WO2006028244A1 - Bioabsorbable porous object - Google Patents

Bioabsorbable porous object Download PDF

Info

Publication number
WO2006028244A1
WO2006028244A1 PCT/JP2005/016698 JP2005016698W WO2006028244A1 WO 2006028244 A1 WO2006028244 A1 WO 2006028244A1 JP 2005016698 W JP2005016698 W JP 2005016698W WO 2006028244 A1 WO2006028244 A1 WO 2006028244A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
fiber structure
bioabsorbable polymer
average
fiber
Prior art date
Application number
PCT/JP2005/016698
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichi Kitazono
Takanori Miyoshi
Hiroaki Kaneko
Chiaki Fukutomi
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to JP2006535862A priority Critical patent/JP4481994B2/en
Publication of WO2006028244A1 publication Critical patent/WO2006028244A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length

Definitions

  • the present invention relates to a porous body comprising a fiber structure of a bioabsorbable polymer.
  • prosthetic materials are an important factor that gives an optimal environment for tissue construction.
  • the properties required for this scaffold material include: 1) bioabsorbability, 2) cell adhesion, 3) porosity, 4) mechanical strength, etc., and create materials that satisfy these properties.
  • Synthetic polymers polyglycolic acid, polylactic acid, poly force prolagtone, etc.
  • N inorganic materials hydroxyapatite, ⁇ ⁇ -tricalcium phosphate
  • prosthetic materials sinaffolding materials
  • It is porous. This is important in terms of providing sufficient oxygen and nutrients to the cells needed to regenerate the tissue and expelling carbon dioxide and waste products quickly. Therefore, lyophilization methods (for example, to achieve the porosity of the scaffold material)
  • phase separation eg.
  • the pores of the obtained structure have a scaly shape, which makes it difficult for cells to invade and has an unsatisfactory problem as a scaffold material.
  • Another problem with the foaming method is that it is difficult for cells to enter because there is a single pore.
  • WO 2 0 4/8 8 0 24 discloses an aggregate of fibers made of a thermoplastic polymer having an average fiber diameter of 0.1 to 20 ⁇ m, and any fiber of the fibers.
  • a nonwoven fabric having an irregular cross-sectional surface and an average apparent density of 10 to 95 kg Zm 3 is described.
  • a scaffold material having further thickness and strength is required.
  • the actual living tissue shows a continuous gradient structure rather than a uniform structure.
  • the cell density of the surface layer is low, but the closer to the lower bone, the higher the cell density.
  • the purpose of this effort is to provide a bioabsorbable porous body, particularly a porous body suitable for a cell culture substrate in the field of regenerative medicine. Specifically, it is to provide a bioabsorbable porous body composed of a fiber structure of a bioabsorbable polymer, and the bioabsorbable porous body by a simple method.
  • the present invention is as follows.
  • the fiber structure consists of a fiber structure of a bioabsorbable polymer, the fiber structure has an average fiber diameter of 0.05 to 10 ⁇ . ⁇ , an average apparent density of 10 to 35 O kg / m 3 , and a height. Is a porous body characterized by being 0.5 or more.
  • porous body according to 1, wherein the porous body has an average fiber diameter of 0.2 to 8 ⁇ um.
  • porous material according to 3 wherein the porous material has a gradient structure in which the porosity is 10 to 90% and different porosity is continuously present.
  • porous body according to 1 further comprising 0 ⁇ 01 to 50 parts by weight of a dispersion aid with respect to 100 parts by weight of the bioabsorbable polymer.
  • the dispersion aid is at least one selected from the group consisting of phospholipids, carbohydrates, glycolipids, steroids, polyamino acids, protein koji, and polyoxyalkylenes. 7.
  • porous body according to 8 wherein the aliphatic polyester is at least one selected from the group consisting of polydalicolic acid, polylactic acid, polyprolacton, and copolymers thereof.
  • a prosthetic material comprising the porous material according to 10.1. 1 1.
  • the fiber structure of the bioabsorbable polymer has an average fiber diameter of 0 ⁇ 05 to 10 ⁇ m, and an average apparent density. Is a porous body having a thickness of 0.5 to 5 thighs. .
  • a bioabsorbable polymer characterized by using a static eliminator between a nozzle and a collecting electrode in a method of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method.
  • a porous structure having an average fiber diameter of 0.05 to 10 m, an average apparent density of 10 to 35 kg / m3, and a thickness of 0.5 mm or more. Body manufacturing method. The invention's effect ,
  • the bioabsorbable porous material of the present invention is useful as a prosthetic material.
  • a molded body having a desired shape can be provided, and it is useful as a prosthetic material in a portion where a high load such as a cartilage damaged portion is applied.
  • the bioabsorbable porous material of the present invention is useful as a cell culture substrate in the field of regenerative medicine, particularly as a substrate for cartilage regeneration, among prosthetic materials. ,
  • FIG. 1 shows an example of an apparatus used in an electrostatic spinning method for discharging a spinning solution into an electrostatic field in the production method of the present invention.
  • FIG. 2 shows an example of an apparatus used in the electrospinning method in which fine droplets of a spinning solution are introduced into an electrostatic field in the production method of the present invention.
  • FIG. 3 shows an example of an apparatus used in the electrospinning method of production method 2 of the present invention.
  • FIG. 10 Optical micrograph of the porous material obtained in Example 7 'Fig. 1 Microscopic photo of the porous body in the vicinity of the 8th week after surgery in Example 8 Fig. 1 2. 8 weeks after surgery in Example 9 Fig. 1 3 Photomicrograph of the vicinity of the defect at 8 weeks after the operation of Comparative Example 1.
  • Figure 1 4 Items and scores used in histological evaluation
  • Fibrous material collection electrode 1 Fibrous material collection electrode 1 2. High voltage generator
  • the fiber structure used in the present invention is a three-dimensional structure formed by laminating and accumulating single or plural fibers.
  • the average fiber diameter of the fiber structure is 0.05 to 10 ⁇ . If the average fiber diameter is smaller than 0.05 ⁇ , the strength of the fiber structure cannot be maintained, which is not preferable. On the other hand, if the average fiber diameter is larger than 10 ⁇ m, the specific surface area of the fiber is small and the number of engrafted cells is reduced, which is not preferable. More preferably, the average fiber diameter is 0.2 to 10 ⁇ , more preferably the average fiber diameter is 0.2 to 8 m.
  • the arbitrary cross section of the fiber may be a substantially perfect circle or an irregular shape. If the cross section of an arbitrary fiber is irregular, the specific area of the fiber increases, so that a sufficient area for the cell to adhere to the fiber surface can be taken during cell culture.
  • the arbitrary cross section of the fiber is irregular, which means any shape in which the cross section of the fiber does not take a substantially circular shape, and the fiber surface has uniform recesses and / or protrusions. And the case where it is roughened.
  • the irregular shape includes fine concave portions on the fiber surface, fine convex portions on the fiber surface, It may be due to at least one selected from the group consisting of concave portions formed in a streak shape in the fiber axis direction, convex portions formed in a streak shape in the fiber axis direction on the fiber surface, and fine pores on the fiber surface. Preferably, these may be formed singly or a plurality thereof may be mixed.
  • the above-mentioned “fine concave portions” and “fine convex portions” mean that the concave or convex portions of 0.1 to 1 ⁇ are formed on the fiber surface, and “fine pores”.
  • the term “pores” having a diameter of 0.1 to 1 ⁇ is present on the fiber surface.
  • the above-described concave and ridges or protrusions formed in a streak shape means that a ridge shape having a width of 0.1 to 1 ⁇ m is formed in the fiber axis direction.
  • the porous body made of the fiber structure of the present invention has an average apparent density: I 0 to 35 O kg / m 3 . If the average apparent density is lower than 1 O kg / m 3 , the cell penetration is good, but the mechanical strength is low, and if it is higher than 35 O kg / m 3 , it is difficult for cells to enter, which is not preferable as a scaffold material. .
  • the average sheep density can be calculated by measuring the volume (area X thickness) and mass of the obtained porous material.
  • the average apparent density is preferably 50 to 3 OO kg / ⁇ 3 . More preferably, it is 100-25 O kg / m ⁇ 3 >. .
  • the porous body composed of the fiber structure of the present invention preferably has a porosity of 10 to 90%. If the porosity is lower than 10%, the number of cells to be engrafted is small. If the porosity is higher than 90%, the number of cells to be engrafted is large, but most of them are spaces, so the mechanical strength is low and it is not preferable as a scaffold material. There is a case. Furthermore, the porosity is preferably 20 to 70%, more preferably 2050%. The porosity can be calculated from the average apparent density and the inherent polymer density.
  • the porous body comprising the fiber structure of the present invention may be either uniform in average apparent density and / or porosity or may have a gradient, and can be selected according to the required scaffold site.
  • the gradient structure in which different porosities exist continuously may be a gradient structure having two or more stages, and may be two or more stages. Even with such a gradient structure, the average apparent density of the entire porous body is 10 to 35 O kg / m 3 . In this case, the porosity is 10 to 90%.
  • the porous body of the present invention is a three-dimensional shape such as a cylinder, a polygonal column, a truncated cone, a truncated cone,
  • the height is 0.5 thigh or more, and it can be said that it depends on the site used as the cell culture substrate regardless of the upper limit of the height. If the height is less than 0.5 mm, the mechanical strength is low, and it is not preferable as a cell culture substrate for tissues with high loads such as knee joints.
  • the porous body of the present invention can be used for, for example, piercing and embedding in a damaged part of a living body, and regenerating cells on the surface of a binding material, but the porous body of the present invention is adapted to a desired shape. It has the characteristic that a molded object can be provided. Since a substrate with the required thickness can be provided, it is superior in shape stability without interfacial delamination compared to, for example, a laminate in which non-woven fabrics are stacked and pressure-bonded. Useful as a binding material, 'cell culture substrate.
  • a porous body when used for transplantation, mechanical strength that can withstand weighted compression in the initial stage of transplantation is required.
  • a porous body having mechanical strength according to the application can be provided.
  • the bioabsorbable polymer constituting the porous body of the present invention is preferably mainly composed of an aliphatic polyester.
  • the aliphatic polyester include polydaricholic acid, polylactic acid, polystrength prolatatone, polydioxanone, trimethylene carbonate, polybutylene succinate, polyethylene succinate, and copolymers thereof.
  • the aliphatic polyester is preferably at least one selected from the group consisting of polyglycolic acid, polylactic acid, polystrength prolactone, and copolymers thereof.
  • the porous body of the present invention preferably further contains a dispersion aid. More preferably, the dispersion aid exhibits bioabsorbability.
  • the dispersion aid is preferably at least one selected from the group consisting of phospholipids, carbohydrates, glycolipids, steroids, polyamino acids, proteins, and polyoxyalkylenes. Les.
  • Specific dispersing agents include phospholipids such as phosphatidinorecholine, phosphatidylethanolanolamine, phosphatidylserine, phosphatidinoregliceronorole and Z or polygalacturonic acid, heparin, chondroitin sulfate, Hyanorelon acid, dermatan sulfate, chondroitin, dextran sulfate, sulfated cellulose, alginic acid, dextran, canoleboxymethyl chitin, galactmann Naan, gum arabic, tragacanth gum, dillang gum, sulfated dielan, cara gum, carrageenan, agar, xanthan gum, curdlan, pullulan, cellulose, starch, canolepoxymethinoresenorelose, methinoresenorelose, gnolecomannan, chitin, Carbohydrates such as chitosan, xylog
  • a preferable content of the dispersion aid in the bioabsorbable porous material is 0.001 to 50 parts by weight with respect to 100 parts by weight of the bioabsorbable polymer. If the content is less than 0.01 part by weight, the wettability with water is poor and it may be difficult to cut the fiber with a homogenizer, and the fiber may be difficult to settle upon centrifugation. If it is longer than 50 parts by weight, fibers are hardly formed at the spinning stage. More preferably, the content is 0.1 to 20 parts by weight. Moreover, cell penetration into the porous material is enhanced by including a dispersion aid. .
  • the bioabsorbable porous material of the present invention may further contain a third component other than the bioabsorbable polymer and the dispersion aid.
  • a third component other than the bioabsorbable polymer and the dispersion aid include, for example, FGF (fibroblast growth factor), EGF (epidermal growth factor), PDG F_ (platelet-derived growth factor), TGF— (type 3 transforming growth factor), NG F (nerve growth factor) ), HGF (hepatocyte growth factor), BMP (bone morphogenetic factor) and other cell growth factors.
  • the porous body of the present invention is useful as a prosthetic material.
  • the treatment method can be performed by the following procedure. First, the joint is operated to expose the cartilage. Next, a hole is made in the damaged part of the cartilage with a drill or the like. It is preferable that the hole is deep enough to reach the subchondral bone below the cartilage tissue with a thickness of about 2 mm. Therefore, the depth of the hole is preferably about 3-8 mm. Thereafter, the prosthetic material of the present invention having a shape substantially coinciding with the inner diameter of the hole is embedded. Thereafter, the surgical site is repaired and cartilage is regenerated by natural healing.
  • the present invention includes a step of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method to obtain a fiber structure, a step of cutting the obtained fiber structure, and a cut fiber structure.
  • This is a method for producing a porous body having a density of 10 to 35 O kg / m 3 and a thickness of not less than 5 mm (Method 1). It is preferable to perform spinning using a solution containing a dispersion aid in the solution.
  • the present invention is characterized in that in a method of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method, a static eliminator is used between the nozzle and the collecting electrode. It is composed of a fiber structure of a bioabsorbable polymer, and the average fiber diameter of the fiber structure is from 0.05 to 10 ⁇ , the average apparent density is from 10 to 35 kg / m 3 , and the thickness is 0. This is a method for producing a porous body of 5 mm or more (Method 2).
  • the volatile solvent that forms a solution in the present invention is a substance that dissolves a bioabsorbable polymer, has a boiling point of 200 ° C. or less at normal pressure, and is liquid at room temperature.
  • Specific volatile solvents include, for example, methylene chloride, chlorophenol, acetone, methanol, ethanol, propanol, isopropanol, toluene, tetrahydrofuran, 1,1,1,3,3,3 —hexafluoro Examples include roisopropanol, water, 1,4-dioxane, carbon tetrachloride, cyclohexane, cyclohexanone, N, N-dimethylformamide, and acetonitrile.
  • methylene chloride, black mouth form, and acetone are particularly preferable in view of solubility of bioabsorbable polymers, particularly aliphatic polyesters.
  • These solvents may be used alone or in combination with multiple solvents. You may let them. In the present invention, other solvents may be used in combination as long as the object is not impaired.
  • the electrospinning method used in the present invention is a method in which a bioabsorbable polymer or a solution in which a bioabsorbable polymer and a dispersion aid are dissolved in a volatile solvent is discharged into an electrostatic field formed between electrodes.
  • This is a method for producing a fibrous material by spinning the yarn toward the electrode.
  • the fibrous material indicates not only the state in which the solvent in the solution has already been distilled off, but also the state in which the solvent is still contained.
  • the electrode used in the present invention may be any metal, inorganic, or organic material as long as it exhibits conductivity.
  • a thin film of conductive metal, inorganic, or organic material may be provided over the insulator.
  • the electrostatic field in the present invention is formed between a pair or a plurality of electrodes, and a high voltage may be applied to any of the electrodes.
  • a high voltage may be applied to any of the electrodes. This includes, for example, the use of two high-voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and a total of three electrodes connected to ground, or a number exceeding three. This includes the case of using other electrodes.
  • the concentration of the bioabsorbable polymer in the bioabsorbable polymer solution in the present invention is preferably 1 to 30% by weight.
  • concentration of the bioabsorbable polymer is lower than 1% by weight, it is not preferable because the concentration is too low to form a fibrous substance.
  • concentration of the bioabsorbable polymer is 2 to 20% by weight. Any method can be used to discharge the solution into the electrostatic field. For example:-As an example, we will explain below using FIG.
  • the solution By supplying Solution 2 to the nozzle, the solution is placed in an appropriate position in the electrostatic field, and the solution is electrolyzed from the nozzle to fiber.
  • an appropriate device can be used.
  • a syringe-like solution is discharged by applying appropriate means, for example, a high voltage generator 6 to the tip of the cylindrical solution holding tank 3 of the syringe.
  • the tip of the ejection nozzle 1 is placed at an appropriate distance from the grounded fibrous material collecting electrode 5 and when the solution 2 exits the tip of the ejection nozzle 1, this tip and the fibrous material collecting electrode 5 A fibrous material is formed between them.
  • the production rate of the fibrous material can be increased by using several nozzles.
  • the distance between the electrodes depends on the charge amount, nozzle dimensions, spinning fluid flow rate, spinning fluid concentration, etc., but when it was about 10 kV, a distance of 5 to 20 cm was appropriate.
  • the applied electrostatic potential is generally 3 to: 100 kV, preferably 5 to 50 kV, more preferably 5 to 30 kV. 'The desired potential can be created by any appropriate method! /.
  • the electrode also serves as a collector.
  • a collector can be provided separately from the electrode by installing an object that can be a collector between the electrodes. Sheets and tubes can be obtained by selecting the shape of the collector. Furthermore, for example, continuous production is possible by installing a belt-like substance between the electrodes and collecting it.
  • the solvent evaporates depending on the conditions, and a fibrous material is formed. At normal room temperature, the solvent completely evaporates until it is collected on the collecting electrode, but if the solvent evaporation is insufficient, it may be spun under reduced pressure conditions.
  • the spinning temperature depends on the evaporation behavior of the solvent and the viscosity of the spinning solution, but is usually 0 to 50 ° C.
  • the method for cutting the fiber of the present invention is not particularly limited, but it is preferable to use a homogenizer, a pulverizer, or a mill.
  • the fibrous material may be cut directly or in a frozen state, or the fibrous material may be suspended in a solvent and cut.
  • the dispersion aid mentioned as the second component at the stage of spinning the fibrous material is used. It is preferable to contain.
  • the dispersion aid is preferably contained in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the bioabsorbable polymer. Centrifugation performed in the present invention is performed by suspending the fibrous material in a solvent.
  • the concentration of the fiber structure in the solvent is usually about 0.001 to 50% by weight, and the solvent is not particularly limited as long as it can be freeze-dried. However, when handling and safety are considered, Mixed water is preferred.
  • the porous body having the desired average apparent density and porosity can be controlled by controlling the centrifugal acceleration and Z or the eccentric time. Can be obtained. Specifically, when the centrifugal acceleration is high and the centrifugal time is long, the average apparent density of the obtained porous body is high and the porosity is low.
  • centrifugal acceleration when the centrifugal acceleration is low and the centrifugation time is short, the average apparent density of the obtained porous body is low and the porosity is high.
  • Preferable conditions for centrifugal acceleration are 10 00 to 6,00 G, and preferable conditions for centrifugation time are 10 to 40 minutes.
  • the freeze-drying step is a step of removing the organic solvent under reduced pressure at the ultimate temperature, and is not particularly limited.
  • the freeze-drying process is preferably performed at 10 to 30 Pa.
  • the lyophilization time is preferably 8 to 24 hours.
  • freezing a method in which a temperature gradient is provided and the method of gradually freezing is preferred in terms of obtaining a porous material with few defect structures.
  • the type of freeze-dried t « is not particularly limited, and commercially available freeze-dried; can be suitably used.
  • the spinning process is the same as in Method 1 above, except that a static eliminator 20 is installed between the nozzle 13 and the electrode 17 to perform spinning, and the yarn accumulated between the nozzle and the electrode 17 is removed. It is collected by a scraper 19 and the collected fiber structure is rolled out using a biopsy trepan to obtain a well-shaped porous body.
  • the static eliminator used here is a device that applies ion air to the spun yarn to maintain a uniform ion balance and relaxes the charged state of the yarn before it reaches the electrode, thereby depositing it in the air. By using this apparatus, it is possible to produce a porous body having a height of 0.5 mm or more.
  • the average apparent density and porosity of the porous material depend on the rotation speed of the scraper. In other words, it is possible to obtain a porous body having a desired average apparent density and porosity by controlling the rotation speed of the scraper. Specifically, when the number of rotations is high, the obtained porous body has a high average power and a low porosity. On the other hand, when the rotational speed is low, the average apparent density of the obtained porous body is low and the porosity is high. As a preferable condition of the rotation speed, 5 to 200 rpm is used.
  • Intrinsic viscosity 1. 08 dL / g, 30 ° C, hexafluoroisopropanol, phosphatidylethanolaminediole oil
  • Polylactic acid-polyglycolic acid copolymer 0.9 g ', phosphatidylethanolaminediol oil 0.1 g, salt-hethylene methylene Zethanol 7/2 (parts by weight, amount' parts) 9 g at room temperature (25 ° C)
  • a 10% by weight dope solution was prepared by mixing.
  • the fibrous material collecting electrode 11 was discharged for 5 minutes. Inside diameter 0. 8 mm of the jet Nozunore 7, voltage 14.K V, the fibrous material 0.
  • Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material.
  • the sample was treated with a spatter coating (P t 1. O nm), S EM (J SM-53 10 type (manufactured by JEOL)), Calo fast voltage: 2. O kV, shooting angle 3 0 Observation was carried out by °).
  • the apparent density and porosity of the porous material were calculated by the following formula. p— 4 mZ ⁇ d ⁇ n
  • a porous material was obtained in the same manner as in Example 1 except that centrifugation was performed for 15 minutes.
  • Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material.
  • a porous material was obtained in the same manner as in Example 1 except that centrifugation was performed for 20 minutes.
  • Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material.
  • Fig. 4 shows an optical micrograph of the porous material obtained in Example 3 (D.I GITAL MICROSC OPEE, KEYENCE, magnification: 450 times).
  • a porous material was obtained in the same manner as in Example 1 except that centrifugation was performed for 5 minutes.
  • Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material.
  • Fig. 5 shows an optical micrograph (magnification: 450 times) of the porous material obtained in Example 4.
  • Polylactic acid-polyglycolanolic acid copolymer 0.9 g, phosphatidylethanolamine dioleoinole 0.1 g, methylene chloride Zethanol 7Z2 (parts by weight / parts) 9 g mixed at room temperature (25 ° C)
  • a dope solution having a concentration of 10% was prepared.
  • the fibrous material collecting electrode 5 was discharged for 5 minutes.
  • the inner diameter of the ejection nozzle 7 was 0.8 mm, the voltage was 14 kV, and the distance from the ejection nozzle 7 to the fibrous material collecting electrode was 10 cm.
  • 0.2 g of the obtained fibrous material was put into 5 Oml of ION-exchanged water, and cut with a homogenizer (registered trademark POLY TRON PT 2100) at a rotation speed of 22, O 2 O pm for 5 minutes.
  • a part of the obtained suspension was centrifuged for 10 minutes using a centrifuge (KUBOTA KN_70, rotation radius: 15 cm) at a rotation speed of 1 O O Orpm (170 G). Further, the suspension was added thereto, followed by centrifugation at 2, O O O rpm (700 G) for 10 minutes, and in the same manner, and centrifugation was performed at 3,000 rpm (1,500 G) for 10 minutes. Then, after freezing at 20 ° C.
  • Table 2 shows the fiber diameter and porosity of the obtained porous body.
  • the sample was sputter coated (Ptl. Onm) and observed with SEM JSM-5310 type (manufactured by JEOL Ltd., acceleration voltage: 2.0 kV, shooting angle 30 °) to determine the fiber diameter.
  • Fig. 6 shows the upper SEM photo
  • Fig. 7 shows the middle
  • Fig. 8 shows the lower SEM.
  • Table 2 Fiber diameter and porosity of porous materials
  • the dope solution was adjusted to 0 / 0.
  • install an electrostatic remover Kerat Electric Co., Ltd.
  • HE I DON scraper between the nozzle and electrode.
  • the yarn was discharged for 1 minute, and the yarn spun by the winder 1 9 was wound up to obtain a fiber structure, at which time the rotational speed of the winder was 10 Q r pm.
  • Example 7 A fiber structure was obtained in the same manner as in Example 6 except that the spinning time was 45 minutes and the number of revolutions of the winder was 20 rpm. Table 3 shows the fiber diameter, average apparent density, and porosity of the obtained porous material. FIG. 10 shows an optical microscopic photograph (magnification: 450 times) of the porous body obtained in Example 7. The compressive strength was 0.006 MPa.
  • the upper layer was produced with a spinning time of 60 minutes and a winder speed of 100 rpm, and then the lower layer was made with a spinning time of 20 minutes and a winder speed of 20 rpm.
  • a fiber structure was obtained in the same manner as in Example 6. Table 3 shows the fiber diameter, average apparent density, and porosity of the obtained porous material.
  • NZW Usagi The New Zealand White Rabbit used in the experiment (hereinafter NZW Usagi) was male and was purchased from SLC, Inc., and reared normally on a gauge. The age at the time of surgery was 24 weeks.
  • Ketarar and Seractal were given intramuscularly to the hind limb thighs of NZW Usagi that were normally bred, and the following surgery was performed under general anesthesia.
  • the area around the knee joint on both hind limbs was shaved and disinfected with ethanol. Thereafter, the inside of the knee joint was incised, and the femoral patella groove was exposed by dislocation of the patella.
  • the entire thickness of the knee joint cartilage was lost by creating a cylindrical defect part with an inner diameter of 5 mm and a depth of 5 mm with a surgical drill in the pulley groove part about 5 mm above the medial collateral ligament. .
  • Example 3 After embedding a porous body with an average apparent density of 208 kg / cm 3 (porosity 38%) produced in Example 3 in the defect, the patella was returned to its original position and the muscle was used as a surgical suture. And sutured. Penicillin was dropped on the affected area to prevent infection, and the skin was sutured. Finally, it was sterilized with iodine tincture and returned to Gai'ji for normal breeding.
  • the defect site was removed, and the cartilage tissue was visually observed, immersed in 10% neutral buffered formalin solution and fixed for histological evaluation.
  • the fixed tissue was degreased and EDTA decalcified, then embedded in paraffin, and a specimen was prepared by slicing the vicinity of the center of the defect into a sagittal plane. 0— Fa st Green stained.
  • Example 9 A biological evaluation was carried out in the same manner as in Example 8, using a porous material of Example 4 (average apparent density 100 kg / cm 3 , porosity '70%).
  • FIG. 12 A micrograph of the specimen is shown in Fig. 12.
  • the cartilage tissue repaired at 8 weeks after the operation was formed with a thickness almost equal to that of the normal part, and most of the cartilage was like hyaline cartilage, and the production of cartilage matrix was observed to be good.
  • the connection with the normal part was good, and continuity of the tissue was observed. ⁇ '
  • Example 8 Biological evaluation was performed in the same manner as in Example 8 except that the porous material was not embedded in the defect. A micrograph of the specimen is shown in Fig. 13. At 8 weeks after the operation, the cartilage tissue was missing and the subchondral bone was exposed. In addition, the trabecular bone of the subchondral bone was scarce and repair of the cartilage tissue was not observed. Histological evaluation was performed by scoring the following items for Examples 8 and 9 and Comparative Example 1.
  • the score grade used for histological evaluation is a modified version of Wakitani S et. Al., J Bone Joint Surg Am. 76, 579-92 (1994) Makino T et al., Kobe J Med Sci. 48: It carried out according to 97-104 (2002).
  • Figure 14 shows the items and scores used in the histological evaluation.
  • the total is 14 points, and it is evaluated on a 3-5 scale depending on the item.
  • the items are: repaired tissue morphology (0 to .4 points), matrix staining (0 to 3 points), surface condition (0 to 3 points), cartilage tissue thickness (0 2 points from the point), and the degree of connectivity with the non-deficient part (0 to 2 points). In this method, the closer to normal tissue, the higher the score.

Abstract

A porous object characterized in that it comprises a fibrous structure made of a bioabsorbable polymer and that the fibrous structure has an average fiber diameter of 0.05-10 µm, an average apparent density of 10-350 kg/m3, and a height of 0.5 mm or higher. It is suitable for use as a bioabsorbable porous object, especially as a prosthetic material or a substrate for cell incubation in the field of regenerative medicine.

Description

生体吸収性多孔体 技術分野  Bioabsorbable porous material Technical Field
本発明は生体吸収性ポリマーの繊維構造体からなる多孔体に関する。  The present invention relates to a porous body comprising a fiber structure of a bioabsorbable polymer.
背景技術 Background art
 Light
近年、 大きく損傷したり失われた生体組織と βの治療法として、 細胞の分化、 増殖能を利用し元の生体組織および臓器に再構築する再生医療の研究が活発にな 書  In recent years, as a treatment for severely damaged or lost biological tissue and β, research on regenerative medicine that reconstructs the original biological tissue and organs using the differentiation and proliferation ability of cells is active
つてきている。 生体内において細胞が分ィヒ ·増殖する場合、 細胞外マトリックス が足場として機能し、 組織の構築を行っているが、 組織が大きく損傷し欠損して いる場合、 細胞自身がマトリックスを産生するまで人工及び天然材料で補う必要 がある。 つまり補綴材 (足場材料) は組織構築の上で最適な環境を与える重要な ファクターである。 この足場材料に求められる特性としては、. 1)生体吸収性、 2) · 細胞接着性、 3)多孔質性、 4)力学強度などが挙げられ、 これらの特性を満足する 材料を創生することを目的として、 合成高分子 (ポリグリコール酸、 ポリ乳酸、 ポリ力プロラグトンなど) (例えば Υ. Ikada, H. Tsuj i , It ’s coming. When cells proliferate and grow in vivo, the extracellular matrix functions as a scaffold and constructs the tissue.If the tissue is severely damaged and defective, the cell itself produces the matrix. Need to be supplemented with artificial and natural materials. In other words, prosthetic materials (scaffolding materials) are an important factor that gives an optimal environment for tissue construction. The properties required for this scaffold material include: 1) bioabsorbability, 2) cell adhesion, 3) porosity, 4) mechanical strength, etc., and create materials that satisfy these properties. Synthetic polymers (polyglycolic acid, polylactic acid, poly force prolagtone, etc.) (eg Υ. Ikada, H. Tsuj i,
Macromol. Rapid. Commun. , 21, 117 (2000)、 J. Mayer, E. Karamuk, T. Akaike, E. W intermantal, J. Control. Release. , 4, 81 (2000) ) s 天然高分子 (コラーゲン、 ゼラ チン、 エラスチン、 ヒアルロン酸、 アルギン酸、 キトサンなど) (例えば Macromol. Rapid. Commun., 21, 117 (2000), J. Mayer, E. Karamuk, T. Akaike, E. W intermantal, J. Control. Release., 4, 81 (2000)) s natural polymer ( Collagen, gelatin, elastin, hyaluronic acid, alginic acid, chitosan, etc.
Weinberg. C. B, Bell. E, Science., 231, 397 (1986) ,  Weinberg. C. B, Bell. E, Science., 231, 397 (1986),
Aigner. J, Tegeler. J. A, Hutzler. P, Carapoccia. D, Naumann. A, .  Aigner. J, Tegeler. J. A, Hutzler. P, Carapoccia. D, Naumann. A,.
J. Biomed. Mater. Res. , 42, 172 (1998) N 無機材料 (ハイドロキシアパタイト、 β·— リン酸三カルシウム) (例えば J. Biomed. Mater. Res., 42, 172 (1998) N inorganic materials (hydroxyapatite, β · -tricalcium phosphate) (eg
Laff argue. P. H, Marchandise. X, Bone. , 25 (2S) , 55S (1999) )、 およびこれらの複合 体などがこれまで検討されている。  Laffargue. P. H, Marchandise. X, Bone., 25 (2S), 55S (1999)), and their complexes have been studied.
前述したように、 補綴材 (足場材料) に求められる重要な特性の 1つとして多 孔質性がある。 これは組織を再生させるの'に必要な細胞への十分な酸素及び栄養 を補給し、 二酸ィヒ炭素や老廃物を速やかに排出する意味において重要である。 そ のため、 足場材料の多孔質性を達成するために凍結乾燥法 (例えば As mentioned above, there are many important properties required for prosthetic materials (scaffolding materials). It is porous. This is important in terms of providing sufficient oxygen and nutrients to the cells needed to regenerate the tissue and expelling carbon dioxide and waste products quickly. Therefore, lyophilization methods (for example, to achieve the porosity of the scaffold material)
K. Wang, K. E. Healy, Polymer. , 36, 837 (1995) ) , 相分離法 (例えば K. Wang, K. E. Healy, Polymer., 36, 837 (1995)), phase separation (eg
P. X. Ma, R. Zhang, J. Biomed. Mater. Res. , 45, 285 (1999) )、 発泡法 (例えば P. X. Ma, R. Zhang, J. Biomed. Mater. Res., 45, 285 (1999)), foaming methods (eg
D. J. Mooney, R. Langer, Biomaterials., 17, 1417 (1996) ) により均一な多孔質体を 作製している。  D. J. Mooney, R. Langer, Biomaterials., 17, 1417 (1996)).
凍結乾燥法又は相分離法は得られた構造体のポアの形状が鱗片状であり、 細胞 の侵入が難しく足場材料として未充足な課題がある。 また、 発泡法についてもポ ァが単独に存在するため細胞の侵入が困難であるという課題がある。  In the freeze-drying method or the phase separation method, the pores of the obtained structure have a scaly shape, which makes it difficult for cells to invade and has an unsatisfactory problem as a scaffold material. Another problem with the foaming method is that it is difficult for cells to enter because there is a single pore.
また WO 2 0 0 4 / 8 8 0 2 4号公報には熱可塑性ポリマーからなる繊維の集 合体であって、 平均繊維径が 0 . 1〜2 0 μ mであり、 かつ該繊維の任意の横断 面が異形であり、 更に平均見掛け密度が 1 0〜9 5 k g Zm 3である不織布が記 載されているが、 足場材料としてさらなる厚みと強度を有するものが求められて レヽる。 Further, WO 2 0 4/8 8 0 24 discloses an aggregate of fibers made of a thermoplastic polymer having an average fiber diameter of 0.1 to 20 μm, and any fiber of the fibers. A nonwoven fabric having an irregular cross-sectional surface and an average apparent density of 10 to 95 kg Zm 3 is described. However, a scaffold material having further thickness and strength is required.
また、 実際の生体組織は均一な構造ではなく連続的な勾配構造を示している。 例えば関節軟骨組織におレ、ては、 表層部は細胞密度が低レ、が、 下骨に近いほど細 胞密度が比較的高い。 つまり、 より生体に近い組織を再生させるためには連続的 な勾配構造を示す足場材料の開発が重要である。 しかし前記従来技術では、 ポア の空間的分布を制御することが困難であり、 連続的な勾配構造を示す足場材料の 作製には制限がある。 しかし最近になって Athanasiou他 (例えば米国特許第 5, 607, 474号)、 Mikos他 (例えば米国特許第 5, 514, 378号)、 ETHIC0N  Moreover, the actual living tissue shows a continuous gradient structure rather than a uniform structure. For example, in articular cartilage tissue, the cell density of the surface layer is low, but the closer to the lower bone, the higher the cell density. In other words, in order to regenerate a tissue closer to a living body, it is important to develop a scaffold material exhibiting a continuous gradient structure. However, in the prior art, it is difficult to control the spatial distribution of pores, and there is a limit to the production of a scaffold material showing a continuous gradient structure. More recently, however, Athanasiou et al. (Eg US Pat. No. 5,607,474), Mikos et al. (Eg US Pat. No. 5,514,378), ETHIC0N
INCORPORATED (例えば米国特許第 6306424号) らにより、 連続的な勾配構造を示 す足場材料の検討が報告されている。 しかし、 構造が生体に非類似であったり、 また例え勾配構造を示していても、 その製造方法がポリマーと溶媒の非相溶性を 利用した凍結乾燥または熱乾燥であるため、 得られた構造体のポアの形状が鱗片 状であり、 細胞の侵入が難しく足場材料としては適していないなどの問題がある。 発明の開示 INCORPORATED (eg US Pat. No. 6,306,424) et al. Reported a study of scaffold materials that exhibit a continuous gradient structure. However, even if the structure is dissimilar to that of a living body, or even if it shows a gradient structure, the production method is lyophilization or heat drying using incompatibility between the polymer and the solvent. The pores have a scaly shape, which makes it difficult for cells to enter and is not suitable as a scaffold material. Disclosure of the invention
本努明の目的は、 生体吸収性多孔体、 とくに補綴材ゃ再生医療分野における細' 胞培養基材に適した多孔体を提供することにある。 詳細には、 生体吸収性ポリマ 一の繊維構造体からなる生体吸収性多孔体、 またその生体吸収性多孔体を簡易的 な手法により提供することにある。  The purpose of this effort is to provide a bioabsorbable porous body, particularly a porous body suitable for a cell culture substrate in the field of regenerative medicine. Specifically, it is to provide a bioabsorbable porous body composed of a fiber structure of a bioabsorbable polymer, and the bioabsorbable porous body by a simple method.
すなわち本発明は、 以下の通りである。  That is, the present invention is as follows.
1 . 生体吸収性ポリマーの繊維構造体からなり、 該繊維構造体の平均繊維径が 0 . 0 5〜1 0 μ.πι、 平均見かけ密度が 1 0〜3 5 O kg/m3、 高さが 0 . 5 以上であることを特徴とする多孔体。 1. It consists of a fiber structure of a bioabsorbable polymer, the fiber structure has an average fiber diameter of 0.05 to 10 μ.πι, an average apparent density of 10 to 35 O kg / m 3 , and a height. Is a porous body characterized by being 0.5 or more.
2, 該多孔体の平均繊維径が 0 . 2〜8 ^u mであることを特徴とする 1に記載 の多孔体。  2. The porous body according to 1, wherein the porous body has an average fiber diameter of 0.2 to 8 ^ um.
3 . 平均見かけ密度が 1 0 0〜2 5 O kg/m3であることを特徴とする 1に記 载の多孔体。 3. The porous material according to 1, wherein the average apparent density is 100 to 25 O kg / m 3 .
4 . ポロシティが 1 0〜 9 0 %であり、 異なるポ口シティが連続的に存在す る勾配構造を有することを特徴とする 3に記載の多孔質材料。  4. The porous material according to 3, wherein the porous material has a gradient structure in which the porosity is 10 to 90% and different porosity is continuously present.
5 . 該生体吸収十生ポリマー 1 0 0重量部に対して、 さらに分散補助剤を 0 · 0 1〜 5 0重量部含むことを特徴とする 1に記載の多孔体。  5. The porous body according to 1, further comprising 0 · 01 to 50 parts by weight of a dispersion aid with respect to 100 parts by weight of the bioabsorbable polymer.
6 . 分散補助剤が生体吸収性を示すことを特徴とする 5に記載の多孔体。  6. The porous body according to 5, wherein the dispersion aid exhibits bioabsorbability.
7 . 該分散補助剤が、 リン脂質類、 糖質類、 糖脂質類、 ステロイド類、 ポリア ミノ酸類、 タンパク霄類、 およびポリオキシアルキレン類からなる群から選ばれ る少なくとも 1種であることを特徴とする 6に記載の多孔体。  7. The dispersion aid is at least one selected from the group consisting of phospholipids, carbohydrates, glycolipids, steroids, polyamino acids, protein koji, and polyoxyalkylenes. 7. The porous body according to 6,
8 . 該生体吸収性ポリマーが、 主として脂肪族ポリエステルからなる 1に記载 の多孔体。  8. The porous body according to 1, wherein the bioabsorbable polymer mainly comprises an aliphatic polyester.
9 . 該脂肪族ポリエステルが、 ポリダリコール酸、 ポリ乳酸、 ポリ力プロラタ トン、 およぴそれらの共重合体からなる群から選ばれる少なくとも 1種であるこ とを特徴とする 8に記載の多孔体。 '  9. The porous body according to 8, wherein the aliphatic polyester is at least one selected from the group consisting of polydalicolic acid, polylactic acid, polyprolacton, and copolymers thereof. '
1 0 . 1に記載の多孔体からなることを特徴とする補綴材。 1 1 . 揮発性溶媒と生体吸収性ポリマーとからなる溶液を静電紡糸法にて紡糸 し繊維構造体を得る工程、 得られた繊維構造体を切断する工程、 切断された繊維 構造体を溶媒中に浮遊させ遠心分離する工程、 次いで凍結乾燥する工程を含む、 生体吸収性ポリマーの繊維構造体^らなり該繊維構造体の平均繊維径が 0 · 0 5 〜 1 0 μ m、 平均見かけ密度が 1 0〜 3 5 0 kg/m3、 かつ厚みが 0 . 5腿以上で ある多孔体の製造方法。 . A prosthetic material comprising the porous material according to 10.1. 1 1. A step of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method to obtain a fiber structure, a step of cutting the obtained fiber structure, and the cut fiber structure as a solvent Including a step of suspending and centrifuging in, followed by a step of freeze-drying. The fiber structure of the bioabsorbable polymer has an average fiber diameter of 0 · 05 to 10 μm, and an average apparent density. Is a porous body having a thickness of 0.5 to 5 thighs. .
1 2 . 該溶液にさらに分散補助剤を含む溶液を用いて紡糸することを特徴とす る 1 1に記載の製造方法。  1 2. The production method according to 1 1, wherein spinning is performed using a solution further containing a dispersion aid.
1 3: 揮発性溶媒と生体吸収性ポリマーとからなる溶液を静電紡糸法にて紡糸 する方法において、 ノズルと捕集電極の間に静電気除去器を使用することを特徴 とする生体吸収性ポリマーの繊維構造体からなり該繊維構造体の平均繊維径が 0 . 0 5〜 1 0 m、 平均見かけ密度が 1 0〜 3 5 0 kg/m3、 かつ厚みが 0 . 5 mm以 上である多孔体の製造方法。 発明の効果 ,  1 3: A bioabsorbable polymer characterized by using a static eliminator between a nozzle and a collecting electrode in a method of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method. A porous structure having an average fiber diameter of 0.05 to 10 m, an average apparent density of 10 to 35 kg / m3, and a thickness of 0.5 mm or more. Body manufacturing method. The invention's effect ,
本発明の生体吸収性多孔体は、 補綴材として有用である。 本発明により所望の 形状に合わせた成形体が提供でき、 軟骨損傷部などの高い負荷が掛かるような部 位における補綴材として有用である。 '  The bioabsorbable porous material of the present invention is useful as a prosthetic material. According to the present invention, a molded body having a desired shape can be provided, and it is useful as a prosthetic material in a portion where a high load such as a cartilage damaged portion is applied. '
本発明の生体吸収性多孔体は、 補綴材の中でも再生医療分野における細胞培養 基材、 特に軟骨再生用基材として有用である。 ,  The bioabsorbable porous material of the present invention is useful as a cell culture substrate in the field of regenerative medicine, particularly as a substrate for cartilage regeneration, among prosthetic materials. ,
多孔体を移植に用いる場合、 移植初期における加重圧縮に耐える機械強度が 必要となるが、 本発明により用途に応じた機械強度を有する多孔体を提供するこ とができる。 図面の簡単な説明  When a porous body is used for transplantation, mechanical strength that can withstand weighted compression in the initial stage of transplantation is required. However, according to the present invention, a porous body having mechanical strength according to the application can be provided. Brief Description of Drawings
図 1 本発明の製造方法のなかで、 紡糸液を静電場中に吐出する静電紡糸法 で用いる装置の一例である。 図 2 本発明の製造方法のなかで、 紡糸液の微細滴を静電場中に導入する静 電紡糸法で用いる装置の一例である。 FIG. 1 shows an example of an apparatus used in an electrostatic spinning method for discharging a spinning solution into an electrostatic field in the production method of the present invention. FIG. 2 shows an example of an apparatus used in the electrospinning method in which fine droplets of a spinning solution are introduced into an electrostatic field in the production method of the present invention.
図 3 本発明の製造方法 2の静電紡糸法で用いる装置の一例である。  FIG. 3 shows an example of an apparatus used in the electrospinning method of production method 2 of the present invention.
4 実施例3で得られた多孔体の光学顕微鏡写 Fig. 4 Photomicrograph of the porous material obtained in Example 3
図 5 実施例 4で得られた多孔体の光学顕微鏡写真  Fig. 5 Optical micrograph of the porous material obtained in Example 4
. 図 6 実施例 5で得られた多孔体上部の走査型電子顕微鏡写真  Fig. 6 Scanning electron micrograph of the upper part of the porous body obtained in Example 5
図 7 実施例 5で得られた多孔体中部の走査型電子顕微鏡写真  Fig. 7 Scanning electron micrograph of the middle part of the porous body obtained in Example 5
図 8 実施例 5で得られた多孔体下部の走査型電子顕微鏡写真  Fig. 8 Scanning electron micrograph of the lower part of the porous body obtained in Example 5
図 9 実施例 6で得られた多孔体の光学顕微鏡写真  Figure 9 Optical micrograph of the porous material obtained in Example 6
図 1 0 実施例 7で得られた多孔体の光学顕微鏡写真 ' 図 1 1 実施例 8の術後 8週目における多孔体埋入部近傍の顕微鏡写真 図 1 2. 実施例 9の術後 8週目における多孔体埋入部近傍の顕微鏡写真. 図 1 3 比較例 1の術後 8週目における欠損部近傍の顕微鏡写真  Fig. 10 Optical micrograph of the porous material obtained in Example 7 'Fig. 1 Microscopic photo of the porous body in the vicinity of the 8th week after surgery in Example 8 Fig. 1 2. 8 weeks after surgery in Example 9 Fig. 1 3 Photomicrograph of the vicinity of the defect at 8 weeks after the operation of Comparative Example 1.
図 1 4 組織学的評価をする際に用いた項目と得点  Figure 1 4 Items and scores used in histological evaluation
図 1 5 組織学的評価 符号の説明  Figure 1 5 Histological evaluation
1 . ノズル .  1 Nozzle.
2 . 紡糸液  2 Spinning fluid
3 . 紡糸液保持槽  3. Spinning fluid holding tank
4 , Λ極  4, Λ pole
5 . 繊維状物質捕集電極  5. Fibrous material collection electrode
6 . 问 ^jJt^Bit-e?  6. 问 ^ jJt ^ Bit-e?
7 . ノズル  7. Nozzle
8 . 紡糸液  8 Spinning fluid
9 . 紡糸液保持槽  9. Spinning fluid holding tank
1 0 . 電極  1 0. Electrode
1 1 . 繊維状物質捕集電極 1 2 . 高電圧発生器 1 1. Fibrous material collection electrode 1 2. High voltage generator
1 3 . ノズル  1 3. Nozzle
1 4 . 紡糸液  1 4. Spinning fluid
1 5 . 紡糸液保持槽  1 5. Spinning fluid holding tank
1 6 . 電極  1 6. Electrode
1 7 . 極  1 7.
1 8 . 高電圧発生器  1 8. High voltage generator
1 9 . 巻き取り装置  1 9. Winding device
2 0 . 静電除去装置 発明の好ましい実施形態  2 0. Electrostatic eliminator Preferred embodiment of the invention
以下、 本発明について詳述する。 なお、 これらの説明は本発明を例示するもの であり、 本発明の範囲を制限するものではない。 本発明の趣旨に合致する限り他 の実施の形態も本発明の範疇に属し得ることは言うまでもない。  Hereinafter, the present invention will be described in detail. These descriptions are merely examples of the present invention and do not limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention.
本発明で使用されている繊維構造体とは、 単数または複数の繊維が積層され、 集積されて形成された 3次元の構造体である。 繊維構造体の平均繊維径は 0 . 0 5〜 1 0 μ πιである。 平均繊維径が、 0 . 0 5 μ πιよりも小さいと該繊維構造体 の強度が保てないため好ましくない。 また平均繊維径が 1 0 μ mよりも大きいと 繊維の比表面積が小さく生着する細胞数が少なくなる め好ましくない。 より好 ましくは平均繊維径が 0 . 2〜1 0 μ πι、 さらに好ましくは平均繊維径が 0 . 2 〜 8 mである。  The fiber structure used in the present invention is a three-dimensional structure formed by laminating and accumulating single or plural fibers. The average fiber diameter of the fiber structure is 0.05 to 10 μπι. If the average fiber diameter is smaller than 0.05 μπι, the strength of the fiber structure cannot be maintained, which is not preferable. On the other hand, if the average fiber diameter is larger than 10 μm, the specific surface area of the fiber is small and the number of engrafted cells is reduced, which is not preferable. More preferably, the average fiber diameter is 0.2 to 10 μπιι, more preferably the average fiber diameter is 0.2 to 8 m.
また、 繊維の任意の横断面は略真円でも異形でも良い。 繊維の任意の横断面が 異形であると、 繊維の比面積は増大するので、 細胞の培養時に、 細胞が繊維表面 に接着する十分な面積をとることができる。  Further, the arbitrary cross section of the fiber may be a substantially perfect circle or an irregular shape. If the cross section of an arbitrary fiber is irregular, the specific area of the fiber increases, so that a sufficient area for the cell to adhere to the fiber surface can be taken during cell culture.
ここで、 繊維の任意の横断面が異形であるとは、 繊維の任意の横断面が略真円 形状をとらないいずれの形状も指し、 繊維表面が一様に凹部及び/又は凸部を有 して粗面化されている場合を含む。  Here, the arbitrary cross section of the fiber is irregular, which means any shape in which the cross section of the fiber does not take a substantially circular shape, and the fiber surface has uniform recesses and / or protrusions. And the case where it is roughened.
前記異形形状は、 繊維表面の微細な凹部、 繊維表面の微細な凸部、 繊維表面の 繊維軸方向に筋状に形成された凹部、 繊維表面の繊維軸方向に筋状に形成された 凸部及ぴ、 繊維表面の微細孔部からなる群から選ばれた少なくとも 1種によるこ とが好ましく、 これらは単独で形成されていても複数が混在していても良い。 · ここで、 上記の 「微細な凹部」、 「微細な凸部」、 とは、 繊維表面に 0 . 1 〜 1 μ ηιの凹部または凸部が形成されていることをいい、 「微細孔」 とは、 0 . 1 〜 1 μ ηιの径を有する細孔が繊維表面に存在することをいう。 また、 上記筋状に形 成された凹部及び Ζ又は凸部は、 0 . 1 〜 1 μ m幅の畝形状が繊維軸方向に形成 されていることをいう。 The irregular shape includes fine concave portions on the fiber surface, fine convex portions on the fiber surface, It may be due to at least one selected from the group consisting of concave portions formed in a streak shape in the fiber axis direction, convex portions formed in a streak shape in the fiber axis direction on the fiber surface, and fine pores on the fiber surface. Preferably, these may be formed singly or a plurality thereof may be mixed. · Here, the above-mentioned “fine concave portions” and “fine convex portions” mean that the concave or convex portions of 0.1 to 1 μηι are formed on the fiber surface, and “fine pores”. The term “pores” having a diameter of 0.1 to 1 μηι is present on the fiber surface. In addition, the above-described concave and ridges or protrusions formed in a streak shape means that a ridge shape having a width of 0.1 to 1 μm is formed in the fiber axis direction.
本発明の繊維構造体からなる多孔体は、 平均見かけ密度が: I 0〜 3 5 O kg/m 3 である。 平均見かけ密度が 1 O kg/m3より低いと細胞侵入性は良いものの機械強 度が低く、 また 3 5 O kg/m 3より高いと細胞が侵入するのが困難となり足場材料 としては好ましくない。 羊均見かけ密度は得られた多孔体の体積 (面積 X厚み) と質量とを測定し算出することができる。 平均見かけ密度は好ましくは 5 0〜 3 O O kg/πχ 3である。 さらに好ましくは、 1 0 0〜 2 5 O kg/m 3である。 . The porous body made of the fiber structure of the present invention has an average apparent density: I 0 to 35 O kg / m 3 . If the average apparent density is lower than 1 O kg / m 3 , the cell penetration is good, but the mechanical strength is low, and if it is higher than 35 O kg / m 3 , it is difficult for cells to enter, which is not preferable as a scaffold material. . The average sheep density can be calculated by measuring the volume (area X thickness) and mass of the obtained porous material. The average apparent density is preferably 50 to 3 OO kg / πχ 3 . More preferably, it is 100-25 O kg / m < 3 >. .
本発明の繊維構造体からなる多孔体は、 ポロシティが 1 0 〜 9 0 %であること が好ましい。 ポロシティが 1 0 %より低いと生着する細胞数が少なく、 また 9 0 %より高いと生着する細胞数は多レヽものの、 殆どが空間であるために機械強度 が低く足場材料としては好ましくない場合がある。 さらにはポロシティが 2 0 〜 7 0 %であることが好ましく、 2 0 5 0 %がより好ましい。 ポロシティは平均 見かけ密度とポリマー固有密度より算出することができる。  The porous body composed of the fiber structure of the present invention preferably has a porosity of 10 to 90%. If the porosity is lower than 10%, the number of cells to be engrafted is small. If the porosity is higher than 90%, the number of cells to be engrafted is large, but most of them are spaces, so the mechanical strength is low and it is not preferable as a scaffold material. There is a case. Furthermore, the porosity is preferably 20 to 70%, more preferably 2050%. The porosity can be calculated from the average apparent density and the inherent polymer density.
本発明の繊維構造体からなる多孔体は、 平均見かけ密度及び/またはポロシテ ィが均一であっても、 または勾配が付いていてもどちらでも良く、 要求される足 場部位に応じて選択できる。  The porous body comprising the fiber structure of the present invention may be either uniform in average apparent density and / or porosity or may have a gradient, and can be selected according to the required scaffold site.
異なるポロシティが連続的に存在する勾配構造とは、 2段階以上の勾配構造で あれば良く、 2段でも多段でも構わない。 このような勾配構造を有していても多 孔体全体として平均見かけ密度は 1 0〜 3 5 O kg/m 3となっている。 また、 この 場合のポロシティは 1 0〜 9 0 %である。 The gradient structure in which different porosities exist continuously may be a gradient structure having two or more stages, and may be two or more stages. Even with such a gradient structure, the average apparent density of the entire porous body is 10 to 35 O kg / m 3 . In this case, the porosity is 10 to 90%.
本発明の多孔体は、 円柱、 多角柱、 円錐台、 多角錐台などの三次元形であって、 高さが 0 . 5腿以上であり、 高さの上限は問わず、 細胞培養基材として使用す る部位に依存するといえる。 高さが 0 . 5 mmより低いと機械強度が低く、 膝関 節など負荷の高い組織の細胞培養基材としては好ましくない。 The porous body of the present invention is a three-dimensional shape such as a cylinder, a polygonal column, a truncated cone, a truncated cone, The height is 0.5 thigh or more, and it can be said that it depends on the site used as the cell culture substrate regardless of the upper limit of the height. If the height is less than 0.5 mm, the mechanical strength is low, and it is not preferable as a cell culture substrate for tissues with high loads such as knee joints.
本発明の多孔体を、 例えば生体の損傷部に穴を開け埋入し、 捕綴材表面に細胞 を再生するために用い ¾ことができるが、 本発明の多孔体は所望の形状に合わせ た成形体が提供できるという特徴を有する。 求められる厚みを持った基材が提供 できるので、 例えば不織布を重ねて圧着させたような積層体に比べて、 界面剥離 が無く形状安定性に優れることから、 高い負荷が掛かるような部位における捕綴 材、 '細胞培養基材として有用である。  The porous body of the present invention can be used for, for example, piercing and embedding in a damaged part of a living body, and regenerating cells on the surface of a binding material, but the porous body of the present invention is adapted to a desired shape. It has the characteristic that a molded object can be provided. Since a substrate with the required thickness can be provided, it is superior in shape stability without interfacial delamination compared to, for example, a laminate in which non-woven fabrics are stacked and pressure-bonded. Useful as a binding material, 'cell culture substrate.
例えば多孔体を移植に用いる場合、 移植初期における加重圧縮に耐える機械強 度が必要となるが、 本発明により用途に応じた機械強度を有する多孔体を提供す ることができる。  For example, when a porous body is used for transplantation, mechanical strength that can withstand weighted compression in the initial stage of transplantation is required. However, according to the present invention, a porous body having mechanical strength according to the application can be provided.
本発明の多孔体を構成する生体吸収性ポリマーは、 好ましくは主として脂肪族 ポリエステルからなる。 脂肪族ポリエステルとしては、 ポリダリコール酸、 ポリ 乳酸、 ポリ力プロラタトン、 ポリジォキサノン、 トリメチレンカーボネート、 ポ リブチレンサクシネート、 ポリエチレンサクシネート、 およびこれらの共重合体 などが挙げられる。 これらのうち、 脂肪族ポリエステルとしては、 ポリグリコー ル酸、 ポリ乳酸、 ポリ力プロラクトン、 およびこれらの共重合体からなる群から 選ばれる少なくとも 1種であることが好ましレ、。 The bioabsorbable polymer constituting the porous body of the present invention is preferably mainly composed of an aliphatic polyester. Examples of the aliphatic polyester include polydaricholic acid, polylactic acid, polystrength prolatatone, polydioxanone, trimethylene carbonate, polybutylene succinate, polyethylene succinate, and copolymers thereof. Of these, the aliphatic polyester is preferably at least one selected from the group consisting of polyglycolic acid, polylactic acid, polystrength prolactone, and copolymers thereof.
- また本発明の多孔体は、 さらに分散補助剤を含むことが好ましい。 分散補助剤 が生体吸収性を示すことがさらに好ましい。 該分散補助剤としては、 リン脂質類、 糖質類、 糖脂質類、 ステロイド類、 ポリアミノ酸類、 タンパク質類、 およびポリ ォキシアルキレン類からなる群から選ばれる少なくとも 1種であることが好まし レ、。 具体的な分散ネ唐助剤としては、 ホスファチジノレコリン、 ホスファチジルエタ ノーノレアミン、 ホスファチジルセリン、 ホスファチジノレグリセローノレなどのリン 脂質類および Zまたはポリガラクチュロン酸、 へパリン、 コンドロイチン硫酸、 ヒアノレロン酸、 デルマタン硫酸、 コンドロイチン、 デキストラン硫酸、 硫酸化セ ルロース、 アルギン酸、 デキストラン、 カノレボキシメチルキチン、 ガラク トマン ナン、 アラビアガム、 トラガントガム、 ジヱランガム、 硫酸化ジエラン、 カラャ ガム、 カラギーナン、 寒天、 キサンタンガム、 カードラン、 プルラン、 セルロー ス、 デンプン、 カノレポキシメチノレセノレロース、 メチノレセノレロース、 グノレコマンナ ン、 キチン、 キトサン、 キシログルカン、 レンチナンなどの糖質類おょぴ Zまた はガラクトセレブロシド、 グルコセレブロシド、 グロボシド、 ラタトシノレセラミ ド、 トリへキソシルセラミ ド、 パラグロボシド、 ガラク トシルジァシルグリセ口 ール、 スルホキノボシルジァシルグリセロール、 ホスファチジルイノシトール、 グリコシルポリプレノールリン酸などの糖脂質類および/またはコレステロール、 コール酸、 サポゲニン、 ジギトキシンなどのステロイド類および/またはポリア スパラギン酸、 ポリグルタミン酸、 ポリリジンなどのポリアミノ酸類および Zま たはコラーゲン、 ゼラチン、 フイブロネクチン、 フイブリン、 ラミニン、 カゼィ ン、 ケラチン、 セリシン、 トロンビンなどのタンパク質類および Zまたはポリオ キシエチレンアルキルエーテル、 ポリオキシエチレンプロピレンアルキルエーテ ノレ、 ポリォキシエチレンソルビタンエーテ^^などのポリォキシアルキレン類など が挙げられる。 The porous body of the present invention preferably further contains a dispersion aid. More preferably, the dispersion aid exhibits bioabsorbability. The dispersion aid is preferably at least one selected from the group consisting of phospholipids, carbohydrates, glycolipids, steroids, polyamino acids, proteins, and polyoxyalkylenes. Les. Specific dispersing agents include phospholipids such as phosphatidinorecholine, phosphatidylethanolanolamine, phosphatidylserine, phosphatidinoregliceronorole and Z or polygalacturonic acid, heparin, chondroitin sulfate, Hyanorelon acid, dermatan sulfate, chondroitin, dextran sulfate, sulfated cellulose, alginic acid, dextran, canoleboxymethyl chitin, galactmann Naan, gum arabic, tragacanth gum, dillang gum, sulfated dielan, cara gum, carrageenan, agar, xanthan gum, curdlan, pullulan, cellulose, starch, canolepoxymethinoresenorelose, methinoresenorelose, gnolecomannan, chitin, Carbohydrates such as chitosan, xyloglucan, lentinan Z or galactocerebroside, glucocerebroside, globoside, ratatosinoreseramide, trihexosylceramide, paragloboside, galactosyldiacylglycose mouthpiece, sulfoquino Glycolipids such as bosyl diacylglycerol, phosphatidylinositol, glycosyl polyprenol phosphate and / or steroids such as cholesterol, cholic acid, sapogenin, digitoxin And / or polyamino acids such as polyasparagic acid, polyglutamic acid, polylysine and proteins such as Z or collagen, gelatin, fibronectin, fibrin, laminin, casein, keratin, sericin, thrombin and Z or polyoxyethylenealkyl And polyoxyalkylenes such as ether, polyoxyethylene propylene alkyl ether, polyoxyethylene sorbitan ether, and the like.
生体吸収性多孔体における分散補助剤の好ましい含有量としては、 生体吸収性 ポリマー 1 0 0重量部に対して 0 . 0 1〜 5 0重量部である。 含有量が 0 . 0 1 重量部より低いと水に対する濡れ性が悪くホモジナイザーでの繊維切断が難しい 場合があり、 また遠心分離処理を行つた際繊維が沈降し難レ、ことがある。 5 0重 量部より髙いと紡糸段階で繊維が形成され難い。 さらに好ましくは含有量 0 . 1 〜 2 0重量部である。 また、 分散補助剤を含むことで多孔体への細胞侵入性が高 まる。 .  A preferable content of the dispersion aid in the bioabsorbable porous material is 0.001 to 50 parts by weight with respect to 100 parts by weight of the bioabsorbable polymer. If the content is less than 0.01 part by weight, the wettability with water is poor and it may be difficult to cut the fiber with a homogenizer, and the fiber may be difficult to settle upon centrifugation. If it is longer than 50 parts by weight, fibers are hardly formed at the spinning stage. More preferably, the content is 0.1 to 20 parts by weight. Moreover, cell penetration into the porous material is enhanced by including a dispersion aid. .
本発明の生体吸収性多孔体は、 生体吸収性ポリマー、 分散補助剤以外の第 3成 分をさらに含有しても良い。 該成分には、 例えば F G F (繊維芽細胞増殖因子)、 E G F (上皮増殖因子)、 P D G F_ (血小板由来増殖因子)、 T G F— ( |3型形 質転換増殖因子)、 NG F (神経増殖因子)、 HG F (肝細胞増殖因子)、 BMP (骨形成因子) などの細胞増殖因子などが挙げられる。  The bioabsorbable porous material of the present invention may further contain a third component other than the bioabsorbable polymer and the dispersion aid. These components include, for example, FGF (fibroblast growth factor), EGF (epidermal growth factor), PDG F_ (platelet-derived growth factor), TGF— (type 3 transforming growth factor), NG F (nerve growth factor) ), HGF (hepatocyte growth factor), BMP (bone morphogenetic factor) and other cell growth factors.
本発明の多孔体は、 補綴材として有用である。 軟骨が損傷した部位に埋入して 軟骨損傷の治療方法に用いることができる。 治療方法は以下の手順で行うこと力 S できる。 まず、 関節部を手術し軟骨を露出させる。 次に、 軟骨の損傷部位にドリ. ルなどで穴を開ける。 穴は、 厚さ 2 mm程度の軟骨組織より下の軟骨下骨に達す る程度の深さまで開けることが好ま I 、。 従って穴の深さは 3 〜 8 mm程度が好 ましい。 その後、 穴の内径に略一致する形状の本発明の補綴材を埋入する。 その 後、 手術部位を修復し、 自然治癒により、 軟骨の再生を行う。 The porous body of the present invention is useful as a prosthetic material. In the damaged part of the cartilage It can be used in a method for treating cartilage damage. The treatment method can be performed by the following procedure. First, the joint is operated to expose the cartilage. Next, a hole is made in the damaged part of the cartilage with a drill or the like. It is preferable that the hole is deep enough to reach the subchondral bone below the cartilage tissue with a thickness of about 2 mm. Therefore, the depth of the hole is preferably about 3-8 mm. Thereafter, the prosthetic material of the present invention having a shape substantially coinciding with the inner diameter of the hole is embedded. Thereafter, the surgical site is repaired and cartilage is regenerated by natural healing.
本発明は、 揮発性溶媒と生体吸収性ポリマーとからなる溶液を静電紡糸法にて 紡糸し繊維構造体を得る工程、 得られた繊維構造体を切断する工程、 切断された 繊維構造体を溶媒中に浮遊させ遠心分離する工程、 次いで凍結乾燥する工程、 を 含む、 生体吸収性ポリマーの繊維構造体からなり該繊維構造体の平均繊維径が 0 . 0 5〜 1 0 μ πι、 平均見かけ密度が 1 0 ~ 3 5 O kg/m3、 力つ厚みが◦ . 5 mm 以上である多孔体の製 5 方法である (方法 1 )。 該溶液にさらに分散補助剤を含 む溶液を用いて紡糸することが好ましい。 The present invention includes a step of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method to obtain a fiber structure, a step of cutting the obtained fiber structure, and a cut fiber structure. A step of suspending in a solvent and centrifuging, followed by a step of freeze-drying, comprising a fiber structure of a bioabsorbable polymer, and the average fiber diameter of the fiber structure is 0.05 to 10 μπι, average appearance This is a method for producing a porous body having a density of 10 to 35 O kg / m 3 and a thickness of not less than 5 mm (Method 1). It is preferable to perform spinning using a solution containing a dispersion aid in the solution.
また本発明は、 揮発性溶媒と生体吸収性ポリマーとからなる溶液を静電紡糸法 にて紡糸する方法において、 ノズルと捕集電極の間に静電気除去器を使用するこ とを特徴とする、 生体吸収性ポリマーの繊維構造体からなり該繊維構造体の平均 繊維径が 0 . 0 5〜: 1 0 μ πι、 平均見かけ密度が 1 0〜 3 5 0 kg/m3、 かつ厚み が 0 . 5 mm以上である多孔体の製造方法である (方法 2 ) 。 Further, the present invention is characterized in that in a method of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method, a static eliminator is used between the nozzle and the collecting electrode. It is composed of a fiber structure of a bioabsorbable polymer, and the average fiber diameter of the fiber structure is from 0.05 to 10 μπι, the average apparent density is from 10 to 35 kg / m 3 , and the thickness is 0. This is a method for producing a porous body of 5 mm or more (Method 2).
まず方法 1について述べる。  First, method 1 is described.
本発明で溶液を形成する揮発性溶媒とは、 生体吸収性ポリマーを溶解し常圧で 沸点が 2 0 0 °C以下であり、 室温で液体である物質である。 具体的な揮発性溶媒 としては、 例えば塩化メチレン、 クロロホノレム、 アセトン、 メタノール、 ェタノ ール、 プロパノール、 ィソプロパノール、 トルエン、 テトラヒ ドロフラン、 1 ,1 , 1 , 3 , 3 , 3 —へキサフルォロイソプロパノール、 水、 1 , 4ージォキサ ン、 四塩化炭素、 シクロへキサン、 シクロへキサノン、 N, N—ジメチルホルム アミド、 ァセトニトリルなどが挙げられる。 これらのうち、 生体吸収性ポリマー、 とくに脂肪族ポリエステルの溶解性等から、 塩化メチレン、 クロ口ホルム、 ァセ トンが特に好ましい。 これらの溶媒は単独で用いても良く、 複数の溶媒を組み合 わせても良い。 また本発明においては、 本目的を損なわない範囲で他の溶媒を併 用しても良い。 The volatile solvent that forms a solution in the present invention is a substance that dissolves a bioabsorbable polymer, has a boiling point of 200 ° C. or less at normal pressure, and is liquid at room temperature. Specific volatile solvents include, for example, methylene chloride, chlorophenol, acetone, methanol, ethanol, propanol, isopropanol, toluene, tetrahydrofuran, 1,1,1,3,3,3 —hexafluoro Examples include roisopropanol, water, 1,4-dioxane, carbon tetrachloride, cyclohexane, cyclohexanone, N, N-dimethylformamide, and acetonitrile. Among these, methylene chloride, black mouth form, and acetone are particularly preferable in view of solubility of bioabsorbable polymers, particularly aliphatic polyesters. These solvents may be used alone or in combination with multiple solvents. You may let them. In the present invention, other solvents may be used in combination as long as the object is not impaired.
本発明で使用する静電紡糸法とは、 生体吸収性ポリマーまたは生体吸収性ポリ マーと分散補助剤とを揮発性溶媒に溶解した溶液を電極間で形成された静電場中 に吐出し、 溶液を電極に向けて曳糸することにより、 辦維状物質を製造する方法 である。 繊維状物質とは既に溶液中の溶媒が留去され、 繊維状物質となっている 状態のみならず、 いまだ溶媒を含んでいる状態も示している。 本発明で用いられ る電極は、 金属、 無機物、 または有機物のいかなるものでも導電性を示すもので あれば良い。 また、 絶縁物上に導電性を示す金属、 無機物、 または有機物の薄膜 を持つものであっても良い。 本発明における静電場は 対又は複数の電極間で形 成されており、 いずれの電極に高電圧を印加レても良い。 これは例えば電圧値が 異なる高電圧の電極が 2つ (例えば 1 5 k Vと 1 0 k V) と、 アースに繋がった 電極の合計 3つの電極を用いる場合も含み、 または 3本を超える数の電極を使う 場合も含むものとする。  The electrospinning method used in the present invention is a method in which a bioabsorbable polymer or a solution in which a bioabsorbable polymer and a dispersion aid are dissolved in a volatile solvent is discharged into an electrostatic field formed between electrodes. This is a method for producing a fibrous material by spinning the yarn toward the electrode. The fibrous material indicates not only the state in which the solvent in the solution has already been distilled off, but also the state in which the solvent is still contained. The electrode used in the present invention may be any metal, inorganic, or organic material as long as it exhibits conductivity. In addition, a thin film of conductive metal, inorganic, or organic material may be provided over the insulator. The electrostatic field in the present invention is formed between a pair or a plurality of electrodes, and a high voltage may be applied to any of the electrodes. This includes, for example, the use of two high-voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and a total of three electrodes connected to ground, or a number exceeding three. This includes the case of using other electrodes.
本発明における生体吸収性ポリマー溶液中の生体吸収性ポリマーの濃度は、 1 〜 3 0重量%であることが好ましレ、。 生体吸収性ポリマーの濃度が 1重量%より 低いと、 濃度が低すぎるため繊維状物質を形成することが困難となり好ま,しくな い。 また、 3 0重量%より高いと得られる繊維状物質の繊維径が大きくなり好ま しくない。 より好ましい生体吸収性ポリマーの濃度は 2〜2 0重量%である。 該溶液を静電場中に吐出するには、 任意の方法を用いることが出来る。 例えば、 —例として図 1を用いて以下説明する。 溶液 2をノズルに供給することによって、 溶液を静電場中の適切な位置に置き、 そのノズルから溶液を電解によって曳糸し て繊維ィ匕させる。 このためには適宜な装置を用いることができ、 例えば注射器の 筒状の溶液保持槽 3の先端部に適宜の手段、 例えば高電圧発生器 6にて電圧をか けた注射針状の溶液嘖出ノズル 1を設置して、 溶液をその先端まで導く。'接地し た繊維状物質捕集電極 5から適切な距離に該嘖出ノズル 1の先端を配置し、 溶液 2が該噴出ノズノレ 1の先端を出るときにこの先端と繊維状物質捕集電極 5の間に て繊維状物質を形成させる。 また当業者には自明の方法で該溶液の微細滴を静電場中に導入することもでき る。 一例として図 2を用いて以下に説明する。 'その際の唯一の要件は液滴を静電 場中に置いて、 繊維化が起こりうるような距離に繊維状物質捕集電極 1 1から離 して保持することである。 例えば、 ノズル 7を有する溶液保持槽 9中の溶液 8に 直接、 直接繊維状物質捕集電極に対抗する電極 1 0を揷入しても良い。 The concentration of the bioabsorbable polymer in the bioabsorbable polymer solution in the present invention is preferably 1 to 30% by weight. When the concentration of the bioabsorbable polymer is lower than 1% by weight, it is not preferable because the concentration is too low to form a fibrous substance. On the other hand, if it is higher than 30% by weight, the fiber diameter of the obtained fibrous substance becomes large, which is not preferable. A more preferable concentration of the bioabsorbable polymer is 2 to 20% by weight. Any method can be used to discharge the solution into the electrostatic field. For example:-As an example, we will explain below using FIG. By supplying Solution 2 to the nozzle, the solution is placed in an appropriate position in the electrostatic field, and the solution is electrolyzed from the nozzle to fiber. For this purpose, an appropriate device can be used. For example, a syringe-like solution is discharged by applying appropriate means, for example, a high voltage generator 6 to the tip of the cylindrical solution holding tank 3 of the syringe. Install nozzle 1 and guide the solution to its tip. 'The tip of the ejection nozzle 1 is placed at an appropriate distance from the grounded fibrous material collecting electrode 5 and when the solution 2 exits the tip of the ejection nozzle 1, this tip and the fibrous material collecting electrode 5 A fibrous material is formed between them. It is also possible for a person skilled in the art to introduce fine droplets of the solution into the electrostatic field in a manner that is self-evident. An example will be described below with reference to FIG. 'The only requirement is to place the droplet in an electrostatic field and keep it away from the fibrous material collection electrode 11 at a distance where fibrosis can occur. For example, an electrode 10 that directly opposes the fibrous material collecting electrode may be inserted directly into the solution 8 in the solution holding tank 9 having the nozzle 7.
該溶液をノズルから静電場中に供給する場合、 数個のノズルを用いて繊維状物 質の生産速度を上げることもできる。 電極間の距離は、 帯電量、 ノズル寸法、 紡 糸液流量、 紡糸液濃度等に依存するが、 1 0 k V程度のときには5〜 2 0 c mの 距離が適当であった。 また、 印加される静電気電位は一般に 3〜: 1 0 0 k V、 好 ましくは 5〜5 0 k V、 一層好ましくは 5〜3 0 k Vである。 '所望の電位は任意 の適切な方法で作れば良!/、。 When supplying the solution into the electrostatic field from the nozzle, the production rate of the fibrous material can be increased by using several nozzles. The distance between the electrodes depends on the charge amount, nozzle dimensions, spinning fluid flow rate, spinning fluid concentration, etc., but when it was about 10 kV, a distance of 5 to 20 cm was appropriate. The applied electrostatic potential is generally 3 to: 100 kV, preferably 5 to 50 kV, more preferably 5 to 30 kV. 'The desired potential can be created by any appropriate method! /.
上記説明は、 電極がコレクタを兼ねる場合であるが、 電極間にコレクタとなり うる物を設置することで、 電極と別にコレクタを設けることが出来る。 またコレ クタの形状を選択することで、 シート、 チューブなどが得られる。 さらに、 例え ばベルト状物質を電極間に設置して捕集することで、 連続的な生産も可能となる。 本発明においては、 該溶液を捕集電極に向けて曳糸する間に、 条件に応じて溶媒 が蒸発して繊維状物質が形成される。 通常の室温であれば捕集電極上に捕集され るまでの間に溶媒は完全に蒸発するが、 もし溶媒蒸発が不十分な場合は減圧条件 下で曳糸しても良い。 また、 曳糸する温度は溶媒の蒸発挙動や紡糸液の粘度に依 存するが、 通常は 0〜5 0 °Cである。  The above description is for the case where the electrode also serves as a collector. However, a collector can be provided separately from the electrode by installing an object that can be a collector between the electrodes. Sheets and tubes can be obtained by selecting the shape of the collector. Furthermore, for example, continuous production is possible by installing a belt-like substance between the electrodes and collecting it. In the present invention, while spinning the solution toward the collecting electrode, the solvent evaporates depending on the conditions, and a fibrous material is formed. At normal room temperature, the solvent completely evaporates until it is collected on the collecting electrode, but if the solvent evaporation is insufficient, it may be spun under reduced pressure conditions. The spinning temperature depends on the evaporation behavior of the solvent and the viscosity of the spinning solution, but is usually 0 to 50 ° C.
本発明の繊維を切断する方法は特に限定はされないが、 ホモジナイザー、 粉砕 機、 ミルを使用するのが好ましい。 切断する際は、 繊維状物質を直接または凍結 した状態で切断しても良いし、 または溶媒中に繊維状物質を浮遊させて切断して も良い。 また溶媒中で切断する場合は、 繊維状物質と溶媒の親和性を高めること でより効率的に切断出来ることから、 繊維状物質を紡糸する段階で前記第 2成分 として挙げられた分散補助剤を含有させることが好ましい。 分散補助剤は生体吸 収性ポリマー 1 0 0重量部に対して、 0 . 0 1〜5 0重量部、 含有させることが 好ましい。 本発明で行う遠心分離は、 繊維状物質を溶媒中に浮遊させて行う。 溶媒中にお ける繊維構造体の濃度は通常約 0. 001〜50重量%であり、 該溶媒としては凍結乾 燥できる溶媒であれば特に限定はされないが、 取り扱い性及び安全性を考えた場 合水が好ましい。 また、 多孔体の平均見かけ密度及びポロシティは遠心加速度及 び遠心時間に依存するため、 遠心加速度及び Zまたは違心時間をコント口ールす ることで、 所望の平均見かけ密度及びポロシティを有する多孔体を得ることが可 能となる。 具体的には、 遠心加速度が高く、 遠心時間が長い場合においては、 得 られる多孔体の平均見かけ密度は高く、 かつポロシティは低い。 それに対し、 遠 心加速度が低く、 遠心時間が短い場合においては、 得られる多孔体の平均見かけ 密度は低くかつポロシティは高い。 遠心加速度の好ましい条件としては、 1 0 0 〜6 , 0 0 0 Gであり、 遠心時間の好ましい条件としては、 1 0〜4 0分である。 このように遠心加速度をコントロールすることで、 多段階の勾配構造を有する 多孔質体を作製することが可能である。 The method for cutting the fiber of the present invention is not particularly limited, but it is preferable to use a homogenizer, a pulverizer, or a mill. When cutting, the fibrous material may be cut directly or in a frozen state, or the fibrous material may be suspended in a solvent and cut. Also, when cutting in a solvent, it can be cut more efficiently by increasing the affinity between the fibrous material and the solvent. Therefore, the dispersion aid mentioned as the second component at the stage of spinning the fibrous material is used. It is preferable to contain. The dispersion aid is preferably contained in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the bioabsorbable polymer. Centrifugation performed in the present invention is performed by suspending the fibrous material in a solvent. The concentration of the fiber structure in the solvent is usually about 0.001 to 50% by weight, and the solvent is not particularly limited as long as it can be freeze-dried. However, when handling and safety are considered, Mixed water is preferred. In addition, since the average apparent density and porosity of the porous body depend on the centrifugal acceleration and the centrifugation time, the porous body having the desired average apparent density and porosity can be controlled by controlling the centrifugal acceleration and Z or the eccentric time. Can be obtained. Specifically, when the centrifugal acceleration is high and the centrifugal time is long, the average apparent density of the obtained porous body is high and the porosity is low. On the other hand, when the centrifugal acceleration is low and the centrifugation time is short, the average apparent density of the obtained porous body is low and the porosity is high. Preferable conditions for centrifugal acceleration are 10 00 to 6,00 G, and preferable conditions for centrifugation time are 10 to 40 minutes. By controlling the centrifugal acceleration in this way, it is possible to produce a porous body having a multistage gradient structure.
凍結乾燥工程は、 到達温度において減圧下で行い、 有機溶媒を除去する工程で あり、 特に限定はされない。 凍結乾燥工程は、 1 0〜 3 0 P aで行うことが好ま しい。 凍結乾燥時間は 8〜2 4時間が好ましい。 凍結する際温度勾配をつけて · 徐々に凍結させる方法が欠陥構造の少ない多孔質性材料を得る意味で好ましい。 ' なお凍結乾; t«の種類は特に限定されず、 市販されている凍結乾; «を好適に用 いることができる。  The freeze-drying step is a step of removing the organic solvent under reduced pressure at the ultimate temperature, and is not particularly limited. The freeze-drying process is preferably performed at 10 to 30 Pa. The lyophilization time is preferably 8 to 24 hours. When freezing, a method in which a temperature gradient is provided and the method of gradually freezing is preferred in terms of obtaining a porous material with few defect structures. 'Note that the type of freeze-dried t «is not particularly limited, and commercially available freeze-dried; can be suitably used.
以下方法 2について述べる。  Method 2 is described below.
紡糸工程については上記方法 1と同様であるが、 ノズル 1 3と電極 1 7の間に 静電気除去器 2 0を設置して紡糸を行レ \ ノズノレと電極 1 7との間で堆積した糸 を卷取り機 1 9により捕集し、 捕集された繊維構造体を生検トレパンを用いて繰 り抜き、 形状の整った多孔体を得る。 ここで使用する静電気除去器とは、 イオン エアーを紡糸された糸に当てイオンバランスを均一に保ち、 電極に届く前に糸の帯 電状態を緩和することで空気中に堆積させる装置である。 この装置を用いることに よって高さが 0 . 5 mm以上の多孔体の製造が可能である。  The spinning process is the same as in Method 1 above, except that a static eliminator 20 is installed between the nozzle 13 and the electrode 17 to perform spinning, and the yarn accumulated between the nozzle and the electrode 17 is removed. It is collected by a scraper 19 and the collected fiber structure is rolled out using a biopsy trepan to obtain a well-shaped porous body. The static eliminator used here is a device that applies ion air to the spun yarn to maintain a uniform ion balance and relaxes the charged state of the yarn before it reaches the electrode, thereby depositing it in the air. By using this apparatus, it is possible to produce a porous body having a height of 0.5 mm or more.
また、 多孔体の平均見かけ密度及びポロ.シティは卷き取り機の回転数に依存す るた _め、 卷き取り機の回転数をコントロールすることで、 所望の平均見かけ密度 及びポロシティを有する多孔体を得ることが可能となる。 具体的には、 回転数が 高い場合においては、 得られる多孔体の平均見力 ^け密度は高く、 力つポロシティ は低い。 それに対し、 回転数が低い場合においては、 得られる多孔体の平均見か け密度は低くかつポロシティは高い。 回転数の好ましい条件としては、 5〜 20 0 r p mでめる。 The average apparent density and porosity of the porous material depend on the rotation speed of the scraper. In other words, it is possible to obtain a porous body having a desired average apparent density and porosity by controlling the rotation speed of the scraper. Specifically, when the number of rotations is high, the obtained porous body has a high average power and a low porosity. On the other hand, when the rotational speed is low, the average apparent density of the obtained porous body is low and the porosity is high. As a preferable condition of the rotation speed, 5 to 200 rpm is used.
このように卷き取り機の回転数をコントロールすることで、 多段階の勾配構造 を有する多孔体を作製することが可能である。 実施例  By controlling the rotation speed of the scraper in this way, it is possible to produce a porous body having a multi-stage gradient structure. Example
以下、 実施例により本発明の実施の形態を説明するが、 これらは本発明の発明 を制限するものではない。  Hereinafter, embodiments of the present invention will be described by way of examples, but these do not limit the present invention.
本実施例に使用したポリ乳酸一ポリダリコール酸共重合体:バーミンガムポリ マー社 (Birmingham Polymers, Inc) 製のポリ D L乳酸/ポリグリコール酸 (モ ル比 =50/50) 共重合体、 固有粘度: 1. 08 dL/g、 30°C, へキサフ ルォロイソプロパノール、 ホスファチジルエタノールアミンジォレオイル  Polylactic acid-polydaricolic acid copolymer used in this example: Poly DL lactic acid / polyglycolic acid (molar ratio = 50/50) copolymer manufactured by Birmingham Polymers, Inc. Intrinsic viscosity: 1. 08 dL / g, 30 ° C, hexafluoroisopropanol, phosphatidylethanolaminediole oil
(C0ATSOME) は日本油脂 (株)、 塩ィ匕メチレン、 ェタノ一ルは和光純薬工業 . (株) 製を使用した。  As for (C0ATSOME), Nippon Oil & Fats Co., Ltd., Shiojimethylene, and Ethanol were manufactured by Wako Pure Chemical Industries, Ltd.
[実施例 1]  [Example 1]
ポリ乳酸一ポリグリコール酸共重合体 0. 9 g'、 ホスファチジルエタノールァ ミンジォレオイル 0. 1 g、 塩ィヒメチレン Zエタノール =7/2 (重量部 童量 '部) 9 gを室温 ( 25 °C) で混合し 10重量%のドープ溶液を調整した。 図 2に 示す装置を用いて、 繊維状物質捕集電極 11に 5分間吐出した。 噴出ノズノレ 7の 内径は 0. 8 mm, 電圧は 14.k V、 噴出ノズル 7から繊維状物質捕集電極まで ' の距離は 10 c mであった ¾ 得られた繊維状物質 0. 2 gをィオン交換水 50m 1中に入れて、 ホモジナイザー (登録商標 POLY TRON PT 210 0) を用いて回転数 22, 0◦ O r pmで 5分間切断した。 得られた懸濁液の一 部を遠心分離機 (KUBOTA KN— 70、 回転半径 15 c m) を用いて回転 数 3, 000 r pm (1, 500 G) で 25分間遠心分離を行った。 そして一 2 0 で 2時間凍結処理を行つた後、 20 P aで 6時間凍結乾燥を行レ、多孔体を得 て、 直径 5 mmX高さ 5 mmの円柱状のものを切り出した。 得られた多孔体の繊 維径、 平均見かけ密度及びポロシティを表 1に示す。 繊維径については、 試料を スッパタコーティング (P t 1. O n m) 処理し、 S EM ( J SM— 53 1 0型 (日本電子製)、 カロ速電圧: 2. O kV、 撮影角度 3 0° ) により観察を行った。 多孔体の見かけ密度、 およびポロシティについては、 下記式により算出した。 p— 4 mZ π d ~ nPolylactic acid-polyglycolic acid copolymer 0.9 g ', phosphatidylethanolaminediol oil 0.1 g, salt-hethylene methylene Zethanol = 7/2 (parts by weight, amount' parts) 9 g at room temperature (25 ° C) A 10% by weight dope solution was prepared by mixing. Using the apparatus shown in FIG. 2, the fibrous material collecting electrode 11 was discharged for 5 minutes. Inside diameter 0. 8 mm of the jet Nozunore 7, voltage 14.K V, the fibrous material 0. 2 g distances obtained ¾ was 10 cm 'to spray nozzle 7 to the fibrous substance collecting electrode It was placed in 50 ml of ION-exchanged water, and cut with a homogenizer (registered trademark POLY TRON PT 210 0) at a rotation speed of 2,0 ° Orm for 5 minutes. Part of the resulting suspension was rotated using a centrifuge (KUBOTA KN—70, turning radius 15 cm). Centrifugation was performed at several 3,000 rpm (1,500 G) for 25 minutes. Then, after freezing treatment at 120 for 2 hours, freeze-drying was performed at 20 Pa for 6 hours to obtain a porous material, and a cylindrical shape having a diameter of 5 mm and a height of 5 mm was cut out. Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material. For fiber diameter, the sample was treated with a spatter coating (P t 1. O nm), S EM (J SM-53 10 type (manufactured by JEOL)), Calo fast voltage: 2. O kV, shooting angle 3 0 Observation was carried out by °). The apparent density and porosity of the porous material were calculated by the following formula. p— 4 mZ π d ~ n
Figure imgf000017_0001
Figure imgf000017_0001
(ε :ポロシティ, ρ: 多孔体の見かけ密度, m:質量, d:直径, h:厚さ, pp:ポリマ ,一固有密度(50/50 Poly(DL-lactide-co-glycolide:l.34g/ml))  (ε: porosity, ρ: apparent density of porous material, m: mass, d: diameter, h: thickness, pp: polymer, one intrinsic density (50/50 Poly (DL-lactide-co-glycolide: l.34g / ml))
[実施例 2]  [Example 2]
遠心分離を 1 5分間行った以外は、 実施例 1と同様に多孔体を得た。 得られた 多孔体の繊維径、 平均見かけ密度及びポロシティを表 1に示す。  A porous material was obtained in the same manner as in Example 1 except that centrifugation was performed for 15 minutes. Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material.
[実施例 3]  [Example 3]
遠心分離を 20分間行った以外は、 実施例 1と同様に多孔体を得た。 得られ た多孔体の繊維径、 平均見かけ密度及びポロシティを表 1に示す。 また、 図 4に 実施例 3で得られた多孔体の光学顕微鏡写真 (D.I G I TAL MI CROSC OPEE, KEYENCE社,倍率: 450倍) を示す。  A porous material was obtained in the same manner as in Example 1 except that centrifugation was performed for 20 minutes. Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material. Fig. 4 shows an optical micrograph of the porous material obtained in Example 3 (D.I GITAL MICROSC OPEE, KEYENCE, magnification: 450 times).
[実施例 4〕  Example 4
遠心分離を 5分間行った以外は、 実施例 1と同様に多孔体を得た。 得られた 多孔体の繊維径、 平均見かけ密度及びポロシティを表 1に示す。 また、 図 5に実 施例 4で得られた多孔体の光学顕微鏡写真 (倍率: 450倍) を示す。 表 1. 多孔体の繊維径及びポ口シティ A porous material was obtained in the same manner as in Example 1 except that centrifugation was performed for 5 minutes. Table 1 shows the fiber diameter, average apparent density, and porosity of the obtained porous material. Fig. 5 shows an optical micrograph (magnification: 450 times) of the porous material obtained in Example 4. Table 1. Fiber diameter and porosity of porous material
Figure imgf000018_0001
Figure imgf000018_0001
[実施例 5]  [Example 5]
ポリ乳酸—ポリグリコーノレ酸共重合体 0. 9 g、 ホスファチジルエタノールァ ミンジォレオィノレ 0. 1 g、 塩化メチレン Zエタノール = 7Z2 (重量部/重量 部) 9 gを室温 ( 25 °C) で混合し濃度 10 %のドープ溶液を調整した。 図 2に 示す装置を用いて、 繊維状物質捕集電極 5に 5分間吐出した。 噴出ノズル 7の内 径は 0. 8 mm, 電圧は 14 k V、 .噴出ノズル 7から繊維状物質捕集電極までの 距離は 10 c mであった。 得られた繊維状物質 0. 2 gをィオン交換水 5 Oml 中に入れて、 ホモジナイザー (登録商標 POLY TRON PT 2100) を用いて回転数 22, O O O r pmで 5分間切断した。 .得られた懸濁液の一部を 遠心分離機 (KUBOTA KN_70、 回転半径 15 cm) を用いて回転数 1 O O O r pm (170 G) で 10分間遠心分離を行った。 さらにその上に懸濁液 を追加し 2, O O O r pm (700 G) で 10分間、 同様に追加し 3, 000 r pm (1, 500G) で 10分間遠心分離を行つた。 そして一 20 °Cで 2時間凍 結処理を行った後、 2 OP aで 6時間凍結乾燥を行い多孔体を得た。 得られた多 孔体の繊維径及ぴポ口シティを表 2に示す。 試料をスパッタコーティング (Ptl. Onm)処理し、 SEM JSM - 5310型 (日本電子製)、 加速電圧: 2.0 kV、 撮影角 度 30° )により観察を行い、 繊維径を求めた。  Polylactic acid-polyglycolanolic acid copolymer 0.9 g, phosphatidylethanolamine dioleoinole 0.1 g, methylene chloride Zethanol = 7Z2 (parts by weight / parts) 9 g mixed at room temperature (25 ° C) A dope solution having a concentration of 10% was prepared. Using the apparatus shown in FIG. 2, the fibrous material collecting electrode 5 was discharged for 5 minutes. The inner diameter of the ejection nozzle 7 was 0.8 mm, the voltage was 14 kV, and the distance from the ejection nozzle 7 to the fibrous material collecting electrode was 10 cm. 0.2 g of the obtained fibrous material was put into 5 Oml of ION-exchanged water, and cut with a homogenizer (registered trademark POLY TRON PT 2100) at a rotation speed of 22, O 2 O pm for 5 minutes. A part of the obtained suspension was centrifuged for 10 minutes using a centrifuge (KUBOTA KN_70, rotation radius: 15 cm) at a rotation speed of 1 O O Orpm (170 G). Further, the suspension was added thereto, followed by centrifugation at 2, O O O rpm (700 G) for 10 minutes, and in the same manner, and centrifugation was performed at 3,000 rpm (1,500 G) for 10 minutes. Then, after freezing at 20 ° C. for 2 hours, freeze-drying was performed at 2 OPa for 6 hours to obtain a porous body. Table 2 shows the fiber diameter and porosity of the obtained porous body. The sample was sputter coated (Ptl. Onm) and observed with SEM JSM-5310 type (manufactured by JEOL Ltd., acceleration voltage: 2.0 kV, shooting angle 30 °) to determine the fiber diameter.
図 6に上部の SEM写真を、 図 7に中部、 図 8に下部の SEM写真を示す。 表 2. 多孔質材料の繊維径及びポ口シティ Fig. 6 shows the upper SEM photo, Fig. 7 shows the middle, and Fig. 8 shows the lower SEM. Table 2. Fiber diameter and porosity of porous materials
Figure imgf000019_0001
Figure imgf000019_0001
[実施例 6] [Example 6]
ポリ乳酸一ポリグリコ一ル酸共重合体 1. 5 g、 塩ィ匕メチレン /ェタノール =7. 5/1 (重量部/重量部) 8. 5 §を室温 (25°0 で混合し 15重量0 /0 のドープ溶液を調整した。 図 3に示す装置を用いて (ノズルと電極の間に静電除 去器 (春日電機㈱) 及び卷き取り機 (HE I DON) を設置する) 、 120分間 吐出し、 巻き取り器 1 9で紡糸された糸を卷き取り繊維構造体を得た。 このとき の巻き取り機の回転数は 10 Q r pmであった。 嘖出ノズル 7の内径は 0. 8 m m、 電圧は 12k V、 噴出ノズル 13から卷き取り器 19までの距離は 20 cm、 噴出ノズル 13から静電除去器 20までの距離は 35 c m、 噴出ノズル 1 3から 電極 1 7までの距離は 55 cmであった。 生検トレパンを用いて直径 5 mm X 高さ 5mmの円柱状のものを切り出した。 得られた多孔体の繊維径、 平均見かけ ,密度及びポ口シティを表 3に示す。 図 9に実施例 6で得られた多孔体の光学顕微 鏡写真 (倍率: 450倍) を示す。 圧縮強度 (10%変位応力、 JIS規格 K72 20を参照) は、 0. 044MPaであった。 . Polylactic one polyglycol Ichiru acid copolymer 1. 5 g, Shioi匕methylene / Etanoru = 7. 5/1 (parts / parts by weight) 8. 5 § mixed at room temperature (25 ° 0 to 15 weight 0 The dope solution was adjusted to 0 / 0. Using the apparatus shown in Fig. 3, install an electrostatic remover (Kasuga Electric Co., Ltd.) and a scraper (HE I DON) between the nozzle and electrode. The yarn was discharged for 1 minute, and the yarn spun by the winder 1 9 was wound up to obtain a fiber structure, at which time the rotational speed of the winder was 10 Q r pm. 0.8 mm, voltage is 12 kV, distance from jet nozzle 13 to scraper 19 is 20 cm, distance from jet nozzle 13 to electrostatic eliminator 20 is 35 cm, jet nozzle 1 3 to electrode 1 7 The distance to the tube was 55 cm, and a cylindrical specimen having a diameter of 5 mm and a height of 5 mm was cut out using a biopsy trepan, and the fiber diameter, average appearance, density and The mouth city is shown in Table 3. Figure 9 shows an optical micrograph (magnification: 450 times) of the porous material obtained in Example 6. Compressive strength (10% displacement stress, see JIS standard K72 20) is 0.04 MPa.
[実施例 7 ] 紡糸時間が 45分間、 卷き取り機の回転数が 20 r pmである以外は、 実施 例 6と同様に繊維構造体を得た。 得られた多孔体の繊維径、 平均見かけ密度及び ポ口シティを表 3に示す。 また、 図 10に実施例 7で得られた多孔体の光学顕微 鏡写真 (倍率: 450倍) を示す。 圧縮強度は、 0. 006MPaであった。 [Example 7] A fiber structure was obtained in the same manner as in Example 6 except that the spinning time was 45 minutes and the number of revolutions of the winder was 20 rpm. Table 3 shows the fiber diameter, average apparent density, and porosity of the obtained porous material. FIG. 10 shows an optical microscopic photograph (magnification: 450 times) of the porous body obtained in Example 7. The compressive strength was 0.006 MPa.
[実施例 8] [Example 8]
紡糸時間が 60分間、 卷き取り機の回転数が 100 r pmで上部層を作製し、 引き続き紡糸時間が 20分間、 卷き取り機の回転数が 20 r pmで下層部を作製 した以外は実施例 6と同様に繊維構造体を得た。 得られた多孔体の繊維径、 平均 見かけ密度及びポロシティを表 3に示す。  The upper layer was produced with a spinning time of 60 minutes and a winder speed of 100 rpm, and then the lower layer was made with a spinning time of 20 minutes and a winder speed of 20 rpm. A fiber structure was obtained in the same manner as in Example 6. Table 3 shows the fiber diameter, average apparent density, and porosity of the obtained porous material.
'表 3. 多孔体の繊維径及びポ口シティ 'Table 3. Fiber diameter and porosity of porous material
Figure imgf000020_0001
Figure imgf000020_0001
[実施例 9]  [Example 9]
実施例 3の多孔体を使用し、 補綴材の生物学的評価を以下の方法により行った。 (a) ジメチルスルホキシド:和光純薬工業 (株) 製  Using the porous body of Example 3, biological evaluation of the prosthetic material was performed by the following method. (a) Dimethyl sulfoxide: Wako Pure Chemical Industries, Ltd.
(b) 消毒用エタノール:和光純薬工業 (株) 製  (b) Disinfecting ethanol: Wako Pure Chemical Industries, Ltd.
( c ) 10 %中性緩衝ホルマリン溶液:和光純薬工業 (株) 製  (c) 10% neutral buffered formalin solution: Wako Pure Chemical Industries, Ltd.
(d) S a f r a n i n O溶液:和光純薬工業 (株) 製  (d) Saf r a n i n O solution: Wako Pure Chemical Industries, Ltd.
(e) Fast Green FCF:ポリサイエンス (Polyscience) (株) 社製  (e) Fast Green FCF: Polyscience Co., Ltd.
(f ) エチレンジァミン一 N, N, N,, N' 一 4ナトリウム塩 4無水物 (以下 EDTA) :同仁化学研究所 (株) (f) Ethylenediamine 1 N, N, N, N '14 sodium salt 4 anhydride (below EDTA): Dojin Chemical Laboratory
(g) 結晶ペニシリン Gカリウム (以下ペニシリン) :萬有製薬 (株) 製  (g) Crystalline penicillin G potassium (hereinafter referred to as penicillin): manufactured by Ariyu Pharmaceutical Co., Ltd.
(h) ヨードチンキ:吉田製薬 (株) 製  (h) Iodine tincture: manufactured by Yoshida Pharmaceutical Co., Ltd.
(i) 動物用ケタラール:三共エール薬品 (株) 製  (i) Ketaral for animals: Sankyo Ale Yakuhin Co., Ltd.
( j ) 動物用セラクタール 2%注射液:バイエル (B a y e r) (株) 製  (j) Animal Seractal 2% Injection: Bayer (Bayer)
(k) ゥサギ:実験に使用したニュージーランド白色家兎 (以下 NZWゥサギ) は雄性であり、 本 SLC (株) より購入してゲージにて通常飼育を行った。 手 術時の週齢は 24週齢であった。  (k) Usagi: The New Zealand White Rabbit used in the experiment (hereinafter NZW Usagi) was male and was purchased from SLC, Inc., and reared normally on a gauge. The age at the time of surgery was 24 weeks.
(多孔体の埋入)  (Embedding of porous material)
通常飼育した NZWゥサギに後肢大腿部にケタラールとセラクタールを筋肉内投 与し、 全身麻酔下で以下の手術を施した。 両側の後肢膝関節周辺部を剃毛し、 ェ タノール消毒した。 その後、 膝関節内側を切開し、 膝蓋骨を脱臼させることによ り大腿骨膝蓋溝を露出させた。 内側側副靭帯から 5 mmほど上部の滑車溝部分に、 手術用ドリルで内径 5mm、 深さ 5 mmの円筒形の欠損部を作製することによつ て、 膝関節軟骨全層を欠損させた。 できた欠損部に実施例 3で製造した平均見か け密度 208 k g/c.m3 (ポロシティ 38%) の多孔体を埋入したのち、 膝蓋骨 を元の位置に戻して筋肉を手術用縫合糸にて縫合した。 感染防止のためにぺニシ リンを患部に滴下したのち、 皮膚を縫合した。 最後にヨードチンキで消毒し、 ゲ 一'ジに戻して通常の飼育を行つた。 Ketarar and Seractal were given intramuscularly to the hind limb thighs of NZW Usagi that were normally bred, and the following surgery was performed under general anesthesia. The area around the knee joint on both hind limbs was shaved and disinfected with ethanol. Thereafter, the inside of the knee joint was incised, and the femoral patella groove was exposed by dislocation of the patella. The entire thickness of the knee joint cartilage was lost by creating a cylindrical defect part with an inner diameter of 5 mm and a depth of 5 mm with a surgical drill in the pulley groove part about 5 mm above the medial collateral ligament. . After embedding a porous body with an average apparent density of 208 kg / cm 3 (porosity 38%) produced in Example 3 in the defect, the patella was returned to its original position and the muscle was used as a surgical suture. And sutured. Penicillin was dropped on the affected area to prevent infection, and the skin was sutured. Finally, it was sterilized with iodine tincture and returned to Gai'ji for normal breeding.
mm)  mm)
術後 8週目に屠殺して欠損部位を摘出し、 軟骨組織の目視による観察を行った のち 10%中性緩衝ホルマリン溶液に浸漬、 固定させ、 組織学的評価に供した。 組織学的評価は、 固定した組織を脱脂、 EDTA脱灰した後、 パラフィンに包埋 し、 欠損部の中心部近傍を矢状面に薄切して標本を作製し、 作製した標本に S a f r a n i n 0— Fa s t Gr e e n染色を施した。  At 8 weeks after the operation, it was sacrificed, the defect site was removed, and the cartilage tissue was visually observed, immersed in 10% neutral buffered formalin solution and fixed for histological evaluation. For histological evaluation, the fixed tissue was degreased and EDTA decalcified, then embedded in paraffin, and a specimen was prepared by slicing the vicinity of the center of the defect into a sagittal plane. 0— Fa st Green stained.
標本の顕微鏡写真を図 1 1に示す。 術後 8週目において修復された軟骨組織 は、 層状に形成する途上にあり、 軟骨基質の産生を認めた。 また、 正常部との結 合が良好であり、 軟骨下骨の再構築が起こりつつある様子を認めた。 [実施例 9 ] ' 実施例 4 (平均見かけ密度 1 0 0 k g / c m3、 ポロシティ ' 7 0 %) の多孔体を 使用し、 実施例 8と同様に生物学的評価を行 た。 A micrograph of the specimen is shown in Fig. 11. The cartilage tissue repaired 8 weeks after the surgery was in the process of forming a layer, and production of cartilage matrix was observed. In addition, it was found that the connection with the normal part was good and the reconstruction of the subchondral bone was taking place. [Example 9] A biological evaluation was carried out in the same manner as in Example 8, using a porous material of Example 4 (average apparent density 100 kg / cm 3 , porosity '70%).
標本の顕微鏡写真を図 1 2に示す。 術後 8週目において修復された軟骨組織 は、 正常部とほぼ同等な厚さで形成され、 ほとんどが硝子軟骨様を呈しており、 軟骨基質の産生が良好である様子が観察された。 また、 正常部との結合も良好で あり、 組織の連続性を認めた。 ― '  A micrograph of the specimen is shown in Fig. 12. The cartilage tissue repaired at 8 weeks after the operation was formed with a thickness almost equal to that of the normal part, and most of the cartilage was like hyaline cartilage, and the production of cartilage matrix was observed to be good. In addition, the connection with the normal part was good, and continuity of the tissue was observed. ― '
[比較例 1 ]  [Comparative Example 1]
欠損部に多孔体を埋入しなかった,以外は実施例 8と同様に生物学的評価を行 つた。 標本の顕微鏡写真を図 1 3に示す。 術後 8週目において、 軟骨組織は欠落 しており、 軟骨下骨部が露呈している様子が観察された。 また、 軟骨下骨の骨梁 が乏しく、 軟骨組織の修復は認められなかつた。 実施例 8、 9、 比較例 1について以下の項目についてスコア化することにより 組織学的な評価を行った。  Biological evaluation was performed in the same manner as in Example 8 except that the porous material was not embedded in the defect. A micrograph of the specimen is shown in Fig. 13. At 8 weeks after the operation, the cartilage tissue was missing and the subchondral bone was exposed. In addition, the trabecular bone of the subchondral bone was scarce and repair of the cartilage tissue was not observed. Histological evaluation was performed by scoring the following items for Examples 8 and 9 and Comparative Example 1.
組織学的評価に用いたスコアグレードは、 Wakitani S et. al. , J Bone Joint Surg Am. 76, 579- 92 (1994)の変法である Makino T et al. , Kobe J Med Sci. 48: 97- 104 (2002)に従って実施した。 図 1 4に組織学的評価をする際に用いた項 目と得点を示す。 The score grade used for histological evaluation is a modified version of Wakitani S et. Al., J Bone Joint Surg Am. 76, 579-92 (1994) Makino T et al., Kobe J Med Sci. 48: It carried out according to 97-104 (2002). Figure 14 shows the items and scores used in the histological evaluation.
全体の合計は 1 4点であり、 項目によって 3〜5段階で評価する。 組織の修復度 が高いほど、 すなわち、 正常組織に近い修復を示すほど、 1 4点に近づくことに なる。 すなわち、 項目は、 修復された組織の形態 (0点から.4点)、 基質の染色 性 (0点から 3点)、 表面の状態 (0点から 3点)、 軟骨組織の厚さ (0点から 2 点)、 非欠損部との結合度 (0点から 2点)、 についてであり、 本法では正常組織 に近いほど得点が高くなる。 The total is 14 points, and it is evaluated on a 3-5 scale depending on the item. The higher the degree of tissue repair, that is, the closer it is to normal tissue, the closer it is to 14 points. In other words, the items are: repaired tissue morphology (0 to .4 points), matrix staining (0 to 3 points), surface condition (0 to 3 points), cartilage tissue thickness (0 2 points from the point), and the degree of connectivity with the non-deficient part (0 to 2 points). In this method, the closer to normal tissue, the higher the score.
評価結果を図 1 5に示す。'多孔体を埋め込んだ群では、 どの項目も比較例 1よ り良好に軟骨糸且織の修復が進行していたことを示している。 また、 ポロシティの 違いで比較すると、 有意な差はみられないものの、 細胞の形態はポロシティ 70% の方が多くの硝子軟骨で組織修復されていた。 これらのことより、 ある一定の空 隙率を持つ多孔体が軟骨組織を修復するのに有効であることが示された。 The evaluation results are shown in Figure 15. 'In the group embedded with porous bodies, all items showed that the repair of cartilage and weaving progressed better than Comparative Example 1. In addition, when compared with the difference in porosity, there is no significant difference, but the cell morphology is 70% porosity. The tissue was repaired with more hyaline cartilage. These results indicate that a porous body with a certain porosity is effective for repairing cartilage tissue.

Claims

請 求 の 範 囲 The scope of the claims
■ 1. 生体吸収性ポリマーの繊維構造体からなり、 該繊維構造体の平均繊維径が 0. 05〜10 111、 平均見かけ密度が 10〜350kg/m3、 高さが 0. 5ram 以上であることを特敫とする多孔体。 ■ 1. It consists of a fiber structure of a bioabsorbable polymer, and the fiber structure has an average fiber diameter of 0.05 to 10 111, an average apparent density of 10 to 350 kg / m 3 , and a height of 0.5 ram or more. A porous material that specializes in that.
2. 該多孔体の平均繊維径が 0. 2〜 8 μ mであることを特徴とする請求項 1 に記載の多孔体。 2. The porous body according to claim 1, wherein an average fiber diameter of the porous body is 0.2 to 8 μm.
3. 平均見かけ密度が 100〜25 Okg/m3であることを特徴とする請求項 1に記載の多孔体。 3. The porous body according to claim 1, wherein the average apparent density is 100 to 25 Okg / m 3 .
4. ポロシティが 10〜 90 °/0であり、 異なるポロシティが連続的に存在する 勾配構造を有することを特徴とする請求項 3に記載の多孔質材料。 4. The porous material according to claim 3, wherein the porous material has a gradient structure in which the porosity is 10 to 90 ° / 0 , and different porosity exists continuously.
5. 該生体吸収性ポリマー 100重量部に対して、 さらに分散補助剤を 0. 0 1〜 50重量部含むことを特徴とする請求項 1に記載の多孔体。 5. The porous body according to claim 1, further comprising 0.01 to 50 parts by weight of a dispersion aid with respect to 100 parts by weight of the bioabsorbable polymer.
6. 分散補助剤が生体吸収性を示すことを特徴とする請求項 5に記載の多孔体。 6. The porous body according to claim 5, wherein the dispersion aid exhibits bioabsorbability.
7. 該分散補助剤が、 リン脂質類、 糖質類、 糖脂質類、 ステロイド類、 ポリア ミノ酸類、 タンパク質類、 およぴポリォキシアルキレン類からなる群から選 れ る少なくとも 1種であることを特敷とする請求項 6に記載の多孔体。 7. The dispersion aid is at least one selected from the group consisting of phospholipids, carbohydrates, glycolipids, steroids, polyamino acids, proteins, and polyoxyalkylenes. The porous body according to claim 6, wherein
8. 該生体吸収性ポリマーが、 主として脂肪族ポリエステルからなる請求項 1 に記載の多孔体。 8. The porous body according to claim 1, wherein the bioabsorbable polymer mainly comprises an aliphatic polyester.
9 . 該脂肪族ポリエステルが、 ポリダリコール酸、 ポリ乳酸、 ポリ力プロラタ トン、 およびそれらの共重合体からなる群から選ばれる少なくとも 1種であるこ とを特徴とする請求項 8に記載の多孔体。 9. The porous body according to claim 8, wherein the aliphatic polyester is at least one selected from the group consisting of polydalicolic acid, polylactic acid, polystrength prolatatone, and copolymers thereof.
1 0 . 請求項 1に記載の多孔体からなることを特徴とする補綴材。 A prosthetic material comprising the porous body according to claim 1.
1 1 . 揮発性溶媒と生体吸収性ポリマーとからなる溶液を静電紡糸法にて紡糸 し繊維構造体を得る工程、 得られた繊維構造体を切断する工程、 切断された繊維 構造体を溶媒中に浮遊させ遠心分離する工程、 次いで凍結乾燥する工程を含む、 生体吸収性ポリマーの繊維構造体からなり該繊維構造体の平均繊維径が 0 . 0 5 〜 1 0 ^ m、 平均見かけ密度が 1 0〜 3 5 0 kg/m3、 かつ厚みが 0 . 5 mm以上で ある多孔体の製造方法。 1 1. A step of spinning a solution comprising a volatile solvent and a bioabsorbable polymer by an electrostatic spinning method to obtain a fiber structure, a step of cutting the obtained fiber structure, and the cut fiber structure as a solvent And a step of centrifuging and centrifuging, followed by a step of freeze-drying, comprising a fiber structure of a bioabsorbable polymer, the average fiber diameter of the fiber structure being 0.05 to 10 ^ m, and the average apparent density being A method for producing a porous body having a thickness of 10 to 3500 kg / m3 and a thickness of 0.5 mm or more.
1 2 . 該溶液にさらに分散補助剤を含む溶液を用いて紡糸することを特徴とす る請求項 1 1に記載の製造方法。 12. The production method according to claim 11, wherein the solution is further spun using a solution containing a dispersion aid.
1 3 . 揮発性溶媒と生体吸収性ポリマーとからなる溶液を静電紡糸法にて紡糸す る方法にぉレヽて、 ノズルと捕集電極の間に静電気除去器を使用することを特徴と する生体吸収性ポリマーの繊維構造体からなり該繊維構造体の平均繊維径が 0 · 0 ' 5〜: L 0 μ πι、 平均見かけ密度が 1 0〜3 5 0 kg/m3、 力つ厚みが 0 . 5画以 上である多孔体の製造方法。 1 3. It is characterized by using a static eliminator between the nozzle and the collecting electrode in comparison with a method of spinning a solution composed of a volatile solvent and a bioabsorbable polymer by the electrostatic spinning method. It consists of a fiber structure of a bioabsorbable polymer, and the average fiber diameter of the fiber structure is 0 · 0′5∼: L 0 μ πι, the average apparent density is 10 to 3500 kg / m3, and the thickness is 0 A method for producing a porous body having 5 or more strokes.
PCT/JP2005/016698 2004-09-07 2005-09-06 Bioabsorbable porous object WO2006028244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535862A JP4481994B2 (en) 2004-09-07 2005-09-06 Bioabsorbable porous material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-259674 2004-09-07
JP2004259674 2004-09-07
JP2005101752 2005-03-31
JP2005-101752 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006028244A1 true WO2006028244A1 (en) 2006-03-16

Family

ID=36036523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016698 WO2006028244A1 (en) 2004-09-07 2005-09-06 Bioabsorbable porous object

Country Status (3)

Country Link
JP (1) JP4481994B2 (en)
TW (1) TW200612877A (en)
WO (1) WO2006028244A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132186A3 (en) * 2006-05-12 2008-01-24 Smith & Nephew Scaffold
JP2008113580A (en) * 2006-11-01 2008-05-22 Hokkaido Soda Kk Cell culture substrate and method for producing the cell culture substrate
JP2008163520A (en) * 2006-12-28 2008-07-17 Univ Of Fukui Chitosan/sericin composite nanofiber and utilization of the same to artificial skin
JP2008261064A (en) * 2007-04-10 2008-10-30 National Institute For Materials Science Three-dimensional structure of spongy fibers, and method for producing the same
JP2009507530A (en) * 2005-08-26 2009-02-26 イーファ ユニバーシティ−インダストリー コラボレイション ファンデーション Fiber type three-dimensional porous support for tissue regeneration using electrospinning and method for producing the same
JP2009261448A (en) * 2008-04-22 2009-11-12 Teijin Ltd Cotton-like structure for treating circulatory organ and method of manufacturing the same
WO2011115281A1 (en) * 2010-03-16 2011-09-22 帝人株式会社 Fiber molded body
JP2011219879A (en) * 2010-04-05 2011-11-04 Teijin Ltd Fiber composite
WO2012023594A1 (en) * 2010-08-16 2012-02-23 帝人株式会社 Low-chargeable fibers and process for production thereof
WO2012029971A1 (en) * 2010-08-31 2012-03-08 帝人株式会社 Compound material of fibrin glue and fiber molding
WO2012157359A1 (en) * 2011-05-18 2012-11-22 株式会社クレハ Biodegradable aliphatic polyester fabric having excellent microbial adhesion
JP2013124424A (en) * 2011-12-14 2013-06-24 Kureha Corp Antibacterial nonwoven fabric formed of biodegradable aliphatic polyester fiber and antibacterial method
CN103397477A (en) * 2013-07-30 2013-11-20 东华大学 Production method of polylactic acid-trimethylene carbonate nano-fiber film
WO2013172472A1 (en) * 2012-05-14 2013-11-21 帝人株式会社 Sheet molding and hemostatic material
JP2014005557A (en) * 2012-06-22 2014-01-16 Teijin Ltd Nonwoven fabric excellent in flexibility and water retentivity and method for manufacturing the same
US8882746B2 (en) 2003-10-28 2014-11-11 Smith & Nephew Plc Wound cleansing apparatus with scaffold
JP2015033555A (en) * 2013-08-09 2015-02-19 グンゼ株式会社 Base material for revascularization
US9801761B2 (en) 2010-07-02 2017-10-31 Smith & Nephew Plc Provision of wound filler
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
CN112501783A (en) * 2020-12-16 2021-03-16 山东鲁阳节能材料股份有限公司 Preparation method of low-volume-weight inorganic fiber needled blanket
US11298453B2 (en) 2003-10-28 2022-04-12 Smith & Nephew Plc Apparatus and method for wound cleansing with actives
CN115845116A (en) * 2022-12-16 2023-03-28 山东隽秀生物科技股份有限公司 Acellular matrix wound material and preparation method thereof
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8235939B2 (en) 2006-02-06 2012-08-07 Kci Licensing, Inc. System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment
US8267918B2 (en) 2006-03-14 2012-09-18 Kci Licensing, Inc. System and method for percutaneously administering reduced pressure treatment using a flowable manifold
CN102333555B (en) 2008-12-31 2013-03-27 凯希特许有限公司 Manifolds, systems, and methods for administering reduced pressure to a subcutaneous tissue site
JP5871574B2 (en) * 2011-11-15 2016-03-01 株式会社クレハ Basic malodorous substance-absorbing nonwoven fabric and method for reducing basic malodorous substance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206457A (en) * 1989-02-07 1990-08-16 Terumo Corp Prosthetic material for organ of living body
US5607474A (en) * 1992-02-14 1997-03-04 Board Of Regents, University Of Texas System Multi-phase bioerodible implant/carrier and method of manufacturing and using same
JP2004162215A (en) * 2002-11-14 2004-06-10 Teijin Ltd Fiber structure of polyglycolic acid and method for producing the same
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206457A (en) * 1989-02-07 1990-08-16 Terumo Corp Prosthetic material for organ of living body
US5607474A (en) * 1992-02-14 1997-03-04 Board Of Regents, University Of Texas System Multi-phase bioerodible implant/carrier and method of manufacturing and using same
JP2004162215A (en) * 2002-11-14 2004-06-10 Teijin Ltd Fiber structure of polyglycolic acid and method for producing the same
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298453B2 (en) 2003-10-28 2022-04-12 Smith & Nephew Plc Apparatus and method for wound cleansing with actives
US8882746B2 (en) 2003-10-28 2014-11-11 Smith & Nephew Plc Wound cleansing apparatus with scaffold
JP2009507530A (en) * 2005-08-26 2009-02-26 イーファ ユニバーシティ−インダストリー コラボレイション ファンデーション Fiber type three-dimensional porous support for tissue regeneration using electrospinning and method for producing the same
JP2009536842A (en) * 2006-05-12 2009-10-22 スミス アンド ネフュー ピーエルシー scaffold
WO2007132186A3 (en) * 2006-05-12 2008-01-24 Smith & Nephew Scaffold
JP2008113580A (en) * 2006-11-01 2008-05-22 Hokkaido Soda Kk Cell culture substrate and method for producing the cell culture substrate
JP2008163520A (en) * 2006-12-28 2008-07-17 Univ Of Fukui Chitosan/sericin composite nanofiber and utilization of the same to artificial skin
JP2008261064A (en) * 2007-04-10 2008-10-30 National Institute For Materials Science Three-dimensional structure of spongy fibers, and method for producing the same
JP2009261448A (en) * 2008-04-22 2009-11-12 Teijin Ltd Cotton-like structure for treating circulatory organ and method of manufacturing the same
WO2011115281A1 (en) * 2010-03-16 2011-09-22 帝人株式会社 Fiber molded body
JPWO2011115281A1 (en) * 2010-03-16 2013-07-04 帝人株式会社 Fiber molded body
JP2011219879A (en) * 2010-04-05 2011-11-04 Teijin Ltd Fiber composite
US9801761B2 (en) 2010-07-02 2017-10-31 Smith & Nephew Plc Provision of wound filler
CN103025933A (en) * 2010-08-16 2013-04-03 帝人株式会社 Low-chargeable fibers and process for production thereof
WO2012023594A1 (en) * 2010-08-16 2012-02-23 帝人株式会社 Low-chargeable fibers and process for production thereof
RU2557623C2 (en) * 2010-08-16 2015-07-27 Тейдзин Лимитед Low-charge fibre and method for production thereof
US8802756B2 (en) 2010-08-16 2014-08-12 Teijin Limited Low-charging fiber and method for producing the same
WO2012029971A1 (en) * 2010-08-31 2012-03-08 帝人株式会社 Compound material of fibrin glue and fiber molding
JP5589080B2 (en) * 2010-08-31 2014-09-10 帝人株式会社 Composite of fibrin glue and fiber molded body
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof
US11730876B2 (en) 2010-11-25 2023-08-22 Smith & Nephew Plc Composition I-II and products and uses thereof
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
WO2012157359A1 (en) * 2011-05-18 2012-11-22 株式会社クレハ Biodegradable aliphatic polyester fabric having excellent microbial adhesion
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
JP2013124424A (en) * 2011-12-14 2013-06-24 Kureha Corp Antibacterial nonwoven fabric formed of biodegradable aliphatic polyester fiber and antibacterial method
KR20150020536A (en) * 2012-05-14 2015-02-26 데이진 가부시키가이샤 Sheet molding and hemostatic material
US11433160B2 (en) 2012-05-14 2022-09-06 Teijin Limited Formed sheet product and hemostatic material
JP5844894B2 (en) * 2012-05-14 2016-01-20 帝人株式会社 Sheet molded body and hemostatic material
WO2013172472A1 (en) * 2012-05-14 2013-11-21 帝人株式会社 Sheet molding and hemostatic material
RU2669569C2 (en) * 2012-05-14 2018-10-12 Тейдзин Лимитед Sheet moulding and haemostatic material
US10485894B2 (en) 2012-05-14 2019-11-26 Teijin Limited Formed sheet product and hemostatic material
CN104271164A (en) * 2012-05-14 2015-01-07 帝人株式会社 Sheet molding and hemostatic material
JPWO2013172472A1 (en) * 2012-05-14 2016-01-12 帝人株式会社 Sheet molded body and hemostatic material
KR102259117B1 (en) 2012-05-14 2021-05-31 데이진 가부시키가이샤 Sheet molding and hemostatic material
JP2014005557A (en) * 2012-06-22 2014-01-16 Teijin Ltd Nonwoven fabric excellent in flexibility and water retentivity and method for manufacturing the same
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
CN103397477A (en) * 2013-07-30 2013-11-20 东华大学 Production method of polylactic acid-trimethylene carbonate nano-fiber film
CN103397477B (en) * 2013-07-30 2015-10-28 东华大学 The preparation method of a kind of PLA-trimethylene carbonate nano-fiber film
JP2015033555A (en) * 2013-08-09 2015-02-19 グンゼ株式会社 Base material for revascularization
CN112501783A (en) * 2020-12-16 2021-03-16 山东鲁阳节能材料股份有限公司 Preparation method of low-volume-weight inorganic fiber needled blanket
CN115845116A (en) * 2022-12-16 2023-03-28 山东隽秀生物科技股份有限公司 Acellular matrix wound material and preparation method thereof

Also Published As

Publication number Publication date
TW200612877A (en) 2006-05-01
JPWO2006028244A1 (en) 2008-05-08
JP4481994B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
WO2006028244A1 (en) Bioabsorbable porous object
US20220162412A1 (en) Three-dimensional porous hybrid scaffold and manufacture thereof
Wu et al. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering
JP5119144B2 (en) Scaffolding material
Bini et al. Electrospun poly (L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration
US11517646B2 (en) Scaffold
JP5523934B2 (en) Nonwoven tissue support skeleton
CN108452382B (en) Non-woven fabric containing bone filling material
Wang et al. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts
Skotak et al. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers
US20130274892A1 (en) Electrospun Mineralized Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering
Peach et al. Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration
JP5010854B2 (en) Revascularization material
CN112088021A (en) Novel electrospun synthetic dental barrier membranes for guided tissue regeneration and guided bone regeneration applications
US20190060517A1 (en) Scaffold for cardiac patch
Mo et al. Electrospun nanofibers for tissue engineering
Ribba et al. Electrospun nanofibrous mats: from vascular repair to osteointegration
WO2021077042A1 (en) Fiber-based scaffolds for tendon cell migration and regeneration
Ladd et al. Electrospun nanofibers in tissue engineering
US20210316039A1 (en) Method for repairing living tissue with a hollow fiber scaffold
JP4988221B2 (en) Composite material
EP2878315A1 (en) Artificial tissue
JP5363076B2 (en) Materials for tissue regeneration
Leena et al. Nanofiber-integrated hydrogel as nanocomposites for tissue engineering
Xu et al. Degradation properties of the electrostatic assembly PDLLA/CS/CHS nerve conduit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535862

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase