, compatibility and dispersibility with the binder resin component can be further improved.
  • the solubilized polymer may be a copolymer, for example, a copolymer containing two or more of the above-described solubilized polymer containing an anion group and an electron-withdrawing group-containing soluble polymer, or It may be a copolymer containing units having different types of anion groups or a copolymer containing units having different types of electron-withdrawing groups.
  • beluie compounds may be copolymerized with the soluble polymer.
  • the two Louis compounds include: halogen-vinyl-Louis compounds, aromatic vinyl and Z or derivatives thereof, heterocyclic vinyl compounds and Z or derivatives thereof, aliphatic vinyl compounds and Z or derivatives thereof, acrylic compounds. Products, jeny compounds, maleimido compounds.
  • bur compounds include polymerizable bur compounds such as styrene, butadiene, acrylic acid, methacrylic acid, hydroxyacrylic acid, hydroxymethacrylic acid, acrylic acid esters, methacrylic acid esters, and p-butyltoluene. .
  • polymerizable bur compounds such as styrene, butadiene, acrylic acid, methacrylic acid, hydroxyacrylic acid, hydroxymethacrylic acid, acrylic acid esters, methacrylic acid esters, and p-butyltoluene.
  • the solubilized polymer may contain a synthetic rubber component for improving impact resistance, an anti-aging agent, an antioxidant, and an ultraviolet absorber for improving environmental resistance.
  • amine-based acid antioxidants may interfere with the action of the oxidizing agent used when polymerizing the above conductive polymer, phenol-based antioxidants should be used. Or measures such as mixing after polymerization are necessary.
  • a nitrogen-containing aromatic cyclic compound has an aromatic ring containing at least one nitrogen atom, and the nitrogen atom in the aromatic ring is conjugated with other atoms in the aromatic ring. It has a relationship. In order to have a conjugated relationship, the nitrogen atom and other atoms form an unsaturated bond. Alternatively, even if the nitrogen atom does not directly form an unsaturated bond with another atom, it may be adjacent to the other atom that forms the unsaturated bond. This is because an unshared electron pair existing on a nitrogen atom can form a pseudo-shared relationship with an unsaturated bond formed by other atoms.
  • a nitrogen atom having a conjugated relationship with other atoms forms an unsaturated bond and has both nitrogen atoms adjacent to the other atoms. This is preferred.
  • nitrogen-containing aromatic cyclic compounds examples include pyridines and derivatives thereof containing one nitrogen atom, imidazoles and derivatives thereof containing two nitrogen atoms, pyrimidines and derivatives thereof. , Pyrazines and derivatives thereof, triazines containing three nitrogen atoms, and derivatives thereof. Viewpoint of solvent solubility, etc. Preference is also given to pyridines and derivatives thereof, imidazoles and derivatives thereof, pyrimidines and derivatives thereof.
  • the nitrogen-containing aromatic cyclic compound has a substituent such as an alkyl group, a hydroxy group, a carboxy group, a cyano group, a phenol group, a phenol group, an ester group, an alkoxy group, a carbo group in the ring. It may be introduced or may not be introduced.
  • the ring may be polycyclic.
  • examples of the alkyl group include methyl, ethyl, propyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, decyl, dodecyl, and other alkyl groups, cyclopropyl, cyclopentyl, and cyclohexyl. And the like, and the like.
  • alkyl groups having 1 to 12 carbon atoms are preferred! /.
  • hydroxy group examples include hydroxy, methylene hydroxy, ethylene hydroxy, trimethylene hydroxy, tetramethylene hydroxy, pentamethylene hydroxy, hexamethylene hydroxy, heptamethylene hydroxy, propylene hydroxy, butylene hydroxy, ethynolemethyl hydroxy, Examples thereof include alkene-hydroxy groups such as be- ylene hydroxy, butene-hydroxy and pentene-hydroxy.
  • Examples of the carboxy group include carboxy, methylene carboxy, ethylene carboxy, trimethylene carboxy, propylene carboxy, tetramethylene carboxy, pentamethylene carboxy, hexamethylene carboxy, heptamethyl carboxy, ethylmethylene force carboxy, phenylethylene carboxy and other alkylene carboxy,
  • Examples of the cyan group include alkylenes such as cyan-containing methylene oxide-containing ethylene cyanide-containing trimethylene cyanide, tetramethylene cyano, pentamethylene cyano, hexamethylene cyano, heptamethylene cyano, propylene cyano-butylene cyano, and ethyl methylene cyano.
  • alkylenes such as cyan-containing methylene oxide-containing ethylene cyanide-containing trimethylene cyanide, tetramethylene cyano, pentamethylene cyano, hexamethylene cyano, heptamethylene cyano, propylene cyano-butylene cyano, and ethyl methylene cyano.
  • Examples of the alkylene group include a cyano group and a buterene-containing butterene-containing pente-lensiano group.
  • Phenolic groups include phenol, methyl phenol, ethyl phenol, butyl phenol. Examples thereof include alkylphenol groups such as enol, alkylene phenol groups such as methylene phenol, ethylene phenol, trimethylene phenol, tetramethylene phenol, pentamethylene phenol, hexamethylene phenol, and the like.
  • phenyl group examples include alkyl, phenyl, methyl, butyl, octyl, dimethyl and other alkyl groups such as methylene, ethylene, trimethylene and tetramethylene.
  • Alkylene phenyl groups such as phenyl, pentamethylene phenyl, hexamethylene phenyl, heptamethylene vinyl, etc., and alkanes such as probel, butene-lene, pentylene-phenol, etc. -Rentation.
  • alkoxy group examples include methoxy, ethoxy, butoxy, phenoxy and the like.
  • pyridines and derivatives thereof include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2, 4, 6-trimethylpyridine, 3 cyano 5 —Methylpyridine, 2 Pyridinecarboxylic acid, 6-Methylenole 2 Pyridine power, Norevonic acid, 2, 6 Pyridine-dicanolevonic acid, 4 Pyridine power, Ruboxyaldehyde, 4 Aminopyridine, 2, 3 Diaminopyridine, 2, 6 Diaminopyridin, 2,6-diamino-4-methylpyridine, 4-hydroxypyridine, 2,6-dihydroxypyridine, 6-hydroxynicotinic acid methyl, 2-hydroxy-5-pyridinemethanol, 6-hydroxynicotinate ethyl, 4-pyridinemethanol, 4-pyridineethanol, 2 —Hue Ninorepyridine, 3-Methinorequinoline, 3 Norequinoline, quinolino
  • imidazoles and derivatives thereof include imidazole, 2-methylimidazole, 2-propylimidazole, 2-undecylimidazole, 2-feruylimidazole, N-methylimidazole, 1 (2 -Hydroxyethyl) imidazole, 2-ethyl 4-methylimidazole, 1,2 dimethylimidazole, 1 benzil 2 methyl Imidazole, 1 Benzylru 2 -Phenolimidazole, 1-Cyanoethyl-2-Methylimidazole, 1-Cyanoethyl-2 Ethyl-4-Methylimidazole, 2 Phenyl-4,5 Dihydroxymethylimidazole, 1 Acetylimidazole, 4 , 5 imidazole dicarboxylic acid, 4, 5-dimethylimidazole dicarboxylate, benzimidazole, 2-aminobenzimidazole, 2-aminobenzimidazole
  • pyrimidines and derivatives thereof include 2 amino-4 chloro-6-methinorepyrimidine, 2 amino-6 chloro-4-methoxypyrimidine, 2 amino-4,6 dichloropyrimidine, 2 amino-4,6 Dihydroxypyrimidine, 2-amino-4,6 dimethinolevyrimidine, 2-amino-4,6 dimethoxypyrimidine, 2-aminopyrimidine, 2-amino-4-methylpyrimidine, 4,6-dihydroxypyrimidine, 2,4-dihydroxypyrimidine 5, carboxylic acid, 2, 4,6 triaminopyrimidine, 2,4 dimethoxypyrimidine, 2,4,5 trihydroxypyrimidine, 2,4 pyrimidinediol and the like.
  • pyrazines and derivatives thereof include pyrazine, 2-methylvirazine, 2,5 dimethylvirazine, pyrazinecarboxylic acid, 2,3 pyrazinedicarboxylic acid, 5-methylbirazinecarboxylic acid, pyrazineamide.
  • triazines and derivatives thereof include 1, 3, 5 triazines and 2 amino acids.
  • a substituent may be introduced into the nitrogen atom to form a nitrogen-containing aromatic cyclic compound cation.
  • a salt may be formed by combining the cation and the cation. Even if it is a salt, it exhibits the same effect as a nitrogen-containing aromatic cyclic compound that is not cation.
  • Examples of the substituent introduced into the nitrogen atom of the nitrogen-containing aromatic cyclic compound include hydrogen, an alkyl group, a hydroxy group, a carboxy group, a cyan group, a phenol group, a phenol group, an ester group, An alkoxy group, a carbonyl group, etc. are mentioned.
  • alkyl group examples include alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, decyl, and dodecyl, and cycloalkyl groups such as cyclopropyl, cyclopentyl, and cyclohexyl. .
  • alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, decyl, and dodecyl
  • cycloalkyl groups such as cyclopropyl, cyclopentyl, and cyclohexyl.
  • an alkyl group having 1 to 12 carbon atoms is more preferable.
  • hydroxy group examples include hydroxy, methylene hydroxy, ethylene hydroxy, trimethylene hydroxy, tetramethylene hydroxy, pentamethylene hydroxy, hexamethylene hydroxy, heptamethylene hydroxy, propylene hydroxy, butylene hydroxy, ethynolemethyl hydroxy, Examples thereof include alkene-hydroxy groups such as be- ylene hydroxy, butene-hydroxy and pentene-hydroxy.
  • carboxy group examples include alkylene carboxy groups such as carboxy, methylene carboxy, ethylene carboxy, trimethyl carboxy, propylene carboxy, tetramethylene carboxy, pentamethylene carboxy, hexamethylene carboxy, heptamethylene carboxy, ethyl methylene carboxy, and phenylethylene carboxy. , Isoprene power Ruboxy, propenylene carboxy, butenylene carboxy, pentenylene carboxy And the like.
  • alkylene carboxy groups such as carboxy, methylene carboxy, ethylene carboxy, trimethyl carboxy, propylene carboxy, tetramethylene carboxy, pentamethylene carboxy, hexamethylene carboxy, heptamethylene carboxy, ethyl methylene carboxy, and phenylethylene carboxy.
  • Isoprene power Ruboxy propenylene carboxy, butenylene carboxy, pentenylene carboxy And the like.
  • Examples of the cyano group include alkylenes such as cyanided methylene cyanated ethylene sheared trimethylene cyanated tetramethylene cyano, pentamethylene cyano, hexamethylene cyano, heptamethylene cyano, propylene cyanobutylene cyano, ethylmethylene cyano and the like. Cyano groups and alkelenciano groups such as butterene containing probelenchia and pentenolensano containing probes.
  • phenol group examples include alkyl phenol groups such as phenol, methyl phenol, ethyl phenol, and butyl phenol, and alkylene phenol groups such as methylene phenol, ethylene phenol, trimethylen phenol, tetramethylene phenol, pentamethylene phenol, and hexamethylen phenol. It is done.
  • phenyl group examples include alkylphenyl groups such as phenyl, methyl, butyl, octyl and dimethyl, methylene, ethylene, trimethylene and tetramethylene.
  • Alkylene phenyl groups such as phenyl, pentamethylene phenyl, hexamethylene phenol, heptamethylene vinyl, etc.
  • alkoxy group examples include methoxy, ethoxy, butoxy, phenoxy and the like.
  • Examples of ions that form a salt in combination with a cation of a nitrogen-containing aromatic cyclic compound include halogen ions, sulfate ions, sulfite ions, and organic sulfonate ions. Can be mentioned.
  • the organic sulfonic acid the same ones as described above can be used.
  • a part of the nitrogen-containing aromatic cyclic compound is a proton derived from a dopant
  • a nitrogen-containing aromatic ring cation compound having a cationic charge is formed by coordinating or bonding with another functional group. Accordingly, the added nitrogen-containing aromatic cyclic compound is not mixed with the nitrogen-containing aromatic ring cation compound, but is mixed with the nitrogen-containing aromatic cyclic compound. As a body, it is considered to exist in the antistatic paint.
  • nitrogen-containing aromatic ring cation compounds and nitrogen-containing aromatic ring compounds produce an electron-withdrawing group and a salt with an excess of dopant, and are attracted to the dopant to prevent antistatic.
  • ⁇ in paint It is thought that it penetrates between conjugated conductive polymers.
  • Nitrogen-containing aromatic ring cation compound and nitrogen-containing aromatic cyclic compound intervene between ⁇ -conjugated system conductive polymers to reduce the hopping energy required for electrical conduction between ⁇ -conjugated system conductive polymers. It is considered that the electrical conductivity of the antistatic coating is improved by lowering.
  • the nitrogen-containing aromatic cyclic compound preferably has a crosslinkable functional group because it can have higher electrical conductivity and heat resistance.
  • a nitrogen-containing aromatic cyclic compound having a crosslinkable functional group is referred to as a crosslinkable nitrogen-containing aromatic cyclic compound.
  • the crosslinkable functional group refers to a functional group that can crosslink by reacting with the same functional group or another type of functional group.
  • the crosslinkable functional group may be directly bonded to the nitrogen-containing aromatic cyclic compound, substituted or unsubstituted methylene, substituted or unsubstituted ethylene, substituted or unsubstituted propylene, etc.
  • the functional group may be bonded to the nitrogen-containing aromatic cyclic compound.
  • the crosslinkable functional group may be introduced into the nitrogen atom of the nitrogen-containing aromatic cyclic compound or may be introduced into a carbon atom.
  • crosslinkable functional group examples include a bur group, a carboxy group, a hydroxy group, an amino group, and an ester group.
  • vinyl groups, carboxy groups, and hydroxy groups are preferred because of their high reactivity and easy crosslinking.
  • the carboxy group, hydroxy group, amino group, and ester group are the same as those described above.
  • crosslinkable nitrogen-containing aromatic cyclic compound examples include pyridines having a crosslinkable functional group and derivatives thereof, imidazoles having a crosslinkable functional group, and derivatives thereof.
  • Examples of pyridines having a cross-linkable functional group and derivatives thereof include, for example, 2-Burpyridine, 4 Vinylpyridine, 2-Methyl-6Burpyridine, 5-Methyl-2-Burpyridine, 4-Butylpyridine, 4-Penterubiridine, 2 — (4-Pyridyl) alcohol, 4— (1-Butylpentyl) pyridine, 2 Pyridine carboxylic acid, 4 Pyridine carboxylic acid, 6-Methanole 2 Pyridine power norlevonic acid, 2, 3 Pyridine dicanolevonic acid, 2, 4 Pyridine dicarboxylic acid, 2, 5 Pyridine dicarboxylic acid, 2, 6 Pyridine dicarboxylic acid, 4-H Examples include droxypyridine, 2,6-dihydroxypyridine, methyl 6-hydroxynicotinate, 2-hydroxy-5-pyridinemethanol, ethyl 6-hydroxynicotinate, 4-pyridinemethanol, 4-pyridineethanol, and 2-pyridinecarbo-toly
  • imidazoles having a crosslinkable functional group and derivatives thereof include N-biimidazole, N-arylimidazole, 2-methyl-4-butimidazole, 2-methyl-1-butimidazole, and imidazole-4.
  • Rubonic acid 4, 5 imidazole dicarboxylic acid, 1- (2-hydroxyethyl) imidazole, 2-hydroxymethylimidazole, 4-hydroxymethylimidazole, 2-butyl-4-hydroxymethylimidazole, 2-methyl-4- Examples thereof include hydroxymethylimidazole, 4-hydroxymethyl-2-methylimidazole, 1 benzyl 2-hydroxybenzimidazole, methylimidazole 4 carboxylate, ethylimidazole-4 carboxylate, and dimethyl 4,5-imidazole dicarboxylate.
  • the content of the nitrogen-containing aromatic cyclic compound is preferably in the range of 0.1 to 100 mol with respect to 1 mol of the dopant and Z or the solubilized polymer. From the viewpoint of the physical properties and conductivity of the coating film, the range of 3 to: LO mol is particularly preferable.
  • the content of the nitrogen-containing aromatic cyclic compound is less than 0.1 mol, the interaction between the nitrogen-containing aromatic cyclic compound and the dopant and ⁇ -conjugated conductive polymer is weak. And the conductivity may be insufficient.
  • the nitrogen-containing aromatic cyclic compound is contained in an amount exceeding 100 mol, the content of the ⁇ -conjugated conductive polymer is decreased, and the conductivity may be insufficient.
  • crosslinkable nitrogen-containing aromatic cyclic compound it is preferable to further contain a crosslinkable compound.
  • the crosslinkable compound when the crosslinkable functional group is a bull group, the compound having a vinyl group is preferably a crosslinkable functional group force S. When it is a carboxy group, it is a hydroxy group or an amino group. In the case where the crosslinkable functional group preferred by the compound having a group is a hydroxy group, a compound having a carboxy group is preferred.
  • crosslinkable compound When a crosslinkable compound is contained, the crosslinkable functionality of the crosslinkable nitrogen-containing aromatic cyclic compound Since the group is easily cross-linked, more stability can be secured.
  • crosslinkable compound examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, isooctyl acrylate, isobutyl acrylate, allylic acrylate, ethyl methacrylate, Hydroxyethyl acrylate, methoxyethyl acrylate, methoxybutyl acrylate, stearyl acrylate, allyloylmorpholine, buramine, N, N dimethylvinylamine, N, N dimethylvinylamine, N, N-dibutylvinylamine, N, N t-Butyl vinylamine, N, N-di-vinyl vinyl amine, N-Bulbcarbazole, Bul alcohol, Byl chloride Bulfur fluoride, Bulether, Acrylonitrile, N-Buyl-2-pyrrolidone, Atarylamide, N, N Dimethyl
  • the nitrogen-containing aromatic cyclic compound has a crosslinkable functional group
  • a polymerization initiator examples include acids, alkalis, radical generators, oxidizing agents, and the like.
  • the type of the polymerization initiator is preferably selected as appropriate according to the type of the crosslinkable functional group. That is, when the crosslinkable functional group is a vinyl group, an acid or alkali is preferred when the radical generator is a carboxy group or a hydroxy group where alkali is preferred.
  • the conductive composition may contain a binder resin for adjusting film properties such as film formability, film strength, and electrical conductivity.
  • the antistatic coating material preferably contains a binder resin because the coating film has high scratch resistance and surface hardness, and improves adhesion to the substrate.
  • Anti-static paint strength By including S binder resin, the pencil hardness CFIS K 5400) of the anti-static film formed from the anti-static paint is more than HB.
  • the binder resin is not particularly limited as long as it is compatible or mixed with the essential components of the conductive composition, and may be a reactive resin or a non-reactive resin.
  • a thermosetting resin may be used as long as it is compatible with or mixed with an antistatic coating, Thermoplastic rosin may be used.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyimide resins such as polyimide and polyamide imide; polyamide resins such as polyamide 6, polyamide 6, 6, polyamide 12 and polyamide 11 Fats: Fluorine resins such as polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, polychloroethylene, etc .; polybulu alcohol, polybul ether, polyburu Butyl resin such as petital, polyacetate beer, polychlorinated bur; epoxy resin; xylene resin; aramid resin; polyurethane resin; polyurea resin; melamine resin; Polyethers; acrylic resins and copolymers thereof, etc. And the like.
  • binder resins used for the antistatic coating may be dissolved in an organic solvent V, and may be added with a functional group such as a sulfo group or a carboxy group to form an aqueous solution. However, it may be dispersed in water such as emulsification.
  • noinder resins one or more of polyurethane, polyester, acryl resin, polyamide, polyimide, epoxy resin, and polyimide silicone is preferable because they can be easily mixed.
  • Acrylic rosin is suitable for applications such as optical filters because of its high hardness and excellent transparency.
  • the acrylic resin preferably includes a liquid polymer that is cured by thermal energy and Z or light energy.
  • examples of the liquid polymer that is cured by heat energy include a reactive polymer and a self-crosslinking polymer.
  • the reactive polymer is a polymer in which a monomer having a substituent is polymerized, and examples of the substituent include a carboxyl group, an acid anhydride, an oxetane group, a glycidyl group, and an amino group.
  • Specific monomers include malonic acid, succinic acid, glutamic acid, pimelic acid, ascorbic acid, phthalic acid, acetyl salicylic acid, adipic acid, isophthalic acid, benzoic acid, m-toluic acid and other carboxylic acid compounds, maleic anhydride Acid, phthalic anhydride, dodecyl succinic anhydride, dichloromaleic anhydride, tetrachlorophthalic anhydride, tetrahydrophthalic anhydride, pyromellitic anhydride, etc., 3, 3-dimethyloxetane, 3, 3-dichloromethy Luoxetane, 3-methyl-3-hydroxymethyloxetane, azidomethylmethyloxy Oxetane compounds such as cetane, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, phenol novolac polyglycidyl ether, N, N diglycidyl p-
  • the reactive polymer at least a bifunctional or higher functional crosslinking agent is used.
  • the cross-linking agent include melamine resin, epoxy resin, metal oxide, and the like.
  • Metal oxides include basic metal compounds such as Al (OH), Al (OOC'CH) (OOCH), Al (
  • OOC'CH OOC'CH
  • ZrO (OCH) ⁇ Mg (OOC.CH) ⁇ Ca (OH), Ba (OH) etc.
  • the self-crosslinking polymer is self-crosslinking between functional groups by heating, and examples thereof include those containing glycidyl group and carboxyl group, or those containing both N-methylol and carboxyl group. It is done.
  • liquid polymers that are cured by light energy include polyesters, epoxy resins, oxetane resins, oligomers or prepolymers such as polyacryl, polyurethane, polyimide, polyamide, polyamideimide, and polyimide silicone. .
  • Examples of monomer units constituting a liquid polymer that is cured by light energy include bisphenol, ethylene oxide-modified diatalylate, and dipentaerythritol. Hexa (penta) acrylate, dipentaerythritol monohydroxypenta acrylate, dipropylene glycol di acrylate, trimethylol propane tri acrylate, glycerin propoxy tri acrylate, 4 hydroxy butyl acrylate, 1, 6 hexane diol Ludiatalylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, polyethylene glycol dialate, pentaerythritol triacrylate, tetrahydrofurfuryl acrylate, tripropylene glycol Atarylates such as diacrylate, tetraethylene glycol dimetatalylate, alkylmetatalylate, arinolemetatalylate, 1,3 butylene glycolinoresin me
  • a liquid polymer that is cured by light energy is cured by a photopolymerization initiator.
  • the photopolymerization initiators include acetophenones, benzophenones, Michler benzoyl. Examples include benzoate, a amioxime ester, tetramethylthiuram monosulfide, and thixanthones. Furthermore, n-butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed as a photosensitizer.
  • the conductive composition may contain a solvent.
  • the solvent the same solvent as the solvent capable of dissolving or dispersing the precursor monomer of the ⁇ -conjugated conductive polymer described above can be used.
  • the solvent used for the antistatic paint and the capacitor is not particularly limited.
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol ( ⁇ ), ⁇ methylpyrrolidone ( ⁇ ), dimethylacetamide (DMAc), dimethyl Amide solvents such as formamide (DMF), ketone solvents such as methyl ethyl ketone (MEK), acetone and cyclohexanone, ester solvents such as ethyl acetate and butyl acetate, toluene, xylene and water.
  • solvents such as methanol, ethanol, isopropyl alcohol ( ⁇ ), ⁇ methylpyrrolidone ( ⁇ ), dimethylacetamide (DMAc), dimethyl Amide solvents such as formamide (DMF), ketone solvents such as methyl ethyl ketone (MEK), acetone and cyclohexanone, ester solvents such as ethyl acetate and butyl a
  • Examples of the method for producing the conductive composition include chemical oxidation polymerization of a precursor monomer of a ⁇ -conjugated conductive polymer in the presence of a dopant and an oxidizing agent or an acid polymerization polymerization catalyst.
  • a method of adding a nitrogen-containing aromatic cyclic compound can be employed.
  • the dopant forms a salt with the ⁇ -conjugated conductive polymer together with the growth of the ⁇ -conjugated conductive polymer, Doping of the high molecular weight occurs.
  • the sulfo group forms a strong salt with the ⁇ -conjugated conductive polymer, so that the ⁇ -shared conductive polymer is a sulfo group. It is strongly attracted to the main chain of the dopant, which is a soluble polymer.
  • the ⁇ -conjugated conductive polymer main chain grows along the main chain of the dopant having a sulfo group-containing solubilizing and high molecular force, and an ordered ⁇ -conjugated conductive polymer is easily formed.
  • the ⁇ -conjugated conductive polymer synthesized in this way forms a myriad of salts with a dopant composed of a sulfo group-containing solubilizing polymer, and is fixed to the main chain of the dopant that also has a sulfo group-containing solubilizing polymer force. Therefore, it becomes a mixture with the dopant.
  • the nitrogen-containing aromatic cyclic compound becomes a ⁇ -conjugated conductive polymer.
  • a dopant to form a conductive composition.
  • the conductive composition described above contains a ⁇ -conjugated conductive polymer, a dopant, and a nitrogen-containing aromatic cyclic compound.
  • a part of the nitrogen-containing aromatic cyclic compound is coordinated or bonded to a proton or a substituent derived from a dopant, and has a cationic charge, so that a nitrogen-containing aromatic cyclic compound is obtained. It is thought to be a cation of the compound. Therefore, in the conductive composition, there is a mixture of the nitrogen-containing aromatic cyclic compound catalyst and the remaining nitrogen-containing aromatic cyclic compound.
  • this mixture force forms a salt with an excess of the ion group of the dopant, is attracted to the dopant, and is interposed between the ⁇ -conjugated conductive polymers in the conductive composition.
  • the nitrogen-containing aromatic ring cation compound and the nitrogen-containing aromatic ring compound are interposed between the ⁇ -conjugated conductive polymers, so that the ⁇ -conjugated conductive polymers are It is thought that the hopping energy required for the electrical conduction of the metal is reduced to improve the conductivity.
  • this electroconductive composition is excellent also in heat resistance and moisture resistance.
  • the conductive crosslinked body of the present invention is formed by subjecting a conductive composition containing a nitrogen-containing aromatic cyclic compound having a crosslinkable functional group to a heat treatment and an irradiation or ultraviolet irradiation treatment.
  • Examples of the method for forming a conductive crosslinked body include a method in which a solution of a conductive composition is applied to a substrate, the solvent is removed by an appropriate method, and then a heat treatment and a heat treatment or an ultraviolet irradiation treatment are performed. It is done.
  • examples of the method for applying the solution of the conductive composition include immersion, comma coating, spray coating, roll coating, and gravure printing.
  • heat treatment for example, a normal method such as hot air heating or infrared heating can be employed.
  • ultraviolet irradiation treatment include light from an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, a metal nitride lamp, etc.
  • a method of irradiating with ultraviolet rays can also be adopted as the source power.
  • the conductive cross-linked body has a high density because the cross-linkable nitrogen-containing aromatic cyclic compound is cross-linked. As a result, heat resistance, thermal stability, and solvent resistance are increasing as well as higher conductivity.
  • FIG. 1 is a diagram showing the configuration of the capacitor of this embodiment.
  • the capacitor 10 includes an anode 11 made of a porous body of a valve metal, a dielectric layer 12 formed by oxidizing the surface of the anode 11, and a cathode 13 disposed on the dielectric layer 12. It is roughly structured.
  • valve metal forming the anode 11 examples include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. Of these, aluminum, tantalum, and niobium are preferable.
  • anode 11 examples include an aluminum foil that is etched to increase the surface area, and then the surface thereof is subjected to an acid treatment, or the surface of a sintered body of tantalum particles and niobium particles is subjected to an acid treatment. Examples of pellets are listed. The surface treated in this way has irregularities formed on the surface.
  • the dielectric layer 12 is formed, for example, by anodizing the surface of the anode 11 in an electrolytic solution such as an aqueous solution of ammonium adipate. Therefore, as shown in FIG. 1, irregularities are formed on the surface of the dielectric layer 12 as well as the anode 11.
  • the cathode 13 includes a solid electrolyte layer 13a and a cathode conductive layer 13b made of carbon, silver, aluminum, or the like formed on the solid electrolyte layer 13a.
  • the solid electrolyte layer 13a has a ⁇ -conjugated conductive high conductivity. It is a layer containing molecules and is provided on the dielectric layer 12 side.
  • the cathode conductive layer 13b is made of carbon, silver or the like, it can be formed from a conductive paste containing a conductor such as carbon or silver, for example.
  • a conductor such as carbon or silver
  • the cathode conductive layer 13b is made of aluminum, for example, an aluminum foil cover can be formed.
  • a separator can be provided between the solid electrolyte layer 13a and the anode 11 as necessary.
  • the cathode 13 includes a solid electrolyte layer 13a and a cathode conductive layer 13b made of carbon, silver, aluminum, or the like formed on the solid electrolyte layer 13a.
  • the electrolyte layer 13a includes a ⁇ -conjugated conductive polymer, a dopant, and a nitrogen-containing aromatic cyclic compound.
  • the cathode conductive layer 13b is made of carbon, silver or the like, it can be formed from a conductive paste containing a conductor such as carbon or silver, for example.
  • the cathode conductive layer 13b is made of aluminum, for example, an aluminum foil cover can be formed.
  • a separator can be provided between the solid electrolyte layer 13a and the cathode conductive layer 13b as necessary.
  • the electron-donating compound in the capacitor having the electron-donating element layer containing the electron-donating element is a compound containing the electron-donating element, which is a polymer. It is a non-compound.
  • the electron donating element contained in the electron donating compound since the electrical affinity between the dielectric layer and the cathode containing the ⁇ -conjugated conductive polymer is higher, the 15th and 16th groups of the Periodic Table are included. Of the elements of the genus, at least one selected from nitrogen, oxygen, phosphorus and sulfur power is preferred.
  • amines such as primary amine, secondary amine and tertiary amine are used.
  • the amines include aliphatic amines such as ethylamine, jetylamine, methylethylamine, and triethylamine, alin, benzylamine, pyrrole, imidazole, pyridine, pyrimidine, pyrazine, and triazine.
  • Aromatic amines or derivatives thereof may be mentioned.
  • Examples of the electron-donating compounds containing oxygen include alcohols, ethers, and ketones, and specifically include lauryl alcohol, hexadecyl alcohol, benzenorenoreconolene. , Ethylene glycol, propylene glycol, glycerin, diphenyl Monotel, cyclohexanone, diacetone alcohol, isophorone, furan and derivatives thereof.
  • Examples of the electron-donating compounds containing phosphorus include phosphoric acid esters, phosphorous ester esters, phosphonic acids, anorequinolephosphines, anorequinolephosphonium salts, and the like. Specifically, trimethyl phosphate, triphenyl phosphate, trimethyl phosphite, triethyl phosphite, dimethyl phosphonate, jetyl phosphonate, triethylphosphine, tree n-butylphosphine, tree n- Examples thereof include butyl phosphine oxide, tetraethylphosphonium bromide, and tetra-n-butylphosphonium bromide.
  • Examples of the electron-donating compound containing sulfur include sulfides, thiols, isothiocyanates, thiophene, and derivatives thereof. Specifically, dimethyl sulfide, jetyl sulfide, methyl mercaptan, Examples include ethyl mercaptan, phenylisothiocyanate, n-butylisothiocyanate, thiophene, and 3-methylthiophene.
  • a compound containing nitrogen, oxygen, or sulfur in the aromatic ring is preferable because a decrease in impedance (equivalent series resistance) can be prevented even if it remains in the dielectric layer.
  • the compound containing nitrogen in the aromatic ring include pyrrole and derivatives thereof (pyrroles), imidazole, pyridine, pyrimidine, pyrazine, triazine and derivatives thereof, and the compounds containing oxygen in the aromatic ring.
  • examples include furan and its derivatives (furans), and examples of the compound containing sulfur in the aromatic ring include thiophene and its derivatives (thiophenes).
  • at least one selected from pyrroles, thiophenes, and furan power is preferable because the electrical affinity between the dielectric layer and the cathode is higher.
  • the electron donating compound containing nitrogen, oxygen, and sulfur in the aromatic ring as described above may form a cation by introducing a substituent to the nitrogen, oxygen, or sulfur atom. Yes. Further, a salt may be formed by combining the cation and cation. Even a salt is not a cation! It exhibits the same effect as an electron donating compound.
  • the capacitor described above since the electron donating compound is applied to the surface of the dielectric layer, and the charge on the surface of the dielectric layer is neutralized, the dielectric layer and the ⁇ -conjugated system The electrical affinity with the solid electrolyte layer containing a conductive polymer is increasing. As a result, since the resistance at the interface between the dielectric layer and the cathode is decreasing, the impedance of the capacitor is low and the capacitance is high.
  • a method for manufacturing a capacitor according to the present invention As an example of a method for producing a capacitor, a step of oxidizing a surface of an anode made of a porous body of valve metal to form a dielectric layer, and an electron donating property containing an electron donating element on the surface of the dielectric layer And a method of forming an electron donating compound layer by applying a compound, and a step of forming a solid electrolyte layer containing a ⁇ -conjugated conductive polymer on the surface of the electron donating compound layer. It is done.
  • examples of a method for oxidizing the anode surface include a method for anodizing the anode surface in an electrolytic solution such as an aqueous solution of ammonium adipate.
  • a known application method such as coating, dipping or spraying can be employed.
  • the electron donating compound is a solid, a solution in which the electron donating compound is dissolved in a solvent may be applied. In that case, it is preferable to remove the solvent by drying after coating. It is also preferable to remove the solvent when the liquid electron-donating compound is diluted.
  • the concentration of the solution containing the electron-donating compound is not particularly limited, but if it is too thin, it may be difficult to apply if it is too dark, or it may be difficult to apply, or the ESR may decrease. It is preferably 5% by mass to 5% by mass.
  • the electrical affinity between the dielectric layer and the negative electrode can be improved more easily.
  • a method of applying a conductive polymer solution in which a ⁇ -conjugated conductive polymer is dissolved in a solvent is preferable. Further, the precursor monomer constituting the ⁇ -conjugated conductive polymer may be formed on the dielectric layer by directly performing chemical oxidative polymerization or electrolytic polymerization.
  • the conductive polymer solution is obtained by polymerizing a precursor monomer of a ⁇ -conjugated conductive polymer in the presence of an anion group-containing solubilizing polymer. Alternatively, it can be obtained by dissolving a ⁇ -conjugated conductive polymer having solvent solubility in a solvent.
  • a method for preparing a conductive polymer solution by polymerizing a precursor monomer of a ⁇ - conjugated conductive polymer in the presence of an anion group-containing solubilizing polymer, The molecule is dissolved in a solvent that can dissolve the molecule, and the precursor monomer of the ⁇ -conjugated conductive polymer is added to the solution thus obtained. Next, an oxidizing agent is added to polymerize the precursor monomer, and then the excess oxidizing agent and precursor monomer are separated and purified to obtain a conductive polymer solution.
  • the lone group-containing soluble polymer used here is selected from those described above.
  • a dopant other than the cation group-containing soluble polymer may be added to the conductive polymer solution.
  • the dopant is selected from among those mentioned above.
  • the ratio of ⁇ -conjugated conductive polymer to dopant is the molar ratio of ⁇ -conjugated conductive polymer.
  • the dopant is preferably 97: 3 to LO: 90. There is a tendency for the conductivity to decrease with more or less dopant.
  • Examples of the method for applying the conductive polymer solution include known methods such as coating, dipping, and spraying.
  • a drying method for removing the solvent a known method such as hot air drying may be used.
  • an electrolytic solution is infiltrated as necessary, and then a method of forming a cathode conductive layer by applying carbon paste or silver paste, or an aluminum foil through a separator.
  • the cathode is formed by a known method of arranging a cathode conductive layer such as A capacitor can be obtained.
  • separator for example, a single or mixed nonwoven fabric such as cellulose fiber, glass fiber, polypropylene fiber, polyester fiber, polyamide fiber, carbonized nonwoven fabric obtained by carbonizing these, or the like is used.
  • the electrical affinity between the dielectric layer and the solid electrolyte layer can be improved by applying the electron donating compound to the surface of the dielectric layer. Impedance can be lowered. However, it is easy to apply the electron-donating compound. Therefore, the capacitor manufacturing method described above can easily manufacture a capacitor with low impedance.
  • the capacitor obtained by this manufacturing method has a high capacity and excellent heat resistance.
  • the capacitor having the electron donating compound layer of the present invention is not limited to the above-described embodiment.
  • an electron-donating compound is applied to the surface of the dielectric layer to form a solid electrolyte layer, and then a conductive cathode layer is provided to form a cathode to obtain a capacitor.
  • the timing for providing the cathode conductive layer is not limited. For example, after disposing the negative electrode conductive layer so as to face the dielectric layer, an electron donating compound may be applied to the surface of the dielectric layer, and then the solid electrolyte layer may be formed. In that case, it is preferable to place a separator between the cathode conductive layer and the dielectric layer.
  • the electron donating compound may be applied not only to the surface of the dielectric layer but also to the surface of the cathode conductive layer on the dielectric layer side and the separator.
  • a dielectric in a capacitor intermediate having an anode having a porous body strength of a valve metal and a dielectric layer formed by oxidizing the surface of the anode.
  • a method for producing a capacitor having a step of applying a conductive polymer solution containing a ⁇ -conjugated conductive polymer, a dopant, a nitrogen-containing aromatic cyclic compound and a solvent to form a coating film on the surface of the layer Is mentioned.
  • a solubilized polymer containing a cation group is dissolved in a solvent that can be dissolved therein, and the conductive polymer is added to the resulting solution.
  • Preform monomers such as unsubstituted arylene pyrrole and thiophene are added.
  • an oxidizing agent is added to polymerize the monomer, and then the excess oxidizing agent and monomer are separated and purified.
  • a nitrogen-containing aromatic cyclic compound is added to obtain a conductive polymer solution.
  • oxidizing agent for polymerizing the conductive polymer known ones can be used as described above.
  • Examples of the method for applying the conductive polymer solution include known methods such as coating, dipping, and spraying.
  • Examples of the drying method include known methods such as hot air drying.
  • a cathode can be formed by a technique.
  • separator for example, a single or mixed nonwoven fabric such as cellulose fiber, glass fiber, polypropylene fiber, polyester fiber, polyamide fiber, carbonized nonwoven fabric obtained by carbonizing these, or the like is used.
  • the manufacturing method described above forms a solid electrolyte layer by applying and drying a conductive polymer solution, so that the process is simple, suitable for mass production, and low cost.
  • the conductive polymer solution contains the ⁇ -conjugated conductive polymer, the dopant, and the nitrogen-containing aromatic cyclic compound, the conductivity of the solid electrolyte layer can be increased.
  • the solid electrolyte layer may be formed by a chemical oxidation polymerization method or an electrolytic polymerization method.
  • a precursor monomer solution such as substituted or unsubstituted arylene pyrrole or thiophene that forms a ⁇ -conjugated conductive polymer and an oxidizer solution are prepared, and capacitor intermediates are alternately placed on these.
  • the conductive polymer is polymerized on the dielectric layer side surface of the capacitor intermediate.
  • the oxidizing agent those similar to the above production method can be used.
  • the dopant and the nitrogen-containing aromatic cyclic compound may be dissolved simultaneously in the monomer solution or the oxidant solution, or after the formation of the ⁇ -conjugated conductive polymer, the dopant and the nitrogen-containing aromatic property.
  • a solution in which a cyclic compound is dissolved in a solvent Let it penetrate into the molecule and add it.
  • a precursor monomer such as unsubstituted arylene pyrrole or thiophene, which forms a ⁇ -conjugated conductive polymer
  • a solvent such as acetonitrile
  • the dopant is added to the electrolyte.
  • Capacitor intermediate with a conductive layer formed on the surface is added as an electrode to the electrolytic cell added.
  • polymerization is performed by applying a voltage higher than the acid potential of the precursor monomer, and a ⁇ -conjugated conductive polymer is formed on the dielectric layer of the capacitor intermediate.
  • the nitrogen-containing aromatic cyclic compound may be dissolved in an electrolytic cell, or a solution in which a nitrogen-containing aromatic cyclic compound is dissolved in a solvent after forming a conductive polymer is used. It can be added by penetrating the molecule.
  • the particle diameter of the ⁇ -conjugated conductive polymer is large, so the fine particle on the surface of the dielectric layer of the capacitor intermediate.
  • the ⁇ -conjugated conductive polymer does not reach the deepest part of the void, making it difficult to extract the capacity. Therefore, it is preferable to supplement the capacity by containing an electrolytic solution as a cathode and allowing the electrolytic solution to permeate the dielectric layer.
  • the nitrogen-containing aromatic cyclic compound has a crosslinkable functional group
  • a conductive polymer solution is applied to form a coating film, and then the coating film is subjected to heat treatment and soot or ultraviolet rays. It is preferable to perform irradiation treatment.
  • heat treatment or ultraviolet irradiation treatment or both depends on the type of the crosslinkable functional group.
  • the heat treatment for example, a normal method such as hot air heating or infrared heating can be employed.
  • a normal method such as hot air heating or infrared heating
  • the ultraviolet irradiation treatment for example, a method of irradiating ultraviolet rays with a light source such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, or a metal nitride lamp can be adopted.
  • the electrolytic solution is not particularly limited as long as the electric conductivity is high, and a known electrolyte is dissolved in a known solvent.
  • the solvent examples include alcohol solvents such as ethylene glycol, diethylene glycol, propylene glycol, 1,4 butanediol, glycerin, and ⁇ -butyrolatone. , Y-valerolataton, ⁇ -lataton solvents such as valerolataton, ⁇ ⁇ ⁇ methylformamide
  • amide solvents such as ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylformamide, ⁇ ⁇ ⁇ -methylacetamide and ⁇ -methylpyrrolidinone, -tolyl solvents such as acetonitrile and 3-methoxypropio-tolyl, water and the like.
  • electrolytes examples include adipic acid, dartaric acid, succinic acid, benzoic acid, isophthalic acid, phthalic acid, terephthalic acid, maleic acid, toluic acid, enanthic acid, malonic acid, formic acid, 1,6 decandihydronorlevonic acid, 5 , 6 Decandikanolevonic acid such as decandicanolevonic acid, octanedicarboxylic acid such as 1,7-year-old octanedicarboxylic acid, organic acid such as azelaic acid and sebacic acid, or boric acid, boric acid and polyhydric alcohol
  • the resulting polyhydric alcohol complex compound of boric acid, inorganic acid such as phosphoric acid, carbonic acid, silicic acid, etc.
  • primary amine methylamine, ethylamine, propylamine, butylamine, ethylenediamine, etc.
  • secondary amine Dimethylamine, Jetylamine, Dipropylamine, Methylethylamine, Diphenylamine, etc.
  • Tertiary amine Trimethyamine
  • Ruamine triethylamine, tripropylamine, triphenylamine, 1,8 diazabicyclo (5, 4, 0) undecene 7 etc.
  • tetraalkyl ammonium tetramethyl ammonium, tetraethyl ammonium
  • electrolyte include tetrapropyl ammonium, tetrabutyl ammonium, methyltriethyl ammonium, dimethyl jetyl ammonium, and the like.
  • the solubilized polymer is dissolved in a solvent that dissolves the polymer, and the precursor monomer of the conductive polymer and, if necessary, a dopant are added and mixed with sufficient stirring.
  • an oxidant is added dropwise to the mixture thus obtained to allow the polymerization to proceed to obtain a composite of a soluble polymer and a conductive polymer.
  • the oxidant, residual monomer, and by-products are removed from the complex, purified, and then dissolved in a suitable solvent.
  • a nitrogen-containing aromatic cyclic compound, if necessary, a dopant, a binder resin, a crosslink Add a functional compound Get anti-static paint.
  • the oxidizing agent for polymerizing the precursor monomer of the conductive polymer a known one can be used, for example, a metal halide compound such as ferric chloride, boron trifluoride, and salt aluminum. And peracids such as hydrogen peroxide and peroxybenzoyl, potassium persulfate, sodium persulfate, persulfates such as ammonium persulfate, ozone and oxygen.
  • a metal halide compound such as ferric chloride, boron trifluoride, and salt aluminum.
  • peracids such as hydrogen peroxide and peroxybenzoyl, potassium persulfate, sodium persulfate, persulfates such as ammonium persulfate, ozone and oxygen.
  • the purification method is not particularly limited.
  • the ultrafiltration method is simple and preferable among the forces capable of adopting a reprecipitation method, an ultrafiltration method, and the like.
  • the ultrafiltration method is a method in which a solution in a solution is circulated on a porous ultrafiltration membrane and a liquid in the solution is permeated through the ultrafiltration membrane for filtration.
  • a pressure difference occurs between the circulating solution side and the permeated solution side with the ultrafiltration membrane interposed, so that part of the solution on the circulating solution side permeates the permeated solution side and relieves the pressure on the circulating solution side. .
  • As the circulating solution permeates some of the particles, dissolved ions, etc. smaller than the diameter of the ultrafiltration membrane in the circulating solution move to the permeate solution side, so the particles and dissolved ions can be removed.
  • the ultrafiltration membrane to be used can be appropriately selected depending on the particle size to be removed and the ionic species.
  • the antistatic film is formed by applying an antistatic paint on a substrate.
  • Examples of the application method of the antistatic coating include immersion, comma coating, spray coating, roll coating, and gravure printing.
  • the substrate is not particularly limited, but static electricity is easily generated! /, A resin molded product, particularly a resin film is suitable.
  • the solvent may be removed by heating, or may be cured by heat or light.
  • a heating method in the case of heating for example, a normal method such as hot air heating or infrared heating can be adopted.
  • a light irradiation method for forming a coating film by photocuring for example, a method of irradiating ultraviolet light with a light source such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, or a metal nitride lamp. Can be adopted.
  • This antistatic film contains a nitrogen-containing aromatic cyclic compound, so that the conductivity is remarkably increased. Specifically, when the nitrogen-containing aromatic cyclic compound is not included, the electric conductivity is about 0.001 to about LOOSZcm, but when the nitrogen-containing aromatic cyclic compound is included, about 10 to 2000 SZcm. It becomes. Therefore, even if it is not a conductive polymer alone The conductivity is getting higher.
  • the antistatic film becomes dense because the crosslinkable nitrogen-containing aromatic cyclic compound is cross-linked by heating or ultraviolet irradiation.
  • the heat resistance and thermal stability increase as well as the increase in conductivity.
  • the antistatic film When the antistatic film is used in optical applications, particularly in an optical filter and an optical information recording medium described later, it is preferable that the antistatic film has high transparency.
  • the total light transmittance JIS Z 8701
  • haze JIS K 6714
  • 5% or less is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less.
  • the surface hardness (pencil hardness) of the antistatic film is preferably HB or more.
  • the surface resistance value of the antistatic film is preferably adjusted as appropriate in consideration of the optical characteristics. In general, if it is about 1 ⁇ ⁇ ⁇ ⁇ 10 3 ⁇ to 1 ⁇ 10 12 ⁇ , it can be applied to antistatic applications.
  • the total light transmittance, haze, and surface resistance value of the coating film can be adjusted by the thickness of the antistatic film.
  • the antistatic film has a base film and the antistatic film formed on at least one side of the base film.
  • the base film examples include a low density polyethylene film, a high density polyethylene vinylome, an ethylene propylene copolymer vinyl, a polypropylene vinylome, an ethylene acetate butyl copolymer film, an ethylene methyl methacrylate copolymer film, a poly Ethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polyethylene naphthalate (PEN) film, polyimide film, 6-nylon film, 6 , 6-nylon film, polymethylmethacrylate film, polystyrene film, styrene-acrylonitrile-butadiene copolymer film, polyacrylonitrile film, cellulose triacetate (TAC) film, cellulose propionate film, polychlorinated bure film, Polyvinyl chloride film, Polyvinyl fluoride film, Polytetrafluoroethylene film, Polybutyl alcohol film, Ethylene butyl alcohol copolymer
  • the surface of these base films is usually oleophilic and is difficult to apply when an antistatic coating dissolved in an aqueous solvent is applied. Therefore, when applying an antistatic paint dissolved in an aqueous solvent, the base film surface is exposed to a parent such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and other etching treatments and undercoating treatments. It is preferable to perform water treatment. Furthermore, dust may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
  • FIG. 2 shows the optical filter of this embodiment.
  • the optical filter 20 includes a film base 21, an antistatic film 22 formed on the film base 21, and an antireflection layer 23 formed on the antistatic film 22. .
  • the antistatic film 22 in the optical filter 20 also serves as a hard coat layer.
  • a transparent adhesive layer is provided on the surface of the optical filter 20 on the film base 21 side, and the optical filter 20 is attached via the adhesive layer.
  • the film substrate 21 various plastic films having transparency can be used.
  • the transparent plastic film include films having strength such as polyethylene terephthalate, polyimide, polyether sulfone, polyether ether ketone, polycarbonate, polypropylene, polyamide, acrylamide, and cellulose propionate.
  • the surface of the film substrate 21 is preferably subjected to etching treatment or undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion and oxidation. If such a treatment is applied to the surface, the adhesion to the antistatic film 22 can be further enhanced.
  • the surface of the film substrate 21 may be dust-removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary before providing the antistatic film 22.
  • the antistatic film 22 is a film formed of an antistatic paint as described above, and also serves as a hard coat layer. Therefore, as described above, the antistatic film 22 preferably has a surface hardness (pencil hardness) of HB or higher. Also, since it is for optical use, the total light transmittance (JIS Z 8701) of the antistatic film 22 is preferably 85% or more, more preferably 90% or more, more preferably 96% or more. Particularly preferred is. Further, the haze (JIS K 6714) of the antistatic film 20 is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less.
  • the antireflection layer 23 is a layer for preventing reflection of light.
  • This layer may be a single layer or multiple layers.
  • the refractive index is preferably in the range of 1.38-1.45
  • the optical film thickness is preferably in the range of 80 to: LOOnm.
  • the antireflection layer 23 can be formed by either a dry method or a wet method.
  • the dry method include a physical vapor deposition method such as an electron beam evaporation method, a dielectric heating evaporation method, a resistance heating evaporation method, a sputtering method, and an ion plating method, and a plasma CVD method.
  • examples of the components of the antireflection layer 23 include silicon oxide, magnesium fluoride, niobium oxide, titanium oxide, tantalum oxide, oxide aluminum, and acid zirconium. Inorganic compounds such as indium oxide and tin oxide can be used!
  • the wet method examples include a method of applying a coating material containing a curable compound by a known method such as comma coating, spray coating, roll coating, gravure printing, and curing the coating.
  • a coating material containing a curable compound by a known method such as comma coating, spray coating, roll coating, gravure printing, and curing the coating.
  • the antireflection layer 23 is formed by a wet method
  • the curable compound for example, a fluorine-containing compound such as a fluorine-containing organic compound, a fluorine-containing organic silicon compound, or a fluorine-containing inorganic compound can be used.
  • an antifouling layer may be further provided on the antireflection layer 23. If an antifouling layer is provided, dust and dirt can be prevented from adhering or even removed.
  • the antifouling layer is not particularly limited as long as it does not inhibit the antireflection function of the antireflection layer 23, exhibits high water repellency and oil repellency, and can prevent adhesion of contamination, and is composed of an organic compound. It may be a layer or a layer made of an inorganic compound. For example, a layer containing an organic silicon compound having a perfluorosilane group or a fluorocycloalkyl group or a fluorine organic compound can be used.
  • the method for forming the antifouling layer can be appropriately selected depending on the type of the antifouling layer.
  • physical vapor deposition methods such as vapor deposition, sputtering, ion plating, chemical vapor deposition, and plasma polymerization can be used.
  • vacuum process, micro gravure method, screen coating method, dip coating method and the like can be adopted.
  • the optical filter 20 As the optical filter 20 described above, an antistatic film 22 that protects the film substrate 21 is formed, and since the antistatic film 22 is formed of the above antistatic paint, it has excellent transparency, Excellent adhesion to the film substrate 21. Further, the optical filter 20 is a filter having excellent antistatic stability, and it is difficult for dust to adhere to the surface.
  • Such an optical filter 20 is suitably used for an antireflection film, an infrared absorption film, an electromagnetic wave absorption film or the like on both sides of a liquid crystal screen or a plasma display.
  • the optical filter of the present invention is not limited to the above-described embodiment example, and it is only necessary to have the antistatic film formed with the antistatic paint force.
  • a polarizing plate can be used instead of the film substrate.
  • the polarizing plate include those in which a protective film is laminated on one side or both sides of a polyvinyl alcohol-based resin film adsorbed and oriented with a dichroic dye.
  • the dichroic dye include iodine and dichroic dyes. Can be used.
  • Such an optical filter can be provided on the outermost surface of the liquid crystal display device.
  • optical information recording medium of the present invention An embodiment of the optical information recording medium of the present invention will be described.
  • FIG. 3 shows an optical information recording medium according to this embodiment.
  • This optical information recording medium 30 is a rewritable disc, and is a disc-shaped transparent medium having a force such as polycarbonate or polymethylmethacrylate.
  • the light-absorbing resin substrate 31, the first dielectric layer 32, the optical information recording layer 33, the second dielectric layer 34, the metal reflecting layer 35, and the antistatic film 36 are sequentially formed.
  • an inorganic material such as SiN, SiO 2, SiO, or Ta 2 O can be used.
  • These dielectric layers are formed with a thickness of 10 to 500 nm by a known means such as vacuum deposition, sputtering, or ion plating.
  • Examples of the material constituting the optical information recording layer 33 include Tb—Fe, Tb—Fe—Co, and Dy.
  • Inorganic magneto-optical recording materials such as Fe—Co, Tb—Dy—Fe—Co, TeOx, Te Ge, Sn—Te—Ge, Bi—Te—Ge, Sb—Te—Ge, Pb—Sn—
  • Inorganic phase conversion recording materials such as Te ⁇ Tl In—Se, organic dyes such as cyanine dyes, polymethine dyes, phthalocyanine dyes, merocyanine dyes, azulene dyes and squalium dyes are used.
  • the optical information recording layer 33 When the optical information recording layer 33 is made of an inorganic magneto-optical recording material, it can be formed with a thickness of 10 to 999 nm by a known means such as a vacuum deposition method, a sputtering method, or an ion plating method. Moreover, when it consists of organic pigment
  • solvents such as acetone, diacetone alcohol, ethanol, methanol
  • the metal reflective layer 35 exhibits light reflectivity, and is composed of a metal such as Al, Cr, Ni, Ag, and Au, and oxides and nitrides thereof alone or in combination of two or more.
  • the metal reflective layer 35 is formed with a thickness of 2 to 200 nm by sputtering or vacuum deposition.
  • the antistatic film 36 is formed from the above-mentioned antistatic paint.
  • the antistatic film 36 has a surface hardness of HB or more, so that the surface of the optical information recording medium 30 can be prevented from being damaged, the metal reflective layer 35 can be prevented from being oxidized, and dust can be prevented from adhering to static electricity. Can be suppressed.
  • the thickness of the antistatic film 36 is preferably 3 to 15 ⁇ m. If it is thinner than 3 ⁇ m, it tends to be difficult to form a uniform film, and sufficient antistatic properties, surface damage prevention properties, and antioxidation properties of the metal reflective layer 35 may not be exhibited. On the other hand, if thicker than 15 m, The partial stress increases and the mechanical properties of the optical information recording medium 30 may deteriorate.
  • an antistatic coating is applied on the metal reflective layer 35 using a known method such as comma coating, spray coating, roll coating, or gravure printing. Dry the solvent, or cure by heat or UV.
  • an antistatic film 36 for protecting the optical information recording layer 33 and the metal reflective layer 35 is formed, and the antistatic film 36 is formed of the above antistatic coating. Formed from. Therefore, since the antistatic film 36 has a small haze and a high light transmittance, it has excellent transparency at the reading laser wavelengths of 780 nm and 635 nm. Further, since the antistatic film 36 has an antistatic property, dust adhesion due to static electricity is suppressed, and a record reading error and a writing error are prevented.
  • the optical information recording medium of the present invention is not limited to the above-described embodiment, and for example, the optical information recording medium may be a write-once disc.
  • the write-once disc has, for example, a structure in which a transparent resin substrate (organic base material), an optical information recording layer, a reflective metal layer, and an antistatic film are sequentially formed.
  • sodium polystyrene sulfonate solution 1000 ml of sulfuric acid diluted to 10% by mass and 15000 ml of water are added, and about 13000 ml of the sodium polystyrene sulfonate solution is removed by ultrafiltration, 12000 ml of ion-exchanged water was added and about 13000 ml of solution was removed by ultrafiltration. The above ultrafiltration operation was repeated three times.
  • the obtained mixed solution was kept at 20 ° C, and while stirring, 29.64 g (0.13 mol) ammonium persulfate dissolved in 200 ml ion-exchanged water and 8. Og (0. 02 mol) of a ferric sulfate acid-sodium catalyst solution was slowly added, and the mixture was allowed to react with stirring for 3 hours.
  • a conductive composition solution 0.56 g of imidazole was uniformly dispersed in the obtained ⁇ -conjugated conductive polymer solution AlOOml to obtain a conductive composition solution.
  • the components used are shown in Table 1.
  • the conductive composition solution was applied onto glass and dried in an oven at 150 ° C. to obtain a coating film of the conductive composition.
  • the electrical characteristics of the obtained coating film were evaluated by the following evaluation methods. The results are shown in Table 2.
  • the electrical conductivity of the coating film was measured using a Loresta (manufactured by Mitsubishi Chemical).
  • the electrical conductivity R of the coating film at a temperature of 25 ° C was measured using a Loresta
  • the coating film after measurement was left in an environment at a temperature of 125 ° C for 300 hours, and then the coating film Return the temperature to 25 ° C, measure the electrical conductivity R, and substitute those measured values into the following equation.
  • the electrical conductivity heat retention rate was calculated.
  • the electrical conductivity heat retention rate is an index of heat resistance.
  • Example 2 Using the ⁇ -conjugated conductive polymer solution obtained in Example 1, the amount of imidazole applied in Example 1 was changed from 0.56 g to 1.67 g (Example 2), 2.79 g. (Example 3), 5.5 A coated film of the conductive composition was obtained and evaluated in the same manner as in Example 1 except that the amount was changed to 57 g (Example 4). The results are shown in Table 2.
  • Example 7 Into 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 1, 2.36 g (Example 5), 3.93 g (Example 6) of 1,2-dimethylimidazole instead of imidazole, 7. A coating film of the conductive composition was obtained and evaluated in the same manner as in Example 1 except that 67 g (Example 7) was added. The results are shown in Table 2.
  • the conductive composition was the same as in Example 1 except that 100 g of the ⁇ -conjugated conductive polymer solution obtained in Example 1 was added with 1.3 g of pyridinesulfonic acid instead of imidazole. The coating film was obtained and evaluated. The results are shown in Table 2.
  • Polyisoprenesulfonic acid-doped poly (3,4-ethylene dioxy oxythio) was used in the same manner as in Example 1 except that the polystyrene sulphonic acid was changed to 22.2 g (0.15 mol) of polyisoprene sulphonic acid. Fen) solution was obtained. This was diluted to 1.5 mass 0/0 with deionized water, was ⁇ -conjugated conductive polymer solution beta.
  • This mixed solution was kept at 0 ° C, and while stirring, 29.64 g (0.13 mol) ammonium persulfate dissolved in 200 ml ion-exchanged water and 8. Og (0.02 mol) Ferric sulfate oxidation The catalyst solution was slowly added and the reaction was allowed to stir for 3 hours.
  • reaction solution was treated in the same manner as in Example 1 to obtain a polystyrenesulfonic acid-doped polypyrrole solution. This is diluted to 1.5% by mass with ion-exchanged water to give a ⁇ -conjugated conductive polymer solution. It was.
  • a polyisoprenesulfonic acid-doped polypyrrole solution was obtained in the same manner as in Example 1 except that the polystyrenesulfonic acid was changed to 22.2 g (0.15 mol) polyisoprenesulfonic acid. This was diluted to 1.5% by mass with ion-exchanged water to obtain a ⁇ -conjugated conductive polymer solution D.
  • the resulting reaction solution was adjusted to pHIO with aqueous ammonia (25% by mass), precipitated with isopropyl alcohol, filtered, and the filtrate was washed with ion-exchanged water three times.
  • the filtrate was redispersed with 1000 ml of ion-exchanged water to obtain a polyacrylic acid / polypyrrole colloid aqueous solution.
  • the polyacrylic acid-polypyrrole colloid aqueous solution was coated on glass and dried in an oven at 150 ° C. to obtain a coating film of the conductive composition. evaluated.
  • Table 2 The results are shown in Table 2.
  • Example 1 ⁇ -conjugated conductive polymer solution obtained in Example 1 ⁇ (polystyrene sulfonic acid-doped poly (3,4-ethylenedioxythiophene) (PSS—PEDOT)), ⁇ -conjugated obtained in Example 9 Conductive polymer solution ⁇ (Polyisoprenesulfonic acid doped poly (3,4-ethylenedioxythiophene) (PIPS—PEDOT)), ⁇ -conjugated conductive polymer solution C obtained in Example 10 (polystyrene) Each of the sulfonic acid-doped polypyrrole (PSS-IV)) was applied as it was onto the glass and dried in an oven at 150 ° C. to obtain a conductive composition coating film. Then, the electrical characteristics of the coating film were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 1 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 1 was subjected to addition of 3.16 g of N-butylimidazole instead of imidazole to obtain a ⁇ -conjugated conductive polymer solution D. . Then, using the ⁇ -conjugated conductive polymer solution D, a coating film of the conductive composition was obtained and evaluated in the same manner as in Example 1. The results are shown in Table 4.
  • Table 3 shows the ⁇ -conjugated conductive polymer, nitrogen-containing aromatic cyclic compound, and crosslinkable compound used in Examples 12-24.
  • Example 2 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 1 was added with 3.16 g of N-butylimidazole instead of imidazole, and 3. Og of 2 hydroxyethyl acrylate.
  • a coating film of the conductive composition was obtained and evaluated in the same manner as in Example 1 except that 0.02 g of ammonium persulfate (thermal polymerization initiator) was added. The results are shown in Table 4.
  • Conductivity was the same as in Example 1 except that 3.83 g of 1-arylimidazole was added instead of imidazole to 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 1. A coating film of the composition was obtained and evaluated. The results are shown in Table 4.
  • Example 1 except that 3.97 g of 1 (2-hydroxyethyl) imidazole was added to 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 1 instead of imidazole. In the same manner, a coating film of the conductive composition was obtained and evaluated. The results are shown in Table 4.
  • Example 4 In the same manner as in Example 1, except that 3.97 g of imidazole-4-carboxylic acid was added in place of imidazole to 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 1. A coating film of the conductive composition was obtained and evaluated. The results are shown in Table 4.
  • Example 19 Application of the conductive composition in the same manner as in Example 16 except that 1.2 g of 5-sulfoisophthalic acid was further added to 50 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 16. Membranes were obtained and evaluated. The results are shown in Table 4. [Example 19]
  • Example 16 50 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 16 1.2 g of 5-sulfoisophthalic acid and 2. Og of polyester solution (trade name: Pluscoat Z-561, Kokusai Kagaku Kogyo)
  • the coating composition of the conductive composition was obtained and evaluated in the same manner as in Example 16 except for the above. The results are shown in Table 4.
  • Example 17 0.25 g of ethylene glycol was further added to 50 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 17, and the coating film of the conductive composition was otherwise treated in the same manner as in Example 17. Obtained and evaluated. The results are shown in Table 4.
  • Example 16 50 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 16 was added to 0.25 g of ethylene glycol and 1.8 g of polyurethane solution (trade name: Resamine D-4080, Dainichi Seige Co., Ltd.) A coating film of the conductive composition was obtained and evaluated in the same manner as in Example 16 except for the above. The results are shown in Table 4.
  • Example 4 Conduction was conducted in the same manner as in Example 1 except that 1.8 g of 2-vinylpyridine was added instead of N-buryumidazole to 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 1. A coating film of the composition was obtained and evaluated. The results are shown in Table 4.
  • Example 10 except that 100 g of the ⁇ -conjugated conductive polymer solution C obtained in Example 10 was uniformly dispersed with 1.73 g of N-butimidazole instead of 1.67 g of imidazole. In the same manner, a coating film of the conductive composition was obtained and evaluated. The results are shown in Table 4.
  • each of the conductive compositions of Examples 1 to 24 including the ⁇ -conjugated conductive polymer, the dopant, and the nitrogen-containing aromatic cyclic compound had high electrical conductivity.
  • the thermal conductivity of the electrical conductivity is stable against temperature fluctuations, and the electrical conductivity does not increase even in a high temperature and high humidity environment.
  • the conductive compositions of Examples 12 to 24, in which the nitrogen-containing aromatic cyclic compound has a crosslinkable functional group have a high thermal stability and can be used in combination with other crosslinkable compounds. Therefore, stability can be further improved.
  • the resulting mixed solution was kept at 20 ° C, and while stirring, 29.64 g (0.13 mol) ammonium persulfate dissolved in 200 ml ion-exchanged water and 8.0 g (0. 02 mol) ferric sulfate oxidation catalyst solution was added and reacted with stirring for 3 hours.
  • the resulting reaction solution is dialyzed to remove unreacted monomer and oxidant, and contains about 1.5% by weight of blue polystyrene sulfonate doped poly (3,4-ethylenedioxythiophene). A polymer solution was obtained.
  • the dielectric layer is formed on the surface of the aluminum foil by oxidation (oxidation treatment) in a 10% by weight aqueous solution of ammonium adipate. This formed a capacitor intermediate.
  • a cellulosic separator was sandwiched between the capacitor intermediate anode foil and the opposing aluminum cathode foil welded with the cathode lead terminal, and wound into a cylindrical shape to obtain a capacitor element.
  • the capacitor element was crushed under reduced pressure in the electron donating compound solution prepared in Production Example 4, and then dried for 2 minutes in a hot air dryer at 120 ° C. Subsequently, the conductive material prepared in Production Example 3 was used. The capacitor element was immersed in a functional polymer solution under reduced pressure, and then dried for 10 minutes with a hot air dryer at 150 ° C. Then, immersion in the conductive polymer solution was repeated 5 times to form a solid electrolyte layer containing a ⁇ -conjugated conductive polymer on the dielectric layer surface.
  • a capacitor element having a solid electrolyte layer formed on an aluminum case The capacitor was prepared by loading and sealing with sealing rubber.
  • ESR equivalent series resistance
  • a capacitor was obtained in the same manner as in Example 25 except that the electron donating compound solution prepared in Production Example 5 was used. Evaluation was performed in the same manner as in Example 25. The evaluation results are shown in Table 5.
  • a capacitor was manufactured in the same manner as in Example 25 except that the capacitor element was not immersed in the electron-donating compound solution in preparation of the capacitor of Example 25. Evaluation was performed in the same manner as in Example 25. Table 5 shows the evaluation results.
  • the capacitor of Comparative Example 1 in which the electron donating compound was not applied to the surface of the dielectric layer had a high ESR with a low capacitance (impedance was high).
  • the ESR increased significantly after the calorie heat, and the heat resistance was low.
  • the resulting mixed solution was kept at 20 ° C, and while stirring, 29.64 g (0.13 mol) of ammonium persulfate dissolved in 200 ml of ion-exchanged water and 8.0 g (0.02 mol) of A ferric sulfate acid-sodium catalyst solution was added, and the reaction was allowed to stir for 3 hours.
  • the resulting reaction solution was dialyzed to remove unreacted monomer and oxidant to obtain a solution containing about 1.5% by weight of blue polystyrene sulfonate doped poly (3,4-ethylenedioxythiophene). Obtained. Then, 2.79 g of imidazole was uniformly dispersed in 100 ml of this solution to obtain a conductive polymer solution.
  • the obtained conductive polymer solution was applied onto glass and dried in a 120 ° C hot air dryer to obtain a 2 ⁇ m thick conductive film. The electrical conductivity was measured using a Loresta (Mitsubishi Chemical Corporation). The results are shown in Table 6.
  • a capacitor intermediate was obtained by forming a dielectric layer on the surface of the aluminum foil by performing an acidification (acidification treatment) in an aqueous solution.
  • a capacitor intermediate and a counter aluminum cathode foil welded with a cathode lead terminal were stacked and wound up to obtain a capacitor element.
  • a separator was sandwiched between the anode foil and the cathode foil of the capacitor intermediate.
  • the capacitor element was immersed in the conductive polymer solution prepared in Production Example 6, and then dried with a hot air dryer at 120 ° C. to form a solid electrolyte layer on the dielectric layer side surface of the capacitor intermediate.
  • the dielectric layer is formed on the surface of the aluminum foil by oxidation (oxidation treatment) in a 10% by weight aqueous solution of ammonium adipate. This formed a capacitor intermediate.
  • a capacitor intermediate and a counter aluminum cathode foil welded with a cathode lead terminal were stacked and wound up to obtain a capacitor element.
  • a separator was sandwiched between the anode foil and the cathode foil of the capacitor intermediate.
  • the conductive film was formed by washing with water and drying, and the electrical conductivity of the conductive film was measured.
  • a capacitor was fabricated in the same manner as in Example 27 except that imidazole was not added in the preparation of the conductive polymer solution of Production Example 6.
  • a capacitor was produced in the same manner as in Example 27 except that the imidazole in the conductive polymer solution obtained in Production Example 6 was changed to 3.85 g of berylmidazole, and evaluated in the same manner as in Example 27. did. The evaluation results are shown in Table 7.
  • the imidazole of the conductive polymer solution obtained in Production Example 6 was changed to 3.85 g of berylmidazole, and 1.4 g of acrylic acid and 0.02 g of ammonium persulfate were added. Except for the above, capacitors were fabricated in the same manner as in Example 27, and evaluated in the same manner as in Example 27. The evaluation results are shown in Table 7.
  • Example 27 The same as Example 27, except that the imidazole of the conductive polymer solution obtained in Production Example 6 was changed to 3.3 g of 1-ethylhydroxyimidazole and 1.4 g of acrylic acid was added. A capacitor was fabricated and evaluated in the same manner as in Example 27. The evaluation results are shown in Table 7.
  • Example 30 After immersing the capacitor intermediate in the conductive polymer solution prepared in Example 30, it was dried with a hot air dryer at 120 ° C., and the solid electrolyte layer was formed on the dielectric layer side surface of the capacitor intermediate. Formed.
  • a carbon paste is applied on the formed solid electrolyte layer and heated at 120 ° C. After drying with an air dryer, a silver paste was further applied to form a conductive layer, and dried with a hot air dryer at 120 ° C. to form a cathode.
  • a lead terminal was attached to the cathode, and this was wound up to obtain a capacitor element.
  • a separator was sandwiched between the anode foil and the cathode foil of the capacitor intermediate.
  • the dielectric layer is formed on the surface of the aluminum foil by oxidation (oxidation treatment) in a 10% by weight aqueous solution of ammonium adipate. This formed a capacitor intermediate.
  • the imidazole in the conductive polymer solution obtained in Production Example 6 was changed to 3.85 g of bullimidazole, and then 1.4 acrylic acid and 0. Olg of 1— [4- (2 hydroxyethoxy) ⁇ [Phenol] 2-methyl 1-propane 1-one was added to obtain a conductive polymer solution.
  • water is removed with a 120 ° C hot air drier, and then irradiated with ultraviolet rays with an ultraviolet irradiator to solidify the surface of the capacitor intermediate on the dielectric layer side. An electrolyte layer was formed.
  • a carbon paste is applied on the formed solid electrolyte layer and dried with a hot air dryer at 120 ° C, and then a silver paste is applied to form a conductive layer.
  • the cathode was formed by drying with an air dryer.
  • a lead terminal was attached to the cathode, and this was wound up to obtain a capacitor element.
  • a separator was sandwiched between the anode foil and the cathode foil of the capacitor intermediate.
  • Example 27 The capacitors of Examples 27, 28, and 29 to 33, in which the solid electrolyte layer of the cathode contains a nitrogen-containing aromatic cyclic compound, had excellent cathode conductivity and low equivalent series resistance. . Furthermore, in Example 27, it was simple because the solid electrolyte layer was formed by applying and drying the conductive polymer solution. In addition, the capacitors of Examples 29 to 33 in which the nitrogen-containing aromatic cyclic compound in the solid electrolyte layer of the cathode is cross-linked have excellent electrostatic capacity and low equivalent series resistance. I got it.
  • the capacitors of Comparative Examples 6 and 7 in which the solid electrolyte layer of the cathode did not contain a nitrogen-containing aromatic cyclic compound had high equivalent series resistance with low cathode conductivity.
  • reaction solution was cooled to room temperature, 1000 ml of ion-exchanged water was added thereto, and 30 g of 50% by mass sulfuric acid aqueous solution was added, and then the solution was concentrated to about 300 m. This operation was repeated 4 times.
  • reaction solution After the reaction is complete, cool the reaction solution to room temperature and add 1000 ml of ion-exchanged water to it. Then, 30 g of 50% by mass sulfuric acid aqueous solution was added, and the solution was concentrated at about 300 m. This operation was repeated 4 times.
  • a polystyrene sulfonate-polymethacrylo-tolyl copolymer was obtained from sodium polystyrene sulfonate and a polymethacrylo-tolyl copolymer solution obtained in the same manner as in Production Example 2.
  • an oxidant solution prepared by dissolving 250 g of ferric chloride in 1250 ml of acetonitrile was added dropwise over 2 hours while maintaining 10 ° C, and further stirred for 12 hours to polymerize 3,4-ethylenedioxythiophene. did.
  • This antistatic coating was applied on a PET film having a thickness of 25 ⁇ m by a comma coater and dried to form an antistatic film having a thickness of 0.1 m. Then, the surface resistance value of this antistatic film at 10 ° C. and 15% RH was measured using MCP-HTP16 as a probe with a Hiresta made by Dia Instruments. The total light transmittance (JIS Z 8701) and haze (JIS K 6714) were measured. The results are shown in Table 8.
  • the antistatic paint was evaluated in the same manner as in Example 34. The results are shown in Table 8.
  • an oxidant solution prepared by dissolving 250 g of ferric salt in ferric salt in 1250 ml of water was added dropwise over 2 hours while maintaining 5 ° C., and stirring was continued for 12 hours, followed by 3,4-ethylenedioxy Thiophene was polymerized.
  • the residue was purified by ultrafiltration to remove oxidant residues, unreacted monomers and the like, and concentrated to a concentration of 2% by mass. 100 ml of this solution was mixed with 1. lg of imidazole and stirred to obtain an antistatic paint.
  • the antistatic paint was evaluated in the same manner as in Example 34. The results are shown in Table 8.
  • the residue was purified by ultrafiltration to remove oxidant residues, unreacted monomers and the like, and concentrated to a concentration of 2% by mass. 100 ml of this solution is mixed with 1. lg of imidazole, further allyl methacrylate is mixed, and the mixed solution is mixed with urethan attalate (manufactured by Negami Kogyo Co., Ltd.), which is a hard coat component, and charged by stirring. A prevention paint was obtained.
  • the antistatic paint was evaluated in the same manner as in Example 34. The results are shown in Table 8.
  • Example 34 evaluation was performed in the same manner as in Example 36 except that imidazole was not added. The results are shown in Table 8.
  • the resulting mixed solution was kept at 20 ° C, and while stirring, 29.64 g (0.13 mol) ammonium persulfate dissolved in 200 ml ion-exchanged water and 8.0 g (0. 02mol) A ferric acid / acid catalyst solution was slowly added, and the mixture was stirred for 3 hours to be reacted.
  • Example 40 To 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 38, instead of ⁇ ⁇ buyl imidazole, 3.83 g of 1- (2-hydroxyethyl) imidazole and 2.18 g of 5-sulfoisophthalate An acid was added to obtain an antistatic coating. The antistatic paint was evaluated in the same manner as in Example 34. The evaluation results are shown in Table 9. [0217] (Example 40)
  • Example 38 To the antistatic coating obtained in Example 38, 2. Og 2-hydroxyethyl acrylate, O. Olg 1 [4 (2-hydroxyethoxy) monophenol] — 2 Hydroxy 2-methyl Chill-1-propan-1-one (UV polymerization initiator) was added to obtain an antistatic coating. Then, the antistatic paint was applied onto a PET film having a thickness of 25 ⁇ m by a comma coater, water was removed in an oven at 100 ° C., and then an ultraviolet ray was irradiated by an ultraviolet ray irradiator to obtain a coating film. . Then, the electrical characteristics of the coating film were evaluated in the same manner as in Example 34. The results are shown in Table 9.
  • Example 38 To the 100 ml of the ⁇ -conjugated conductive polymer solution obtained in Example 38, instead of ⁇ ⁇ Bull Imidazonole, 3.83 g of 1 (2 hydroxyethinore) and 1 Imidazonole and 1.8 g of polyurethane liquid (Product name: Rezamin D-4080, manufactured by Dainichi Seiya Kogyo Co., Ltd.) was added to obtain an antistatic coating. The antistatic paint was evaluated in the same manner as in Example 34. The evaluation results are shown in Table 9.
  • the resulting mixed solution was kept at 20 ° C, and while stirring, 29.64 g (0.13 mol) ammonium persulfate dissolved in 200 ml ion-exchanged water and 8.0 g (0. 02 mol) of ferric sulfate and an acid catalyst solution were slowly added and reacted by stirring for 4 hours.
  • the other side of the PET film (film substrate) with the adhesive layer and cover film laminated on one side was corona treated.
  • the antistatic paint of Example 37 was applied to the corona-treated surface of the PET film with a comma coater. After drying, the film was cured by exposure to a high-pressure mercury lamp to form an antistatic film that also served as a hard coat layer.
  • ethanol 42. Og was added to 80 g of ethanol dispersion of hollow silica having fine pores inside (catalyst chemicals Co., Ltd., solid concentration 15.6% by mass) on the antistatic film. The solution was applied. Thereafter, it was dried and heat-treated at 100 ° C. for 1 hour to form a 90 mm antireflection layer to obtain an optical filter.
  • the visible light transmittance was 86.3%, the haze was 1.4%, and the surface resistance value was 3 to 10 5 ⁇ .
  • the measurement method is the same as the measurement method for the antistatic film.
  • the adhesion test was conducted according to the cross-cut tape method CFIS K 5400).
  • the disk-shaped polycarbonate substrate formed by injection molding 300 nm TaO is formed as the first dielectric layer by sputtering, and 500 nm Tb is formed as the optical information recording layer.
  • the Fe layer is formed, 300 nm Ta 2 O is formed as the second dielectric layer, and the metal reflective layer 1
  • Example 37 An OOnm aluminum layer was formed. Next, the antistatic coating material of Example 37 was applied on the metal reflective layer with a comma coater, dried, and then cured by exposure to a high-pressure mercury lamp to form an antistatic film that also served as a hard coat layer to form an optical information recording medium. Got. This optical information recording medium was evaluated as follows.
  • the transmittance of the antistatic film was measured with a spectrophotometer at 780 nm and 635 ⁇ m, which are the emission wavelengths of the reading laser diode of the optical information recording medium. As a result, the transmittance at 780 nm was 98.9%, and the transmittance at 635 nm was 98.6%.
  • this optical information recording medium has excellent transparency at wavelengths of 780 nm and 635 nm.
  • the antistatic property, the scratch resistance, and the adhesion between the antistatic film and the substrate were excellent.
  • the conductive composition of the present invention comprises a conductive paint, an antistatic agent, an electromagnetic shielding material, a conductive material that requires transparency, a battery material, a conductive adhesive material, a sensor, an electronic device material, a semiconductive material, an electrostatic material. It can be used in various fields that require electrical conductivity, such as photo-sensitive copying members, photosensitive members such as printers, transfer members, intermediate transfer members, conveying members, and electrophotographic materials. In addition, according to the present invention, it is possible to easily manufacture a capacitor with high cathode conductivity and low impedance (equivalent series resistance).
  • an antistatic film having high conductivity, flexibility, and high adhesion to a substrate simply by applying an antistatic coating. It can be manufactured at low cost due to its prevention.
  • the antistatic paint and the antistatic film can be used in various fields such as an antistatic film, an optical filter, and an optical information recording medium that need to be prevented from being charged.

Abstract

  この導電性組成物は、π共役系導電性高分子と、ドーパントと、窒素含有芳香族性環式化合物とを含有する。コンデンサの一例は、弁金属の多孔質体からなる陽極と、前記陽極の表面が酸化されて形成された誘電体層と、前記誘電体層上に配置され、π共役系導電性高分子を含む固体電解質層を具備する陰極とを有するコンデンサにおいて、前記誘電体層と前記陰極との間に配置された電子供与性元素を含む電子供与性化合物層を有する。また、コンデンサの別の例は、弁金属の多孔質体からなる陽極と、陽極の表面が酸化されて形成された誘電体層と、誘電体層上に形成された陰極とを有し、陰極が、π共役系導電性高分子とドーパントと窒素含有芳香族性環式化合物とを含む固体電解質層を具備する。帯電防止塗料は、π共役系導電性高分子と、アニオン基及び/又は電子吸引性基を有する可溶化高分子と、窒素含有芳香族性環式化合物と、溶媒とを含む。前記帯電防止塗料が塗布されて帯電防止膜が形成される。

Description

明 細 書
導電性組成物及び導電性架橋体、コンデンサ及びその製造方法、並び に帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記 録媒体
技術分野
[0001] 本発明は、 π共役系導電性高分子を含む導電性組成物及び導電性架橋体に関 する。また、本発明は、アルミ電解コンデンサ、タンタル電解コンデンサ、ニオブ電解 コンデンサなどのコンデンサ及びその製造方法に関する。さらに、本発明は、フィル ムに帯電防止性を付与するための帯電防止塗料、帯電防止性を有する帯電防止膜 、食品や電子部品の包装材に使用される帯電防止フィルム、液晶ディスプレイやブラ ズマディスプレイの前面に使用される光学フィルタや CD、 DVDなどの光情報記録媒 体に関する。
本願は、 2004年 8月 30日に出願された特願 2004— 249993号、 2004年 8月 30 曰に出願された特願 2004— 249994号、 2004年 9月 24曰に出願された特願 2004 — 277168号、 2005年 3月 28日〖こ出願された特願 2005— 90322号、 2005年 3月 28曰に出願された特願 2005— 90323号、 2005年 3月 30曰に出願された特願 200 5— 96599号、及び 2005年 4月 5日【こ出願された特願 2005— 108539号【こ基づさ 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 一般的に、主鎖が π電子を含む共役系で構成されている π共役系導電性高分子 は、電解重合法及び化学酸化重合法により合成される。
電解重合法では、ドーパントとなる電解質と π共役系導電性高分子を形成する前 駆体モノマーとの混合溶液中に、予め形成した電極材料などの支持体を浸漬し、支 持体上に π共役系導電性高分子をフィルム状に形成する。そのため、大量に製造す ることが困難である。
一方、化学酸化重合法では、このような制約がなぐ π共役系導電性高分子の前 駆体モノマーに酸化剤及び酸化重合触媒を添加し、溶液中で大量の π共役系導電 性高分子を製造できる。
しかし、化学酸化重合法では、 π共役系導電性高分子主鎖の共役系の成長に伴 い、溶媒に対する溶解性が乏しくなるため、不溶の固形粉体で得られるようになる。 不溶性のものでは支持体表面上に π共役系導電性高分子膜を均一に形成すること が困難になる。
[0003] そのため、 π共役系導電性高分子に官能基を導入して可溶化する方法、バインダ 榭脂に分散して可溶化する方法、ァニオン基含有高分子酸を添加して可溶化する 方法が試みられている。
例えば、水への分散性を向上させるために、分子量力 000〜500000の範囲の ァ-オン基含有高分子酸であるポリスチレンスルホン酸の存在下で、酸化剤を用い て、 3, 4—ジアルコキシチォフェンを化学酸化重合してポリ(3, 4—ジアルコキシチ ォフェン)水溶液を製造する方法が提案されている (特許文献 1参照)。また、ポリアク リル酸の存在下で化学酸化重合して π共役系導電性高分子コロイド水溶液を製造 する方法が提案されて!ヽる (特許文献 2参照)。
[0004] 特許文献 1, 2記載の方法によれば、 π共役系導電性高分子を含有する水分散溶 液を容易に製造できる。しかし、これらの方法においては、 π共役系導電性高分子 の水への分散性を確保するため、ァ-オン基含有高分子酸を多量に含ませる。した がって、得られる導電性組成物中には、導電性に寄与しない化合物が多く含まれ、 高 、導電性が得られにく 、と 、う問題点があった。
[0005] また、化学酸化重合法では、化学酸化重合時に酸化力の高い酸化剤による好まし くない副反応が高い確率で起こるため、共役性の低い高分子構造が生成したり、生 成した高分子が酸化剤により再アタックされて過度に酸ィ匕されたりして、得られる π共 役系導電性高分子の導電性が低かった。その問題を解決するために、遷移金属ィ オンを触媒として用いる方法や、低温で長時間反応する方法などが採られている。し かし、これらの方法では、生成した高分子が、反応性モノマーの脱水素により生成さ れたプロトンによってアタックされ、構造規則性の低い π共役系導電性高分子になり やす 、ため、導電性の低下を充分に防ぐことができな力つた。
さらに、導電性組成物中にバインダ榭脂が含まれる場合、化学酸化重合法で得ら れた π共役系導電性高分子はバインダ榭脂への相溶性が低!、ことがあった。
[0006] また、 π共役系導電性高分子を使用した例としてコンデンサがある。
近年、電子機器のデジタル化に伴い、電子機器に用いられるコンデンサは高周波 領域におけるインピーダンスを低下させることが要求されている。従来から、この要求 に対応すベぐアルミニウム、タンタル、ニオブなどの弁金属の酸ィ匕皮膜を誘電体とし 、この表面に π共役系導電性高分子を形成して陰極としたコンデンサが使用されて いる。
[0007] コンデンサの構造は、特許文献 3に示されるように、弁金属多孔質体力 なる陽極と 、陽極の表面を酸化して形成した誘電体層と、誘電体層に固体電解質層、カーボン 層、銀層を積層した陰極とを有するものが一般的である。コンデンサの固体電解質層 は、ピロール、チォフェンなどの π共役系導電性高分子力も構成された層であり、多 孔質体の内部にまで侵入し、より大面積の誘電体層と接触して高容量を弓 Iき出すと 共に、誘電体層の欠損部を修復して漏れ電流によるリークを防止する役割を果たし ている。
π共役系導電性高分子の形成法としては、電解重合法 (特許文献 4参照)と化学酸 化重合法 (特許文献 5参照)とが広く知られて 、る。
しかし、電解重合法では、弁金属多孔質体表面にマンガン酸ィ匕物力 なる導電層 をあらかじめ形成しておく必要があり、非常に煩雑である上に、マンガン酸化物は導 電性が低ぐ高導電性の π共役系導電性高分子を使用する効果が薄れるという問題 かあつた。
また、化学酸化重合法では、重合時間が長ぐまた、厚みを確保するために繰り返 し重合しなければならず、コンデンサの生産効率が低力つた上に、導電性も低かった
[0008] そこで、電解重合法や化学酸化重合法で誘電体層上に導電性高分子を形成しな い方法が提案されている(特許文献 6参照)。特許文献 6には、スルホ基、カルボキシ 基等を持つ高分子酸を共存させながらァ-リンを重合して水溶性のポリア-リンを調 製し、そのポリア-リン水溶液を誘電体層上に塗布、乾燥する方法が記載されている 。この製造方法は簡便である力 ポリア-リン溶液の多孔質体内部への浸透性が劣 ると共に、 π共役系導電性高分子以外に高分子酸を含むために導電性が低ぐしか も、高分子酸の影響で導電性に湿度依存性が見られることもあった。
[0009] ところで、コンデンサとしてはインピーダンスの指標としての等価直列抵抗 (ESR)が 小さいものが求められており、 ESRを小さくするためには、固体電解質層の導電性を 高くすることが必要である。固体電解質層の導電性を高める方法としては、例えば、 化学酸ィ匕重合の条件を高度にコントロールすることが提案されている(特許文献 7参 照)。しかし、その製造方法では、煩雑な化学酸化重合をより複雑にすることが多ぐ 工程の簡略化、低コストィ匕を実現できな力つた。
[0010] また、電子伝導を導電機構とする有機材料として π共役系導電性高分子を使用し た例がある。
榭脂フィルムはそのままでは絶縁体であるために帯電しやすぐ摩擦等によって静 電気を帯びやすい。しかもその静電気は外部へ逃げにくぐ蓄積して、様々な問題を 引き起こす原因になる。
特に衛生性を重視する食品包装材に榭脂フィルムを用いた場合には、陳列中に塵 や埃を吸着して、外観を著しく損ねて商品価値を低下させることもある。また、粉体の 包装に榭脂フィルムを用いた場合には、その梱包時や使用時に帯電した粉体を吸着 又は反発するため、粉体の取り扱いが困難になるといった不具合を生じる。また、榭 脂フィルムで精密電子部品を包装する場合には、静電気により精密電子部品が破壊 するおそれがあるので、静電気の発生は必ず防 、でおかなければならな!/、。
[0011] また、光学フィルタや光情報記録媒体は、表面が、高硬度、高透明性である上に、 静電気による塵埃の付着を防止するために帯電防止性を有することが求められる。 特に、帯電防止性については、表面抵抗が 106〜101(> Ω程度の領域で抵抗値が安 定していること(すなわち、安定した帯電防止性)が求められる。このようなこと力 、光 学フィルタや光情報記録媒体の表面には、帯電防止性を有しつつ硬度が高い帯電 防止膜が設けられている。
[0012] 帯電防止性を付与するためには、例えば、榭脂フィルムや界面活性剤を表面に塗 布する方法、榭脂フィルムや帯電防止膜を構成する榭脂に界面活性剤を練り込む方 法が採られてきた (例えば、非特許文献 1参照)。 し力しながら、この界面活性剤による帯電防止はその導電機構力 オン伝導である ために、湿度の影響を非常に受けやすぐ湿度が高ければ高導電になるが、湿度の 低いときには導電性が低下するといつた欠点があった。したがって、湿度が低ぐ特 に静電気が発生しやすい環境下では帯電防止機能が低下して、必要なときに帯電 防止性能を発揮しな 、ものとなって 、た。
[0013] 電子伝導を導電機構とする金属やカーボンを使用すればこのような湿度依存性は なくなるが、これらのものは透明'性が全くなく、透明'性が要求される用途には適用でき ない。
また、 ITO (Indium Tin Oxide)のような金属酸化物は透明性があり、電子伝導 を導電機構とするため、その点においては適しているものの、その製膜にはスパッタ リング装置などを用いた工程を取らざるを得ず、工程が煩雑になるばかりか製造コスト が高くなつた。また、無機質の金属酸ィ匕物の塗膜は可撓性が小さぐ薄い基材フィル ム上に製膜した場合には、塗膜が激しく割れて、導電性を示さなくなることがあった。 その上、有機質である基材との密着性が低 、ためにそれらの界面で剥離を生じて、 透明性が低下するおそれがあった。
[0014] また、電子伝導を導電機構とする有機材料として π共役系導電性高分子が知られ ているが、 π共役系導電性高分子は一般的に不溶不融の性質を持ち、重合した後 に基材フィルム上に塗布することは困難であった。そこで、スルホ基を持つ高分子酸 を共存させながらァ-リンを重合し、水溶性のポリア-リンを形成して得た混合物を用 いて、基材フィルム上に塗布、乾燥することが試みられている(例えば、特許文献 8参 照)。
[0015] 特許文献 8に記載の方法のように、基材上で直接重合すれば帯電防止膜を形成で きるが、その場合には、帯電防止膜の導電性が低ぐまた、水溶性であるために榭脂 製の基材との密着性が低ぐさらに、製造工程が煩雑になった。
特許文献 1:特許第 2636968号公報
特許文献 2 :特開平 7— 165892号公報
特許文献 3:特開 2003 - 37024号公報
特許文献 4:特開昭 63— 158829号公報 特許文献 5 :特開昭 63— 173313号公報
特許文献 6 :特開平 7—105718号公報
特許文献 7:特開平 11 74157号公報
特許文献 8:特開平 1― 254764号公報
非特許文献 1 :シーエムシー発行「ファインケミカル 帯電防止剤 最近の市場動向( 上)」、第 16卷、第 15号、 1987年、 p. 24- 36
発明の開示
発明が解決しょうとする課題
[0016] 本発明は、上記問題点を解決するため、導電性に優れた導電性組成物及び導電 性架橋体を提供することを課題とする。また、本発明は、陰極の固体電解質層の導 電性に優れ、インピーダンスが低いコンデンサ、及びそのようなコンデンサを簡便に 製造する方法を提供することを課題とする。さらに、本発明は、導電性、可撓性、基 材との密着性が高い帯電防止膜を塗布により形成できる帯電防止塗料、導電性、可 橈性、基材との密着性が高ぐ塗布という簡易な製造方法で製造できる帯電防止膜、 及び帯電防止性に優れた帯電防止フィルム、光学フィルタ、光情報記録媒体を提供 することを課題とする。
課題を解決するための手段
[0017] 本発明の導電性組成物は、 π共役系導電性高分子と、ドーパントと、窒素含有芳 香族性環式化合物とを含有する。
本発明の導電性組成物にぉ ヽては、ドーパントが有機スルホン酸であることが好ま しい。
さらに、有機スルホン酸が、スルホ基含有可溶化高分子であることが好ましい。 また、本発明の導電性組成物においては、窒素含有芳香族性環式化合物が、その 窒素原子に置換基が導入されてカチオンを形成している窒素含有芳香族性環式ィ匕 合物カチオンであってもよ 、。
本発明の導電性組成物においては、窒素含有芳香族性環式化合物が、置換若し くは未置換のイミダゾール類であることが好ま U、。
あるいは、窒素含有芳香族性環式化合物が、置換若しくは未置換のピリジン類であ ることが好ましい。
[0018] 本発明のコンデンサは、弁金属の多孔質体力 なる陽極と、前記陽極の表面が酸 化されて形成された誘電体層と、前記誘電体層上に配置され、 π共役系導電性高 分子を含む固体電解質層を備えた陰極とを有するコンデンサにおいて、前記誘電体 層と前記陰極との間に配置された電子供与性元素を含む電子供与性化合物層を有 する。
本発明のコンデンサにおいては、電子供与性ィ匕合物層の電子供与性元素力 窒 素、酸素、硫黄、燐力 選ばれる少なくとも 1種であることが好ましい。
また、電子供与性化合物層の電子供与性化合物が、ピロール類、チォフェン類、フ ラン類力も選ばれる少なくとも 1種であることが好ま 、。
また、電子供与性ィ匕合物層の電子供与性ィ匕合物がアミン類であることが好まし 、。 本発明のコンデンサの製造方法は、弁金属の多孔質体力 なる陽極の表面を酸ィ匕 して誘電体層を形成する工程と、前記誘電体層の表面に、電子供与性元素を含む 電子供与性化合物を塗布して電子供与性化合物層を形成する工程と、前記電子供 与性化合物層の表面に、 π共役系導電性高分子を含む固体電解質層を形成する 工程とを有することを特徴とする。
本発明のコンデンサの製造方法においては、前記固体電解質層を形成する工程 力 前記電子供与性化合物層の表面に π共役系導電性高分子を含む導電性高分 子溶液を塗布する工程を含むことが好ま ヽ。
[0019] 本発明のコンデンサは、弁金属の多孔質体力 なる陽極と、前記陽極の表面が酸 化されて形成された誘電体層と、前記誘電体層上に形成された陰極とを有するコン デンサにおいて、前記陰極が、 π共役系導電性高分子とドーパントと窒素含有芳香 族性環式化合物とを含む固体電解質層を具備することを特徴とする。
本発明のコンデンサにおいては、前記陰極が、さらに電解液を含むことが好ましい また、本発明のコンデンサにおいては、前記ドーパントが、ァ-オン基を有する可溶 化高分子であることが好まし 、。
さらに、本発明のコンデンサにおいては、窒素含有芳香族性環式化合物が置換若 しくは未置換のイミダゾール類、あるいは、置換若しくは未置換のピリジン類であるこ とが好ましい。
本発明のコンデンサにおいては、陰極の固体電解質層中の窒素含有芳香族性環 式化合物が架橋して 、ることが好ま 、。
本発明のコンデンサの製造方法は、弁金属の多孔質体力 なる陽極と該陽極の表 面が酸化されて形成された誘電体層とを有するコンデンサ中間体における誘電体層 の表面に、 π共役系導電性高分子とドーパントと窒素含有芳香族性環式化合物と溶 媒とを含む導電性高分子溶液を塗布して塗膜を形成する工程を有することを特徴と する。
本発明のコンデンサの製造方法においては、前記導電性高分子溶液中の窒素含 有芳香族性環式化合物が、架橋性官能基を有することが好まし ヽ。
その場合、前記導電性高分子溶液が架橋性化合物をさらに含有することが好まし い。
また、窒素含有芳香族性環式化合物が架橋性官能基を有する場合には、導電性 高分子溶液の塗膜を形成した後、該塗膜に熱または紫外線照射処理を施すことが 好ましい。
本発明の帯電防止塗料は、 π共役系導電性高分子と、ァニオン基及び Ζ又は電 子吸引性基を有する可溶化高分子と、窒素含有芳香族性環式化合物と、溶媒とを含 むことを特徴とする。
本発明の帯電防止塗料は、さらにドーパントを含むことが好ましい。
また、本発明の帯電防止塗料は、さらにバインダ榭脂を含むことが好ましい。
本発明の帯電防止塗料力 Sバインダ榭脂を含む場合、バインダ榭脂は、ポリウレタン
、ポリエステル、アクリル榭脂、ポリアミド、ポリイミド、エポキシ榭脂、ポリイミドシリコー ンカ なる群力 選ばれる 1種以上であることが好ましい。
本発明の帯電防止膜は、上述した帯電防止塗料が塗布されて形成されたことを特 徴とする。
本発明の帯電防止フィルムは、基材フィルムと、該基材フィルムの少なくとも片面に 形成された上述した帯電防止膜とを有することを特徴とする。 本発明の光学フィルタは、上述した帯電防止膜を有することを特徴とする。
本発明の光情報記録媒体は、上述した帯電防止膜を有することを特徴とする。 発明の効果
[0021] 本発明の導電性組成物は、導電性 (電気伝導度)が高ぐしかも耐熱性、耐湿性に も優れる。
本発明において、ドーパントが有機スルホン酸、特にスルホ基含有可溶化高分子 であればバインダ榭脂への分散性及び相溶性を高くできる。
また、窒素含有芳香族性環式化合物が、その窒素原子に置換基が導入されてカチ オンを形成している窒素含有芳香族性環式ィ匕合物カチオンであれば、より一層、ド 一パントと結合又は配位しやすくなる。
さらに、窒素含有芳香族性環式化合物が、置換若しくは未置換のイミダゾール類、 または、置換若しくは未置換のピリジン類であれば、溶媒溶解性に優れる。
また、本発明の導電性組成物においては、前記窒素含有芳香族性環式化合物が 、架橋性官能基を有することが好ましい。
その場合、本発明の導電性組成物が、架橋性ィ匕合物をさらに含有することが好まし い。
本発明の導電性架橋体は、架橋性官能基を有する窒素含有芳香族性環式化合物 を含有する導電性組成物に加熱処理及び Z又は紫外線照射処理が施されて形成さ れたものである。
[0022] 本発明のコンデンサは、陰極の導電性が高いので、等価直列抵抗が小さい。
本発明のコンデンサにおいて、陰極に電解液が含まれていれば、静電容量の引き 出し率が高くなる。
また、ドーパントがァ-オンを有する可溶ィ匕高分子であれば π共役系導電性高分 子の溶媒溶解性を高くできる。
さらに、窒素含有芳香族性環式化合物が、置換若しくは未置換のイミダゾール類、 または、置換若しくは未置換のピリジン類であれば、溶媒溶解性に優れる。
本発明のコンデンサの製造方法によれば、陰極の導電性が高ぐ等価直列抵抗が 小さいコンデンサを簡便に製造できる。 [0023] 本発明の帯電防止塗料は、導電性、可撓性、基材との密着性が高!ヽ帯電防止膜 を塗布により形成できる。また、このような帯電防止塗料は、少量の使用で十分な帯 電防止性を発揮させることができるから、低コストで帯電防止膜を製造できる。
本発明の帯電防止塗料がさらにドーパントを含めば、帯電防止膜の導電性をより高 くすることができ、耐熱性も向上する。
また、バインダ榭脂を含めば、基材との密着性をより高くできる。
特に、バインダ榭脂が、ポリウレタン、ポリエステル、アクリル榭脂、ポリアミド、ポリイミ ド、エポキシ榭脂、ポリイミドシリコーン力もなる群力も選ばれる 1種以上である場合に は、帯電防止塗料の必須成分に混合しやすい。
本発明の帯電防止膜は、導電性、可撓性、基材との密着性が高ぐ塗布という簡易 な製造方法で製造できる。
本発明の帯電防止フィルム、光学フィルタ、光情報記録媒体は、帯電防止性に優 れたものであり、静電気の発生が防止されている。
図面の簡単な説明
[0024] [図 1]本発明のコンデンサにおける一実施形態例を示す断面図である。
[図 2]本発明の光フィルタの一実施形態例を示す断面図である。
[図 3]本発明の光情報記録媒体の一実施形態を示す断面図である。
符号の説明
[0025] 10 コンデンサ
11 陽極
12 誘電体層
13
13a 固体電解質層
20 光フィルタ
30 光情報記録媒体
21 フィルム基材
22、 36 帯電防止膜 (ハードコート層)
発明を実施するための最良の形態 [0026] ( π共役系導電性高分子)
本発明の π共役系導電性高分子は、主鎖が π共役系で構成されている有機高分 子であれば使用できる。例えば、ポリピロール類、ポリチォフェン類、ポリアセチレン 類、ポリフエ-レン類、ポリフエ-レンビ-レン類、ポリア-リン類、ポリアセン類、ポリチ オフ ンビニレン類、及びこれらの共重合体等が挙げられる。空気中での安定性の 点からは、ポリピロール類、ポリチォフェン類及びポリア-リン類が好ましい。
π共役系導電性高分子は無置換のままでも、充分な導電性、バインダ榭脂への相 溶性を得ることができる力 導電性及び相溶性をより高めるためには、アルキル基、力 ルポキシ基、スルホ基、アルコキシ基、ヒドロキシ基等の官能基を π共役系導電性高 分子に導入することが好まし 、。
[0027] このような π共役系導電性高分子の具体例としては、ポリピロール、ポリ(Ν—メチル ピロール)、ポリ(3—メチルビロール)、ポリ(3—ェチルビロール)、ポリ(3—η—プロピ ルビロール)、ポリ(3—ブチルビロール)、ポリ(3—ォクチルビロール)、ポリ(3—デシ ルビロール)、ポリ(3—ドデシルビロール)、ポリ(3, 4—ジメチルビロール)、ポリ(3, 4 ジブチルピロール)、ポリ(3—カルボキシピロール)、ポリ(3—メチルー 4 カルボ キシピロール)、ポリ(3—メチルー 4 カルボキシェチルピロール)、ポリ(3—メチルー 4 カルボキシブチルピロール)、ポリ(3—ヒドロキシピロール)、ポリ(3—メトキシピロ ール)、ポリ(3—エトキシピロール)、ポリ(3—ブトキシピロール)、ポリ(3—メチルー 4 一へキシルォキシピロール)、ポリ(チォフェン)、ポリ(3—メチルチオフェン)、ポリ(3 ーェチルチオフェン)、ポリ(3—プロピルチオフェン)、ポリ(3—ブチルチオフェン)、 ポリ(3—へキシルチオフェン)、ポリ(3—へプチルチオフェン)、ポリ(3—ォクチルチ オフェン)、ポリ(3—デシルチオフェン)、ポリ(3—ドデシルチオフェン)、ポリ(3—オタ タデシルチオフェン)、ポリ(3—ブロモチォフェン)、ポリ(3—クロロチォフェン)、ポリ( 3—ョードチォフェン)、ポリ(3—シァノチォフェン)、ポリ(3—フエ-ルチオフェン)、 ポリ(3, 4—ジメチルチオフェン)、ポリ(3, 4—ジブチルチオフェン)、ポリ(3—ヒドロ キシチォフェン)、ポリ(3—メトキシチォフェン)、ポリ(3—エトキシチォフェン)、ポリ(3 ーブトキシチォフェン)、ポリ(3—へキシルォキシチォフェン)、ポリ(3—ヘプチノレオ キシチォフェン)、ポリ(3—ォクチルォキシチォフェン)、ポリ(3—デシルォキシチォ フェン)、ポリ(3—ドデシルォキシチォフェン)、ポリ(3—ォクタデシルォキシチォフエ ン)、ポリ(3—メチル 4—メトキシチォフェン)、ポリ(3, 4—エチレンジォキシチオフ ェン)、ポリ(3—メチルー 4ーェトキシチォフェン)、ポリ(3—カルボキシチォフェン)、 ポリ(3—メチルー 4 カルボキシチォフェン)、ポリ(3—メチルー 4 カルボキシェチ ルチオフェン)、ポリ(3—メチルー 4 カルボキシブチルチオフェン)、ポリア-リン、ポ リ(2—メチルァ-リン)、ポリ(3 イソブチルァ-リン)、ポリ(2 ァ-リンスルホン酸)、 ポリ(3—ァ-リンスルホン酸)等が挙げられる。
[0028] これらの中でも、ポリピロール、ポリチォフェン、ポリ(N—メチルビロール)、ポリ(3— メチルチオフェン)、ポリ(3—メトキシチオフヱン)、ポリ(3, 4—エチレンジォキシチォ フェン)力 選ばれる 1種又は 2種力 なる(共)重合体が、抵抗値及び反応性の点か ら好適に用いられる。さらには、ポリピロール、ポリ(3, 4—エチレンジォキシチォフエ ン)は、導電性がより高い上に、耐熱性が向上する点から、より好ましい。
[0029] また、置換基に炭素数 6以上のアルキル基を有するものは、後述するァ-オン基含 有可溶ィ匕高分子を用いることなく溶剤溶解性を付与することができる点で、好まし ヽ 。また、置換基としてァ-オン基を分子内に持つ π共役系導電性高分子はそのもの 自体が水に溶解する点で好ま ヽ。
[0030] 上記 π共役系導電性高分子は、溶媒中、 π共役系導電性高分子の前駆体モノマ 一を、酸化剤又は酸化重合触媒の存在下で化学酸化重合することによって容易に 得ることができる。
その際、 π共役系導電性高分子の前駆体モノマーとしては、ピロール類及びその 誘導体、チォフェン類及びその誘導体、ァニリン類及びその誘導体等を使用すること ができる。
酸化剤としては、前記前駆体モノマーを酸化させて π共役系導電性高分子を得る ことができるものであればよぐ例えば、ペルォキソ二硫酸アンモ-ゥム、ペルォキソ 二硫酸ナトリウム、ペルォキソ二硫酸カリウム等のペルォキソ二硫酸塩;塩ィ匕第二鉄、 硫酸第二鉄、硝酸第二鉄、塩化第二銅等の遷移金属化合物;三フッ化ホウ素、塩化 アルミニウムなどの金属ハロゲンィ匕合物;酸ィ匕銀、酸ィ匕セシウム等の金属酸ィ匕物;過 酸化水素、オゾン等の過酸ィ匕物;過酸ィ匕ベンゾィル等の有機過酸ィ匕物;酸素等が挙 げられる。
[0031] 化学酸ィ匕重合を行う際に用いる溶媒としては特に制限されず、前記前駆体モノマ 一を溶解又は分散しうる溶媒であり、酸化剤及び酸化触媒の酸化力を維持させること ができるものであればよい。例えば、水、 N—メチルー 2—ピロリドン、 N, N—ジメチ ルホルムアミド、 N, N—ジメチルァセトアミド、ジメチルスルホキシド、へキサメチレン ホスホルトリアミド、ァセトニトリル、ベンゾ-トリル等の極性溶媒;クレゾール、フエノー ル、キシレノール等のフエノール類;メタノール、エタノール、プロパノール、ブタノー ル等のアルコール類;アセトン、メチルェチルケトン等のケトン類;へキサン、ベンゼン 、トルエン等の炭化水素類;ギ酸、酢酸等のカルボン酸;エチレンカーボネート、プロ ピレンカーボネート等のカーボネート化合物;ジォキサン、ジェチルエーテル等のェ 一テル化合物;エチレングリコールジアルキルエーテル、プロピレングリコールジアル キルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコール ジアルキルエーテル等の鎖状エーテル類; 3—メチル— 2—ォキサゾリジノン等の複 素環化合物;ァセトニトリル、グルタロジ-トリル、メトキシァセトニトリル、プロピオ-トリ ル、ベンゾ-トリル等の-トリルイ匕合物等が挙げられる。これらの溶媒は、単独で用い てもよいし、 2種類以上の混合物としてもよいし、他の有機溶媒との混合物としてもよ い。
[0032] (ドーパント)
ドーパントとしては、 π共役系導電性高分子へのドープ '脱ドープにおいて π共役 系導電性高分子中の共役電子の酸ィ匕還元電位を変化させることができれば、ドナー 性のものでもよいし、ァクセプタ性のものでもよい。
[0033] [ドナー性ドーパント]
ドナー性ドーパントとしては、例えば、ナトリウム、カリウム等のアルカリ金属;カルシ ゥム、マグネシウム等のアルカリ土類金属;テトラメチルアンモ-ゥム、テトラエチノレア ンモ-ゥム、テトラプロピルアンモ-ゥム、テトラプチルアンモ-ゥム、メチルトリェチル アンモ-ゥム、ジメチルジェチルアンモ -ゥム等の 4級ァミン化合物等が挙げられる。
[0034] [ァクセプタ '性ドーパント]
ァクセプタ性ドーパントとしては、例えば、ハロゲン化合物、ルイス酸、プロトン酸、 有機シァノ化合物、有機金属化合物等を使用できる。
さらに、ハロゲンィ匕合物としては、例えば、塩素 (C1 )、臭素 (Br )、ヨウ素 (I )、塩
2 2 2 ィ匕ヨウ素 (IC1)、臭化ヨウ素 (IBr)、フッ化ヨウ素 (IF)等が挙げられる。
ルイス酸としては、例えば、 PF、 AsF、 SbF、 BF、 BC1、 BBr、 SO等が挙げら
5 5 5 5 5 5 3 れる。
有機シァノ化合物としては、共役結合に二つ以上のシァノ基を含む化合物が使用 できる。例えば、テトラシァノエチレン、テトラシァノエチレンオキサイド、テトラシァノべ ンゼン、ジクロロジシァノベンゾキノン(DDQ) ,テトラシァノキノジメタン、テトラシァノ ァザナフタレン等が挙げられる。
[0035] プロトン酸としては、無機酸、有機酸が挙げられる。さらに、無機酸としては、例えば 、塩酸、硫酸、硝酸、リン酸、ホウフッ化水素酸、フッ化水素酸、過塩素酸等が挙げら れる。また、有機酸としては、有機カルボン酸、フエノール類、有機スルホン酸等が挙 げられる。
[0036] 有機カルボン酸としては、脂肪族、芳香族、環状脂肪族等にカルボキシ基を一つ 又は二つ以上を含むものを使用できる。例えば、ギ酸、酢酸、シユウ酸、安息香酸、 フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クェン酸、乳酸、コハク酸、モノ クロ口酢酸、ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、ニトロ酢酸、トリフエ-ル 酢酸等が挙げられる。
[0037] 有機スルホン酸としては、脂肪族、芳香族、環状脂肪族等にスルホ基を一つ又は 二つ以上含むものを使用できる。スルホ基を一つ含むものとしては、例えば、メタンス ルホン酸、エタンスルホン酸、 1—プロパンスルホン酸、 1—ブタンスルホン酸、 1—へ キサンスルホン酸、 1—ヘプタンスルホン酸、 1—オクタンスルホン酸、 1—ノナンスル ホン酸、 1—デカンスルホン酸、 1—ドデカンスルホン酸、 1—テトラデカンスルホン酸 、 1—ペンタデカンスルホン酸、 2 ブロモエタンスルホン酸、 3 クロ口一 2 ヒドロキ シプロパンスルホン酸、トリフルォロメタンスルホン酸、コリスチンメタンスルホン酸、 2 アクリルアミドー 2—メチルプロパンスルホン酸、ァミノメタンスルホン酸、 1ーァミノ —2 ナフトール— 4—スルホン酸、 2 アミノー 5 ナフトール— 7—スルホン酸、 3 —ァミノプロパンスルホン酸、 N シクロへキシル 3—ァミノプロパンスルホン酸、ベ ンゼンスルホン酸、 p トルエンスルホン酸、キシレンスルホン酸、ェチルベンゼンス ルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ペンチルベン ゼンスルホン酸、へキシルベンゼンスルホン酸、ヘプチルベンゼンスルホン酸、オタ チルベンゼンスルホン酸、ノ-ルベンゼンスルホン酸、デシルベンゼンスルホン酸、ゥ ンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ペンタデシルベンゼン スルホン酸、へキサデシルベンゼンスルホン酸、 2, 4 ジメチルベンゼンスルホン酸 、ジプロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、 4ーァミノベンゼンス ルホン酸、 o ァミノベンゼンスルホン酸、 m—ァミノベンゼンスルホン酸、 4ーァミノ —2 クロ口トルエン一 5—スルホン酸、 4 アミノー 3—メチルベンゼン一 1—スルホ ン酸、 4 アミノー 5—メトキシ一 2—メチルベンゼンスルホン酸、 2 アミノー 5—メチ ルベンゼン一 1—スルホン酸、 4 アミノー 2—メチルベンゼン一 1—スルホン酸、 5— ァミノ 2 メチルベンゼン 1ースルホン酸、 4 ァミノ 3 メチルベンゼン 1 スルホン酸、 4—ァセトアミドー 3—クロ口ベンゼンスルホン酸、 4—クロ口一 3—ニトロ ベンゼンスルホン酸、 p クロ口ベンゼンスルホン酸、ナフタレンスルホン酸、メチルナ フタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、 ペンチルナフタレンスルホン酸、ジメチルナフタレンスルホン酸、 4 アミノー 1—ナフ タレンスルホン酸、 8 クロロナフタレン一 1—スルホン酸、ナフタレンスルホン酸ホル マリン重縮合物、メラミンスルホン酸ホルマリン重縮合物等のスルホ基を含むスルホン 酸ィ匕合物等が挙げられる。
スルホ基を二つ以上含むものとしては、例えば、ェタンジスルホン酸、ブタンジスル ホン酸、ペンタンジスルホン酸、デカンジスルホン酸、 m—ベンゼンジスルホン酸、 o —ベンゼンジスルホン酸、 p ベンゼンジスルホン酸、トルエンジスルホン酸、キシレ ンジスルホン酸、クロ口ベンゼンジスルホン酸、フルォロベンゼンジスルホン酸、ァ-リ ン— 2, 4 ジスルホン酸、ァ-リン— 2, 5 ジスルホン酸、ジメチルベンゼンジスルホ ン酸、ジェチルベンゼンジスルホン酸、ジブチルベンゼンスルホン酸、ナフタレンジス ルホン酸、メチルナフタレンジスルホン酸、ェチルナフタレンジスルホン酸、ドデシル ナフタレンジスルホン酸、ペンタデシルナフタレンジスルホン酸、ブチルナフタレンジ スルホン酸、 2 アミノー 1, 4 ベンゼンジスルホン酸、 1—アミノー 3, 8 ナフタレン ジスルホン酸、 3 ァミノ一 1, 5 ナフタレンジスルホン酸、 8 ァミノ一 1—ナフトー ルー 3, 6 ジスルホン酸、 4 アミノー 5 ナフトール— 2, 7 ジスルホン酸、アントラ センジスルホン酸、ブチルアントラセンジスルホン酸、 4 ァセトアミドー 4, 一イソチォ ーシアナトスチルベン 2, 2' ジスルホン酸、 4 ァセトアミドー 4' イソチオシァ ナトスチルベン— 2, 2,—ジスルホン酸、 4 ァセトアミドー 4, —マレイミジルスチルベ ン 2, 2 ' —ジスノレホン酸、 1ーァセトキシピレン 3, 6, 8 トリスノレホン酸、 7 アミ ノ一 1, 3, 6 ナフタレントリスルホン酸、 8 ァミノナフタレン一 1, 3, 6 トリスルホン 酸、 3 ァミノ一 1, 5, 7 ナフタレントリスルホン酸等が挙げられる。
[0039] また、有機酸の中でも、ァニオン基を有する可溶ィ匕高分子 (以下、ァニオン基含有 可溶ィ匕高分子という)が好ましい。ァ-オン基含有可溶ィ匕高分子は、ドーパントとして 役割を発揮するだけでなぐ π共役系導電性高分子を溶媒に良好に可溶化させる働 きを持ち、塗料ィ匕を可能にする力 特に好ましく使用される。
[0040] ァ-オン基含有可溶ィ匕高分子としては、例えば、置換若しくは未置換のポリアルキ レン、置換若しくは未置換のポリアルケ-レン、置換若しくは未置換のポリイミド、置換 若しくは未置換のポリアミド、置換若しくは未置換のポリエステルであって、ァ-オン 基を有する構成単位のみ力 なるポリマー、ァ-オン基を有する構成単位とァ-オン 基を有さない構成単位とからなるポリマーが挙げられる。
[0041] ポリアルキレンとは、主鎖力メチレンの繰り返しで構成されているポリマーである。
ポリアルケ-レンとしては、主鎖にビニル基が 1個含まれる構成単位カゝらなるポリマ 一が挙げられ、中でも、不飽和結合と π共役系導電性高分子との相互作用があるこ と、置換若しくは未置換のブタジエンを出発物質として合成しやすいことから、置換若 しくは未置換のブテ-レンが好まし 、。
ポリイミドとしては、ピロメリット酸二無水物、ビフエ二ルテトラカルボン酸二無水物、 ベンゾフエノンテトラカルボン酸二無水物、 2, 2, 3, 3 テトラカルボキシジフエ-ル エーテル二無水物、 2, 2- [4, 4'ージ(ジカルボキシフエ-ルォキシ)フエ-ル]プロ パンニ無水物等の酸無水物と、ォキシジァ-リン、パラフエ-レンジァミン、メタフエ二 レンジァミン、ベンゾフエノンジァミン等のジァミンとからのポリイミドを例示できる。 ポリアミドとしては、ポリアミド 6、ポリアミド 6, 6、ポリアミド 6, 10等を例示できる。 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等を 例示できる。
[0042] 上記ポリマーが置換基を有する場合、その置換基としては、アルキル基、ヒドロキシ 基、カルボキシ基、シァノ基、フエ-ル基、フエノール基、エステル基、アルコキシ基、 カルボニル基等が挙げられる。
アルキル基は、極性溶媒又は非極性溶媒への溶解性及び分散性、榭脂への相溶 性及び分散性等を高くすることができ、ヒドロキシ基は、他の水素原子等との水素結 合を形成しやすくでき、有機溶媒への溶解性、榭脂への相溶性、分散性、接着性を 高くすることができる。また、シァノ基及びヒドロキシフエ-ル基は、極性樹脂への相 溶性、溶解性を高くすることができ、しかも、耐熱性も高くすることができる。上記置換 基の中では、アルキル基、ヒドロキシ基、エステル基、シァノ基が好ましい。
[0043] アルキル基としては、例えば、メチル、ェチル、プロピル、ブチル、イソブチル、 t ブチル、ペンチル、へキシル、ォクチル、デシル、ドデシル等のアルキル基と、シクロ プロピル、シクロペンチル及びシクロへキシル等のシクロアルキル基が挙げられる。有 機溶剤への溶解性、榭脂への分散性、立体障害等を考慮すると、炭素数 1〜12のァ ルキル基がより好ましい。
ヒドロキシ基としては、ァ-オン基含有可溶ィ匕高分子の主鎖に直接結合したヒドロキ シ基、ァ-オン基含有可溶ィ匕高分子の主鎖に結合した炭素数 1〜7のアルキル基の 末端に結合したヒドロキシ基、ァ-オン基含有可溶化高分子の主鎖に結合した炭素 数 2〜7のアルケニル基の末端に結合したヒドロキシ基等が挙げられる。これらの中で は榭脂への相溶及び有機溶剤への溶解性から、主鎖に結合した炭素数 1〜6のアル キル基の末端に結合したヒドロキシ基がより好ましい。
エステル基としては、ァ-オン基含有可溶ィ匕高分子の主鎖に直接結合したアルキ ル系エステル基、芳香族系エステル基、他の官能基を介在してなるアルキル系エス テル基又は芳香族系エステル基を挙げることができる。
シァノ基としては、ァ-オン基含有可溶ィ匕高分子の主鎖に直接結合したシァノ基、 ァ-オン基含有可溶ィ匕高分子の主鎖に結合した炭素数 1〜7のアルキル基の末端 に結合したシァノ基、ァ-オン基含有可溶化高分子の主鎖に結合した炭素数 2〜7 のアルケニル基の末端に結合したシァノ基等を挙げることができる。
[0044] ァ-オン基含有可溶ィ匕高分子におけるァ-オン基としては、 π共役系導電性高分 子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及 び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、カルボ キシ基、スルホ基等が好ましい。さらに、官能基の π共役系導電性高分子へのドー プ効果の観点より、スルホ基がより好ましい。すなわち、ァ-オン基含有可溶化高分 子の中でも、スルホ基含有可溶ィ匕高分子がより好ま ヽ。
[0045] スルホ基含有可溶化高分子は、高分子の側鎖にスルホ基が導入されているもので ある。可溶ィ匕高分子の主鎖としては、例えば、メチレンの繰り返しで構成されているポ リアルキレン、主鎖にビニル基が 1個含まれる構成単位カゝらなるポリアルケ-レン等が 挙げられる。スルホ基の導入は、発煙硫酸による直接スルホン酸化'硫酸化方法、ス ルホン化剤によるスルホン酸化方法、スルホ基転移によるスルホン酸化方法、スルホ 基含有重合性モノマーを重合する方法等が挙げられる。
[0046] スルホ基含有重合性モノマーの重合方法では、スルホ基含有重合性モノマーと、 必要に応じて、スルホ基を含有しない他の重合性モノマーとを、酸化剤及び Ζ又は 酸化重合触媒の存在下、化学酸化重合法によって重合する。
その際、スルホ基含有重合性モノマーとしては、重合可能なモノマーの適宜な部位 にスルホ基が置換されてなるものであれば使用できる。例えば、置換若しくは未置換 のエチレンスルホン酸化合物、置換若しくは未置換のスチレンスルホン酸化合物、置 換複素環スルホン酸化合物、置換アクリルアミドスルホン酸ィ匕合物、置換若しくは未 置換のシクロビニレンスルホン酸化合物、置換若しくは未置換のブタジエンスルホン 酸ィ匕合物、ビュル芳香族スルホン酸ィ匕合物が挙げられる。
[0047] 置換若しくは未置換のエチレンスルホン酸化合物の具体例としては、ビュルスルホ ン酸、ビュルスルホン酸塩、ァリルスルホン酸、ァリルスルホン酸塩、メタリルスルホン 酸、メタリルスルホン酸塩、スルホェチルメタタリレート、スルホェチルメタタリレート塩、 4 スルホブチルメタタリレート、 4 スルホブチルメタタリレート塩、メタリルォキシベン ゼンスルホン酸、メタリルォキシベンゼンスルホン酸塩、ァリルォキシベンゼンスルホ ン酸、ァリルォキシベンゼンスルホン酸塩等を挙げることができる。 置換若しくは未置換のスチレンスルホン酸化合物の具体例としては、スチレンスル ホン酸、スチレンスノレホン酸塩、 aーメチノレスチレンスノレホン酸、 aーメチノレスチレン スルホン酸塩等が挙げられる。
置換アクリルアミドスルホン酸化合物の具体例としては、アクリルアミドー t ブチル スルホン酸、アクリルアミドー tーブチルスルホン酸塩、 2—アクリルアミドー 2—メチル プロパンスルホン酸、 2—アクリルアミド 2—メチルプロパンスルホン酸塩等が挙げら れる。
[0048] 置換若しくは未置換のシクロビニレンスルホン酸化合物の具体例としては、シクロブ テン— 3—スルホン酸、シクロブテン 3—スルホン酸塩等が挙げられる。
置換若しくは未置換のブタジエンスルホン酸ィ匕合物の具体例としては、イソプレンス ルホン酸、イソプレンスルホン酸塩、 1, 3 ブタジエン 1ースルホン酸、 1, 3 ブタ ジェン—1—スルホン酸塩、 1—メチル 1, 3 ブタジエン— 2—スルホン酸、 1—メ チルー 1, 3 ブタジエン 3—スルホン酸塩、 1ーメチルー 1, 3 ブタジエンー4 スルホン酸、 1ーメチルー 1, 3 ブタジエンー4ースルホン酸塩等が挙げられる。 これらの中では、ビュルスルホン酸塩、スルホェチルメタタリレート、スルホェチルメ タクリレート塩、 4 スルホブチルメタタリレート、 4 スルホブチルメタタリレート塩、ス チレンスノレホン酸、スチレンスノレホン酸塩、イソプレンスノレホン酸、イソプレンスノレホン 酸塩が好ましい。
[0049] スルホ基を含有しない他の重合性モノマーとしては、置換若しくは未置換のェチレ ン化合物、置換アクリル酸ィ匕合物、置換若しくは未置換のスチレン、置換若しくは未 置換のビニルァミン、不飽和基含有複素環化合物、置換若しくは未置換のアクリルァ ミドィ匕合物、置換若しくは未置換のシクロビニレンィ匕合物、置換若しくは未置換のブタ ジェンィ匕合物、置換若しくは未置換のビニル芳香族化合物、置換若しくは未置換の ジビュルベンゼン化合物、置換ビュルフエノール化合物、任意の置換シリルスチレン 、任意の置換フ ノール化合物等が挙げられる。
[0050] 具体的には、エチレン、プロペン、 1—ブテン、 2 ブテン、 1—ペンテン、 2 ペン テン、 1一へキセン、 2—へキセン、スチレン、 p—メチノレスチレン、 p ェチノレスチレン 、 p ブチルスチレン、 2, 4, 6 トリメチルスチレン、 ρ—メトキシスチレン、 2 ビニノレ ナフタレン、 6—メチルー 2 ビニルナフタレン、 1ービニルイミダゾール、ビニルピリジ ン、ビュルアセテート、アクリルアルデヒド、アクリロニトリル、 N ビュル— 2—ピロリド ン、アクリルアミド、 N, N—ジメチルアクリルアミド、アクリル酸メチル、アクリル酸ェチ ル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸イソオタ チル、アクリル酸イソノ-ルブチル、アクリル酸ァリル、メタクリル酸ェチル、アクリル酸 ヒドロキシェチル、アクリル酸メトキシェチル、アクリル酸メトキシブチル、アクリル酸ス テアリル、アクリル酸エステル、アタリロイルモルホリン、ビニルァミン、 N, N ジメチル ビュルァミン、 N, N ジェチルビ-ルァミン、 N, N—ジブチルビ-ルァミン、 N, N— ジー tーブチルビ-ルァミン、 N, N ジフエ-ルビ-ルァミン、 N ビュルカルバゾー ル、ビュルアルコール、塩化ビュル、フッ化ビュル、ビュルエーテル、シクロプロペン 、シクロブテン、シクロペンテン、シクロへキセン、シクロヘプテン、シクロオタテン、 2— メチルシクロへキセン、ビニルフエノール、 1, 3 ブタジエン、 1ーメチルー 1, 3 ブ タジェン、 2—メチルー 1, 3 ブタジエン、 1, 4 ジメチルー 1, 3 ブタジエン、 1, 2 ジメチルー 1, 3 ブタジエン、 1, 3 ジメチルー 1, 3 ブタジエン、 1ーォクチル —1, 3 ブタジエン、 2—ォクチルー 1, 3 ブタジエン、 1 フエ二ルー 1, 3 ブタジ ェン、 2 フエニノレー 1, 3 ブタジエン、 1ーヒドロキシ 1, 3 ブタジエン、 2 ヒド ロキシ—1, 3—ブタジエン、アクリル酸ァリル、アクリルアミドアリル、ジビュルエーテ ル、 o ジビュルベンゼン、 m—ジビュルベンゼン、 p ジビュルベンゼン等が挙げら れる。これらの中で好適なものとして、 1—ブテン、ビュルフエノール、アクリル酸ブチ ル、 N—ビュル一 2 ピロリドン、 1, 3 ブタジエンを例示できる。
[0051] ァ-オン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶 媒は、 π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用する ものと同様である。
[0052] ァ-オン基含有可溶ィ匕高分子の具体例としては、ポリビュルスルホン酸、ポリスチレ ンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸ェチルスルホン酸、ポリアクリル酸 ブチルスルホン酸、ポリアクリルスルホン酸、ポリメタタリルスルホン酸、ポリ一 2—ァク リルアミドー 2—メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリスチレン力 ルボン酸、ポリー2—アクリルアミドー 2—メチルプロパンカルボン酸、ポリイソプレン力 ルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、 2種 以上の共重合体であってもよ 、。
[0053] 導電性組成物におけるドーパントの含有量は、 π共役系導電性高分子 1モルに対 して 0. 1〜10モルであることが好ましぐ 0. 5〜7モルの範囲がより好ましい。ドーパ ントの含有量が 0. 1モルより少なくなると、ドーパントの π共役系導電性高分子へのド 一ビング効果が弱くなる傾向にあり、導電性が不足することがある。また、ドーパント の含有量が 10モルより多くなると、導電性組成物中の π共役系導電性高分子の含 有量が少なくなり、やはり充分な導電性が得られにくい。
[0054] また、帯電防止塗料における可溶化高分子は、分子内にァニオン基及び Ζ又は電 子吸引性基を有する高分子であり、 π共役系導電性高分子を溶媒に可溶化させるも のである。また、可溶ィ匕高分子はドーパントとしての機能も発揮する。
分子内にァニオン基を有する可溶ィ匕高分子は、上述の通りである。
分子内に電子吸引性基を有する可溶ィ匕高分子 (以下、電子吸引基含有可溶化高 分子という)としては、シァノ基、ニトロ基、ホルミル基、カルボ-ル基、ァセチル基から 選ばれる少なくとも 1種を有する化合物を構成単位としたポリマーが挙げられる。
[0055] 電子吸引性基含有可溶化高分子の具体例としては、ポリアクリロニトリル、ポリメタク リロ-トリル、アクリロニトリル一スチレン榭脂、アクリロニトリル一ブタジエン榭脂、アタリ 口-トリル—ブタジエン—スチレン榭脂や、水酸基あるいはアミノ基含有榭脂をシァノ ェチル化した榭脂(例えば、シァノエチルセルロース)、ポリビュルピロリドン、アルキ ル化ポリビュルピロリドン、ニトロセルロースなどが挙げられる。
中でも、シァノ基を有する化合物を構成単位としたアクリロニトリル、メタタリロニトリル が好ましい。シァノ基は極性が高いため、バインダ榭脂成分との相溶性、分散性をよ り向上させることができる。
[0056] 可溶化高分子は共重合体でもよぐ例えば、上述したァニオン基含有可溶化高分 子と電子吸引性基含有可溶ィ匕高分子とを 2種以上含む共重合体、あるいは、異なる 種類のァニオン基を有する単位を含む共重合体、異なる種類の電子吸引性基を有 する単位を含む共重合体であってもよ ヽ。
さらに、可溶ィ匕高分子には、他のビ-ルイ匕合物が共重合されていてもよい。他のビ 二ルイ匕合物としては、ハロゲンィ匕ビ-ルイ匕合物、芳香族ビニル及び Z又はその誘導 体、複素環ビニル化合物及び Z又はその誘導体、脂肪族ビニル化合物及び Z又は その誘導体、アクリルィ匕合物、ジェンィ匕合物、マレイミドィ匕合物が挙げられる。
他のビュル化合物の具体例としては、スチレン、ブタジエン、アクリル酸、メタクリル 酸、ヒドロキシアクリル酸、ヒドロキシメタクリル酸、アクリル酸エステル、メタクリル酸ェ ステル、 p—ビュルトルエンなどの重合性ビュル化合物が挙げられる。これらの他のビ 二ルイ匕合物を共重合することで溶媒溶解性やバインダ榭脂への相溶性をコントロー ノレすることができる。
[0057] また、可溶化高分子は、耐衝撃性を改良するための合成ゴム成分や、耐環境特性 を向上させるための老化防止剤、酸化防止剤、紫外線吸収剤を含んでいてもよい。 ただし、アミンィ匕合物系の酸ィ匕防止剤は上記導電性高分子を重合させる際に用いる 酸化剤の働きを阻害することがあるので、酸ィ匕防止剤にはフエノール系のものを用い たり、重合後に混合したりするなどの対策が必要である。
[0058] (窒素含有芳香族性環式化合物)
窒素含有芳香族性環式ィ匕合物とは、少なくとも 1個以上の窒素原子を含む芳香族 性環を有し、芳香族性環中の窒素原子が芳香性環中の他の原子と共役関係を持つ ものである。共役関係となるためには、窒素原子と他の原子とが不飽和結合を形成し ている。あるいは、窒素原子が直接的に他の原子と不飽和結合を形成していなくても 、不飽和結合を形成している他の原子に隣接していればよい。窒素原子上に存在し ている非共有電子対が、他の原子同士で形成されている不飽和結合と擬似的な共 役関係を構成できるからである。
窒素含有芳香族性環式ィ匕合物においては、他の原子と共役関係を有する窒素原 子と、不飽和結合を形成して 、る他の原子に隣接して 、る窒素原子を共に有するこ とが好ましい。
[0059] このような窒素含有芳香族性環式化合物としては、例えば、一つの窒素原子を含 有するピリジン類及びその誘導体、二つの窒素原子を含有するイミダゾール類及び その誘導体、ピリミジン類及びその誘導体、ピラジン類及びその誘導体、三つの窒素 原子を含有するトリアジン類及びその誘導体等が挙げられる。溶媒溶解性等の観点 力もは、ピリジン類及びその誘導体、イミダゾール類及びその誘導体、ピリミジン類及 びその誘導体が好ましい。
また、窒素含有芳香族性環式化合物は、アルキル基、ヒドロキシ基、カルボキシ基、 シァノ基、フヱ -ル基、フヱノール基、エステル基、アルコキシ基、カルボ-ル基等の 置換基が環に導入されたものでもよいし、導入されていないものでもよい。また、環は 多環であってもよい。
[0060] 置換基のうち、アルキル基としては、メチル、ェチル、プロピル、ブチル、イソブチル 、 tーブチル、ペンチル、へキシル、ォクチル、デシル、ドデシル等のアルキル基、シ クロプロピル、シクロペンチル、シクロへキシル等のシクロアルキル基が挙げられる。 中でも、有機溶剤への溶解性、榭脂への分散性、立体障害等を考慮すると、炭素数 1〜 12のアルキル基が好まし!/、。
ヒドロキシ基としては、ヒドロキシ、メチレンヒドロキシ、エチレンヒドロキシ、トリメチレン ヒドロキシ、テトラメチレンヒドロキシ、ペンタメチレンヒドロキシ、へキサメチレンヒドロキ シ、ヘプタメチレンヒドロキシ、プロピレンヒドロキシ、ブチレンヒドロキシ、ェチノレメチレ ンヒドロキシ等のアルキレンヒドロキシ基、プロべ-レンヒドロキシ、ブテ-レンヒドロキ シ、ペンテ-レンヒドロキシ等のアルケ-レンヒドロキシ基が挙げられる。
カルボキシ基としては、カルボキシ、メチレンカルボキシ、エチレンカルボキシ、トリメ チレンカルボキシ、プロピレンカルボキシ、テトラメチレンカルボキシ、ペンタメチレン カルボキシ、へキサメチレンカルボキシ、ヘプタメチレカルボキシ、ェチルメチレン力 ルボキシ、フエニルエチレンカルボキシ等のアルキレンカルボキシ、イソプレンカルボ キシ、プロぺニレンカルボキシ、ブテニレンカルボキシ、ペンテ二レンカルボキシ等の ァルケ-レンカルボキシ基が挙げられる。
[0061] シァノ基としては、シァ入メチレンシァ入エチレンシァ入トリメチレンシァ入テトラ メチレンシァノ、ペンタメチレンシァノ、へキサメチレンシァノ、ヘプタメチレンシァノ、 プロピレンシァ入ブチレンシァノ、ェチルメチレンシァノ等のアルキレンシァノ基、プ 口べ-レンシァ入ブテ-レンシァ入ペンテ-レンシァノ等のアルケ-レンシァノ基が 挙げられる。
フエノール基としては、フエノール、メチルフエノール、ェチルフエノール、ブチルフ ェノール等のアルキルフエノール基、メチレンフエノール、エチレンフエノール、トリメチ レンフエノール、テトラメチレンフエノール、ペンタメチレンフエノール、へキサメチレン フエノール等のアルキレンフエノール基等が挙げられる。
フエ-ル基としては、フエ-ル、メチルフエ-ル、ブチルフエ-ル、ォクチルフエ-ル 、ジメチルフエ-ル、等のアルキルフエ-ル基と、メチレンフエ-ル、エチレンフエ-ル 、トリメチレンフエニル、テトラメチレンフエニル、ペンタメチレンフエニル、へキサメチレ ンフエ-ル、ヘプタメチレンフエ-ル等のアルキレンフエ-ル基と、プロべ-レンフエ- ル、ブテ-レンフエ-ル、ペンテ-レンフエ-ル等のアルケ-レンフエ-ル等が挙げら れる。
アルコキシ基としては、メトキシ、エトキシ、ブトキシ、フエノキシ等が挙げられる。
[0062] ピリジン類及びその誘導体の具体的な例としては、ピリジン、 2 メチルピリジン、 3 メチルピリジン、 4 メチルピリジン、 4 ェチルピリジン、 2, 4 ジメチルビリジン、 2 , 4, 6 トリメチルピリジン、 3 シァノ 5—メチルピリジン、 2 ピリジンカルボン酸、 6—メチノレー 2 ピリジン力ノレボン酸、 2, 6 ピリジンージカノレボン酸、 4 ピリジン力 ルボキシアルデヒド、 4 アミノビリジン、 2, 3 ジァミノピリジン、 2, 6 ジァミノピリジ ン、 2, 6 ジアミノー 4 メチルピリジン、 4ーヒドロキシピリジン、 2, 6 ジヒドロキシピ リジン、 6 ヒドロキシニコチン酸メチル、 2 ヒドロキシ一 5 ピリジンメタノール、 6 ヒ ドロキシニコチン酸ェチル、 4 ピリジンメタノール、 4 ピリジンエタノール、 2—フエ 二ノレピリジン、 3—メチノレキノリン、 3 ェチノレキノリン、キノリノ一ノレ、 2, 3 シクロペン テノピリジン、 2, 3 シクロへキサノピリジン、 1, 2 ジ(4 ピリジル)ェタン、 1, 2— ジ(4 -ピリジル)プロパン、 2 -ピリジンカルボキシアルデヒド、 2 -ピリジンカルボン酸 、 2 ピリジンカルボ二トリル、 2,3 ピリジンジカルボン酸、 2,4 ピリジンジカルボン 酸、 2,5 ピリジンジカノレボン酸、 2,6 ピリジンジカノレボン酸、 3 ピリジンスノレホン 酸等が挙げられる。
[0063] イミダゾール類及びその誘導体の具体的な例としては、イミダゾール、 2 メチルイミ ダゾール、 2—プロピルイミダゾール、 2—ゥンデジルイミダゾール、 2—フエ-ルイミダ ゾール、 N—メチルイミダゾール、 1一(2—ヒドロキシェチル)イミダゾール、 2—ェチ ルー 4ーメチルイミダゾール、 1, 2 ジメチルイミダゾール、 1一べンジルー 2 メチル イミダゾール、 1一べンジルー 2—フエ-ルイミダゾール、 1ーシァノエチルー 2—メチ ルイミダゾール、 1—シァノエチル— 2 ェチル—4—メチルイミダゾール、 2 フエ- ルー 4, 5 ジヒドロキシメチルイミダゾール、 1 ァセチルイミダゾール、 4, 5 イミダ ゾールジカルボン酸、 4, 5—イミダゾールジカルボン酸ジメチル、ベンズイミダゾール 、 2—ァミノべンズイミダゾール、 2—ァミノべンズイミダゾールー 2—スルホン酸、 2— アミノー 1—メチルベンズイミダゾール、 2—ヒドロキシベンズイミダゾール、 2— (2—ピ リジル)ベンズイミダゾール等が挙げられる。
[0064] ピリミジン類及びその誘導体の具体的な例としては、 2 アミノー 4 クロロー 6—メ チノレピリミジン、 2 アミノー 6 クロロー 4ーメトキシピリミジン、 2 アミノー 4,6 ジク ロロピリミジン、 2 アミノー 4,6 ジヒドロキシピリミジン、 2 アミノー 4,6 ジメチノレビ リミジン、 2 アミノー 4,6 ジメトキシピリミジン、 2 アミノビリミジン、 2 アミノー 4ーメ チルピリミジン、 4, 6 ジヒドロキシピリミジン、 2,4 ジヒドロキシピリミジン 5 カルボ ン酸、 2, 4, 6 トリァミノピリミジン、 2, 4 ジメトキシピリミジン、 2, 4, 5 トリヒドロキ シピリミジン、 2, 4 ピリミジンジオール等が挙げられる。
[0065] ピラジン類及びその誘導体の具体的な例としては、ピラジン、 2—メチルビラジン、 2 , 5 ジメチルビラジン、ピラジンカルボン酸、 2, 3 ピラジンジカルボン酸、 5—メチ ルビラジンカルボン酸、ピラジンアミド、 5—メチルビラジンアミド、 2 シァノビラジン、 アミノビラジン、 3 アミノビラジン 2—力ルボン酸、 2 ェチルー 3—メチルビラジン 、 2 ェチルー 3—メチルビラジン、 2,3 ジメチルビラジン、 2,3 ジェチルビラジン 等が挙げられる。
[0066] トリアジン類及びその誘導体の具体的な例としては、 1, 3, 5 トリァジン、 2 ァミノ
1, 3, 5 トリアジン、 3 アミノー 1, 2, 4 トリァジン、 2, 4ージアミノー 6 フエ二 ル— 1, 3, 5 トリアジン、 2, 4, 6 トリァミノ— 1, 3, 5 トリアジン、 2, 4, 6 トリス( トリフルォロメチル)—1, 3, 5 卜リアジン、 2, 4, 6—トリ— 2 ピリジン— 1, 3, 5 卜 リアジン、 3— (2 ピリジン)一 5, 6 ビス(4 フエ-ルスルホン酸)一 1, 2, 4ートリア ジンニナトリウム、 3—(2—ピリジン)ー5, 6 ジフエ-ノレ 1, 2, 4 トリァジン、 3—( 2 ピリジン) 5, 6 ジフエ-ル一 1, 2, 4 トリァジン一 a , a ,—ジスルホン酸二 ナトリウム、 2 ヒドロキシ一 4, 6 ジクロロ一 1, 3, 5 トリァジン等が挙げられる。 [0067] 窒素含有芳香族性環式化合物における窒素原子には非共有電子対が存在してい るため、窒素原子上には置換基又はプロトンが配位又は結合されやすい。窒素原子 上に置換基又はプロトンが配位又は結合された場合には、窒素原子上にカチオン電 荷を帯びる傾向がある。ここで、窒素原子と他の原子とは共役関係を有しているため 、窒素原子上に置換基又はプロトンが配位又は結合されたことによって生じたカチォ ン電荷は窒素含有芳香族性環中に拡散されて、安定した形で存在するようになる。 このようなことから、窒素含有芳香族性環式化合物は、窒素原子に置換基が導入さ れて窒素含有芳香族性環式ィ匕合物カチオンを形成していてもよい。さらに、そのカチ オンとァ-オンとが組み合わされて塩が形成されていてもよい。塩であっても、カチォ ンでない窒素含有芳香族性環式化合物と同様の効果を発揮する。
[0068] 窒素含有芳香族性環式化合物の窒素原子に導入される置換基としては、水素、ァ ルキル基、ヒドロキシ基、カルボキシ基、シァノ基、フエ-ル基、フエノール基、エステ ル基、アルコキシ基、カルボニル基等が挙げられる。
アルキル基としては、メチル、ェチル、プロピル、ブチル、イソブチル、 tーブチル、 ペンチル、へキシル、ォクチル、デシル、ドデシル等のアルキル基と、シクロプロピル 、シクロペンチル及びシクロへキシル等のシクロアルキル基が挙げられる。有機溶剤 への溶解性、榭脂への分散性、立体障害等を考慮すると、炭素数 1〜12のアルキル 基がより好ましい。
ヒドロキシ基としては、ヒドロキシ、メチレンヒドロキシ、エチレンヒドロキシ、トリメチレン ヒドロキシ、テトラメチレンヒドロキシ、ペンタメチレンヒドロキシ、へキサメチレンヒドロキ シ、ヘプタメチレンヒドロキシ、プロピレンヒドロキシ、ブチレンヒドロキシ、ェチノレメチレ ンヒドロキシ等のアルキレンヒドロキシ基、プロべ-レンヒドロキシ、ブテ-レンヒドロキ シ、ペンテ-レンヒドロキシ等のアルケ-レンヒドロキシ基が挙げられる。
カルボキシ基としては、カルボキシ、メチレンカルボキシ、エチレンカルボキシ、トリメ チレンカルボキシ、プロピレンカルボキシ、テトラメチレンカルボキシ、ペンタメチレン カルボキシ、へキサメチレンカルボキシ、ヘプタメチレンカルボキシ、ェチルメチレン カルボキシ、フエ-ルエチレンカルボキシ等のアルキレンカルボキシ基、イソプレン力 ルボキシ、プロぺニレンカルボキシ、ブテニレンカルボキシ、ペンテ二レンカルボキシ 等のァルケ-レンカルボキシ基が挙げられる。
[0069] シァノ基としては、シァ入メチレンシァ入エチレンシァ入トリメチレンシァ入テトラ メチレンシァノ、ペンタメチレンシァノ、へキサメチレンシァノ、ヘプタメチレンシァノ、 プロピレンシァ入ブチレンシァノ、ェチルメチレンシァノ等のアルキレンシァノ基と、 プロべ-レンシァ入ブテ-レンシァ入ペンテ-レンシァノ等のアルケ-レンシァノ基 が挙げられる。
フエノール基としては、フエノール、メチルフエノール、ェチルフエノール、ブチルフ ェノール等のアルキルフエノール基と、メチレンフエノール、エチレンフエノール、トリメ チレンフエノール、テトラメチレンフエノール、ペンタメチレンフエノール、へキサメチレ ンフエノール等のアルキレンフエノール基等が挙げられる。
フエ-ル基としては、フエ-ル、メチルフエ-ル、ブチルフエ-ル、ォクチルフエ-ル 、ジメチルフエ-ル等のアルキルフエ-ル基、メチレンフエ-ル、エチレンフエ-ル、ト リメチレンフエニル、テトラメチレンフエニル、ペンタメチレンフエニル、へキサメチレン フエ-ル、ヘプタメチレンフエ-ル等のアルキレンフエ-ル基、プロべ-レンフエ-ル、 ブテ-レンフエ-ル、ペンテ-レンフエ-ル等のアルケ-レンフエ-ル等が挙げられる アルコキシ基としては、メトキシ、エトキシ、ブトキシ、フエノキシ等が挙げられる。
[0070] 窒素含有芳香族性環式ィ匕合物のカチオンと組み合わされて塩を形成するァ-オン としては、例えば、ハロゲンイオン、硫酸イオン、亜塩酸イオン、有機スルホン酸ィォ ン等が挙げられる。有機スルホン酸としては、上述したものと同じものを使用できる。
[0071] 例として帯電防止塗料では、窒素含有芳香族性環式ィ匕合物を添加することによつ て、一部の窒素含有芳香族性環式ィ匕合物がドーパント由来のプロトン、又は他の官 能基と、配位又は結合を生じ、カチオン電荷を帯びる窒素含有芳香環カチオン化合 物となると考えられる。従って、添加された窒素含有芳香族性環式ィ匕合物が、窒素含 有芳香環カチオンィ匕合物と、配位又は結合して 、な 、窒素含有芳香族性環式化合 物との混合体として、帯電防止塗料中に存在すると考えられる。これらの窒素含有芳 香環カチオンィ匕合物と窒素含有芳香族性環式ィ匕合物が、ドーパントの過剰なァ-ォ ン基ゃ電子吸引性基と塩を作り、ドーパントに引き寄せられ、帯電防止塗料中の π 共役系導電性高分子の間に入り込んでいると考えられる。窒素含有芳香環カチオン 化合物と窒素含有芳香族性環式化合物が、 π共役系導電性高分子の間に介在す ることによって π共役系導電性高分子同士の電気伝導に必要なホッピングエネルギ 一を低下させて、帯電防止塗料の電気伝導度を向上させると考えられる。
[0072] また、窒素含有芳香族性環式化合物は、導電性をより高くできる上に、耐熱性を向 上させることができることから、架橋性官能基を有することが好ましい。以下、架橋性 官能基を有する窒素含有芳香族性環式化合物のことを、架橋性窒素含有芳香族性 環式化合物という。
[0073] 架橋性官能基とは、同種の官能基または他の種類の官能基と反応して架橋しうる 官能基のことである。
架橋性官能基は、窒素含有芳香族性環式ィ匕合物に直接結合していてもよいし、置 換又は未置換のメチレン、置換又は未置換のエチレン、置換又は未置換のプロピレ ン等の官能基が介在して窒素含有芳香族性環式ィ匕合物に結合していてもよい。 また、架橋性官能基は、窒素含有芳香族性環式ィ匕合物の窒素原子に導入されて いてもよいし、炭素原子に導入されていてもよい。
[0074] 架橋性官能基としては、例えば、ビュル基、カルボキシ基、ヒドロキシ基、アミノ基、 エステル基などが挙げられる。中でも、反応性が高ぐ架橋しやすいことから、ビニル 基、カルボキシ基、ヒドロキシ基が好ましい。
カルボキシ基、ヒドロキシ基、アミノ基、エステル基は上述したものと同様である。
[0075] 架橋性窒素含有芳香族性環式化合物の具体例としては、架橋性官能基を有する ピリジン類及びその誘導体、架橋性官能基を有するイミダゾール類及びその誘導体 などが挙げられる。
架橋性官能基を有するピリジン類及びその誘導体としては、例えば、 2—ビュルピリ ジン、 4 ビニルピリジン、 2—メチル 6 ビュルピリジン、 5—メチル 2 ビュルピ リジン、 4—ブテュルピリジン、 4—ペンテ-ルビリジン、 2— (4—ピリジル)アルコール 、 4— (1—ブテュルペンテ-ル)ピリジン、 2 ピリジンカルボン酸、 4 ピリジンカルボ ン酸、 6—メチノレー 2 ピリジン力ノレボン酸、 2, 3 ピリジンジカノレボン酸、 2, 4 ピリ ジンジカルボン酸、 2, 5 ピリジンジカルボン酸、 2, 6 ピリジンジカルボン酸、 4ーヒ ドロキシピリジン、 2, 6 ジヒドロキシピリジン、 6 ヒドロキシニコチン酸メチル、 2 ヒ ドロキシ 5—ピリジンメタノール、 6—ヒドロキシニコチン酸ェチル、 4 ピリジンメタノ ール、 4 ピリジンエタノール、 2 ピリジンカルボ-トリルなどが挙げられる。
[0076] 架橋性官能基を有するイミダゾール類及びその誘導体としては、例えば、 N ビ- ルイミダゾール、 N ァリルイミダゾール、 2—メチル—4 ビュルイミダゾール、 2—メ チルー 1 ビュルイミダゾール、イミダゾールー 4一力ルボン酸、 4, 5 イミダゾール ジカルボン酸、 1一(2—ヒドロキシェチル)イミダゾール、 2—ヒドロキシメチルイミダゾ ール、 4ーヒドロキシメチルイミダゾール、 2 ブチルー 4ーヒドロキシメチルイミダゾー ル、 2—メチルー 4ーヒドロキシメチルイミダゾール、 4ーヒドロキシメチルー 2 メチル イミダゾール、 1 ベンジル 2—ヒドロキシベンズイミダゾール、メチルイミダゾール 4 カルボキシレート、ェチルイミダゾールー 4 カルボキシレート、 4, 5—イミダゾ ールジカルボン酸ジメチルなどが挙げられる。
[0077] 窒素含有芳香族性環式化合物の含有量は、ドーパント及び Zまたは可溶化高分 子の 1モルに対して 0. 1〜100モルの範囲であることが好ましぐ 1〜30モルの範囲 であることがより好ましぐ塗布膜の物性及び導電性の観点からは、 3〜: LOモルの範 囲が特に好ましい。窒素含有芳香族性環式化合物の含有率が 0. 1モルより少なくな ると、窒素含有芳香族性環式ィヒ合物とドーパント及び π共役系導電性高分子との相 互作用が弱くなる傾向にあり、導電性が不足することがある。また、窒素含有芳香族 性環式化合物が 100モルを超えて含まれると π共役系導電性高分子の含有量が少 なくなり、やはり導電性が不足することがある。
[0078] (架橋性化合物)
架橋性窒素含有芳香族性環式化合物を含有する場合には、架橋性化合物をさら に含有することが好ましい。
架橋性ィ匕合物としては、架橋性官能基がビュル基である場合には、ビニル基を有 する化合物が好ましぐ架橋性官能基力 Sカルボキシ基である場合には、ヒドロキシ基 又はアミノ基を有する化合物が好ましぐ架橋性官能基がヒドロキシ基である場合に は、カルボキシ基を有する化合物が好ましい。
架橋性化合物を含有すると、架橋性窒素含有芳香族性環式化合物の架橋性官能 基を架橋しやすくなるため、より安定性を確保できる。
[0079] 架橋性化合物の具体例としては、アクリル酸メチル、アクリル酸ェチル、アクリル酸 プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸イソオタチル、アクリル 酸イソノ -ルブチル、アクリル酸ァリル、メタクリル酸ェチル、アクリル酸ヒドロキシェチ ル、アクリル酸メトキシェチル、アクリル酸メトキシブチル、アクリル酸ステアリル、アタリ ロイルモルホリン、ビュルァミン、 N, N ジメチルビ-ルァミン、 N, N ジェチルビ- ルァミン、 N, N—ジブチルビ-ルァミン、 N, N ジ tーブチルビ-ルァミン、 N, N ージフヱ-ルビ-ルァミン、 N—ビュルカルバゾール、ビュルアルコール、塩化ビュル ゝフッ化ビュル、ビュルエーテル、アクリロニトリル、 N ビュル一 2—ピロリドン、アタリ ルアミド、 N, N ジメチルアクリルアミド等のビュル基含有化合物、カルボン酸、フタ ル酸、アクリル酸、ポリアクリル酸等のカルボキシ基含有化合物、ブタノール、ェチレ ングリコール、ビュルアルコール等のヒドロキシ基含有ィ匕合物などが挙げられる。
[0080] (重合開始剤)
また、窒素含有芳香族性環式化合物が架橋性官能基を有する場合には、重合開 始剤を添加することが好ましい。重合開始剤としては、例えば、酸、アルカリ、ラジカ ル発生剤、酸化剤などが挙げられるが、重合開始剤の種類は架橋性官能基の種類 に応じて適宜選択することが好ましい。すなわち、架橋性官能基がビニル基の場合 には、ラジカル発生剤、アルカリが好ましぐカルボキシ基及びヒドロキシ基の場合に は、酸、アルカリが好ましい。
[0081] (バインダ榭脂)
導電性組成物には、成膜性、膜強度、電気伝導度等の膜特性を調整するためのバ インダ榭脂が含まれてもよい。また、帯電防止塗料についても、塗膜の耐傷性や表面 硬度が高くなり、基材との密着性が向上することから、バインダ榭脂を含むことが好ま しい。帯電防止塗料力 Sバインダ榭脂を含むことにより、帯電防止塗料から形成された 帯電防止膜の鉛筆硬度 CFIS K 5400)を HB以上にしゃすい。
バインダ榭脂は、導電性組成物の必須成分と相溶又は混合分散可能であれば特 に制限されず、反応性榭脂であってもよいし、非反応性榭脂であってもよい。また、 帯電防止塗料と相溶又は混合分散可能であれば熱硬化性榭脂であってもよいし、 熱可塑性榭脂であってもよい。例えば、ポリエチレンテレフタレート、ポリブチレンテレ フタレート、ポリエチレンナフタレート等のポリエステル系榭脂;ポリイミド、ポリアミドイミ ド等のポリイミド系榭脂;ポリアミド 6、ポリアミド 6, 6、ポリアミド 12、ポリアミド 11等のポ リアミド榭脂;ポリフッ化ビ-リデン、ポリフッ化ビニル、ポリテトラフルォロエチレン、ェ チレンテトラフルォロエチレンコポリマー、ポリクロ口トリフルォロエチレン等のフッ素榭 脂;ポリビュルアルコール、ポリビュルエーテル、ポリビュルプチラール、ポリ酢酸ビ- ル、ポリ塩化ビュル等のビュル榭脂;エポキシ榭脂;キシレン榭脂;ァラミド榭脂;ポリ ウレタン系榭脂;ポリウレァ系榭脂;メラミン榭脂;フエノール系榭脂;ポリエーテル;ァ クリル系榭脂及びこれらの共重合体等が挙げられる。
[0082] 帯電防止塗料に用いられるこれらバインダ榭脂は、有機溶剤に溶解されていてもよ V、し、スルホ基やカルボキシ基などの官能基が付与されて水溶液ィ匕されて 、てもよ 、 し、乳化など水に分散されていてもよい。
[0083] ノインダ榭脂の中でも、容易に混合できることから、ポリウレタン、ポリエステル、ァク リル榭脂、ポリアミド、ポリイミド、エポキシ榭脂、ポリイミドシリコーンのいずれ力 1種以 上が好ましい。また、アクリル榭脂は、硬度が硬いとともに透明性に優れるため、光学 フィルタのような用途には適している。
[0084] アクリル榭脂としては熱エネルギー及び Z又は光エネルギーによって硬化する液 状重合体を含むことが好まし ヽ。
ここで、熱エネルギーにより硬化する液状重合体としては、反応型重合体及び自己 架橋型重合体が挙げられる。
反応型重合体は、置換基を有する単量体が重合した重合体であり、置換基として は、カルボキシル基、酸無水物、ォキセタン系、グリシジル基、アミノ基などが挙げら れる。具体的な単量体としては、マロン酸、コハク酸、グルタミン酸、ピメリン酸、ァスコ ルビン酸、フタル酸、ァセチルサルチル酸、アジピン酸、イソフタル酸、安息香酸、 m トルィル酸等のカルボン酸化合物、無水マレイン酸、無水フタル酸、ドデシル無水 コハク酸、ジクロル無水マレイン酸、テトラクロル無水フタル酸、テトラヒドロ無水フタル 酸、無水ピロメリット酸等の酸無水物、 3, 3—ジメチルォキセタン、 3, 3—ジクロロメチ ルォキセタン、 3—メチルー 3—ヒドロキシメチルォキセタン、アジドメチルメチルォキ セタン等のォキセタン化合物、ビスフエノール Aジグリシジルエーテル、ビスフエノー ル Fジグリシジルエーテル、フエノールノボラックポリグリシジルエーテル、 N, N ジグ リシジルー p ァミノフエノールグリシジルエーテル、テトラブロモビスフエノール Aジグ リシジルエーテル、水添ビスフエノール Aジグリシジルエーテル(すなわち、 2, 2—ビ ス(4 グリシジルォキシシクロへキシル)プロパン)等のグリシジルエーテル化合物、 N, N ジグリシジノレア-リン、テトラグリシジルジアミノジフヱ-ルメタン、 N, N, N, N ーテトラグリシジルー m—キシリレンジァミン、トリグリシジルイソシァヌレート、 N, N— ジグリシジルー 5, 5—ジアルキルヒダントイン等のグリシジルァミン化合物、ジェチレ ントリアミン、トリエチレンテトラミン、ジメチルァミノプロピルァミン、 N—アミノエチルピ ペラジン、ベンジルジメチルァミン、トリス(ジメチルアミノメチル)フエノール、 DHP30 —トリ(2—ェチルへクソエート)、メタフエ-レンジァミン、ジアミノジフエ-ルメタン、ジ アミノジフエ-ルスルホン、ジシアンジアミド、三フッ化ホウ素、モノェチルァミン、メン タンジァミン、キシレンジァミン、ェチルメチルイミダゾール等のアミン化合物、 1分子 中に 2個以上のォキシラン環を含む化合物のうち、ビスフエノール Aのェピクロロヒドリ ンによるグリシジルイ匕合物、あるいはその類似物が挙げられる。
[0085] 反応型重合体においては、少なくとも 2官能以上の架橋剤を使用する。その架橋剤 としては、例えば、メラミン榭脂、エポキシ榭脂、金属酸ィ匕物などが挙げられる。金属 酸化物としては、塩基性金属化合物の Al (OH) 、 Al (OOC'CH ) (OOCH)、Al (
3 3 2
OOC'CH ) 、 ZrO (OCH )ゝ Mg (OOC.CH )ゝ Ca (OH) , Ba (OH) 等を適宜
3 2 3 3 2 3 使用できる。
[0086] 自己架橋型重合体は、加熱により官能基同士で自己架橋するものであり、例えば、 グリシジル基とカルボキシル基を含むもの、あるいは、 N—メチロールとカルボキシル 基の両方を含むものなどが挙げられる。
[0087] 光エネルギーによって硬化する液状重合体としては、例えば、ポリエステル、ェポキ シ榭脂、ォキセタン榭脂、ポリアクリル、ポリウレタン、ポリイミド、ポリアミド、ポリアミドィ ミド、ポリイミドシリコーン等のオリゴマー又はプレボリマーが挙げられる。
光エネルギーによって硬化する液状重合体を構成する単量体単位としては、例え ば、ビスフエノール Α·エチレンオキサイド変性ジアタリレート、ジペンタエリスリトール へキサ(ペンタ)アタリレート、ジペンタエリスリトールモノヒドロキシペンタアタリレート、 ジプロピレングリコールジアタリレート、トリメチロールプロパントリアタリレート、グリセリ ンプロポキシトリアタリレート、 4 ヒドロキシブチルアタリレート、 1, 6 へキサンジォ ールジアタリレート、 2—ヒドロキシェチルアタリレート、 2—ヒドロキシプロピルアタリレ ート、イソボル-ルアタリレート、ポリエチレングリコールジアタリレート、ペンタエリスリト ールトリアタリレート、テトラヒドロフルフリルアタリレート、トリプロピレングリコールジァク リレート等のアタリレート類、テトラエチレングリコールジメタタリレート、アルキルメタタリ レート、ァリノレメタタリレート、 1, 3 ブチレングリコーノレジメタクリレート、 n—ブチノレメ タクリレート、ベンジノレメタタリレート、シクロへキシノレメタタリレート、ジエチレングリコー ルジメタタリレート、 2 ェチルへキシルメタタリレート、グリシジルメタタリレート、 1, 6 一へキサンジオールジメタタリレート、 2—ヒドロキシェチルメタタリレート、イソボル- ルメタタリレート、ラウリルメタタリレート、フエノキシェチルメタタリレート、 tーブチノレメタ タリレート、テトラヒドロフルフリルメタタリレート、トリメチロールプロパントリメタタリレート 等のメタタリレート類、ァリルグリシジルエーテル、ブチルダリシジルエーテル、高級ァ ルコールグリシジルエーデル、 1, 6 へキサンジオールダリシジルエーテル、フエ- ルグリシジルエーテル、ステアリルグリシジルエーテル等のグリシジルエーテル類、ダ ィアセトンアクリルアミド、 N, N ジメチルアクリルアミド、ジメチルァミノプロピルアタリ ルアミド、ジメチルァミノプロピルメタクリルアミド、メタクリルアミド、 N—メチロールアタリ ルアミド、 N, N ジメチルアクリルアミド、アタリロイルモルホリン、 N ビュルホルムァ ミド、 N メチルアクリルアミド、 N イソプロピルアクリルアミド、 N— t ブチルアクリル アミド、 N—フエ-ルアクリルアミド、アタリロイルビペリジン、 2—ヒドロキシェチルアタリ ルアミド等のアクリル (メタクリル)アミド類、 2—クロロェチルビ-ルエーテル、シクロへ キシノレビニノレエーテノレ、ェチノレビニノレエーテノレ、ヒドロキシブチノレビニノレエーテノレ、ィ ソブチルビ-ルエーテル、トリエチレングリコールビュルエーテル等のビュルエーテ ル類、酪酸ビュル、モノクロ口酢酸ビュル、ピバリン酸ビュル等のカルボン酸ビュルェ ステル類の単官能モノマー並びに多官能モノマーが挙げられる。
光エネルギーによって硬化する液状重合体は、光重合開始剤によって硬化する。 その光重合開始剤としては、ァセトフエノン類、ベンゾフエノン類、ミヒラーベンゾィル ベンゾエート、 a アミ口キシムエステル、テトラメチルチウラムモノサルファイド、チォ キサントン類などが挙げられる。さらに、光増感剤として、 n—プチルァミン、トリェチル ァミン、トリ— n—ブチルホスフィン等を混合できる。
[0089] (溶媒)
また、導電性組成物には、溶媒が含まれていてもよい。溶媒としては、上述した π 共役系導電性高分子の前駆体モノマーを溶解又は分散しうる溶媒と同じものを使用 できる。
帯電防止塗料及びコンデンサに使用される溶媒としては特に限定されず、たとえば 、メタノール、エタノール、イソプロピルアルコール(ΙΡΑ)などのアルコール系溶媒、 Ν メチルピロリドン(ΝΜΡ)、ジメチルァセトアミド(DMAc)、ジメチルホルムアミド(D MF)などのアミド系溶媒、メチルェチルケトン(MEK)、アセトン、シクロへキサノンな どのケトン系溶媒、酢酸ェチル、酢酸ブチルのようなエステル系溶媒、トルエン、キシ レン、水などが挙げられ、これらを単独で使用してもよいし混合して使用してもよい。 中でも、近年の環境保護の観点から、環境負荷の小さい水やアルコール系溶媒が好 ましい。
[0090] 上記導電性組成物の製造方法としては、例えば、ドーパント及び酸化剤又は酸ィ匕 重合触媒の存在下で、 π共役系導電性高分子の前駆体モノマーを化学酸化重合し た後、窒素含有芳香族性環式ィ匕合物を添加する方法等を採用できる。
[0091] π共役系導電性高分子の化学酸化重合の際には、 π共役系導電性高分子の成 長と共に、ドーパントが π共役系導電性高分子と塩を形成し、 π共役系導電性高分 子へのドーピングが起きる。特に、スルホ基含有可溶ィ匕高分子力もなるドーパントを 用いた場合には、スルホ基が π共役系導電性高分子と強く塩を形成するので、 π共 役系導電性高分子がスルホ基含有可溶ィ匕高分子力 なるドーパントの主鎖に強く引 き寄せられる。その結果、 π共役系導電性高分子主鎖がスルホ基含有可溶化高分 子力もなるドーパントの主鎖に沿って成長して、規則正しく配列した π共役系導電性 高分子を容易に形成する。このように合成された π共役系導電性高分子は、スルホ 基含有可溶化高分子からなるドーパントと無数の塩を形成して、スルホ基含有可溶 化高分子力もなるドーパントの主鎖に固定されるため、ドーパントとの混合物になる。 そして、その π共役系導電性高分子とドーパントとの混合物に窒素含有芳香族性 環式ィ匕合物を添加することによって、窒素含有芳香族性環式化合物が π共役系導 電性高分子とドーパントとの間に入り込んで導電性組成物を形成する。
[0092] 以上説明した導電性組成物は、 π共役系導電性高分子とドーパントと窒素含有芳 香族性環式ィ匕合物とを含有するものである。この導電性組成物においては、一部の 窒素含有芳香族性環式ィヒ合物がドーパント由来のプロトン又は置換基と配位又は結 合し、カチオン電荷を帯びて窒素含有芳香族性環式ィ匕合物のカチオンとなると考え られる。よって、導電性組成物中では、この窒素含有芳香族性環式化合物のカチォ ンと残りの窒素含有芳香族性環式化合物との混合物が存在する。そして、この混合 物力 ドーパントの過剰なァ-オン基と塩を形成し、ドーパントに引き寄せられ、導電 性組成物中の π共役系導電性高分子の間に介在すると考えられる。このように窒素 含有芳香環カチオンィ匕合物と窒素含有芳香族性環式ィ匕合物とが、 π共役系導電性 高分子同士の間に介在することで、 π共役系導電性高分子同士の電気伝導に必要 なホッピングエネルギーを低下させて、導電性を向上させると考えられる。
また、この導電性組成物は、耐熱性、耐湿性にも優れる。
[0093] 次に、本発明の導電性架橋体について説明する。
本発明の導電性架橋体は、架橋性官能基を有する窒素含有芳香族性環式化合物 を含有する導電性組成物に加熱処理及び Ζ又は紫外線照射処理を施して形成され たものである。
導電性架橋体の形成方法としては、例えば、導電性組成物の溶液を基材に塗布し 、溶媒を適宜の方法で除去した後、加熱処理及び Ζ又は紫外線照射処理を施す方 法などが挙げられる。
その際、導電性組成物の溶液の塗布方法としては、例えば、浸漬、コンマコート、ス プレーコート、ロールコート、グラビア印刷などが挙げられる。
また、加熱処理、紫外線照射処理のどちらをまたは両方を選択するかは架橋性官 能基の種類による。加熱処理としては、例えば、熱風加熱や赤外線加熱などの通常 の方法を採用できる。また、紫外線照射処理としては、例えば、超高圧水銀灯、高圧 水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルノヽライドランプなどの光 源力も紫外線を照射する方法を採用できる。
導電性架橋体は、架橋性窒素含有芳香族性環式化合物が架橋しているため、緻 密性が高くなつている。その結果、導電性がより高くなるだけでなぐ耐熱性や熱安定 性、耐溶剤性も高くなつている。
[0094] 次に、本発明のコンデンサ及びその製造方法の一例を説明する。
図 1は、本実施形態例のコンデンサの構成を示す図である。このコンデンサ 10は、 弁金属の多孔質体からなる陽極 11と、陽極 11の表面が酸化されて形成された誘電 体層 12と、誘電体層 12上に配置された陰極 13とを有して概略構成されている。
[0095] <陽極>
陽極 11をなす弁金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ハ フニゥム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが挙げられる。 これらのうち、アルミニウム、タンタル、ニオブが好適である。
陽極 11の具体例としては、アルミニウム箔をエッチングして表面積を増カロさせた後 、その表面を酸ィ匕処理したものや、タンタル粒子やニオブ粒子の焼結体表面を酸ィ匕 処理してペレットにしたものが挙げられる。このように処理されたものは表面に凹凸が 形成されている。
[0096] <誘電体層 >
誘電体層 12は、例えば、アジピン酸アンモ-ゥム水溶液などの電解液中にて、陽 極 11の表面を陽極酸ィ匕することで形成されたものである。よって、図 1に示すように、 陽極 11と同様に誘電体層 12の表面にも凹凸が形成されて ヽる。
[0097] <陰極 >
陰極 13は、固体電解質層 13aと、固体電解質層 13a上に形成されたカーボン、銀 、アルミニウムなどの陰極導電層 13bとを具備するものであり、固体電解質層 13aは、 π共役系導電性高分子を含む層であり、誘電体層 12側に備えられている。
陰極導電層 13bがカーボン、銀等で構成される場合には、例えば、カーボン、銀等 の導電体を含む導電性ペーストから形成することができる。また、陰極導電層 13bが アルミニウムで構成される場合には、例えば、アルミニウム箔カも形成することができ る。 また、固体電解質層 13aと陽極 11との間には、必要に応じて、セパレータを設ける ことができる。
他の例のコンデンサにおいては、陰極 13は、固体電解質層 13aと、固体電解質層 13a上に形成されたカーボン、銀、アルミニウム等で構成される陰極導電層 13bとを 具備するものであり、固体電解質層 13aは、 π共役系導電性高分子とドーパントと窒 素含有芳香族性環式ィ匕合物とを含むものである。
陰極導電層 13bがカーボン、銀等で構成される場合には、例えば、カーボン、銀等 の導電体を含む導電性ペーストから形成することができる。また、陰極導電層 13bが アルミニウムで構成される場合には、例えば、アルミニウム箔カも形成することができ る。
また、固体電解質層 13aと陰極導電層 13bとの間には、必要に応じて、セパレータ を設けることができる。
[0098] また、電子供与性元素を含む電子供与性ィ匕合物層を有するコンデンサにおける電 子供与性ィ匕合物とは、電子供与性元素を含む化合物のことであって、重合体ではな い化合物のことである。
電子供与性化合物に含まれる電子供与性元素としては、誘電体層と、 π共役導電 性高分子を含む陰極との電気的親和性がより高くなることから、周期律表第 15属、第 16属の元素のうち、窒素、酸素、燐、硫黄力も選ばれる少なくとも 1種以上であること が好ましい。
[0099] 窒素を含む電子供与性ィ匕合物としては、誘電体層と陰極との電気的親和性がより 高くなることから、 1級ァミン、 2級ァミン、 3級ァミンなどのアミン類が好ましい。ァミン 類としては、具体的には、ェチルァミン、ジェチルァミン、メチルェチルァミン、トリェチ ルァミンのような脂肪族ァミン、ァ-リン、ベンジルァミン、ピロール、イミダゾール、ピリ ジン、ピリミジン、ピラジン、トリァジンのような芳香族ァミンもしくはこれらの誘導体が 挙げられる。
[0100] 酸素を含む電子供与性ィ匕合物としては、例えば、アルコール類、エーテル類、ケト ン類が挙げられ、具体的には、ラウリルアルコール、へキサデシルアルコール、ベン ジノレアノレコーノレ、エチレングリコーノレ、プロピレングリコール、グリセリン、ジフエニルェ 一テル、シクロへキサノン、ジアセトンアルコール、イソホロン、フラン及びその誘導体 などが挙げられる。
[0101] 燐を含む電子供与性ィ匕合物としては、例えば、リン酸エステル類、亜リン酸エステ ノレ類、ホスホン酸類、ァノレキノレホスフィン類、ァノレキノレホスホニゥム塩類などが挙げら れ、具体的には、リン酸トリメチル、リン酸トリフエニル、亜リン酸トリメチル、亜リン酸トリ ェチル、ホスホン酸ジメチル、ホスホン酸ジェチル、トリェチルホスフィン、トリー n—ブ チルホスフィン、トリー n—ブチルホスフィンオキサイド、テトラエチルホスホ-ゥムブロ ミド、テトラー n—ブチルホスホ-ゥムブロミドなどが挙げられる。
[0102] 硫黄を含む電子供与性化合物としては、例えば、サルファイド類、チオール類、イソ チオシァネート類、チォフェン及びその誘導体などが挙げられ、具体的には、ジメチ ルサルファイド、ジェチルサルファイド、メチルメルカプタン、ェチルメルカプタン、フエ 二ルイソチオシァネート、 n—ブチルイソチオシァネート、チォフェン、 3—メチルチオ フェンなどが挙げられる。
[0103] これら電子供与性化合物の中でも、誘電体層に残存してもインピーダンス (等価直 列抵抗)の低下を防止できることから、芳香環の中に窒素又は酸素又は硫黄を含む 化合物が好ましい。芳香環の中に窒素を含む化合物としては、ピロールやその誘導 体 (ピロール類)、イミダゾール、ピリジン、ピリミジン、ピラジン、トリァジンやその誘導 体などが挙げられ、芳香環の中に酸素を含む化合物としては、フランやその誘導体( フラン類)などが挙げられ、芳香環の中に硫黄を含む化合物としては、チォフェンや その誘導体 (チオフ ン類)が挙げられる。中でも、誘電体層と陰極との電気的親和 性がより高くなることから、ピロール類、チォフェン類、フラン類力も選ばれる少なくとも 1種が好ましい。
[0104] 芳香環中に窒素、酸素、硫黄を含む電子供与性化合物では、窒素原子、酸素原 子、硫黄原子に非共有電子対が存在しているため、これらの原子上に置換基又はプ 口トンが配位又は結合されやすい。窒素原子、酸素原子、硫黄原子上に置換基又は プロトンが配位又は結合された場合には、これらの原子上にカチオン電荷を帯びる 傾向がある。また、窒素原子、酸素原子、硫黄原子と他の原子とは共役関係を有して いるため、これらの原子上に置換基又はプロトンが配位又は結合されたことによって 生じたカチオン電荷は芳香環中に拡散されて、安定した形で存在するようになる。 このようなことから、上記のような芳香環中に窒素、酸素、硫黄を含む電子供与性化 合物は、窒素、酸素、硫黄原子に置換基が導入されてカチオンを形成していてもよ い。さらに、そのカチオンとァ-オンとが組み合わされて塩が形成されていてもよい。 塩であっても、カチオンでな!、電子供与性化合物と同様の効果を発揮する。
[0105] 以上説明したコンデンサは、誘電体層表面に電子供与性ィ匕合物が塗布されており 、誘電体層表面の電荷が中和されているため、該誘電体層と、 π共役系導電性高分 子を含む固体電解質層との電気的親和性が高くなつている。その結果、誘電体層と 陰極との界面の抵抗が小さくなつているため、コンデンサのインピーダンスが低いとと もに、容量が高い。
[0106] (コンデンサの製造方法)
次に、本発明のコンデンサの製造方法の実施形態例について説明する。 コンデンサの製造方法の一例として、弁金属の多孔質体からなる陽極の表面を酸 化して誘電体層を形成する工程と、前記誘電体層の表面に、電子供与性元素を含 む電子供与性化合物を塗布して電子供与性化合物層を形成する工程と、前記電子 供与性化合物層の表面に、 π共役系導電性高分子を含む固体電解質層を形成す る工程とを有する製造方法が挙げられる。
[0107] このコンデンサの製造方法において、陽極表面を酸ィ匕する方法としては、例えば、 アジピン酸アンモニゥム水溶液などの電解液中にて、陽極表面を陽極酸化する方法 が挙げられる。
[0108] 誘電体層表面に電子供与性ィ匕合物を塗布する方法としては、コーティング、浸漬、 スプレーなどの公知の塗布方法を採ることができる。電子供与性化合物が固体であ る場合には、電子供与性ィ匕合物を溶媒で溶解した溶液を塗布すればよい。その場 合、塗布後、乾燥して溶媒を除去することが好ましい。また、液体の電子供与性化合 物を希釈した場合にも溶媒を除去することが好まし 、。
電子供与性ィ匕合物を含む溶液の濃度は特に限定されないが、薄すぎると効果が発 現しにくぐ濃すぎると塗布しにくくなつたり、 ESRが低下したりする恐れがあるので、 1〜80質量%であることが好ましぐ 5〜50質量%であることがより好ましい。 [0109] π共役系導電性高分子を含む層を形成するには、簡便である上に誘電体層と陰 極との電気的親和性をより向上させやすいことから、誘電体層表面に、 π共役系導 電性高分子を溶媒に溶解した導電性高分子溶液を塗布する方法が好まし ヽ。また、 誘電体層上で、 π共役系導電性高分子を構成する前駆体モノマーを化学酸化重合 や電解重合を直接行うことによって形成しても構わない。
[0110] 導電性高分子溶液は、ァニオン基含有可溶化高分子存在下で π共役系導電性高 分子の前駆体モノマーを重合することにより得られる。または、溶媒溶解性を有する π共役系導電性高分子を溶媒に溶解することにより得られる。
ァニオン基含有可溶化高分子存在下で π共役系導電性高分子の前駆体モノマー を重合して導電性高分子溶液を調製する方法の具体例としては、まず、ァ-オン基 含有可溶化高分子を、これを溶解可能な溶媒に溶解し、これにより得られた溶液に、 π共役系導電性高分子の前駆体モノマーを添加する。次いで、酸化剤を添加して前 駆体モノマーを重合させ、その後、余剰の酸化剤や前駆体モノマーを分離、精製し て導電性高分子溶液を得る。
ここで用いられるァ-オン基含有可溶ィ匕高分子は、前述したものの中から選ばれる
[0111] 導電性高分子溶液には、 π共役系導電性高分子の導電性を向上させるために、ァ ユオン基含有可溶ィ匕高分子以外のドーパントを添加してもよ 、。ドーパントは前述し たものの中力 選ばれる。
π共役系導電性高分子とドーパントとの割合は、モル比で π共役系導電性高分子
:ドーパントが 97 : 3〜: LO : 90であることが好ましい。ドーパントが是より多くても少なく ても導電性が低下する傾向がある。
[0112] 上記導電性高分子溶液を塗布する方法としては、例えば、コーティング、浸漬、ス プレーなどの公知の手法が挙げられる。また、溶媒を除去するための乾燥方法として は、熱風乾燥など公知の手法が挙げられる。
[0113] 固体電解質層を形成した後には、必要に応じて電解液を浸透させ、次いで、カー ボンペースト、銀ペーストを塗布して陰極導電層を形成する方法や、セパレータを介 してアルミニウム箔などの陰極導電層を配置する公知の手法により陰極を形成して、 コンデンサを得ることができる。
セパレータを用いる場合には、セパレータとして、例えば、セルロース繊維、ガラス繊 維、ポリプロピレン繊維、ポリエステル繊維、ポリアミド繊維などの単一又は混合不織 布、これらを炭化した炭化不織布などが用いられる。
[0114] 上述したコンデンサの製造方法では、誘電体層表面に電子供与性ィ匕合物を塗布 することにより、誘電体層と固体電解質層との電気的親和性を向上させることができ、 コンデンサのインピーダンスを低くすることができる。しカゝも、電子供与性化合物の塗 布は簡便である。したがって、上述したコンデンサの製造方法は、インピーダンスの 低いコンデンサを簡便に製造できる。
さらに、この製造方法により得られたコンデンサは、容量が高ぐ耐熱性にも優れる
[0115] なお、本発明の電子供与性化合物層を有するコンデンサは、上述した実施形態に 限定されない。上述した実施形態では、電子供与性化合物を誘電体層の表面に塗 布し、固体電解質層を形成した後、導電陰極層を設けて陰極を形成してコンデンサ を得たが、本発明では、陰極導電層を設けるタイミングは限定されない。例えば、陰 極導電層を誘電体層に対向するように配置した後に、誘電体層の表面に電子供与 性化合物を塗布し、次いで、固体電解質層を形成してもよい。その場合、陰極導電 層と誘電体層との間に、セパレータを配置することが好ま 、。
また、電子供与性ィ匕合物は誘電体層表面のみならず、陰極導電層の誘電体層側 の表面、セパレータにも塗布されていても構わない。
[0116] また、コンデンサの製造方法の他の例として、弁金属の多孔質体力 なる陽極と前 記陽極の表面を酸化されて形成された誘電体層とを有するコンデンサ中間体におけ る誘電体層の表面に、 π共役系導電性高分子とドーパントと窒素含有芳香族性環式 化合物と溶媒とを含む導電性高分子溶液を塗布して塗膜を形成する工程を有するコ ンデンサの製造方法が挙げられる。
[0117] 導電性高分子溶液を調製するには、まず、ァ-オン基含有可溶化高分子を、これ を溶解可能な溶媒に溶解し、これにより得られた溶液に、導電性高分子を形成する 無置換のァ-リンゃピロール、チォフェンなどの前駆体モノマーを添加する。次いで 、酸化剤を添加してモノマーを重合させ、その後、余剰の酸化剤やモノマーを分離、 精製する。そして、窒素含有芳香族性環式化合物を添加して導電性高分子溶液を 得る。
その際、導電性高分子を重合する酸化剤としては、前述したように公知のものが使 用できる。
[0118] 導電性高分子溶液の塗布方法としては、例えば、コーティング、浸漬、スプレーな どの公知の手法が挙げられる。乾燥方法としては、熱風乾燥など公知の手法が挙げ られる。
[0119] 固体電解質層を形成した後には、必要に応じて電解液を浸透させ、次いで、カー ボンペースト、銀ペーストによって陰極を形成したり、セパレータを介して陰極電極を 対向したりする公知の手法により陰極を形成することができる。
[0120] セパレータを用いる場合には、セパレータとして、例えば、セルロース繊維、ガラス 繊維、ポリプロピレン繊維、ポリエステル繊維、ポリアミド繊維などの単一又は混合不 織布、これらを炭化した炭化不織布などが用いられる。
[0121] 上述した製造方法は、導電性高分子溶液を塗布、乾燥することにより固体電解質 層を形成するから、工程が簡便であり、大量生産に向いており、低コストである。また 、導電性高分子溶液は、 π共役系導電性高分子とドーパントと窒素含有芳香族性環 式ィ匕合物とを含んでいるから、固体電解質層の導電性を高くできる。
[0122] なお、工程の簡便さ、コストを考慮しなければ、固体電解質層を化学酸化重合法ま たは電解重合法により形成してもよ ヽ。
化学酸化重合法では、 π共役系導電性高分子を形成する置換若しくは無置換の ァ-リンゃピロール、チォフェンなどの前駆体モノマー溶液と、酸化剤溶液を用意し、 これらにコンデンサ中間体を交互に浸漬して、コンデンサ中間体の誘電体層側表面 にて導電性高分子を重合させる。酸化剤としては上記製造方法と同様のものを使用 できる。
ドーパント及び窒素含有芳香族性環式ィ匕合物はモノマー溶液または酸化剤溶液 に同時に溶解させておいてもよいし、 π共役系導電性高分子を形成した後にドーパ ント及び窒素含有芳香族性環式化合物を溶媒に溶解した溶液を π共役系導電性高 分子に浸透させて添カ卩してもょ 、。
[0123] 電解重合法では、まず、ァセトニトリルなどの溶媒に π共役系導電性高分子を形成 する無置換のァ-リンゃピロール、チォフェンなどの前駆体モノマーを添カ卩し、ドーパ ントを電解質として添加した電解槽に、表面に導電層を形成したコンデンサ中間体を 電極として仕込む。そして、前駆体モノマーの酸ィ匕電位よりも高い電圧を加えることに より重合して、コンデンサ中間体の誘電体層上にて π共役系導電性高分子を形成さ せる。
窒素含有芳香族性環式化合物は、電解槽に溶解させてもよいし、導電性高分子を 形成した後に窒素含有芳香族性環式化合物を溶媒に溶解した溶液を π共役系導 電性高分子に浸透させて添加してもよ ヽ。
[0124] 固体電解質層を導電性高分子溶液の塗布または化学酸化重合により形成した場 合には、 π共役系導電性高分子の粒子径が大きいため、コンデンサ中間体の誘電 体層表面における微細な空隙の最深部にまで π共役系導電性高分子が行き届かず 、容量を引き出すことが難しくなることがある。そのため、陰極として電解液を含有させ 、その電解液を誘電体層に浸透させることで、容量を補充することが好ましい。
[0125] また、窒素含有芳香族性環式化合物が架橋性官能基を有する場合には、導電性 高分子溶液を塗布して塗膜を形成した後、その塗膜を加熱処理及び Ζ又は紫外線 照射処理を施すことが好ましい。ここで、加熱処理、紫外線照射処理のどちらをまた は両方を選択するかは架橋性官能基の種類による。
加熱処理としては、例えば、熱風加熱や赤外線加熱などの通常の方法を採用でき る。また、紫外線照射処理としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀 灯、カーボンアーク、キセノンアーク、メタルノヽライドランプなどの光源力も紫外線を照 射する方法を採用できる。
[0126] [電解液]
電解液としては電気伝導度が高ければ特に限定されず、周知の溶媒中に周知の 電解質を溶解させたものである。
溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコ ール、 1, 4 ブタンジオール、グリセリン等のアルコール系溶媒、 γ ブチロラタトン 、 y—バレロラタトン、 §—バレロラタトン等のラタトン系溶媒、 Ν メチルホルムアミド
、 Ν, Ν ジメチルホルムアミド、 Ν—メチルァセトアミド、 Ν—メチルピロリジノン等のァ ミド系溶媒、ァセトニトリル、 3—メトキシプロピオ-トリル等の-トリル系溶媒、水等が 挙げられる。
電解質としては、アジピン酸、ダルタル酸、コハク酸、安息香酸、イソフタル酸、フタ ル酸、テレフタル酸、マレイン酸、トルィル酸、ェナント酸、マロン酸、蟻酸、 1, 6 デ カンジ力ノレボン酸、 5, 6 デカンジカノレボン酸等のデカンジカノレボン酸、 1, 7—才ク タンジカルボン酸等のオクタンジカルボン酸、ァゼライン酸、セバシン酸等の有機酸、 あるいは、硼酸、硼酸と多価アルコールより得られる硼酸の多価アルコール錯ィ匕合物 、りん酸、炭酸、けい酸等の無機酸などをァ-オン成分とし、一級アミン (メチルァミン 、ェチルァミン、プロピルァミン、ブチルァミン、エチレンジァミン等)、二級アミン(ジメ チルァミン、ジェチルァミン、ジプロピルァミン、メチルェチルァミン、ジフエニルァミン 等)、三級アミン(トリメチルァミン、トリェチルァミン、トリプロピルァミン、トリフエ-ルァ ミン、 1, 8 ジァザビシクロ(5, 4, 0) ゥンデセン 7等)、テトラアルキルアンモ-ゥ ム(テトラメチルアンモ-ゥム、テトラエチルアンモ-ゥム、テトラプロピルアンモ-ゥム 、テトラプチルアンモ-ゥム、メチルトリェチルアンモ-ゥム、ジメチルジェチルアンモ ニゥム等)などをカチオン成分とした電解質が挙げられる。
次に、帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報 記録媒体の製造方法の一例を以下に説明する。
[製造方法]
(帯電防止塗料)
帯電防止塗料を製造するには、まず、可溶化高分子を、これを溶解する溶媒に溶 解し、導電性高分子の前躯体モノマーと必要に応じてドーパントとを加えて十分攪拌 混合する。
次 ヽで、これにより得られた混合物に酸化剤を滴下して重合を進行させて可溶ィ匕 高分子と導電性高分子との複合体を得る。次いで、その複合体から、酸化剤、残留 モノマー、副生成物を除去、精製した後、適切な溶媒に溶解し、窒素含有芳香族性 環式化合物、必要に応じてドーパントやバインダ榭脂、架橋性化合物を添加して帯 電防止塗料を得る。
[0128] 導電性高分子の前駆体モノマーを重合する酸化剤としては、公知のものを使用で き、例えば、塩化第二鉄、三フッ化ホウ素、塩ィ匕アルミニウムなどの金属ハロゲンィ匕合 物、過酸化水素、過酸ィ匕ベンゾィルなどの過酸ィ匕物、過硫酸カリウム、過硫酸ナトリウ ム、過硫酸アンモ-ゥムなどの過硫酸塩、オゾン、酸素などが挙げられる。
[0129] 精製法としては特に制限されず、例えば、再沈殿法、限外ろ過法などを採用できる 力 中でも、限外ろ過法が簡便で好ましい。限外ろ過法とは、多孔質の限外ろ過膜上 で溶液を循環させながら、溶液中の液体を限外ろ過膜に透過させてろ過する方法で ある。この方法では、限外ろ過膜を挟み、循環溶液側と透過溶液側とで差圧が生じる ため、循環溶液側の溶液の一部が透過溶液側に浸透して循環溶液側の圧力を緩和 する。この循環溶液の浸透に伴って循環溶液中の限外ろ過膜口径より小さい粒子、 溶解イオン等の一部が透過溶液側に移動するので、粒子や溶解イオンを除去できる 。使用する限外ろ過膜は、取り除く粒子径、イオン種によって分画分子量 1000〜10 00000の範囲力 適宜選択できる。
[0130] (帯電防止膜)
帯電防止膜は帯電防止塗料が基材上に塗布されて形成されたものである。帯電防 止塗料の塗布方法としては、例えば、浸漬、コンマコート、スプレーコート、ロールコ ート、グラビア印刷などが挙げられる。基材としては特に制限されないが、静電気が 生じやす!/、榭脂成形体、特に榭脂フィルムが適して 、る。
塗布後、加熱により溶媒を除去し、又は熱や光によって硬化すればよい。 加熱する場合の加熱方法としては、例えば、熱風加熱や赤外線加熱などの通常の 方法を採用できる。また、光硬化により塗膜を形成する場合の光照射方法としては、 例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク 、メタルノヽライドランプなどの光源力も紫外線を照射する方法を採用できる。
[0131] この帯電防止膜は窒素含有芳香族性環式ィ匕合物を含むことにより、導電性が顕著 に高くなつている。具体的には、窒素含有芳香族性環式化合物を含まない場合、電 気伝導度が 0. 001〜: LOOSZcm程度であるが、窒素含有芳香族性環式化合物を 含む場合、 10〜2000SZcm程度となる。したがって、導電性高分子単体でなくても 導電性が高くなつている。
また、帯電防止塗料が架橋性窒素含有芳香族性環式化合物を含む場合には、加 熱や紫外線照射により架橋性窒素含有芳香族性環式化合物が架橋するため、帯電 防止膜が緻密になり、導電性がより高くなるだけでなぐ耐熱性及び熱安定性も高く なる。
[0132] 帯電防止膜を光学用途、特に、後述する光学フィルタ、光情報記録媒体に用いる 場合には、透明性が高いことが好ましい。具体的には、全光線透過率 (JIS Z 870 1)が 85%以上であることが好ましぐ 90%以上であることがより好ましぐ 96%以上 であることが特に好ましい。また、ヘイズ (JIS K 6714)が 5%以下であることが好ま しぐ 3%以下であることがより好ましぐ 1%以下であることが特に好ましい。
さらに、帯電防止膜がハードコート層を兼ねる場合には、帯電防止膜の表面硬度( 鉛筆硬度)が HB以上であることが好ま 、。
帯電防止膜の表面抵抗値は、光学特性との兼ね合いによって適宜調節されること が好ましい。通常、 1 Χ 103 Ω〜1 Χ 1012 Ω程度であれば、帯電防止用途に適用でき る。
[0133] 塗膜の全光線透過率、ヘイズ、表面抵抗値は、帯電防止膜の厚さにより調節できる 。また、低い表面抵抗値が求められる場合には、バインダ榭脂を含まない方が好まし い。しかし、コストを安くしたり、基材に対する密着性を向上させたりするためにはノィ ンダ榭脂が含まれることが好まし 、。
[0134] (帯電防止フィルム)
帯電防止フィルムは、基材フィルムと、該基材フィルムの少なくとも片面に形成され た上記帯電防止膜とを有するものである。
[基材フィルム]
基材フィルムとしては、例えば、低密度ポリエチレンフィルム、高密度ポリエチレンフ イノレム、エチレン プロピレン共重合体フイノレム、ポリプロピレンフイノレム、エチレン 酢酸ビュル共重合体フィルム、エチレン メチルメタタリレート共重合体フィルム、ポリ エチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、 ポリエチレンナフタレート(PEN)フィルム、ポリイミドフィルム、 6—ナイロンフィルム、 6 , 6—ナイロンフィルム、ポリメチルメタタリレートフィルム、ポリスチレンフィルム、スチレ ン—アクリロニトリル—ブタジエン共重合体フィルム、ポリアクリロニトリルフィルム、トリ 酢酸セルロース(TAC)フィルム、セルロースプロピオネートフィルム、ポリ塩化ビュル フィルム、ポリ塩化ビ-リデンフィルム、ポリフッ化ビ-リデンフィルム、ポリ 4フッ化工チ レンフィルム、ポリビュルアルコールフィルム、エチレン ビュルアルコール共重合体 フィルム、ポリカーボネートフィルム、ポリサルホンフィルム、ポリエーテルサルホンフィ ルム、ポリエーテルエーテルケトンフィルム、ポリフエ-レンォキシドフィルムなどが挙 げられる。
[0135] これら基材フィルムの表面は通常、親油性であり、水系溶媒に溶解した帯電防止塗 料を塗布する場合には、塗布が困難である。そのため、水系溶媒に溶解した帯電防 止塗料を塗布する場合には、基材フィルム表面にスパッタリング、コロナ放電、火炎、 紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理などの親 水処理を施すことが好ましい。さらに、必要に応じて溶剤洗浄や超音波洗浄などによ り除塵、清浄化されていてもよい。
[0136] (光学フィルタ)
次に、本発明の光学フィルタの一実施形態例について説明する。
図 2に、本実施形態例の光学フィルタを示す。この光学フィルタ 20は、フィルム基材 21と、フィルム基材 21上に形成された帯電防止膜 22と、帯電防止膜 22上に形成さ れた反射防止層 23とを有して構成されている。この光学フィルタ 20における帯電防 止膜 22はハードコート層としての役割も果たす。
この光学フィルタ 20をディスプレイ装置の表示面に貼り付ける際には、光学フィルタ 20のフィルム基材 21側の表面に透明な接着剤層を設け、その接着剤層を介して貼 り付ける。
[0137] フィルム基材 21としては、透明性を有する各種のプラスチックフィルムを使用できる 。透明性プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリイミド 、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、ポリプロピ レン、ポリアミド、アクリルアミド、セルロースプロピオネートなど力もなるフィルムが挙げ られる。 また、フィルム基材 21はその表面にスパッタリング、コロナ放電、火炎、紫外線照射 、電子線照射、化成、酸化などのエッチング処理や下塗り処理が施されていることが 好ましい。このような処理が表面に施されていれば、帯電防止膜 22に対する密着性 をより高めることができる。
さらに、フィルム基材 21の表面は、帯電防止膜 22を設ける前に、必要に応じて溶 剤洗浄や超音波洗浄などにより除塵、清浄化されていてもよい。
[0138] 帯電防止膜 22は、上述した通りに帯電防止塗料から形成された膜であり、ハードコ ート層としての役割も果たす膜である。よって、上述したように、この帯電防止膜 22は 、帯電防止膜の表面硬度 (鉛筆硬度)が HB以上であることが好ましい。また、光学用 途であるから、帯電防止膜 22の全光線透過率 (JIS Z 8701)が 85%以上であるこ と力 子ましく、 90%以上であることがより好ましぐ 96%以上であることが特に好ましい 。また、帯電防止膜 20のヘイズ (JIS K 6714)が 5%以下であることが好ましぐ 3 %以下であることがより好ましぐ 1%以下であることが特に好ましい。
[0139] 反射防止層 23は光の反射を防止する層である。この層は単層であってもよいし、多 層であってもよい。単層である場合、その屈折率は 1. 38-1. 45の範囲にあるのが 好ましぐまた、その光学膜厚は 80〜: LOOnmの範囲にあるのが好ましい。
反射防止層 23は、乾式法、湿式法のいずれかによつて形成できる。乾式法として は、例えば、電子ビーム蒸着法、誘電加熱式蒸着法、抵抗加熱蒸着法、スパッタリン グ法、イオンプレーティング法のような物理気相堆積法やプラズマ CVD法が挙げら れる。乾式法で反射防止層 23を形成する場合には、反射防止層 23の成分として、 例えば、酸化ケィ素、フッ化マグネシウム、酸化ニオブ、酸化チタン、酸化タンタル、 酸ィ匕アルミニウム、酸ィ匕ジルコニウム、酸化インジウム、酸化スズなどの無機化合物を 用!/、ることができる。
また、湿式法としては、例えば、コンマコート、スプレーコート、ロールコート、グラビ ァ印刷等の公知の手法により硬化性化合物を含む塗料を塗布し、これを硬化する方 法が挙げられる。湿式法で反射防止層 23を形成する場合には、硬化性化合物として 、例えば、含フッ素有機化合物、含フッ素有機ケィ素化合物、含フッ素無機化合物な どの含フッ素化合物を用いることができる。 [0140] 光学フィルタ 20においては、さらに、反射防止層 23の上に防汚層が設けられてもよ い。防汚層が設けられていれば、ごみや汚れの付着を防止し、あるいは付着しても除 去しやすくなる。
防汚層としては、反射防止層 23の反射防止機能を阻害せず、高い撥水性と撥油 性を発揮し、汚染の付着を防止できるものであれば特に制限されず、有機化合物か らなる層であってもよいし、無機化合物からなる層であってもよい。例えば、パーフル ォロシラン基又はフルォロシクロアルキル基を有する有機ケィ素化合物や、フッ素有 機化合物を含む層が挙げられる。
防汚層の形成方法は、その種類に応じて適宜選択でき、例えば、蒸着法、スパッタ リング法、イオンプレーティング法のような物理気相堆積法又は化学気相堆積法、プ ラズマ重合法のような真空プロセス、マイクログラビア法、スクリーンコート法、ディップ コート法などを採用できる。
[0141] 以上説明した光学フィルタ 20は、フィルム基材 21を保護する帯電防止膜 22が形成 されており、その帯電防止膜 22は上記帯電防止塗料から形成されているので、透明 性に優れ、フィルム基材 21との密着性にも優れている。また、この光学フィルタ 20は 、帯電防止性の安定性に優れたフィルタであり、表面に埃が付着しにくい。
そして、このような光学フィルタ 20は、液晶画面やプラズマディスプレイ両面の反射 防止フィルム、赤外吸収フィルム、電磁波吸収フィルム等に好適に用いられる。
[0142] なお、本発明の光学フィルタは上述した実施形態例に限定されず、上記帯電防止 塗料力 形成された帯電防止膜を有していればよい。例えば、フィルム基材の代わり に偏光板を用いることができる。偏光板としては、二色性色素を吸着配向したポリビ ニルアルコール系榭脂フィルムの片側又は両面に保護フィルムが積層されたものな どが挙げられ、二色性色素としては、ヨウ素、二色染料を用いることができる。このよう な光学フィルタは、液晶表示装置の最表面に設けることができる。
[0143] (光情報記録媒体)
本発明の光情報記録媒体の一実施形態例について説明する。
図 3に、本実施形態例の光情報記録媒体を示す。この光情報記録媒体 30は書換 型ディスクであり、ポリカーボネートやポリメチルメタタリレートなど力もなる円盤状の透 明性榭脂基板 31、第 1誘電体層 32、光情報記録層 33、第 2誘電体層 34、金属反射 層 35、帯電防止膜 36が順次形成された構造を有したものである。
[0144] 第 1誘電体層 32及び第 2誘電体層 34を構成する材料としては、例えば、 SiN、 SiO 、 SiO、 Ta Oなどの無機系材料を用いることができる。
2 2 5
これらの誘電体層は、真空蒸着法、スパッタリング法、イオンプレーティング法など の公知の手段によって厚さ 10〜500nmで形成される。
[0145] 光情報記録層 33を構成する材料としては、例えば、 Tb— Fe、 Tb— Fe— Co、 Dy
Fe— Co、 Tb— Dy— Fe— Coなどの無機系の光磁気型記録材料や、 TeOx、 Te Ge、 Sn— Te— Ge、 Bi— Te— Ge、 Sb— Te— Ge、 Pb— Sn— Teゝ Tl In— Se などの無機系の相変換型記録材料、シァニン系色素、ポリメチン系色素、フタロシア ニン系色素、メロシアニン系色素、ァズレン系色素、スクァリウム系色素等の有機色素 が用いられる。
光情報記録層 33が無機系の光磁気型記録材料カゝらなる場合、真空蒸着法、スパ ッタリング法、イオンプレーティング法などの公知の手段によって厚さ 10〜999nmで 形成することができる。また、有機色素からなる場合、有機色素をアセトン、ジアセトン アルコール、エタノール、メタノール等の溶媒に溶解した溶液を公知の印刷方法又は 塗布方法により厚さ 10〜999nmで形成することができる。
[0146] また、金属反射層 35は光反射性を示すものであり、 Al、 Cr、 Ni、 Ag、 Au等の金属 及びその酸化物、窒化物などを単独もしくは二種類以上の組み合わせで構成される 。この金属反射層 35は、スパッタリング又は真空蒸着法により厚さ 2〜200nmで形成 される。
[0147] 帯電防止膜 36は、上記帯電防止塗料から形成されたものである。この帯電防止膜 36は、表面硬度を HB以上とすることにより、光情報記録媒体 30表面の傷つきを防 止でき、また、金属反射層 35の酸化を防止できる上に、静電気による塵埃の付着を 抑制できる。
帯電防止膜 36の厚さは 3〜 15 μ mであることが好ましい。 3 μ mより薄いと、均一な 膜を形成するのが困難になる傾向にあり、十分な帯電防止性、表面傷つき防止性、 金属反射層 35の酸ィ匕防止性を発揮できないことがある。一方、 15 mより厚いと、内 部応力が大きくなり、光情報記録媒体 30の機械特性が低下するおそれがある。
[0148] 帯電防止膜 36を形成するには、金属反射層 35の上に、コンマコート、スプレーコー ト、ロールコート、グラビア印刷などの公知の手法を用いて、帯電防止塗料を塗布し た後、溶媒を乾燥、又は熱や UVによって硬化する。
[0149] 以上説明した光情報記録媒体 30にあっては、光情報記録層 33や金属反射層 35 を保護する帯電防止膜 36が形成されており、その帯電防止膜 36は上記帯電防止塗 料から形成されている。したがって、帯電防止膜 36はヘイズが小さぐ光線透過率が 高いので、読み取り用レーザの波長である 780nmと 635nmでの透明性に優れる。 また、帯電防止膜 36は帯電防止性を有しているため、静電気による塵埃付着が抑制 されており、記録読み取りエラーや書き込みエラーが防止されている。
[0150] なお、本発明の光情報記録媒体は上述した実施形態例に限定されず、例えば、光 情報記録媒体は追記型ディスクであってもよい。追記型ディスクは、例えば、透明性 榭脂基板 (有機基材)、光情報記録層、反射金属層、帯電防止膜が順次形成された 構造を有する。
実施例
[0151] 以下、本発明の実施例を具体的に示すが、本発明は実施例により限定されるもの ではない。
[導電性組成物]
(製造例 1)ポリイソプレンスルホン酸の合成
1 OOOmlのイオン交換水に 17 lg (lmol)のイソプレンスルホン酸ナトリゥムを溶解し 、 80°Cで攪拌しながら、予め 10mlの水に溶解した 1. 14g (0. O05mol)の過硫酸ァ ンモ -ゥム酸化剤溶液を 20分間滴下し、この溶液を 12時間攪拌した。
得られたポリイソプレンスルホン酸ナトリウム溶液に 10質量%に希釈した硫酸を 100 Oml添加し、限外ろ過法を用いてポリイソプレンスルホン酸ナトリウム溶液の約 1000 ml溶液を除去し、残液に 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 20 OOml溶液を除去した。上記の限外ろ過操作を 3回繰り返した。
さらに、得られたろ液に約 2000mlのイオン交換水を添カ卩し、限外ろ過法を用い手 約 2000ml溶液を除去した。この限外ろ過操作を 3回繰り返した。 限外ろ過条件は下記の通りとした (他の例でも同様)。
限外ろ過膜の分画分子量: 30K
クロスフロー式
供給液流量: 3000mlZ分
膜分圧:0. 12Pa
得られた溶液中の水を減圧除去して、無色の固形物を得た。
[0152] (製造例 2)ポリスチレンスルホン酸の合成
1000mlのイオン交換水に 206g (lmol)のスチレンスルホン酸ナトリウムを溶解し、 80°Cで攪拌しながら、予め 10mlの水に溶解した 1. 14g (0. O05mol)の過硫酸アン モ -ゥム溶液を 20分間滴下し、この溶液を 12時間攪拌した。
得られたポリスチレンスルホン酸ナトリウム溶液に 1000mlの 10質量%に希釈した 硫酸と 15000mlの水を添カ卩し、限外ろ過法によりポリスチレンスルホン酸ナトリウム溶 液の約 13000ml溶液を除去し、残液に 12000mlのイオン交換水をカ卩え、限外ろ過 法により約 13000ml溶液を除去した。上記の限外ろ過操作を 3回繰り返した。
さらに、得られたろ液に約 12000mlのイオン交換水を添カ卩し、限外ろ過法により約 13000ml溶液を除去した。この限外ろ過操作を 3回繰り返した。
[0153] (実施例 1)
14. 2g (0. lmol)の 3, 4—エチレンジォキシチォフェンと、 27. 5g (0. 15mol)の ポリスチレンスルホン酸を 2000mlのイオン交換水に溶かした溶液とを 20°Cで混合し た。
これにより得られた混合溶液を 20°Cに保ち、搔き混ぜながら、 200mlのイオン交換 水に溶力した 29. 64g (0. 13mol)の過硫酸アンモ-ゥムと 8. Og (0. 02mol)の硫 酸第二鉄の酸ィ匕触媒溶液とをゆっくり添加し、 3時間攪拌して反応させた。
得られた反応液に 2000mlのイオン交換水を添カ卩し、限外ろ過法を用いて約 2000 ml溶液を除去した。この操作を 3回繰り返した。
そして、上記ろ過処理が行われた処理液に 200mlの 10質量%に希釈した硫酸と 2 000mlのイオン交換水を加え、限外ろ過法を用いて約 2000mlの処理液を除去し、 これに 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 2000mlの液を除去 した。この操作を 3回繰り返した。
さらに、得られた処理液に 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 2000mlの処理液を除去した。この操作を 5回繰り返し、約 1. 5質量%の青色のポリ スチレンスルホン酸ドープポリ(3, 4—エチレンジォキシチォフェン)を得た。これを π 共役系導電性高分子溶液 Αとした。
そして、得られた π共役系導電性高分子溶液 AlOOmlに 0. 56gのイミダゾールを 均一に分散させて導電性組成物溶液を得た。なお、使用した成分は表 1に示す。 その導電性組成物溶液をガラス上に塗布し、 150°Cのオーブン中で乾燥させて導 電性組成物の塗布膜を得た。得られた塗布膜の電気特性を下記の評価法で評価し た。その結果を表 2に示す。
[表 1]
窒素含有芳香族性 π共役系導電性高分子 ド一パント
環式化合物 実施例 1
実施例 2
イミダゾール 実施例 3
実施例 4 ポリスチレン
実施例 5 ポリ (3 , 4—エチレン スルホン酸
1 , 2—ジメチル 実施例 6 ジォキシチォフェン)
イミダゾール 実施例 7
実施例 8 ピリジンスルホン酸 ポリイソプレン
実施例 9 イミダゾ一ル
スルホン酸
ポリスチレン
実施例 1 0
スルホン酸
ポリピロ一ル イミダゾ一ル
ポリイソプレン
実施例 1 1
スルホン酸
比較例 1 ポリピロール ポリアクリル酸 ―
ポリスチレン
比較例 2 ―
ポリ (3 , 4—エチレン スルホン酸
ジォキシチォフェン) ポリイソプレン
比較例 3
スルホン酸
ポリスチレン
比較例 4 ポリピロ一ル ―
スルホン酸
(評価法)
,電気伝導度 (SZcm) :
塗布膜の電気伝導度をローレスタ (三菱化学製)を用いて測定した。
,電気伝導度熱維持率 (%) :
温度 25°Cにおける塗布膜の電気伝導度 R をローレスタ(三菱ィ匕学製)を用いて
25B
測定し、測定後の塗布膜を温度 125°Cの環境下に 300時間放置した後、該塗布膜 を温度 25°Cに戻し、電気伝導度 R を測定し、それらの測定値を下記式に代入して
25A
電気伝導度熱維持率を算出した。なお、この電気伝導度熱維持率は耐熱性の指標 になる。
電気伝導度熱維持率 (%) = 100 X R /R
25A 25B
,電気伝導度湿度変化率 (%):
温度 25°C、湿度 60%RHの環境下における塗布膜の電気伝導度 R を測定し、
25B 測定後の塗布膜を温度 80°C、湿度 90%RHの環境下に 200時間放置した後、該塗 布膜を温度 25°C、湿度 60%RHの環境下に戻し、電気伝導度 R を測定し、それら
25A
の測定値を下記式に代入して電気伝導度湿度変化率を算出した。なお、この電気伝 導度湿度変化率は耐湿性の指標になる。
電気伝導度湿度変化率(%) = 100 X (R — R ) /R
25B 25A 25B
[表 2] 電気伝導度 電気伝導度 電気伝導度
(S/cm) 熱維持率 (%) 湿度変化率 (½) 実施例 1 1 50 23. 5 5. 5 実施例 2 3 1 6 47 4. 3 実施例 3 4 1 2 44. 2 4. 1 実施例 4 373 49. 1 5. 2 実施例 5 242 85. 4 3. 0 実施例 6 1 98 83 2. 7 実施例 7 1 36 87. 2 4. 2 実施例 8 1 1 2 97. 3 1 0. 5 実施例 9 25フ 34. 3 3. 2 実施例 1 0 1 63 38. 5 3. 5 実施例 1 1 1 7 2 32. 1 2. 9 比較例 1 0. 25 0. 8 - 380 比較例 2 5. 6 1 2. 5 -480 比較例 3 2. 3 8. 7 -49 1 比較例 4 5. 1 0. 7 - 1 6 [0157] (実施例 2〜4)
実施例 1にお ヽて得られた π共役系導電性高分子溶液 Αを用い、実施例 1のイミダ ゾールの添力卩量を 0. 56gから 1. 67g (実施例 2)、 2. 79g (実施例 3)、 5. 57g (実施 例 4)に変更したこと以外は実施例 1と同様にして導電性組成物の塗布膜を得て、評 価した。その結果を表 2に示す。
[0158] (実施例 5〜7)
実施例 1において得られた 100mlの π共役系導電性高分子溶液 Αに、イミダゾー ルの代わりに 1, 2—ジメチルイミダゾールを 2. 36g (実施例 5)、 3. 93g (実施例 6)、 7. 67g (実施例 7)を添加したこと以外は実施例 1と同様にして導電性組成物の塗布 膜を得て、評価した。その結果を表 2に示す。
[0159] (実施例 8)
実施例 1において得られた 100mlの π共役系導電性高分子溶液 Αに、イミダゾー ルの代わりに、 1. 3gのピリジンスルホン酸を添加したこと以外は実施例 1と同様にし て導電性組成物の塗布膜を得て、評価した。その結果を表 2に示す。
[0160] (実施例 9)
ポリスチレンスノレホン酸を、ポリイソプレンスノレホン酸 22. 2g (0. 15mol)に変更し たこと以外は実施例 1と同様にして、ポリイソプレンスルホン酸ドープポリ(3, 4—ェチ レンジォキシチォフェン)溶液を得た。これをイオン交換水で 1. 5質量0 /0に希釈し、 π共役系導電性高分子溶液 Βとした。
得られた π共役系導電性高分子溶液 B 100mlに 1. 67gのイミダゾールを均一に 分散させて導電性組成物溶液を得た。そして、その導電性組成物溶液をガラス上に 塗布し、 150°Cのオーブン中で乾燥させて導電性組成物の塗布膜を得た。得られた 塗布膜の電気特性を実施例 1と同様に評価した。その結果を表 2に示す。
[0161] (実施例 10)
6. 8g (0. lmol)のピロールと、 27. 5g (0. 15mol)のポリスチレンスルホン酸を 20 OOmlのイオン交換水に溶力した溶液とを混合し、 0°Cに冷やした。
この混合溶液を 0°Cに保ち、搔き混ぜながら、 200mlのイオン交換水に溶カゝした 29 . 64g (0. 13mol)の過硫酸アンモ-ゥムと 8. Og (0. 02mol)の硫酸第二鉄の酸化 触媒溶液とをゆっくり添加し、 3時間攪拌して反応させた。
得られた反応液を実施例 1と同様に処理し、ポリスチレンスルホン酸ドープポリピロ ール溶液を得た。これをイオン交換水で 1. 5質量%に希釈し、 π共役系導電性高分 子溶液。とした。
得られた π共役系導電性高分子溶液 C 100mlに 1. 67gのイミダゾールを均一に 分散させて導電性組成物溶液を得た。そして、その導電性組成物溶液をガラス上に 塗布し、塗布膜を 150°Cのオーブン中で乾燥させ導電性組成物の塗布膜を得た。得 られた塗布膜の電気特性を実施例 1と同様にして評価した。その結果を表 2に示す。
[0162] (実施例 11)
ポリスチレンスルホン酸を、 22. 2g (0. 15mol)ポリイソプレンスルホン酸に変更し たこと以外は実施例 1と同様にしてポリイソプレンスルホン酸ドープポリピロール溶液 を得た。これをイオン交換水で 1. 5質量%に希釈し、 π共役系導電性高分子溶液 D とした。
得られた π共役系導電性高分子溶液 D 100mlに 1. 67gのイミダゾールを均一に 分散させて導電性組成物溶液を得た。そして、その導電性組成物溶液をガラス上に 塗布し、 150°Cのオーブン中で乾燥させて導電性組成物の塗布膜を得た。得られた 塗布膜の電気特性を実施例 1と同様に評価した。その結果を表 2に示す。
[0163] (比較例 1)
6. 8g (0. lmol)のピロ一ノレと、 10. 8g (0. 15mol)のポリアクリノレ酸とを 1000mlの イオン交換水に溶力した溶液とを混合し、 o°cに冷やした。
この混合溶液を 0°Cに保ち、搔き混ぜながら、 200mlのイオン交換水に溶カゝした 29 . 64g (0. 13mol)の過硫酸アンモ-ゥムと 8. 0g (0. 02mol)の硫酸第二鉄の酸化 触媒溶液とをゆっくり添加し、 3時間攪拌して反応させた。
得られた反応液をアンモニア水(25質量%)で pHIOに調整した後、イソプロピルァ ルコールで沈殿させ、ろ過し、ろ過物をイオン交換水で 3回洗浄した。ろ過物を 1000 mlのイオン交換水で再分散して、ポリアクリル酸 ポリピロールコロイド水溶液を得た 。そして、そのポリアクリル酸—ポリピロールコロイド水溶液をガラス上に塗布し、 150 °Cのオーブン中で乾燥させて導電性組成物の塗布膜を得て、実施例 1と同様にして 評価した。その結果を表 2に示す。
[0164] (比較例 2〜4)
実施例 1で得られた π共役系導電性高分子溶液 Α (ポリスチレンスルホン酸ドープ ポリ(3, 4—エチレンジォキシチォフェン)(PSS— PEDOT) )、実施例 9で得られた π共役系導電性高分子溶液 Β (ポリイソプレンスルホン酸ドープポリ(3, 4—エチレン ジォキシチォフェン)(PIPS— PEDOT) )、実施例 10で得られた π共役系導電性高 分子溶液 C (ポリスチレンスルホン酸ドープポリピロール(PSS— ΡΡΥ) )をそれぞれそ のままガラス上に塗布し、 150°Cのオーブン中で乾燥させて導電性組成物塗布膜を 得た。そして、その塗布膜の電気特性を実施例 1と同様にして評価した。その結果を 表 2に示す。
[0165] (実施例 12)
実施例 1にて得られた 100mlの π共役系導電性高分子溶液 Αにイミダゾールの代 わりに 3. 16gの N—ビュルイミダゾールを添カロして、 π共役系導電性高分子溶液 D を得た。そして、 π共役系導電性高分子溶液 Dを用い、実施例 1と同様にして導電性 組成物の塗布膜を得て、評価した。その結果を表 4に示す。
なお、実施例 12〜24において使用した π共役系導電性高分子、窒素含有芳香族 性環式化合物、架橋性化合物を表 3に示す。
[0166] [表 3]
7Γ共役系導電性 窒素含有芳香族性
架橘性化合物 高分子 璨式化合物
実施例 1 2 一
2—ヒドロキシ 実施例 1 3 ェチルァクりレート
N—ビニルイミダゾ一ル ( U V重合)
2—ヒドロキシ 実施例 1 4 ェチルァクリレート
(熱重合) 実施例 1 5 1 ーァリルイミダゾ一ル ―
1 - ( 2—ヒ ドロキシ
実施例 1 6
ポリ (3 , 4 - ェチル) 一イミダゾ一ル
エチレンジ才キ イミダゾールー 4一カル
実施例 1 7
シチォフェン) ボン酸
1 - ( 2—ヒ ドロキシ 5—スルホ 実施例 1 8
ェチル) 一イミダゾ一ル イソフタル酸
1 - ( 2—ヒ ドロキシ 5一スルホ 実施例 1 9
工チル > 一イミダゾール イソフタル酸
イミダゾ一ル一 4一
実施例 2 0 エチレングリコール
カルボン酸
1一 (2— tドロキシ
実施例 2 1 エチレングリコール ェチル) —イミダゾール
実施例 2 2 2—ビニルピリジン ―
実施例 2 3 ―
ポリピロール N—ビニルイミダゾール 2—ヒドロキシ 実施例 2 4
ェチルァクリレート
(実施例 13)
実施例 1にて得られた 100mlの π共役系導電性高分子溶液 Αに、イミダゾールの 代わりに 3. 16gの N—ビニルイミダゾールを添加し、さらに、 3. Ogの 2—ヒドロキシェ チルアタリレート、 0. Olgの 1— [4— (2 ヒドロキシエトキシ)一フエ-ル]— 2—メチ ル— 1—プロパン— 1—オン (UV重合開始剤)を添加したこと以外は実施例 1と同様 にして導電性組成物溶液を得た。そして、その溶液をガラス上に塗布し、 100°Cのォ ーブン中で水を除去した後、紫外線照射機により紫外線を照射して導電性組成物の 塗布膜を得て、評価した。その結果を表 4に示す。
[0168] (実施例 14)
実施例 1にて得られた 100mlの π共役系導電性高分子溶液 Αに、イミダゾールの 代わりに 3. 16gの N ビュルイミダゾールを添カ卩し、さらに、 3. Ogの 2 ヒドロキシェ チルアタリレート、 0. 02gの過硫酸アンモ-ゥム (熱重合開始剤)を添加したこと以外 は実施例 1と同様にして導電性組成物の塗布膜を得て、評価した。その結果を表 4に 示す。
[0169] (実施例 15)
実施例 1にて得られた 100mlの π共役系導電性高分子溶液 Αに、イミダゾールの 代わりに、 3. 83gの 1—ァリルイミダゾールを添加したこと以外は実施例 1と同様にし て導電性組成物の塗布膜を得て、評価した。その結果を表 4に示す。
[0170] (実施例 16)
実施例 1にて得られた 100mlの π共役系導電性高分子溶液 Αに、イミダゾールの 代わりに、 3. 97gの 1一(2 ヒドロキシェチル) イミダゾールを添カ卩したこと以外は 実施例 1と同様にして導電性組成物の塗布膜を得て、評価した。その結果を表 4〖こ 示す。
[0171] (実施例 17)
実施例 1にて得られた 100mlの π共役系導電性高分子溶液 Αに、イミダゾールの 代わりに、 3. 97gのイミダゾール— 4—カルボン酸を添加したこと以外は実施例 1と同 様にして導電性組成物の塗布膜を得て、評価した。その結果を表 4に示す。
[0172] (実施例 18)
実施例 16にて得られた 50mlの π共役系導電性高分子溶液 Αに 1. 2gの 5—スル ホイソフタル酸をさらに添加し、それ以外は実施例 16と同様にして導電性組成物の 塗布膜を得て、評価した。その結果を表 4に示す。 [0173] (実施例 19)
実施例 16にて得られた 50mlの π共役系導電性高分子溶液 Αに 1. 2gの 5—スル ホイソフタル酸及び 2. Ogのポリエステル溶液(商品名:プラスコート Z— 561、互応化 学工業社製)をさらに添加し、それ以外は実施例 16と同様にして導電性組成物の塗 布膜を得て、評価した。その結果を表 4に示す。
[0174] (実施例 20)
実施例 17にて得られた 50mlの π共役系導電性高分子溶液 Αに 0. 25gのェチレ ングリコールをさらに添加し、それ以外は実施例 17と同様にして導電性組成物の塗 布膜を得て、評価した。その結果を表 4に示す。
[0175] (実施例 21)
実施例 16にて得られた 50mlの π共役系導電性高分子溶液 Αに 0. 25gのェチレ ングリコール及び 1. 8gのポリウレタン溶液(商品名:レザミン D— 4080、大日精ィ匕ェ 業社製)をさらに添加し、それ以外は実施例 16と同様にして導電性組成物の塗布膜 を得て、評価した。その結果を表 4に示す。
[0176] (実施例 22)
実施例 1にて得られた 100mlの π共役系導電性高分子溶液 Αに、 N—ビュルイミ ダゾールの代わりに 1. 8gの 2—ビニルピリジンを添加したこと以外は実施例 1と同様 にして導電性組成物の塗布膜を得て、評価した。その結果を表 4に示す。
[0177] (実施例 23)
実施例 10にて得られた 100mlの π共役系導電性高分子溶液 Cに、 1. 67gのイミ ダゾールの代わりに 4. 73gの N—ビュルイミダゾールを均一に分散させた以外は実 施例 10と同様にして導電性組成物の塗布膜を得て、評価した。その結果を表 4に示 す。
[0178] (実施例 24)
実施例 10にて得られた 100mlの π共役系導電性高分子溶液 Cに 1. 67gのイミダ ゾールの代わりに 4. 73gの N—ビュルイミダゾールを均一に分散させ、さらに 2—ヒド ロキシェチルアタリレートを添加した以外は実施例 10と同様にして導電性組成物の 塗布膜を得て、評価した。その結果を表 4に示す。 [0179] [表 4]
Figure imgf000064_0001
[0180] π共役系導電性高分子とドーパントと窒素含有芳香族性環式化合物とを含む実施 例 1〜24の導電性組成物はいずれも電気伝導度が高力つた。また、電気伝導度の 熱維持率が高ぐ温度変動に対して安定であり、高温高湿環境下においても電気伝 導度の上昇が見られず耐湿性に優れることがわ力つた。特に、窒素含有芳香族性環 式化合物が架橋性官能基を有する実施例 12〜24の導電性組成物は熱安定性が高 ぐし力 ^他の架橋性ィ匕合物との併用することにより、安定性をより向上させることがで きる。
これに対し、窒素含有芳香族性環式化合物を含まない比較例 1〜4の導電性組成 物は電気伝導度が実施例に比べて 2桁低力 た。また、電気伝導度の熱維持率が 極端に小さぐ電気伝導度の湿度変化率が大き力 た。
[0181] [コンデンサ]
(製造例 3)導電性高分子溶液の調製 14. 2g (0. lmol)の 3, 4—エチレンジォキシチォフェンと、 27. 5g (0. 15mol)の ポリスチレンスルホン酸(分子量;約 150000)を 2000mlのイオン交換水に溶かした 溶液とを 20°Cで混合した。
これにより得られた混合溶液を 20°Cに保ち、搔き混ぜながら、 200mlのイオン交換 水に溶力した 29. 64g (0. 13mol)の過硫酸アンモ-ゥムと 8. 0g (0. 02mol)の硫 酸第二鉄の酸化触媒溶液とを添加し、 3時間攪拌して反応させた。
得られた反応液を透析して、未反応モノマー、酸化剤を除去して約 1. 5質量%の 青色のポリスチレンスルホン酸ドープポリ(3, 4—エチレンジォキシチォフェン)を含 む導電性高分子溶液を得た。
[0182] (製造例 4)電子供与性化合物溶液の調製
蒸留水 100mlに 7. 79gのイミダゾールを溶解させて電子供与性化合物溶液を得 た。
[0183] (製造例 5)電子供与性化合物溶液の調整
メチルェチルケトン 100mlに 10gのピロールを溶解させて電子供与性化合物溶液 を得た。
[0184] (実施例 25)
エッチドアルミ-ゥム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモ -ゥム 10質量%水溶液中でィ匕成 (酸化処理)して、アルミニウム箔表面に誘電体層を 形成してコンデンサ中間体を得た。
次に、このコンデンサ中間体の陽極箔と、陰極リード端子を溶接させた対向アルミ 陰極箔との間に、セルロール製のセパレータを挟み、円筒状に巻き取ってコンデンサ 素子を得た。
次いで、製造例 4で調製した電子供与性化合物溶液にコンデンサ素子を、減圧下 で浸潰した後、 120°Cの熱風乾燥機で 2分間乾燥し、続いて、製造例 3で調製した導 電性高分子溶液にコンデンサ素子を減圧下で浸漬した後、 150°Cの熱風乾燥機で 1 0分間乾燥した。そして、導電性高分子溶液への浸漬を 5回繰り返して、誘電体層表 面に π共役系導電性高分子を含む固体電解質層を形成させた。
次いで、アルミニウム製のケースに、固体電解質層が形成されたコンデンサ素子を 装填し、封口ゴムで封止して、コンデンサを作製した。
作製したコンデンサにつ 、て、 LCZメータ 2353 (ェヌエフ回路設計ブロック社製)を 用いて、 120Hzでの静電容量、 100kHzでの等価直列抵抗 (ESR)の初期値、 125 °C、 1000時間後の ESRを測定した。それらの結果を表 5に示す。なお、 ESRはイン ピーダンスの指標となる。
[表 5]
Figure imgf000066_0001
[0186] (実施例 26)
製造例 5で調製した電子供与性化合物溶液を用いたこと以外は実施例 25と同様に してコンデンサを得た。そして、実施例 25と同様にして評価した。評価結果を表 5に 示す。
[0187] (比較例 5)
実施例 25のコンデンサの作製において、電子供与性ィ匕合物溶液にコンデンサ素子 を浸漬しな力つたこと以外は実施例 25と同様にしてコンデンサを作製した。そして、 実施例 25と同様にして評価した。評価結果を表 5に示す。
[0188] 誘電体層表面に電子供与性化合物を塗布した実施例 25及び 26のコンデンサは、 静電容量が高ぐ ESRが低かった (インピーダンスが低力つた)。しかも、加熱後の ES
Rの低下が防止されており、耐熱性にも優れていた。
これに対し、誘電体層表面に電子供与性化合物を塗布しなかった比較例 1のコン デンサは、静電容量が低ぐ ESRが高力つた (インピーダンスが高力つた)。また、カロ 熱後、 ESRが大幅に上昇しており、耐熱性が低力つた。
[0189] (製造例 6)導電性高分子溶液の調製
14. 2g (0. lmol)の 3, 4—エチレンジォキシチォフェンと、 27. 5g (0. 15mol)の ポリスチレンスルホン酸(分子量;約 150000)を 2000mlのイオン交換水に溶かした 溶液とを 20°Cで混合した。
これにより得られた混合溶液を 20°Cに保ち、搔き混ぜながら、 200mlのイオン交換 水に溶力した 29. 64g (0. 13mol)の過硫酸アンモユウムと 8. 0g (0. 02mol)の硫 酸第二鉄の酸ィ匕触媒溶液とを添加し、 3時間攪拌して反応させた。
得られた反応液を透析して、未反応モノマー、酸化剤を除去して約 1. 5質量%の 青色のポリスチレンスルホン酸ドープポリ(3, 4—エチレンジォキシチォフェン)を含 む溶液を得た。そして、この溶液 100mlに 2. 79gのイミダゾールを均一に分散させ て導電性高分子溶液を得た。 π共役系導電性高分子の性能を評価するために、得 られた導電性高分子溶液をガラス上に塗布し、 120°Cの熱風乾燥機中で乾燥させて 厚さ 2 μ mの導電膜を形成して、ローレスタ(三菱化学社製)を用いて電気伝導度を 測定した。その結果を表 6に示す。
[表 6]
Figure imgf000067_0001
(実施例 27)
エッチドアルミェゥム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモ ニゥム 10質量0 /。水溶液中でィ匕成 (酸ィヒ処理)して、アルミエゥム箔表面に誘電体層を 形成してコンデンサ中間体を得た。 次に、コンデンサ中間体と、陰極リード端子を溶接させた対向アルミ陰極箔とを積 層し、これを巻き取ってコンデンサ素子とした。その際、コンデンサ中間体の陽極箔と 陰極箔との間にセパレータを挟んだ。
製造例 6で調製した導電性高分子溶液にコンデンサ素子を浸漬した後、 120°Cの 熱風乾燥機で乾燥してコンデンサ中間体の誘電体層側表面に固体電解質層を形成 させた。
次いで、アルミニウム製のケースに、固体電解質層が形成されたコンデンサ素子と 、電解液であるアジピン酸水素アンモ-ゥム 20質量0 /0—エチレングリコール 80質量 %溶液とを充填し、封口ゴムで封止して、コンデンサを作製した。
作製したコンデンサについて、 LCZメータ 2345 (ェヌエフ回路設計ブロック社製)を 用いて、 120Hzでの静電容量、 100kHzでの等価直列抵抗(ESR)の初期値、 125 。C、 1000時間後の ESRを測定した。
[0192] (実施例 28)
エッチドアルミ-ゥム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモ -ゥム 10質量%水溶液中でィ匕成 (酸化処理)して、アルミニウム箔表面に誘電体層を 形成してコンデンサ中間体を得た。
次に、コンデンサ中間体と、陰極リード端子を溶接させた対向アルミ陰極箔とを積 層し、これを巻き取ってコンデンサ素子とした。その際、コンデンサ中間体の陽極箔と 陰極箔との間にセパレータを挟んだ。
次いで、アルミニウム製のケースに、上記コンデンサ素子を装填し、ピロールのェチ レングリコール 30質量0 /0溶液とイミダゾールのエチレングリコール 20質量0 /0溶液の 1 : 2の混合液を浸透させた。次いで、 p—トルエンスルホン酸鉄のエチレングリコール 1 0質量%溶液を浸透させて、ピロールをィ匕学酸ィ匕重合させた。重合終了後、水洗、乾 燥し、封口ゴムで封止して、コンデンサを作製した。
[0193] 作製したコンデンサについて、 120Hzでの静電容量、 100kHzでの ESRの初期値 、 125°C、 1000時間後の ESRを測定した。
また、ピロールのエチレングリコール 30質量0 /0溶液とイミダゾールのエチレングリコ ール 20質量%溶液の 1 : 2の混合液をガラス上に塗布し、次いで、 p—トルエンスルホ ン酸鉄のエチレングリコール 10質量%溶液を滴下し、ピロールを化学酸化重合させ
、水洗、乾燥して導電膜を形成し、その導電膜の電気伝導度を測定した。
それらの結果を表 6に示す。
[0194] (比較例 6)
製造例 6の導電性高分子溶液の調製にお 、て、イミダゾールを添加しな力つた以 外は実施例 27と同様にしてコンデンサを作製した。
作製したコンデンサについて、 120Hzでの静電容量、導電膜の電気伝導度、 100 kHzでの ESRの初期値、 125°C、 1000時間後の ESRを測定した。それらの結果を 表 6に示す。
[0195] (比較例 7)
製造例 2のコンデンサの作製にお!、て、イミダゾールのエチレングリコール 20質量0 /0 溶液を添加しな力つた以外は製造例 2と同様にしてコンデンサを作製した。
作製したコンデンサについて、 120Hzでの静電容量、導電膜の電気伝導度、 100k Hzでの ESRの初期値、 125°C、 1000時間後の ESRを測定した。それらの結果を表 6に示す。
[0196] (実施例 29)
製造例 6において得られた導電性高分子溶液のイミダゾールを、 3. 85gのビ-ルイ ミダゾールに変更したこと以外は実施例 27と同様にしてコンデンサを作製し、実施例 27と同様にして評価した。その評価結果を表 7に示す。
[0197] [表 7]
実施例 実施例 実施例 実施例 実施例
2 g 3 0 3 1 3 2 3 3 静電容量
5 4 6 7 6 8 1 8 3 1 9 4
( μ F )
電気伝導度
4 3 5 4 1 2 3 5 7 4 1 2 4 5 3
( S / c m )
初期 5 5 5 1 0 9
E S R
125°C , 1000
( m Q ) 7 6 7 1 2 1 2
時間後
[0198] (実施例 30)
製造例 6において得られた導電性高分子溶液のイミダゾールを、 3. 85gのビ-ルイ ミダゾールに変更し、さらに、 1. 4gのアクリル酸と 0. 02gの過硫酸アンモ-ゥムを添 カロしたこと以外は実施例 27と同様にしてコンデンサを作製し、実施例 27と同様にし て評価した。その評価結果を表 7に示す。
[0199] (実施例 31)
製造例 6において得られた導電性高分子溶液のイミダゾールを、 3. 3gの 1ーェチ ルヒドロキシイミダゾールに変更し、さらに 1. 4gのアクリル酸を添カ卩したこと以外は実 施例 27と同様にしてコンデンサを作製し、実施例 27と同様にして評価した。その評 価結果を表 7に示す。
[0200] (実施例 32)
エッチドアルミニウム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモ -ゥム 10質量0 /0水溶液中でィ匕成 (酸化処理)して、アルミニウム箔表面に誘電体層を 形成してコンデンサ中間体を得た。
次 、で、実施例 30で調製した導電性高分子溶液にコンデンサ中間体を浸漬した 後、 120°Cの熱風乾燥機で乾燥してコンデンサ中間体の誘電体層側表面に固体電 解質層を形成させた。
次いで、形成された固体電解質層の上に、カーボンペーストを塗布し、 120°Cの熱 風乾燥機で乾燥した後、さらに、銀ペーストを塗布して導電層を形成し、 120°Cの熱 風乾燥機で乾燥して陰極を形成した。
次いで、その陰極にリード端子を取り付け、これを巻き取ってコンデンサ素子とした 。その際、コンデンサ中間体の陽極箔と陰極箔との間にセパレータを挟んだ。
次いで、アルミニウム製のケースに、固体電解質層が形成されたコンデンサ素子を 装填し、封口ゴムで封止して、コンデンサを作製した。このコンデンサを、実施例 27と 同様にして評価した。その評価結果を表 7に示す。
[0201] (実施例 33)
エッチドアルミ-ゥム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモ -ゥム 10質量%水溶液中でィ匕成 (酸化処理)して、アルミニウム箔表面に誘電体層を 形成してコンデンサ中間体を得た。
次いで、製造例 6において得られた導電性高分子溶液のイミダゾールを 3. 85gの ビュルイミダゾールに変更し、さらに 1. 4のアクリル酸と 0. Olgの 1— [4— (2 ヒドロ キシエトキシ) -フエ-ル] 2—メチル 1—プロパン 1—オンを添加して導電性 高分子溶液を得た。この導電性高分子溶液にコンデンサ中間体を浸漬した後、 120 °Cの熱風乾燥機で水を除去した後、紫外線照射機により紫外線を照射してコンデン サ中間体の誘電体層側表面に固体電解質層を形成させた。
次いで、形成された固体電解質層の上に、カーボンペーストを塗布し、 120°Cの熱 風乾燥機で乾燥した後、さらに、銀ペーストを塗布して導電層を形成し、 120°Cの熱 風乾燥機で乾燥して陰極を形成した。
次いで、その陰極にリード端子を取り付け、これを巻き取ってコンデンサ素子とした その際、コンデンサ中間体の陽極箔と陰極箔との間にセパレータを挟んだ。
次いで、アルミニウム製のケースに、固体電解質層が形成されたコンデンサ素子を 装填し、封口ゴムで封止して、コンデンサを作製した。このコンデンサを、実施例 27と 同様にして評価した。その評価結果を表 7に示す。
[0202] 陰極の固体電解質層に窒素含有芳香族性環式化合物を含む実施例 27、 28およ び 29〜33のコンデンサは、陰極の導電性に優れており、等価直列抵抗が低力つた。 さらに、実施例 27では、導電性高分子溶液の塗布、乾燥により固体電解質層を形成 したので簡便であった。また、陰極の固体電解質層中の窒素含有芳香族性環式ィ匕 合物が架橋している実施例 29〜33のコンデンサは、静電容量が優れている上に、 等価直列抵抗が低力つた。
これに対し、陰極の固体電解質層に窒素含有芳香族性環式化合物を含まな!/ヽ比 較例 6及び 7のコンデンサは、陰極の導電性が低ぐ等価直列抵抗が高力つた。
[0203] (製造例 7)電子吸引性基を含有する可溶化高分子の合成
アクリロニトリル 50gとスチレン 10gをトルエン 500ml中に溶解し、重合開始剤として ァゾイソプチ口-トリルを 1. 5g加え、 50°Cで 5時間重合した。その後、重合により生 成したポリマーをメタノールで洗浄した。
[0204] (製造例 8)ァニオン基を含有する可溶化高分子の合成
イオン交換水(100ml)に、 43. 4gのメタクリル酸ェチルスルホン酸ナトリウム(商品 名:アントツタス、日本乳化剤社製)を加え、搔き混ぜながら 80°Cに保ち、予め 10ml のイオン交換水に溶解した 0. 114gの過硫酸アンモ-ゥムと 0. 04gの硫酸第二鉄の 複合酸化剤溶液を加えた後、 80°Cに保ちながら 3時間攪拌した。
反応終了後、反応溶液を室温まで冷やし、それに 1000mlのイオン交換水を添カロ し、そして 50質量%硫酸水溶液を 30g加えてから、溶液を 300mほで濃縮した。この 操作を 4回繰り返した。
さら〖こ、 2000mlのイオン交換水を加え 300mほで濃縮する操作を透過溶液が中 性になるまで繰り返し、得られた濃縮溶液をオーブン中で乾燥してポリメタクリル酸ェ チルスルホン酸を得た。
[0205] (製造例 9)ァニオン基を有する成分と電子吸引性基を有する成分との共重合体から なる可溶化高分子の合成
アクリル酸ェチルスルホン酸ナトリウム 40gとメタクリロ-トリル 20gをァセトニトリルと イオン交換水(7 : 3) 500mlにカロえて、搔き混ぜながら 80°Cに保ち、予め 10mlのィォ ン交換水に溶解した 0. 14gの過硫酸カリウムと 0. 04gの硫酸第二鉄の複合酸化剤 溶液を加えた後、 80°Cに保ちながら 3時間攪拌した。
反応終了後、反応溶液を室温まで冷やし、それに 1000mlのイオン交換水を添カロ し、そして 50質量%硫酸水溶液を 30g加えてから、溶液を 300mほで濃縮した。この 操作を 4回繰り返した。
さら〖こ、 2000mlのイオン交換水を加え 300mほで濃縮する操作を透過溶液が中 性になるまで繰り返し、得られた濃縮溶液をオーブン中で乾燥してアクリル酸ェチル スルホン酸とメタタリ口-トリルとの共重合体を得た。
[0206] (製造例 10)ァニオン基を有する成分と電子吸引性基を有する成分との共重合体か らなる可溶化高分子の合成
400gのイオン交換水と、 100gのァセトニトリルと、 200gのメタノールの混合溶媒に 206g (lmol)のスチレンスルホン酸ナトリウムを溶解させ、スチレンスルホン酸ナトリウ ム溶液を得た。得られた溶液に 100gのイオン交換水と、 400gのァセトニトリルと、 10 0gのメタノールに溶解させた 33. 5g (0. 5mol)のメタクリロ-トリル溶液をカ卩え、分散 させた後、 80°Cに保った。
次に、予め 10mlの水に溶解した 1. 14g (0. 005mol)の過硫酸アンモ -ゥム酸化 剤溶液を 20分間滴下し、この溶液を 8時間攪拌した。
そして、製造例 2と同様の方法で得られたポリスチレンスルホン酸ナトリウムとポリメタ クリロ-トリル共重合体溶液から、ポリスチレンスルホン酸ーポリメタクリロ-トリル共重 合体を得た。
[0207] [帯電防止塗料の調製]
(実施例 34)
製造例 7の可溶ィ匕高分子 10gをァセトニトリル 90gに溶解し、 3,4—エチレンジォキ シチォフェン 50gとォクタデシルナフタレンスルホン酸ナトリウム 20gをカ卩え、 10°Cに 冷却しながら、 1時間攪拌した。
この溶液に、塩ィ匕第二鉄 250gをァセトニトリル 1250mlに溶解した酸化剤溶液を、 10°Cを保ちながら 2時間かけて滴下し、さらに 12時間攪拌を続けて 3,4—エチレンジ ォキシチォフェンを重合した。
反応終了後、 3,4—エチレンジォキシチォフェンの重合体を含む溶液に 2000mlの メタノールをカ卩え、ろ過、洗浄して沈殿物をろ別し、この沈殿物をジメチルホルムアミド (DMF)に溶解して濃度を 2質量%とした。この溶液 100mlにイミダゾール 1. lgを混 合し、攪拌して帯電防止塗料を得た。
[0208] この帯電防止塗料を厚さ 25 μ mの PETフィルム上にコンマコーターにより塗布し、 乾燥して厚さ 0. 1 mの帯電防止膜を形成した。そして、この帯電防止膜の 10°C、 1 5%RHでの表面抵抗値を、ダイヤインスツルメンッ製ハイレスタでプローブとして MC P— HTP16を用いて測定した。また全光線透過率 (JIS Z 8701)、ヘイズ (JIS K 6714)を測定した。その結果を表 8に示す。
[0209] [表 8]
Figure imgf000074_0001
[0210] (実施例 35)
製造例 7の可溶化高分子 10gをァセトニトリル 90gに溶解し、ピロール 50g、 p—トル エンスルホン酸 20gを加え、—20°Cに冷却しながら、 1時間攪拌した。
この溶液に、塩ィ匕第二鉄 250gをァセトニトリル 1250mlに溶解した酸化剤溶液を、 — 20°Cを保ちながら 2時間かけて滴下し、さらに 12時間攪拌を続けてピロールを重 oし 7こ o
反応終了後、ピロールの重合体を含む溶液に 2000mlのメタノールを加え、ろ過、 洗浄して沈殿物をろ別し、この沈殿物をジメチルホルムアミド (DMF)に溶解して濃 度を 2質量%とした。この溶液 100mlにイミダゾール 1. lgを混合し、さらに熱可塑性 ポリウレタン榭脂を混合、攪拌して帯電防止塗料を得た。
そして、この帯電防止塗料を実施例 34と同様にして評価した。結果を表 8に示す。
[0211] (実施例 36)
製造例 8の可溶化高分子 10gを水 90gに溶解し、 3,4—エチレンジォキシチォフエ ン 50gを加え、 5°Cに冷却しながら、 1時間攪拌した。
この溶液に、塩ィ匕第二鉄 250gを水 1250mlに溶解した酸化剤溶液を、 5°Cを保ち ながら 2時間かけて滴下し、さらに 12時間攪拌を続けて 3,4—エチレンジォキシチォ フェンを重合した。
反応終了後、限外ろ過法により精製して酸化剤残渣、未反応モノマーなどを除去し 、濃度が 2質量%になるまで濃縮した。この溶液 100mlにイミダゾール 1. lgを混合し 、攪拌して帯電防止塗料を得た。
そして、この帯電防止塗料を実施例 34と同様にして評価した。結果を表 8に示す。
[0212] (実施例 37)
製造例 9の可溶化高分子 10gを水 90gに溶解し、 3,4—エチレンジォキシチォフエ ン 50gを加え、 0°Cに冷却しながら、 1時間攪拌した。
この溶液に、過硫酸アンモ-ゥム 200gを水 1250mlに溶解した酸化剤溶液を、 0°C を保ちながら 2時間かけて滴下し、さらに 12時間攪拌を続けて 3,4—エチレンジォキ シチォフェンを重合した。
反応終了後、限外ろ過法により精製して酸化剤残渣、未反応モノマーなどを除去し 、濃度が 2質量%になるまで濃縮した。この溶液 100mlにイミダゾール 1. lgを混合し 、さらに、ァリルメタタリレートを混合し、その混合溶液にハードコート成分であるウレタ ン系アタリレート (根上工業社製)を混合、攪拌して帯電防止塗料を得た。
そして、この帯電防止塗料を実施例 34と同様にして評価した。結果を表 8に示す。
[0213] (比較例 8)
実施例 34において、イミダゾールを添加しな力つた以外は実施例 36と同様にして、 評価を行なった。結果を表 8に示す。
[0214] (実施例 38)
14. 2g (0. lmol)の 3, 4—エチレンジォキシチォフェンと、 27. 5g (0. 15mol)の ポリスチレンスルホン酸を 2000mlのイオン交換水に溶かした溶液とを 20°Cで混合し た。
これにより得られた混合溶液を 20°Cに保ち、搔き混ぜながら、 200mlのイオン交換 水に溶力した 29. 64g (0. 13mol)の過硫酸アンモ-ゥムと 8. 0g (0. 02mol)の硫 酸第二鉄の酸ィ匕触媒溶液とをゆっくり添加し、 3時間攪拌して反応させた。
得られた反応液に 2000mlのイオン交換水を添カ卩し、限外ろ過法を用いて約 2000 ml溶液を除去した。この操作を 3回繰り返した。
そして、上記ろ過処理が行われた処理液に 200mlの 10質量%に希釈した硫酸と 2 000mlのイオン交換水を加え、限外ろ過法を用いて約 2000mlの処理液を除去し、 これに 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 2000mlの液を除去 した。この操作を 3回繰り返した。
さらに、得られた処理液に 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 2000mlの処理液を除去した。この操作を 5回繰り返し、約 1. 5質量%の青色のポリ スチレンスルホン酸ドープポリ(3, 4—エチレンジォキシチォフェン)を得た。これを π 共役系導電性高分子溶液とした。
そして、得られた π共役系導電性高分子溶液 100mlに 3. 16gの N ビニルイミダ ゾールを均一に分散させて帯電防止塗料を得た。そして、この帯電防止塗料を実施 例 34と同様にして評価した。その評価結果を表 9に示す。
[0215] [表 9]
Figure imgf000076_0001
[0216] (実施例 39)
実施例 38において得られた 100mlの π共役系導電性高分子溶液に、 Ν ビュル イミダゾールの代わりに、 3. 83gの 1一(2 ヒドロキシェチル) イミダゾールと、 2. 1 8gの 5—スルホイソフタル酸を添加して帯電防止塗料を得た。そして、この帯電防止 塗料を実施例 34と同様にして評価した。その評価結果を表 9に示す。 [0217] (実施例 40)
実施例 38において得られた帯電防止塗料に、 2. Ogの 2 ヒドロキシェチルアタリレ ート、 O. Olgの 1 [4一(2 ヒドロキシエトキシ)一フエ-ノレ]— 2 ヒドロキシ一 2—メ チル— 1—プロパン— 1—オン (UV重合開始剤)を添加して帯電防止塗料を得た。 そして、その帯電防止塗料を厚さ 25 μ mの PETフィルム上にコンマコーターにより 塗布し、 100°Cのオーブン中で水を除去した後、紫外線照射機により紫外線を照射 して塗布膜を得た。そして、塗布膜の電気特性を実施例 34と同様にして評価した。 その結果を表 9に示す。
[0218] (実施例 41)
実施例 38において得られた 100mlの π共役系導電性高分子溶液に、 Ν ビュル イミダゾーノレの代わりに、 3. 83gの 1一(2 ヒドロキシェチノレ)一イミダゾーノレと、 1. 8 gのポリウレタン液 (商品名:レザミン D— 4080、大日精ィ匕工業社製)を添加して帯電 防止塗料を得た。そして、この帯電防止塗料を実施例 34と同様にして評価した。そ の評価結果を表 9に示す。
[0219] (実施例 42)
14. 2g (0. lmol)の 3, 4 エチレンジォキシチォフェンと、 37. 5g (0. 15mol)の ポリスチレンスルホン酸—ポリメタタリ口-トリル共重合体を 2500mlのイオン交換水に 溶かした溶液とを 20°Cで混合した。
これにより得られた混合溶液を 20°Cに保ち、搔き混ぜながら、 200mlのイオン交換 水に溶力した 29. 64g (0. 13mol)の過硫酸アンモ-ゥムと 8. 0g (0. 02mol)の硫 酸第二鉄の酸ィ匕触媒溶液とをゆっくり添加し、 4時間攪拌して反応させた。
得られた反応液に 3000mlのイオン交換水を添カ卩し、限外ろ過法を用いて約 3000 ml溶液を除去した。この操作を 3回繰り返した。
そして、上記ろ過処理が行われた処理液に 200mlの 10質量%に希釈した硫酸と 3 000mlのイオン交換水を加え、限外ろ過法を用いて約 3000mlの処理液を除去し、 これに 3000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 3000mlの液を除去 した。この操作を 3回繰り返した。
さらに、得られた処理液に 3000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 3000mlの処理液を除去した。この操作を 5回繰り返し、約 1. 5質量%の青色のポリ スチレンスルホン酸ドープポリ(3, 4—エチレンジォキシチォフェン)を得た。これを π 共役系導電性高分子溶液とした。
そして、得られた π共役系導電性高分子溶液 100mlに 3. 83gの 1— (2—ヒドロキ シェチル)—イミダゾールと、 2. 18gのスルホイソフタル酸を添カ卩し、均一に分散させ て帯電防止塗料を得た。そして、この帯電防止塗料を実施例 34と同様にして評価し た。その評価結果を表 9に示す。
[0220] 窒素含有芳香族性環式化合物を含有する実施例 34〜42の帯電防止塗料によれ ば、透明性が確保され、導電性が高い帯電防止膜を得ることができる。
これに対し、窒素含有芳香族性環式化合物を含有しな!ヽ比較例 8の帯電防止塗料 によれば、導電性が低力つた。
[0221] (実施例 43)
光学フィルタの作製
一方の面に粘着層とカバーフィルムとが積層された PETフィルム(フィルム基材)の 他方の面をコロナ処理した。次いで、その PETフィルムのコロナ処理した面に実施例 37の帯電防止塗料をコンマコーターにより塗布した。乾燥後、高圧水銀灯の露光に より硬化してハードコート層を兼ねる帯電防止膜を形成した。
次いで、帯電防止膜上に、内部に微細な空孔を有する中空シリカのエタノール分 散液 (触媒化成工業 (株)製、固形分濃度 15. 6質量%) 80gにエタノール 42. Ogを 加えた溶液を塗布した。その後、乾燥し、 100°C1時間熱処理して 90mmの反射防 止層を形成して光学フィルタを得た。
[0222] 得られた光学フィルタの可視光透過率,ヘイズ,表面抵抗、鉛筆硬度、密着性につ いて評価した。
[可視光透過率 ·ヘイズ ·表面抵抗測定]
可視光透過率は 86. 3%、ヘイズは 1. 4%、表面抵抗値は 3 Χ 105 Ωであった。 なお、その測定方法は帯電防止膜における測定方法と同様である。
[鉛筆硬度試験]
JIS S 6006に規定された試験用鉛筆を用いて、 JIS Κ 5400に従い、 9. 8Νの 荷重の際に傷がまったく認められない硬度を測定したところ、鉛筆硬度は 2Hであつ た。
[密着性試験]
碁盤目テープ法 CFIS K 5400)に準じて密着性試験を行った。
具体的には、光学フィルムの反射防止層側の表面にカッターにより lmm間隔で縦 横各 11本の切込みを入れた (計 100個の正方形マス目を形成させた)。これに粘着 テープを貼った後、剥離して、 PETフィルム上に残ったマス目の数をカウントした。そ の結果、この光学フィルムでは、 100個のマス目が全て残っていた(1007100)。 すなわち、この光学フィルタは、充分な硬度を有し、透明性、帯電防止性、基材との 密着性に優れたものであった。
[0223] (実施例 44)
光情報記録媒体の作製
射出成形により形成した円盤状のポリカーボネート基板上に、スパッタリング法によ り、第 1誘電体層として 300nmの Ta Oを形成し、光情報記録層として 500nmの Tb
2 5
Fe層を形成し、第 2誘電体層として 300nmの Ta Oを形成し、金属反射層として 1
2 5
OOnmのアルミニウム層を形成した。次いで、金属反射層上に、実施例 37の帯電防 止塗料をコンマコーターで塗布し、乾燥後、高圧水銀灯の露光により硬化してハード コート層を兼ねる帯電防止膜を形成して光情報記録媒体を得た。この光情報記録媒 体を以下のように評価した。
[0224] [表面抵抗測定、鉛筆硬度測定、密着性試験]
実施例 43と同様に表面抵抗測定、鉛筆硬度測定、密着性試験を行ったところ、こ の光情報記録媒体の表面抵抗値は 3 X 105 Ω、帯電防止膜の鉛筆硬度は 2H、密着 性試験では 100個のマス目が全て残っていた。
[透過率測定]
光情報記録媒体の読み取り用レーザダイオードの発光波長である 780nmと 635η mでの帯電防止膜の透過率を分光光度計により測定した。その結果、 780nmでの 透過率は 98. 9%、 635nmの透過率は 98. 6%であった。
すなわち、この光情報記録媒体は、波長 780nmと 635nmでの透明性に優れる上 に、帯電防止性、耐傷つき性、帯電防止膜と基材との密着性が優れたものであった。 産業上の利用可能性
本発明の導電性組成物は、導電性塗料、帯電防止剤、電磁波遮蔽材料、透明性 を必要とする導電材料、電池材料、導電性接着材料、センサ、電子デバイス材料、 半導電材料、静電式複写部材、プリンタ等の感光部材、転写体、中間転写体、搬送 部材、電子写真材料等、導電性を必要とする各種分野への利用が可能である。また 、本発明によると、陰極の導電性が高ぐインピーダンス (等価直列抵抗)が小さいコ ンデンサを簡便に製造することが可能である。さらに、本発明によると、帯電防止塗 料を塗布するのみで導電性、可撓性、基材との密着性が高い帯電防止膜を形成で き、帯電防止塗料は少量の使用で十分な帯電防止性を発揮するため低コストでの製 造が可能である。この帯電防止塗料および帯電防止膜は帯電防止フィルム、光学フ ィルタ、光情報記録媒体等、帯電を防止する必要がある各種分野への利用が可能で ある。

Claims

請求の範囲
[I] π共役系導電性高分子と、ドーパントと、窒素含有芳香族性環式化合物とを含有 する導電性組成物。
[2] 前記ドーパントが、有機スルホン酸である請求項 1に記載の導電性組成物。
[3] 前記有機スルホン酸が、スルホ基含有可溶化高分子である請求項 2に記載の導電 性組成物。
[4] 前記窒素含有芳香族性環式化合物が、その窒素原子に置換基が導入されてカチ オンを形成して 、る窒素含有芳香族性環式ィ匕合物カチオンである請求項 1に記載の 導電性組成物。
[5] 前記窒素含有芳香族性環式化合物が、置換若しくは未置換のイミダゾール類であ る請求項 1に記載の導電性組成物。
[6] 前記窒素含有芳香族性環式化合物が、置換若しくは未置換のピリジン類である請 求項 1に記載の導電性組成物。
[7] 前記窒素含有芳香族性環式化合物が、架橋性官能基を有する請求項 1に記載の 導電性組成物。
[8] 架橋性化合物をさらに含有する請求項 7に記載の導電性組成物。
[9] 請求項 7に記載の導電性組成物を加熱及び Ζ又は紫外線照射して形成した導電 性架橋体。
[10] 弁金属の多孔質体からなる陽極と、前記陽極の表面が酸化されて形成された誘電 体層と、前記誘電体層上に配置され、 π共役系導電性高分子を含む固体電解質層 を備えた陰極とを有するコンデンサにおいて、
前記誘電体層と前記陰極との間に配置された電子供与性元素を含む電子供与性 化合物層を有するコンデンサ。
[II] 前記電子供与性化合物層の電子供与性元素が、窒素、酸素、硫黄、燐から選ばれ る少なくとも 1種である請求項 10に記載のコンデンサ。
[12] 前記電子供与性化合物層の電子供与性化合物が、ピロール類、チオフ ン類、フ ラン類力も選ばれる少なくとも 1種である請求項 10に記載のコンデンサ。
[13] 前記電子供与性ィ匕合物層の電子供与性ィ匕合物が、アミン類である請求項 10に記 載のコンデンサ。
[14] 弁金属の多孔質体力 なる陽極の表面を酸ィ匕して誘電体層を形成する工程と、 前記誘電体層の表面に、電子供与性元素を含む電子供与性ィ匕合物を塗布して電 子供与性化合物層を形成する工程と、
前記電子供与性ィ匕合物層の表面に、 π共役系導電性高分子を含む固体電解質 層を形成する工程とを有するコンデンサの製造方法。
[15] 前記固体電解質層を形成する工程が、前記電子供与性化合物層の表面に π共役 系導電性高分子を含む導電性高分子溶液を塗布する工程を含む請求項 14に記載 のコンデンサの製造方法。
[16] 弁金属の多孔質体からなる陽極と、前記陽極の表面が酸化されて形成された誘電 体層と、前記誘電体層上に形成された陰極とを有するコンデンサにおいて、 前記陰極が、 π共役系導電性高分子とドーパントと窒素含有芳香族性環式化合物 とを含む固体電解質層を具備するコンデンサ。
[17] 前記陰極が、さらに、電解液を含む請求項 16に記載のコンデンサ。
[18] 前記ドーパントが、ァニオン基を有する可溶ィ匕高分子である請求項 16に記載のコ ンデンサ。
[19] 前記窒素含有芳香族性環式化合物が、置換若しくは未置換のイミダゾール類であ る請求項 16に記載のコンデンサ。
[20] 前記窒素含有芳香族性環式化合物が、置換若しくは未置換のピリジン類である請 求項 16に記載のコンデンサ。
[21] 前記窒素含有芳香族性環式ィ匕合物が架橋している請求項 16に記載のコンデンサ
[22] 弁金属の多孔質体からなる陽極と前記陽極の表面を酸化されて形成された誘電体 層とを有するコンデンサ中間体における誘電体層の表面に、 π共役系導電性高分 子とドーパントと窒素含有芳香族性環式化合物と溶媒とを含む導電性高分子溶液を 塗布して塗膜を形成する工程を有するコンデンサの製造方法。
[23] 前記導電性高分子溶液に含まれる窒素含有芳香族性環式化合物が、架橋性官能 基を有する請求項 22に記載のコンデンサの製造方法。
[24] 前記導電性高分子溶液が架橋性化合物をさらに含有する請求項 23に記載のコン デンサの製造方法。
[25] π共役系導電性高分子と、ァ-オン基及び Ζ又は電子吸引性基を有する可溶ィ匕 高分子と、窒素含有芳香族性環式化合物と、溶媒とを含む帯電防止塗料。
[26] さらにドーパントを含む請求項 25に記載の帯電防止塗料。
[27] さらにバインダ榭脂を含む請求項 25に記載の帯電防止塗料。
[28] ノインダ榭脂が、ポリウレタン、ポリエステル、アクリル榭脂、ポリアミド、ポリイミド、ェ ポキシ榭脂、ポリイミドシリコーン力もなる群力も選ばれる 1種以上である請求項 27に 記載の帯電防止塗料。
[29] 前記窒素含有芳香族性環式化合物が、架橋性官能基を有する請求項 25に記載 の帯電防止塗料。
[30] 架橋性化合物をさらに含有する請求項 29に記載の帯電防止塗料。
[31] 請求項 25に記載の帯電防止塗料が塗布されて形成される帯電防止膜。
[32] 基材フィルムと、該基材フィルムの少なくとも片面に形成された請求項 31に記載の 帯電防止膜とを有する帯電防止フィルム。
[33] 請求項 31に記載の帯電防止膜を有する光学フィルタ。
[34] 請求項 31に記載の帯電防止膜を有する光情報記録媒体。
PCT/JP2005/015482 2004-08-30 2005-08-25 導電性組成物及び導電性架橋体、コンデンサ及びその製造方法、並びに帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体 WO2006025262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800345932A CN101040002B (zh) 2004-08-30 2005-08-25 导电性组合物及导电性交联体、电容器及其制造方法、以及抗静电涂料、抗静电膜、抗静电片、滤光器及光信息记录介质

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2004-249994 2004-08-30
JP2004249994 2004-08-30
JP2004249993 2004-08-30
JP2004-249993 2004-08-30
JP2004-277168 2004-09-24
JP2004277168 2004-09-24
JP2005090322A JP4932174B2 (ja) 2004-08-30 2005-03-28 コンデンサの製造方法
JP2005090323A JP4987239B2 (ja) 2004-08-30 2005-03-28 導電性組成物
JP2005-090323 2005-03-28
JP2005-090322 2005-03-28
JP2005-096599 2005-03-30
JP2005096599A JP4762587B2 (ja) 2005-03-30 2005-03-30 固体電解コンデンサの製造方法
JP2005108539A JP2006117906A (ja) 2004-09-24 2005-04-05 帯電防止塗料、帯電防止膜及び帯電防止フィルム、光学フィルタ、光情報記録媒体
JP2005-108539 2005-04-05

Publications (1)

Publication Number Publication Date
WO2006025262A1 true WO2006025262A1 (ja) 2006-03-09

Family

ID=35944250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015482 WO2006025262A1 (ja) 2004-08-30 2005-08-25 導電性組成物及び導電性架橋体、コンデンサ及びその製造方法、並びに帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体

Country Status (4)

Country Link
US (4) US7666326B2 (ja)
CN (1) CN101040002B (ja)
TW (1) TWI303832B (ja)
WO (1) WO2006025262A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115216A (ja) * 2006-11-01 2008-05-22 Shin Etsu Polymer Co Ltd 導電性高分子塗料並びにその製造方法、導電性塗膜
WO2012129805A1 (zh) * 2011-03-31 2012-10-04 南京大学 导电聚合物及其合成方法、表面覆盖有所述导电聚合物的电活性电极
JP5152882B1 (ja) * 2012-03-07 2013-02-27 Necトーキン株式会社 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法
CN106867386A (zh) * 2017-03-28 2017-06-20 朱正和 一种高附着力电容器铝壳覆膜涂料及其制备方法
TWI704417B (zh) * 2016-03-17 2020-09-11 日商東麗股份有限公司 感光性導電糊及附有導電圖案之基板的製造方法

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152195A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Electrostatic dissipative composite material
US20070154716A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Composite material
US20070154717A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Thermally stable composite material
TWI479509B (zh) * 2006-02-09 2015-04-01 信越聚合物股份有限公司 導電性高分子溶液、導電性塗膜、電容器,以及電容器之製造方法
TWI404090B (zh) * 2006-02-21 2013-08-01 Shinetsu Polymer Co 電容器及電容器之製造方法
US7476339B2 (en) * 2006-08-18 2009-01-13 Saint-Gobain Ceramics & Plastics, Inc. Highly filled thermoplastic composites
US20100134956A1 (en) * 2006-09-29 2010-06-03 Nippon Chemi-Con Corporation Solid electrolytic capacitor and method of manufacturing the same
JP5231430B2 (ja) * 2006-10-13 2013-07-10 スリーエム イノベイティブ プロパティズ カンパニー 窒素含有芳香性物質を含有する粉体塗装用フルオロポリマー組成物
CA2667300C (en) * 2006-10-23 2013-02-19 Axion Power International, Inc. Hybrid energy storage device and method of making same
TWI419924B (zh) * 2007-01-17 2013-12-21 Arakawa Chem Ind An organic solvent dispersion of a conductive polymer / dopant, and a composition containing the dispersion
US7515396B2 (en) * 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
WO2009001772A1 (ja) * 2007-06-26 2008-12-31 Shin-Etsu Polymer Co., Ltd. コンデンサ及びその製造方法
JP2009009998A (ja) * 2007-06-26 2009-01-15 Shin Etsu Polymer Co Ltd コンデンサ及びその製造方法
JP4836887B2 (ja) * 2007-07-09 2011-12-14 三洋電機株式会社 電解コンデンサの製造方法及び電解コンデンサ
JP4916416B2 (ja) * 2007-10-30 2012-04-11 サン電子工業株式会社 電解コンデンサの製造方法及び電解コンデンサ
KR20090070447A (ko) * 2007-12-27 2009-07-01 주식회사 동부하이텍 반도체 소자 및 그 제조 방법
KR100926222B1 (ko) * 2007-12-28 2009-11-09 제일모직주식회사 대전방지 코팅층을 포함하는 편광필름
CN101486839B (zh) * 2008-01-18 2011-08-17 郑州泰达电子材料科技有限公司 导电性高分子组合物、固体电解质以及使用该固体电解质的固体电解电容器
JP5406048B2 (ja) * 2008-02-05 2014-02-05 昭和電工株式会社 電子部品用素子
CN102850728B (zh) * 2008-04-11 2015-07-22 索尔维美国有限公司 掺杂共轭聚合物、器件及器件的制造方法
WO2009128401A1 (ja) 2008-04-16 2009-10-22 Necトーキン株式会社 導電性高分子懸濁液、導電性高分子組成物、ならびに固体電解コンデンサおよびその製造方法
JP2009267232A (ja) * 2008-04-28 2009-11-12 Shin Etsu Polymer Co Ltd コンデンサ及びその製造方法
KR100949399B1 (ko) * 2008-07-11 2010-03-24 광 석 서 유기용제 분산성 전도성 고분자 및 이의 제조방법
US9484155B2 (en) * 2008-07-18 2016-11-01 University Of Maryland Thin flexible rechargeable electrochemical energy cell and method of fabrication
JP4903760B2 (ja) * 2008-08-05 2012-03-28 Necトーキン株式会社 導電性高分子懸濁液およびその製造方法、導電性高分子材料、電解コンデンサ、ならびに固体電解コンデンサおよびその製造方法
US8358497B2 (en) * 2008-09-11 2013-01-22 Panasonic Corporation Electrode foil for capacitor, electrolytic capacitor using the same, and method for manufacturing electrode foil for capacitor
JP2010067875A (ja) * 2008-09-12 2010-03-25 Nec Tokin Corp 固体電解コンデンサの製造方法
US8388824B2 (en) * 2008-11-26 2013-03-05 Enthone Inc. Method and composition for electrodeposition of copper in microelectronics with dipyridyl-based levelers
TWI407468B (zh) * 2008-11-26 2013-09-01 Ind Tech Res Inst 複合陰極箔及包含此陰極箔之固態電解電容器
US20100193745A1 (en) * 2009-01-30 2010-08-05 Sanyo Electric Co., Ltd. Conductive polymer film, conductive polymeric material and electronic device
CN101824204B (zh) * 2009-03-06 2012-06-20 佛山市顺德区锐新科屏蔽材料有限公司 一种无卤素电子浆料及其制备方法和用途
JP2011071087A (ja) * 2009-03-12 2011-04-07 Sanyo Electric Co Ltd 導電性高分子膜、電子デバイス、及びこれらの製造方法
JP2010275378A (ja) * 2009-05-27 2010-12-09 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料並びに、固体電解コンデンサおよびその製造方法
EP2452983B1 (en) * 2009-07-08 2019-01-02 Soken Chemical & Engineering Co., Ltd. Composition for solid electrolyte and solar cell using same
JP5526660B2 (ja) * 2009-08-31 2014-06-18 三洋電機株式会社 導電性高分子膜、導電性高分子膜の製造方法、および電子デバイスの製造方法
JP2011082313A (ja) * 2009-10-06 2011-04-21 Shin Etsu Polymer Co Ltd 固体電解キャパシタ及びその製造方法
JP5465025B2 (ja) * 2010-01-27 2014-04-09 Necトーキン株式会社 導電性高分子懸濁液およびその製造方法、導電性高分子材料、固体電解コンデンサおよびその製造方法
CN102884589B (zh) * 2010-03-15 2016-08-17 金原正幸 纳米油墨组合物
US8404515B2 (en) 2010-03-25 2013-03-26 The University Of Connecticut Formation of conjugated polymers for solid-state devices
CN102329511B (zh) * 2010-07-14 2013-12-18 中国科学院金属研究所 耐脱掺杂性染料掺杂聚苯胺及其制备方法和应用
US9378859B2 (en) 2010-08-20 2016-06-28 Rhodia Operations Polymer compositions, polymer films, polymer gels, polymer foams, and electronic devices containing such films, gels and foams
WO2012140881A1 (ja) 2011-04-13 2012-10-18 パナソニック株式会社 導電性高分子分散溶液の製造方法及び電解コンデンサ
EP2768911B1 (de) * 2011-10-19 2020-12-02 RELIUS Farbenwerke GmbH Verwendung von antistatika in innenbeschichtungsmitteln
US8749955B2 (en) * 2011-11-29 2014-06-10 Panasonic Corporation Capacitor
CN103305108B (zh) * 2012-03-16 2015-11-04 中国科学院理化技术研究所 一种水性抗静电涂料及其制备方法
CN102709055B (zh) * 2012-06-11 2015-09-02 中国振华(集团)新云电子元器件有限责任公司 一种导电高分子聚合物阴极电解质溶液及其制备和应用
CN103525266B (zh) * 2012-07-04 2015-11-04 中国科学院理化技术研究所 水性抗静电涂料及其制备方法
US9046684B1 (en) * 2012-07-12 2015-06-02 Google Inc. Method for selectively treating surfaces
US9944757B2 (en) 2012-07-23 2018-04-17 The University Of Connecticut Electrochromic copolymers from precursors, method of making, and use thereof
TWI483275B (zh) * 2012-07-26 2015-05-01 Ind Tech Res Inst 電解電容器用電解質混合物、用以合成導電高分子之組成物及使用此混合物之導電高分子固態電解電容器
CN103578769A (zh) * 2012-07-26 2014-02-12 财团法人工业技术研究院 电解质混合物、电解电容器及合成导电高分子的组合物
US9362057B2 (en) 2012-07-26 2016-06-07 Industrial Technology Research Institute Electrolyte mixture for electrolytic capacitor, composition for conductive polymer synthesis and conductive polymer solid electrolytic capacitor formed by using the same
JP6164810B2 (ja) * 2012-09-03 2017-07-19 日東電工株式会社 樹脂フィルム
JP6297772B2 (ja) 2012-09-03 2018-03-20 日東電工株式会社 積層体
CN103666209A (zh) * 2012-09-25 2014-03-26 深圳市百泉河实业有限公司 适用于聚乙烯或聚丙烯材料的环保导静电涂料及其制备方法
KR20150073163A (ko) * 2012-10-16 2015-06-30 히타치가세이가부시끼가이샤 에칭재
JP5613276B2 (ja) 2013-03-01 2014-10-22 日東電工株式会社 積層体
CN103232792B (zh) * 2013-03-29 2016-03-02 王德全 一种高硬度的防腐涂料及其制备方法
WO2014189036A1 (ja) * 2013-05-21 2014-11-27 信越ポリマー株式会社 導電性高分子分散液及び導電性塗膜
KR102145868B1 (ko) * 2013-08-23 2020-08-19 주식회사 그린나노테크 전도성 고분자 용액의 제조방법 및 전도성 고분자 필름
FR3012456B1 (fr) 2013-10-31 2018-01-26 Arkema France Procede de synthese de pedot-(co) - polymere electrolyte
JP6225100B2 (ja) 2013-12-20 2017-11-01 信越化学工業株式会社 導電性ポリマー用高分子化合物の製造方法
JP6209157B2 (ja) 2013-12-25 2017-10-04 信越化学工業株式会社 高分子化合物
TWI483274B (zh) 2013-12-30 2015-05-01 Ind Tech Res Inst 複合電極及電解電容器
JP6903864B2 (ja) * 2014-05-14 2021-07-14 三菱ケミカル株式会社 帯電防止膜、積層体とその製造方法、およびフォトマスクの製造方法
US10323178B2 (en) 2014-05-16 2019-06-18 The University Of Connecticut Color tuning of electrochromic devices using an organic dye
KR101759388B1 (ko) 2014-05-20 2017-07-18 신에쓰 가가꾸 고교 가부시끼가이샤 도전성 중합체 복합체 및 기판
JP6483518B2 (ja) * 2014-05-20 2019-03-13 信越化学工業株式会社 導電性ポリマー複合体及び基板
CN104008883B (zh) * 2014-06-20 2016-07-27 重庆工商大学 高电导率柔性复合阴极电解质制备方法
JP6438348B2 (ja) * 2014-08-28 2018-12-12 信越化学工業株式会社 導電性ポリマー複合体及び基板
JP6335138B2 (ja) * 2014-08-28 2018-05-30 信越化学工業株式会社 導電性ポリマー複合体及び基板
US10020089B2 (en) 2014-09-05 2018-07-10 Shin-Etsu Chemical Co., Ltd. Conductive polymer composite and substrate
JP6302432B2 (ja) 2014-09-11 2018-03-28 信越化学工業株式会社 導電性ポリマー材料及び基板
US9666327B2 (en) 2014-09-11 2017-05-30 Shin-Etsu Chemical Co., Ltd. Conductive polymer material and substrate
JP6275083B2 (ja) 2014-09-12 2018-02-07 信越化学工業株式会社 導電性ポリマー材料並びに基板及びその製造方法
US9663656B2 (en) 2014-09-12 2017-05-30 Shin-Etsu Chemical Co., Ltd. Conductive polymer material and substrate
TWI506031B (zh) * 2014-11-05 2015-11-01 Ind Tech Res Inst 鐵鹽氧化劑組合物、固態電容器、及其製造方法
JP6225135B2 (ja) 2015-03-06 2017-11-01 信越化学工業株式会社 導電性材料及び基板
JP6312090B2 (ja) 2015-03-11 2018-04-18 信越化学工業株式会社 導電性材料及び基板
JP6294254B2 (ja) 2015-03-23 2018-03-14 信越化学工業株式会社 導電性材料及び基板
CN105131535B (zh) * 2015-07-30 2017-07-21 中国科学院化学研究所 一种组合物及含有该组合物的有机半导体场效应晶体管和其制备方法
JP6740579B2 (ja) * 2015-08-12 2020-08-19 日本ケミコン株式会社 固体電解コンデンサおよび固体電解コンデンサの製造方法
US9752045B2 (en) 2015-08-25 2017-09-05 Shin-Etsu Chemical Co., Ltd. Conductive polymer composite and substrate
JP6450661B2 (ja) 2015-08-27 2019-01-09 信越化学工業株式会社 導電性ポリマー複合体及び基板
WO2017043183A1 (ja) 2015-09-08 2017-03-16 信越ポリマー株式会社 導電性高分子溶液、キャパシタ及びキャパシタの製造方法
FR3042195B1 (fr) * 2015-10-09 2017-11-24 Arkema France Oligomere ionique et composition polymerisable le contenant pour materiaux hydro-fragmentables a usage provisoire
US10053588B2 (en) 2015-11-09 2018-08-21 Shin-Etsu Chemical Co., Ltd. Conductive material and substrate
JP6600286B2 (ja) * 2015-11-09 2019-10-30 信越化学工業株式会社 導電性材料及び基板
US10023752B2 (en) 2015-11-09 2018-07-17 Shin-Etsu Chemical Co., Ltd. Conductive material and substrate
JP7113275B2 (ja) 2015-11-27 2022-08-05 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
US10047237B2 (en) 2015-12-22 2018-08-14 Shin-Etsu Chemical Co., Ltd. Conductive material and substrate
JP6496258B2 (ja) 2016-02-17 2019-04-03 信越化学工業株式会社 導電性ポリマー複合体及び基板
CN105742704B (zh) * 2016-03-18 2018-08-17 东莞市凯欣电池材料有限公司 一种含有环戊烯二腈的高电压电解液及使用该电解液的锂离子电池
KR20190003470A (ko) * 2016-04-28 2019-01-09 린텍 가부시키가이샤 보호막 형성용 필름 및 보호막 형성용 복합 시트
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
WO2018221438A1 (ja) * 2017-05-31 2018-12-06 綜研化学株式会社 導電性高分子固体電解コンデンサの製造方法及び導電性高分子
CN107201144B (zh) * 2017-06-28 2019-05-03 中山美居宝环保材料有限公司 一种导电涂料及其制备方法
CN109696756B (zh) * 2017-10-20 2021-04-09 友达光电(昆山)有限公司 显示面板的制造方法及显示面板
CN108067102B (zh) * 2017-12-30 2020-08-04 山东天维膜技术有限公司 一种阳离子交换膜及其制备方法
JP7049125B2 (ja) * 2018-02-02 2022-04-06 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP6843929B2 (ja) 2018-08-01 2021-03-17 財團法人工業技術研究院Industrial Technology Research Institute 導電性高分子複合材料およびコンデンサ
CN110028640B (zh) * 2019-04-23 2021-08-06 湘潭大学 一种基于三苯基咪唑-间苯三酚的多孔聚合物及其制备方法和用途
CN110204994A (zh) * 2019-06-10 2019-09-06 扬州彩虹粉末涂料有限公司 一种防静电地板涂料及其制备该涂料的方法
CN111592609B (zh) * 2020-06-23 2021-03-16 中国科学院兰州化学物理研究所 一种含醚基咪唑类聚合离子液体及其制备方法和应用
CN112467392B (zh) * 2020-11-17 2021-09-07 厦门大学 中心对称类π形单边多频左手材料
CN112724757A (zh) * 2020-12-28 2021-04-30 徐宁 用于消除表面电荷的离聚物涂料、其制备方法及相应涂层
CN113484386B (zh) * 2021-05-21 2024-02-13 郑州轻工业大学 一种金属聚酞菁纳米材料的制备方法及其应用,适配体传感器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112094A (ja) * 1992-09-25 1994-04-22 Elna Co Ltd 固体電解コンデンサの製造方法
WO1999060586A1 (fr) * 1998-05-21 1999-11-25 Showa Denko K.K. Condensateur electrolytique solide et son procede de preparation
JP2000021687A (ja) * 1998-07-07 2000-01-21 Matsushita Electric Ind Co Ltd コンデンサ及びその製造方法
JP2003289015A (ja) * 2002-03-28 2003-10-10 Tdk Corp 高分子固体電解コンデンサ
JP2004059733A (ja) * 2002-07-29 2004-02-26 Jsr Corp 電荷注入輸送材料
JP2005158482A (ja) * 2003-11-26 2005-06-16 Shin Etsu Polymer Co Ltd 導電性組成物、導電性塗料、並びにコンデンサ及びその製造方法
JP2005175015A (ja) * 2003-12-08 2005-06-30 Tdk Corp 電解コンデンサの製造方法
JP2005191127A (ja) * 2003-12-24 2005-07-14 Tdk Corp 電解コンデンサの製造方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678492B2 (ja) * 1986-11-27 1994-10-05 昭和電工株式会社 高電導性重合体組成物及びその製造方法
JPH0831400B2 (ja) 1986-12-23 1996-03-27 日本カ−リット株式会社 固体電解コンデンサ
JPS63173313A (ja) 1987-01-13 1988-07-16 日本カーリット株式会社 固体電解コンデンサ
JP2909544B2 (ja) 1988-04-01 1999-06-23 日東電工株式会社 水溶性導電性有機重合体組成物の溶液の製造方法
JPH02249221A (ja) 1989-03-23 1990-10-05 Asahi Glass Co Ltd 固体電解コンデンサ
JPH03123013A (ja) 1989-10-05 1991-05-24 Kao Corp 固体電解コンデンサ
EP0440957B1 (de) 1990-02-08 1996-03-27 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
JP3784705B2 (ja) 1990-03-16 2006-06-14 株式会社リコー 固体電解質、それを含む電気化学素子及び電池
JP2999813B2 (ja) 1990-09-25 2000-01-17 三洋電機株式会社 二次電池
EP0563281B1 (en) * 1990-12-20 1998-08-05 Monsanto Company Method for processing electrically conductive polyanilines in lewis-base solvents
US5171478A (en) * 1991-03-05 1992-12-15 Allied-Signal Inc. Thermally induced chain coupling in solid state polyaniline
US5232631A (en) * 1991-06-12 1993-08-03 Uniax Corporation Processible forms of electrically conductive polyaniline
JPH07105718A (ja) 1992-03-19 1995-04-21 Ind Technol Res Inst 導電性ポリマーと高分子電解質とからなる分子錯体およびその製造方法
JPH05326338A (ja) 1992-05-21 1993-12-10 Nippon Chibagaigii Kk 固体電解コンデンサ及びその製造方法
JP3175747B2 (ja) 1992-11-25 2001-06-11 エルナー株式会社 固体電解コンデンサの製造方法
JP3515799B2 (ja) 1993-12-10 2004-04-05 丸菱油化工業株式会社 導電性高分子コロイド水溶液の製造方法
EP0686662B2 (de) 1994-05-06 2006-05-24 Bayer Ag Leitfähige Beschichtungen
KR0162864B1 (ko) 1995-01-19 1999-01-15 김은영 가용 전기전도성 폴리피롤의 제조방법
US5868966A (en) * 1995-03-30 1999-02-09 Drexel University Electroactive inorganic organic hybrid materials
JP3068430B2 (ja) * 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
JP3235475B2 (ja) * 1996-07-16 2001-12-04 日本電気株式会社 固体電解コンデンサ及びその製造方法
US6132644A (en) * 1997-05-29 2000-10-17 International Business Machines Corporation Energy sensitive electrically conductive admixtures
JP3416050B2 (ja) 1997-06-17 2003-06-16 松下電器産業株式会社 電解コンデンサおよびその製造方法
JPH1145824A (ja) 1997-07-24 1999-02-16 Matsushita Electric Ind Co Ltd コンデンサ及びその製造方法
JPH11283874A (ja) * 1998-01-28 1999-10-15 Matsushita Electric Ind Co Ltd 電解コンデンサ
US6344966B1 (en) * 1998-09-08 2002-02-05 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6430033B1 (en) * 1998-06-25 2002-08-06 Nichicon Corporation Solid electrolytic capacitor and method of making same
JP3711964B2 (ja) 1999-02-10 2005-11-02 松下電器産業株式会社 固体電解コンデンサの製造方法
WO2000049632A1 (fr) 1999-02-18 2000-08-24 Showa Denko K.K. Condensateur electrolytique solide et son procede de production
JP2001023437A (ja) 1999-07-09 2001-01-26 Hitachi Chem Co Ltd ポリアニリン系ペースト、これを用いた固体電解コンデンサの製造法及び固体電解コンデンサ
JP2001085276A (ja) 1999-07-12 2001-03-30 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JP2001102255A (ja) 1999-07-28 2001-04-13 Matsushita Electric Ind Co Ltd タンタル固体電解コンデンサおよびその製造方法
US6602741B1 (en) * 1999-09-14 2003-08-05 Matsushita Electric Industrial Co., Ltd. Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method
JP4524873B2 (ja) 1999-12-10 2010-08-18 株式会社村田製作所 積層型固体電解コンデンサ
US20010012572A1 (en) * 1999-12-10 2001-08-09 Katsumi Araki Novel polymer, light-emitting device material and light-emitting device using the same
KR100426792B1 (ko) * 2001-01-19 2004-04-13 서광석 대전방지용 코팅조성물 및 대전방지용 코팅조성물이도포된 대전방지 및 수분 차폐봉투
KR100426344B1 (ko) * 2001-03-21 2004-04-06 이석현 용해성 자발배열 물질 및 그 물질을 포함하는 전도성고분자 조성물
US6440654B1 (en) 2001-04-03 2002-08-27 Eastman Kodak Company Photographic element containing an electrically-conductive layer
JP4004769B2 (ja) * 2001-10-17 2007-11-07 Necトーキン株式会社 電解液、並びにこれを用いた電気化学セル
JP2003213148A (ja) 2002-01-18 2003-07-30 Mitsubishi Rayon Co Ltd 導電性組成物、導電体形成方法及び静電塗装方法
JP2003289016A (ja) 2002-03-28 2003-10-10 Nippon Chemicon Corp 固体電解コンデンサの製造方法
WO2004018560A1 (en) 2002-08-23 2004-03-04 Agfa-Gevaert Layer configuration with improved stability to sunlight exposure
JP2004189789A (ja) 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd 導電性高分子およびそれを用いた固体電解コンデンサ
JP2004253537A (ja) 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
ES2329898T3 (es) * 2003-10-17 2009-12-02 H.C. Starck Gmbh Condensadores electroliticos con capa externa de polimero.
TWI239542B (en) * 2003-12-26 2005-09-11 Ind Tech Res Inst Solid-state, electrolytic capacitor, fabrication method thereof, and coupling agent used therefor
DE102004030388A1 (de) * 2004-06-23 2006-01-26 Ormecon Gmbh Artikel mit einer Beschichtung von elektrisch leitfähigem Polymer und Verfahren zu deren Herstellung
US7279268B2 (en) * 2004-09-09 2007-10-09 Intel Corporation Conductive lithographic polymer and method of making devices using same
WO2007123752A2 (en) * 2006-03-31 2007-11-01 Aculon, Inc. Solid electrolytic capacitors
JP2010275378A (ja) * 2009-05-27 2010-12-09 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料並びに、固体電解コンデンサおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112094A (ja) * 1992-09-25 1994-04-22 Elna Co Ltd 固体電解コンデンサの製造方法
WO1999060586A1 (fr) * 1998-05-21 1999-11-25 Showa Denko K.K. Condensateur electrolytique solide et son procede de preparation
JP2000021687A (ja) * 1998-07-07 2000-01-21 Matsushita Electric Ind Co Ltd コンデンサ及びその製造方法
JP2003289015A (ja) * 2002-03-28 2003-10-10 Tdk Corp 高分子固体電解コンデンサ
JP2004059733A (ja) * 2002-07-29 2004-02-26 Jsr Corp 電荷注入輸送材料
JP2005158482A (ja) * 2003-11-26 2005-06-16 Shin Etsu Polymer Co Ltd 導電性組成物、導電性塗料、並びにコンデンサ及びその製造方法
JP2005175015A (ja) * 2003-12-08 2005-06-30 Tdk Corp 電解コンデンサの製造方法
JP2005191127A (ja) * 2003-12-24 2005-07-14 Tdk Corp 電解コンデンサの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115216A (ja) * 2006-11-01 2008-05-22 Shin Etsu Polymer Co Ltd 導電性高分子塗料並びにその製造方法、導電性塗膜
WO2012129805A1 (zh) * 2011-03-31 2012-10-04 南京大学 导电聚合物及其合成方法、表面覆盖有所述导电聚合物的电活性电极
JP5152882B1 (ja) * 2012-03-07 2013-02-27 Necトーキン株式会社 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法
JP2013185031A (ja) * 2012-03-07 2013-09-19 Nec Tokin Corp 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法
US8940191B2 (en) 2012-03-07 2015-01-27 Nec Tokin Corporation Electroconductive polymer solution, electroconductive polymer composition, and solid electrolytic capacitor therewith and method for producing same
TWI704417B (zh) * 2016-03-17 2020-09-11 日商東麗股份有限公司 感光性導電糊及附有導電圖案之基板的製造方法
CN106867386A (zh) * 2017-03-28 2017-06-20 朱正和 一种高附着力电容器铝壳覆膜涂料及其制备方法
CN106867386B (zh) * 2017-03-28 2019-09-06 朱正和 一种高附着力电容器铝壳覆膜涂料及其制备方法

Also Published As

Publication number Publication date
US8388866B2 (en) 2013-03-05
US7666326B2 (en) 2010-02-23
CN101040002A (zh) 2007-09-19
CN101040002B (zh) 2011-08-17
US8097184B2 (en) 2012-01-17
TW200620328A (en) 2006-06-16
US20060047030A1 (en) 2006-03-02
US20100097743A1 (en) 2010-04-22
US8551366B2 (en) 2013-10-08
TWI303832B (en) 2008-12-01
US20100098841A1 (en) 2010-04-22
US20120057269A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2006025262A1 (ja) 導電性組成物及び導電性架橋体、コンデンサ及びその製造方法、並びに帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体
KR100814525B1 (ko) 도전성 조성물 및 그 제조 방법, 대전 방지 도료, 대전방지막, 대전 방지 필름, 광학 필터 및 광 정보 기록매체,콘덴서 및 그 제조방법
EP1798259B1 (en) Conductive composition and process for producing the same, antistatic paint, antistatic coating and antistatic film, optical filter, optical information recording medium, and capacitor and process for producing the same
JP2006117906A (ja) 帯電防止塗料、帯電防止膜及び帯電防止フィルム、光学フィルタ、光情報記録媒体
WO2006095595A1 (ja) 導電性高分子溶液、帯電防止塗料、帯電防止性ハードコート層、光学フィルタ、導電性塗膜、帯電防止性粘接着剤、帯電防止性粘接着層、保護材、およびその製造方法
TWI750399B (zh) 固體電解電容器及固體電解電容器的製造方法
KR101815337B1 (ko) 투명 도전 유리 기판
JP4932174B2 (ja) コンデンサの製造方法
WO2007091656A1 (ja) 導電性高分子溶液、導電性塗膜、コンデンサ及びコンデンサの製造方法
KR20080065623A (ko) 터치 패널용 투명 도전 시트 및 그 제조 방법, 및 터치패널
WO2004113441A1 (ja) 導電性組成物、導電性塗料、導電性樹脂、コンデンサ、光電変換素子、およびその製造方法
Zheng et al. Chemical polymerization of hydroxymethyl and chloromethyl functionalized PEDOT: PSS
JP4762587B2 (ja) 固体電解コンデンサの製造方法
JP2019172770A (ja) 導電性高分子組成物、導電性高分子薄膜の製造方法
TWI813828B (zh) 導電性高分子組成物
KR102546219B1 (ko) 삼성분계 젤 전해질을 포함하는 이온 젤, 그 제조방법, 및 이를 포함하는 전기변색 슈퍼 커패시터
JP7437681B2 (ja) 導電性高分子複合体、導電性組成物、および塗膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580034593.2

Country of ref document: CN

122 Ep: pct application non-entry in european phase