WO2006038692A1 - 地磁気センサおよび地磁気センサの補正方法、温度センサおよび温度センサの補正方法、地磁気検出装置 - Google Patents

地磁気センサおよび地磁気センサの補正方法、温度センサおよび温度センサの補正方法、地磁気検出装置 Download PDF

Info

Publication number
WO2006038692A1
WO2006038692A1 PCT/JP2005/018638 JP2005018638W WO2006038692A1 WO 2006038692 A1 WO2006038692 A1 WO 2006038692A1 JP 2005018638 W JP2005018638 W JP 2005018638W WO 2006038692 A1 WO2006038692 A1 WO 2006038692A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
correction
temperature
axis
geomagnetism
Prior art date
Application number
PCT/JP2005/018638
Other languages
English (en)
French (fr)
Inventor
Shoji Yasui
Masayoshi Omura
Makoto Kaneko
Hideki Sato
Original Assignee
Yamaha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004295139A external-priority patent/JP2006105870A/ja
Priority claimed from JP2005099092A external-priority patent/JP4254737B2/ja
Application filed by Yamaha Corporation filed Critical Yamaha Corporation
Priority to CN2005800010799A priority Critical patent/CN1879006B/zh
Priority to EP05790652A priority patent/EP1798519A4/en
Priority to KR1020087026843A priority patent/KR100933834B1/ko
Priority to KR1020107004312A priority patent/KR101095689B1/ko
Priority to US11/345,279 priority patent/US7676340B2/en
Publication of WO2006038692A1 publication Critical patent/WO2006038692A1/ja
Priority to US11/698,156 priority patent/US7346466B2/en
Priority to US11/698,154 priority patent/US7437257B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements

Definitions

  • Geomagnetic sensor Geomagnetic sensor, geomagnetic sensor correction method, temperature sensor, temperature sensor correction method, geomagnetic detection device
  • the present invention relates to a geomagnetic sensor and a correction method for a geomagnetic sensor that are mounted on a mobile phone for use in orientation measurement and correct a measurement value using an offset value stored in a fuse memory, for example.
  • the present invention is used, for example, for temperature compensation of a geomagnetic sensor for measuring an orientation mounted on a mobile phone, and corrects a measured value using an initial value and a correction value stored in a fuse memory. And a temperature sensor correction method.
  • the present invention relates to a geomagnetism detection device having a geomagnetism detection element that detects a perpendicular axis component of geomagnetism, and in particular, has a thermally deformable non-volatile memory element that stores correction information of detection output of the geomagnetism detection element.
  • a geomagnetism detection device having a geomagnetism detection element that detects a perpendicular axis component of geomagnetism, and in particular, has a thermally deformable non-volatile memory element that stores correction information of detection output of the geomagnetism detection element.
  • portable information terminals such as mobile phones that include a geomagnetic sensor for detecting geomagnetism and perform azimuth measurement based on the geomagnetism detected by the geomagnetic sensor are known.
  • the measured orientation is used for display of a map, for example.
  • a mobile phone with the function to display a map based on the current position information obtained by the GPS (Global Positioning System) system that performs position detection according to the orientation (direction) of the mobile phone has appeared. is doing.
  • the characteristics of the geomagnetic sensor differ from chip to chip, and this characteristic should be corrected by some means.
  • a mobile phone equipped with a geomagnetic sensor having two magnetic axes in the horizontal plane (X-axis and Y-axis directions) as the sensitivity direction The circle drawn by the output when rotating slowly one or more times at a constant speed while keeping the horizontal is called the azimuth circle.
  • Such an azimuth circle ideally has a predetermined radius around the origin where the X and Y axes intersect.
  • the characteristics of the geomagnetic sensor vary from chip to chip, and there is a magnetic field inside the mobile phone, and because of this characteristic difference and the above-described magnetic field, a powerful azimuth circle can be obtained.
  • the center of is shifted from the origin. This shift is called offset, and this shift value is called offset value. If there is such an offset, the direction calculated on the assumption that there is no offset based on the measured value of the geomagnetic sensor will be different from the actual direction. For this reason, the geomagnetic sensor corrects the offset for the measured value.
  • the correction of the offset from the measurement value of the geomagnetic sensor is performed by subtracting the measurement value force from the plurality of measurement value forces obtained by rotating the mobile phone and the offset value obtained by digital calculation. Therefore, it is necessary to store the offset value used for the correction in the geomagnetic sensor.
  • a conventional geomagnetic sensor has a geomagnetic sensor element that detects geomagnetism (magnetic field), an arithmetic unit that calculates an offset value of the measured force of the geomagnetic sensor element, an AZD converter that converts the offset value into an AZD (AnalogZDigital), and EEPROM (Electronically Erasable and Programmable Read Only Memory) that stores the offset value converted by AZD is combined on one chip.
  • the EEPROM storing the offset value described above has a thin oxide film such as a tunnel insulating film attached to the storage unit, or a bit line or word on the chip. Since a number of polysilicon layers and metal layers for forming lines are laminated, a special process is required to manufacture the chip, and there is a problem that the unit cost of the chip is increased. In addition, the EEPROM requires a high voltage circuit and a writing circuit for writing, which causes a problem that the chip size becomes large and the system in which the geomagnetic sensor drives EEPRO M becomes large.
  • a temperature sensor circuit 212 shown in FIG. 12 is used for a temperature sensor formed on a semiconductor chip.
  • the temperature sensor circuit 212 includes an operational amplifier OA and a diode. 1 to D2, resistors R1 to R3, and AZD (AnalogZDigital) converter ADC.
  • the operational amplifier OA, the diodes D1 to D2, and the resistors R1 to R3 constitute a general band gap reference circuit.
  • the non-inverting input terminal of the operational amplifier OA is connected to the anode of the diode D1, and the force sword of the diode D1 is grounded.
  • the inverting input terminal of the operational amplifier OA is connected to one end of the resistor R3, the other end of the resistor R3 is connected to the anode of the diode D2, and the force sword of the diode D2 is grounded.
  • the output terminal of the operational amplifier OA is connected to the non-inverting input terminal via the resistor R1, and is connected to the inverting input terminal via the resistor R2.
  • the output terminal OpVrel ⁇ that outputs the output voltage Vref of the bandgap reference circuit is connected to the output terminal of the operational amplifier OA, and the output voltage Vbe that is applied to the diode D1 is output to the non-inverting input terminal of the operational amplifier OA. End Op Vbe is connected.
  • the output end OpVrei 3 of the band gap reference circuit is connected to the input end IpVh of the AZD converter ADC, and the output end Opbe of the band gap reference circuit is connected to the input end IpVl of the AZ D converter ADC.
  • the AZD converter ADC performs AZD (Anal ogZDigital) conversion of the difference voltage Vin between the voltage input at the input terminal Ip Vh and the voltage input at the input terminal IpVl, and outputs the output value Dout that is the conversion value of the output voltage Output terminal OpDo ut is provided.
  • the A / D converter ADC described above sets the voltage Vin in the range of 0 to 1.25 V, converts the voltage Vin to AZD in 1251 steps (0 to 1250), and outputs the output value Dout.
  • the output voltage Vref is less dependent on the power supply voltage and temperature, it can be handled as a constant. Since the output voltage Vbe has a temperature coefficient of about 2 mVZ ° C, the voltage Vin is Varies with temperature according to the output voltage Vbe. Therefore, the output value Dout changes according to the temperature. At this time, assuming that the output voltage Vbe is 0.6V when the ambient temperature T is 25 ° C, the output value Dout is expressed by the following equation (21).
  • a voltage dividing ratio of the resistor group is adjusted by a fuse circuit in which a fuse and a resistor group are combined.
  • a temperature sensor circuit is described in which the output voltage adjusted by the fuse circuit eliminates the influence of manufacturing process variations and can perform highly accurate temperature compensation.
  • an LSI large-scale integrated circuit
  • LSI large-scale integrated circuit
  • Japanese Patent Laid-Open No. 2000-180170 discloses a technique for correcting the detection output of a magnetic sensor by arithmetic processing.
  • correction of the detection output of the X-axis detection unit is performed as follows.
  • the detection range of the magnetic sensor is divided into 4 blocks every 90 degrees
  • the maximum output voltage value of the X-axis detector is A1
  • the output voltage value of the axis detector is A2.
  • Equation (301) is used as the correction equation, and if it is on the-side (302) is the correction formula. If it is very small, no correction is made.
  • A3 is the measured output of the X-axis detector
  • is the correction parameter shown in equation (303).
  • the correction data can be measured by shipping inspection and written in a nonvolatile memory mounted on the LSI.
  • the first group of inventions of the present application have been made in consideration of the above circumstances, and the purpose of the invention is special for manufacturing a chip by incorporating a fuse memory and storing an offset value or the like.
  • the purpose is to provide a small-sized and low-cost geomagnetic sensor and a correction method for the geomagnetic sensor by reducing the size of the entire memory system without requiring a process.
  • the invention of the first group of the present application is a geomagnetic detection means for detecting geomagnetism and a fuse memory having a plurality of storage units, and each of the storage units can be selectively electrically disconnected or connected. Yes, a fuse memory that stores predetermined data according to the electrical disconnection or connection state in each storage unit, and a measurement value of the geomagnetism detecting means at the time of manufacture is input and based on the measurement value.
  • the correction value Correction data writing means for writing data into the fuse memory, correction data reading means for reading the correction value from the fuse memory at the time of actual use after manufacture, and the actual use
  • the correction data writing means obtains a correction value for correcting the measurement value from the measurement value of the geomagnetic detection means, and uses the fuse memory to respond to the correction value.
  • the correction data reading means reads the correction value from the fuse memory, and the correction means corrects the correction value.
  • the measured value of the geomagnetism detection means is corrected based on the value.
  • the invention of the first group of the present application is a correction method for a geomagnetic sensor for correcting a measurement value of the geomagnetic sensor, further comprising a temperature measurement means for detecting the temperature by the geomagnetic sensor, wherein the geomagnetism
  • the sensitivity characteristic of the temperature measuring unit is obtained in advance and stored in the fuse memory, and the sensitivity characteristic data stored in the fuse memory is used to correct the sensitivity characteristic of the temperature measuring unit.
  • the sensitivity characteristic of the temperature measurement means is obtained in advance and stored in the fuse memory at the time of manufacture of the geomagnetic sensor, and the sensitivity characteristic of the temperature measurement means is corrected by the sensitivity characteristic data.
  • the offset due to the temperature of the geomagnetic sensor having temperature characteristics is corrected by the temperature, and the offset is stored in the fuse memory.
  • the invention of the first group of the present application is a correction method for a geomagnetic sensor that corrects a measurement value of a geomagnetic sensor, and corrects the measurement value based on the measurement value in a zero magnetic field when the geomagnetic sensor is manufactured.
  • the step which performs is characterized by having.
  • the measurement value is corrected based on the measurement value in the zero magnetic field.
  • the measured value of the geomagnetism detecting means is corrected based on the corrected value of the measured value of the geomagnetism detecting means stored by the fuse memory.
  • the measured value of the means can be obtained with high accuracy.
  • it is specially suited for manufacturing chips compared to storing offset values in EEPROM as in conventional geomagnetic sensors.
  • the chip can be manufactured by using a normal CMOS process without requiring a special process.
  • a high voltage circuit for writing, a writing circuit, etc. are not required, and the memory driving system can be reduced in size.
  • the correction value is stored by physically cutting the fuse, there is an effect that the change of the correction value with time can be eliminated.
  • the offset of the geomagnetic sensor is corrected by the temperature measuring means in which the sensitivity characteristic data of the geomagnetic sensor is stored in the fuse memory, and the offset is stored in the fuse memory. Since the measured value of the geomagnetic sensor is corrected by the offset, there is an effect that the measurement of the geomagnetic sensor can be accurately performed for each chip even for the temperature.
  • fuse memory a so-called fuse in which the electrical connection state is disconnected and an antifuse in which the electrical disconnection state is connected are referred to as a fuse without any particular distinction, and a structure that works.
  • a memory using this is called a fuse memory.
  • the fuse is physically disconnected
  • the means for electrically disconnecting the fuse element is an electrical means, an energy beam such as a laser beam, an electron gun
  • the electrical connection of the material forming the fuse element is cut or substantially cut off using physical means including an electron beam by a charged beam or a charged beam such as FIB (Focused Ion Beam).
  • FIB Fluorous Ion Beam
  • the invention of the second group of the present application has been made in consideration of the above circumstances, and its purpose is to provide a fuse memory to store an initial value and a correction value, and to correct the measurement value by the value. Accordingly, it is an object of the present invention to provide a temperature sensor and a temperature sensor correction method that can improve the accuracy by correcting the noise of the measured value.
  • the present invention proposes the following means.
  • the invention of the second group of the present application is a temperature sensing means for detecting temperature and a fuse memory having a plurality of storage units, and each of the storage units can be selectively electrically disconnected or connected.
  • a fuse memory that stores predetermined data according to the electrical disconnection or connection state in each storage unit, and at the time of manufacture, the measurement value of the temperature sensing means is input and based on the measurement value To obtain an initial value for correcting the measured value of the temperature sensing means, and based on the measured value!
  • a correction value for correcting the sensitivity characteristic of the temperature sensing means is obtained, and each storage unit included in the fuse memory is selectively electrically disconnected or connected according to the initial value and the correction value.
  • correction data writing means for writing the initial value and the correction value to the fuse memory
  • correction data reading means for reading the initial value and correction value from the fuse memory at the time of actual use after manufacture
  • the actual data A correction means for inputting the measured value of the temperature sensing means when in use, and correcting the measured value of the temperature sensing means based on the initial value and the correction value read by the correction data reading means; It is characterized by.
  • the correction data writing means obtains an initial value for correcting the measured value of the temperature sensitive means from the measured value of the temperature sensitive means, and the temperature sensitive means is determined from the measured value. A correction value for correcting the sensitivity characteristic is obtained and written to the fuse memory.
  • the correction data reading means reads the initial value and the correction value from the fuse memory, and the correction means sets the initial value and the correction value. Based on this, since the measured value of the temperature sensing means is corrected, it is possible to reduce variations in temperature characteristics among individual temperature sensors, and to reduce differences in measured values among individual temperature sensors.
  • the invention of the second group of the present application can be selectively electrically disconnected by passing a current with a temperature sensing means for detecting temperature, a control means for processing the measurement value of the temperature sensing means, A temperature sensor correction method for correcting measurement data in a temperature sensor having a fuse memory for storing correction data used for correction by the correction means according to the electrical disconnection state.
  • the measured value of the temperature sensing means is input, and based on the measured value, an initial value for correcting variation in the measured value of the temperature sensing means is obtained, and the temperature sensing means is calculated based on the measured value.
  • the initial value and the correction value are converted into the fuse memory.
  • Correction data written to And scan Tetsupu during actual use after manufacture, the initial value said control means from said fuse memory And reading the correction value, and at the time of actual use, the control means inputs the measured value of the temperature sensing means, and the temperature sensing means based on the initial value and the correction value read by the correction data reading means. And a step of correcting the measured value.
  • the correction data writing means obtains an initial value for correcting the measured value of the temperature sensitive means from the measured value of the temperature sensitive means, and the temperature sensitive means is determined from the measured value. A correction value for correcting the sensitivity characteristic is obtained and written to the fuse memory.
  • the correction data reading means reads the initial value and the correction value from the fuse memory, and the correction means sets the initial value and the correction value. Based on this, since the measured value of the temperature sensing means is corrected, it is possible to reduce variations in temperature characteristics between individual temperature sensors, and to reduce differences in measured values between individual temperature sensors.
  • the invention of the second group of the present application is a temperature sensor correction method, wherein in the correction data writing step, a predetermined feeling is obtained from a measured value for the first temperature of the temperature sensing means. Subtracting the measured value for the first temperature of the temperature sensing means from the process for calculating the correction value by subtracting the theoretical value for the first temperature of the temperature means and the measured value for the second temperature of the temperature sensing means Dividing the calculated value by the value obtained by subtracting the first temperature from the second temperature, and dividing the value by the theoretical sensitivity of the predetermined temperature sensing means to calculate the correction value; A process of writing the initial value and the correction value to the fuse memory by selectively electrically disconnecting or connecting each storage unit included in the fuse memory according to the initial value and the correction value; Is specially made To.
  • the first temperature and the second temperature, the measured value of the temperature sensing means at the temperature, the theoretical value of the temperature sensing means at the first temperature, The initial value and the correction location are calculated based on the theoretical value of the sensitivity of the temperature-sensitive means and written to the value fuse memory.
  • the measured value of the temperature sensing means is corrected based on the initial value and the correction value of the measured value of the temperature sensing means stored in the fuse memory. There is an effect that the measured value of the temperature means can be obtained with high accuracy.
  • the measured values at the first temperature and the second temperature, etc. are calculated, and there is an effect that it can be efficiently stored in a fuse memory that is advantageous for storing small-capacity data. Further, since the initial value and the correction value are stored by physically cutting the fuse, there is an effect that the change of the initial value and the correction value can be completely eliminated.
  • the third group of the invention of the present application is a geomagnetism detection element that detects the orthogonal axis component of the geomagnetism, and thermal deformation molding that stores correction information of the detection output of the geomagnetism detection element. It is an object of the present invention to provide a technology capable of storing a small number of thermally deformable nonvolatile memory elements in a geomagnetism detecting device having a nonvolatile memory element.
  • the third group of inventions of the present application are a geomagnetism detecting element that detects orthogonal axis components of geomagnetism, and thermal deformation molding that stores correction information of detection output of the geomagnetism detecting element.
  • the correction information is an axis sensitivity correction coefficient and an inter-axis correction coefficient, and is expressed as a ratio to the axis sensitivity correction coefficient of one of the misaligned axes.
  • the invention of the third group of the present application provides a geomagnetic detection device characterized in that the non-volatile memory element has at least an axial sensitivity correction coefficient other than the axial sensitivity correction coefficient of any of the axes.
  • a geomagnetism detecting device characterized by storing such correction information.
  • the invention of the third group of the present application is preset from the ratio of the axis sensitivity correction coefficient to the axis sensitivity correction coefficient as correction information related to the axis sensitivity correction coefficient other than the axis sensitivity correction coefficient of any of the axes.
  • a geomagnetic detection device is provided which uses a difference value obtained by subtracting a reference value.
  • a third group of inventions of the present application includes a correction operation circuit that performs a correction operation of the detection output of the geomagnetism detection element.
  • the correction operation circuit multiplies the detection output by an axis sensitivity correction coefficient and corrects the other.
  • a geomagnetism detecting device characterized in that a correction value of a detection output is calculated by adding a correction term obtained by multiplying the detection output of the axis by an inter-axis correction coefficient.
  • a third group of inventions of the present application includes a correction calculation circuit that performs a correction calculation of the detection output of the geomagnetism detection element, and the correction calculation circuit adds the reference value to the difference value to obtain an axis.
  • a geomagnetism detecting device characterized by performing a correction calculation after restoring a sensitivity correction coefficient.
  • the invention of the third group of the present application is characterized in that the correction calculation circuit performs calculation by substituting a preset alternative value for a correction coefficient that cannot be obtained from the correction information.
  • a detection device is provided.
  • the third group of inventions of the present application includes a geomagnetism detecting element for detecting geomagnetism for each orthogonal axis component, and one or a plurality of elements for correcting the detected geomagnetism value.
  • a geomagnetism detection device comprising a heat-transformed non-volatile storage element that stores correction data, and each of the correction data has a predetermined axis sensitivity correction coefficient, an inter-axis correction coefficient, or an axis sensitivity correction coefficient force. It is provided that the difference value obtained by subtracting the reference value is expressed as a value of the ratio to the axis sensitivity correction coefficient of any axis.
  • At least one of the correction data is a ratio of an axis sensitivity correction coefficient other than any of the axes to a ratio of the axis sensitivity correction coefficient of any of
  • a geomagnetism detecting device characterized in that it is a value.
  • At least one of the correction data is a difference value obtained by subtracting a predetermined reference value from an axis sensitivity correction coefficient other than any one of the axes.
  • a geomagnetism detecting device characterized in that the ratio is a ratio value of the axis to the axis sensitivity correction coefficient.
  • a third group of inventions of the present application includes a correction calculation circuit that corrects a value of geomagnetism for each orthogonal axis component detected by the geomagnetism detection element, and the correction calculation circuit includes a predetermined axis component
  • the axis of the misaligned axis of the difference value obtained by subtracting a predetermined reference value from the axis sensitivity correction coefficient of the predetermined axis component or the axis sensitivity correction coefficient of the predetermined axis component to the value of geomagnetism
  • the multiplication value obtained by multiplying the ratio to the sensitivity correction coefficient by a predetermined value and the geomagnetism value of the other axis component to the !!
  • a geomagnetism detection device characterized in that a corrected geomagnetism value is obtained by calculating a sum of a multiplication value obtained by multiplying a ratio value.
  • a third group of inventions of the present application provides for each orthogonal axis component detected by the geomagnetism detecting element.
  • a correction arithmetic circuit that corrects a value of geomagnetism, the correction arithmetic circuit adding an axis sensitivity correction coefficient of the predetermined axis component or an axis of the predetermined axis component to the geomagnetism value of the predetermined axis component; It is corrected by calculating a multiplication value obtained by multiplying the difference value obtained by subtracting the predetermined reference value from the sensitivity correction coefficient by the addition value obtained by adding the predetermined value to the ratio of the difference axis to the axis sensitivity correction coefficient.
  • the present invention provides a geomagnetism detecting device characterized in that the value of the obtained geomagnetism is obtained.
  • a third group of inventions of the present application provides a geomagnetism detecting device, wherein the thermally deformable non-volatile memory element is a fuse memory.
  • the invention of the third group of the present application provides a geomagnetism detecting device, wherein the predetermined reference value is an axis sensitivity correction coefficient of any one of the axes.
  • the ratio of the ratio of the other correction coefficient to the axis sensitivity correction coefficient of any axis is stored as correction information in the non-volatile memory element of thermal deformation molding, In addition, while maintaining the correction accuracy by performing the correction between the axes, it is possible to reduce the storage capacity of the heat-transformed nonvolatile memory element by downsizing the correction information.
  • FIG. 1 is a diagram showing a configuration of a geomagnetic sensor 1 in each embodiment of the first group of the invention of the present application.
  • FIG. 2A is a diagram showing a configuration of a storage unit MUa in the same embodiment.
  • FIG. 2B is a diagram showing a configuration of a storage unit MUb in the same embodiment.
  • FIG. 3 is a circuit diagram of the fuse memory 13 when data is written in the same embodiment.
  • FIG. 4 is a view showing timing of the fuse memory 13 at the time of data writing in the same embodiment.
  • FIG. 5 is a circuit diagram of the fuse memory 13 when reading data in the same embodiment.
  • FIG. 6 is a diagram showing timing of the fuse memory 13 at the time of data reading in the same embodiment.
  • FIG. 7A is a flowchart showing an operation of setting an offset value in the fuse memory 13 when the wafer of the geomagnetic sensor 1 according to the first and second embodiments of the first group of the present invention is formed.
  • FIG. 8 is a flowchart obtained by adding a step (step Scl) for applying a zero magnetic field to the flowchart in FIG.
  • FIG. 10 is a diagram showing a configuration of a temperature sensor 201 in an embodiment of the second group of the present invention.
  • FIG. 11A is a flowchart showing an operation of setting the initial value AD and the correction value Ak in the fuse memory 213 and an operation in actual use of the temperature sensor 201 in the fabrication of the temperature sensor 201 in the same embodiment.
  • FIG. 11B is a flowchart showing the operation of the temperature sensor 201 in actual use in actual use.
  • FIG. 12 is a block diagram showing a configuration of a temperature sensor circuit 212 in the related art and the embodiment.
  • FIG. 13 is a block diagram showing an outline of the configuration of the geomagnetic detection LSI according to the first embodiment of the third group of the present invention.
  • FIG. 14 is a block diagram showing a configuration example of a fuse memory.
  • FIG. 15 is a block diagram showing an outline of a configuration when the present invention is mounted on a mobile phone.
  • the geomagnetic sensor 1 and the control logic circuit 11 (correction data writing means) (correction data reading means) (correction data reading means) (correction means) for controlling the geomagnetic sensor 1 in the present embodiment, and GMR ( Giant Magnetoresistive) element, and is composed of a geomagnetic sensor element that detects the geomagnetism in the X-axis and Y-axis directions (magnetic sensing direction) orthogonal to each other, and an eight-70 (10 ⁇ 701 ⁇ 1) converter.
  • the geomagnetic sensor circuit 12 (geomagnetic detection means) and the fuse memory 13 are configured on one chip.
  • the geomagnetic sensor circuit 12 performs AZD conversion on the measured values of the magnetic fields in the X-axis direction and Y-axis direction obtained by the geomagnetic sensor element by an AZD converter and outputs the result to the control logic circuit 11.
  • the control logic circuit 11 reads a plurality of measured values indicating the ambient magnetic field measured from the geomagnetic sensor circuit 12 in a situation where the mobile phone is rotating when the geomagnetic sensor 1 is mounted on the mobile phone, The offset value of the geomagnetic sensor circuit 12 is obtained based on the above, and the value is stored in the fuse memory 13.
  • control logic circuit 11 reads the offset value from the fuse memory 13 and calculates the value and the measured value from the geomagnetic sensor circuit 12, thereby generating a geomagnetic sensor circuit. Digitally correct the measured value from path 12.
  • the geomagnetic sensor 1 is provided with a physical quantity sensor (not shown), and the physical quantity sensor includes a temperature sensor (temperature measurement means).
  • the control logic circuit 11 reads the ambient temperature data from the temperature sensor, writes the offset value for the ambient temperature to the fuse memory 13, and reads the offset value for the ambient temperature from the fuse memory 13.
  • the fuse memory 13 has the storage unit MUa shown in FIG. 2A by the number of bits of the storage capacity.
  • the fuse memory 13 having a storage capacity of 32 bits has 32 storage units MUa.
  • the memory unit MUa is an N-channel MOS transistor N1, a fuse Fu inserted between a terminal Ta connected to the power supply voltage VDD of the geomagnetic sensor 1 and a terminal Tb connected to the drain of the MOS transistor. Power is also constructed.
  • the fuse Fu is made of polycide (polysilicon).
  • the write voltage input terminal IpWr is connected to the gate of the MOS transistor N1, and the data output terminal OpD is connected to the drain of the MOS transistor N1.
  • the MOS transistor N1 is formed on the chip in such a size that when it is turned on by the gate, a current that generates heat necessary to cut the fuse Fu can flow between the drain and the source. Is done.
  • the memory unit MUa when a voltage equal to or higher than the voltage at which the MOS transistor N1 is turned ON (threshold of the MOS transistor N1) is applied from the write voltage input terminal IpWr to the gate of the MOS transistor with the power supply voltage VDD applied.
  • the MOS transistor N1 is turned on, and the fuse Fu is cut by heat generated by the current flowing between the drain and the source.
  • the storage unit MUa has a configuration in which the fuse Fu is deleted as shown in FIG. 2B. This is hereinafter referred to as storage unit MUb.
  • the MOS transistor N1 is turned off even when the power supply voltage VDD is applied to the write voltage input terminal IpWr with a voltage equal to or lower than the threshold of the MOS transistor N1.
  • the fuse Fu is cut, the power supply voltage VDD is not transmitted to the data output terminal OpD.
  • the fuse Fu is cut by applying a voltage equal to or higher than the threshold value of the MOS transistor N1 to the write voltage input terminal IpWr while the power supply voltage VDD is applied.
  • the power supply voltage VDD is applied to the write voltage input terminal IpWr with a voltage equal to or lower than the threshold value of the MOS transistor N1 in the storage unit MUb, the voltage is output to the data output terminal OpD. It will not be done.
  • the fuse Fu is not disconnected by applying a voltage equal to or lower than the threshold value of the MOS transistor N1 to the write voltage input terminal IpWr while the power supply voltage VDD is applied.
  • the power supply voltage VDD is applied to the write voltage input terminal IpWr with a voltage lower than the threshold of the MOS transistor N1
  • the power supply voltage VDD is output to the data output terminal OpD.
  • input data can be stored by associating each voltage value with input / output data as follows. That is, the MOS transistor N1 whose threshold is half the value of the power supply voltage VDD (VDDZ2) is used. Then, with respect to the voltage applied to the write voltage input terminal IpWr, a voltage equal to or lower than the threshold of the MOS transistor N1 is made to correspond to a voltage of the MOS transistor N1 below the threshold (eg, ground level, hereinafter referred to as low level) to the data '0'. Voltage (For example, VDD, hereinafter referred to as high level) is associated with data “1”. For the voltage output to the data output terminal OpD, the low level corresponds to the data “1”, and the high level corresponds to the data “0”.
  • the data corresponding to the voltage applied to the write voltage input terminal IpWr is stored in the form of the presence or absence of the fuse Fu while the power supply voltage VDD is applied. Further, by applying a low level to the write voltage input terminal IpWr, a voltage corresponding to the stored data appears at the data output terminal OpD depending on the presence or absence of the fuse Fu.
  • the write voltage input terminal IpWr is applied with a high level or a low level corresponding to the data, and the data is fused.
  • the operation to be stored depending on the presence or absence of is called “writing”.
  • data is stored in the form of the presence or absence of the fuse Fu, and when the power supply voltage VDD is applied to the storage unit MUa or MUb, the data is stored by applying a common level to the write voltage input terminal IpWr.
  • "Read" t is the operation to extract the voltage corresponding to from the data output terminal OpD.
  • the control logic circuit 11 supplies the fuse memory 13 with the power supply voltage VDD, and inputs the write voltage of the storage unit MUa corresponding to the bit in which the data "1" should be stored among the storage units MUa in the fuse memory 13.
  • the fuse Fu of the storage unit MUa is cut.
  • the storage unit corresponding to the bit in which the data “1” should be stored is configured as the storage unit MUb, and the data is stored.
  • the fuse Fu is cut corresponding to the bit in which the data “1” is to be stored, and the data “1” is “written”.
  • the fuse Fu corresponding to the bit in which the data “0” is to be stored is not cut, and the data “0” is “written”.
  • control logic circuit 11 supplies the power supply voltage VDD to the fuse memory 13 and applies a low level to the write voltage input terminal IpWr, thereby corresponding to the data stored depending on the presence or absence of the fuse Fu. By outputting the voltage, the data output terminal OpD force control logic circuit 11 performs data “read”.
  • the fuse memory 13 actually used in the present embodiment and the timing at the time of data writing and data reading will be described.
  • the fuse memory 13 described above outputs 4-bit data serially as described in detail.
  • FIG. 3 is a diagram showing the timing at the time of writing the fuse memory 13 and data in the present embodiment.
  • the fuse memory 13 includes memory cells CelO to Cel3, knot (Not) gates (inverting circuits) Ntl to 2, and a force. Since the memory cells CelO to Cel3 have the same configuration, the memory cell CelO will be described below.
  • the storage cell CelO includes a storage unit MUa shown in FIG. 2A, a D flip-flop DFF (hereinafter referred to as DFF), a 2-input AND gate Ad, and a 3-input NOR. (Nor) Gate Nora, 2-input NOR gate Norb and force are also constructed.
  • DFF D flip-flop
  • Ad 2-input AND gate
  • NOR 3-input NOR
  • Nor Nor Gate Nora, 2-input NOR gate Norb and force are also constructed.
  • the suffix of the subscripts of the storage cells CelO to Cel3 is added to the end of the symbols of the above-described constituent elements.
  • DFF in the memory cell CelO is DFF0
  • DFF in the memory cell Cel2 is DFF2.
  • each component of the storage cell CelO is a storage unit MUaO, a D flip-flop DFF0, an end gate AdO, and a NOR gate Nora0 and NorbO.
  • the positive data output terminal 00 of the DFFO is connected to one of the three input terminals of the NOR gate NoraO.
  • DFF0 negative data output ON0 is connected to one input of NOR gate NorbO.
  • the output terminal of the NOR gate NoraO is connected to the write voltage input terminal Ip WrO of the memory unit MUaO.
  • Storage unit Data output terminal OpDO of MUaO is connected to one input terminal of AND gate AdO. Andgate Output terminal gate of AdO Connected to the other input terminal of NorbO.
  • the storage cell CelO is provided with an input end and an output end as follows, and each input end or output end is connected as follows. That is, the memory cell CelO is provided with input terminals IpCk0, IpNCk0, IpNWrtO, IpRed0, IpDFiO, and an output terminal OpNDiO.
  • Input terminal IpCkO is connected to clock input terminal CkO of DFF0.
  • Input terminals IpNCkO and IpN WrtO are connected to the remaining two input terminals of the NOR gate NoraO, respectively.
  • the input terminal IpRe d0 is connected to the other input terminal of the AND gate AdO.
  • Input terminal IpDFiO is connected to data input terminal D0 of DFF0.
  • Output terminal OpNDiO is connected to the output terminal of NOR gate NorbO
  • the fuse memory 13 is provided with input terminals IpClk ⁇ IpNWrite, IpRead, IpNDai, and output terminal OpDo.
  • the input terminal IpClk is connected to the input terminal IpCkO of the memory cell CelO. Further, it is connected to the input terminal IpNCkO of the storage cell CelO via a knot gate Ntl.
  • the input terminal Ip NWrite is connected to the input terminal IpNWrtO of the memory cell CelO.
  • the input IpRead is connected to the input IpRedO of the storage cell CelO.
  • the input terminal IpClk is also connected to the input terminals IpCkl to IpCk3 of the memory cells Cell to Cel3. Further, the input terminals IpNCkl to IpNCk3 of the memory cells Cell to Cel3 are also connected through the knot gate Ntl.
  • the input terminal IpNWrite is also connected to the input terminals IpNWrtl to IpN Wrt3 of the memory cells Cell to Cel3.
  • the input terminal IpRead is also connected to the input terminals IpRedl to Ip Red3 of the memory cells Cell to Cel3.
  • the input terminal IpNDai of the fuse memory 13 is connected to the input terminal IpDFiO of the memory cell CelO.
  • the output terminal OpNDiO of the memory cell CelO is connected to the input terminal IpDFil of the memory cell Cell.
  • the output terminal OpNDil of the memory cell Cell is connected to the input terminal IpDFi2 of the memory cell Cel2.
  • the output terminal OpNDi2 of the memory cell Cel2 is connected to the input terminal IpDFi3 of the memory cell Cel3.
  • the output terminal OpNDi3 of the memory cell Cel3 is connected to the output terminal OpDo of the fuse memory 13 via the knot gate Nt2.
  • Fig. 4 (timing chart)
  • data DD0 and DD2 (1": single level) are written to memory cells CelO and Cel2
  • data DDI and DD3 ("0" are written to memory cells Cell and Cel3.
  • High level is written.
  • the clock pulse Cpl is output, and in synchronization with the rising edge of the clock pulse Cpl, the signal Read is set to low level, and the NWrite and NDai are set to high level. This allows DFF0
  • the signal NDai (noise level) is input to the data input terminal DO.
  • the signal NWrite becomes high level, a high level is input to one input terminal of the NOR gates NoraO to Nora 3, and the NOR gates NoraO to Nora 3 are signals input to the other input terminals.
  • the low level output signals W0 to W3 are output regardless of the output signals at the data output terminals O0 to O3 of DFF0 to DFF3 and the input signals at the input terminals IpNCkO to IpNCk3 of the memory cells CelO to Cel3.
  • the output signal of Nogate NoraO is fixed at a low level”.
  • the storage units MUaO to MUa3 in the storage cells Ce10 to Cel3 do not perform the above-described write operation! /. Thereafter, the signal Read is maintained at a low level.
  • the output signal of the AND gate AdO is fixed to the single level.
  • the signal at the other input terminal of the NOR gate NorbO is fixed at a low level.
  • the NOR gate NorbO operates as a NOT gate for the signal input to one input terminal, and inverts the input signal for output.
  • the NOR gate NorbO is opened as a NOT gate for the negative data output ON0 of DFF0”.
  • the signal NDiO at the output terminal OpNDiO of the memory cell CelO also becomes high level. Therefore, when the clock pulse Cpl is output, the signal (high level) force clock pulse Cp2 captured at the input terminal IpDFiO of the memory cell CelO is transmitted to the output terminal OpNDiO of the memory cell CelO. Become.
  • the output terminal OpNDiO of the memory cell CelO is connected to the input terminal IpDFil of the memory cell Cell, the signal taken into the input terminal IpD FiO of the memory cell CelO when the clock pulse Cpl is output. (Noise level) force When the clock pulse Cp2 is output, it propagates to the input IpDFil of the memory cell Cell. At this time, the signal NDiO (high level) is taken into the data input terminal D1 of DFF1 connected to the input terminal.
  • the above-described operation causes the memory cell Cell to be output.
  • the signal NDiO (high level) input to the input terminal IpDFil first propagates to the output terminal OpNDi 1, and the signal NDil at the output terminal OpNDil becomes high level indefinite force.
  • the signal NDil at the output terminal OpNDil is output to the input terminal IpDFi2 of the storage cell Cel2.
  • the signal NDil (high level) input to the input terminal I pDFi2 first propagates to the output terminal OpNDi2, and the signal NDi2 at the output terminal OpNDi2 is It goes from undefined level to high level.
  • the signal NDi2 at the output terminal OpNDi2 is output to the input terminal IpDFi3 of the memory cell Cel3.
  • the clock pulse Cp5 is output, in the memory cell Cel3, the signal NDi2 (no level) previously input to the input terminal IpDF i3 propagates to the output terminal OpNDi3, and the signal at the output terminal OpN Di3 NDi3 changes from undefined level to high level.
  • the fuse memory 13 inputs the input terminal IpNDa signal NDai (noise level) and generates the signal NDiO at the output terminals OpNDiO to OpNDi3 of the internal storage cells CelO to Cel3 by the clock pulses Cpl to Cp5. Change NDi3 from undefined level to high level.
  • the signal NDai at the input terminal IpNDai of the internal storage cell CelO and the output terminals OpNDiO to OpNDi2 of the storage cells CelO to Cel2 are input terminals of the storage cells Cell to Cel3. This means that the signals NDi0 to NDi2 in IpDFil to IpDFi3 have been initialized to a high level. From the above, the fuse memory 13 operates as a shift register.
  • the data write operation is performed by the clock pulses Cp5 to Cp9 as described in detail below.
  • this low level input signal NDai is sent to the input terminals IpDFil to IpDFi3 of the memory cells Cell to Cel3 which are initialized to the high level as follows by the operation of the shift register of the fuse memory 13 described above. Propagate and change the signals NDiO to NDi2 at each input as follows. That is, as shown in FIG. 4, the signal NDiO is at a low level only after the clock pulse Cp6 is output until the clock pulse Cp7 is output. Next, the signal NDil goes low only during the period from the output of clock pulse Cp7 until the output of clock pulse Cp8. Next, the signal NDi2 goes low only during the period from when the clock pulse Cp8 is output until the clock pulse Cp9 is output. In addition, the signal NDi3 at the output terminal OpNDi3 of the memory cell Cel3 is low only until the clock pulse Cp9 is output and the power clock pulse CplO is output.
  • the signal NWrite is sequentially changed in synchronization with the clock pulses Cp6 to Cp9 corresponding to the data to be written DD0 to DD3 and output.
  • the operation of the fuse memory 13 when the clock pulses Cp6 to Cp9 are output will be described.
  • the signal NDai (low level) at the input terminal IpNDai of the memory cell CelO when the clock pulse Cp5 is output propagates to the positive data output terminal 00 of DFF0. Then, it is output to one input terminal of MUa among the three NOR gates NoraO in the memory cell CelO.
  • a low level signal corresponding to the signal NWrtie corresponding to the data DD0 ("1") is output to one of the remaining two inputs of the NOR gate NoraO.
  • a signal obtained by inverting the clock pulse Cp6 by the not gate Ntl is output to the remaining input terminal of the NOR gate NoraO.
  • the inverted low level signal is output, and the clock pulse Cp6 becomes low level! / Then, a high level signal that is an inverted output is output.
  • a low level signal is input to the remaining input terminal of the NOR gate NoraO. Since a low level signal is output to all input terminals of NOR gate NoraO, the output signal W0 of NOR gate NoraO goes high, and a high level is input to data input terminal IpWrO of storage unit MUaO.
  • the MOS transistor N1 0 in the storage unit MUaO is turned on, and the fuse FuO is disconnected as shown in the timing chart of the output signal W0 in FIG. 4, and the data DD0 ("1") is stored in the storage unit MUaO. : Low level) is stored.
  • the low level signal that is the inverted output signal is output in the interval P2
  • the low level signal is output to all the input terminals of the NOR gate Nora2, so the output signal W2 of the NOR gate Nora2 is High level is input to the data input terminal IpWr2 of the storage unit MUa2, and the fuse Fu2 in the storage unit MUa2 is disconnected and stored as shown in the timing chart of the output signal W2 in Fig. 4 as shown in the timing chart of Fig. 4.
  • Data DD2 (1: low level) is stored in unit MUa2.
  • the fuse memory 13 writes sequentially input data DD0 to DD3 in the memory cells CelO to Cel3 depending on the presence or absence of the fuses FuO to Fu3 in the storage units MUaO to MUa3.
  • the levels of the signals Read, NWrite, and N Dai are indefinite, and the output signals NDiO to NDi3 and the NOR gates NoraO to Nora of each storage cell CelO to Cel3 Assume that the output signals W0 to W3 of 3 have undefined levels.
  • the clock pulse Cpl is output, and in synchronization with the rising edge of the clock pulse Cpl, the signal Read is set to low level, and the NWrite and NDai are set to high level. As a result, the signal NDai (noise level) is input to the data input terminal DO of DFF0.
  • the signal NWrite goes high, the output signals of the NOR gates NoraO to Nora 3 are fixed at low level, and the low level output signals W0 to W3 are output, and each storage unit MUaO to MUa3 performs the above write operation. Do not do. Thereafter, the signal NWrite is maintained at a high level.
  • the low level signal that is the inversion result of the signal NDai (high level) previously captured at the data input terminal DO is applied to the negative data output terminal ON0 of DFF0. Is output and input to one input terminal of the NOR gate NorbO.
  • the NOR gate NorbO is opened as a NOT gate with respect to the negative data output ON0 of DFF0, as described above, and the signal input to one input is inverted. And output. For this reason, the signal NDiO at the output terminal OpNDiO of the memory cell CelO changes from undefined level to high level.
  • the above operation is performed by outputting clock pulses Cp3 to Cp5.
  • the signals NDai and NDiO to NDi2 are initialized from undefined level to high level.
  • the signals NDai and NDiO to NDi2 are initialized to the high level as described above, the low level is output from the negative data output terminals ON0 to ON3 of DFF0 to DFF3, and one of the NOR gates NorbO to Norb 3 is output. Is input to the input terminal. Therefore, the NOR gates NorbO to Norb 3 are opened as not gates for the data output terminals OpD0 to OpD3 of the storage units MUaO to MUa3, connected to the other input terminals, and connected to the other input terminals of the AND gates AdO to Ad3.
  • the output signal of the memory units MUaO to MUa3, which is the input signal that is input, is inverted and output.
  • the signal NDi3 is inverted by the knot gate Nt2 and output from the output terminal OpDO.
  • the signal NDi3 is a signal obtained by inverting the level of the data DD3 stored in the storage unit MUa3, the data DD3 is also output at the output terminal OpDO force.
  • the Read signal becomes low level, and as described above, the NOR gates Norb0 to Norb 3 correspond to the negative data output terminals ON0 to ON3 of DFF0 to DFF3. Opened as a knot gate.
  • the fuse memory 13 performs the shift register operation as described above, and the signals NDi2, NDil, NDi at the output terminals OpNDi2, OpNDil, OpNDiO of the memory cells Cel2, Cel, CelO in synchronization with the clock pulses Cp7 to Cp9.
  • 0 inverted signal of data DD2, DD1, DD0
  • data DD3, DD2, DDI, and DD0 are also output at the output OpDO force.
  • a wafer force tester on which the circuit of the geomagnetic sensor 1 is formed and placed on a probe control device having a contact probe.
  • a coil for applying a magnetic field is attached to the bottom surface of the chuck, and the coil is controlled by the tester to generate a desired external magnetic field and applies an external magnetic field to the wafer.
  • a contact probe of a probe control device connected to the tester is brought into contact with a coil provided inside the geomagnetic sensor 1 via a terminal on the wafer, and a predetermined current is passed. Heat sensor 1 to the desired temperature.
  • the tester instructs the control logic circuit 11 via the probe control device, and collects the measured value of the geomagnetic sensor 1 corresponding to the external magnetic field applied by the magnetic field applying coil.
  • the magnetic field and temperature conditions are changed, and a plurality of measurements are repeatedly performed to obtain measurement values at a plurality of desired magnetic fields and desired temperatures. Then, calculation is performed on a plurality of measured values obtained under a plurality of magnetic field and temperature conditions, and respective offset values are calculated (step Sal). Specifically, the sensor characteristic measurement is repeated while changing the temperature (or changing the magnetic field).
  • step S a2 the calculated magnetic sensitivity offset value is stored in the fuse memory 13 (step S a2). Then, the operation for setting the offset value in the fuse memory 13 is completed. Thereby, the offset change due to the temperature change of the geomagnetic sensor 1 is stored.
  • the power of the mobile phone equipped with the geomagnetic sensor 1 is turned on, and the operation of each part starts.
  • the operation of the geomagnetic sensor 1 will be described with reference to the flowchart shown in FIG. 7B. It is assumed that the above-described offset value of the geomagnetic sensor circuit 12 is stored in the fuse memory 13 in the geomagnetic sensor 1.
  • the control logic circuit 11 reads the offset value at the temperature from the fuse memory 13 (step Sbl).
  • the current ambient temperature is measured (step Sb2), and the magnetic sensitivity offset value corresponding to the temperature data is read.
  • the geomagnetic sensor circuit 12 performs orientation measurement (step Sb3).
  • the control logic circuit 11 is a geomagnetic sensor circuit.
  • the azimuth measurement data is read from 12 and the measurement value is corrected using the offset value described above (step Sb4).
  • map data is displayed on the display screen of the mobile phone based on the orientation data. Then, the process returns to step Sb2, and the processes of steps Sb2 to Sb4 are repeated.
  • the offset correction value for correcting the offset of the magnetic sensitivity of the geomagnetic sensor circuit 12 generated when the geomagnetic sensor 1 is incorporated in the mobile phone is set to the control logic circuit. 11 is set in the fuse memory 13, and when the geomagnetic sensor 1 is actually used, the control logic circuit 11 is set in the fuse memory 13 from the fuse memory 13 and reads the offset value of the geomagnetic sensor circuit 12.
  • the measured value can be corrected by the value. For this reason, it is possible to improve the accuracy of the measurement value of the geomagnetic sensor by correcting the variation in characteristics of individual measurement values.
  • a thin oxide film such as a tunnel insulating film is attached to the storage section or the chip is manufactured.
  • Reduce chip unit cost by using a normal C MOS process for chips that do not require special processes such as stacking multiple layers of polysilicon and metal layers to form bit lines and word lines However, it can be manufactured.
  • the chip for example, by using a polycide layer used for forming a gate electrode of a MOS-FET (Field Effect Transistor), it is not necessary to increase the wiring layer for the fuse by one layer. Also, it is possible to avoid affecting the bowing of the power supply or ground line I as in the case where the fuse is formed by the metal layer.
  • MOS-FET Field Effect Transistor
  • fuses FuO to Fu3 are formed of polycide, it is possible to form a fuse that is cut well by heat generated by energization with a higher resistivity than metal.
  • a fuse memory is used to store the offset value, and the fuse is physically cut. As a result, the offset value is stored, so that any change over time in the stored data of the offset value can be eliminated.
  • the measurement of data for calculating the offset value of the geomagnetic sensor 1 uses a tester that is used throughout the wafer manufacturing process, it is a device for testing other IC products. You can share materials.
  • a chip that has been cut (diced) from a wafer can be mounted on a test jig provided with a magnetic field application coil, and data can be measured with a processor in the same way as with a wafer. .
  • step Scl a step of setting the external magnetic field by the above-described tester as a zero magnetic field may be added to the flowchart shown in FIG. 7A.
  • step Sc2 corresponds to step Sal
  • step Sc3 corresponds to step Sa2.
  • the characteristics of the measured value of the magnetic sensor can be corrected by comparing the reference value based on the measured value force of the magnetic sensor, using the output value when the external magnetic field is zero as the reference value.
  • the block configuration of the geomagnetic sensor 1 according to the second embodiment is the same as in FIG. 1.
  • the force offset change Z temperature change ratio is stored in the fuse memory 13 as the temperature coefficient of the offset.
  • the force offset value itself is stored in the fuse memory 13. This is different from the first embodiment to be stored in.
  • the temperature measured by the temperature sensor in the physical quantity sensor described above is used. Unlike the first embodiment in which the temperature is regulated by the current flowing through the internal coil. Yes.
  • the temperature sensor in the geomagnetic sensor 1 reads the result of measuring the characteristics with respect to the ambient temperature from an internal temperature sensor circuit (not shown) during the manufacturing process, and based on the result. Then, an initial value for correcting the measured value of the temperature sensor circuit is obtained, and a correction value for correcting the sensitivity characteristic of the temperature sensor circuit is obtained based on the result, and stored in the fuse memory 13. Further, the ratio of the offset change to the temperature corrected by the initial value and the correction value described above is calculated as the temperature coefficient of the offset and stored in the fuse memory 13.
  • the above-described temperature sensor circuit includes a general band gap reference circuit and an AZD converter.
  • the band gap reference circuit includes, for example, an op amp, a diode, and a resistor.
  • the A / D converter performs AZD conversion of the output voltage of the bandgap reference circuit and outputs an output value Dout that is the result of the AZD conversion.
  • control logic circuit 11 reads an initial value AD and a correction value Ak, which will be described later, from the fuse memory 13 together with the temperature coefficient of the offset described above, and corrects the measured value of the temperature sensor circuit using the values.
  • the offset is calculated from the measured temperature value and the temperature coefficient of the offset.
  • the wafer on which the circuit of the geomagnetic sensor 1 is formed is placed on a chuck (a jig for fixing the wafer).
  • a heating coil is attached to the wafer, and the coil is controlled to generate desired heat by a tester connected to the chuck to heat the wafer.
  • step Sdl the external magnetic field by the tester is made zero by the magnetic field application coil (step Sdl), and the sensor characteristics are measured by the following procedure.
  • step Sd2 That is, the above-described coil is controlled to the temperature T1 by the tester. Next, the characteristics of the temperature sensor circuit are measured. And the result is the control logic circuit 11 Then, the output value Dout of the temperature sensor circuit with respect to the temperature Tl is input as an output value Dl ′ to the memory in the tester via the prober (step Sd2).
  • the coil is controlled to the temperature T2 by the tester, the characteristics of the temperature sensor circuit are measured, and the control logic circuit 11 outputs the output value Dout of the temperature sensor circuit for the temperature T2 as the output value D2 ′. And input to the memory in the tester (step S d3).
  • the correction value Ak is obtained by the calculation shown in Expression (3) using the output value Dl ′, D2 ′ temperature Tl, ⁇ 2, and the temperature coefficient m of Expression (1).
  • step Sd 4 the initial value AD and the correction value Ak are stored in the fuse memory 13 (step Sd 4).
  • step Sd5 the temperature of the geomagnetic sensor 1 is measured, and the measured temperature is corrected by the initial value AD and the correction value Ak described above.
  • step Sd6 the measured value of the geomagnetic sensor 1 corresponding to the zero magnetic field is collected.
  • a predetermined current is passed through a coil provided inside the geomagnetic sensor 1, and the heat generation heats the geomagnetic sensor 1 to a desired temperature, thereby changing the temperature of the geomagnetic sensor 1 ( Step Sd7).
  • step Sd8 a predetermined external magnetic field is applied to the geomagnetic sensor 1 by the magnetic field application coil. Then, the process returns to step Sd5, and the following steps Sd5 to Sd8 are repeated.
  • step Sd8 If the temperature correction value of the geomagnetic sensor 1 has element characteristics that change depending on the strength of the external magnetic field, an external magnetic field is applied in step Sd8, and the temperature of the geomagnetic sensor 1 is changed. If the degree correction value has an element characteristic that is not affected by the strength of the external magnetic field, it can be set to skip step S d8 and proceed to step Sd5.
  • step Sd9 without shifting to step Sd8 after the process of step Sd7. That is, the measured value force of the geomagnetic sensor 1 also calculates an offset value, and based on the offset value and the measured value of the temperature sensor, calculates the temperature coefficient of the offset value, which is the ratio of the offset value change Z temperature sensor change, Store in the fuse memory 13 (step Sd9). Then, the operation for setting the temperature coefficient of the offset value in the fuse memory 13 is completed. Thereby, the temperature coefficient of the offset value of the geomagnetic sensor 1 is stored.
  • the control logic circuit 11 reads the temperature coefficient of the offset at the temperature from the fuse memory 13 (step Sbl).
  • the current ambient temperature is measured (step Sb2), and the value after temperature correction of the temperature sensor and the offset temperature coefficient force correspond to the temperature. Calculate the offset value.
  • control logic circuit 11 reads out the initial value AD and the correction value Ak described above from the fuse memory 13, and uses them to calculate the output value Dout from which the temperature sensor force is also output by the following calculation.
  • a temperature output value Tout which is a value converted to temperature, is output (step Sb3), and the temperature sensor is corrected.
  • Tout [D- (Dl + A D)] X [l / (A k X m)] + Tl (° C) (4)
  • step Sb3 the geomagnetic sensor circuit 12 performs azimuth measurement.
  • control The logic circuit 11 reads the azimuth measurement data from the geomagnetic sensor circuit 12, and corrects the measured value using the offset value with respect to the corrected temperature output value Tout described above (step Sb4).
  • map data is displayed on the display screen of the mobile phone based on the orientation data. Then, the process returns to step Sb2, and the processes of steps Sb2 to Sb4 are repeated.
  • the control logic circuit 11 sets the initial value ⁇ D and the correction value ⁇ k of the temperature sensor circuit in the temperature sensor.
  • the ratio of the offset change with respect to the temperature set in the fuse memory 13 and corrected by the initial value and the correction value described above is calculated as the temperature coefficient of the offset, stored in the fuse memory 13, and controlled during actual use of the temperature sensor.
  • Logic circuit 11 force Reads the initial value ⁇ D and correction value ⁇ k of the temperature sensor circuit from the S fuse memory 13 to the fuse memory 13 together with the temperature coefficient of the offset, and outputs the temperature output value Tout.
  • the offset of the geomagnetic sensor 1 can be corrected by the value. Therefore, the number of numerical values to be stored can be reduced.
  • the memory for temporarily storing the data for calculating the initial value AD and the correction value Ak of the temperature sensor in the geomagnetic sensor 1 is not limited to the memory in the tester and is not limited to the geomagnetic sensor. If a cache memory such as DRAM or SRAM or another fuse memory is formed on one chip and the above data can be temporarily stored, these memories may be used.
  • the measurement of data for calculating the initial value AD and the correction value Ak of the temperature sensor in the geomagnetic sensor 1 was installed in a tester used in the wafer manufacturing process. Since a heatable chuck is used, other LSI test equipment can be shared. Also, a chip that has been cut (diced) from a wafer is mounted on a test jig equipped with a heater for heating, and the output value is measured with a prober in the same way as with a wafer. I'll do it.
  • the block configuration of the geomagnetic sensor 1 according to the third embodiment is the same as that shown in FIG. 1.
  • the sensitivity characteristic of the temperature sensor for each chip on the wafer is obtained, and then the actual temperature is measured by the temperature sensor and fed back, so that temperature control is performed with high accuracy.
  • This is different from the first embodiment in which the temperature is not monitored by the temperature sensor in 1.
  • the present embodiment will be described with reference to the flowchart shown in FIG. 7A.
  • the operation in the manufacturing process of the geomagnetic sensor 1 in the present embodiment is similar to the operation in the formation of the geomagnetic sensor 1 in the first embodiment, and thus the differences will be described mainly.
  • step Sal the sensitivity characteristic of the temperature sensor for each chip on the wafer is obtained in advance and stored in the memory on the tester side. At this time, the position of the chip is converted into an address, and this sensitivity characteristic and address information are stored in the memory on the tester side as a temperature sensor characteristic for each address.
  • the coil in the geomagnetic sensor 1 is energized and heated so as to reach a desired temperature, as in the first embodiment.
  • the measured temperature in the sensor chip is monitored (measured) by the temperature sensor in the geomagnetic sensor 1.
  • the temperature sensor characteristic information is read, and the measured temperature in the chip is corrected using this information to calculate an accurate temperature. If this temperature (actually measured value) is different from a predetermined temperature (theoretical value), the temperature of the temperature sensor is adjusted by the temperature adjustment function of the probe control device.
  • the geomagnetic sensor 1 is heated to a desired temperature by the above operation. Further, the tester instructs the control logic circuit 11 via the probe control device, and takes the measurement value of the geomagnetic sensor 1 corresponding to the external magnetic field applied by the magnetic field application coil. In this embodiment, the magnetic field and temperature conditions are changed, and a plurality of measurements are repeated to obtain measurement values at a plurality of desired magnetic fields and desired temperatures. Then, under a plurality of magnetic field and temperature conditions, calculation is performed for each of the plurality of measured values obtained to calculate each offset value.
  • step Sa2 the temperature sensor characteristic information for each chip on the wafer and the calculated offset value are stored in fuse memory 13. Then, the operation for setting the offset value in the fuse memory 13 is completed. As a result, the temperature change of the geomagnetic sensor 1 Offset changes are stored.
  • the sensitivity characteristic of the temperature sensor for each chip on the wafer is obtained in advance, and then the temperature sensor is obtained.
  • the temperature control can be performed with high accuracy, and the offset value due to temperature can be collected accurately.
  • both the temperature condition and the external magnetic field condition can be changed. For example, change to two points of 25 ° C and 35 ° C, and measure each with multiple external magnetic field conditions to calculate the offset value.
  • the temperature coefficient of the offset and the sensitivity characteristic may be stored in the fuse memory 13 as in the second embodiment.
  • the sensitivity characteristic for each address stored in the memory on the tester side is taken into the fuse memory 13 of the chip corresponding to the address.
  • the temperature sensor can be corrected from the sensitivity variation (initial value AD) of each temperature sensor and the offset temperature coefficient (Ak).
  • writing to the fuse element may be performed not only by energization but also by cutting by irradiation of an external force such as a laser, FIB, or electron beam.
  • an external force such as a laser, FIB, or electron beam.
  • any means can be used as long as the fuse element can be determined to be substantially cut due to its high resistance value without being physically cut.
  • a memory that utilizes the fact that a high resistance (or insulation state) such as an antifuse has a low resistance and good electrical continuity may be used.
  • the temperature sensor 201 includes a control port circuit 211 (correction data writing means) (correction data reading means) (correction means) (control means) for controlling the temperature sensor 201. Stage), temperature sensor circuit 212 (temperature sensing means), and fuse memory 213, and is configured on one chip.
  • the control logic circuit 211 reads the result of measuring the characteristics with respect to the ambient temperature from the temperature sensor circuit 212 during the manufacturing process of the temperature sensor 201, and sets an initial value for correcting the measured value of the temperature sensor circuit 212 based on the result. Further, a correction value for correcting the sensitivity characteristic of the temperature sensor circuit 212 is obtained based on the result, and the initial value and the correction value are stored in the fuse memory 213. Further, the control logic circuit 211 reads an initial value AD and a correction value Ak, which will be described later, from the fuse memory 213, and corrects the measurement value from the temperature sensor circuit 212 using the values.
  • the temperature sensor circuit 212 is the same as the conventional one.
  • the fuse memory 213 has a plurality of fuses (storage units), and is a fuse provided at the intersection of the internal word line and the bit line according to a specific input signal from the control logic circuit 211. Data is written to the intersection by giving an overcurrent pulse and fusing. Each fuse is selectively given an overcurrent noise, and there are fuses that remain electrically connected to the electrically disconnected fuse, thereby storing a predetermined number of bits of data. The In addition, in response to another input signal from the control logic circuit 211, according to the blown state of the fuse at the intersection of the word line and the bit line, the data written to the intersection is read and controlled. Output to logic circuit 211.
  • Step Salignment a wafer on which a circuit of the temperature sensor 201 is formed is placed on a chuck (a jig for fixing the wafer).
  • a heater for heating is attached to the bottom surface of the chuck, and the heater is controlled to generate desired heat by a tester connected to the chuck to heat the wafer.
  • the sensor characteristics are measured according to the following procedure (Step Sal).
  • the heater is controlled to a temperature T1 (first temperature) by a tester (step Sal ) o
  • the characteristics of the temperature sensor circuit 212 are measured (step Sa2).
  • the control logic circuit 211 sets the output value Dout of the temperature sensor circuit 212 for the temperature T1 as the output value D1 ′ (measured value for the first temperature) and stores it in the memory in the tester via the prober. And input (step Sa3).
  • the heater is controlled to a temperature T2 (second temperature) by the tester (step Sa4), the characteristics of the temperature sensor circuit 212 are measured (step Sa5), and the result is given by the control logic circuit 211.
  • the output value Dout of the temperature sensor circuit 212 for the temperature T2 is input to the memory in the tester as the output value D2 ′ (measured value for the first temperature) (step Sa6).
  • correction value Ak is obtained by the calculation shown in Expression (23) using the output value Dl ′, D2 ′ temperature Tl, ⁇ 2, and the temperature coefficient m of Expression (21).
  • step Sa8 the initial value AD and the correction value Ak are stored in the fuse memory 213. Then, the operation of setting the initial value AD and the correction value Ak in the fuse memory 213 is completed.
  • the temperature sensor 201 is mounted on a mobile phone together with a geomagnetic sensor that performs a positioning operation, and ambient temperature data used for temperature compensation of the geomagnetic sensor is collected as a physical quantity sensor attached to the geomagnetic sensor. Only when temperature compensation of the geomagnetic sensor is required, it operates according to the instruction of the geomagnetic sensor.
  • the mobile phone equipped with the temperature sensor 201 and the geomagnetic sensor is turned on. Then, the operation of each part starts.
  • the operation of the temperature sensor 201 will be described with reference to the flowchart shown in FIG. 11B.
  • the fuse memory 213 in the temperature sensor 201 stores the initial value ⁇ D and the correction value ⁇ k of the temperature sensor circuit 212 described above.
  • the geomagnetic sensor instructs the temperature sensor 201 to measure the current ambient temperature in order to compensate the orientation measurement data temperature in the course of measuring the orientation.
  • the control logic circuit 211 reads the initial value ⁇ D and the correction value ⁇ k from the fuse memory 213 (step Sbl).
  • the temperature sensor circuit 212 performs temperature measurement (step Sb2).
  • the control logic circuit 211 reads the output value Dout as temperature measurement data from the temperature sensor circuit 212, and calculates the output value Dout using the initial value AD and the correction value Ak described above by the following calculation.
  • the temperature output value Tout which is the value converted to temperature, is output (step Sb3).
  • Tout [D- (Dl + A D)] X [l / (A k X m)] + Tl (° C) ⁇ ⁇ ⁇ (24)
  • T1 in the equation (24) is 25 ° C.
  • the output temperature output value Tout is output to the geomagnetic sensor, temperature compensation of the orientation data is performed, and map data is displayed on the display screen of the mobile phone based on the orientation data. . Then, the operation of the temperature sensor 201 ends.
  • the control logic circuit 211 sets the initial value ⁇ D and the correction value ⁇ k of the temperature sensor circuit 212 in the fuse memory 213.
  • the initial value AD and the correction value Ak of the temperature sensor circuit 212 are read from the control logic circuit 211 force S fuse memory 213 and set to the fuse memory 213, and the values are read.
  • the temperature output value Toout it is possible to improve the accuracy of the measured value of the temperature sensor by correcting the variation among the measured values.
  • the thermistor does not use a thermocouple as the temperature sensing element of the temperature sensor circuit 212, uses a diode, and uses a polycide (polysilicon). Therefore, the chip of the temperature sensor 201 can be manufactured without newly providing a metal wiring layer by a normal CMOS process, and the manufacturing process of the temperature sensor 201 can be reduced without complicating the manufacturing process. Up can be avoided.
  • the fuse memory is used for storing the initial value ⁇ D and the correction value ⁇ k, and the fuse is physically cut, the initial value ⁇ D and the correction value ⁇ k are stored. The change in the value can be completely eliminated.
  • thermoelectric formed from the two types of metals as the temperature sensitive element. Pairs may be used.
  • the temperature sensor 201 is used for temperature compensation of a geomagnetic sensor mounted on a mobile phone.
  • the application is not limited to this, and the temperature sensor 201 is You may use for the electronic device which requires compensation.
  • the memory for temporarily storing the data for calculating the initial value AD and the correction value Ak of the temperature sensor 201 is not limited to the memory in the tester, but is provided on the chip of the temperature sensor 201. If a DRAM cache memory or another fuse memory is formed and the above data can be temporarily stored, these memories may be used.
  • the measurement of the data for calculating the initial value AD and the correction value Ak of the temperature sensor 201 uses the chuck used in the wafer manufacturing process, so that it can be used for other tests. Equipment can be shared. Also, a chip that has been cut (diced) from a wafer can be mounted on a test jig provided with a heater for heating, and the output value can be measured with a prober in the same way as with a wafer.
  • FIG. 13 is a block diagram showing an outline of the configuration of the geomagnetic detection LSI according to the first embodiment of the third group of the present invention.
  • the LSI 301 has a power supply terminal 302, a ground terminal 303, a chip select input terminal 304, a data input terminal 305, and a data output terminal 306.
  • the power supply line and ground line wiring to each part are not shown.
  • the interface circuit 307 transmits / receives a chip select signal input / output signal to / from a master chip (not shown).
  • the control circuit 308 operates with a predetermined logic based on an instruction from the master chip and controls each unit.
  • the internal oscillation circuit 309 gives clock pulses to the control circuit 308 and other circuits.
  • the magnetic sensor 310 in the X-axis direction and the magnetic sensor 311 in the Y-axis direction are magnetic sensors using a magnetoresistive element or the like.
  • the switching circuit 312 operates under the control of the control circuit 308, and selectively switches the output of the detection outputs of the magnetic sensors 310 and 311 to the input terminal of the amplifier 313.
  • the amplifier 313 amplifies the detection outputs of the magnetic sensors 310 and 311 and supplies the amplified output to the AZD conversion circuit 314.
  • the AZD conversion circuit 314 digitizes the detection output and outputs it to the control circuit 308.
  • the fuse memory 315 is a memory equivalent to a heat-transformed non-volatile memory element for storing correction data and other data of detection output measured at the time of shipping inspection. Stores either (A) D1 to D3 or (B) D3, (C) D1, D2, and D4, or (D) D4. Correction data D1 to D4 (304)
  • FIG. 14 is a block diagram illustrating a configuration example of the fuse memory.
  • the figure shows an example of configuring a 4-bit scan path by connecting four memory cells d0 to d3 in a daisy chain. With this configuration, correction data for detection output is stored as 4-bit information. It can be done.
  • each of the memory cells d0 to d3, 321 is a fuse made of a polysilicon resistor, 322 is an N-type FET (field effect transistor), 323 is a data flip-flop circuit, and 324 gives a gate voltage to the FET 322
  • a three-input NOR gate, 325 is a logic gate composed of a two-input AND gate and a two-input NOR gate for outputting output data to a memory cell in the subsequent stage connected in a daisy chain.
  • the power to explain the configuration of the memory cell d0 The other memory cells dl to d3 have a common configuration.
  • Data to be written to the memory cell is input to the data input terminal D of the data flip-flop circuit 323, and a clock pulse ck is supplied to the CK terminal.
  • Output data from the positive output terminal 0 of the data flip-flop circuit 323 is supplied to one input terminal of the NOR gate 3 24, and an inverted signal of the clock pulse ck is supplied to the other input terminal.
  • an inverted signal ZWRITE of the write signal is supplied to the other input terminal.
  • the output terminal of the NOR gate 324 is connected to the gate of the FET 322, and its drain is grounded to the ground level.
  • One end of fuse 321 is connected to the supply voltage VDD, and the other end is connected to the source of FET322!
  • the read signal READ is supplied to one input terminal of the AND gate constituting the logic gate 325, and the other input terminal is connected to the source of the FET 322.
  • Output data from the negative output terminal ON of the data flip-flop circuit 323 is supplied to one input terminal of the NOR gate constituting the logic gate 32 5, and the AND gate configuring the logic gate 325 to the other input terminal Is connected to the output.
  • the output of the logic gate 325 is supplied to the data input terminal D of the data flip-flop circuit 323 of the subsequent memory cell dl connected in a daisy chain.
  • each memory cell is initialized when the READ signal power is supplied at LOW level (low active) and the ZWRITE signal is supplied at HI level (low active).
  • data "1” (LOW level) is stored in memory cell d0
  • data "0” (Hi level) is stored in memory cell dl
  • data "1” (LOW level) is stored in memory cell d2
  • data is stored in memory cell d3.
  • “0” (Hi level) is stored.
  • the data flip-flop 323 When data is read from each memory cell, the data flip-flop 323 is reset, and then READ is set to the HI level, so that whether the fuse 321 is blown or not is reflected in the output of the logic gate 325. In this state, the scan-out operation is performed, and the output of each cell is taken out from the output terminal do through the logic gate 325 of the memory cell d3 in the final stage.
  • control circuit 308 controls the switching circuit 313 to take in the detection outputs Sx and Sy of the magnetic sensors 3 10 and 311 to the AZD conversion circuit 314, and the AZD conversion circuit 314 detects the output.
  • Sx and Sy are digitized and taken into a register (not shown) in the control circuit 308. Then, the correction data is read from the fuse memory 315, the detection outputs Sx and Sy are corrected, and then output to the interface circuit 307.
  • the detection outputs Sx and Sy may be corrected as follows instead of being performed by the control circuit 308.
  • the LSI has a function to output the data stored in the fuse memory, and the Sx and Sy before correction are output from the LSI.
  • Sx and Sy are corrected by software processing based on the fuse memory data received separately.
  • al2 and a21 are the inter-axis correction factors.
  • correction processing is performed based on one of the following correction calculation methods A to D.
  • this calculation method A for example, a fixed value “1” is set, and the correction calculation is performed by substituting the fixed value “1” for the X-axis sensitivity correction coefficient. This reduces the number of correction data to be stored in the fuse memory by one and reduces the total amount of correction data. If the data length of each correction data is, for example, a 6-bit value, the total amount of correction coefficients al l, al2, a21 and a22 is 24 bits, whereas according to the calculation method A, the correction data D
  • the total amount of I, D2, and D3 is 18 bits.
  • al2Zal l a 2lZal l, which is obtained by dividing the inter-axis correction coefficient by the axis sensitivity correction coefficient, is a value close to “0”, for example, a fixed value “0” is set, and al2 / a
  • the probability that the correction data Dl and D2 are originally small values is high, and because D4 is also a difference from the reference value “1”, the probability that it is a small value is high. be able to.
  • the bit length of each correction data is shortened from 6 bits to 4 bits, the amount of data to be stored in the fuse memory is reduced to a total of 12 bits of correction data Dl, D2, and D4.
  • the value of al2Zal l, a2lZal l is a fixed value (for example, “0”) as in the calculation method B.
  • the difference from the reference value of a22Zall (for example, “1”) is used as the correction data.
  • the number of correction data is reduced to one as in method B, and the force and data length can be reduced to, for example, 4 bits as in method C.
  • the total amount of correction data can be reduced to 4 bits, which is the data length of correction data D4.
  • a second embodiment of the present invention will be described.
  • an application example to a geomagnetism detection device including a geomagnetic sensor with three orthogonal axes is shown.
  • This geomagnetism detection device detects three-axis orthogonal geomagnetism using an LSI with the same configuration as the LSI shown in Fig. 13.
  • correction processing is performed based on 1 of the following correction calculation methods E to H.
  • calculation method E as in calculation method A, correction processing is performed using equation (320) from the viewpoint that the ratio of each component of the magnetic field is sufficient for use as a geomagnetic sensor.
  • Sx ', S, and Sz' are detection outputs after correction.
  • the data length of the correction coefficient is, for example, a 6-bit value
  • 54 bits of storage capacity are required to store the nine correction coefficients all to a33
  • calculation method E it is sufficient to store 8 correction data D1 to D3 and D5 to D9, so the required storage capacity can be reduced to 48 bits.
  • calculation method B as well as al2Zall that divide the inter-axis correction coefficient by an axial sensitivity correction coefficient, al3 / all, a21 / all , a23 / all, a31 / all, the a32Zall force s "0" near ! /, Paying attention to the value, replace the values of al2 / all, al3 / all, a21 / all, a23 / all, a 31 / all, a32Zall with a fixed value (for example, “0”) and (321 Perform correction processing using the formula.
  • the correction data replaced with the fixed value "0" does not need to be stored in the fuse memory, and the total amount of correction data can be reduced accordingly.
  • the total amount of necessary correction data D3 and D9 is reduced to 12 bits.
  • the values of the correction data Dl, D2, D4 to D8, D10 may be stored in the fuse memory.
  • the correction data to be used as described in calculation method F is D4, D Reduced to 2 of 10, and D4 and D10 as reference values (for example, ⁇
  • the data length is shortened to 4 bits as the difference value from “1”).
  • the total amount of correction data D4 and D10 to be stored is reduced to 8 bits.
  • the present invention is not limited to a form using a fuse memory.
  • the invention uses an anti-fuse memory which is a kind of thermally deformable nonvolatile memory element.
  • FIG. 15 is a block diagram showing an outline of the configuration of a mobile phone when the present invention is mounted on a mobile device such as a mobile phone.
  • the geomagnetic detection LSI 4210 mounted on the mobile phone 4100 in FIG. 15 includes a temperature sensor for compensating the temperature of the magnetic sensor.
  • a mobile phone 4100 is configured to include two housings, a terminal unit 4200 and a terminal unit 4300.
  • the antenna 4235a is an antenna for transmitting and receiving radio signals to and from a radio base station (not shown).
  • An RF (Radio Frequency) unit 4201 converts a received signal received by the antenna 4235a into a received signal having an intermediate frequency and outputs the received signal to the modem unit 4202.
  • the RF unit 4201 modulates the transmission signal input from the modulation / demodulation unit 4202 to a signal having a transmission frequency, and outputs the signal to the antenna 4235a for transmission.
  • Modulation / demodulation section 4202 performs demodulation processing of the received signal input from RF section 4201 and modulation processing of the transmission signal input from CDMA (Code Division Multiple Access) section 4204.
  • the CDMA unit 4204 performs transmission signal encoding processing and reception signal decoding processing.
  • the audio processing unit 4205 converts the audio signal input from the microphone 4206 into a digital signal and outputs it to the CDMA unit 4204. Also, the audio processing unit 4205 inputs the digital audio signal of the CDMA unit 4204 and converts it into an analog audio signal. , Output to speaker 4301 to generate sound.
  • the GPS receiving unit 4207 demodulates the radio signal received by the antenna 4235b and the GPS satellite force, and calculates a position represented by latitude, longitude, altitude, etc.
  • the physical quantity sensor 4231 detects the inclination of the mobile terminal 4100. Further, the mobile terminal 4100 does not necessarily include the physical quantity sensor 4231.
  • the LSI4210 for geomagnetism detection includes magnetic sensors 4212a to 4212c that detect magnetism (magnetic field) in each of the predetermined X axis, saddle axis, and saddle axis orthogonal to each other, a temperature sensor 4213 that detects temperature, Sensor control unit 4211. Further, the magnetic sensor control unit 4211 performs processing such as analog Z-digital conversion on the detection results of the temperature sensor 4213 and the physical quantity sensor 4231.
  • the main control unit 4220 is a CPU (Central Processing Unit) that controls each unit of the mobile terminal 4100.
  • a ROM (Read Only Memory) 4208 stores display image data, audio data, a program executed by the main control unit 4220, initial characteristic values of the temperature sensor 4213 and the physical quantity sensor unit 4231 measured at the time of shipping inspection, and the like.
  • a RAM (Random Access Memory) 4209 is a non-volatile storage area that temporarily stores calculation data and the like used by the main control unit 4220.
  • the notification means 4232 includes a speaker, a vibrator, and a light emitting diode, and notifies the user of an incoming call or mail reception by sound, vibration, and light.
  • the clock unit 4233 is a time measuring function used by the main control unit 4220.
  • Main operation unit 4234 outputs the user's instruction content to main control unit 4220.
  • the electronic imaging unit 4302 converts the subject image into a digital signal and outputs the digital signal to the main control unit 4220.
  • Display unit 4303 is a liquid crystal display that displays images, characters, and the like based on display signals input from the main control unit.
  • the touch panel 4304 is incorporated in the surface of the liquid crystal display of the display unit 4303, and outputs a signal representing the operation content when the user presses it to the main control unit 4220.
  • the geomagnetism detection LSI takes the form of measuring the correction data at the shipping inspection and writing it in the non-volatile memory mounted on the LSI. Is installed in a mobile device, it is possible not to ship the geomagnetism detection LSI, but to install the geomagnetism detection LSI in the mobile device and write correction data when shipping inspection of the mobile device. It is.
  • the correction data measured in the inspection at the time of shipment of the geomagnetism detection LSI is written to the fuse memory inside the LSI, and after the geomagnetic sensor LSI is mounted on a portable device, It is also possible to write the correction data of the geomagnetic sensor LSI measured again at the time of shipping inspection of the portable device to the memory of the portable device (for example, ROM4208 in Fig. 15). After that, when detecting geomagnetism, another correction value (for example, a correction value based on the detection result of the temperature sensor or physical quantity sensor in FIG. 15) in addition to the output result of the geomagnetic sensor LSI may be applied. Good.
  • the present invention can be applied to a mobile communication terminal such as a mobile phone having a function of performing azimuth measurement.

Description

明 細 書
地磁気センサおよび地磁気センサの補正方法、温度センサおよび温度セ ンサの補正方法、地磁気検出装置
技術分野
[0001] 本発明は、例えば、携帯電話機に方位測定用として搭載され、ヒューズメモリに格 納されたオフセット値を使用して測定値を補正する地磁気センサおよび地磁気セン サの補正方法に関する。
本願は、 2004年 10月 7日に日本国特許庁に出願された特願 2004— 295139号 、 2004年 10月 12曰【こ曰本国特許庁【こ出願された特願 2004— 297981号、及び 2 005年 3月 30日に日本国特許庁に出願された特願 2005— 99092号に基づく優先 権を主張し、その内容をここに援用する。
[0002] 本発明は、例えば、携帯電話機に搭載される方位測定用の地磁気センサの温度 補償に用いられ、ヒューズメモリに格納された初期値および補正値を使用して測定値 を補正する温度センサおよび温度センサの補正方法に関する。
[0003] 本発明は、地磁気の直交軸成分を検出する地磁気検出素子を有する地磁気検出 装置に関し、特に地磁気検出素子の検出出力の補正情報を記憶する熱変成型の不 揮発性記憶素子を有するものに関する。
背景技術
[0004] 近年、地磁気を検出する地磁気センサを備え、この地磁気センサによって検出され た地磁気に基づ ヽて方位測定を行う携帯電話機等の携帯情報端末が知られて ヽる 。測定された方位は、例えば地図の表示に利用される。一例として挙げると、位置検 出を行う GPS (Global Positioning System)システムによって得た現在位置情報に基 づいた地図を、携帯電話機の向き (方位)に合わせて表示する機能を有する携帯電 話機が登場している。
[0005] ところで、地磁気センサの特性は、チップ毎に異なっており、この特性は何らかの手 段により補正されるべきものである。例えば、感度方向として水平面内の二軸 (X軸、 Y軸方向)の感磁方向を持つ地磁気センサを搭載した携帯電話機を一定の磁場の 下、水平に保ったままゆっくりと等速度にて 1周以上回転させるときの出力が描く円を 方位円という。
このような方位円は、理想的には X軸、 Y軸の交差する原点を中心とし、所定の半 径を有するものとなる。しかし、上述したように、地磁気センサの特性はチップ毎に異 なっており、また、携帯電話機内部に磁場が存在し、この特性の差および上述した磁 場が存在するために、力かる方位円の中心は原点からシフトする。このシフトをオフセ ットといい、このシフト値をオフセット値という。このようなオフセットがあると、地磁気セ ンサの測定値に基づいてオフセットがないことを前提として算出した方位は、実際の 方位と異なってしまう。そのため、地磁気センサは測定値カも該オフセットを補正して いる。
[0006] ここで、地磁気センサの測定値からのオフセットの補正は、該携帯電話機を回転さ せて得られる複数の測定値力 ディジタル的な演算によって求められるオフセット値 を、測定値力も減算することにより行われるので、該補正に用いられるオフセット値を 地磁気センサに記憶しておくことが必要となる。そのため、従来における地磁気セン サは、地磁気 (磁場)を検出する地磁気センサ素子に、該地磁気センサ素子の測定 値力もオフセット値を算出する演算部および該オフセット値を AZD (AnalogZDigital )変換する AZDコンバータならびに AZD変換されたオフセット値を記憶する EEPR OM (Electronically Erasable and Programmable Read Only Memory)を糸且み合 わせて 1チップ上に構成される。
[0007] し力しながら、従来の地磁気センサにおいて、前述したオフセット値が記憶されてい る EEPROMは、記憶部にトンネル絶縁膜のような薄い酸ィ匕膜を付けたり、チップに ビット線やワード線を形成するためのポリシリコン層やメタル層を何層も積層するため 、該チップを製造するのに特殊なプロセスを必要とするため、チップ単価が高くなると いう問題があった。また、 EEPROMは、書き込みのための高電圧化回路や書き込み 回路等を必要とし、そのために、チップサイズが大きくなり、地磁気センサが EEPRO Mを駆動するシステムが大規模になるという問題もあった。
[0008] 従来、半導体チップ上に形成される温度センサには、例えば、図 12に示す温度セ ンサ回路 212が用いられる。温度センサ回路 212は、オペアンプ OAと、ダイオード 1〜D2と、抵抗 R1〜R3と、 AZD (AnalogZDigital)コンバータ ADCとから構成される 。オペアンプ OAおよびダイオード D1〜D2ならびに抵抗 R1〜R3は一般的なバンド ギャップリファレンス回路を構成する。
[0009] オペアンプ OAの非反転入力端がダイオード D1のアノードに接続され、ダイオード D1の力ソードが接地される。オペアンプ OAの反転入力端が抵抗 R3の一端に接続さ れ、抵抗 R3の他端がダイオード D2のアノードに接続され、ダイオード D2の力ソードが 接地される。オペアンプ OAの出力端が抵抗 R1を介して非反転入力端に接続される と共に、抵抗 R2を介して反転入力端に接続される。
尚、オペアンプ OAの出力端に、該バンドギャップリファレンス回路の出力電圧 Vref を出力する出力端 OpVrel^接続され、オペアンプ OAの非反転入力端に、ダイォー ド D1にカゝかる電圧 Vbeを出力する出力端 Op Vbeが接続される。
[0010] また、該バンドギャップリファレンス回路の出力端 OpVrei¾ AZDコンバータ ADC の入力端 IpVhに接続され、該バンドギャップリファレンス回路の出力端 Opbeが AZ Dコンバータ ADCの入力端 IpVlに接続される。 AZDコンバータ ADCは、入力端 Ip Vhにて入力した電圧と入力端 IpVlにて入力した電圧との差の電圧 Vinを AZD (Anal ogZDigital)変換し、出力電圧の変換値である出力値 Doutを出力する出力端 OpDo utを設けている。尚、上述した A/Dコンバータ ADCは電圧 Vinの範囲を 0〜1. 25V とし、該電圧 Vinを 1251ステップ(0〜 1250)にて AZD変換して出力値 Doutを出力 する。
[0011] 次に、温度センサ回路 212の動作を説明する。オペアンプ OAおよびダイオード D1 〜D2ならびに抵抗 R1〜R3から構成されるバンドギャップリファレンス回路力 電源電 圧および温度依存性が少ない出力電圧 Vref (= 1. 25V)を出力端 OpVre も AZ Dコンバータ ADCの入力端 IpVhに出力し、約— 2mVZ°Cの温度係数を有する出 力電圧 Vbeを出力端 OpVbeから AZDコンバータ ADCの入力端 IpVlに出力する。 そして、 AZDコンバータ ADCが、出力電圧 Vrefと出力電圧 Vbeとの差の電圧である 電圧 Vinを 1251ステップにて AZD変換して出力値 Doutを出力する。
[0012] このとき、出力電圧 Vrefは電源電圧および温度依存性が少ないため、定数として扱 うこと力でき、出力電圧 Vbeは約 2mVZ°Cの温度係数を有するので、電圧 Vinは 出力電圧 Vbeに応じて温度によって変化する。よって、出力値 Doutが温度に応じて 変化することになる。このとき、周囲温度 Tが 25°Cのとき出力電圧 Vbeが 0. 6Vである とすると、出力値 Doutは、下記の式(21)のようになる。
Dout = - 2 (T- 25) + 600 · · · (21)
式(21)より、周囲温度 Tが 30°Cのときは出力電圧 Vbeが 0. 59Vとなり、出力値 Dout 力 ^590となる。
[0013] 尚、本発明に関連する文献として、例えば、特開 2004— 85384号公報には、ヒュ ーズと抵抗群とを組み合わせたヒューズ回路により、該抵抗群の分圧比を調整し、該 ヒューズ回路によって調整された出力電圧によって、製造プロセス変動の影響をなく し、高精度な温度補償を行うことができる温度センサ回路が記載されて 、る。
[0014] し力しながら、上述した温度センサ回路 212においては、内部のバンドギャップリフ アレンス回路の出力電圧 Vreifeよびダイオード D1にかかる電圧 Vbeについて、電圧 値および温度特性が個体によるバラツキを有するため、測定値である出力値 Doutの 精度を向上させることが難 、と 、う問題があった。
[0015] 一般に直交 2軸方向の磁気センサをチップ上に搭載して地磁気検出を行う LSI (大 規模集積回路)は、地磁気センサの感度を補正する手段を有する。
[0016] 磁気センサの検出出力の補正を演算処理で行う技術には、たとえば特開 2000— 1 80170号公報に記載されるものがある。同文献に記載された技術によれば、 X軸検 出部の検出出力の補正は、次のようにして行う。すなわち磁気センサの検出範囲を 9 0度ごとに 4ブロックに分割し、 X軸検出部の最大出力電圧値を A1とし、 Y軸検出部 の出力値が零の位置から 90度回転した点の X軸検出部の出力電圧値を A2とする。
[0017] そして出力電圧値 A2が +側である場合、一側である場合、微少である場合に分類 し、 +側である場合は(301)式を補正式とし、—側である場合は(302)式を補正式と し、微少である場合は補正なしとする。
[ABS (A3) +ABS (A2) ] ·Ζ … (301)
[ABS (A3) + ABS (Α2) ] /Ζ … (302)
ただし A3は X軸検出部の実測出力、 Ζは(303)式に示す補正パラメータである。
Z=A1/[A1 -ABS (A2) ] … (303) Y軸についても同様の手法で補正を行い、 X軸検出部および Y軸検出部の直交度 を補正する。
[0018] このように演算処理で磁気センサの検出出力の補正を行う場合、たとえば出荷検査 で補正データを測定し、 LSIに実装した不揮発性メモリに書き込んでおく形態をとる ことができる。
[0019] ところで昨今、この種の LSIには低電圧化の要請を受け、不揮発性メモリとして低電 圧でも好適な読み出しを行えるヒューズメモリを実装したものが存在する。
[0020] し力しながらヒューズメモリは、上記の利点を有する反面、書き込み時に用いられる ヒューズ切断用のトランジスタに大容量のものが必要であり、回路規模に留意する必 要がある。このため、出荷検査時で得られた補正データの値をそのままヒューズメモリ 書き込む形態では、多数のヒューズメモリが必要となって回路設計上都合が悪い。 発明の開示
[0021] 本願の第 1の群の発明は、上記事情を考慮してなされたもので、その目的は、ヒュ ーズメモリを内蔵してオフセット値等を格納することによりチップを製造するのに特殊 なプロセスを必要とすることなぐメモリ全体のシステムの小規模ィ匕を図り、もっと小型 で低価格な地磁気センサおよび地磁気センサの補正方法を提供することにある。
[0022] 上記目的を達成するために、この発明では、以下の手段を提案して!/、る。
本願の第 1の群の発明は、地磁気を検出する地磁気検知手段と、複数の記憶単位 を有するヒューズメモリであり、前記各記憶単位を選択的に電気的に切断もしくは接 続させることが可能であり、前記各記憶単位における電気的な切断もしくは接続の状 態により所定のデータを記憶するヒューズメモリと、製造時に、前記地磁気検知手段 の測定値を入力し、前記測定値に基づ!ヽて地磁気検知手段の測定値の温度特性を 補正する補正値を求めて、前記補正値に応じて前記ヒューズメモリに含まれる各記憶 単位を選択的に電気的に切断もしくは接続させることにより、前記補正値を前記ヒュ ーズメモリに書き込む補正データ書込手段と、製造後の実使用時に、前記ヒューズメ モリから前記補正値を読み出す補正データ読出手段と、前記実使用時に、前記地磁 気検知手段の測定値を入力し、前記補正データ読み出し手段によって読み出された 補正値に基づいて前記地磁気検知手段の測定値の補正を行う補正手段とを備えた ことを特徴とする。
この発明によれば、地磁気センサの製造時において、補正データ書込手段が地磁 気検知手段の測定値から該測定値を補正する補正値を求めて、ヒューズメモリを用 いて、該補正値に応じて物理的にヒューズを切断することによって該補正値の保存 性を確保しつつ書き込み、地磁気センサの実使用時において、補正データ読出手 段がヒューズメモリから、補正値を読み出し、補正手段が該補正値に基づいて地磁気 検知手段の測定値を補正する。
[0023] 本願の第 1の群の発明は、記載の地磁気センサの測定値を補正する地磁気センサ の補正方法であって、前記地磁気センサが温度を検知する温度測定手段をさらに備 え、前記地磁気センサの製造時に、予め前記温度測定手段の感度特性を求め、前 記ヒューズメモリに記憶するステップと、前記ヒューズメモリに記憶されて 、る感度特 性データにより、前記温度測定手段の感度特性を補正するステップと、前記地磁気 センサの温度による磁気感度のオフセットを補正し、前記補正されたオフセットを前 記ヒューズメモリに記憶するステップとを有することを特徴とする。
この発明によれば、地磁気センサに設けられ、地磁気センサの製造時に、予め温 度測定手段の感度特性が求められてヒューズメモリに記憶され、該感度特性データ により、温度測定手段の感度特性が補正され、該温度によって、温度特性を有する 地磁気センサの温度によるオフセットが補正されて、該オフセットがヒューズメモリに
SC fedれる。
[0024] 本願の第 1の群の発明は、地磁気センサの測定値を補正する地磁気センサの補正 方法であって、前記地磁気センサの製造時に、ゼロ磁場における測定値に基づいて 、測定値の補正を行うステップを有することを特徴とする。
この発明によれば、地磁気センサの製造時に、ゼロ磁場における測定値に基づい て、測定値が補正される。
[0025] 本願の第 1の群の発明によれば、ヒューズメモリによって記憶された地磁気検知手 段の測定値の補正値に基づ!、て地磁気検知手段の測定値が補正され、地磁気検 知手段の測定値を精度よく得ることができる効果がある。また、従来の地磁気センサ のように、オフセット値を EEPROMに記憶するのに比して、チップを製造するのに特 殊なプロセスを必要とすることなく、チップを通常の C MOSのプロセスを用 、て製 造することができる効果がある。また、書き込みのための高電圧化回路や書き込み回 路等を不要として、メモリの駆動のシステムの小規模ィ匕を図ることができる効果がある 。また、物理的にヒューズが切断されることにより補正値が記憶されるので、該補正値 の経時変化を皆無にすることができる効果がある。
[0026] 本願の第 1の群の発明によれば、地磁気センサの感度特性データがヒューズメモリ に記憶された温度測定手段によって、地磁気センサのオフセットが補正されて、該ォ フセットがヒューズメモリに記憶され、該オフセットによって地磁気センサの測定値が 補正されるので、地磁気センサの測定を、温度に対しても、チップ毎に正確に行うこと ができる効果がある。
[0027] 本願の第 1の群の発明によれば、この発明によれば、地磁気センサの製造時に、ゼ 口磁場における測定値を校正して、より正確な測定をすることができる効果がある。
[0028] 以下、本明細書中においては、電気的接続状態を切断状態とするいわゆるヒユー ズと、電気的切断状態を接続状態とするアンチヒューズとを特に区別なくヒューズと呼 び、力かる構造を利用したメモリをヒューズメモリと呼ぶことにする。
[0029] 尚、「物理的にヒューズが切断される」とは、ヒューズ素子の電気的切断が実行され る手段が、電気的に行われるもの、レーザビームのようなエネルギービームによるもの 、電子銃による電子ビームや FIB (Focused Ion Beam)のような荷電ビームによるも の等を含む物理的な手段を用いて、ヒューズ素子を形成する材料の電気的接続を切 断、あるいは実質的に切断されたと判断される程度に高抵抗とすることにより、電気 的導通性が阻害された状態に至らせることを指す。
[0030] 本願の第 2の群の発明は、上記事情を考慮してなされたもので、その目的は、ヒュ ーズメモリを設けて初期値および補正値を格納し、該値によって測定値を補正するこ とにより、測定値について、ノ ツキの補正をして精度の向上を図ることができる温度 センサおよび温度センサの補正方法を提供することにある。
[0031] 上記目的を達成するために、この発明では、以下の手段を提案している。
本願の第 2の群の発明は、温度を検出する感温手段と、複数の記憶単位を有する ヒューズメモリであり、前記各記憶単位を選択的に電気的に切断もしくは接続させるこ とが可能であり、前記各記憶単位における電気な的切断もしくは接続の状態により所 定のデータを記憶するヒューズメモリと、製造時に、前記感温手段の測定値を入力し 、前記測定値に基づいて前記感温手段の測定値を補正する初期値を求め、前記測 定値に基づ!/、て前記感温手段の感度特性を補正する補正値を求めて、前記初期値 および前記補正値に応じて前記ヒューズメモリに含まれる各記憶単位を選択的に電 気的に切断もしくは接続させることにより、前記初期値および前記補正値を前記ヒュ ーズメモリに書き込む補正データ書込手段と、製造後の実使用時に、前記ヒューズメ モリから前記初期値および補正値を読み出す補正データ読出手段と、前記実使用 時に、前記感温手段の測定値を入力し、前記補正データ読み出し手段によって読み 出された初期値および補正値に基づいて前記感温手段の測定値の補正を行う補正 手段とを備えたことを特徴とする。
この発明によれば、温度センサの製造前において、補正データ書込手段が感温手 段の測定値から感温手段の測定値を補正する初期値を求め、該測定値から感温手 段の感度特性を補正する補正値を求めてヒューズメモリに書き込み、温度センサの 実使用時において、補正データ読出手段がヒューズメモリから、初期値および補正値 を読み出し、補正手段が該初期値および補正値に基づ!、て感温手段の測定値を補 正するため、温度センサの個体間における温度特性のバラツキを減らすことができ、 温度センサの個体間で測定値の違いを減らすことができる。
本願の第 2の群の発明は、温度を検出する感温手段と、前記感温手段の測定値の 処理を行う制御手段と、電流を流すことにより選択的に電気的切断が可能であり、そ の電気的切断状態により前記補正手段が補正に用いる補正データを記憶するヒユー ズメモリとを備えた温度センサにおける測定データを補正する温度センサの補正方 法であって、製造時に、前記制御手段が前記感温手段の測定値を入力し、前記測 定値に基づ!/、て前記感温手段の測定値のバラツキを補正する初期値を求め、前記 測定値に基づ 、て前記感温手段の感度のノ ツキを補正する補正値を求めて、前 記初期値および前記補正値に応じて前記ヒューズメモリの電気的切断を行うことによ り、前記初期値および前記補正値を前記ヒューズメモリに書き込む補正データ書込ス テツプと、製造後の実使用時に、前記制御手段が前記ヒューズメモリから前記初期値 および補正値を読み出すステップと、前記実使用時に、前記制御手段が前記感温 手段の測定値を入力し、前記補正データ読み出し手段によって読み出された初期値 および補正値に基づいて前記感温手段の測定値の補正を行うステップとを備えたこ とを特徴とする。
この発明によれば、温度センサの製造前において、補正データ書込手段が感温手 段の測定値から感温手段の測定値を補正する初期値を求め、該測定値から感温手 段の感度特性を補正する補正値を求めてヒューズメモリに書き込み、温度センサの 実使用時において、補正データ読出手段がヒューズメモリから、初期値および補正値 を読み出し、補正手段が該初期値および補正値に基づ!、て感温手段の測定値を補 正するため、温度センサの個体間における温度特性のバラツキを減らすことができ、 温度センサの個体間での測定値の違いを減らすことができる。
[0033] 本願の第 2の群の発明は、温度センサの補正方法であって、前記補正データ書込 ステップにて、前記感温手段の第 1の温度に対する測定値から,予め定められた感 温手段の第 1の温度に対する理論値を減算して前記補正値を算出する処理と、前記 感温手段の第 2の温度に対する測定値から前記感温手段の第 1の温度に対する測 定値を減算した値を、前記第 2の温度から前記第 1の温度を減算した値によって除算 し、予め定められた前記感温手段の理論上の感度によって除算して前記補正値を算 出する処理と、前記初期値および前記補正値に応じて前記ヒューズメモリに含まれる 各記憶単位を選択的に電気的に切断もしくは接続させることにより、前記初期値およ び前記補正値を前記ヒューズメモリに書き込む処理とが行われることを特徴とする。 この発明によれば、補正データ書込ステップにて、第 1の温度と第 2の温度と、該温 度における感温手段の測定値と、第 1の温度における感温手段の理論値と、感温手 段の感度の理論値によって、初期値および補正地が算出され、該値カ Sヒューズメモリ に書き込まれる。
[0034] 本願の第 2の群の発明によれば、ヒューズメモリによって記憶された感温手段の測 定値の初期値および補正値に基づ!、て感温手段の測定値が補正され、感温手段の 測定値を精度よく得ることができる効果がある。
[0035] 本願の第 2の群の発明によれば、第 1の温度および第 2の温度における測定値等に より、感温手段の初期値および補正値が算出され、小容量のデータの記憶に有利な ヒューズメモリに効率よく記憶させることができる効果がある。また、物理的にヒューズ が切断されることにより初期値および補正値が記憶されるので、該初期値および補正 値の変化を皆無にすることができる効果がある。
[0036] 本願の第 3の群の発明は、このような事情に鑑み、地磁気の直交軸成分を検出す る地磁気検出素子と、地磁気検出素子の検出出力の補正情報を記憶する熱変成型 の不揮発性記憶素子を有する地磁気検出装置にぉ 、て、熱変成型の不揮発性記 憶素子を少数ィ匕できる技術を提供することを課題とする。
[0037] 上記の課題を解決するために本願の第 3の群の発明は、地磁気の直交軸成分を 検出する地磁気検出素子と、該地磁気検出素子の検出出力の補正情報を記憶する 熱変成型の不揮発性記憶素子とを備える地磁気検出装置であって、前記補正情報 は、軸感度補正係数および軸間補正係数であり且つ!、ずれかの軸の軸感度補正係 数に対する比率として表された値であることを特徴とする地磁気検出装置を提供する 本願の第 3の群の発明は、前記不揮発性記憶素子は最低限、前記いずれかの軸 の軸感度補正係数以外の軸感度補正係数に係る補正情報を記憶するものであるこ とを特徴とする地磁気検出装置を提供する。
本願の第 3の群の発明は、前記いずれかの軸の軸感度補正係数以外の軸感度補 正係数に係る補正情報として、当該軸感度補正係数の軸感度補正係数に対する比 率から予め設定された基準値を減算した差分値を用いることを特徴とする地磁気検 出装置を提供する。
本願の第 3の群の発明は、前記地磁気検出素子の検出出力の補正演算を行う補 正演算回路を備え、この補正演算回路は、検出出力に軸感度補正係数を乗算して 補正すると共に他の軸の検出出力に軸間補正係数を乗算して求められる補正項を 合算することにより検出出力の補正値を算出するものであることを特徴とする地磁気 検出装置を提供する。
本願の第 3の群の発明は、前記地磁気検出素子の検出出力の補正演算を行う補 正演算回路を備え、この補正演算回路は、前記差分値に前記基準値を加算して軸 感度補正係数を復元したうえで補正演算を行うことを特徴とする地磁気検出装置を 提供する。
本願の第 3の群の発明は、前記補正演算回路は、前記補正情報から取得できない 補正係数については予め設定された代替値を代入することにより演算を行うものであ ることを特徴とする地磁気検出装置を提供する。
上記の課題を解決するために本願の第 3の群の発明は、直交軸成分毎に地磁気 を検出する地磁気検出素子と、前記検出された地磁気の値を補正するための 1もしく は複数の補正データを記憶する熱変成型の不揮発性記憶素子とを備える地磁気検 出装置であり、前記補正データの各々は、軸感度補正係数、或いは、軸間補正係数 、或いは、軸感度補正係数力も所定の基準値を減算した差分値の、いずれかの軸の 軸感度補正係数に対する比率の値として表されていることを特徴とする地磁気検出 装置を提供する。
[0038] 本願の第 3の群の発明は、前記補正データの少なくとも 1つは、前記いずれかの軸 以外の軸感度補正係数の、前記!、ずれかの軸の軸感度補正係数に対する比率の 値であることを特徴とする地磁気検出装置を提供する。
[0039] 本願の第 3の群の発明は、前記補正データの少なくとも 1つは、前記いずれかの軸 以外の軸感度補正係数から所定の基準値を減算した差分値の、前記!、ずれかの軸 の軸感度補正係数に対する比率の値であることを特徴とする地磁気検出装置を提供 する。
[0040] 本願の第 3の群の発明は、前記地磁気検出素子により検出された直交軸成分毎の 地磁気の値を補正する補正演算回路を有し、前記補正演算回路は、所定の軸成分 の地磁気の値に、前記所定の軸成分の軸感度補正係数、或いは、前記所定の軸成 分の軸感度補正係数から所定の基準値を減算した差分値の、前記!、ずれかの軸の 軸感度補正係数に対する比率に所定値を加算した加算値を乗算した乗算値と、他 の軸成分の地磁気の値に、前記軸間補正係数の前記!、ずれかの軸成分の軸感度 補正係数に対する比率の値を乗算した乗算値との和を算出することにより、補正され た地磁気の値を求めることを特徴とする地磁気検出装置を提供する。
[0041] 本願の第 3の群の発明は、前記地磁気検出素子により検出された直交軸成分毎の 地磁気の値を補正する補正演算回路を有し、前記補正演算回路は、所定の軸成分 の地磁気の値に、前記所定の軸成分の軸感度補正係数、或いは、前記所定の軸成 分の軸感度補正係数から所定の基準値を減算した差分値の、前記!、ずれかの軸の 軸感度補正係数に対する比率に所定値を加算した加算値を乗算した乗算値を算出 することにより、補正された地磁気の値を求めることを特徴とする地磁気検出装置を 提供する。
[0042] 本願の第 3の群の発明は、前記熱変成型の不揮発性記憶素子とは、ヒューズメモリ であることを特徴とする地磁気検出装置を提供する。
また、本願の第 3の群の発明は、前記所定の基準値は、前記いずれかの軸の軸感 度補正係数であることを特徴とする地磁気検出装置を提供する。
[0043] 以上説明したようにこの発明によれば、いずれかの軸の軸感度補正係数に対する 他の補正係数の比をとつたものを補正情報として熱変成型の不揮発性記憶素子に 記憶するので、軸間の補正を行うことによる補正精度を維持しつつ、補正情報を小型 化して熱変成型の不揮発性記憶素子の記憶容量を削減することが可能となる。
[0044] また、 V、ずれかの軸の軸感度補正係数や軸間補正係数を補正情報力も省くことが 可能となり、補正情報をさらに小型化して不揮発性記憶素子の記憶容量を削減する ことが可能となる。
[0045] また、他の軸の感度補正係数力 基準値を減算した差分値を補正情報とすることに より補正情報をさらに小型化して不揮発性記憶素子の記憶容量を削減することが可 能となる。
図面の簡単な説明
[0046] [図 1]本願の第 1の群の発明の各実施形態における地磁気センサ 1の構成を示す図 である。
[図 2A]同実施形態における記憶単位 MUaの構成を示す図である。
[図 2B]同実施形態における記憶単位 MUbの構成を示す図である。
[図 3]同実施形態におけるデータの書き込み時のヒューズメモリ 13の回路図である。
[図 4]同実施形態におけるデータの書き込み時のヒューズメモリ 13のタイミングを示す 図である。 [図 5]同実施形態におけるデータの読み出し時のヒューズメモリ 13の回路図である。
[図 6]同実施形態におけるデータの読み出し時のヒューズメモリ 13のタイミングを示す 図である。
圆 7A]本願の第 1の群の発明の第 1〜2の実施形態における地磁気センサ 1のゥェ ハの作り込み時においてオフセット値をヒューズメモリ 13に設定する動作を示すフロ 一チャートである。
圆 7B]同発明の第 1〜2の実施形態における地磁気センサ 1の実使用時の動作を示 すフローチャートである。
[図 8]図 7におけるフローチャートに、ゼロ磁場付与のステップ (ステップ Scl)を追カロ したフローチャートである。
圆 9]本願の第 1の群の発明の第 2の実施形態における地磁気センサ 1のウェハの作 り込み時においてオフセット値をヒューズメモリ 13に設定する動作を示すフローチヤ ートである。
圆 10]本願の第 2の群の発明の一実施形態における温度センサ 201の構成を示す 図である。
[図 11A]同実施形態における温度センサ 201の作り込みにおいて、初期値 A Dおよ び補正値 A kをヒューズメモリ 213に設定する動作および温度センサ 201の実使用時 の動作を示すフローチャートである。
[図 11B]同実施形態における温度センサ 201の実使用時の動作を示すフローチヤ一 トである。
[図 12]従来および同実施形態における温度センサ回路 212の構成を示すブロック図 である。
圆 13]本願の第 3の群の発明の第 1の実施形態に係る地磁気検出用 LSIの構成の 概略を示すブロック図である。
[図 14]ヒューズメモリの構成例を示すブロック図である。
圆 15]本願の発明を携帯電話機に搭載した場合の構成の概略を示すブロック図であ る。
符号の説明 [0047] 1· · '地磁気センサ、 11·· 'コントロールロジック回路 (補正データ書込手段)(補正デ 一タ読出手段)(補正手段)(制御手段)、 12···地磁気センサ回路 (地磁気検知手段 )、 13···ヒューズメモリ
201·· '温度センサ、 211· · 'コントロールロジック回路 (補正データ書込手段)(補正 データ読出手段)(補正手段)(制御手段)、 212···温度センサ回路 (感温手段)、 2 13···ヒューズメモリ
301---LSI 302···電源端子 303···グランド端子 304···チップセレクト入力端子 305···データ入力端子 306…データ出力端子 307···インタフェース回路 308··· 制御回路 309···内部発信回路 310··Χ軸方向の磁気センサ 311—Y軸方向の 磁気センサ 312…切替回路 313…増幅器 314 AZD変換回路 315…ヒユー ズメモリ 321…ヒューズ 322---FET 323···データフリップフロップ 324·· -NOR ゲート 325···論理ゲート
発明を実施するための最良の形態
[0048] 以下、図面を参照し、本願の第 1の群の発明の第 1の実施形態について説明する。
図 1に示すように、本実施形態における地磁気センサ 1、地磁気センサ 1の制御を 行うコントロールロジック回路 11 (補正データ書込手段)(補正データ読出手段)(補 正手段)と、例えば、 GMR (Giant Magnetoresistive)素子からなり、互いに直交する X軸、 Y軸の各々の軸方向(感磁方向)の地磁気を検出する地磁気センサ素子およ び八70( 10§701§ 1)コンバータカら構成される地磁気センサ回路12(地磁気 検知手段)と、ヒューズメモリ 13とからなり、 1チップ上に構成される。
[0049] 地磁気センサ回路 12は地磁気センサ素子が得た X軸方向および Y軸方向の磁場 の測定値を AZDコンバータによって AZD変換し、コントロールロジック回路 11に出 力する。コントロールロジック回路 11は、地磁気センサ 1の携帯電話機への搭載時に 、該携帯電話機が回転している状況において、地磁気センサ回路 12から測定された 周囲磁場を示す複数の測定値を読み込み、該測定値に基づいて地磁気センサ回路 12のオフセット値を求めて、該値をヒューズメモリ 13に記憶させる。
[0050] また、コントロールロジック回路 11は、オフセット値をヒューズメモリ 13から読み出し 、該値と地磁気センサ回路 12からの測定値とを演算することにより、地磁気センサ回 路 12からの測定値をディジタル的に補正する。
[0051] 尚、地磁気センサ 1には図示しない物理量センサが設けられ、該物理量センサは 温度センサ(温度測定手段)を含む。コントロールロジック回路 11は該温度センサか らの周囲温度データを読み出し、該周囲温度に対するオフセット値をヒューズメモリ 1 3に書き込み、また、該周囲温度に対するオフセット値をヒューズメモリ 13から読み出 す。
[0052] ヒューズメモリ 13は、図 2Aに示す記憶単位 MUaを、記憶容量のビット数だけ有す る。例えば、記憶容量が 32ビットのヒューズメモリ 13は、記憶単位 MUaを 32個有す る。記憶単位 MUaは、 N—チャンネルの MOSトランジスタ N1と、地磁気センサ 1の 電源電圧 VDDに接続された端子 Taと、 MOSトランジスタのドレインに接続された端 子 Tbとの間に挿入されたヒューズ Fuと力も構成される。ヒューズ Fuはポリサイド (ポリ シリコン)によって形成されている。 MOSトランジスタ N1のゲートに書き込み電圧入 力端 IpWrが接続され、 MOSトランジスタ N1のドレインにデータ出力端 OpDが接続 される。
尚、 MOSトランジスタ N1は、ゲートによって ONしたときに、ヒューズ Fuを切断する のに必要な熱を発生する電流をドレインとソースとの間に流すことができるようなサイ ズにてチップ上に形成される。例えば、 MOSトランジスタ N1は、チャンネル長: L = 0 . 65 ^ m,チャンネル幅: W= 140 /z mにて形成される。
[0053] 記憶単位 MUaにおいて、電源電圧 VDDを印加した状態にて、書き込み電圧入力 端 IpWrから MOSトランジスタのゲートに MOSトランジスタ N1が ONする電圧(MOS トランジスタ N1の閾値)以上の電圧を印加すると、 MOSトランジスタ N1が ONして、ド レインとソースとの間に流れる電流による発熱によって、ヒューズ Fuが切断される。こ の結果、記憶単位 MUaは、図 2Bに示すようにヒューズ Fuが削除された構成となる。 以下、これを記憶単位 MUbという。
一方、書き込み電圧入力端 IpWrから MOSトランジスタのゲートに MOSトランジス タ N1の閾値以下の電圧を印加すると、 MOSトランジスタ N1が OFFして、ドレインとソ ースとの間に電流が流れず、ヒューズ Fuは切断されない。以上のように、書き込み電 圧入力端 IpWrに MOSトランジスタ N1の閾値以上の電圧が入力された場合のみ、ヒ ユーズ Fuが切断され、記憶単位 MUbの構成をなすことになる。
[0054] 次に、上述した記憶単位 MUaにおいて、書き込み電圧入力端 IpWrに MOSトラン ジスタ N1の閾値以下の電圧を印加した状態にて電源電圧 VDDを印加すると、 MOS トランジスタ N1が OFFして!/、るため、電源電圧 VDDがヒューズ Fuを介してデータ出 力端 OpDに現れる。このとき、データ出力端 OpDに接続されている C— MOS (Com plementary MOS)ロジック回路の入力端の入力抵抗が高いため、データ出力端 Op D力 流れ出る電流(吐き出し電流)は殆どなぐ該電流によってヒューズ Fuが切断さ れることはない。
[0055] 一方、上述した記憶単位 MUbにおいて、書き込み電圧入力端 IpWrに MOSトラン ジスタ N1の閾値以下の電圧を印加した状態にて電源電圧 VDDを印加しても、 MOS トランジスタ N1が OFFしており、且つ、ヒューズ Fuが切断しているために、電源電圧 VDDはデータ出力端 OpDに伝達されない。
[0056] 以上のように、記憶単位 MUaにおいて、電源電圧 VDDを印加した状態にて、書き 込み電圧入力端 IpWrに MOSトランジスタ N1の閾値以上の電圧を印加することによ つてヒューズ Fuが切断されて、記憶単位 MUbをなし、記憶単位 MUbにおいて、書 き込み電圧入力端 IpWrに MOSトランジスタ N1の閾値以下の電圧を印加した状態 にて電源電圧 VDDを印加すると、データ出力端 OpDに電圧が出力されないことにな る。
一方、記憶単位 MUaにおいて、電源電圧 VDDを印加した状態にて、書き込み電 圧入力端 IpWrに MOSトランジスタ N1の閾値以下の電圧を印加することによってヒュ ーズ Fuが切断されず、記憶単位 MUaにおいて、書き込み電圧入力端 IpWrに MOS トランジスタ N 1の閾値以下の電圧を印加した状態にて電源電圧 VDDを印加すると、 データ出力端 OpDに電源電圧 VDDが出力されることになる。
[0057] 例えば、次のように各電圧値を入出力データに対応させることにより、入力データを 記憶することができる。すなわち、閾値が電源電圧 VDDの半分の値 (VDDZ2)であ る MOSトランジスタ N1を用いる。そして、書き込み電圧入力端 IpWrに印加される電 圧について、 MOSトランジスタ N1の閾値以下の電圧(例えばグランドレベル、以下、 ローレベルという)をデーダ '0"に対応させ、 MOSトランジスタ N1の閾値以上の電圧 (例えば VDD、以下ハイレベルという)をデータ" 1"に対応させる。そして、データ出 力端 OpDに出力される電圧について、ローレベルをデータ" 1"に対応させ、ハイレ ベルをデータ" 0"に対応させる。
以上のように設定することにより、電源電圧 VDDを印加した状態にて、書き込み電 圧入力端 IpWrに印加された電圧に対応するデータがヒューズ Fuの有無の形により 記憶される。また、書き込み電圧入力端 IpWrにローレベルを印加することによって、 ヒューズ Fuの有無の形により記憶されているデータに対応する電圧がデータ出力端 OpDに現れる。
[0058] 尚、以上のことより、記憶単位 MUaについて、電源電圧 VDDを印加した状態にて、 書き込み電圧入力端 IpWrにデータに対応してハイレベルまたはローレベルを印加し て該データをヒューズ Fuの有無により記憶する動作を「書き込み」という。
また、ヒューズ Fuの有無の形によりデータが記憶されて 、る記憶単位 MUaまたは MUbについて、電源電圧 VDDを印加した状態にて、書き込み電圧入力端 IpWrに口 一レベルを印加することによって、該データに対応する電圧をデータ出力端 OpDか ら取り出す動作を「読み出し」 t 、う。
[0059] コントロールロジック回路 11は、ヒューズメモリ 13に電源電圧 VDDを供給し、ヒユー ズメモリ 13内の記憶単位 MUaのうち、データ" 1"を記憶させるべきビットに対応する 記憶単位 MUaの書き込み電圧入力端 IpWrのみにハイレベルを与えることにより、該 記憶単位 MUaのヒューズ Fuを切断する。これにより、データ" 1"を記憶させるべきビ ットに対応する記憶単位が記憶単位 MUbのような構成となり、データが記憶される。 これにより、データ" 1"を記憶させるべきビットに対応してヒューズ Fuが切断され、デ ータ" 1"の「書き込み」が行われることになる。一方、データ" 0"を記憶させるべきビッ トに対応するヒューズ Fuは切断されず、データ" 0"の「書き込み」が行われることにな る。
[0060] また、コントロールロジック回路 11は、ヒューズメモリ 13に電源電圧 VDDを供給し、 書き込み電圧入力端 IpWrにローレベルを与えることにより、ヒューズ Fuの有無の形 により記憶されているデータに対応する電圧が出力されることにより、データ出力端 O pD力 コントロールロジック回路 11にデータの「読み出し」が行われることになる。 [0061] 次に、本実施形態において実際に使用されるヒューズメモリ 13およびデータ書き込 み時、データ読み出し時のタイミングについて説明する。尚、上述したヒューズメモリ 1 3は、詳述するように、 4ビットのデータをシリアルにて出力する。
[0062] 図 3は、本実施形態においてヒューズメモリ 13およびデータの書き込み時のタイミン グを示す図である。図 3において、ヒューズメモリ 13は記憶セル CelO〜Cel3と、ノット( Not)ゲート (反転回路) Ntl〜2と力も構成される。尚、記憶セル CelO〜Cel3は同一 の構成であるので、以下、記憶セル CelOについて説明する。
[0063] 記憶セル CelOは図 2Aに示す記憶単位 MUaと、 Dフリップフロップ(Delay Flip-Flo p) DFF (以下、 DFFという)と、 2入力のアンド (And)ゲート Adと、 3入力のノア(Nor) ゲート Noraと、 2入力のノアゲート Norbと力も構成される。尚、前述したように、記憶 セル CelO〜Cel3は同一の構成であることより、以下、上述した各構成要素の符号の 末尾に該記憶セル CelO〜Cel3の添え字の末尾を追加することとする。つまり、記憶 セル CelO中の DFFを DFF0とし、記憶セル Cel2中の DFFは DFF2とする。これにより 、記憶セル CelOの各構成要素を、記憶単位 MUaOと、 Dフリップフロップ DFF0と、ァ ンドゲート AdOと、ノアゲート Nora0、 NorbOとする。
[0064] DFFOの正のデータ出力端 00がノアゲート NoraOの三つのうちの一つの入力端に 接続される。 DFF0の負のデータ出力端 ON0がノアゲート NorbOの一方の入力端に 接続される。ノアゲート NoraOの出力端が記憶単位 MUaOの書き込み電圧入力端 Ip WrOに接続される。記憶単位 MUaOのデータ出力端 OpDOがアンドゲート AdOの一 方の入力端に接続される。アンドゲート AdOの出力端カ ァゲート NorbOの他方の入 力端に接続される。
[0065] また、記憶セル CelOは、以下のように入力端、出力端が設けられ、各々の入力端ま たは出力端は次のように接続される。すなわち、記憶セル CelOは、入力端 IpCk0、 Ip NCk0、 IpNWrtO, IpRed0、 IpDFiOが設けられ、出力端 OpNDiOが設けられる。入 力端 IpCkOは DFF0のクロック入力端 CkOに接続される。入力端 IpNCkOおよび IpN WrtOはノアゲート NoraOの残りの二つの入力端にそれぞれ接続される。入力端 IpRe d0はアンドゲート AdOの他方の入力端に接続される。入力端 IpDFiOは DFF0のデー タ入力端 D0に接続される。出力端 OpNDiOはノアゲート NorbOの出力端に接続され る。
[0066] ヒューズメモリ 13は、入力端 IpClkゝ IpNWrite、 IpRead, IpNDai、出力端 OpDo が設けられている。入力端 IpClkは記憶セル CelOの入力端 IpCkOと接続される。また 、ノットゲート Ntlを介して、記憶セル CelOの入力端 IpNCkOと接続される。入力端 Ip NWriteは記憶セル CelOの入力端 IpNWrtOと接続される。入力端 IpReadは記憶セ ル CelOの入力端 IpRedOと接続される。
[0067] 尚、入力端 IpClkは記憶セル Cell〜Cel3の入力端 IpCkl〜IpCk3とも接続される 。また、ノットゲート Ntlを介して、記憶セル Cell〜Cel3の入力端 IpNCkl〜IpNCk3 とも接続される。入力端 IpNWriteは記憶セル Cell〜Cel3の入力端 IpNWrtl〜IpN Wrt3とも接続される。入力端 IpReadは記憶セル Cell〜Cel3の入力端 IpRedl〜Ip Red3とも接続される。
[0068] ヒューズメモリ 13の入力端 IpNDaiは、記憶セル CelOの入力端 IpDFiOに接続され る。記憶セル CelOの出力端 OpNDiOは、記憶セル Cellの入力端 IpDFilに接続され る。記憶セル Cellの出力端 OpNDilは、記憶セル Cel2の入力端 IpDFi2に接続され る。記憶セル Cel2の出力端 OpNDi2は、記憶セル Cel3の入力端 IpDFi3に接続され る。記憶セル Cel3の出力端 OpNDi3は、ノットゲート Nt2を介して、ヒューズメモリ 13 の出力端 OpDoに接続される。
[0069] 次に、ヒューズメモリ 13にデータを書き込む動作について説明する。このとき、図 4 ( タイミングチャート)〖こ示すように、記憶セル CelOと Cel2にデータ DD0、 DD2 ("1" :口 一レベル)を書き込み、記憶セル Cellと Cel3にデータ DDI、 DD3 ("0":ハイレベル) を書き込むとする。また、該タイミングチャート上の斜線部はレベル不定、つまり、ハイ レベル( = VDD)またはローレベル( =グランドレベル)の!、ずれかの電圧値をとること を示す。
[0070] 先ず、クロック Clkのクロックパルス Cplが出力される前は、信号 Read、 NWrite, N Daiがレベル不定であり、且つ、各記憶セル CelO〜Cel3の出力信号 NDiO〜NDi3 およびノアゲート Nora0〜Nora 3の出力信号 W0〜W3がレベル不定であるとする。
[0071] 次に、クロックパルス Cplが出力され、クロックパルス Cplの立ち上がりと同期して、 信号 Readをローレベル、 NWrite、 NDaiをハイレベルにする。これにより、 DFF0の データ入力端 DOに信号 NDai (ノヽィレベル)が取り込まれる。
また、信号 NWriteがハイレベルになるため、ノアゲート NoraO〜Nora 3の一つの 入力端にハイレベルが入力されることになり、ノアゲート NoraO〜Nora 3は、他の入 力端に入力される信号、つまり、 DFF0〜DFF3のデータ出力端 O0〜O3の出力信 号および記憶セル CelO〜Cel3の入力端 IpNCkO〜IpNCk3における入力信号のレ ベルに関わらず、ローレベルの出力信号 W0〜W3を出力する。以下、これを「ノアゲ ート NoraOの出力信号がローレベルに固定される」という。これにより、各記憶セル Ce 10〜Cel3内の各記憶単位 MUaO〜MUa3は前述した書き込み動作を行わな!/、。尚 、これ以後、信号 Readをローレベルに維持する。
[0072] そして、クロックパルス Cp2が出力されると、 DFF0の負のデータ出力端 ON0に、先 にデータ入力端 DOに取り込まれた信号 NDai (ハイレベル)の反転結果であるローレ ベルの信号が出力され、ノアゲート NorbOの一方の入力端に入力される。
[0073] ここで、信号 Readがローレベルを維持するので、アンドゲート AdOの出力信号が口 一レベルに固定される。これにより、ノアゲート NorbOの他方の入力端の信号がロー レベルに固定されることになる。これにより、ノアゲート NorbOは、一方の入力端に入 力される信号に対して、ノットゲートとして動作し、入力信号を反転して出力することに なる。以下、これを、「ノアゲート NorbOが DFF0の負のデータ出力端 ON0に対してノ ットゲートとして開かれる」という。そのため、記憶セル CelOの出力端 OpNDiOにおけ る信号 NDiOがレベル不定力もハイレベルとなる。よって、クロックパルス Cplが出力さ れたときに記憶セル CelOの入力端 IpDFiOに取り込まれた信号 (ハイレベル)力 クロ ックパルス Cp2が出力されると、記憶セル CelOの出力端 OpNDiOに伝播することにな る。
[0074] また、記憶セル CelOの出力端 OpNDiOは、記憶セル Cellの入力端 IpDFilが接続 されているので、クロックパルス Cplが出力されたときに記憶セル CelOの入力端 IpD FiOに取り込まれた信号 (ノヽィレベル)力 クロックパルス Cp2が出力されると、記憶セ ル Cellの入力端 IpDFilに伝播することになる。このとき、該入力端に接続された DF F1のデータ入力端 D1に信号 NDiO (ハイレベル)が取り込まれる。
[0075] 次に、クロックパルス Cp3が出力されると、前述した動作により、記憶セル Cell内に おいて、先に入力端 IpDFilに入力された信号 NDiO (ハイレベル)が出力端 OpNDi 1に伝播し、該出力端 OpNDilにおける信号 NDilがレベル不定力 ハイレベルにな る。このとき、該出力端 OpNDilにおける信号 NDilが記憶セル Cel2の入力端 IpDFi 2へ出力される。
次に、クロックパルス Cp4が出力されると、記憶セル Cel2内において、先に入力端 I pDFi2に入力された信号 NDil (ハイレベル)が出力端 OpNDi2に伝播し、該出力端 OpNDi2における信号 NDi2がレベル不定からハイレベルになる。このとき、該出力 端 OpNDi2における信号 NDi2が記憶セル Cel3の入力端 IpDFi3へ出力される。次 に、クロックパルス Cp5が出力されると、記憶セル Cel3内において、先に入力端 IpDF i3に入力された信号 NDi2 (ノ、ィレベル)が出力端 OpNDi3に伝播し、該出力端 OpN Di3における信号 NDi3がレベル不定からハイレベルになる。
[0076] そして、前述したように、各記憶単位 MUaO〜MUa3のデータ出力端 OpD0〜Op D3において、ハイレベルをデータ" 0"、ローレベルをデータ" 1"に対応させているた め、信号 NDi3 (ノヽィレベル)がノットゲート Nt2によって反転され、出力端 OpDoから 信号 Do (ローレベル)が出力される。
[0077] 以上のように、ヒューズメモリ 13は、入力端 IpNDa 信号 NDai (ノヽィレベル)を 入力して、クロックパルス Cpl〜Cp5によって、内部の記憶セル CelO〜Cel3の出力端 OpNDiO〜OpNDi3における信号 NDiO〜NDi3をレベル不定からハイレベルに変 化させる。これによつて、図 4に示すように、内部の記憶セル CelOの入力端 IpNDaiに おける信号 NDaiおよび記憶セル CelO〜Cel2の出力端 OpNDiO〜OpNDi2に接続 されている記憶セル Cell〜Cel3の入力端 IpDFil〜IpDFi3における信号 NDi0〜N Di2をレベル不定力 ハイレベルに初期化したことになる。以上のことより、ヒューズメ モリ 13はシフトレジスタとして動作する。
[0078] 一方、クロックパルス Cp5〜Cp9によって、以下に詳述するように、データの書き込 み動作が行われる。
[0079] 先ず、クロックパルス Cp5が出力されたとき、入力端 IpNDaiに入力信号 NDaiとして ローレベルの信号が入力される。そして、クロックパルス Cp6が出力されたとき、入力 端 IpNDaiに入力信号 NDaiとしてハイレベルの信号が入力される。前述したように、 クロックパルス Cp5が出力される前は、入力信号 NDaiはハイレベルに初期化されて いるので、クロックパルス Cp5が出力されてからクロックパルス Cp6が出力されるまで の間のみ、つまり、 1クロックパルスが出力されている間のみ、入力信号 NDaiはロー レベルとなる。
[0080] そして、このローレベルの入力信号 NDaiは、前述したヒューズメモリ 13のシフトレジ スタの動作により、以下のようにハイレベルに初期化されている記憶セル Cell〜Cel3 の入力端 IpDFil〜IpDFi3に伝播し、各入力端における信号 NDiO〜NDi2を以下 のように変化させる。すなわち、図 4に示すように、クロックパルス Cp6が出力されてか らクロックパルス Cp7が出力されるまでの間のみ、信号 NDiOがローレベルになる。次 に、クロックパルス Cp7が出力されて力もクロックパルス Cp8が出力されるまでの間の み、信号 NDilがローレベルになる。次に、クロックパルス Cp8が出力されて力もクロッ クパルス Cp9が出力されるまでの間のみ、信号 NDi2がローレベルになる。また、クロ ックパルス Cp9が出力されて力 クロックパルス CplOが出力されるまでの間のみ、記 憶セル Cel3の出力端 OpNDi3における信号 NDi3がローレベルになる。
[0081] また、信号 NWriteを、書き込むデータ DD0〜DD3に対応してクロックパルス Cp6 〜Cp9に同期して順次変化させて出力する。以下、クロックパルス Cp6〜Cp9が出力 されるときのヒューズメモリ 13の動作を説明する。
[0082] 先ず、クロックパルス Cp6が出力されると、クロックパルス Cp5が出力されたときの記 憶セル CelOの入力端 IpNDaiにおける信号 NDai (ローレベル)が DFF0の正のデー タ出力端 00に伝播し、記憶セル CelO内のノアゲート NoraOの三つの内 MUaの一つ の入力端に出力される。一方、信号 NWrtieがデータ DD0 ("1")に対応するローレ ベルの信号がノアゲート NoraOの残りの二つの内の一つの入力端に出力される。 また、ノアゲート NoraOの残りの入力端にクロックパルス Cp6がノットゲート Ntlにより 反転された信号が出力される。ここで、クロックパルス Cp6がハイレベルとなっているタ イミング(区間 P0)においては、反転された出力であるローレベルの信号が出力され、 クロックパルス Cp6がローレベルとなって!/、るタイミングにお!、ては、反転出力である ハイレベルの信号が出力される。
[0083] ここで、区間 P0においては、ノアゲート NoraOの残りの入力端にローレベルの信号 が出力されるので、ノアゲート NoraOの全ての入力端にローレベルの信号が出力され るため、ノアゲート NoraOの出力信号 W0はハイレベルとなり、記憶単位 MUaOのデー タ入力端 IpWrOにハイレベルが入力され、記憶単位 MUaO内の MOSトランジスタ N1 0がオンし、図 4の出力信号 W0のタイミングチャートに「cut」と記載するように、ヒユー ズ FuOが切断され、記憶単位 MUaOにデータ DD0 ("1":ローレベル)が記憶される。
[0084] 尚、クロックパルス Cp6がローレベルとなって!/、るタイミングにお!/、ては、ノアゲート N oraOの三つの入力端の内の一つにハイレベルが入力され、ノアゲート NoraOの出力 信号 W0がローレベルに固定され、記憶単位 MUaOのデータ入力端 IpWrOにローレ ベルが入力され、記憶単位 MUaO内のヒューズ FuOは切断されな!、。
また、記憶セル CelOの他の記憶セル Cell〜Cel3内のノアゲート Noral〜Nora3に おいては、三つの入力端の内の一つに入力信号 NDiO〜NDi2 (=ハイレベル)が入 力された DFF0〜DFF2の正の出力端 O0〜O2からの出力信号(=ハイレベル)が入 力されるので、ノアゲート Noral〜Nora 3の出力信号 W1〜W3がローレベルに固定 され、記憶単位 MUal〜MUa3のデータ入力端 IpWrl〜IpWr3にローレベルが入力 され、記憶単位 MUal〜MUa3内のヒューズ Ful〜Fu3は切断されない。
[0085] 次に、クロックパルス Cp7が出力されると、信号 NWrtieがデータ DDI ("0")に対応 するハイレベルの信号がノアゲート Noralの三つの内の一つの入力端に出力される 。ノアゲート Noralの出力信号 W1がローレベルに固定され、記憶単位 MUalのデー タ入力端 IpWrlにローレベルが入力され、記憶単位 MUal内のヒューズ Fulは切断 されない。
また、記憶セル Cellの他の記憶セル Cel0、 Cel2〜Cel3内のノアゲート Nora0、 No ra 2〜Nora 3においては、三つの入力端のいずれかにて DFF0、 DFF2〜DFF3の 正の出力端 00、 02〜03の出力信号(=ハイレベル)が入力されるので、ノアゲート NoraO, Nora 2〜Nora 3の出力信号 W0、 W2〜W3がローレベルに固定され、記憶 単位 MUaO、 MUa2〜MUa3のデータ入力端 IpWrO、 IpWr2〜IpWr3にローレベル が入力され、まだ切断されて 、な 、記憶単位 MUa2〜MUa3内のヒューズ Fu2〜Fu 3は切断されない。
[0086] これらより、以下のことがいえる、すなわち、記憶セル Cel0〜Cellのうち、入力端 Ip NDaiまたは入力端 IpDFiOにて、選択的にローレベルの信号を入力したものにおい て、クロックパルス Cp6〜Cp7がハイレベルとなっているタイミングにおいて、入力され た信号 NWriteのデータに応じて、記憶単位 MUaO〜MUalのヒューズ FuO〜Ful 力 S切断されること〖こなる。
[0087] 次に、クロックパルス Cp8〜Cp9が出力されるとき、上記のことより、次のような動作 が行われる。すなわち、クロックパルス Cp8が出力されると、信号 NWrtieがデータ D D2 ("1")に対応するローレベルの信号がノアゲート Nora2の三つの内のひとつの入 力端に出力される。クロックパルス Cp8がハイレベルとなっているタイミング(区間 P2) においては、反転出力信号であるローレベルの信号が出力される。ここで、区間 P2 においては、反転出力信号であるローレベルの信号が出力されるので、ノアゲート N ora2の全ての入力端にローレベルの信号が出力されるため、ノアゲート Nora2の出 力信号 W2はハイレベルとなり、記憶単位 MUa2のデータ入力端 IpWr2にハイレベル が入力され、図 4の出力信号 W2のタイミングチャートに「cut」と記載するように、記憶 単位 MUa2内のヒューズ Fu2が切断され、記憶単位 MUa2にデータ DD2 (1:ローレ ベル)が記憶される。
また、クロックパルス Cp9が出力されると、信号 NWrtieがデータ DD3 ("0")に対応 するハイレベルの信号がノアゲート Nora3の三つの内の一つの入力端に出力される 。ノアゲート Nora3の出力信号 W3はローレベルとなり、記憶単位 MUa3内のヒューズ Fu3は切断されない。
[0088] 以上の動作より、ヒューズメモリ 13は、記憶セル CelO〜Cel3において、記憶単位 M UaO〜MUa3内のヒューズ FuO〜Fu3の有無の形により、順次入力したデータ DD0 〜DD3を書き込む。
[0089] 次に、ヒューズメモリ 13からデータを読み出す動作について、図 5を参照して説明 する。図 5に示すように、図 3に示すヒューズメモリ 13の記憶セル Cel0、 2の記憶単位 MUaO、 2のヒューズ Fu0、 2が切断されているものとする。これにより、記憶セル Cel0、 Cel2に" 1" (:ローレベル)なるデータ DD0、 DD2が書きこまれ、記憶セル Cell、 Cel3 に" 0" (:ハイレベル)なるデータ DD1、 DD3が書きこまれていることになる。また、読 み出しのタイミングを、図 6のタイミングチャートに示す。 [0090] 先ず、クロック Clkのクロックパルス Cplが出力される前は、信号 Read、 NWrite、 N Daiがレベル不定であり、且つ、各記憶セル CelO〜Cel3の出力信号 NDiO〜NDi3 およびノアゲート NoraO〜Nora 3の出力信号 W0〜W3がレベル不定であるとする。
[0091] 次に、クロックパルス Cplが出力され、クロックパルス Cplの立ち上がりと同期して、 信号 Readをローレベル、 NWrite、 NDaiをハイレベルにする。これにより、 DFF0の データ入力端 DOに信号 NDai (ノヽィレベル)が取り込まれる。
また、信号 NWriteがハイレベルになるため、ノアゲート NoraO〜Nora 3の出力信 号がローレベルに固定され、ローレベルの出力信号 W0〜W3を出力し、各記憶単位 MUaO〜MUa3は前述した書き込み動作を行わない。尚、これ以後、信号 NWriteを ハイレベルに維持する。
[0092] そして、クロックパルス Cp2が出力されると、 DFF0の負のデータ出力端 ON0に、先 にデータ入力端 DOに取り込まれた信号 NDai (ハイレベル)の反転結果であるローレ ベルの信号が出力され、ノアゲート NorbOの一方の入力端に入力される。ここで、信 号 Readがローレベルを維持するので、前述したように、ノアゲート NorbOが DFF0の 負のデータ出力端 ON0に対してノットゲートとして開かれ、一方の入力端に入力され る信号を反転して出力する。そのため、記憶セル CelOの出力端 OpNDiOにおける信 号 NDiOがレベル不定からハイレベルとなる。
[0093] そして、クロックパルス Cp3〜Cp5が出力されることにより上記の動作が行われる。こ れにより、信号 NDaiおよび NDiO〜NDi2がレベル不定からハイレベルに初期化され る。
[0094] 次に、クロックパルス Cp6〜Cp9によって、以下に詳述するように、データの読み出 し動作が行われる。
[0095] 先ず、クロックパルス Cp6が出力されたとき、入力端 IpReadに入力信号 Readとして ハイレベルの信号が入力される。そして、クロックパルス Cp7が出力されたとき、入力 端 IpReadに入力信号 Readとしてローレベルの信号が入力される。前述したように、 クロックパルス Cp6が出力される前は、入力端 IpReadに入力信号 Readとしてローレ ベルの信号が入力されているので、クロックパルス Cp6が出力されてからクロックパル ス Cp7が出力されるまでの間のみ、つまり、 1クロックパルスが出力されている間のみ、 入力信号 Readはハイレベルとなる。
[0096] ここで、信号 Readがハイレベルになるので、ノアゲート NorbO〜Norb 3の他方の入 力端に接続されているアンドゲート AdO〜Ad3の一方の入力端にハイレベルの信号 が入力され、アンドゲート AdO〜Ad3がバッファとして動作し、アンドゲート AdO〜Ad3 の他方の入力端に入力される信号(記憶単位 MUaO〜MUa3の出力信号)のレベル 1S ノアゲート NorbO〜Norb 3の他方の入力端に伝播する。
一方、信号 NDaiおよび NDiO〜NDi2が前述したようにハイレベルに初期化されて いるので、 DFF0〜DFF3の負のデータ出力端 ON0〜ON3からローレベルが出力さ れ、ノアゲート NorbO〜Norb 3の一方の入力端に入力される。そのため、ノアゲート NorbO〜Norb 3が記憶単位 MUaO〜MUa3のデータ出力端 OpD0〜OpD3に対し てノットゲートとして開かれ、他方の入力端に接続されて 、るアンドゲート AdO〜Ad3 の他方の入力端に入力される入力信号である記憶単位 MUaO〜MUa3の出力信号 を反転して出力する。この動作により、クロックパルス Cp6が出力されるタイミングにて 、記憶単位 MUaO〜MUa3にて記憶されて ヽるデータを反転した信号が記憶セル C elO〜Cel3の出力端に出力される。
[0097] そして、信号 NDi3がノットゲート Nt2によって反転されて出力端 OpDOから出力さ れる。ここで、信号 NDi3は、記憶単位 MUa3に記憶されたデータ DD3のレベルを反 転した信号なので、出力端 OpDO力もデータ DD3が出力されることになる。
[0098] 次に、クロックパルス Cp7が出力された後に、 Read信号がローレベルになり、前述し たように、ノアゲート Norb0〜Norb 3が DFF0〜DFF3の負のデータ出力端 ON0〜 ON3に対してノットゲートとして開かれる。そして、ヒューズメモリ 13は、前述したような シフトレジスタの動作を行い、クロックパルス Cp7〜Cp9に同期して記憶セル Cel2、 C ell、 CelOの出力端 OpNDi2、 OpNDil、 OpNDiOにおける信号 NDi2、 NDil、 NDi 0 (データ DD2、 DD1、 DD0の反転信号)を、ノットゲート Nt2を介して、出力端 OpD O力も順繰りに出力する。これにより、出力端 OpDO力もデータ DD3、 DD2、 DDI, DD0が出力されることになる。
[0099] 次に、本実施形態による地磁気センサ 1のウェハの作り込みの時において、オフセ ット値をヒューズメモリ 13に設定する動作を、図 7Aに示すフローチャートを参照して 説明する。
[0100] 先ず、地磁気センサ 1の回路が形成されたウェハ力 テスタに接続され、コンタクト プローブを有するプローブ制御装置の上に置かれる。該チャックの底面には磁場付 与用のコイルが取り付けられ、該コイルは該テスタによって所望の外部磁場を発生す るように制御され、該ウェハに外部磁場を付与する。そして、地磁気センサ 1の内部 に設けられたコイルに、ウェハ上の端子を介して、テスタに接続されたプローブ制御 装置のコンタクトプローブを接触させ、予め定められた電流を流し、この発熱により、 地磁気センサ 1を所望の温度に加熱する。さらに、テスタはプローブ制御装置を介し て、コントロールロジック回路 11に指示を行い、磁場付与用のコイルによって付与さ れた外部磁場に対応する地磁気センサ 1の測定値を採取する。
本実施形態においては、磁場、温度条件を変化させて、複数回の測定を繰り返し 行い、複数の所望の磁場および所望の温度においての測定値を得る。そして、複数 の磁場および温度条件にお!ヽて得られた複数の測定値に対しそれぞれ演算を行 ヽ 、それぞれのオフセット値を算出する (ステップ Sal)。具体的には、温度を変化 (もし くは磁場を変化)させながら、センサ特性測定を繰り返す。
[0101] 次に、算出された磁気感度のオフセット値をヒューズメモリ 13に記憶する (ステップ S a2)。そして、オフセット値をヒューズメモリ 13に設定する動作が終了する。これにより 、地磁気センサ 1の温度変化によるオフセット変化が記憶される。
[0102] 次に、本実施形態による地磁気センサ 1の実使用時の動作を説明する。
先ず、地磁気センサ 1を搭載した携帯電話機の電源が投入され、各部の動作が開 始する。以下、図 7Bに示すフローチャートを参照して、地磁気センサ 1の動作を説明 する。尚、地磁気センサ 1内のヒューズメモリ 13には、前述した地磁気センサ回路 12 のオフセット値が記憶されて 、るものとする。
[0103] 先ず、地磁気センサにおいて、コントロールロジック回路 11はヒューズメモリ 13から 該温度におけるオフセット値を読み出す (ステップ Sbl)。次に、方位測定データの温 度補償を行うために、現在の周囲温度の測定を行い (ステップ Sb2)、該温度データ に対応する磁気感度のオフセット値を読み出す。次に、地磁気センサ回路 12が方位 測定を行う(ステップ Sb3)。次に、コントロールロジック回路 11が、地磁気センサ回路 12から方位測定データを読み出し、前述したオフセット値を用いて測定値の補正を 行う(ステップ Sb4)。次に、該方位データに基づいて、携帯電話機の表示画面上に 地図データが表示される。そして、ステップ Sb2に戻り、ステップ Sb2〜Sb4の処理が 繰り返される。
[0104] 以上のように、本実施形態によれば、地磁気センサ 1が携帯電話機に組み込まれる ことによって発生する地磁気センサ回路 12の磁気感度のオフセットを補正するため のオフセット補正値を、コントロールロジック回路 11がヒューズメモリ 13に設定し、地 磁気センサ 1の実使用時において、コントロールロジック回路 11がヒューズメモリ 13か ら、ヒューズメモリ 13に設定されて!ヽる地磁気センサ回路 12のオフセット値を読み出 して、該値により、測定値の補正を行うことが可能になる。そのため、測定値について 、個体による特性のバラツキの補正をして地磁気センサの測定値の精度の向上を図 ることがでさる。
また、従来の地磁気センサのように、オフセット値を EEPROMに記憶するのに比し て、チップを製造するのに、記憶部にトンネル絶縁膜のような薄い酸ィ匕膜を付けたり、 チップにビット線やワード線を形成するためのポリシリコン層やメタル層を何層も積層 するという、特殊なプロセスを必要とすることなぐチップを通常の C MOSのプロセ スを用いて、チップ単価を抑制しつつ、製造することができる。
また、書き込みのための高電圧化回路や書き込み回路等を不要として、メモリの駆 動のシステムの小規模ィ匕およびチップサイズの小型化ならびに低価格ィ匕を図ること ができる。
[0105] また、チップにおいて、例えば、 MOS— FET (Field Effect Transistor)のゲート電 極の形成に使用されるポリサイドの層を利用することにより、ヒューズのために配線層 を 1層増やさずにすみ、また、メタル層によってヒューズを形成する場合のように、電 源またはグランドのラインの弓 Iき回しに影響が及ぶことを回避することができる。
また、ヒューズ FuO〜Fu3をポリサイドによって形成しているので、メタルに比して抵 抗率が高ぐ通電することにより発生する熱によって具合よく切断するヒューズを形成 することができる。
[0106] また、オフセット値の格納用にヒューズメモリを用い、物理的にヒューズが切断される ことにより該オフセット値が記憶されるので、該オフセット値の記憶データの経時変化 を皆無にすることができる。
[0107] また、オフセット値を格納するためには 32ビット程度の容量があればょ 、ので、小 容量 (4〜数百ビット)のメモリを作り易いヒューズメモリは該オフセット値の格納用とし て好適である。
[0108] また、地磁気センサ 1のオフセット値を算出するためのデータの測定は、ウェハの製 造工程の中にお ヽて使用されるテスタを使用するため、他の IC製品のテスト用の機 材を共用することができる。また、ウエノ、から切り分け (ダイシング)が行われたチップ を、磁場付与用のコイルが設けられた試験用治具に装着して、ウェハと同様にプロ一 バにてデータを測定することもできる。
[0109] 尚、図 8に示すフローチャートのように、図 7Aに示すフローチャートに、上述したテ スタによる外部磁場をゼロ磁場とするステップ (ステップ Scl)を追加してもよい。この 場合、ステップ Sc2がステップ Salに、ステップ Sc3がステップ Sa2に相当する。また、 外部磁場をゼロ磁場としたときの出力値を基準値として、磁気センサの測定値力ゝら該 基準値を比較することによって、磁気センサの測定値の特性を補正することもできる。 テスタによって外部磁場をゼロ磁場にする具体的な方法として、内部コイルに現在存 在して 、る磁場 (環境磁場)を打ち消す (キャンセルする)方向の磁場を発生させるよ うな電流を流すことが考えられる。
[0110] 次に、本願の第 1の群の発明の第 2の実施形態について説明する。
この第 2の実施形態による地磁気センサ 1のブロック構成は図 1と同じである力 ォ フセット変化 Z温度変化の比をオフセットの温度係数としてヒューズメモリ 13に記憶 するところ力 オフセット値そのものをヒューズメモリ 13に記憶させる第 1の実施形態と 異なっている。このとき、該温度係数を算出する際に、前述した物理量センサ内の温 度センサによって測定された温度を用いるところ力 内部コイルに流す電流によって 温度を規定している第 1の実施形態と異なっている。
以下、図面を参照して、本実施形態を説明する。
[0111] 地磁気センサ 1内の温度センサは、製造過程において、内部の温度センサ回路( 図示しない)から周囲温度に対する特性を測定した結果を読み込み、該結果に基づ いて温度センサ回路の測定値を補正する初期値を求め、また、該結果に基づいて温 度センサ回路の感度特性を補正する補正値を求めて、ヒューズメモリ 13に記憶する。 また、上述した初期値および補正値により補正された温度に対するオフセット変化の 比をオフセットの温度係数として算出し、ヒューズメモリ 13に記憶する。
[0112] ここで、上述した温度センサ回路は、一般的なバンドギャップリファレンス回路と、 A ZDコンバータとから構成される。バンドギャップリファレンス回路は、例えば、ォペア ンプ、ダイオード、抵抗からなる。 A/Dコンバータは、バンドギャップリファレンス回路 の出力電圧の AZD変換を行 ヽ、 AZD変換の結果である出力値 Doutを出力する。
[0113] 尚、温度センサ回路において、周囲温度 Tが 25°Cのときの出力値 Doutが 600であ るとき、出力値 Doutは、下記の式(1)のようになる。
Dout = - 2 (T- 25) + 600 · · · (1)
式(1)より、例えば、周囲温度 Tが 30°Cのときは、出力値 Doutが 590となる。
[0114] また、コントロールロジック回路 11は、後述する、初期値 A Dおよび補正値 Akをヒ ユーズメモリ 13から、上述したオフセットの温度係数と共に読み出し、該値を用いて 温度センサ回路の測定値を補正し、該温度測定値およびオフセットの温度係数より オフセットを算出する。
[0115] 次に、本実施形態における地磁気センサ 1のウェハの製造過程において、上述し たオフセットの温度係数と共に、内部の温度センサについての上述した初期値 A D および補正値 Akを、ヒューズメモリ 13に設定する動作を、図 9に示すフローチャート を参照して説明する。
[0116] 先ず、地磁気センサ 1の回路が形成されたウェハがチャック (ウェハを固定する治 具)の上に置かれる。該ウェハ中には加熱用のコイルが取り付けられ、該コイルは該 チャックに接続されたテスタによって所望の熱を発生するように制御され、該ウェハを 加熱する。
次に、磁場付与用のコイルによって、テスタによる外部磁場がゼロ磁場にされ (ステ ップ Sdl)、以下の手順にてセンサの特性の測定が行われる。
[0117] すなわち、上述したコイルがテスタによって温度 T1に制御される。次に、温度セン サ回路の特性の測定が行われる。そして、その結果をコントロールロジック回路 11が 、温度 Tlに対する温度センサ回路の出力値 Doutを出力値 Dl'として、プローバを介 して、テスタ内のメモリにー且、入力する(ステップ Sd2)。
次に、コイルがテスタによって温度 T2に制御され、温度センサ回路の特性の測定が 行われ、その結果を、コントロールロジック回路 11が、温度 T2に対する温度センサ回 路の出力値 Doutを出力値 D2'として、テスタ内のメモリにー且、入力する (ステップ S d3)。
[0118] 次に、式(1)を用いて、温度 T1に対する出力値 Doutの理論値 D1および温度 T2に 対する出力値 Doutの理論値 D2が算出される。そして、出力値 Dl'、 D2'、理論値 D1 、温度 T1、T2、式(1)の温度係数 m(=— 2)を用いて、以下のような演算にて、初期 値 Δ Dおよび補正値 Δ kが算出される。
[0119] すなわち、初期値 AD力 式 (2)に示されるように、出力値 D1'から理論値 D1を減 算することにより求められる。
AD = D1'-D1 · · · (2)
また、補正値 Akが、出力値 Dl'、 D2'温度 Tl、 Τ2、式(1)の温度係数 mを用いて 、式 (3)に示される演算によって求められる。
Ak=(D2'-Dl')/[(T2-Tl)m] · · · (3)
次に、初期値 ADおよび補正値 Akが、ヒューズメモリ 13に記憶される (ステップ Sd 4)。
[0120] 次に、地磁気センサ 1の温度が測定され、上述した初期値 ADおよび補正値 Akに よって測定された温度が補正される (ステップ Sd5)。次に、ゼロ磁場に対応する地磁 気センサ 1の測定値が採取される (ステップ Sd6)。次に、地磁気センサ 1の内部に設 けられたコイルに、予め定められた電流が流され、この発熱により、地磁気センサ 1が 所望の温度に加熱され、地磁気センサ 1の温度が変更される (ステップ Sd7)。
[0121] 次に、磁場付与用のコイルによって、予め定められた外部磁場が地磁気センサ 1に 付与される(ステップ Sd8)。そして、ステップ Sd5に戻り、以下のステップ Sd5〜Sd8 の処理が繰り返される。
尚、地磁気センサ 1の温度補正値が、外部磁場の強度により変化する素子特性を もつ場合、このステップ Sd8にて、外部磁場を付与するようにし、地磁気センサ 1の温 度補正値が、外部磁場の強度により影響を受けない素子特性をもつ場合、ステップ S d8をスキップして、ステップ Sd5に進むように設定することができる。
[0122] そして、ステップ Sd5〜Sd8の処理力 予め定められた回数行われると、ステップ S d7の処理の後にステップ Sd8に移行せず、ステップ Sd9に移行する。すなわち、地 磁気センサ 1の測定値力もオフセット値を算出し、該オフセット値および温度センサの 測定値に基づ 、て、オフセット値変化 Z温度センサ変化の比なるオフセット値の温度 係数を算出し、ヒューズメモリ 13に記憶する (ステップ Sd9)。そして、オフセット値の 温度係数をヒューズメモリ 13に設定する動作が終了する。これにより、地磁気センサ 1 のオフセット値の温度係数が記憶される。
[0123] 次に、本実施形態による地磁気センサ 1の実使用時の動作を、図 7Bに示すフロー チャートを参照して説明する。本実施形態における地磁気センサ 1の実使用時の動 作は、第 1の実施形態における地磁気センサ 1の動作と類似しているので、相違点の み説明する。
[0124] 先ず、地磁気センサ 1において、コントロールロジック回路 11はヒューズメモリ 13か ら該温度におけるオフセットの温度係数を読み出す (ステップ Sbl)。次に、方位測定 データの温度補償を行うために、現在の周囲温度の測定を行い (ステップ Sb2)、温 度センサの温度補正を行った後の値およびオフセットの温度係数力 該温度に対応 するオフセット値を算出する。
[0125] このとき、コントロールロジック回路 11はヒューズメモリ 13から、前述した初期値 A D および補正値 A kを読み出し、それを用い、以下のような演算によって、温度センサ 力も出力された出力値 Doutを温度に変換した値である、温度出力値 Toutを出力し( ステップ Sb3)、温度センサの補正が行われる。
[0126] すなわち、温度出力値 Tout力 測定値 D、理論値 Dl、初期値 Δ D、補正値 Δ k、式
(1)の温度係数 mを用いて、式 (4)に示される演算によって求められる。
Tout= [D- (Dl + A D) ] X [l/ ( A k X m) ] +Tl (°C) · · · (4)
尚、初期値 Δ Dおよび補正値 Δ kをヒューズメモリ 13に設定する動作が温度 T1を 2 5°Cとして行われた場合、式 (4)における T1は 25°C (D1 = 600)となる。
[0127] 次に、地磁気センサ回路 12が方位測定を行う(ステップ Sb3)。次に、コントロール ロジック回路 11が、地磁気センサ回路 12から方位測定データを読み出し、前述した 補正後の温度出力値 Toutに対するオフセット値を用いて測定値の補正を行う(ステツ プ Sb4)。次に、該方位データに基づいて、携帯電話機の表示画面上に地図データ が表示される。そして、ステップ Sb2に戻り、ステップ Sb2〜Sb4の処理が繰り返され る。
[0128] 以上のように、本実施形態によれば、地磁気センサ 1内の温度センサの製造過程 において、コントロールロジック回路 11が温度センサ内の温度センサ回路の初期値 Δ Dおよび補正値 Δ kをヒューズメモリ 13に設定し、上述した初期値および補正値に より補正された温度に対するオフセット変化の比をオフセットの温度係数として算出し 、ヒューズメモリ 13に記憶し、温度センサの実使用時において、コントロールロジック 回路 11力 Sヒューズメモリ 13から、ヒューズメモリ 13に設定されて!、る温度センサ回路 の初期値 Δ Dおよび補正値 Δ kをオフセットの温度係数と共に読み出して、温度出力 値 Toutの出力を行い、該値により地磁気センサ 1のオフセットを補正することが可能 になる。そのため、記憶すべき数値の個数を減らすことができる。
[0129] 尚、地磁気センサ 1内の温度センサの初期値 A Dおよび補正値 A kを算出するた めのデータを一時的に記憶するためのメモリは、テスタ内のメモリに限らず、地磁気セ ンサ 1のチップ上に DRAM、 SRAM等のキャッシュメモリや、別のヒューズメモリが形 成され、上記のデータを一時的に記憶することが可能であるなら、それらのメモリを用 いてもよい。
[0130] また、地磁気センサ 1内の温度センサの初期値 A Dおよび補正値 A kを算出するた めのデータの測定は、ウェハの製造工程の中にお 、て使用されるテスタに装備され た加熱可能なチャックを使用するため、他の LSI用のテストのための機材を共用する ことができる。また、ウエノ、から切り分け (ダイシング)が行われたチップを、加熱用のヒ ータが設けられた試験用治具に装着して、ウェハと同様にプローバにて出力値を測 定することちでさる。
[0131] 次に、本願の第 1の群の発明の第 3の実施形態について説明する。
この第 3の実施形態による地磁気センサ 1のブロック構成は図 1と同じである力 地 磁気センサ 1の作り込みにおいて、温度と外部磁場の両方を変化させるときに、予め ウェハ上のチップ毎の温度センサの感度特性を求めておき、その上で該温度センサ によって実際の温度を測定してフィードバックすることにより、高精度に温度制御を行 うようにするところ力 地磁気センサ 1内の温度センサによって温度のモニターを行つ ていない第 1の実施形態と異なっている。以下、図 7Aに示すフローチャートを参照し て、本実施形態を説明する。尚、本実施形態における地磁気センサ 1の製造過程に おける動作は、第 1の実施形態における地磁気センサ 1の作り込みにおける動作と類 似して 、るので、相違点を重点的に説明する。
[0132] 具体的に、ステップ Salにおいて、予めウェハ上のチップ毎の温度センサの感度特 性を求めておき、これをテスタ側のメモリに記憶しておく。このとき、チップの位置は番 地化され、番地毎の温度センサ特性として、テスタ側のメモリにこの感度特性と番地 情報とが記憶される。
[0133] 次に、温度調節機能のあるプローブ制御装置を用いて、所望の温度になるように、 第 1の実施形態と同様に、地磁気センサ 1内のコイルに通電して加熱する。そして、 地磁気センサ 1内の温度センサにより、センサチップ内の測定温度をモニタ (測定)す る。ここで、テスタに記憶されている番地情報をもとに、温度センサ特性情報を読み出 し、これを用いてチップ内の測定温度を補正して正確な温度を算出する。そして、こ の温度 (実測値)と、所定の温度 (理論値)とを比較して異なる場合は、プローブ制御 装置の温度調節機能により温度センサの温度を調整する。
[0134] そして、上記の動作により、地磁気センサ 1を所望の温度に加熱する。さらに、テス タはプローブ制御装置を介して、コントロールロジック回路 11に指示を行い、磁場付 与用のコイルによって付与された外部磁場に対応する地磁気センサ 1の測定値を採 取する。本実施形態においては、磁場、温度条件を変化させて、複数回の測定を繰 り返し行い、複数の所望の磁場および所望の温度においての測定値を得る。そして 、複数の磁場および温度条件にぉ 、て得られた複数の測定値に対しそれぞれ演算 を行い、それぞれのオフセット値を算出する。
[0135] 次に、ステップ Sa2において、ウェハ上のチップ毎の温度センサの特性情報および 算出されたオフセット値をヒューズメモリ 13に記憶する。そして、オフセット値をヒユー ズメモリ 13に設定する動作が終了する。これにより、地磁気センサ 1の温度変化によ るオフセット変化が記憶される。
[0136] 以上のように、上記実施形態によれば、温度と外部磁場の両方を変化させるときに 、予めウェハ上のチップ毎の温度センサの感度特性を求めておき、その上で温度セ ンサによって実際の温度を測定してフィードバックすることにより、高精度に温度制御 を行って、温度によるオフセット値を正確に採取することができる。
[0137] この実施形態においても、温度条件と外部磁場の条件は両方変化させることができ る。例えば、 25°Cと 35°Cの二点に変化させ、それぞれにおいて複数の外部磁場条 件において測定し、オフセット値を算出する。
ここでは、温度を固定して磁場を変化させるのが効率的だが、磁場を固定して温度 だけをさきに変化させてもょ 、し、ランダムに測定してもよ 、。
[0138] また、本実施形態の変形例として、第 2の実施形態のように、オフセットの温度係数 と、感度特性とをヒューズメモリ 13に記憶してもよい。この場合は、ー且テスタ側のメモ リに記憶した番地毎の感度特性を、当該番地に対応するチップのヒューズメモリ 13に 取り込む。こうすることにより、個々のチップに分離された後に、各温度センサの感度 パラツキ (初期値 AD)とオフセットの温度係数(Ak)とから、温度センサの補正をす ることがでさる。
[0139] 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこ の実施形態に限られるものではなぐ本発明の要旨を逸脱しない範囲での設計変更 も含まれる。
[0140] 例えば、ヒューズ素子への書き込みは通電による他、レーザ、 FIB、電子ビーム等 の外部力 の照射による切断によってもよい。この他、ヒューズ素子が物理的な切断 を受けなくても、抵抗値が高くなつて実質的に切断されたと判断される状態にできる 手段があれば何でもよい。また、アンチヒューズのように、高抵抗 (もしくは絶縁状態) のものが低抵抗となって、電気的導通が良好になることを利用するメモリであってもよ い。
[0141] 以下、図面を参照し、本願の第 2の群の発明の一実施形態について説明する。
図 10に示すように、温度センサ 201は、温度センサ 201の制御を行うコントロール口 ジック回路 211 (補正データ書込手段)(補正データ読出手段)(補正手段)(制御手 段)と、温度センサ回路 212 (感温手段)と、ヒューズメモリ 213と力らなり、 1チップ上 に構成される。
コントロールロジック回路 211は、温度センサ 201の製造過程において、温度セン サ回路 212から周囲温度に対する特性を測定した結果を読み込み、該結果に基づ いて温度センサ回路 212の測定値を補正する初期値を求め、また、該結果に基づい て温度センサ回路 212の感度特性を補正する補正値を求めて、これらの初期値及び 補正値をヒューズメモリ 213に記憶する。また、コントロールロジック回路 211は、後述 する、初期値 A Dおよび補正値 A kをヒューズメモリ 213から読み出し、該値を用いて 温度センサ回路 212からの測定値を補正する。尚、温度センサ回路 212は従来によ るものと同様のものである。
[0142] ヒューズメモリ 213は、複数のヒューズ(記憶単位)を有し、コントロールロジック回路 211からのある特定の入力信号に応じて、内部のワード線とビット線との交点に設け られたヒューズに過電流パルスを与えて溶断させることにより、該交点にデータを書き 込む。各ヒューズには選択的に過電流ノ ルスが与えられ、電気的に切断されたヒユー ズと電気的接続を維持したヒューズが存在するようになり、これにより、所定数のビット のデータが記憶される。また、コントロールロジック回路 211からの別の入力信号に対 して当該ワード線およびビット線との交点におけるヒューズの切断状態に応じて、該 交点にぉ 、て書き込まれて 、るデータを読み出し、コントロールロジック回路 211に 出力する。
[0143] 次に、本実施形態による温度センサ 201の製造過程において、初期値 A Dおよび 補正値 Δ kをヒューズメモリ 213に設定する動作を、図 11 Aに示すフローチャートを参 照して説明する。
[0144] 先ず、温度センサ 201の回路が形成されたウェハがチャック(ウェハを固定する治 具)の上に置かれる。該チャックの底面には加熱用のヒータが取り付けられ、該ヒータ は該チャックに接続されたテスタによって所望の熱を発生するように制御され、該ゥェ ハを加熱する。次に、以下の手順にてセンサの特性の測定が行われる (ステップ Sal
) o
[0145] すなわち、ヒータがテスタによって温度 T1 (第 1の温度)に制御される (ステップ Sal )o次に、温度センサ回路 212の特性の測定が行われる (ステップ Sa2)。そして、そ の結果をコントロールロジック回路 211が、温度 T1に対する温度センサ回路 212の 出力値 Doutを出力値 D1' (第 1の温度に対する測定値)として、プローバを介して、 テスタ内のメモリにー且、入力する(ステップ Sa3)。次に、ヒータがテスタによって温 度 T2 (第 2の温度)に制御され (ステップ Sa4)、温度センサ回路 212の特性の測定が 行われ (ステップ Sa5)、その結果を、コントロールロジック回路 211が、温度 T2に対 する温度センサ回路 212の出力値 Doutを出力値 D2' (第 1の温度に対する測定値) として、テスタ内のメモリにー且、入力する (ステップ Sa6)。
[0146] 次に、前述した式 (21)を用いて、温度 T1に対する出力値 Doutの理論値 D1 (第 1の 温度に対する理論値)および温度 T2に対する出力値 Doutの理論値 D2が算出される 。そして、出力値 Dl,、 D2,、理論値 Dl、温度 Tl、 Τ2、式 (21)の温度係数 m(=— 2 )を用いて、以下のような演算にて、初期値 ADおよび補正値 Akが算出される (ステ ップ Sa7)。
[0147] すなわち、初期値 AD力 式 (22)に示されるように、出力値 D1'から理論値 D1を減 算することにより求められる。
AD = D1'-D1 - - - (22)
また、補正値 Akが、出力値 Dl'、 D2'温度 Tl、 Τ2、式 (21)の温度係数 mを用いて 、式(23)に示される演算によって求められる。
Ak=(D2'-Dl')/[(T2-Tl)m] · · · (23)
[0148] 次に、初期値 ADおよび補正値 Akが、ヒューズメモリ 213に記憶される(ステップ S a8)。そして、初期値 ADおよび補正値 Akを、ヒューズメモリ 213に設定する動作が 終了する。
[0149] 次に、本実施形態による温度センサ 201の実使用時の動作を説明する。尚、本実 施形態においては、温度センサ 201は測位動作を行う地磁気センサと共に携帯電話 機に搭載され、該地磁気センサに付属する物理量センサとして該地磁気センサの温 度補償に用いる周囲温度データを採取するのに用いられ、該地磁気センサの温度 補償が必要になる場合のみ、該地磁気センサの指示によって動作する。
[0150] 先ず、温度センサ 201および地磁気センサを搭載した携帯電話機の電源が投入さ れ、各部の動作が開始する。以下、図 11Bに示すフローチャートを参照して、温度セ ンサ 201の動作を説明する。尚、温度センサ 201内のヒューズメモリ 213には、前述し た温度センサ回路 212の初期値 Δ Dおよび補正値 Δ kが記憶されて 、るものとする。
[0151] 先ず、地磁気センサが、方位を測定する過程において方位測定データ温度補償を 行うために、温度センサ 201に現在の周囲温度の測定を指示する。そして、コント口 ールロジック回路 211がヒューズメモリ 213から初期値 Δ Dおよび補正値 Δ kを読み 出す (ステップ Sbl)。次に、温度センサ回路 212が温度測定を行う(ステップ Sb2)。 次に、コントロールロジック回路 211が、温度センサ回路 212から温度測定データとし て出力値 Doutを読み出し、以下のような演算によって、前述した初期値 A Dおよび 補正値 A kを用いて、出力値 Doutを温度に変換した値である、温度出力値 Toutが出 力される(ステップ Sb3)。
[0152] すなわち、温度出力値 Tout力 測定値 D、理論値 Dl、初期値 Δ D、補正値 Δ k、式
(21)の温度係数 mを用いて、式 (24)に示される演算によって求められる。
Tout= [D- (Dl + A D) ] X [l/ ( A k X m) ] +Tl (°C) · · · (24)
尚、初期値 Δ Dおよび補正値 Δ kをヒューズメモリ 213に設定する動作が温度 T1を 25°Cとして行われた場合、式(24)における T1は 25°Cとなる。
[0153] そして、出力された温度出力値 Toutが地磁気センサに出力され、方位データの温 度補償が行われ、該方位データに基づいて、携帯電話機の表示画面上に地図デー タが表示される。そして、温度センサ 201の動作が終了する。
[0154] 以上のように、本実施形態によれば、温度センサ 201の製造過程において、コント ロールロジック回路 211が温度センサ回路 212の初期値 Δ Dおよび補正値 Δ kをヒュ ーズメモリ 213に設定し、温度センサ 201の実使用時において、コントロールロジック 回路 211力 Sヒューズメモリ 213から、ヒューズメモリ 213に設定されて!、る温度センサ 回路 212の初期値 A Dおよび補正値 A kを読み出して、該値により、温度出力値 Tou tの出力を行うことが可能になる。そのため、測定値について、個体によるバラツキの 補正をして温度センサの測定値の精度の向上を図ることができる。
[0155] また、本実施形態においては、温度センサ回路 212の感温素子としてサーミスタゃ 熱電対を使用せず、ダイオードを使用しており、また、ヒューズをポリサイド (ポリシリコ ン)によって形成しているので、通常の CMOSプロセスによってメタルの配線層を新 たに設けることなぐ温度センサ 201のチップを製造することができ、温度センサ 201 の製造工程を複雑にすることなくコストアップを回避することができる。
[0156] また、初期値 Δ Dおよび補正値 Δ kの格納用にヒューズメモリを用い、物理的にヒュ ーズが切断されることにより初期値 Δ Dおよび補正値 Δ kが記憶されるので、該値の 変化を皆無にすることができる。
[0157] また、初期値 Δ Dおよび補正値 Δ kを格納するためには 32ビット程度の容量があれ ばよ 、ので、小容量 (4〜数百ビット)のメモリを作り易 、ヒューズメモリは該値の格納 用として好適である。
[0158] 尚、本実施形態のように、地磁気センサと併用される温度センサについては、地磁 気センサに 2種類の金属が用いられるので、感温素子として該 2種類の金属から形成 される熱電対を使用してもよい。
[0159] また、本実施形態においては、温度センサ 201を携帯電話機に搭載される地磁気 センサの温度補償に用いることを想定したが、用途はこれには限定されず、温度セン サ 201を、温度補償を要する電子機器に用いてもよい。
[0160] また、温度センサ 201の初期値 A Dおよび補正値 A kを算出するためのデータを一 時的に記憶するためのメモリは、テスタ内のメモリに限らず、温度センサ 201のチップ 上に DRAMのキャッシュメモリや、別のヒューズメモリが形成され、上記のデータを一 時的に記憶することが可能であるなら、それらのメモリを用いてもよい。
[0161] また、温度センサ 201の初期値 A Dおよび補正値 A kを算出するためのデータの 測定は、ウェハの製造工程の中において使用されるチャックを使用するため、他のテ ストのための機材を共用することができる。また、ウエノ、から切り分け (ダイシング)が 行われたチップを、加熱用のヒータが設けられた試験用治具に装着して、ウェハと同 様にプローバにて出力値を測定することもできる。
[0162] 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこ の実施形態に限られるものではなぐ本発明の要旨を逸脱しない範囲での設計変更 も含まれる。
[0163] 以下、図面を用いてこの発明の実施形態を説明する。 図 13は、本願の第 3の群の発明の第 1の実施形態に係る地磁気検出用 LSIの構成 の概略を示すブロック図である。
[0164] 同図に示すように、 LSI301は電源端子 302、グランド端子 303、チップセレクト入 力端子 304、データ入力端子 305、データ出力端子 306を有する。なお、各部への 電源ラインおよびグランドラインの配線は図示を省略する。
[0165] インタフェース回路 307は、図示しないマスターチップとの間でチップセレクト信号' 入出力信号の送受信を行うものである。制御回路 308は、マスターチップからの指示 に基づいて所定の論理で動作し、各部を制御するものである。内部発信回路 309は 制御回路 308その他の回路にクロックパルスを与えるものである。
[0166] X軸方向の磁気センサ 310および Y軸方向の磁気センサ 311は、磁気抵抗素子等 を用いた磁気センサである。切替回路 312は、制御回路 308の制御により動作し、磁 気センサ 310, 311の検出出力の増幅器 313の入力端への出力を択一的に切り替 えるものである。増幅器 313は磁気センサ 310, 311の検出出力を増幅して AZD変 換回路 314に与えるものである。 AZD変換回路 314は、検出出力をデジタル化し、 制御回路 308に出力するものである。
[0167] ヒューズメモリ 315は、出荷検査時に測定された検出出力の補正データその他のデ ータを記憶するための熱変成型の不揮発性記憶素子に相当するメモリであり、検出 出力の補正データとして (A) D1〜D3の値あるいは(B) D3の値、(C) D1, D2およ び D4の値、(D) D4の値のいずれかを記憶している。補正データ D1〜D4を(304)
(307)式に示す。
Dl =al2/al l
D2 = a21/al l
D3 = a22/al l
D4 = a22/al l - ただし、 aij (i= lor2, j = lor2)は後述する補正係数である。
図 14は、ヒューズメモリの構成例を示すブロック図である。同図には、 4つのメモリセ ル d0〜d3をデイジ一チェーン (数珠つなぎ)に接続して 4ビットのスキャンパスを構成 する例を示す。この構成により、検出出力の補正データを 4ビットの情報として記憶す ることがでさる。
[0169] 各メモリセル d0〜d3において、 321はポリシリコン抵抗等からなるヒューズ、 322は N型とされた FET (電界効果トランジスタ)、 323はデータフリップフロップ回路、 324 は FET322にゲート電圧を与える 3入力の NORゲート、 325は出力データをデイジ 一チェーン接続された後段のメモリセルに出力する 2入力の ANDゲートおよび 2入 力の NORゲートから構成される論理ゲートである。以下、メモリセル d0の構成につい て説明する力 他のメモリセル dl〜d3も共通の構成である。
データフリップフロップ回路 323のデータ入力端子 Dにはメモリセルに書き込むべき データが入力され、また、 CK端子にはクロックパルス ckが供給される。 NORゲート 3 24の一の入力端にはデータフリップフロップ回路 323の正の出力端 0からの出力デ ータが供給され、別の一の入力端子にはクロックパルス ckの反転信号が供給され、さ らに他の入力端には、書き込み信号の反転信号 ZWRITEが供給されている。
FET322のゲートには NORゲート 324の出力端が接続され、そのドレインは接地さ れてグランドレベルとされて 、る。ヒューズ 321の一端は電源電圧 VDDに接続され、 他の一端は FET322のソースに接続されて!、る。
論理ゲート 325を構成する ANDゲートの一の入力端には読み出し信号 READが 供給され、その他の入力端には FET322のソースに接続されている。論理ゲート 32 5を構成する NORゲートの一の入力端にはデータフリップフロップ回路 323の負の 出力端 ONからの出力データが供給され、他の入力端には論理ゲート 325を構成す る ANDゲートの出力端が接続されている。そして、論理ゲート 325の出力は、デイジ 一チェーン接続された後段のメモリセル dlのデータフリップフロップ回路 323のデー タ入力端子 Dに供給されることになる。
なお、予め、 READ信号力LOWレベル(ローアクティブ)で供給され、 ZWRITE信 号が HIレベル(ローアクティブ)で供給された時、各メモリセルが初期化されて ヽるも のとする。
[0170] メモリセル d0に書き込む時は、メモリセル d0の入力端 Zdiから書き込み用のビットを 送り込み、このビットが希望するセルに送られたタイミングで ZWRITEを LOWレベル として NORゲート 324に供給する。これにより NORゲート 324の出力 W0が HIレベル となって FET322がオンし、ヒューズ 321が通電して溶断される。図 14に示す状態は 、例として、メモリセル d0、 d2にデータが書き込まれ、それぞれのヒューズ 21が溶断さ れていることを示している。すなわち、メモリセル d0にはデータ" 1" (LOWレベル)、メ モリセル dlにはデータ" 0" (Hiレベル)、メモリセル d2にはデータ" 1" (LOWレベル) 、メモリセル d3にはデータ" 0" (Hiレベル)がそれぞれ記憶されることを示している。
[0171] 各メモリセル力もデータを読み出す時は、データフリップフロップ 323をリセットした 後、 READを HIレベルとすることにより、ヒューズ 321の切断の有無が論理ゲート 32 5の出力に反映される。この状態でスキャンアウト動作を行って各セルの出力を最終 段のメモリセル d3の論理ゲート 325を介してその反転出力を出力端 doから取り出す。
[0172] 図 13に戻って説明すると制御回路 308は、切替回路 313を制御して磁気センサ 3 10, 311の検出出力 Sx, Syを AZD変換回路 314に取り込み、この AZD変換回路 314により検出出力 Sx, Syをデジタルィ匕したうえで制御回路 308の内部のレジスタ( 図示せず)に取り込む。そしてヒューズメモリ 315から補正データを読み出して検出出 力 Sx, Syを補正したうえでインタフェース回路 307に出力する。
[0173] また検出出力 Sx, Syに対する補正は、制御回路 308で行う代わりに次のようにして も良い。すなわち、 LSIにヒューズメモリに記憶されているデータを出力する機能をも たせ、 LSIからは補正前の Sx, Syを出力するようにする。マスター側では、別途受け 取ったヒューズメモリのデータを元にソフトウェアによる処理により Sx, Syを補正する。
[0174] 次に検出出力 Sx, Syの補正処理について説明する。まず検出出力 Sx, Syと磁気 センサ 310, 311上の磁界 Hx, Hyは(308)式に示す関係がある。
[0175] [数 1]
Figure imgf000044_0001
[0176] ただし aij (i= lor2, j = lor2)は補正係数であり、 al lは X軸感度補正係数(= lZ X軸感度)、 a22は Y軸感度補正係数( = 1ZY軸感度)、 al2, a21は軸間補正係数 である。
[0177] 理想的な磁気センサでは al l = a22, al2 = a21 =0である力 実際の磁気センサ では al l≠a22, al2≠a21≠0となるため、この補正処理が必要となる。 第 1の実施形態では、次の補正演算方式 A〜Dのいずれかに基づいて補正処理を 行うこととする。
[0178] [演算方式 A]
地磁気センサとして特性を考慮すると、方位を測定するためには磁界の絶対値を 求める必要はなぐ磁界の各成分の比のみが必要となる。このため、 al2/al l, a2
1/al l, a22Zal lの 3つの値が得られれば、地磁気センサとしての用途における 補正演算としては十分である。
[0179] そこで演算方式 Aでは、ヒューズメモリに記憶された補正データ D1〜D3の値を用
V、て (309)式により補正処理を行う。
[0180] [数 2]
■■•(309)
Figure imgf000045_0001
[0181] ただし、 Sx' , S は補正後の検出出力である。
[0182] (309)式によれば X軸感度補正係数 al 1に係る補正データが al 1/al l = 1と原 理的に 1になるので、この補正データをヒューズメモリに記憶させなくても、支障なく補 正演算を実行できる。
[0183] そこでこの演算方式 Aでは、たとえば固定値「1」を設定しておき、 X軸感度補正係 数を固定値「1」で代替することにより補正演算を行う。このことによりヒューズメモリに 記憶すべき補正データの個数を 1つ減らし、補正データの総量を削減する。各補正 データのデータ長がたとえば 6ビット長の値であるとすると、補正係数 al l, al2, a21 , a22のデータ総量は 24ビットであつたのに対し、演算方式 Aによれば補正データ D
I, D2, D3の総量は 18ビットになる。
[0184] [演算方式 B]
この演算方式では、軸間補正係数を軸感度補正係数により除算した al2Zal l , a 2lZal lが「0」に近い値であることに着目し、たとえば固定値「0」を設定し、 al2/a
I I , a2lZal 1の値を固定値で代替して得られる(310)式を用いて補正処理を行う [0185] [数 3]
Figure imgf000046_0001
[0186] この演算方式によれば、必要な補正データの個数を 1個に減らせるので、補正デー タの総量を補正データ 1個分の 6ビットに削減できる。
[0187] [演算方式 C]
この演算方式では、 (311)式を用いて補正処理を行う。
[0188] [数 4]
Sx* . 1 Di
Sy' " D2 D4+1
[0189] この演算方式によれば、軸感度補正係数を軸感度補正係数により除算した a22Z al lが「1」に近い値であることに着目し、たとえば基準値「1」を設定し、この基準値と a22Zal lの差分をとつて補正データとすることにより、補正データのデータ長の短 縮を図るものである。
[0190] すなわち、補正データ Dl, D2はもともと小さな値である蓋然性が高ぐしかも D4も 基準値「1」との差分であるため小さな値である蓋然性が高いから、それぞれのデータ 長を短縮することができる。ここでは各補正データのビット長を 6ビットから 4ビットに短 縮するものとすると、ヒューズメモリに記憶すべきデータ量は補正データ Dl, D2, D4 の合計 12ビットまで削減される。
[0191] [演算方式 D]
この演算方式 Dは、軸間補正係数を軸感度補正係数により除算した al2Zal l, a 21 Za 11が「0」に近 、値であることに着目し、( 312)式を用 、て補正処理を行 、、 演算方式 Bで説明した補正データの個数削減と、演算方式 Cで説明した補正データ のデータ長の短縮の両方を採用することにより補正データの総量を削減するもので ある。
[0192] つまり演算方式 Bと同様に al2Zal l, a2lZal lの値を固定値(たとえば「0」)で 代替すると共に、演算方式 Cと同様に a22Zal lの基準値 (たとえば「1」)との差分を 補正データとする。
[0193] [数 5]
- (312)
Figure imgf000047_0001
[0194] この演算方式によれば、補正データの個数が方式 Bと同様に 1個まで減り、し力も データ長も方式 Cと同様にたとえば 4ビットと短縮できる。つまり補正データの総量を 補正データ D4のデータ長である 4ビットまで削減できる。
[0195] 次に、この発明の第 2の実施形態について説明する。第 2の実施形態では、直交 3 軸の地磁気センサを備えた地磁気検出装置への適用例を示す。この地磁気検出装 置は、図 13に示す LSIと同様の構成の LSIを用いて直交 3軸の地磁気を検出するも のである。
[0196] この装置のヒューズメモリには、出荷検査時に測定された検出出力の補正データと して(E) D1〜D3, D5〜D9の値あるいは(F) D3, D9の値、(H) D1, D2, D4〜D 8, D10の値、 (G) D4, D10の値のいずれかを記憶している。
[0197] 補正データ D5〜D10を(313)〜(318)式に示す。
D5 = al3/al l
D6 = a23/al l
D7 = a31/al l
D8 = a32/al l
D9 = a33/al l
D10 = a33/al l
ただし、 aij (i= lor2, j = lor2)は後述する補正係数である。
[0198] ここで磁気検出力 Sx, Sy, Szと磁気センサ上の磁界 Hx, Hy, Hzは(319)式に示 す関係がある。
[0199] [数 6]
Figure imgf000048_0001
[0200] ただし aij (i=l〜3, j = l〜3)は補正係数であり、 allは X軸感度補正係数(= lZ X軸感度)、 a22は Y軸感度補正係数( = 1ZY軸感度)、 a33は Z軸感度補正係数( = 1ZZ軸感度)、 al2,al3, a21, a23, a31, a32は軸間補正係数である。
[0201] 第 2の実施形態では、次の補正演算方式 E〜Hの 、ずれかに基づ 1、て補正処理を 行うこととする。
[0202] [演算方式 E]
演算方式 Eでは、演算方式 Aと同様に、磁界の各成分の比が得られれば地磁気セ ンサとしての用途には十分との観点から、 (320)式を用いて補正処理を行う。
[0203] [数 7]
Figure imgf000048_0002
[0204] ただし、 Sx' , S , Sz' は補正後の検出出力である。
[0205] 補正係数のデータ長がたとえば 6ビット長の値であるとすると、 9個の補正係数 all 〜a33を記憶するために 54ビットの記憶容量が必要であつたのに対し、演算方式 E によれば 8個の補正データ D1〜D3, D5〜D9を記憶するだけで十分なので必要な 記憶容量を 48ビットに削減できる。
[0206] [演算方式 F]
この演算方式では、演算方式 Bと同様に軸間補正係数を軸感度補正係数により除 算した al2Zall, al3/all, a21/all, a23/all, a31/all, a32Zall力 s「 0」に近!/、値であることに着目し、 al2/all, al3/all, a21/all, a23/all, a 31/all, a32Zallの値を固定値 (たとえば「0」)で代替し、(321)式を用いて補 正処理を行う。
[0207] [数 8]
Figure imgf000049_0001
[0208] この演算方式によれば、固定値「0」で代替した補正データはヒューズメモリに記憶 せずとも良いので、その分、補正データの総量を削減できる。つまり補正データ D3, D9だけ記憶すれば良いので、必要な補正データ D3, D9の総量は 12ビットまで削 減される。
[0209] [演算方式 G]
この演算方式によれば、軸感度補正係数を軸感度補正係数により除算した a22Z al lと a33Zal lが「1」に近い値であることに着目し、基準値 (この例では「1」)との差 分で表すことにより補正データのデータ長の短縮を図る。すなわち、この演算方式で は(322)式を用いて補正処理を行う。
[0210] [数 9]
Figure imgf000049_0002
[0211] ヒューズメモリには、補正データ Dl , D2, D4〜D8, D10の値を記憶すれば良い。
ここで、これら補正データの値は共に小さな値をとる蓋然性が高いから、それぞれの データ長を 4ビットに短縮できる。これにより 8個の補正データ Dl , D2, D4〜D8, D 10の総量を 32ビットまで削減できる。
[演算方式 H]
この演算方式では、(323)式を用いて補正処理を行う。
[0212] [数 10]
1 0 0 Sx
0 D4+l 0 Sy (323)
0 0 Dio+1
Figure imgf000049_0003
リ Sz
[0213] この演算方式によれば、演算方式 Fで説明したように使用する補正データを D4, D 10の 2個に減らし、さらに演算方式 Gで説明したように D4, D10を基準値 (たとえば「
1」)との差分値としてデータ長を 4ビットに短縮する。このことにより記憶すべき補正デ ータ D4, D10の総量は 8ビットまで削減される。
[0214] 以上、この発明の実施形態を詳述してきたが、具体的な構成はこの実施形態に限 られるものではなぐこの発明の要旨を逸脱しない範囲の設計等も含まれる。
[0215] たとえば、この発明はヒューズメモリを使用する形態に限定されるものではなぐたと えば熱変成型の不揮発性記憶素子の一種であるアンチヒューズメモリを使用する形 態をとることちでさる。
[0216] 次に、本願発明を携帯電話機等の携帯機器に搭載する適用例を示す。
図 15は、本願発明を携帯電話機等の携帯機器に搭載した場合の携帯電話機の構 成の概略を示すブロック図である。なお、図 15の携帯電話機 4100に搭載される地 磁気検出用 LSI4210は、磁気センサの他に、磁気センサの温度補償を行うための 温度センサを備える。
[0217] 図 15において、携帯電話機 4100は端末ユニット 4200および端末ユニット 4300の 2つの筐体を備えた構成である。アンテナ 4235aは電波信号の図示しない無線基地 局との間の電波信号の送受信を行うためのアンテナである。 RF (Radio Frequency) 部 4201はアンテナ 4235aが受信する受信信号を中間周波数の受信信号に変換し て変復調部 4202へ出力する。また、 RF部 4201は変復調部 4202から入力する送 信信号を送信周波数の信号に変調し、アンテナ 4235aへ出力して送信する。
[0218] 変復調部 4202は、 RF部 4201から入力した受信信号の復調処理と、 CDMA (Co de Division Multiple Access :符号分割多元接続)部 4204から入力した送信信号の 変調処理とを行う。 CDMA部 4204は、送信信号の符号化処理、および受信信号の 復号化処理を行う。音声処理部 4205は、マイクロホン 4206から入力される音声信号 をデジタル信号に変換して CDMA部 4204へ出力し、また、 CDMA部 4204力 デ ジタルの音声信号を入力してアナログの音声信号に変換し、スピーカ 4301へ出力し て発音させる。 GPS受信部 4207はアンテナ 4235bが GPS衛星力も受信した電波信 号を復調し、電波信号に基づいて、自身の 3次元空間上の緯度、経度、あるいは高 度等で表される位置を算出する。 [0219] 物理量センサ 4231は携帯端末 4100の傾きを検出する。また、携帯端末 4100は、 物理量センサ 4231を必ずしも備えていなくても良い。地磁気検出用 LSI4210は、 互いに直交する所定の X軸 ·Υ軸 ·Ζ軸の各々の軸方向の磁気 (磁界)を検出する磁 気センサ 4212a〜4212cと、温度を検出する温度センサ 4213と、磁気センサ制御 部 4211とを備える。また、磁気センサ制御部 4211は、温度センサ 4213および物理 量センサ 4231による検出結果に対してアナログ Zデジタル変換等の処理を行う。
[0220] 主制御部 4220は携帯端末 4100の各部を制御する CPU (Central Processing Unit )である。 ROM (Read Only Memory) 4208は表示画像データや音声データ、主制御 部 4220が実行するプログラムや、出荷検査時に測定された温度センサ 4213および 物理量センサ部 4231の初期特性値等を格納する。 RAM (Random Access Memory ) 4209は、主制御部 4220で用いる演算データ等を一時的に記憶する不揮発性の 記憶領域である。
[0221] 報知手段 4232は、スピーカ、バイブレータ、発光ダイオードを備え、着信やメール 受信等を、音、振動、および光によってユーザに報知する。時計部 4233は主制御部 4220が使用する計時機能である。主操作部 4234は、ユーザの指示内容を主制御 部 4220へ出力する。電子撮像部 4302は、被写体の像をデジタル信号に変換して 主制御部 4220へ出力する。
[0222] 表示部 4303は主制御部から入力する表示用の信号に基づいて画像や文字等を 表示する液晶ディスプレイである。タツチパネル 4304は、表示部 4303の液晶ディス プレイの表面に組み込まれ、ユーザの押下による操作内容を表す信号を主制御部 4 220へ出力する。
[0223] 本願発明に係る地磁気検出用 LSIは、出荷検査で補正データを測定し、 LSIに実 装した不揮発性メモリに書き込んでおく形態をとるものである力 本願発明に係る地 磁気検出用 LSIは携帯機器に搭載されるため、地磁気検出用 LSIの出荷時ではなく 、携帯機器に地磁気検出用 LSIを搭載し、その携帯機器の出荷検査時に補正デー タの書き込みを行う形態をとることも可能である。
[0224] また、地磁気検出用 LSIの出荷時の検査において測定した補正データを LSI内部 のヒューズメモリに書き込み、さらに地磁気センサ LSIの携帯機器への搭載後、その 携帯機器の出荷検査時に再度測定した地磁気センサ LSIの補正データを携帯機器 のメモリ(例えば、図 15の ROM4208)に書き込みことも可能である。この後、地磁気 を検出する際には、地磁気センサ LSIの出力結果だけなぐさらに別の補正値 (例え ば、図 15の温度センサや物理量センサの検出結果に基づいた補正値)を適応させ てもよい。
産業上の利用可能性
本願発明は、方位測定を行う機能を有する携帯電話機等の携帯通信端末に適用 することができる。

Claims

請求の範囲
[1] 地磁気を検出する地磁気検知手段と、
複数の記憶単位を有するヒューズメモリであり、前記各記憶単位を選択的に電気的 に切断もしくは接続させることが可能であり、前記各記憶単位における電気的な切断 もしくは接続の状態により所定のデータを記憶するヒューズメモリと、
製造時に、前記地磁気検知手段の測定値を入力し、前記測定値に基づいて地磁 気検知手段の測定値の温度特性を補正する補正値を求めて、前記補正値に応じて 前記ヒューズメモリに含まれる各記憶単位を選択的に電気的に切断もしくは接続させ ることにより、前記補正値を前記ヒューズメモリに書き込む補正データ書込手段と、 製造後の実使用時に、前記ヒューズメモリから前記補正値を読み出す補正データ 読出手段と、
前記実使用時に、前記地磁気検知手段の測定値を入力し、前記補正データ読み 出し手段によって読み出された補正値に基づいて前記地磁気検知手段の測定値の 補正を行う補正手段と、
を備えたことを特徴とする地磁気センサ。
[2] 請求項 1に記載の地磁気センサの測定値を補正する地磁気センサの補正方法で あって、
前記地磁気センサが温度を検知する温度測定手段をさらに備え、
前記地磁気センサの製造時に、予め前記温度測定手段の感度特性を求め、前記 ヒューズメモリに記憶するステップと、
前記ヒューズメモリに記憶されて 1ヽる感度特性データにより、前記温度測定手段の 感度特性を補正するステップと、
前記地磁気センサの温度による磁気感度のオフセットを補正し、前記補正されたォ フセットを前記ヒューズメモリに記憶するステップと、
を有することを特徴とする地磁気センサの補正方法。
[3] 請求項 1に記載の地磁気センサの測定値を補正する地磁気センサの補正方法で あって、前記地磁気センサの製造時に、ゼロ磁場における測定値に基づいて、測定 値の補正を行うステップを有することを特徴とする地磁気センサの補正方法。
[4] 温度を検出する感温手段と、
複数の記憶単位を有するヒューズメモリであり、前記各記憶単位を選択的に電気的 に切断もしくは接続させることが可能であり、前記各記憶単位における電気な的切断 もしくは接続の状態により所定のデータを記憶するヒューズメモリと、
製造時に、前記感温手段の測定値を入力し、前記測定値に基づいて前記感温手 段の測定値を補正する初期値を求め、前記測定値に基づいて前記感温手段の感度 特性を補正する補正値を求めて、前記初期値および前記補正値に応じて前記ヒユー ズメモリに含まれる各記憶単位を選択的に電気的に切断もしくは接続させることにより 、前記初期値および前記補正値を前記ヒューズメモリに書き込む補正データ書込手 段と、
製造後の実使用時に、前記ヒューズメモリから前記初期値および補正値を読み出 す補正データ読出手段と、
前記実使用時に、前記感温手段の測定値を入力し、前記補正データ読み出し手 段によって読み出された初期値および補正値に基づいて前記感温手段の測定値の 補正を行う補正手段と、
を備えたことを特徴とする温度センサ。
[5] 温度を検出する感温手段と、前記感温手段の測定値の処理を行う制御手段と、電 流を流すことにより選択的に電気的切断が可能であり、その電気的切断状態により前 記補正手段が補正に用いる補正データを記憶するヒューズメモリとを備えた温度セン サにおける測定データを補正する温度センサの補正方法であって、
製造時に、前記制御手段が前記感温手段の測定値を入力し、前記測定値に基づ いて前記感温手段の測定値のバラツキを補正する初期値を求め、前記測定値に基 づ 、て前記感温手段の感度のバラツキを補正する補正値を求めて、前記初期値お よび前記補正値に応じて前記ヒューズメモリの電気的切断を行うことにより、前記初期 値および前記補正値を前記ヒューズメモリに書き込む補正データ書込ステップと、 製造後の実使用時に、前記制御手段が前記ヒューズメモリから前記初期値および 補正値を読み出すステップと、
前記実使用時に、前記制御手段が前記感温手段の測定値を入力し、前記補正デ ータ読み出し手段によって読み出された初期値および補正値に基づいて前記感温 手段の測定値の補正を行うステップと、を備えたことを特徴とする温度センサの補正 方法。
[6] 前記補正データ書込ステップにて、
前記感温手段の第 1の温度に対する測定値から,予め定められた感温手段の第 1 の温度に対する理論値を減算して前記補正値を算出する処理と、
前記感温手段の第 2の温度に対する測定値から前記感温手段の第 1の温度に対 する測定値を減算した値を、前記第 2の温度から前記第 1の温度を減算した値によつ て除算し、予め定められた前記感温手段の理論上の感度によって除算して前記補 正値を算出する処理と、
前記初期値および前記補正値に応じて前記ヒューズメモリに含まれる各記憶単位 を選択的に電気的に切断もしくは接続させることにより、前記初期値および前記補正 値を前記ヒューズメモリに書き込む処理と、
が行われることを特徴とする請求項 5に記載の温度センサの補正方法。
[7] 地磁気の直交軸成分を検出する地磁気検出素子と、該地磁気検出素子の検出出 力の補正情報を記憶する熱変成型の不揮発性記憶素子とを備える地磁気検出装置 であって、前記補正情報は、軸感度補正係数および軸間補正係数であり且ついず れかの軸の軸感度補正係数に対する比率として表された値であることを特徴とする 地磁気検出装置。
[8] 請求項 7記載の地磁気検出装置において、前記不揮発性記憶素子は最低限、前 記いずれかの軸の軸感度補正係数以外の軸感度補正係数に係る補正情報を記憶 するものであることを特徴とする地磁気検出装置。
[9] 請求項 8記載の地磁気検出装置において、前記いずれかの軸の軸感度補正係数 以外の軸感度補正係数に係る補正情報として、当該軸感度補正係数の軸感度補正 係数に対する比率から予め設定された基準値を減算した差分値を用いることを特徴 とする地磁気検出装置。
[10] 請求項 7ないし 9記載の地磁気検出装置において、前記地磁気検出素子の検出出 力の補正演算を行う補正演算回路を備え、この補正演算回路は、検出出力に軸感 度補正係数を乗算して補正すると共に他の軸の検出出力に軸間補正係数を乗算し て求められる補正項を合算することにより検出出力の補正値を算出するものであるこ とを特徴とする地磁気検出装置。
[11] 請求項 10記載の地磁気検出装置において、前記地磁気検出素子の検出出力の 補正演算を行う補正演算回路を備え、この補正演算回路は、前記差分値に前記基 準値を加算して軸感度補正係数を復元したうえで補正演算を行うことを特徴とする地 磁気検出装置。
[12] 請求項 10または 11記載の地磁気検出装置において、前記補正演算回路は、前記 補正情報から取得できな 、補正係数にっ 、ては予め設定された代替値を代入する ことにより演算を行うものであることを特徴とする地磁気検出装置。
[13] 直交軸成分毎に地磁気を検出する地磁気検出素子と、
前記検出された地磁気の値を補正するための 1もしくは複数の補正データを記憶 する熱変成型の不揮発性記憶素子とを備える地磁気検出装置であり、
前記補正データの各々は、軸感度補正係数、或いは、軸間補正係数、或いは、軸 感度補正係数から所定の基準値を減算した差分値の、 V、ずれかの軸の軸感度補正 係数に対する比率の値として表されていることを特徴とする地磁気検出装置。
[14] 請求項 13記載の地磁気検出装置において、
前記補正データの少なくとも 1つは、前記いずれかの軸以外の軸感度補正係数の 、前記 、ずれかの軸の軸感度補正係数に対する比率の値であることを特徴とする地 磁気検出装置。
[15] 請求項 13記載の地磁気検出装置において、
前記補正データの少なくとも 1つは、前記いずれかの軸以外の軸感度補正係数か ら所定の基準値を減算した差分値の、前記 、ずれ力の軸の軸感度補正係数に対す る比率の値であることを特徴とする地磁気検出装置。
[16] 請求項 13記載の地磁気検出装置において、
前記地磁気検出素子により検出された直交軸成分毎の地磁気の値を補正する補 正演算回路を有し、
前記補正演算回路は、所定の軸成分の地磁気の値に、前記所定の軸成分の軸感 度補正係数、或いは、前記所定の軸成分の軸感度補正係数から所定の基準値を減 算した差分値の、前記 、ずれかの軸の軸感度補正係数に対する比率に所定値をカロ 算した加算値を乗算した乗算値と、他の軸成分の地磁気の値に、前記軸間補正係 数の前記いずれかの軸成分の軸感度補正係数に対する比率の値を乗算した乗算値 との和を算出することにより、補正された地磁気の値を求めることを特徴とする地磁気 検出装置。
[17] 請求項 13記載の地磁気検出装置において、
前記地磁気検出素子により検出された直交軸成分毎の地磁気の値を補正する補 正演算回路を有し、
前記補正演算回路は、所定の軸成分の地磁気の値に、前記所定の軸成分の軸感 度補正係数、或いは、前記所定の軸成分の軸感度補正係数から所定の基準値を減 算した差分値の、前記 、ずれかの軸の軸感度補正係数に対する比率に所定値をカロ 算した加算値を乗算した乗算値を算出することにより、補正された地磁気の値を求め ることを特徴とする地磁気検出装置。
[18] 請求項 13の記載の地磁気検出装置において、
前記熱変成型の不揮発性記憶素子とは、ヒューズメモリであることを特徴とする地磁 気検出装置。
[19] 請求項 13の記載の地磁気検出装置において、
前記所定の基準値は、前記!、ずれかの軸の軸感度補正係数であることを特徴とする 地磁気検出装置。
PCT/JP2005/018638 2004-10-07 2005-10-07 地磁気センサおよび地磁気センサの補正方法、温度センサおよび温度センサの補正方法、地磁気検出装置 WO2006038692A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2005800010799A CN1879006B (zh) 2004-10-07 2005-10-07 地磁传感器及获得其偏移的温度系数的方法、温度传感器和温度传感器校正方法
EP05790652A EP1798519A4 (en) 2004-10-07 2005-10-07 GEOMAGNETIC SENSOR, GEOMAGNETIC SENSOR CORRECTION METHOD, TEMPERATURE SENSOR, TEMPERATURE SENSOR CORRECTION METHOD, AND GEOMAGNETIC DETECTION DEVICE
KR1020087026843A KR100933834B1 (ko) 2004-10-07 2005-10-07 지자기 검출 장치
KR1020107004312A KR101095689B1 (ko) 2004-10-07 2005-10-07 지자기 센서 및 지자기 센서의 보정 방법
US11/345,279 US7676340B2 (en) 2004-10-07 2006-02-02 Geomagnetic sensor and geomagnetic sensor correction method, temperature sensor and temperature sensor correction method, geomagnetism detection device
US11/698,156 US7346466B2 (en) 2004-10-07 2007-01-26 Geomagnetic sensor and geomagnetic sensor correction method, temperature sensor and temperature sensor correction method, geomagnetism detection device
US11/698,154 US7437257B2 (en) 2004-10-07 2007-01-26 Geomagnetic sensor and geomagnetic sensor correction method, temperature sensor and temperature sensor correction method, geomagnetism detection device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004295139A JP2006105870A (ja) 2004-10-07 2004-10-07 温度センサおよび温度センサの補正方法
JP2004-295139 2004-10-07
JP2004297981 2004-10-12
JP2004-297981 2004-10-12
JP2005-099092 2005-03-30
JP2005099092A JP4254737B2 (ja) 2005-03-30 2005-03-30 地磁気センサおよび地磁気センサの補正方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/345,279 Continuation US7676340B2 (en) 2004-10-07 2006-02-02 Geomagnetic sensor and geomagnetic sensor correction method, temperature sensor and temperature sensor correction method, geomagnetism detection device

Publications (1)

Publication Number Publication Date
WO2006038692A1 true WO2006038692A1 (ja) 2006-04-13

Family

ID=36142762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018638 WO2006038692A1 (ja) 2004-10-07 2005-10-07 地磁気センサおよび地磁気センサの補正方法、温度センサおよび温度センサの補正方法、地磁気検出装置

Country Status (5)

Country Link
US (2) US7676340B2 (ja)
EP (1) EP1798519A4 (ja)
KR (4) KR100933834B1 (ja)
CN (2) CN101726291B (ja)
WO (1) WO2006038692A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010811A1 (ja) * 2008-07-25 2010-01-28 アルプス電気株式会社 地磁気センサ用制御装置
JP2015001519A (ja) * 2013-06-17 2015-01-05 株式会社アセット・ウィッツ 電流計測装置

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120648B2 (ja) * 2005-02-23 2008-07-16 ヤマハ株式会社 携帯端末、携帯端末の制御方法、プログラムおよび記録媒体
JP4252555B2 (ja) * 2005-04-25 2009-04-08 アルプス電気株式会社 傾斜センサおよびこれを用いた方位計測装置
US20070193045A1 (en) * 2006-02-21 2007-08-23 Kahil Salim E Device and method for display of azimuthal and other information
EP2116858B1 (en) * 2007-02-14 2013-01-02 Alps Electric Co., Ltd. Sensor chip, detecting device, and method for manufacturing detecting device
CN101641609B (zh) * 2007-03-23 2013-06-05 旭化成微电子株式会社 磁传感器及其灵敏度测量方法
JP5012252B2 (ja) * 2007-06-25 2012-08-29 ヤマハ株式会社 磁気データ処理装置、方法およびプログラム
CZ302404B6 (cs) * 2008-03-14 2011-05-04 CVUT v Praze, Fakulta elektrotechnická AMR magnetometr s korekcí kolmého magnetického pole
JP5259270B2 (ja) * 2008-06-27 2013-08-07 ルネサスエレクトロニクス株式会社 半導体装置
DE102008057892B4 (de) * 2008-11-18 2015-05-13 Texas Instruments Deutschland Gmbh Elektronische Vorrichtung und Verfahren zur Ansteuerung von Anzeigen
US8797279B2 (en) 2010-05-25 2014-08-05 MCube Inc. Analog touchscreen methods and apparatus
US8928602B1 (en) 2009-03-03 2015-01-06 MCube Inc. Methods and apparatus for object tracking on a hand-held device
US8486723B1 (en) 2010-08-19 2013-07-16 MCube Inc. Three axis magnetic sensor device and method
US8476129B1 (en) 2010-05-24 2013-07-02 MCube Inc. Method and structure of sensors and MEMS devices using vertical mounting with interconnections
US8477473B1 (en) 2010-08-19 2013-07-02 MCube Inc. Transducer structure and method for MEMS devices
US8710597B1 (en) 2010-04-21 2014-04-29 MCube Inc. Method and structure for adding mass with stress isolation to MEMS structures
US8823007B2 (en) 2009-10-28 2014-09-02 MCube Inc. Integrated system on chip using multiple MEMS and CMOS devices
US8421082B1 (en) 2010-01-19 2013-04-16 Mcube, Inc. Integrated CMOS and MEMS with air dielectric method and system
US8553389B1 (en) 2010-08-19 2013-10-08 MCube Inc. Anchor design and method for MEMS transducer apparatuses
US9709509B1 (en) 2009-11-13 2017-07-18 MCube Inc. System configured for integrated communication, MEMS, Processor, and applications using a foundry compatible semiconductor process
US8637943B1 (en) 2010-01-04 2014-01-28 MCube Inc. Multi-axis integrated MEMS devices with CMOS circuits and method therefor
US8407905B1 (en) * 2010-01-15 2013-04-02 Mcube, Inc. Multiple magneto meters using Lorentz force for integrated systems
US8794065B1 (en) 2010-02-27 2014-08-05 MCube Inc. Integrated inertial sensing apparatus using MEMS and quartz configured on crystallographic planes
US8936959B1 (en) 2010-02-27 2015-01-20 MCube Inc. Integrated rf MEMS, control systems and methods
US8367522B1 (en) 2010-04-08 2013-02-05 MCube Inc. Method and structure of integrated micro electro-mechanical systems and electronic devices using edge bond pads
US8928696B1 (en) 2010-05-25 2015-01-06 MCube Inc. Methods and apparatus for operating hysteresis on a hand held device
US8869616B1 (en) 2010-06-18 2014-10-28 MCube Inc. Method and structure of an inertial sensor using tilt conversion
US8652961B1 (en) 2010-06-18 2014-02-18 MCube Inc. Methods and structure for adapting MEMS structures to form electrical interconnections for integrated circuits
US8993362B1 (en) 2010-07-23 2015-03-31 MCube Inc. Oxide retainer method for MEMS devices
US8723986B1 (en) 2010-11-04 2014-05-13 MCube Inc. Methods and apparatus for initiating image capture on a hand-held device
JP5757772B2 (ja) * 2011-04-13 2015-07-29 ルネサスエレクトロニクス株式会社 半導体装置、及びデータ生成方法
US8969101B1 (en) 2011-08-17 2015-03-03 MCube Inc. Three axis magnetic sensor device and method using flex cables
WO2013134444A1 (en) * 2012-03-06 2013-09-12 Waveconnex, Inc. System for constraining an operating parameter of an ehf communication chip
CN103997341B (zh) * 2013-02-16 2017-12-19 苏州市灵矽微系统有限公司 一种应用于地磁测量的高精度adc及其模拟前端电路
EP2793450B1 (en) * 2013-04-18 2017-03-15 Sensirion AG System and method for determining sensor accuracy of a portable electronic device
US9377501B2 (en) * 2014-02-12 2016-06-28 Winbond Electronics Corp. Semiconductor wafers, and testing methods thereof
CN105023912B (zh) * 2014-04-25 2017-12-26 华邦电子股份有限公司 半导体晶片以及其测试方法
CN105277995B (zh) * 2014-06-20 2019-06-11 中兴通讯股份有限公司 地磁传感器的干扰补偿方法及装置
CN105338167B (zh) * 2014-08-08 2020-05-08 中兴通讯股份有限公司 一种移动终端操作的自动执行方法、装置及移动终端
US10247616B2 (en) 2015-03-05 2019-04-02 Renesas Electronics Corporation Electronics device
CN104913777A (zh) * 2015-05-15 2015-09-16 上海集成电路研发中心有限公司 一种地磁传感器应用系统的误差补偿算法
JP6528634B2 (ja) * 2015-10-02 2019-06-12 富士通株式会社 スイッチング電源回路の制御方法及び電源装置
CN106872914B (zh) 2015-11-27 2019-09-10 爱盛科技股份有限公司 磁场感测装置及感测方法
TWI613458B (zh) * 2015-11-27 2018-02-01 愛盛科技股份有限公司 磁場感測裝置及其感測方法
CN105548935B (zh) * 2016-01-04 2018-11-09 清华大学 磁场测量仪分辨率的检测方法和装置
CN107179517B (zh) * 2017-04-19 2021-12-14 广东恒沃动力科技有限公司 传感器校准方法
CN107328401B (zh) * 2017-07-26 2021-02-19 Tcl移动通信科技(宁波)有限公司 移动终端及其地磁感应器数据校正处理方法、及存储介质
CN108627190B (zh) * 2017-07-28 2023-12-19 杭州思泰微电子有限公司 一种基于集成电路的高精度磁传感器校正结构和校正方法
CN107703469A (zh) * 2017-08-25 2018-02-16 广州新维感信息技术有限公司 一种磁力计标定方法及装置
CN108195926A (zh) * 2017-12-29 2018-06-22 清华大学 面向水域锈蚀管道的专用磁通门探测器
CN111670388B (zh) * 2018-01-31 2023-06-30 佳能电子株式会社 检查装置
JP7213622B2 (ja) * 2018-04-12 2023-01-27 愛知製鋼株式会社 磁気計測システム、及び磁気センサの校正方法
KR20200050673A (ko) * 2018-11-02 2020-05-12 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작 방법
DE102019109197A1 (de) * 2019-04-08 2020-10-08 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Korrektur von Messdaten eines Analysensensors sowie Analysensensor mit Korrektur von Messdaten
TWI731708B (zh) * 2020-06-08 2021-06-21 創意電子股份有限公司 溫度感測裝置以及溫度感測方法
CN111854721A (zh) * 2020-07-30 2020-10-30 北京小米移动软件有限公司 地磁数据修正方法、装置和电子设备
CN112953537B (zh) * 2021-02-05 2022-02-15 中国电子科技集团公司第五十八研究所 电流舵dac的熔丝校准单元电路
CN113176529B (zh) * 2021-03-31 2023-10-24 西南民族大学 一种磁梯度仪校正方法、磁梯度仪校正装置及存储介质
KR102542622B1 (ko) * 2021-04-02 2023-06-12 엘에스일렉트릭(주) Plc의 열전대 모듈에 대한 설정 방법 및 그 plc
US11965939B2 (en) 2021-04-12 2024-04-23 Samsung Electronics Co., Ltd. Electronic device compensating for geomagnetic sensing data and method for controlling the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484711A (ja) * 1990-07-27 1992-03-18 Toyota Motor Corp 一方位指定着磁補正型方位検出装置
JPH10122976A (ja) * 1995-09-12 1998-05-15 Seiko Instr Inc 半導体温度センサーとその製造方法
JP2003294447A (ja) * 2002-03-29 2003-10-15 Asahi Kasei Corp 方位角計測装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2484079A1 (fr) 1980-06-05 1981-12-11 Crouzet Sa Procede de compensation des perturbations magnetiques dans la determination d'un cap magnetique, et dispositif pour la mise en oeuvre de ce procede
JPH0781864B2 (ja) * 1985-10-09 1995-09-06 日本電装株式会社 方位演算装置
US4622843A (en) 1985-12-27 1986-11-18 Hormel Ronald F Simplified calibration technique and auto ranging circuit for an electronic compass control circuit
US4807462A (en) 1987-04-03 1989-02-28 Chrysler Motors Corporation Method for performing automatic calibrations in an electronic compass
JPH051914A (ja) 1991-06-25 1993-01-08 Pioneer Electron Corp 着磁ベクトル補正方法
JPH0518770A (ja) 1991-07-10 1993-01-26 Pioneer Electron Corp 方位検出装置
JP3316889B2 (ja) * 1992-02-05 2002-08-19 株式会社デンソー 車両用方位検出装置
US5345382A (en) * 1992-05-15 1994-09-06 Zexel Corporation Calibration method for a relative heading sensor
US5394029A (en) * 1993-02-17 1995-02-28 Gay; John C. Geomagnetic orientation sensor, means, and system
JPH07270507A (ja) * 1994-03-28 1995-10-20 Sony Corp 地磁気方位センサ
JPH07324935A (ja) * 1994-05-31 1995-12-12 Sony Corp 地磁気方位センサ及びその製造方法
US5645077A (en) * 1994-06-16 1997-07-08 Massachusetts Institute Of Technology Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body
DE4439945C1 (de) 1994-11-09 1996-02-08 Leica Ag Verfahren zur Stabilisierung der Richtungsanzeige von Magnetkompassen
DE19609762C1 (de) 1996-03-13 1997-04-03 Leica Ag Verfahren zur Bestimmung der Richtung des Erdmagnetfeldes
WO1998020615A2 (en) * 1996-10-21 1998-05-14 Electronics Development Corporation Smart sensor module
DE19645394A1 (de) 1996-11-04 1998-05-20 Bosch Gmbh Robert Ortungssensor mit einem Satellitenempfänger zur Positionsbestimmung
DE19703359A1 (de) * 1997-01-30 1998-08-06 Telefunken Microelectron Verfahren zur Temperaturkompensation bei Meßsystemen
JP4004166B2 (ja) 1998-12-18 2007-11-07 Necトーキン株式会社 地磁気検出装置
FR2801158B1 (fr) 1999-11-17 2002-03-08 Sagem Appareil portable comportant des moyens d'orientation procede d'utilisation d'un tel appareil et procede d'orientation correspondant
JP4244561B2 (ja) * 2001-07-10 2009-03-25 ヤマハ株式会社 方位測定機能を有する携帯型電子装置
JP3835354B2 (ja) * 2001-10-29 2006-10-18 ヤマハ株式会社 磁気センサ
US6842991B2 (en) 2002-07-31 2005-01-18 Robert W. Levi Gyro aided magnetic compass
JP2004085384A (ja) 2002-08-27 2004-03-18 Seiko Epson Corp 温度センサ回路、半導体集積回路及びその調整方法
KR100590211B1 (ko) 2002-11-21 2006-06-15 가부시키가이샤 덴소 자기 임피던스 소자, 그를 이용한 센서 장치 및 그 제조방법
KR100491597B1 (ko) * 2002-11-28 2005-05-27 삼성전자주식회사 지자기 센서의 보정완료를 자동으로 추출하는 장치 및방법
ATE495458T1 (de) * 2002-11-29 2011-01-15 Yamaha Corp Magnetsensor und verfahren zur kompensation temperaturabhängiger eigenschaften desselben
US6999339B2 (en) * 2003-04-22 2006-02-14 Micron Technology, Inc. Integrated circuit including sensor to sense environmental data, method of compensating an MRAM integrated circuit for the effects of an external magnetic field, MRAM integrated circuit, and method of testing
KR100555656B1 (ko) 2003-08-27 2006-03-03 삼성전자주식회사 복각 검출 기능을 지원하는 지자기 센서 및 그 검출 방법
US7057173B2 (en) * 2004-01-05 2006-06-06 Laser Technology, Inc. Magnetoresistive (MR) sensor temperature compensation and magnetic cross-term reduction techniques utilizing selective set and reset gain measurements
JPWO2006035505A1 (ja) * 2004-09-29 2008-05-22 株式会社シーアンドエヌ 磁気センサの制御方法、制御装置、および携帯端末装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484711A (ja) * 1990-07-27 1992-03-18 Toyota Motor Corp 一方位指定着磁補正型方位検出装置
JPH10122976A (ja) * 1995-09-12 1998-05-15 Seiko Instr Inc 半導体温度センサーとその製造方法
JP2003294447A (ja) * 2002-03-29 2003-10-15 Asahi Kasei Corp 方位角計測装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010811A1 (ja) * 2008-07-25 2010-01-28 アルプス電気株式会社 地磁気センサ用制御装置
JP2015001519A (ja) * 2013-06-17 2015-01-05 株式会社アセット・ウィッツ 電流計測装置

Also Published As

Publication number Publication date
US20060168832A1 (en) 2006-08-03
CN1879006A (zh) 2006-12-13
CN101726291A (zh) 2010-06-09
EP1798519A1 (en) 2007-06-20
US7346466B2 (en) 2008-03-18
EP1798519A4 (en) 2012-06-06
CN101726291B (zh) 2012-02-15
KR100933834B1 (ko) 2009-12-24
KR20080102435A (ko) 2008-11-25
CN1879006B (zh) 2012-09-05
KR20070045321A (ko) 2007-05-02
US7676340B2 (en) 2010-03-09
US20070124096A1 (en) 2007-05-31
KR20080100293A (ko) 2008-11-14
KR20100030680A (ko) 2010-03-18
KR100882051B1 (ko) 2009-02-09
KR101095689B1 (ko) 2011-12-20

Similar Documents

Publication Publication Date Title
WO2006038692A1 (ja) 地磁気センサおよび地磁気センサの補正方法、温度センサおよび温度センサの補正方法、地磁気検出装置
US7268545B2 (en) Magnetic sensor, and method of compensating temperature-dependent characteristic of magnetic sensor
US7437257B2 (en) Geomagnetic sensor and geomagnetic sensor correction method, temperature sensor and temperature sensor correction method, geomagnetism detection device
US20090063081A1 (en) Bridge sensor calibration
US20110119015A1 (en) Geomagnetic sensor control device
JP3783016B2 (ja) 較正方法及びシステム
US20050216102A1 (en) Power supply circuit for physical quantity sensor
JP4254737B2 (ja) 地磁気センサおよび地磁気センサの補正方法
JP5195978B2 (ja) 補正装置
JP2006105870A (ja) 温度センサおよび温度センサの補正方法
US20230417607A1 (en) Temperature sensor array and micro-heater thermal calibration
AU2007202488A1 (en) Magnetic sensor and temperature dependency characteristic compensation method for the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001079.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11345279

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 11345279

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005790652

Country of ref document: EP

Ref document number: 1020077006021

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005790652

Country of ref document: EP