WO2006048978A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2006048978A1
WO2006048978A1 PCT/JP2005/017169 JP2005017169W WO2006048978A1 WO 2006048978 A1 WO2006048978 A1 WO 2006048978A1 JP 2005017169 W JP2005017169 W JP 2005017169W WO 2006048978 A1 WO2006048978 A1 WO 2006048978A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
target value
dczdc converter
duty ratio
Prior art date
Application number
PCT/JP2005/017169
Other languages
English (en)
French (fr)
Inventor
Masahiro Takada
Toshihiko Ichinose
Katsumi Kozu
Takeshi Shimamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/628,778 priority Critical patent/US7719252B2/en
Priority to EP05783604A priority patent/EP1821359A1/en
Priority to KR1020067025122A priority patent/KR101142607B1/ko
Publication of WO2006048978A1 publication Critical patent/WO2006048978A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power supply device including a fuel cell.
  • DMFC direct methanol fuel cells
  • DMFC There are two types of DMFC: a fuel circulation type that recovers and reuses unused fuel cells from the supplied methanol, and a fuel non-circulation type that does not reuse unused methanol! .
  • the fuel circulation type has a configuration that requires a recovery mechanism (such as a circulation pump) to recover unused methanol, which can stabilize the operating point and easily obtain stable generated power. There is a drawback that it is complicated and the apparatus becomes large.
  • the fuel non-circulation type does not require a recovery mechanism and can reduce the size of the device. It is important to use and cut the methanol almost completely, that is, to burn it completely.
  • FIG. 11 is a graph showing current-voltage characteristics, current-power characteristics, and emission rate characteristics according to the amount of methanol (fuel) supplied to DMFC.
  • the vertical axis shows DMFC output voltage (V), output power (W), and emission rate (%)
  • the horizontal axis shows DMFC output current (A).
  • C11 to C13 show current-voltage characteristic curves when the fuel supply rates are 0.1 cc / min, 0.2 cc / min, and 0.3 cc / min, respectively.
  • C21 to C23 show current-power characteristic curves when the fuel supply amount is 0.1 cc / min, 0.2 ccZmin, and 0.3 ccZmin, respectively.
  • C31 shows the relationship between the output current and the discharge rate when the fuel supply is 0.3 ccZmin.
  • the emission rate is the ratio of the fuel discharged to the fuel supplied. The rate is expressed as a percentage.
  • Patent Document 1 includes a DCZDC converter connected to the output side of a fuel cell, a secondary battery connected to the output side of the DCZDC converter, and a switch controller that supplies a PWM signal to the DCZDC converter.
  • a fuel cell voltage generator for calculating a duty ratio of a PWM signal based on a difference between an output voltage of a fuel cell and a reference value is disclosed.
  • Patent Document 2 a fuel cell, a DC converter, a secondary battery, and a microprocessor for controlling the DC converter are provided, and the DC converter is configured so that the voltage of the fuel cell is within a predetermined range including the maximum power.
  • a power supply device is disclosed that changes the maximum value of the current flowing through the.
  • Patent Document 1 USP 6, 590, 370 B1
  • Patent Document 2 USP 5, 714, 874
  • the fuel cell voltage generator shown in Patent Document 1 and the power supply device shown in 2 both have a voltage or current output from the fuel cell, that is, a DCZDC converter. Because the voltage or current input to the negative feedback signal is used as a negative feedback signal, the voltage output from the fuel cell oscillates when the voltage required by the load device increases rapidly and the DC / DC converter gain increases rapidly. As a result, there is a problem that the generated power becomes unstable. In addition, a circuit for comparing the voltage of the fuel cell with a reference value, a circuit for changing the duty ratio according to the difference between the two, and the like are required, and there is a problem that the circuit scale becomes relatively large.
  • An object of the present invention is to provide a power supply device that can stabilize the power generated by a fuel cell without using a voltage or current output from the fuel cell.
  • a power supply device includes a fuel cell, a DCZDC converter that adjusts a voltage output from the fuel cell power and outputs the same to a load device connected in parallel, and a PWM signal that controls the DCZ DC converter.
  • Signal generating means for generating and outputting to the DCZDC converter, a secondary battery connected in parallel to the load device, and voltage measuring means for measuring the voltage output from the DCZDC converter,
  • the generating means calculates a duty ratio of the PWM signal based on a battery voltage target value indicating a target value of the voltage output from the fuel cell and a measured value of the voltage measured by the voltage measuring means. It is characterized by.
  • the voltage output from the fuel cell is adjusted by the DCZDC converter and output to the load device connected in parallel.
  • a secondary battery that charges the power output from the DCZDC converter is connected in parallel to the load device. If the power to the load device is insufficient, the secondary battery is discharged to compensate for the insufficient power.
  • the voltage output from the DCZDC converter is measured by the voltage measurement means, and is output to the DCZDC converter based on the measured voltage and the battery voltage target value indicating the target value of the voltage output from the fuel cell.
  • the duty ratio of the PWM signal is calculated, and the DCZDC converter is controlled by the PWM signal with the calculated duty ratio.
  • the DC / DC converter is controlled using the voltage output from the DCZDC converter without using the voltage output from the fuel cell as a negative feedback signal in this way, the output from the fuel cell is output. Oscillation of the generated voltage is avoided and the necessary power is supplied to the load device. In addition, the power generated by the fuel cell can be stabilized. In addition, a circuit for comparing the voltage of the fuel cell and the reference value, a circuit for changing the duty ratio according to the difference between the two, and the like are not required, and the circuit can be reduced in size.
  • a power supply device includes a fuel cell, a DCZDC converter that adjusts a voltage output from the fuel cell camera and outputs it to a load device connected in parallel, and a PWM that controls the DCZDC converter.
  • Signal generating means for generating a signal and outputting it to the DCZDC converter; a secondary battery connected in parallel to the load device; and current measuring means for measuring the current output from the DCZDC converter,
  • the signal generation means calculates a duty ratio of the PWM signal based on a battery current target value indicating a target value of a current output from the fuel cell and a current measurement value measured by the current measurement means. It is characterized by calculating.
  • the voltage output from the fuel cell is adjusted by the DCZDC converter and output to the load device connected in parallel.
  • a secondary battery that charges the power output from the DCZDC converter is connected in parallel to the load device. If the power to the load device is insufficient, the secondary battery is discharged to compensate for the insufficient power.
  • DCZDC converter The output current is measured by the current measurement means, and is output to the DCZDC converter based on the measured current and the battery current target value indicating the target value of the current output from the fuel cell.
  • the duty ratio of the PWM signal is calculated, and the DCZDC converter is controlled by the PWM signal with the calculated duty ratio.
  • the DCZDC converter is controlled using the current output from the DCZDC converter without using the voltage output from the fuel cell as a negative feedback signal in this way, the output from the fuel cell is performed. Voltage oscillation is avoided and the power generated by the fuel cell can be stabilized while supplying the necessary power to the load device.
  • a circuit for comparing the voltage of the fuel cell and the reference value, a circuit for changing the duty ratio according to the difference between the two, and the like are not required, and the circuit can be reduced in size.
  • the power supply device includes a fuel cell, a DCZDC converter that adjusts a voltage at which the fuel cell power is also output, and outputs it to a load device connected in parallel, and the DCZDC Voltage measurement unit that generates a PWM signal for controlling the converter and outputs the signal to the DCZDC converter, a secondary battery connected in parallel to the load device, and a voltage output from the DCZDC converter And a current measuring means for measuring a current output from the DCZDC converter, wherein the signal generating means is a battery voltage target value indicating a target value of a voltage output from the fuel cell or an output from the fuel cell. PWM signal based on the battery current target value indicating the target value of the applied current, the voltage measurement value measured by the voltage measurement means, and the current measurement value measured by the current measurement means. The duty ratio is calculated.
  • the voltage output from the fuel cell is adjusted by the DCZDC converter and output to a load device connected in parallel.
  • a secondary battery that charges the power output from the DCZDC converter is connected in parallel to the load device. If the power to the load device is insufficient, the secondary battery is discharged to compensate for the insufficient power.
  • the voltage and current output from the DCZDC converter are measured by the voltage measuring means and the current detecting means, respectively, and the battery voltage target value or the current value indicating the target value of the measured voltage and current and the voltage output from the fuel cell.
  • the duty ratio of the PWM signal output to the DCZDC converter is calculated based on the battery current target value indicating the target value of the current output from the fuel cell, and the DCZDC converter is controlled by the PWM signal of the calculated duty ratio.
  • the voltage and current output from the DCZDC converter are used to control the DCZDC converter without using the voltage output from the fuel cell as a negative feedback signal in this way, the output from the fuel cell is used. Oscillation of the generated voltage can be avoided, and the power generated by the fuel cell can be stabilized while supplying necessary power to the load device.
  • a circuit for comparing the voltage of the fuel cell and the reference value, a circuit for changing the duty ratio according to the difference between the two, and the like are unnecessary, and the circuit can be reduced in size.
  • FIG. 1 shows a block diagram of a power supply device according to a first embodiment of the present invention.
  • FIG. 2 is a drawing for explaining a duty ratio.
  • FIG. 3 is a circuit diagram showing a configuration of a step-up DCZDC converter.
  • FIG. 4 is a circuit diagram showing a configuration of a step-down DCZDC converter.
  • FIG. 5 is a circuit diagram showing a configuration of an inverting DCZDC converter.
  • FIG. 6 is a circuit diagram showing a configuration of a step-up / step-down DCZDC converter.
  • FIG. 7 is a block diagram showing a configuration of a power supply device according to a second embodiment.
  • FIG. 8 is a block diagram showing a configuration of a power supply device according to a third embodiment.
  • FIG. 9 is a block diagram showing a configuration of a power supply device according to a fourth embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of a flyback type DCZDC converter.
  • FIG. 11 is a graph showing current-voltage characteristics, current-power characteristics, and emission rate characteristics depending on the amount of methanol (fuel) supplied by DMFC.
  • FIG. 1 shows a block diagram of a power supply device according to Embodiment 1 of the present invention.
  • the power supply device includes a fuel cell 110, a DCZDC converter 120, a switching controller 130, a voltage measuring instrument 140, a secondary battery 150, and a control unit 160.
  • the fuel cell 110 has an output terminal connected to the input terminal of the DCZDC converter 120.
  • a secondary battery 150 and a load device 200 are connected in parallel to the output terminal of the DCZDC converter 120.
  • a voltage measuring instrument 140 is connected between the positive terminal of the output terminal of the DCZDC converter 120 and the switching controller 130.
  • the fuel cell 110 is a non-fuel circulation type DMFC, and includes a battery stack 111, a fuel supply unit 112, a purification unit 113, a dilution tank 114, a methanol tank 115, and pumps 116 to 119. .
  • the fuel supply device 112 controls the pumps 116 to 119 in accordance with a command from the control unit 160 to adjust the amount of fuel and air supplied to the fuel cell 110.
  • the battery stack 111 is composed of one or a plurality of fuel cells 11la connected in series.
  • the fuel cell 11 la includes a fuel electrode (negative electrode) to which fuel is supplied and an air electrode (positive electrode) to which air is supplied.
  • the fuel electrode reacts methanol and water to produce carbon dioxide, Hydrogen ions and electrons are generated (CH OH + H 0 ⁇ CO + 6H + 6e ⁇ ).
  • the purification unit 113 converts unconsumed methanol discharged from the battery stack 111 into carbon dioxide and water, and purifies the unconsumed methanol (CH OH).
  • the methanol tank 115 stores methanol having a predetermined concentration.
  • the pump 117 supplies methanol to the dilution tank 114 under the control of the fuel supply device 112.
  • the pump 116 supplies water discharged from the battery stack 111 to the dilution tank 114 under the control of the fuel supply device 112.
  • the dilution tank 114 stores methanol diluted to a predetermined concentration.
  • the pump 1 19 supplies air to the battery stack 111 under the control of the fuel supply device 112.
  • the pump 118 supplies the methanol in the dilution tank 114 to the battery stack 111 under the control of the fuel supply device 112.
  • DCZDC converter 120 is a step-up (BOOST) type DCZDC converter, which receives a PWM signal output from switching controller 130 and outputs a voltage force output from fuel cell 110 to a predetermined battery voltage target value. Thus, the voltage output from the fuel cell 110 is boosted and output to the load device 200.
  • BOOST step-up
  • the voltage measuring instrument 140 is composed of an AZD converter, measures the voltage Vout output from the DCZDC converter 120, and outputs it to the switching controller 130.
  • the secondary battery 150 is charged with the surplus power when the power output from the DCZDC converter 120 is excessive, and supplies the shortage power to the load device 200 when the power output from the DCZDC converter 120 is insufficient. Thereby, the secondary battery 150 absorbs a sudden change in the electric power of the load device 200.
  • the switching controller 130 is also configured with a CPU and a PWM signal generator, etc., and the battery voltage target value Vt set by the control unit 160 and the voltage output from the DCZDC converter 120 measured by the voltage measuring device 140.
  • Vout the calculation shown in equation (1) is performed to calculate the duty ratio D of the PWM signal output to the DCZDC converter 120, and the PWM signal with the calculated duty ratio D is generated.
  • D [%] (1 -Vt / Vout) X 100 [%] ⁇ ⁇ ⁇ (1)
  • FIG. 2 is a drawing for explaining the duty ratio.
  • the duty ratio indicates the ratio of the high level period Ton of the pulse signal to the period ⁇ of the pulse signal.
  • the period T of the PWM signal is constant.
  • the period T of the PWM signal is constant. The period T is set in advance to an optimum value in consideration of the magnitude of the ripple current, the size of the coil, and the like.
  • the load device 200 is also configured as a portable electronic device such as a notebook personal computer or a mobile phone.
  • the control unit 160 controls the fuel supply device 12 so that a fixed amount of methanol is supplied from the dilution tank 114 to the battery stack 111, and the battery voltage target set in advance according to the amount of methanol supplied.
  • the value Vt is output to the switching controller 130.
  • control unit 160 stores a target value determination table in which a supply amount of methanol and a predetermined battery voltage target value are associated with the supply amount (not shown).
  • the battery voltage target value Vt is determined with reference to this target value determination table.
  • FIG. 3 is a circuit diagram showing a configuration of the step-up DCZDC converter.
  • the step-up DCZDC converter includes a coil Ll, two switches Ql and Q2, and an inverting circuit II.
  • One end of the coil L1 is connected to the positive electrode of the input terminal of the fuel cell 110, and the other end is connected to the switch Q1.
  • the switch Q2 has one end connected to the S coil L1 and the switch Q1, and the other end connected to the positive electrode of the secondary battery 150.
  • the switches Ql and Q2 have a control terminal to which a PWM signal is input.
  • the switches Q1 and Q2 are configured as a transistor transistor such as a bipolar transistor or a field effect transistor.
  • the switches Q1 and Q2 are turned on when a high level signal is input to the control terminal, and are turned off when a low level signal is input.
  • bipolar transistors are used as switches Ql and Q2.
  • the base terminal is the control terminal
  • the gate is the control terminal.
  • the inverting circuit II inverts the logic of the PWM signal by setting the high level period of the PWM signal to low level and the low level period to noise level, and outputs the inverted signal to the switch Q2. Therefore, the switches Q1 and Q2 are complementarily turned on and off so that when one transistor is on, the other transistor is off.
  • the step-up DCZDC converter configured as described above stores energy in the coil L1 when the switch Q1 is on, and superimposes the energy stored when the switch Q1 is off on the energy of the fuel cell 110. Output. As a result, the voltage output from the fuel cell 110 is boosted.
  • the step-up DCZDC converter 120 shown in FIG. 3 boosts the voltage Vin input from the fuel cell 110 to the voltage Vout and outputs it to the load device 200.
  • the boost ratio is determined by the equation (1-1). It is done.
  • Vout / Vin l / (l -D) ⁇ ⁇ ⁇ ⁇ (1-1)
  • equation (1 1) is obtained for duty ratio D
  • equation (1 2) is obtained.
  • the voltage Vout output from the DCZDC converter 120 is measured without using the voltage output from the fuel cell 110 as a negative feedback signal, and the duty ratio is determined. Since D is calculated, it is avoided that the voltage output from the fuel cell becomes unstable due to oscillation or the like, and necessary power is supplied to the load device 200. Meanwhile, the power generated by the fuel cell can be stabilized. In addition, since the A / D converter is used as the voltage measuring instrument 140 and the CPU is used as the switching controller 130, the number of parts can be reduced.
  • a conventional step-up DCZDC converter uses a rectifier such as a diode as switch Q2.
  • a rectifier such as a diode
  • equation (11) will not hold, and the voltage output from fuel cell 110 will remain constant even if duty ratio D is determined according to equation (1). It becomes impossible to control.
  • a power supply device according to Embodiment 2 will be described.
  • the overall configuration of the power supply device according to the second embodiment will be described with reference to FIG. 1 because the overall configuration is the same as that of the power supply device according to the first embodiment.
  • the power supply apparatus according to the second embodiment is characterized in that a step-down (BOOST) DCZDC converter is used as the DCZDC converter 120 in the power supply apparatus according to the first embodiment.
  • Fig. 4 is a circuit diagram showing the configuration of a step-down DC / DC converter.
  • the step-down DC / DC converter includes a coil Ll, two switches Q1 and Q2, and an inverting circuit II.
  • FIG. 4 the same elements as those shown in FIG. 3 are denoted by the same reference numerals and description thereof is omitted.
  • One end of the switch Q1 is connected to the output terminal on the positive electrode side of the fuel cell 110, and the other end is connected to the switch Q2 and the coil L1.
  • One end of the coil L1 is connected to the positive electrode of the secondary battery 150.
  • One end of the switch Q2 is connected to the output terminal on the negative electrode side of the fuel cell 110 and the negative electrode of the secondary battery 150.
  • the inverting circuit II is connected between the switching controller 130 and the control terminal of the switch Q2. Switches Q1 and Q2 are turned on and off complementarily by the PWM signal in the same way as switches Q1 and Q2 shown in Fig. 3.
  • the step-down DCZDC converter configured as described above is an electric power input from the fuel cell 110. The pressure is reduced and output to the load device 200 side.
  • the switching controller 130 calculates the duty ratio D of the PWM signal by performing the calculation of Equation (2).
  • Vout indicates the voltage Vout measured by the voltage measuring instrument 140.
  • the battery voltage target value Vt set by the control unit 160 is shown.
  • the PWM signal duty ratio D is calculated by the equation (2) and the switch Q2 is connected, so that the step-down DC / DC comparator is connected.
  • the same effect as the power supply device according to the first embodiment can be obtained.
  • FIG. 5 is a circuit diagram showing the configuration of an inverting DCZDC converter.
  • the inverting DCZDC converter includes two switches Ql and Q2, a coil Ll, and an inverting circuit II.
  • One end of the switch Q1 is connected to the positive electrode of the fuel cell 110, and the other end is connected to the coil L1 and the switch Q2.
  • One end of the switch Q2 is connected to the positive electrode of the secondary battery 150.
  • One end of the coil L1 is connected to the output terminal on the negative electrode side of the fuel cell 110 and the negative electrode of the secondary battery 150.
  • the inverting circuit II is connected between the control terminal of the switch Q2 and the switching controller 130.
  • Vout indicates the voltage measured by the voltage measuring instrument 140.
  • Vt represents the battery voltage target value Vt set by the control unit 160.
  • the PWM signal duty ratio D is calculated by the equation (3) and the switch Q2 is connected, so that the step-down DC / DC comparator is connected.
  • the same effect as the power supply device according to the first embodiment can be obtained.
  • the power supply device according to Embodiment 4 will be described.
  • the power supply device according to the fourth embodiment will be described with reference to FIG. 1 because the overall configuration is the same as that of the power supply device according to the first embodiment.
  • the power supply device according to the third embodiment is characterized in that a step-up / step-down (SEPIC) type DCZDC converter is used as the DCZDC converter 120 in the power supply device according to the first embodiment.
  • SEPIC step-up / step-down
  • FIG. 6 is a circuit diagram showing a configuration of a step-up / step-down DCZDC converter.
  • the buck-boost DC / DC converter includes two switches Ql and Q2, coils LI and L2, a capacitor Cl, and an inverting circuit II.
  • One end of the coil L1 is connected to the positive electrode of the fuel cell 110, and the other end is connected to the switch Q1 and the capacitor C1.
  • Capacitor C 1 is connected to force S coil L2 and switch Q 2 at one end.
  • One end of each of the switch Q1 and the coil L2 is connected to the output terminal on the negative electrode side of the fuel cell 110 and the negative electrode of the secondary battery 150.
  • the inverting circuit II is connected between the control terminal of the switch Q2 and the switching controller 130.
  • Switch Ql, Q2 is PW
  • the switching controller 130 has an equation
  • Vout is the voltage Vout measured by the voltage measuring instrument 140.
  • Vt represents the battery voltage target value Vt set by the control unit 160.
  • the PWM signal duty is calculated by the equation (4). Since the tee ratio D is calculated and the switch Q2 is connected, when the step-up / step-down DC / DC converter is used, the same effect as the power supply device according to the first embodiment can be obtained.
  • FIG. 7 is a block diagram showing the configuration of the power supply device according to the fifth embodiment.
  • the power supply device according to the fifth embodiment is different from the power supply device according to the first embodiment in that the current measurement device 170 is provided instead of the voltage measurement device 140, the current lout output from the DCZDC converter 120, and a predetermined fuel According to the battery current target value It of the battery 110, the duty ratio D of the PWM signal is calculated.
  • the same components as those of the power supply device according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the fuel cell 110 shows only the battery stack 111, and the other members are not shown.
  • the current measuring instrument 170 is connected between the positive output terminal of the DCZDC converter 120 and the switching controller 130a, measures the current output from the DCZDC converter 120, and outputs the current to the switching controller 130a.
  • the current measuring device 170 is configured by an AZD converter or the like.
  • the DCZDC converter 120 includes the step-up DCZDC converter shown in FIG.
  • the controller 160a sets a predetermined battery current target value It according to the amount of methanol supplied to the battery stack 111, and outputs it to the switching controller 130a.
  • a storage device (not shown) is provided for storing a target value determination table in which a supply amount of methanol and a battery current target value It that is predetermined with respect to the supply amount are associated with each other.
  • the battery current target value It is determined with reference to the target value determination table.
  • a current that makes the operating point of the fuel cell 110 the maximum power point is stored as the battery current target value It.
  • the fuel cell 110 outputs while supplying necessary power to the load device 200.
  • the fuel cell 110 can be controlled so that the current lin becomes the battery current target value It, and the operating point of the fuel cell 110 can be stabilized and the generated power of the fuel cell can be stabilized.
  • the power conversion efficiency ⁇ is usually 1 or less, and indicates the power loss of the DCZDC converter 120. Causes of power loss include power loss due to switch and coil resistance.
  • the power conversion efficiency r? Can also be specified by a function using the current lin output from the fuel cell 110 as an argument.
  • equation (5-1) is transformed into equation (5-2).
  • Iout / lin ⁇ X (Vout / Vin) ⁇ ⁇ ⁇ (5— 2)
  • Equation (5-3) is obtained.
  • equation (5-4) is obtained.
  • the duty ratio D is calculated by the equation (5) and the switch Q2 is connected, so the step-up DC / DC converter is employed.
  • the duty ratio is calculated using the current lin output from the DCZDC converter 120, the same effect as in the first embodiment can be obtained.
  • the power supply device according to the fifth embodiment is characterized in that the step-down DC / DC converter shown in FIG. 4 is used as the DC / DC converter 120 in the power supply device according to the first embodiment.
  • the switching controller 130a calculates the duty ratio D of the PWM signal by performing the calculation of Expression (6).
  • the PWM signal duty ratio D is calculated by the equation (6) and the switch Q2 is connected, so that the step-down DC / DC comparator is obtained. Even when the duty ratio D is calculated using the current lout output from the DCZDC converter 120, the same effect as that of the power supply device according to the first embodiment can be obtained.
  • the power supply device according to the seventh embodiment will be described with reference to FIG. 7 because it has the same overall configuration as the power supply device according to the fifth embodiment.
  • the power supply device according to the seventh embodiment is characterized in that the inverting DCZDC converter shown in FIG. 5 is used as the DCZDC converter 120 in the power supply device according to the fifth embodiment.
  • the switching controller 130a calculates the duty ratio D of the PWM signal by performing the calculation of Expression (7).
  • the duty ratio D of the PWM signal is calculated by the equation (7) and the switch Q2 is connected, so that the inverting DC / DC comparator is connected. Even when the duty ratio D is calculated using the current lout output from the DCZDC converter 120, the same effect as that of the power supply device according to the first embodiment can be obtained.
  • the power supply device according to the eighth embodiment Since the power supply apparatus has the same overall configuration as the power supply apparatus according to the fifth embodiment, it will be described with reference to FIG.
  • the power supply device according to the eighth embodiment is characterized in that the step-up / step-down DC / DC converter shown in FIG. 6 is used as the DC / DC converter 120 in the power supply device according to the fifth embodiment.
  • the switching controller 130a calculates the duty ratio D of the PWM signal by performing the calculation of Expression (8).
  • Equation (8) is derived from Equation (5-1) and Equation (4) in the same manner as Equation (5).
  • the PWM signal duty ratio D is calculated by the equation (6) and the switch Q2 is connected, so that the step-up / step-down DC / DC converter is used. Even when the duty ratio D is calculated using the current lout output from the DCZDC converter 120, the same effect as that of the power supply device according to the first embodiment can be obtained.
  • the power supply device according to the ninth embodiment is characterized in that the duty ratio D is further calculated with respect to the power supply device according to the fifth embodiment, taking into account the power conversion efficiency r ?.
  • FIG. 8 is a block diagram showing the overall configuration of the power supply device according to the ninth embodiment.
  • the same components as those in FIG. 8 are identical to FIG. 8 and the same components as those in FIG. 8.
  • the switching controller 130b includes a 7? Calculator 13 lb.
  • the calculation unit 131b calculates the power conversion efficiency r? Of the DC ZDC converter 120.
  • the power conversion efficiency r? Can be expressed by a predetermined function having the battery current target value It as an argument. Accordingly, the 7? Calculation unit 131b calculates the power conversion efficiency 7? By substituting the battery current target value It set by the control unit 160b into a predetermined function.
  • the 7? Calculation unit 13 lb stores a conversion table indicating the relationship between the battery current target value It and the power conversion efficiency 7? With respect to the battery current target value It in a storage device (not shown).
  • the power conversion efficiency r? May be specified using a table.
  • the DCZDC converter 120 is composed of the step-up DCZDC converter shown in FIG.
  • the switching controller 130b is a battery current target set by the controller 160b. Using the value It and the current lout measured by the current measuring device 170, the calculation of Equation (9) is performed to calculate the duty ratio D of the PWM signal.
  • the transistor since the duty ratio D of the PWM signal is calculated in consideration of the power conversion efficiency 7 ?, in addition to the effect exhibited by the first embodiment, the transistor In addition, a PWM signal in which the power loss due to the coil resistance is corrected can be generated, and the power generated by the fuel cell can be made more stable.
  • the power supply device according to the tenth embodiment will be described with reference to FIG. 8 because it has the same overall configuration as the power supply device according to the ninth embodiment.
  • the power supply device according to the tenth embodiment is characterized in that the step-down DC / DC converter shown in FIG. 4 is used as the DC / DC converter 120 in the power supply device according to the ninth embodiment.
  • the switching controller 130b calculates the duty ratio D of the PWM signal by performing the calculation of Equation (10).
  • the PWM signal duty ratio D is calculated by Equation (10) and the switch Q2 is connected, so that the step-down DC / DC comparator
  • the same effects as those of the power supply device according to the ninth embodiment can be obtained.
  • the power supply device according to the eleventh embodiment will be described with reference to FIG. 8 because it has the same overall configuration as the power supply device according to the ninth embodiment.
  • the power supply apparatus according to the tenth embodiment is characterized in that the inverting DCZDC converter shown in FIG. 5 is used as the DCZDC converter 120 in the power supply apparatus according to the ninth embodiment.
  • the inverting DC / DC comparator is used. The same effects as those of the power supply device according to the ninth embodiment can be obtained.
  • the power supply device according to the twelfth embodiment will be described with reference to FIG. 8 because it has the same overall configuration as the power supply device according to the ninth embodiment.
  • the power supply device according to the twelfth embodiment is characterized in that, in the power supply device according to the ninth embodiment, the step-up / step-down DC / DC converter shown in FIG.
  • the switching controller 130b calculates the duty ratio D of the PWM signal by performing the calculation of Expression (12).
  • the PWM signal duty ratio D is calculated by the equation (12) and the switch Q2 is connected, so that the step-up / step-down DCZDC converter is used.
  • the same effect as that of the power supply device according to the ninth embodiment can be obtained.
  • the power supply apparatus according to Embodiment 13 employs a flyback DCZDC converter as the DCZDC converter.
  • FIG. 9 is a block diagram showing a configuration of the power supply device according to the thirteenth embodiment.
  • the power supply device includes a voltage measuring instrument 140 and a current measuring instrument 170. Since the connection relationship and functions of both measuring instruments are the same as those in Embodiments 1 and 2, description thereof is omitted.
  • the switching controller 130c uses the voltage Vout measured by the voltage measuring instrument 140, the current lout measured by the current measuring instrument 170, and the battery voltage target value Vt set by the control section 160c. Calculate equation (13) !, calculate PWM signal duty ratio D To do.
  • D shows the duty ratio D.
  • L represents the inductance of the coil L1 on the primary side of the flyback DC / DC converter shown in Fig. 10.
  • T indicates the period of the PWM signal.
  • FIG. 10 is a circuit diagram showing a configuration of a flyback type DCZDC converter.
  • the flyback DCZDC converter shown in Fig. 10 includes a transformer T, two switches Ql and Q2, and an inverting circuit II.
  • One end of the coil L1 on the primary side of the transformer T is connected to the positive electrode of the fuel cell 110, and the other end is connected to the switch Q1.
  • One end of the switch Q1 is connected to the negative electrode of the fuel cell 110.
  • the secondary coil L2 of the transformer T has one end connected to the switch Q2 and the other end connected to the negative electrode of the secondary battery 150.
  • the coils L1 and L2 are arranged so as to have a positive polarity.
  • switch Q2 One end of switch Q2 is connected to the positive electrode of secondary battery 150.
  • the inverting circuit II is connected between the switching controller 130c and the control terminal of the switch Q2.
  • Switching controller 130c is connected to the control terminal of switch Q1.
  • Switches Q1 and Q2 receive the PWM signal and turn on and off in a complementary manner.
  • the flyback type DCZDC converter configured in this manner stores energy in the transformer T when the switch Q1 is turned on, and outputs the energy stored in the transformer T when the switch Q1 is turned off. .
  • the duty ratio D is calculated using equation (13) and the switch Q2 is provided, so that the DC / DC converter 12 Even when a flyback type DC / DC converter is used as 0, the same effect as in the first embodiment can be obtained.
  • the power supply device according to the fourteenth embodiment has the same configuration as the power supply device according to the thirteenth embodiment, and will be described with reference to FIGS.
  • the power supply device according to the fourteenth embodiment is characterized in that the duty ratio D is calculated using the battery current target value It instead of the battery voltage target value Vt.
  • the switching controller 130c includes the voltage Vout measured by the voltage measuring instrument 140, The current lout measured by the current measuring device 170 and the battery current target value It set by the controller 160c are used to calculate V and calculate the duty ratio D of the PWM signal. To do.
  • D shows the duty ratio D.
  • L in Fig. 10 indicates the inductance of coil L1.
  • T indicates the period of the PWM signal.
  • the duty ratio D of the PWM signal is calculated by the equation (14) and the switch Q2 is connected. Similar effects can be achieved.
  • the power supply device according to the fifteenth embodiment has the same configuration as that of the power supply device according to the thirteenth embodiment and will be described with reference to FIGS.
  • the power supply device according to the fourteenth embodiment is characterized in that the duty ratio D is calculated in consideration of the power conversion efficiency r ?.
  • the switching controller 130c uses the voltage Vout measured by the voltage meter 140, the current lout measured by the current meter 170, and the battery current target value It set by the control unit 160c. Calculate Equation (15)! And calculate the PWM signal duty ratio D.
  • D [%] (r? X It / lout) X [(2 XLX Iout / (Vout XT))] 1/2 X 100 (15) where D represents the duty ratio D. L represents the inductance of coil L1 shown in Fig. 10. T indicates the period of the PWM signal.
  • the duty ratio D of the PWM signal is calculated by the equation (15) and the switch Q2 is connected. Similar effects can be achieved.
  • the power supply device is a DCZDC converter that uses a transformer as a forward type, a two-switch forward type, an active clamp forward type, a half bridge type, a push-pull type, a full bridge type, a phase shift type, And DCZDC converters such as ZVT type may be adopted.
  • the power supply device adjusts the voltage output from the fuel cell, the fuel cell camera, and outputs the DCZDC converter that outputs the parallelly connected load device, and the PWM signal that controls the DCZDC converter.
  • Signal generating means for outputting to the DCZDC converter, a secondary battery connected in parallel to the load device, and voltage measuring means for measuring the voltage output from the DCZDC converter, the signal generating means
  • the duty ratio of the PWM signal is calculated based on the battery voltage target value indicating the target value of the voltage output from the fuel battery and the measured voltage value measured by the voltage measuring means.
  • the voltage output from the fuel cell is adjusted by the DCZDC converter and output to the load device connected in parallel.
  • a secondary battery that charges the power output from the DCZDC converter is connected in parallel to the load device. If the power to the load device is insufficient, the secondary battery is discharged to compensate for the insufficient power.
  • the voltage output from the DCZDC converter is measured by the voltage measurement means, and is output to the DCZDC converter based on the measured voltage and the battery voltage target value indicating the target value of the voltage output from the fuel cell.
  • the duty ratio of the PWM signal is calculated, and the DCZDC converter is controlled by the PWM signal with the calculated duty ratio.
  • the DC / DC converter is controlled using the voltage output from the DCZDC converter without using the voltage output from the fuel cell as a negative feedback signal, the output from the fuel cell is output. Oscillation of the generated voltage is avoided, and the power generated by the fuel cell can be stabilized while supplying the necessary power to the load device.
  • a circuit for comparing the voltage of the fuel cell and the reference value, a circuit for changing the duty ratio according to the difference between the two, and the like are not required, and the circuit can be reduced in size.
  • the signal generation unit performs the calculation shown in the equation (1) using the battery voltage target value and the voltage measured by the voltage measurement unit.
  • D represents the duty ratio.
  • Vt indicates a battery voltage target value.
  • Vout indicates the voltage measured by the voltage measuring means.
  • the power generated by the fuel cell can be stabilized.
  • the DCZDC converter is a step-down DCZDC converter
  • the signal generation means uses the battery voltage target value and the voltage measured by the voltage measurement means
  • the duty ratio of the PWM signal may be calculated by performing the calculation shown in (2).
  • D represents the duty ratio.
  • Vt indicates a battery voltage target value.
  • Vout indicates the voltage measured by the voltage measuring means.
  • the power generated by the fuel cell can be stabilized.
  • the DCZDC converter is an inverting DCZDC converter
  • the signal generation unit uses the battery voltage target value and the voltage measured by the voltage measurement unit
  • the duty ratio of the PWM signal may be calculated by performing the calculation shown in (3).
  • D represents the duty ratio.
  • Vt indicates a battery voltage target value.
  • Vout indicates the voltage measured by the voltage measuring means.
  • the duty ratio of the PWM signal is calculated by equation (3).
  • the DCZDC converter is a step-up / step-down DCZDC converter
  • the signal generation unit uses the battery voltage target value and the voltage measured by the voltage measurement unit.
  • the duty ratio of the PWM signal may be calculated by performing the calculation shown in Equation (4).
  • D represents the duty ratio.
  • Vt indicates a battery voltage target value.
  • Vout indicates the voltage measured by the voltage measuring means.
  • the power supply device includes a fuel cell, a DCZDC converter that adjusts a voltage output from the fuel cell cable and outputs the same to a load device connected in parallel, and a PWM that controls the DCZDC converter.
  • Signal generating means for generating a signal and outputting it to the DCZDC converter; a secondary battery connected in parallel to the load device; and current measuring means for measuring the current output from the DCZDC converter,
  • the signal generation means calculates a duty ratio of the PWM signal based on a battery current target value indicating a target value of a current output from the fuel cell and a current measurement value measured by the current measurement means. It is characterized by calculating.
  • the voltage output from the fuel cell is adjusted by the DCZDC converter and output to the load device connected in parallel.
  • a secondary battery that charges the power output from the DCZDC converter is connected in parallel to the load device. If the power to the load device is insufficient, the secondary battery is discharged to compensate for the insufficient power.
  • DCZDC converter The output current is measured by the current measurement means, and is output to the DCZDC converter based on the measured current and the battery current target value indicating the target value of the current output from the fuel cell.
  • the duty ratio of the PWM signal is calculated, and the DCZDC converter is controlled by the PWM signal with the calculated duty ratio.
  • the DCZDC converter is controlled using the current output from the DCZDC converter without using the voltage output from the fuel cell as a negative feedback signal in this way, the output from the fuel cell is output. Voltage oscillation is avoided and the power generated by the fuel cell can be stabilized while supplying the necessary power to the load device.
  • a circuit for comparing the voltage of the fuel cell and the reference value, a circuit for changing the duty ratio according to the difference between the two, and the like are not required, and the circuit can be reduced in size.
  • the DCZDC converter is a step-up DCZDC converter
  • the signal generation unit calculates the battery current target value and the current measured by the current measurement unit. It is preferable to calculate the duty ratio of the PWM signal by performing the calculation shown in Equation (5).
  • the duty ratio of the PWM signal is calculated by equation (5).
  • the power generated by the fuel cell can be stabilized.
  • the DCZDC converter is a step-down DCZDC converter
  • the signal generation unit includes the battery current target value and the current measured by the current measurement unit.
  • the duty ratio of the PWM signal may be calculated by performing the calculation shown in Equation (6).
  • the duty ratio of the PWM signal is calculated by Equation (6).
  • the step-down DCZDC converter When the step-down DCZDC converter is used, the power generated by the fuel cell can be stabilized.
  • the DCZDC converter is an inverting DCZDC converter
  • the signal generation means includes the battery current target value and the current measurement means.
  • the duty ratio of the PWM signal may be calculated by performing the calculation shown in Equation (7) using the measured current.
  • the duty ratio of the PWM signal is calculated by Equation (7).
  • the inverting DCZDC converter When the inverting DCZDC converter is used, the power generated by the fuel cell can be stabilized.
  • the DCZDC converter is a step-up / step-down DCZDC converter
  • the signal generation unit uses the battery current target value and the current measured by the current measurement unit
  • the duty ratio of the PWM signal may be calculated by performing the calculation shown in Equation (8).
  • the duty ratio of the PWM signal is calculated by Equation (8).
  • the power generated by the fuel cell can be stabilized.
  • the DCZDC converter is a step-up DCZDC converter
  • the signal generation means calculates power conversion efficiency indicating power loss of the DCZDC converter based on the battery current target value. Then, using the calculated power conversion efficiency, the battery current target value, and the current measured by the current measuring means, the duty ratio of the PWM signal is obtained by performing the calculation shown in Equation (9). It may be calculated.
  • D represents the duty ratio.
  • indicates power conversion efficiency.
  • lout indicates the current measured by the current measuring means. It indicates the battery current target value.
  • the duty ratio of the PWM signal is calculated using Equation (9) that takes into account the power conversion efficiency of the DCZDC converter.
  • Equation (9) takes into account the power conversion efficiency of the DCZDC converter.
  • the DCZDC converter is a step-down DCZDC converter
  • the signal generation means calculates power conversion efficiency indicating power loss of the DCZDC converter based on the battery current target value. Then, using the calculated power conversion efficiency, the battery current target value, and the current measured by the current measuring means, the duty ratio of the PWM signal is obtained by performing the calculation shown in Equation (10). It may be calculated.
  • D represents the duty ratio.
  • indicates power conversion efficiency.
  • lout indicates the current measured by the current measuring means. It indicates the battery current target value.
  • the DCZDC converter is an inverting DCZDC converter
  • the signal generation means calculates power conversion efficiency indicating power loss of the DCZDC converter based on the battery current target value. Then, using the calculated power conversion efficiency, the battery current target value, and the current measured by the current measuring means, the duty ratio of the PWM signal is obtained by performing the calculation shown in Equation (11). It may be calculated.
  • D represents the duty ratio.
  • indicates power conversion efficiency.
  • lout indicates the current measured by the current measuring means. It indicates the battery current target value.
  • the DCZDC converter is a step-up / step-down DCZDC converter
  • the signal generating means is a power converter indicating a power loss of the DCZDC converter.
  • the conversion efficiency is calculated based on the battery current target value, and the calculation shown in Expression (12) is performed using the calculated power conversion efficiency, the battery current target value, and the current measured by the current measuring unit. By doing so, the duty ratio of the PWM signal may be calculated.
  • D represents the duty ratio.
  • indicates power conversion efficiency.
  • lout indicates the current measured by the current measuring means. It indicates the battery current target value.
  • the step-up DCZDC converter includes a coil having one end connected to the positive electrode of the fuel cell, and a first terminal connected between the other end of the coil and the negative electrode of the fuel cell.
  • the second switching element is connected instead of the rectifying element at the location where the rectifying element such as a diode is connected.
  • the voltage output from the fuel cell can be kept constant without changing.
  • the step-down DC / DC converter includes a first switching element having one end connected to a positive electrode of the fuel cell, the other end of the first switching element, and the fuel cell.
  • the second switching element connected between the negative electrodes of the first switching element, the coil connected between the other end of the first switching element and the positive electrode of the secondary battery, and the logic of the PWM signal is inverted.
  • an inverting circuit for outputting to the switching element, wherein the first and second switching elements are preferably turned on and off in a complementary manner in accordance with the PWM signal.
  • the second switching element is connected in place of the rectifier element at the location where the rectifier element such as a diode is connected, so that the current flowing through the coil is It can change continuously without interruption, and the voltage output from the fuel cell can be kept constant.
  • the inverting DCZDC converter includes a first switching element having one end connected to the positive electrode of the fuel cell, the other end of the first switching element, and a negative electrode of the fuel cell.
  • a coil connected in between, a second switching element connected between the other end of the first switching element and the positive electrode of the secondary battery, and the second signal by inverting the logic of the PWM signal. It is preferable that the first and second switching elements are complementarily turned on and off according to the PWM signal.
  • the second switching element is connected instead of the rectifying element at the location where the rectifying element such as a diode is connected. It can change continuously without interruption, and the voltage output from the fuel cell can be kept constant.
  • the step-up / step-down DCZDC converter includes a first coil having one end connected to the positive electrode of the fuel cell, and the other end of the first coil and the negative electrode of the fuel cell.
  • a first switching element connected to the first coil, a capacitor having one end connected to the other end of the first coil, a second coil connected between the other end of the capacitor and the negative electrode of the fuel cell, A second switching element connected between the other end of the capacitor and the positive electrode of the secondary battery; and an inverting circuit that inverts the logic of the PWM signal and outputs the inverted signal to the second switching element.
  • the first and second switching elements are complementarily turned on and off according to the PWM signal.
  • the second switching element is connected in place of the rectifying element such as a diode, so that the current flowing in the coil is interrupted.
  • the voltage output from the fuel cell can be kept constant.
  • the power supply device adjusts the voltage output from the fuel cell and the fuel cell camera.
  • a DCZDC converter that outputs to a load device connected in parallel, a signal generation means that generates a PWM signal for controlling the DCZDC converter and outputs the PWM signal to the DCZDC converter, and a secondary that is connected in parallel to the load device A battery, voltage measuring means for measuring a voltage output from the DCZDC converter, and current measuring means for measuring a current output from the DCZDC converter, wherein the signal generating means is output from the fuel cell.
  • the duty ratio of the PWM signal is calculated based on the measured value of the measured current.
  • the voltage output from the fuel cell is adjusted by the DCZDC converter and output to the load device connected in parallel.
  • a secondary battery that charges the power output from the DCZDC converter is connected in parallel to the load device. If the power to the load device is insufficient, the secondary battery is discharged to compensate for the insufficient power.
  • the voltage and current output from the DCZDC converter are measured by the voltage measuring means and the current detecting means, respectively, and the battery voltage target value or the current value indicating the target value of the measured voltage and current and the voltage output from the fuel cell.
  • the duty ratio of the PWM signal output to the DCZDC converter is calculated based on the battery current target value indicating the target value of the current output from the fuel cell, and the DCZDC converter is controlled by the PWM signal of the calculated duty ratio.
  • the voltage and current output from the DCZDC converter are controlled by using the voltage and current output from the DCZDC converter without using the voltage output from the fuel cell as a negative feedback signal, the output from the fuel cell is output. Oscillation of the generated voltage can be avoided, and the power generated by the fuel cell can be stabilized while supplying necessary power to the load device.
  • a circuit for comparing the voltage of the fuel cell and the reference value, a circuit for changing the duty ratio according to the difference between the two, and the like are unnecessary, and the circuit can be reduced in size.
  • the DCZDC converter is a flyback type DCZDC converter including a transformer, and the signal generation means is measured by the voltage measurement means. It is preferable to calculate the duty ratio of the PWM signal by performing the calculation shown in Equation (13) using the measured voltage, the current measured by the current measuring means, and the battery voltage target value. Better ,.
  • D represents the duty ratio.
  • L represents the inductance of the primary coil composing the transformer.
  • Vt indicates a battery voltage target value.
  • Vout indicates the voltage measured by the voltage measuring means.
  • lout indicates the current measured by the current measuring means.
  • T indicates the period of the PWM signal.
  • the DCZDC converter is a flyback type DCZDC converter including a transformer, and the signal generation means is measured by the voltage and current measurement means measured by the voltage measurement means. It is preferable to calculate the duty ratio of the PWM signal by performing the calculation shown in the equation (14) using the measured current and the battery current target value indicating the target value of the current output from the fuel cell.
  • D represents the duty ratio.
  • L represents the inductance of the primary coil of the transformer. It indicates the battery current target value.
  • Vout indicates the voltage measured by the voltage measuring means.
  • lout indicates the current measured by the current measuring means.
  • T indicates the period of the PWM signal.
  • the DCZDC converter is a flyback type DCZDC converter including a transformer
  • the signal generation means includes a power conversion indicating the battery voltage target value and the power loss of the DCZDC converter.
  • the efficiency is calculated based on the battery current target value, and the calculation shown in Equation (15) is performed using the calculated power conversion efficiency. Further, the duty ratio of the PWM signal may be calculated.
  • indicates power conversion efficiency.
  • L represents the inductance of the primary coil of the transformer. It indicates the battery current target value.
  • Vout indicates the voltage measured by the voltage measuring means.
  • lout indicates the current measured by the current measuring means.
  • T indicates the period of the PWM signal.
  • the flyback DCZDC converter has one end of a primary side coil connected to the positive electrode of the fuel cell and one end of a secondary side coil connected to the negative electrode of the secondary battery.
  • a transformer a first switching element connected between the other end of the primary coil and the negative electrode of the fuel cell, between one end of the secondary coil and the positive electrode of the secondary battery.
  • a second switching element connected thereto; and an inverting circuit that inverts the logic of the PWM signal and outputs the inverted signal to the second switching element.
  • the first and second switching elements are complementary in accordance with the PWM signal. It is preferable to turn it on and off.
  • the second switching element is connected instead of the rectifying element at the location where the rectifying element such as a diode is connected!
  • the current flowing through the coil changes continuously without interruption, and the output voltage of the fuel cell power can be made constant.
  • the fuel cell is preferably a fuel non-circulation type direct methanol fuel cell.
  • the operating point can be stabilized and the generated power can be stabilized with respect to the direct methanol fuel cell of non-circulation type suitable for miniaturization. It is possible to provide a small power supply useful for portable electronic devices such as the above. Industrial applicability
  • the power supply device which can stabilize the electric power generated of a fuel cell can be provided.

Abstract

 燃料電池から出力される電圧または電流を負帰還信号として用いずに、燃料電池の発電電力を安定化することができる電源装置を提供する。  燃料電池110と、PWM信号を基に、燃料電池110から出力される電圧を調節し、負荷装置200に出力するDC/DCコンバータ120と、PWM信号を生成してDC/DCコンバータ120に出力するスイッチングコントローラ130と、DC/DCコンバータ120から出力された電圧Voutを計測する電圧計測器140と、負荷装置200に並列接続された二次電池150とを備え、DC/DCコンバータ120は、電圧Voutと、電池電圧目標値Vtとを用いて所定の演算を行いPWM信号のデューティー比を算出する。

Description

電源装置
技術分野
[0001] 本発明は、燃料電池を備える電源装置に関する。
背景技術
[0002] 近年、ノート型コンピュータや携帯電話等の電子機器の電源として、長時間連続し て電力を供給することができる燃料電池が注目されている。燃料電池には、様々な種 類のものが開発されているが、小型化が要求されるノート型コンピュータ等の携帯型 の電子機器の電源としては、燃料を改質器により改質することなく直接供給するタイ プの燃料電池、例えば、ダイレクトメタノール型の燃料電池(以下、「DMFC」と称す る。)が有望視されている。
[0003] また、 DMFCには、供給したメタノールのうち未使用の燃料電池を回収して再利用 する燃料循環型と、未使用のメタノールを再利用しな!ヽ燃料非循環型とが存在する。 燃料循環型は、動作点を安定させ、安定した発電電力を容易に得ることが可能であ る力 未使用のメタノールを回収するための回収機構 (循環ポンプ等)が必要となるた め構成が複雑ィ匕し、装置が大型化するという欠点がある。一方、燃料非循環型は、回 収機構が不要であり装置の小型化を図り得るが、有毒物質であるメタノールを大量に 排出することは好ましくなぐまた、発電効率を高めるという観点からも、供給したメタノ ールをほとんど使 、切る、すなわち完全燃焼させることが肝要となる。
[0004] 図 11は、 DMFCのメタノール (燃料)の供給量による電流電圧特性、電流電力特 性、及び排出率特性を示したグラフである。図 11において、縦軸は DMFCの出力電 圧 (V)、出力電力 (W)、及び排出率 (%)を示し、横軸は DMFCの出力電流 (A)を 示している。 C11〜C13は燃料の供給量が各々 0. lcc/min, 0. 2cc/min, 0. 3 cc/minの場合の電流電圧特性曲線を示している。 C21〜C23は、燃料の供給量 が各々 0. 1 cc/min, 0. 2ccZmin、及び 0. 3ccZminの場合の電流電力特性曲 線を示している。 C31は、燃料の供給量が 0. 3ccZminの場合の出力電流と排出率 との関係を示している。なお、排出率は、供給する燃料に対して排出される燃料の比 率を百分率で示したものである。
[0005] 図 11に示すように、燃料の供給量が高いほど、高い出力電力を得ることが可能とな つていることが分かる。また、 C11〜C13に示すように、出力電流が増大するにつれ て、出力電圧が減少していることが分かる。更に、 C31に示すように、出力電流が増 大するにつれて排出率が減少して ヽることが分かる。
[0006] 以下、燃料の供給量が 0. 3mmZminの場合を例に挙げて説明する。 C13に示す ように、出力電流が A3に到達するまでは、電圧は緩やかに減少している力 出力電 流が A3を超えると、電圧は急激に減少していることが分かる。一方、 C31に示すよう に、出力電流力 3に到達すると、供給された燃料がほぼ使い切られていることが分 かる。そのため、燃料を完全燃焼させるという観点力もは、燃料電池の動作点を出力 電流が A3より大きな点に設定することが好ましいが、そうすると、出力電流が僅かに 増大しただけで、出力電圧が急激に減少し、負荷装置に安定した出力電圧を供給 することができなくなってしまう。
[0007] 従って、燃料非循環型では、電力最大点 P付近に動作点を設定すると共に、この動 作点を変動させないようなシビアな制御が要求される。特許文献 1では、燃料電池の 出力側に接続された DCZDCコンバータと、 DCZDCコンバータの出力側に接続さ れた二次電池と、 DCZDCコンバータに PWM信号を供給するスィッチコントローラと を備え、スィッチコントローラが、燃料電池の出力電圧と基準値との差分を基に、 PW M信号のデューティー比を算出する燃料電池電圧発生装置が開示されている。
[0008] また、特許文献 2では、燃料電池、 DCコンバータ、二次電池、及び DCコンバータ を制御するマイクロプロセッサーを備え、燃料電池の電圧が最大電力を含む所定の 範囲内になるように DCコンバータに流れる電流の最大値を変化させる電源装置が 開示されている。
特許文献 1 :USP 6, 590, 370 B1
特許文献 2 :USP 5, 714, 874
発明の開示
[0009] し力しながら、特許文献 1に示す燃料電池電圧発生装置及び 2に示す電源装置は 、いずれも、燃料電池から出力される電圧又は電流、すなわち、 DCZDCコンバータ に入力される電圧又は電流を負帰還信号としているため、負荷装置が要求する電圧 が急激に増大して DC/DCコンバータのゲインが急激に増大した場合、燃料電池か ら出力される電圧が発振する等して発電電力が不安定になるという課題を有している 。また、燃料電池の電圧と基準値を比較する回路や、両者の差分に応じてデューティ 一比を変化させる回路等が必要となり、比較的回路規模が大きくなるという課題も有 している。
[0010] 本発明は、燃料電池から出力される電圧又は電流を用いずに、燃料電池の発電電 力を安定ィ匕することができる電源装置を提供することを目的とする。
[0011] そこで、本発明による電源装置は、燃料電池と、前記燃料電池力も出力される電圧 を調節し、並列接続された負荷装置に出力する DCZDCコンバータと、前記 DCZ DCコンバータを制御する PWM信号を生成して前記 DCZDCコンバータに出力す る信号生成手段と、前記負荷装置に並列接続された二次電池と、前記 DCZDCコン バータから出力される電圧を計測する電圧計測手段とを備え、前記信号生成手段は 、前記燃料電池から出力される電圧の目標値を示す電池電圧目標値と、前記電圧 計測手段により計測された電圧の計測値とを基に、前記 PWM信号のデューティー 比を算出することを特徴とする。
[0012] この構成によれば、燃料電池から出力された電圧は DCZDCコンバータにより調 整されて並列接続された負荷装置に出力される。また、負荷装置には DCZDCコン バータから出力される電力を充電する二次電池が並列接続されており、負荷装置に 対する電力が不足する場合、二次電池は放電して不足する電力を補う。 DCZDCコ ンバータから出力される電圧は電圧計測手段により計測され、計測された電圧と、燃 料電池から出力される電圧の目標値を示す電池電圧目標値とを基に、 DCZDCコ ンバータに出力される PWM信号のデューティー比が算出され、算出されたデューテ ィー比の PWM信号により DCZDCコンバータが制御される。これにより、負荷装置 は必要とする電力が得られると共に、燃料電池は動作点が一定に保たれる。
[0013] このように燃料電池から出力される電圧を負帰還信号として用いずに、 DCZDCコ ンバータから出力される電圧を用いて、 DC/DCコンバータを制御しているため、燃 料電池から出力される電圧の発振が回避され、負荷装置に必要な電力を供給しつ つ、燃料電池の発電電力を安定させることができる。また、燃料電池の電圧と基準値 とを比較する回路や両者の差分に応じてデューティー比を変化させる回路等が不要 となり、回路の小型化を図ることができる。
[0014] また、本発明による電源装置は、燃料電池と、前記燃料電池カゝら出力される電圧を 調節し、並列接続された負荷装置に出力する DCZDCコンバータと、前記 DCZDC コンバータを制御する PWM信号を生成して前記 DCZDCコンバータに出力する信 号生成手段と、前記負荷装置に並列接続された二次電池と、前記 DCZDCコンパ ータから出力される電流を計測する電流計測手段とを備え、前記信号生成手段は、 前記燃料電池から出力される電流の目標値を示す電池電流目標値と、前記電流計 測手段により計測された電流の計測値とを基に、前記 PWM信号のデューティー比を 算出することを特徴とする。
[0015] この構成によれば、燃料電池から出力された電圧は DCZDCコンバータにより調 整されて並列接続された負荷装置に出力される。また、負荷装置には DCZDCコン バータから出力される電力を充電する二次電池が並列接続されており、負荷装置に 対する電力が不足する場合、二次電池は放電して不足する電力を補う。 DCZDCコ ンバータカ 出力される電流は電流計測手段により計測され、計測された電流と、燃 料電池から出力される電流の目標値を示す電池電流目標値とを基に、 DCZDCコ ンバータに出力される PWM信号のデューティー比が算出され、算出されたデューテ ィー比の PWM信号により DCZDCコンバータが制御される。これにより、負荷装置 は必要とする電力が得られると共に、燃料電池は動作点が一定に保たれる。
[0016] このように燃料電池から出力される電圧を負帰還信号として用いずに、 DCZDCコ ンバータから出力される電流を用いて、 DCZDCコンバータを制御しているため、燃 料電池から出力される電圧の発振が回避され、負荷装置に必要な電力を供給しつ つ、燃料電池の発電電力を安定させることができる。また、燃料電池の電圧と基準値 とを比較する回路や両者の差分に応じてデューティー比を変化させる回路等が不要 となり、回路の小型化を図ることができる。
[0017] また、本発明により電源装置は、燃料電池と、前記燃料電池力も出力される電圧を 調節し、並列接続された負荷装置に出力する DCZDCコンバータと、前記 DCZDC コンバータを制御する PWM信号を生成して前記 DCZDCコンバータに出力する信 号生成手段と、前記負荷装置に並列接続された二次電池と、前記 DCZDCコンパ ータから出力される電圧を計測する電圧計測手段と、前記 DCZDCコンバータから 出力される電流を計測する電流計測手段とを備え、前記信号生成手段は、前記燃料 電池から出力される電圧の目標値を示す電池電圧目標値又は前記燃料電池から出 力される電流の目標値を示す電池電流目標値と、前記電圧計測手段により計測され た電圧の計測値と、前記電流計測手段により計測された電流の計測値とを基に、前 記 PWM信号のデューティー比を算出することを特徴とする。
[0018] この構成によれば、燃料電池から出力された電圧は DCZDCコンバータにより調 整されて並列接続された負荷装置に出力される。また、負荷装置には DCZDCコン バータから出力される電力を充電する二次電池が並列接続されており、負荷装置に 対する電力が不足する場合、二次電池は放電して不足する電力を補う。 DCZDCコ ンバータから出力される電圧及び電流は各々電圧計測手段及び電流検出手段によ り計測され、計測された電圧及び電流と、燃料電池から出力される電圧の目標値を 示す電池電圧目標値又は燃料電池から出力される電流の目標値を示す電池電流 目標値とを基に、 DCZDCコンバータに出力される PWM信号のデューティー比が 算出され、算出されたデューティー比の PWM信号により DCZDCコンバータが制御 される。これにより、負荷装置は必要とする電力が得られると共に、燃料電池は動作 点が一定に保たれる。
[0019] このように燃料電池から出力される電圧を負帰還信号として用いずに、 DCZDCコ ンバータから出力される電圧及び電流を用いて、 DCZDCコンバータを制御して ヽ るため、燃料電池から出力される電圧の発振が回避され、負荷装置に必要な電力を 供給しつつ、燃料電池の発電電力を安定させることができる。また、燃料電池の電圧 と基準値とを比較する回路や両者の差分に応じてデューティー比を変化させる回路 等が不要となり、回路の小型化を図ることができる。
図面の簡単な説明
[0020] [図 1]本発明の実施の形態 1による電源装置のブロック図を示している。
[図 2]デューティー比を説明するための図面である。 [図 3]昇圧型の DCZDCコンバータの構成を示す回路図である。
[図 4]降圧型の DCZDCコンバータの構成を示す回路図である。
[図 5]反転型の DCZDCコンバータの構成を示す回路図である。
[図 6]昇降圧型の DCZDCコンバータの構成を示す回路図である。
[図 7]実施の形態 2による電源装置の構成を示すブロック図である。
[図 8]実施の形態 3による電源装置の構成を示すブロック図である。
[図 9]実施の形態 4による電源装置の構成を示すブロック図である。
[図 10]フライバック型の DCZDCコンバータの構成を示す回路図である。
[図 11]DMFCのメタノール (燃料)の供給量による電流電圧特性、電流電力特性、及 び排出率特性を示したグラフである。 発明を実施するための最良の形態
[0021] 本発明の実施をするための最良の形態を具体的に示した実施の形態について、以 下、図面を用いて説明する。
[0022] (実施の形態 1)
図 1は、本発明の実施の形態 1による電源装置のブロック図を示している。図 1に示 すように電源装置は、燃料電池 110、 DCZDCコンバータ 120、スイッチングコント口 ーラ 130、電圧計測器 140、二次電池 150、及び制御部 160を備えている。
[0023] 燃料電池 110は、出力端子が DCZDCコンバータ 120の入力端子に接続されて いる。 DCZDCコンバータ 120の出力端子には二次電池 150及び負荷装置 200が 並列に接続されて ヽる。 DCZDCコンバータ 120の出力端子の正極側及びスィッチ ングコントローラ 130間には電圧計測器 140が接続されている。
[0024] 燃料電池 110は、燃料非循環型の DMFCであり、電池スタック 111、燃料供給装 置 112、浄ィ匕部 113、希釈タンク 114、メタノールタンク 115、及びポンプ 116〜119 を備えている。燃料供給装置 112は、制御部 160からの指令に従って、ポンプ 116 〜119を制御し、燃料電池 110に供給される燃料及び空気の量を調節する。
[0025] 電池スタック 111は、 1又は直列接続された複数の燃料電池セル 11 laから構成さ れて ヽる。燃料電池セル 11 laは燃料が供給される燃料極 (負極)及び空気が供給さ れる空気極 (正極)を備える。燃料極は、メタノールと水とを反応させ、二酸化炭素、 水素イオン、及び電子を生成する(CH OH + H 0→CO +6H +6e―)。空気極
3 2 2
は、燃料極で生成された水素イオンと空気とを反応させ、水を生成する(3Z20 +6
2
H+ + 6e"→3H 0)。この反応により生じるギブスエネルギーは電気工ネルギに変換
2
され、燃料電池 110から直流電流が出力される。
[0026] 浄ィ匕部 113は、電池スタック 111から排出される未消費のメタノールを二酸ィ匕炭素 及び水に変化させ、未消費のメタノール(CH OH)を浄化する。
3
[0027] メタノールタンク 115は、所定濃度のメタノールを貯蔵する。ポンプ 117は、燃料供 給装置 112の制御の下、希釈タンク 114にメタノールを供給する。ポンプ 116は、燃 料供給装置 112の制御の下、電池スタック 111から排出される水を希釈タンク 114に 供給する。希釈タンク 114は、所定濃度に希釈されたメタノールを貯蔵する。ポンプ 1 19は、燃料供給装置 112に制御の下、空気を電池スタック 111に供給する。ポンプ 1 18は、燃料供給装置 112の制御の下、希釈タンク 114のメタノールを電池スタック 11 1に供給する。
[0028] DCZDCコンバータ 120は、昇圧型(BOOST型)の DCZDCコンバータであり、 スイッチングコントローラ 130から出力される PWM信号を受け、燃料電池 110が出力 した電圧力 予め定められた電池電圧目標値となるように燃料電池 110から出力され た電圧を昇圧して負荷装置 200に出力する。
[0029] 電圧計測器 140は、 AZDコンバータから構成され、 DCZDCコンバータ 120が出 力する電圧 Voutを計測し、スイッチングコントローラ 130に出力する。二次電池 150 は、 DCZDCコンバータ 120が出力する電力が余る場合、余りの電力により充電され 、 DCZDCコンバータ 120が出力する電力が不足する場合、不足する電力を負荷装 置 200に供給する。これにより、二次電池 150は、負荷装置 200の電力の急激な変 動を吸収する。
[0030] スイッチングコントローラ 130は、 CPU及び PWM信号生成器等力も構成され、制 御部 160により設定された電池電圧目標値 Vtと、電圧計測器 140により計測された DCZDCコンバータ 120から出力される電圧 Voutとを用いて式( 1 )に示す演算を行 い、 DCZDCコンバータ 120に出力する PWM信号のデューティー比 Dを算出し、算 出したデューティー比 Dの PWM信号を生成する。 [0031] D[%]= (1 -Vt/Vout) X 100[%] · · · (1)
[0032] 図 2は、デューティー比を説明するための図面である。図 2に示すように、デューティ 一比は、パルス信号の周期 Τに対するパルス信号のハイレベル期間 Tonの比率を示 すものである。実施の形態 1では、 PWM信号の周期 Tは一定とする。なお、以下に 示す実施の形態 2〜 15も PWM信号の周期 Tは一定とする。また、周期 Tは、リプル 電流の大きさや、コイルの大きさ等を考慮して、最適な値が予め設定されている。
[0033] 負荷装置 200は、ノート型のパーソナルコンピュータ、携帯電話等の携帯型の電子 機器力も構成される。制御部 160は、希釈タンク 114から一定量のメタノールが電池 スタック 111に供給されるように燃料供給装置 12を制御すると共に、供給されるメタノ ールの量に応じて予め定められた電池電圧目標値 Vtをスイッチングコントローラ 130 に出力する。
[0034] 詳細には、制御部 160は、メタノールの供給量と、供給量に対して予め定められた 電池電圧目標値とが対応づけられた目標値決定テーブルを記憶する記憶装置(図 略)を備えており、この目標値決定テーブルを参照して、電池電圧目標値 Vtを決定 する。
[0035] この目標値決定テーブルには、図 11に示すメタノールの供給量毎に特定される電 流電圧特性曲線において、動作点を電力最大点 Pとするような電圧が電池電圧目標 値として記憶されている。なお、この電池電圧目標値は、実験等により得られたもの である。
[0036] 図 3は、昇圧型の DCZDCコンバータの構成を示す回路図である。図 3に示すよう に昇圧型の DCZDCコンバータは、コイル Ll、 2個のスィッチ Ql, Q2、及び反転回 路 IIを備えている。コイル L1は、一端が燃料電池 110の入力端子の正極に接続され 、他端がスィッチ Q1に接続されている。スィッチ Q2は、一端力 Sコイル L1及びスィッチ Q1に接続され、他端が二次電池 150の正極に接続されている。スィッチ Ql, Q2は PWM信号が入力される制御端子を備える。
[0037] スィッチ Q1及び Q2は、バイポーラトランジスタ、電界効果型トランジスタ等のトラン ジスタカ 構成され、制御端子にハイレベルの信号が入力されるとオンとなり、ローレ ベルの信号が入力されるとオフとなる。なお、スィッチ Ql, Q2としてバイポーラトラン ジスタが採用される場合は、ベース端子が制御端子となり、電界効果型トランジスタ が採用される場合はゲートが制御端子となる。
[0038] 反転回路 IIは、 PWM信号のハイレベルの期間をローレベルとしローレベルの期間 をノヽィレベルとして、 PWM信号の論理を反転させてスィッチ Q2に出力する。従って 、スィッチ Q1及び Q2は一方のトランジスタがオンのとき他方のトランジスタがオフとな るように相補的にオン ·オフする。
[0039] このように構成された昇圧型の DCZDCコンバータは、スィッチ Q1がオンのときに 、コイル L1にエネルギを蓄え、スィッチ Q1がオフのときに蓄えたエネルギを燃料電池 110のエネルギに重畳させて出力する。これにより、燃料電池 110から出力された電 圧は昇圧される。
[0040] 次に、式(1)について説明する。図 3に示す昇圧型の DCZDCコンバータ 120は、 燃料電池 110から入力される電圧 Vinを、電圧 Voutに昇圧して負荷装置 200に出 力するが、その昇圧比は式(1— 1)によって定められる。
[0041] Vout/Vin= l/ (l -D) · · · (1 - 1)
[0042] 式(1 1)をデューティー比 Dについて求めると、式(1 2)が得られる。
[0043] D[%] = (l -Vin/Vout) Χ 100· · · (1 - 2)
[0044] 背景技術に示したように、燃料電池 110の動作点を変動させることなく発電電力を 取り出すためには、燃料電池の電圧を一定に制御する必要がある。なお、電圧 Vout は二次電池 150の起電力とその充放電電流によって定まる。
[0045] そして、式(1 2)の Vinを燃料電池の電池電圧目標値 Vtに置き換えると式(1)が 得られる。従って、式(1)により電圧 Voutと燃料電池の電池電圧目標値 Vtとによつ て、デューティー比 Dが算出された PWM信号を DCZDCコンバータ 120に出力す ると、燃料電池 110からの電圧 Vinは、電池電圧目標値 Vtになるように制御され、燃 料電池 110の動作点を安定させることができる。
[0046] このように実施の形態 1による電源装置によれば、燃料電池 110から出力される電 圧を負帰還信号として用いずに、 DCZDCコンバータ 120から出力される電圧 Vout を計測してデューティー比 Dを算出して 、るため、燃料電池から出力される電圧が発 振等により不安定になることが回避され、負荷装置 200に対して必要な電力を供給し つつ、燃料電池の発電電力を安定化させることができる。また、電圧計測器 140とし て A/Dコンバータを用い、スイッチングコントローラ 130として CPUを用いて!/、るた め、部品点数を削減することができる。
[0047] ところで、従来の昇圧型の DCZDCコンバータにお!/、ては、スィッチ Q2としてダイ オード等の整流素子が用いられていた。この場合、コイル L1に流れる電流が小さくな ると、コイル L1に流れる電流が連続的に変化しなくなる。コイル L1に流れる電流が連 続的に変化しなくなると、式(1 1)が成立せず、式(1)に従って、デューティー比 D を決定しても、燃料電池 110から出力される電圧を一定に制御できなくなる。
[0048] 一方、図 3に示すように、スィッチ Q2としてスイッチング素子を採用すると、コイル L1 に流れる電流が連続的に変化する結果、式(1)により算出されたデューティー比 Dに よる PWM信号を用いれば、燃料電池 110から出力される電圧を一定に制御すること ができる。
[0049] (実施の形態 2)
次に、実施の形態 2による電源装置について説明する。なお、実施の形態 2による 電源装置の全体構成は、実施の形態 1による電源装置と全体構成を同一とするため 図 1を用いて説明する。実施の形態 2による電源装置は、実施の形態 1による電源装 置において、 DCZDCコンバータ 120として、降圧型(BOOST型)の DCZDCコン バータを用いたことを特徴として 、る。図 4は降圧型の DC/DCコンバータの構成を 示す回路図である。降圧型の DC/DCコンバータは、コイル Ll、 2個のスィッチ Q1, Q2、及び反転回路 IIを備えている。なお、図 4において図 3に示す素子と同一のも のは同一の符号を付し説明を省略する。
[0050] スィッチ Q1は、一端が燃料電池 110の正極側の出力端子に接続され、他端がスィ ツチ Q2及びコイル L1に接続されている。コイル L1は、一端が二次電池 150の正極 に接続されている。スィッチ Q2は、一端が燃料電池 110の負極側の出力端子及び 二次電池 150の負極に接続されている。反転回路 IIは、スイッチングコントローラ 13 0及びスィッチ Q2の制御端子間に接続されている。スィッチ Q1及び Q2は図 3で示 すスィッチ Q1及び Q2と同様にして、 PWM信号により相補的にオン'オフする。この ように構成された降圧型の DCZDCコンバータは、燃料電池 110から入力された電 圧を降圧して負荷装置 200側に出力する。
[0051] DCZDCコンバータ 120として降圧型の DCZDCコンバータを用いた場合、スイツ チングコントローラ 130は、式(2)の演算を行い PWM信号のデューティー比 Dを算 出する。
[0052] D[%] = (Vt/Vout) X 100 · · · (2)
但し、 Dはデューティー比を示す。 Voutは電圧計測器 140が計測した電圧 Voutを 示す。制御部 160により設定された電池電圧目標値 Vtを示す。
[0053] このように実施の形態 2による電源装置によれば、式(2)により PWM信号のデュー ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、降圧型の DC/DCコンパ一 タを用いた場合において、実施の形態 1による電源装置と同様の効果を奏することが できる。
[0054] (実施の形態 3)
次に、実施の形態 3による電源装置について説明する。なお、実施の形態 3による 電源装置の全体構成は、実施の形態 1による電源装置と同一構成であるため図 1を 用いて説明する。実施の形態 3による電源装置は、実施の形態 1による電源装置に おいて、 DCZDCコンバータ 120として、反転型(INVERTER型)の DCZDCコン バータを用いたことを特徴としている。図 5は、反転型の DCZDCコンバータの構成 を示す回路図である。なお、図 5において、図 3と同一の素子は同一の符号を用いて 説明を省略する。図 5に示すように反転型の DCZDCコンバータは、 2個のスィッチ Ql, Q2、コイル Ll、及び反転回路 IIを備えている。
[0055] スィッチ Q1の一端は燃料電池 110の正極に接続され、他端はコイル L1及びスイツ チ Q2に接続されている。スィッチ Q2は一端が二次電池 150の正極に接続されてい る。コイル L1は、一端が燃料電池 110の負極側の出力端子及び二次電池 150の負 極に接続されている。反転回路 IIは、スィッチ Q2の制御端子及びスイッチングコント ローラ 130間に接続されている。
[0056] DCZDCコンバータ 120として反転型の DCZDCコンバータを用いた場合、スイツ チングコントローラ 130は、式(3)に示す演算により PWM信号のデューティー比 Dを 算出する。 [0057] D[%] = (lZ(l—VtZVout》X 100· · · (3)
但し、 Voutは電圧計測器 140により計測された電圧を示す。 Vtは制御部 160により 設定された電池電圧目標値 Vtを示す。
[0058] このように実施の形態 3による電源装置によれば、式(3)により PWM信号のデュー ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、降圧型の DC/DCコンパ一 タを用いた場合において、実施の形態 1による電源装置と同様の効果を奏することが できる。
[0059] (実施の形態 4)
次に、実施の形態 4による電源装置について説明する。なお、実施の形態 4による 電源装置は、実施の形態 1による電源装置と全体構成を同一とするため図 1を用い て説明する。実施の形態 3による電源装置は、実施の形態 1による電源装置におい て、 DCZDCコンバータ 120として、昇降圧型(SEPIC型)の DCZDCコンバータを 用いたことを特徴として 、る。
[0060] 図 6は昇降圧型の DCZDCコンバータの構成を示す回路図である。図 6に示すよう に昇降圧型の DC/DCコンバータは、 2個のスィッチ Ql, Q2、コイル LI, L2、コン デンサ Cl、及び反転回路 IIを備えている。
[0061] コイル L1の一端は燃料電池 110の正極に接続され、他端はスィッチ Q1及びコンデ ンサ C 1に接続されて!、る。コンデンサ C 1は一端力 Sコイル L2及びスィッチ Q 2に接続 されている。スィッチ Q1及びコイル L2は共に一端が燃料電池 110の負極側の出力 端子及び二次電池 150の負極に接続されている。反転回路 IIはスィッチ Q2の制御 端子及びスイッチングコントローラ 130間に接続されている。スィッチ Ql, Q2は PW
M信号により相補的にオン ·オフする。
[0062] 昇降圧型の DCZDCコンバータを用いた場合、スイッチングコントローラ 130は、式
(4)に示す演算により PWM信号のデューティー比 Dを算出する。
[0063] D[%] = (l/ (l +Vt/Vout)) X 100[%] - · · (4)
但し、 Voutは電圧計測器 140により計測された電圧 Voutを示す。 Vtは制御部 160 により設定された電池電圧目標値 Vtを示す。
[0064] このように実施の形態 4による電源装置によれば、式 (4)により PWM信号のデュー ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、昇降圧型の DC/DCコンパ ータを用いた場合において、実施の形態 1による電源装置と同様の効果を奏すること ができる。
[0065] (実施の形態 5)
次に、本発明の実施の形態 5による電源装置について説明する。図 7は、実施の形 態 5による電源装置の構成を示すブロック図である。実施の形態 5による電源装置は 、実施の形態 1による電源装置に対して、電圧計測器 140に代えて電流計測器 170 を備え、 DCZDCコンバータ 120から出力された電流 loutと、予め定められた燃料 電池 110の電池電流目標値 Itとに従って、 PWM信号のデューティー比 Dを算出す ることを特徴としている。なお、図 7において、実施の形態 1による電源装置と同一の ものは同一の符号を付して説明を省略する。また、燃料電池 110は電池スタック 111 のみ示し、他の部材は図示を省略している。
[0066] 電流計測器 170は、 DCZDCコンバータ 120の正極側の出力端子及びスィッチン グコントローラ 130a間に接続され、 DCZDCコンバータ 120から出力される電流を計 測し、スイッチングコントローラ 130aに出力する。なお、電流計測器 170は AZDコン バータ等カゝら構成されている。
[0067] DCZDCコンバータ 120は図 3に示す昇圧型の DCZDCコンバータから構成され ている。制御部 160aは、電池スタック 111に対して供給されるメタノールの量に応じ て予め定められた電池電流目標値 Itを設定し、スイッチングコントローラ 130aに出力 する。詳細には、メタノールの供給量と、供給量に対して予め定められた電池電流目 標値 Itとが対応付けられた目標値決定テーブルを記憶する記憶装置 (図略)を備え ており、この目標値決定テーブルを参照して、電池電流目標値 Itを決定する。この目 標値決定テーブルには、実施の形態 1の電源装置と同様、燃料電池 110の動作点 を電力最大点とするような電流が電池電流目標値 Itとして記憶されて 、る。
[0068] スイッチングコントローラ 130aは、電流計測器 170により計測された電流 loutと、制 御部 160aにより設定された電池電流目標値 Itとを用いて、式(5)に示す演算を行い 、 DCZDCコンバータ 120に出力する PWM信号のデューティー比 Dを算出し、算出 したデューティー比 Dの PWM信号を生成する。 [0069] D[%] = (1 -lout/It) X 100[%] · · · (5)
[0070] そして、式(5)によって、算出されたデューティー比 Dの PWM信号を DCZDCコン バータ 120に出力すると、負荷装置 200に対して必要な電力を供給しつつ、燃料電 池 110が出力する電流 linを電池電流目標値 Itとなるように燃料電池 110を制御する ことができ、燃料電池 110の動作点を安定させ、燃料電池の発電電力を安定化させ ることがでさる。
[0071] 次に、式(5)について説明する。 DCZDCコンバータ 120の電力変換効率 7?は式
(5— 1)により定義される。
[0072] η =出力電力 Ζ入力電力 = (Vout X lout) / (Vin X lin) · · · (5—1)
[0073] 電力変換効率 ηは、通常 1以下であり、 DCZDCコンバータ 120の電力損失を示 す。電力損失が生じる原因としては、スィッチ、コイルの抵抗による電力損失等が挙 げられる。なお、電力変換効率 r?は燃料電池 110から出力される電流 linを引数とす る関数によって特定することもできる。
[0074] そして、式(5— 1)を式(5— 2)に変形する。
[0075] Iout/lin= η X (Vout/Vin) · · · (5— 2)
[0076] そして、式(5— 2)の右辺の¥01^7 ^1に式(1 1)を代入し、両辺を 100倍すると
、式(5— 3)が得られる。
[0077] D (%) = (l -Iout/ r? X lin) X 100 · · · (5— 3)
[0078] そして、式(5— 3)の電流 linを電池電流目標値 Itに置き換えると式(5— 4)が得ら れる。
[0079] D (%) = (l -Iout/ r? X lt) X 100 · · · (5— 4)
[0080] そして、式(5— 4)において 7? = 1とすると式(5)が得られる。
[0081] このように実施の形態 5による電源装置によれば、式(5)によりデューティー比 Dを 算出し、かつ、スィッチ Q2を接続しているため、昇圧型の DC/DCコンバータを採 用し、かつ、 DCZDCコンバータ 120から出力される電流 linを用いてデューティー 比を算出した場合であっても、実施の形態 1と同様の効果を奏することができる。
[0082] (実施の形態 6)
次に、実施の形態 6による電源装置について説明する。なお、実施の形態 6による 電源装置は、実施の形態 5による電源装置と全体構成を同一とするため図 7を用い て説明する。実施の形態 5による電源装置は、実施の形態 1による電源装置におい て、 DC/DCコンバータ 120として、図 4に示す降圧型の DC/DCコンバータを用い たことを特徴としている。
[0083] スイッチングコントローラ 130aは、式(6)の演算を行い PWM信号のデューティー比 Dを算出する。
[0084] D[%]= (Vout/It) X 100· · · (6)
[0085] このように実施の形態 6による電源装置によれば、式(6)により PWM信号のデュー ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、降圧型の DC/DCコンパ一 タを用い、かつ、 DCZDCコンバータ 120から出力される電流 loutを用いてデューテ ィー比 Dを算出した場合であっても、実施の形態 1による電源装置と同様の効果を奏 することができる。
[0086] (実施の形態 7)
次に、実施の形態 7による電源装置について説明する。なお、実施の形態 7による 電源装置は、実施の形態 5による電源装置と全体構成を同一とするため図 7を用い て説明する。実施の形態 7による電源装置は、実施の形態 5による電源装置におい て、 DCZDCコンバータ 120として、図 5に示す反転型の DCZDCコンバータを用い たことを特徴としている。
[0087] スイッチングコントローラ 130aは、式(7)の演算を行い PWM信号のデューティー比 Dを算出する。
[0088] D[%]= (1/ (1 -lout/It) ) X 100[%] · · · (7)
[0089] このように実施の形態 7による電源装置によれば、式(7)により PWM信号のデュー ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、反転型の DC/DCコンパ一 タを用い、かつ、 DCZDCコンバータ 120から出力される電流 loutを用いてデューテ ィー比 Dを算出した場合であっても、実施の形態 1による電源装置と同様の効果を奏 することができる。
[0090] (実施の形態 8)
次に、実施の形態 8による電源装置について説明する。なお、実施の形態 8による 電源装置は、実施の形態 5による電源装置と全体構成を同一とするため図 7を用い て説明する。実施の形態 8による電源装置は、実施の形態 5による電源装置におい て、 DC/DCコンバータ 120として、図 6に示す昇降圧型の DC/DCコンバータを 用いたことを特徴として 、る。
[0091] スイッチングコントローラ 130aは、式(8)の演算を行い PWM信号のデューティー比 Dを算出する。
[0092] D[%] = (1/ (1 + Vout/It) ) X 100 · · · (8)
なお、式 (8)は、式(5)と同様にして、式(5— 1)及び式 (4)から導出される。
[0093] このように実施の形態 8による電源装置によれば、式(6)により PWM信号のデュー ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、昇降圧型の DC/DCコンパ ータを用い、かつ、 DCZDCコンバータ 120から出力される電流 loutを用いてデュ 一ティー比 Dを算出した場合であっても、実施の形態 1による電源装置と同様の効果 を奏することができる。
[0094] (実施の形態 9)
次に、実施の形態 9による電源装置について説明する。実施の形態 9による電源装 置は、実施の形態 5による電源装置に対して、更に電力変換効率 r?を考慮に入れて デューティー比 Dを算出することを特徴とする。
[0095] 図 8は実施の形態 9による電源装置の全体構成を示すブロック図である。なお、図 8 において図 7と同一のものは同一の符号を付して説明を省略する。
[0096] スイッチングコントローラ 130bは、 7?算出部 13 lbを備える。 算出部 131bは、 DC ZDCコンバータ 120の電力変換効率 r?を算出する。電力変換効率 r?は、電池電流 目標値 Itを引数とする所定の関数によって表すことができる。従って、 7?算出部 131 bは、制御部 160bにより設定された電池電流目標値 Itを所定の関数に代入し、電力 変換効率 7?を算出する。なお、 7?算出部 13 lbは、電池電流目標値 Itと、電池電流 目標値 Itに対する電力変換効率 7?との関係を示す変換テーブルを記憶装置 (図略) に記憶させておき、この変換テーブルを用いて電力変換効率 r?を特定してもよい。
[0097] DCZDCコンバータ 120は、図 3に示す昇圧型の DCZDCコンバータから構成さ れる。スイッチングコントローラ 130bは、制御部 160bにより設定された電池電流目標 値 Itと電流計測器 170により測定された電流 loutとを用いて式(9)の演算を行い、 P WM信号のデューティー比 Dを算出する。
[0098] D (%) = (l -Iout/ r? X lt) X 100· · · (9)
[0099] このように実施の形態 9によれば、電力変換効率 7?を考慮して、 PWM信号のデュ 一ティー比 Dが算出されているため、実施の形態 1が奏する効果に加え、トランジスタ やコイルの抵抗による電力損失が補正された PWM信号を生成することができ、燃料 電池の発電電力をより安定させることができる。
[0100] (実施の形態 10)
次に、実施の形態 10による電源装置について説明する。なお、実施の形態 10によ る電源装置は、実施の形態 9による電源装置と全体構成を同一とするため図 8を用い て説明する。実施の形態 10による電源装置は、実施の形態 9による電源装置におい て、 DC/DCコンバータ 120として、図 4に示す降圧型の DC/DCコンバータを用い たことを特徴としている。
[0101] スイッチングコントローラ 130bは、式(10)の演算を行い PWM信号のデューティー 比 Dを算出する。
[0102] D[%]= (Vout/ It) X 100· · · (10)
[0103] このように実施の形態 10による電源装置によれば、式(10)により PWM信号のデュ 一ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、降圧型の DC/DCコンパ ータを用いた場合において、実施の形態 9による電源装置と同様の効果を奏すること ができる。
[0104] (実施の形態 11)
次に、実施の形態 11による電源装置について説明する。なお、実施の形態 11によ る電源装置は、実施の形態 9による電源装置と全体構成を同一とするため図 8を用い て説明する。実施の形態 10による電源装置は、実施の形態 9による電源装置におい て、 DCZDCコンバータ 120として、図 5に示す反転型の DCZDCコンバータを用い たことを特徴としている。
[0105] スイッチングコントローラ 130bは、式(11)の演算を行い PWM信号のデューティー 比 Dを算出する。 [0106] D[%] = ( 1 / ( 1 - lout/ 7? It) ) X 100 · · · ( 11 )
[0107] このように実施の形態 11による電源装置によれば、式(11)により PWM信号のデュ 一ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、反転型の DC/DCコンパ ータを用いた場合において、実施の形態 9による電源装置と同様の効果を奏すること ができる。
[0108] (実施の形態 12)
次に、実施の形態 12による電源装置について説明する。なお、実施の形態 12によ る電源装置は、実施の形態 9による電源装置と全体構成を同一とするため図 8を用い て説明する。実施の形態 12による電源装置は、実施の形態 9による電源装置におい て、 DC/DCコンバータ 120として、図 6に示す昇降圧型の DC/DCコンバータを 用いたことを特徴として 、る。
[0109] スイッチングコントローラ 130bは、式(12)の演算を行い PWM信号のデューティー 比 Dを算出する。
[0110] D[%]= (l/ (l +Vout/ 7? It) ) X 100· · · (12)
[0111] このように実施の形態 12による電源装置によれば、式(12)により PWM信号のデュ 一ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、昇降圧型の DCZDCコン バータを用いた場合において、実施の形態 9による電源装置と同様の効果を奏する ことができる。
[0112] (実施の形態 13)
次に、実施の形態 13による電源装置について説明する。実施の形態 13による電 源装置は、 DCZDCコンバータとしてフライバック式の DCZDCコンバータを採用し たことを特徴とする。
[0113] 図 9は、実施の形態 13による電源装置の構成を示すブロック図である。図 9に示す ように電源装置は、電圧計測器 140及び電流計測器 170を備えている。両計測器の 接続関係及び機能は実施の形態 1及び 2と同一であるため説明を省略する。
[0114] スイッチングコントローラ 130cは、電圧計測器 140により計測された電圧 Voutと、 電流計測器 170により計測された電流 loutと、制御部 160cにより設定された電池電 圧目標値 Vtとを用 、て式( 13)の演算を行!、、 PWM信号のデューティー比 Dを算出 する。
[0115] D (%) = (Vout/Vt) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100 · · · ( 13)
但し、 Dはデューティー比 Dを示す。 Lは図 10に示すフライバック型の DC/DCコン バータの一次側のコイル L1のインダクタンスを示す。 Tは PWM信号の周期を示す。
[0116] 図 10は、フライバック型の DCZDCコンバータの構成を示す回路図である。図 10 に示すフライバック型の DCZDCコンバータは、トランス T、 2個のスィッチ Ql, Q2、 反転回路 IIを備えている。トランス Tの一次側のコイル L1は一端が燃料電池 110の 正極に接続され、他端がスィッチ Q1に接続されている。スィッチ Q1は一端が燃料電 池 110の負極に接続されている。トランス Tの二次側のコイル L2は、一端がスィッチ Q2に接続され、他端が二次電池 150の負極に接続されている。コイル L1及び L2は 加極性となるように配置されて 、る。
[0117] スィッチ Q2は一端が二次電池 150の正極に接続されている。反転回路 IIは、スィ ツチングコントローラ 130c及びスィッチ Q2の制御端子間に接続されている。スィッチ Q1の制御端子にはスイッチングコントローラ 130cが接続されている。スィッチ Q1及 び Q2は、 PWM信号を受け、相補的にオン'オフする。
[0118] このように構成されたフライバック型の DCZDCコンバータは、スィッチ Q1がオンす ると、トランス Tにエネルギが蓄えられ、スィッチ Q1がオフすると、トランス Tに蓄えられ たエネルギが出力される。
[0119] 以上説明したように実施の形態 13による電源装置によれば、式(13)を用いてデュ 一ティー比 Dを算出し、かつ、スィッチ Q2を備えているため、 DC/DCコンバータ 12 0としてフライバック型の DC/DCコンバータを用いた場合であっても、実施の形態 1 と同様の効果を奏することができる。
[0120] (実施の形態 14)
次に、実施の形態 14による電源装置について説明する。なお、実施の形態 14によ る電源装置は、実施の形態 13による電源装置と同一構成であるため図 9及び図 10 を用いて説明する。実施の形態 14による電源装置は、電池電圧目標値 Vtに代えて 、電池電流目標値 Itを用いてデューティー比 Dを算出することを特徴としている。
[0121] スイッチングコントローラ 130cは、電圧計測器 140により計測された電圧 Voutと、 電流計測器 170により計測された電流 loutと、制御部 160cにより設定された電池電 流目標値 Itとを用 V、て式(14)の演算を行!、、 PWM信号のデューティー比 Dを算出 する。
[0122] D[%] = (It/lout) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100· · · (14)
但し、 Dはデューティー比 Dを示す。図 10に示す Lはコイル L1のインダクタンスを示 す。 Tは PWM信号の周期を示す。
[0123] このように実施の形態 14による電源装置によれば、式(14)により PWM信号のデュ 一ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、実施の形態 1による電源 装置と同様の効果を奏することができる。
[0124] (実施の形態 15)
次に、実施の形態 15による電源装置について説明する。なお、実施の形態 15によ る電源装置は、実施の形態 13による電源装置と同一構成であるため図 9及び図 10 を用いて説明する。実施の形態 14による電源装置は、電力変換効率 r?を加味して デューティー比 Dを算出することを特徴として 、る。
[0125] スイッチングコントローラ 130cは、電圧計測器 140により計測された電圧 Voutと、 電流計測器 170により計測された電流 loutと、制御部 160cにより設定された電池電 流目標値 Itとを用 、て式( 15)の演算を行!、、 PWM信号のデューティー比 Dを算出 する。
[0126] D[%]= ( r? X It/lout) X [ (2 X L X Iout/ (Vout XT) )]1/2 X 100· · · (15) 但し、 Dはデューティー比 Dを示す。 Lは図 10に示すコイル L1のインダクタンスを示 す。 Tは PWM信号の周期を示す。
[0127] このように実施の形態 15による電源装置によれば、式(15)により PWM信号のデュ 一ティー比 Dを算出し、かつ、スィッチ Q2を接続したため、実施の形態 1による電源 装置と同様の効果を奏することができる。
[0128] なお、本発明による電源装置は、 DCZDCコンバータとして、トランスを用いたフォ ワード型、ツースィッチフォワード型、アクティブクランプフォワード型、ハーフブリッジ 型、プッシュプル型、フルブリッジ型、フェーズシフト型、及び ZVT型などの DCZDC コンバータを採用してもよい。 [0129] いずれの DCZDCコンバータも、入力される電圧 Vinと出力される電圧 Voutの比( =Vout/Vin)は、式(1一 1)に示すような、デューティー比 Dを用いた関数が知られ ており、この関数を上述するように変形すれば、 DCZDCコンバータから出力された 電圧 Vout或いは電流 loutを用いてデューティー比 Dを算出することができる。
[0130] (本発明の纏め)
本発明による電源装置は、燃料電池と、前記燃料電池カゝら出力される電圧を調節 し、並列接続された負荷装置に出力する DCZDCコンバータと、前記 DCZDCコン バータを制御する PWM信号を生成して前記 DCZDCコンバータに出力する信号生 成手段と、前記負荷装置に並列接続された二次電池と、前記 DCZDCコンバータか ら出力される電圧を計測する電圧計測手段とを備え、前記信号生成手段は、前記燃 料電池から出力される電圧の目標値を示す電池電圧目標値と、前記電圧計測手段 により計測された電圧の計測値とを基に、前記 PWM信号のデューティー比を算出す ることを特徴とする。
[0131] この構成によれば、燃料電池から出力された電圧は DCZDCコンバータにより調 整されて並列接続された負荷装置に出力される。また、負荷装置には DCZDCコン バータから出力される電力を充電する二次電池が並列接続されており、負荷装置に 対する電力が不足する場合、二次電池は放電して不足する電力を補う。 DCZDCコ ンバータから出力される電圧は電圧計測手段により計測され、計測された電圧と、燃 料電池から出力される電圧の目標値を示す電池電圧目標値とを基に、 DCZDCコ ンバータに出力される PWM信号のデューティー比が算出され、算出されたデューテ ィー比の PWM信号により DCZDCコンバータが制御される。これにより、負荷装置 は必要とする電力が得られると共に、燃料電池は動作点が一定に保たれる。
[0132] このように燃料電池から出力される電圧を負帰還信号として用いずに、 DCZDCコ ンバータから出力される電圧を用いて、 DC/DCコンバータを制御しているため、燃 料電池から出力される電圧の発振が回避され、負荷装置に必要な電力を供給しつ つ、燃料電池の発電電力を安定させることができる。また、燃料電池の電圧と基準値 とを比較する回路や両者の差分に応じてデューティー比を変化させる回路等が不要 となり、回路の小型化を図ることができる。 [0133] また、上記構成にぉ 、て、前記信号生成手段は、前記電池電圧目標値と、前記電 圧計測手段により計測された電圧とを用い、式(1)に示す演算を行うことにより前記 P
WM信号のデューティー比を算出することが好ま 、。
[0134] (1): D[%] = (1 -Vt/Vout) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[0135] この構成によれば、式(1)により PWM信号のデューティー比が算出されているため
、 DCZDCコンバータとして昇圧型の DCZDCコンバータを用いた場合にお!、て、 燃料電池の発電電力を安定させることができる。
[0136] また、上記構成において、前記 DCZDCコンバータは降圧型の DCZDCコンパ一 タであり、前記信号生成手段は、前記電池電圧目標値と、前記電圧計測手段により 計測された電圧とを用い、式(2)に示す演算を行うことにより前記 PWM信号のデュ 一ティー比を算出してもよい。
[0137] (2): D[%] = (Vt/Vout) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[0138] この構成によれば、式(2)により PWM信号のデューティー比が算出されているため
、 DC/DCコンバータとして降圧型の DC/DCコンバータを用いた場合にお!、て、 燃料電池の発電電力を安定させることができる。
[0139] また、上記構成において、前記 DCZDCコンバータは反転型の DCZDCコンパ一 タであり、前記信号生成手段は、前記電池電圧目標値と、前記電圧計測手段により 計測された電圧とを用い、式(3)に示す演算を行うことにより前記 PWM信号のデュ 一ティー比を算出してもよい。
[0140] (3): D[%] = (1/(1 -Vt/Vout)) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[0141] この構成によれば、式(3)により PWM信号のデューティー比が算出されているため
、 DCZDCコンバータとして反転型の DCZDCコンバータを用いた場合にお!、て、 燃料電池の発電電力を安定させることができる。
[0142] また、上記構成において、前記 DCZDCコンバータは昇降圧型の DCZDCコンパ ータであり、前記信号生成手段は、前記電池電圧目標値と、前記電圧計測手段によ り計測された電圧とを用い、式 (4)に示す演算を行うことにより前記 PWM信号のデュ 一ティー比を算出してもよい。
[0143] (4): D[%] = (1/(1 +Vt/Vout)) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[0144] この構成によれば、式 (4)により PWM信号のデューティー比が算出されているため 、昇降圧型の DCZDCコンバータを用いた場合において、燃料電池の発電電力を 安定させることができる。
[0145] また、本発明による電源装置は、燃料電池と、前記燃料電池カゝら出力される電圧を 調節し、並列接続された負荷装置に出力する DCZDCコンバータと、前記 DCZDC コンバータを制御する PWM信号を生成して前記 DCZDCコンバータに出力する信 号生成手段と、前記負荷装置に並列接続された二次電池と、前記 DCZDCコンパ ータから出力される電流を計測する電流計測手段とを備え、前記信号生成手段は、 前記燃料電池から出力される電流の目標値を示す電池電流目標値と、前記電流計 測手段により計測された電流の計測値とを基に、前記 PWM信号のデューティー比を 算出することを特徴とする。
[0146] この構成によれば、燃料電池から出力された電圧は DCZDCコンバータにより調 整されて並列接続された負荷装置に出力される。また、負荷装置には DCZDCコン バータから出力される電力を充電する二次電池が並列接続されており、負荷装置に 対する電力が不足する場合、二次電池は放電して不足する電力を補う。 DCZDCコ ンバータカ 出力される電流は電流計測手段により計測され、計測された電流と、燃 料電池から出力される電流の目標値を示す電池電流目標値とを基に、 DCZDCコ ンバータに出力される PWM信号のデューティー比が算出され、算出されたデューテ ィー比の PWM信号により DCZDCコンバータが制御される。これにより、負荷装置 は必要とする電力が得られると共に、燃料電池は動作点が一定に保たれる。 [0147] このように燃料電池から出力される電圧を負帰還信号として用いずに、 DCZDCコ ンバータから出力される電流を用いて、 DCZDCコンバータを制御しているため、燃 料電池から出力される電圧の発振が回避され、負荷装置に必要な電力を供給しつ つ、燃料電池の発電電力を安定させることができる。また、燃料電池の電圧と基準値 とを比較する回路や両者の差分に応じてデューティー比を変化させる回路等が不要 となり、回路の小型化を図ることができる。
[0148] また、上記構成において、前記 DCZDCコンバータは、昇圧型の DCZDCコンパ ータであり、前記信号生成手段は、前記電池電流目標値と、前記電流計測手段によ り計測された電流とを用い、式(5)に示す演算を行うことにより前記 PWM信号のデュ 一ティー比を算出することが好ま 、。
[0149] (5): D[%]= (1 -lout/It) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す
。 Itは電池電流目標値を示す。
[0150] この構成によれば、式(5)により PWM信号のデューティー比が算出されているため
、昇圧型の DCZDCコンバータを用いた場合において、燃料電池の発電電力を安 定ィ匕させることができる。
[0151] また、上記構成において、前記 DCZDCコンバータは、降圧型の DCZDCコンパ ータであり、前記信号生成手段は、前記電池電流目標値と、前記電流計測手段によ り計測された電流とを用い、式 (6)に示す演算を行うことにより前記 PWM信号のデュ 一ティー比を算出してもよい。
[0152] (6): D[%] = (lout/It) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す
。 Itは電池電流目標値を示す。
[0153] この構成によれば、式 (6)により PWM信号のデューティー比が算出されているため
、降圧型の DCZDCコンバータを用いた場合において、燃料電池の発電電力を安 定ィ匕させることができる。
[0154] また、上記構成において、前記 DCZDCコンバータは、反転型の DCZDCコンパ ータであり、前記信号生成手段は、前記電池電流目標値と、前記電流計測手段によ り計測された電流とを用い、式(7)に示す演算を行うことにより前記 PWM信号のデュ 一ティー比を算出してもよい。
[0155] (7) : D[%] = (1/ (1 -lout/It) ) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す
。 Itは電池電流目標値を示す。
[0156] この構成によれば、式(7)により PWM信号のデューティー比が算出されているため
、反転型の DCZDCコンバータを用いた場合において、燃料電池の発電電力を安 定ィ匕させることができる。
[0157] また、上記構成において、前記 DCZDCコンバータは、昇降圧型の DCZDCコン バータであり、前記信号生成手段は、前記電池電流目標値と、前記電流計測手段に より計測された電流とを用い、式 (8)に示す演算を行うことにより前記 PWM信号のデ ユーティー比を算出してもよい。
[0158] (8) : D[%] = (l/ (l +Iout/lt) ) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す
。 Itは電池電流目標値を示す。
[0159] この構成によれば、式 (8)により PWM信号のデューティー比が算出されているため
、昇降圧型の DCZDCコンバータを用いた場合において、燃料電池の発電電力を 安定ィ匕させることができる。
[0160] また、上記構成において、前記 DCZDCコンバータは、昇圧型の DCZDCコンパ ータであり、前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変換 効率を前記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記電 池電流目標値と、前記電流計測手段により計測された電流とを用いて、式 (9)に示 す演算を行うことにより前記 PWM信号のデューティー比を算出してもよい。
[0161] (9) : D[%] = (l -Iout/ ( r} X lt) ) X 100
但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは電流計測手段 により計測された電流を示す。 Itは電池電流目標値を示す。
[0162] この構成によれば、 DCZDCコンバータの電力変換効率が考慮された式(9)を用 いて PWM信号のデューティー比が算出されているため、昇圧型の DCZDCコンパ ータを用いた場合において、トランジスタやコイルの抵抗による電力損失が補正され た PWM信号を生成することができ、燃料電池の発電電力を安定させることができる。
[0163] また、上記構成において、前記 DCZDCコンバータは、降圧型の DCZDCコンパ ータであり、前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変換 効率を前記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記電 池電流目標値と、前記電流計測手段により計測された電流とを用いて、式(10)に示 す演算を行うことにより前記 PWM信号のデューティー比を算出してもよい。
[0164] (10): D[%]= (lout/ ( 7? X It) ) X 100
但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは電流計測手段 により計測された電流を示す。 Itは電池電流目標値を示す。
[0165] この構成によれば、 DCZDCコンバータの電力変換効率が考慮された式(10)を用 いて PWM信号のデューティー比が算出されているため、降圧型の DCZDCコンパ ータを用いた場合において、トランジスタやコイルの抵抗による電力損失が補正され た PWM信号を生成することができ、燃料電池の発電電力を安定させることができる。
[0166] また、上記構成において、前記 DCZDCコンバータは、反転型の DCZDCコンパ ータであり、前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変換 効率を前記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記電 池電流目標値と、前記電流計測手段により計測された電流とを用いて、式(11)に示 す演算を行うことにより前記 PWM信号のデューティー比を算出してもよい。
[0167] (11) :D[%] = (l - (lout/ ( r} X lt) ) ) X 100
但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは電流計測手段 により計測された電流を示す。 Itは電池電流目標値を示す。
[0168] この構成によれば、 DCZDCコンバータの電力変換効率が考慮された式(11)を用 いて PWM信号のデューティー比が算出されているため、反転型の DCZDCコンパ ータを用いた場合において、トランジスタやコイルの抵抗による電力損失が補正され た PWM信号を生成することができ、燃料電池の発電電力を安定させることができる。
[0169] また、上記構成において、前記 DCZDCコンバータは、昇降圧型の DCZDCコン バータであり、前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変 換効率を前記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記 電池電流目標値と、前記電流計測手段により計測された電流とを用いて、式(12)に 示す演算を行うことにより前記 PWM信号のデューティー比を算出してもよい。
[0170] (12) : D[%] = ( 1 + (lout/ ( η X lt) ) ) Χ 100
但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは電流計測手段 により計測された電流を示す。 Itは電池電流目標値を示す。
[0171] この構成によれば、 DCZDCコンバータの電力変換効率を示す式(12)により PW M信号のデューティー比を算出しているため、昇降圧型の DCZDCコンバータを用 V、た場合にぉ 、て、トランジスタやコイルの抵抗による電力損失が補正された PWM 信号を生成することができ、燃料電池の発電電力を安定させることができる。
[0172] また、上記構成において、前記昇圧型の DCZDCコンバータは、一端が前記燃料 電池の正極に接続されたコイルと、前記コイルの他端及び前記燃料電池の負極間に 接続された第 1のスイッチング素子と、前記コイルの他端及び前記二次電池の正極 間に接続された第 2のスイッチング素子と、前記信号生成手段から出力される PWM 信号の論理を反転させて前記第 2のスイッチング素子に出力する反転回路とを備え、 前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的にオン'ォ フすることが好ましい。
[0173] この構成によれば、従来の昇圧型の DCZDCコンバータにおいてダイオード等の 整流素子が接続される箇所に整流素子に代えて、第 2のスイッチング素子を接続し たため、コイルに流れる電流が途切れることなく連続的に変化し、燃料電池から出力 される電圧を一定にすることができる。
[0174] また、上記構成において、前記降圧型の DC/DCコンバータは、一端が前記燃料 電池の正極に接続された第 1のスイッチング素子と、前記第 1のスイッチング素子の 他端及び前記燃料電池の負極間に接続された第 2のスイッチング素子と、前記第 1 のスイッチング素子の他端及び前記二次電池の正極間に接続されたコイルと、前記 PWM信号の論理を反転させて前記第 2のスイッチング素子に出力する反転回路と を備え、前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的に オン ·オフすることが好まし 、。 [0175] この構成によれば、従来の降圧型の DCZDCコンバータにおいて、ダイオード等の 整流素子が接続される箇所に、整流素子に代えて第 2のスイッチング素子を接続し たため、コイルに流れる電流が途切れることなく連続的に変化し、燃料電池から出力 される電圧を一定にすることができる。
[0176] また、上記構成において、前記反転型の DCZDCコンバータは、一端が前記燃料 電池の正極に接続された第 1のスイッチング素子と、前記第 1のスイッチング素子の 他端及び前記燃料電池の負極間に接続されたコイルと、前記第 1のスイッチング素 子の他端及び前記二次電池の正極間に接続された第 2のスイッチング素子と、前記 PWM信号の論理を反転させて前記第 2のスイッチング素子に出力する反転回路と を備え、前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的に オン ·オフすることが好まし 、。
[0177] この構成によれば、従来の反転型の DCZDCコンバータにおいて、ダイオード等の 整流素子が接続される箇所に、整流素子に代えて第 2のスイッチング素子を接続し たため、コイルに流れる電流が途切れることなく連続的に変化し、燃料電池から出力 される電圧を一定にすることができる。
[0178] また、上記構成において、前記昇降圧型の DCZDCコンバータは、一端が前記燃 料電池の正極に接続された第 1のコイルと、前記第 1のコイルの他端及び前記燃料 電池の負極間に接続された第 1のスイッチング素子と、一端が前記第 1のコイルの他 端に接続されたコンデンサと、前記コンデンサの他端及び前記燃料電池の負極間に 接続された第 2のコイルと、前記コンデンサの他端及び前記二次電池の正極間に接 続された第 2のスイッチング素子と、前記 PWM信号の論理を反転させて前記第 2の スイッチング素子に出力する反転回路とを備え、前記第 1及び第 2のスイッチング素 子は、前記 PWM信号に従って、相補的にオン'オフすることが好ましい。
[0179] この構成によれば、従来の昇降圧型の DCZDCコンバータにおいて、ダイオード 等の整流素子が接続される箇所に整流素子に代えて第 2のスイッチング素子を接続 したため、コイルに流れる電流が途切れることなく連続的に変化し、燃料電池から出 力される電圧を一定にすることができる。
[0180] 本発明による電源装置は、燃料電池と、前記燃料電池カゝら出力される電圧を調節 し、並列接続された負荷装置に出力する DCZDCコンバータと、前記 DCZDCコン バータを制御する PWM信号を生成して前記 DCZDCコンバータに出力する信号生 成手段と、前記負荷装置に並列接続された二次電池と、前記 DCZDCコンバータか ら出力される電圧を計測する電圧計測手段と、前記 DCZDCコンバータから出力さ れる電流を計測する電流計測手段とを備え、前記信号生成手段は、前記燃料電池 から出力される電圧の目標値を示す電池電圧目標値又は前記燃料電池から出力さ れる電流の目標値を示す電池電流目標値と、前記電圧計測手段により計測された 電圧の計測値と、前記電流計測手段により計測された電流の計測値とを基に、前記 PWM信号のデューティー比を算出することを特徴とする。
[0181] この構成によれば、燃料電池から出力された電圧は DCZDCコンバータにより調 整されて並列接続された負荷装置に出力される。また、負荷装置には DCZDCコン バータから出力される電力を充電する二次電池が並列接続されており、負荷装置に 対する電力が不足する場合、二次電池は放電して不足する電力を補う。 DCZDCコ ンバータから出力される電圧及び電流は各々電圧計測手段及び電流検出手段によ り計測され、計測された電圧及び電流と、燃料電池から出力される電圧の目標値を 示す電池電圧目標値又は燃料電池から出力される電流の目標値を示す電池電流 目標値とを基に、 DCZDCコンバータに出力される PWM信号のデューティー比が 算出され、算出されたデューティー比の PWM信号により DCZDCコンバータが制御 される。これにより、負荷装置は必要とする電力が得られると共に、燃料電池は動作 点が一定に保たれる。
[0182] このように燃料電池から出力される電圧を負帰還信号として用いずに、 DCZDCコ ンバータから出力される電圧及び電流を用いて、 DCZDCコンバータを制御して ヽ るため、燃料電池から出力される電圧の発振が回避され、負荷装置に必要な電力を 供給しつつ、燃料電池の発電電力を安定させることができる。また、燃料電池の電圧 と基準値とを比較する回路や両者の差分に応じてデューティー比を変化させる回路 等が不要となり、回路の小型化を図ることができる。
[0183] また、上記構成において、前記 DCZDCコンバータは、トランスを含むフライバック 型の DCZDCコンバータであり、前記信号生成手段は、前記電圧計測手段により計 測された電圧及び前記電流計測手段により計測された電流、並びに前記電池電圧 目標値を用いて、式(13)に示す演算を行うことにより、前記 PWM信号のデューティ 一比を算出することが好まし 、。
[0184] (13) : D[%] = (Vout/Vt) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100
但し、 Dはデューティー比を示す。 Lは前記トランスを構成する一次側のコイルのイン ダクタンスを示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測手段により計測さ れた電圧を示す。 loutは電流計測手段により計測された電流を示す。 Tは PWM信 号の周期を示す。
[0185] この構成によれば、式(13)により PWM信号のデューティー比が算出されているた め、フライバック型の DCZDCコンバータを用いた場合において、燃料電池の発電 電力を安定化させることができる。
[0186] また、上記構成において、前記 DCZDCコンバータは、トランスを含むフライバック 型の DCZDCコンバータであり、前記信号生成手段は、前記電圧計測手段により計 測された電圧及び前記電流計測手段により計測された電流、並びに前記燃料電池 が出力する電流の目標値を示す電池電流目標値を用いて、式(14)に示す演算を 行うことにより前記 PWM信号のデューティー比を算出することが好ましい。
[0187] (14) : D[%] = (It/lout) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100
但し、 Dはデューティー比を示す。 Lは前記トランスの一次側のコイルのインダクタンス を示す。 Itは電池電流目標値を示す。 Voutは電圧計測手段により計測された電圧 を示す。 loutは電流計測手段により計測された電流を示す。 Tは PWM信号の周期 を示す。
[0188] この構成によれば、(14)の演算により、 PWM信号のデューティー比が算出されて いるため、フライバック型の DC/DCコンバータ用いた場合において、燃料電池の発 電電力を安定化させることができる。
[0189] また、上記構成において、前記 DCZDCコンバータは、トランスを含むフライバック 型の DCZDCコンバータであり、前記信号生成手段は、前記電池電圧目標値と、前 記 DCZDCコンバータの電力損失を示す電力変換効率を前記電池電流目標値に 基づいて算出し、算出した電力変換効率を用いて、式(15)に示す演算を行うことに より前記 PWM信号のデューティー比を算出してもよい。
[0190] (15): D[%] = ( r? X It/lout) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100
但し、 ηは電力変換効率を示す。 Lは前記トランスの一次側のコイルのインダクタンス を示す。 Itは電池電流目標値を示す。 Voutは電圧計測手段により計測された電圧 を示す。 loutは電流計測手段により計測された電流を示す。 Tは PWM信号の周期 を示す。
[0191] この構成によれば、 DCZDCコンバータ電力変換効率をカ卩味した式(15)により、 P WM信号のデューティー比が算出されているため、スイッチング素子やコイルの抵抗 による電力損失が補正された PWM信号を生成することができ、燃料電池の発電電 力を安定化させることができる。
[0192] また、上記構成において、前記フライバック型の DCZDCコンバータは、一次側の コイルの一端が前記燃料電池の正極に接続され、二次側のコイルの一端が前記二 次電池の負極に接続されたトランスと、前記一次側のコイルの他端及び前記燃料電 池の負極間に接続された第 1のスイッチング素子と、前記二次側のコイルの一端及 び前記二次電池の正極間に接続された第 2のスイッチング素子と、前記 PWM信号 の論理を反転させて前記第 2のスイッチング素子に出力する反転回路とを備え、前記 第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的にオン'オフす ることが好ましい。
[0193] この構成によれば、従来のフライバック型の DCZDCコンバータにお!/、て、ダイォ ード等の整流素子が接続される箇所に、整流素子に代えて第 2のスイッチング素子 を接続したため、コイルに流れる電流が途切れることなく連続的に変化し、燃料電池 力も出力される電圧を一定にすることができる。
[0194] また、上記構成にぉ 、て、前記燃料電池は、燃料非循環型のダイレクトメタノール 型燃料電池であることが好まし 、。
[0195] この構成によれば、小型化に適した燃料非循環型のダイレクトメタノール型燃料電 池に対して、動作点を安定化し、発電電力を安定化させることができるため、ノート型 のコンピュータ等の携帯型の電子機器等に有用な小型の電源装置を提供することが できる。 産業上の利用可能性
本発明によれば、燃料電池の発電電力を安定化することができる電源装置を提供 することができる。

Claims

請求の範囲
[1] 燃料電池と、
前記燃料電池カゝら出力される電圧を調節し、並列接続された負荷装置に出力する
DCZDCコンノータと、
前記 DCZDCコンバータを制御する PWM信号を生成して前記 DCZDCコンパ一 タに出力する信号生成手段と、
前記負荷装置に並列接続された二次電池と、
前記 DCZDCコンバータ力 出力される電圧を計測する電圧計測手段とを備え、 前記信号生成手段は、前記燃料電池から出力される電圧の目標値を示す電池電 圧目標値と、前記電圧計測手段により計測された電圧の計測値とを基に、前記 PW M信号のデューティー比を算出することを特徴とする電源装置。
[2] 前記 DCZDCコンバータは昇圧型の DCZDCコンバータであり、
前記信号生成手段は、前記電池電圧目標値と、前記電圧計測手段により計測され た電圧とを用い、式(1)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 1記載の電源装置。
(1): D[%]= (1-Vt/Vout) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[3] 前記 DCZDCコンバータは降圧型の DCZDCコンバータであり、
前記信号生成手段は、前記電池電圧目標値と、前記電圧計測手段により計測され た電圧とを用い、式(2)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 1記載の電源装置。
(2): D[%]= (Vt/Vout) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[4] 前記 DCZDCコンバータは反転型の DCZDCコンバータであり、
前記信号生成手段は、前記電池電圧目標値と、前記電圧計測手段により計測され た電圧とを用い、式(3)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 1記載の電源装置。
(3): D[%] = (1/(1 -Vt/Vout)) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[5] 前記 DCZDCコンバータは昇降圧型の DCZDCコンバータであり、
前記信号生成手段は、前記電池電圧目標値と、前記電圧計測手段により計測され た電圧とを用い、式 (4)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 1記載の電源装置。
(4): D[%] = (1/(1 +Vt/Vout)) X 100
但し、 Dはデューティー比を示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測 手段により計測された電圧を示す。
[6] 燃料電池と、
前記燃料電池カゝら出力される電圧を調節し、並列接続された負荷装置に出力する
DCZDCコンノータと、
前記 DCZDCコンバータを制御する PWM信号を生成して前記 DCZDCコンパ一 タに出力する信号生成手段と、
前記負荷装置に並列接続された二次電池と、
前記 DCZDCコンバータから出力される電流を計測する電流計測手段とを備え、 前記信号生成手段は、前記燃料電池から出力される電流の目標値を示す電池電 流目標値と、前記電流計測手段により計測された電流の計測値とを基に、前記 PW
M信号のデューティー比を算出することを特徴とする電源装置。
[7] 前記 DCZDCコンバータは、昇圧型の DCZDCコンバータであり、
前記信号生成手段は、前記電池電流目標値と、前記電流計測手段により計測され た電流とを用い、式(5)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 6記載の電源装置。
(5): D[%]= (1 -lout/It) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す 。 Itは電池電流目標値を示す。
[8] 前記 DCZDCコンバータは、降圧型の DCZDCコンバータであり、 前記信号生成手段は、前記電池電流目標値と、前記電流計測手段により計測され た電流とを用い、式 (6)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 6記載の電源装置。
(6): D[%]= (lout/It) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す 。 Itは電池電流目標値を示す。
[9] 前記 DCZDCコンバータは、反転型の DCZDCコンバータであり、
前記信号生成手段は、前記電池電流目標値と、前記電流計測手段により計測され た電流とを用い、式(7)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 6記載の電源装置。
(7) : D[%]= (1/ (1 -lout/It) ) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す 。 Itは電池電流目標値を示す。
[10] 前記 DCZDCコンバータは、昇降圧型の DCZDCコンバータであり、
前記信号生成手段は、前記電池電流目標値と、前記電流計測手段により計測され た電流とを用い、式 (8)に示す演算を行うことにより前記 PWM信号のデューティー比 を算出することを特徴とする請求項 6記載の電源装置。
(8) : D[%]= (l/ (l +Iout/lt) ) X 100
但し、 Dはデューティー比を示す。 loutは電流計測手段により計測された電流を示す 。 Itは電池電流目標値を示す。
[11] 前記 DCZDCコンバータは、昇圧型の DCZDCコンバータであり、
前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変換効率を前 記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記電池電流目 標値と、前記電流計測手段により計測された電流とを用いて、式 (9)に示す演算を行 うことにより前記 PWM信号のデューティー比を算出することを特徴とする請求項 6記 載の電源装置。
(9) : D[%]= (l -Iout/ ( r} X lt) ) X 100 但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは電流計測手段 により計測された電流を示す。 Itは電池電流目標値を示す。
[12] 前記 DCZDCコンバータは、降圧型の DCZDCコンバータであり、
前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変換効率を前 記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記電池電流目 標値と、前記電流計測手段により計測された電流とを用いて、式(10)に示す演算を 行うことにより前記 PWM信号のデューティー比を算出することを特徴とする請求項 6 記載の電源装置。
(10): D[%]=(lout/(r} Xlt)) X100
但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは電流計測手段 により計測された電流を示す。 Itは電池電流目標値を示す。
[13] 前記 DCZDCコンバータは、反転型の DCZDCコンバータであり、
前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変換効率を前 記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記電池電流目 標値と、前記電流計測手段により計測された電流とを用いて、式(11)に示す演算を 行うことにより前記 PWM信号のデューティー比を算出することを特徴とする請求項 6 記載の電源装置。
(11) :D[%]=(l-(lout/(r} Xlt))) X 100
但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは電流計測手段 により計測された電流を示す。 Itは電池電流目標値を示す。
[14] 前記 DCZDCコンバータは、昇降圧型の DCZDCコンバータであり、
前記信号生成手段は、 DCZDCコンバータの電力損失を示す電力変換効率を前 記電池電流目標値に基づいて算出し、算出した電力変換効率と、前記電池電流目 標値と、前記電流計測手段により計測された電流とを用いて、式(12)に示す演算を 行うことにより前記 PWM信号のデューティー比を算出することを特徴とする請求項 6 記載の電源装置。
(12) :D[%]=(l+(lout/(r} Xlt))) X 100
但し、 Dはデューティー比を示す。 ηは電力変換効率を示す。 loutは計測手段により 計測された電流を示す。 Itは電池電流目標値を示す。
[15] 前記昇圧型の DCZDCコンバータは、
一端が前記燃料電池の正極に接続されたコイルと、
前記コイルの他端及び前記燃料電池の負極間に接続された第 1のスイッチング素 子と、
前記コイルの他端及び前記二次電池の正極間に接続された第 2のスイッチング素 子と、
前記信号生成手段から出力される PWM信号の論理を反転させて前記第 2のスイツ チング素子に出力する反転回路とを備え、
前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的にオン · オフすることを特徴とする請求項 2、 7、及び 11のいずれかに記載の電源装置。
[16] 前記降圧型の DCZDCコンバータは、
一端が前記燃料電池の正極に接続された第 1のスイッチング素子と、
前記第 1のスイッチング素子の他端及び前記燃料電池の負極間に接続された第 2 のスイッチング素子と、
前記第 1のスイッチング素子の他端及び前記二次電池の正極間に接続されたコィ ルと、
前記 PWM信号の論理を反転させて前記第 2のスイッチング素子に出力する反転 回路とを備え、
前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的にオン · オフすることを特徴とする請求項 3、 8、及び 12のいずれかに記載の電源装置。
[17] 前記反転型の DCZDCコンバータは、
一端が前記燃料電池の正極に接続された第 1のスイッチング素子と、
前記第 1のスイッチング素子の他端及び前記燃料電池の負極間に接続されたコィ ルと、
前記第 1のスイッチング素子の他端及び前記二次電池の正極間に接続された第 2 のスイッチング素子と、
前記 PWM信号の論理を反転させて前記第 2のスイッチング素子に出力する反転 回路とを備え、
前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的にオン · オフすることを特徴とする請求項 4、 9、及び 13のいずれかに記載の電源装置。
[18] 前記昇降圧型の DCZDCコンバータは、
一端が前記燃料電池の正極に接続された第 1のコイルと、
前記第 1のコイルの他端及び前記燃料電池の負極間に接続された第 1のスィッチ ング素子と、
一端が前記第 1のコイルの他端に接続されたコンデンサと、
前記コンデンサの他端及び前記燃料電池の負極間に接続された第 2のコイルと、 前記コンデンサの他端及び前記二次電池の正極間に接続された第 2のスィッチン グ素子と、
前記 PWM信号の論理を反転させて前記第 2のスイッチング素子に出力する反転 回路とを備え、
前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って、相補的にオン' オフすることを特徴とする請求項 5、 10、及び 14のいずれかに記載の電源装置。
[19] 燃料電池と、
前記燃料電池カゝら出力される電圧を調節し、並列接続された負荷装置に出力する
DCZDCコンノータと、
前記 DCZDCコンバータを制御する PWM信号を生成して前記 DCZDCコンパ一 タに出力する信号生成手段と、
前記負荷装置に並列接続された二次電池と、
前記 DCZDCコンバータ力 出力される電圧を計測する電圧計測手段と、 前記 DCZDCコンバータから出力される電流を計測する電流計測手段とを備え、 前記信号生成手段は、前記燃料電池から出力される電圧の目標値を示す電池電 圧目標値又は前記燃料電池から出力される電流の目標値を示す電池電流目標値と 、前記電圧計測手段により計測された電圧の計測値と、前記電流検出手段により計 測された電流の計測値とを基に、前記 PWM信号のデューティー比を算出することを 特徴とする電源装置。
[20] 前記 DCZDCコンバータは、トランスを含むフライバック型の DCZDCコンバータ であり、
前記信号生成手段は、前記電圧計測手段により計測された電圧及び前記電流計 測手段により計測された電流、並びに前記電池電圧目標値を用いて、式(13)に示 す演算を行うことにより、前記 PWM信号のデューティー比を算出することを特徴とす る請求項 19記載の電源装置。
(13): D[%] = (Vout/Vt) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100
但し、 Dはデューティー比を示す。 Lは前記トランスを構成する一次側のコイルのイン ダクタンスを示す。 Vtは電池電圧目標値を示す。 Voutは電圧計測手段により計測さ れた電圧を示す。 loutは電流計測手段により計測された電流を示す。 Tは PWM信 号の周期を示す。
[21] 前記 DCZDCコンバータは、トランスを含むフライバック型の DCZDCコンバータ であり、
前記信号生成手段は、前記電圧計測手段により計測された電圧及び前記電流計 測手段により計測された電流、並びに前記燃料電池が出力する電流の目標値を示 す電池電流目標値を用いて、式(14)に示す演算を行うことにより前記 PWM信号の デューティー比を算出することを特徴とする請求項 19記載の電源装置。
(14): D[%] = (It/lout) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100
但し、 Dはデューティー比を示す。 Lは前記トランスの一次側のコイルのインダクタンス を示す。 Itは電池電流目標値を示す。 Voutは電圧計測手段により計測された電圧 を示す。 loutは電流計測手段により計測された電流を示す。 Tは PWM信号の周期 を示す。
[22] 前記 DCZDCコンバータは、トランスを含むフライバック型の DCZDCコンバータ であり、
前記信号生成手段は、前記電池電圧目標値と、前記 DCZDCコンバータの電力 損失を示す電力変換効率を前記電池電流目標値に基づいて算出し、算出した電力 変換効率を用いて、式(15)に示す演算を行うことにより前記 PWM信号のデューティ 一比を算出することを特徴とする請求項 19記載の電源装置。 (15): D[%]= ( r? X It/lout) X [ (2 X L X lout/ (Vout X T) ) ]1/2 X 100 但し、 ηは電力変換効率を示す。 Lは前記トランスの一次側のコイルのインダクタンス を示す。 Itは電池電流目標値を示す。 Voutは電圧計測手段により計測された電圧 を示す。 loutは電流計測手段により計測された電流を示す。 Tは PWM信号の周期 を示す。
[23] 前記フライバック型の DCZDCコンバータは、
一次側のコイルの一端が前記燃料電池の正極に接続され、二次側のコイルの一端 が前記二次電池の負極に接続されたトランスと、
前記一次側のコイルの他端及び前記燃料電池の負極間に接続された第 1のスイツ チング素子と、
前記二次側のコイルの一端及び前記二次電池の正極間に接続された第 2のスイツ チング素子と、
前記 PWM信号の論理を反転させて前記第 2のスイッチング素子に出力する反転 回路とを備え、
前記第 1及び第 2のスイッチング素子は、前記 PWM信号に従って相補的にオン · オフすることを特徴とする請求項 19〜22のいずれかに記載の電源装置。
[24] 前記燃料電池は、燃料非循環型のダイレクトメタノール型燃料電池であることを特 徴とする請求項 1〜23のいずれかに記載の電源装置。
PCT/JP2005/017169 2004-11-02 2005-09-16 電源装置 WO2006048978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/628,778 US7719252B2 (en) 2004-11-02 2005-09-16 Power supply
EP05783604A EP1821359A1 (en) 2004-11-02 2005-09-16 Power supply
KR1020067025122A KR101142607B1 (ko) 2004-11-02 2005-09-16 전원 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-319488 2004-11-02
JP2004319488A JP4979885B2 (ja) 2004-11-02 2004-11-02 電源装置

Publications (1)

Publication Number Publication Date
WO2006048978A1 true WO2006048978A1 (ja) 2006-05-11

Family

ID=36318993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017169 WO2006048978A1 (ja) 2004-11-02 2005-09-16 電源装置

Country Status (6)

Country Link
US (1) US7719252B2 (ja)
EP (1) EP1821359A1 (ja)
JP (1) JP4979885B2 (ja)
KR (1) KR101142607B1 (ja)
CN (1) CN100561788C (ja)
WO (1) WO2006048978A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616460B2 (en) * 2005-12-22 2009-11-10 Continental Automotive Systems Us, Inc. Apparatus, system, and method for AC bus loss detection and AC bus disconnection for electric vehicles having a house keeping power supply
US20070285048A1 (en) * 2006-06-12 2007-12-13 Leach David H Fuel cell charger interface with multiple voltage outputs for portable devices
JP4990573B2 (ja) * 2006-07-11 2012-08-01 パナソニック株式会社 燃料電池システム
TW200841502A (en) * 2007-04-03 2008-10-16 Syspotek Corp Fuel cell power supply system integrated with rechargeable batteries
JP4329043B2 (ja) * 2007-08-28 2009-09-09 トヨタ自動車株式会社 燃料電池システム
WO2010025752A1 (de) * 2008-09-05 2010-03-11 Daimler Ag Verfahren zum betreiben eines systems aus wenigstens einem elektrischen verbraucher und einer brennstoffzellenanordnung
KR101064678B1 (ko) * 2009-12-09 2011-09-14 (주)인텍에프에이 연료 전지용 dc-dc 컨버터 장치
JP5640387B2 (ja) * 2010-01-21 2014-12-17 日本電気株式会社 電源装置
US8450021B2 (en) * 2010-03-15 2013-05-28 GM Global Technology Operations LLC Method for HV bus voltage control in fuel cell vehicles featuring HV lithium batteries
US20120098869A1 (en) * 2010-10-22 2012-04-26 Himax Analogic, Inc. Light Emitting Diode Circuit, Light Emitting Diode Driving Circuit, and Method for Driving Light Emitting Diode Channels
DK2530780T3 (da) * 2011-06-01 2015-06-22 Belenos Clean Power Holding Ag Fremgangsmåde til administration af et hybridsystems funktion
US9270206B2 (en) 2012-01-23 2016-02-23 Alfred E. Mann Foundation For Scientific Research Methods and systems for applying charge to a piezoelectric element
GB2513033B (en) * 2012-02-03 2018-09-05 Murata Manufacturing Co Switching power supply apparatus
TW201338348A (zh) * 2012-03-01 2013-09-16 Hon Hai Prec Ind Co Ltd 不間斷電源系統
KR101867653B1 (ko) * 2012-05-21 2018-06-15 아우디 아게 소스 보호를 위한 dc/dc 전력 컨버터 제어 전략
US10290885B2 (en) * 2014-07-11 2019-05-14 Nissan Motor Co., Ltd. Apparatus for measuring an impedance of fuel cell and method of measuring an impedance of fuel cell
DE102015219828A1 (de) * 2015-10-13 2017-04-13 Robert Bosch Gmbh Fortbewegungsmittel, Vorrichtung und Verfahren zur Ermittlung einer Spannung einer Zelle eines Strangs mehrerer in Reihe geschalteter Zellen eines elektrochemischen Energiespeichers
JP6380474B2 (ja) 2016-07-14 2018-08-29 トヨタ自動車株式会社 燃料電池システム
KR102579538B1 (ko) 2016-10-05 2023-09-18 삼성전자주식회사 배터리 충전 제어 방법 및 장치
CN106772122A (zh) * 2016-12-28 2017-05-31 中核控制系统工程有限公司 一种安全级dcs电源多样性检测方法
JP6642463B2 (ja) 2017-01-19 2020-02-05 トヨタ自動車株式会社 燃料電池システム
JP6949886B2 (ja) * 2017-02-14 2021-10-13 ヤマハ発動機株式会社 給電回路
DE102019211596A1 (de) * 2019-08-01 2021-02-04 Audi Ag Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
CN110543206A (zh) * 2019-08-28 2019-12-06 歌尔股份有限公司 电流电压调节方法、装置、设备及存储介质
CN112652791B (zh) * 2020-12-22 2022-05-03 佛山仙湖实验室 一种氢燃料电池的氢气空气协调控制方法
CN115940357B (zh) * 2022-12-27 2024-02-02 阿维塔科技(重庆)有限公司 充电控制方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132218A (en) * 1981-02-06 1982-08-16 Toshiba Corp Coupling control method for direct current power source of different kind
JPH02291668A (ja) * 1989-01-09 1990-12-03 Fuji Electric Co Ltd 燃料電池発電システムの制御装置
JPH0451466A (ja) * 1990-06-20 1992-02-19 Fuji Electric Co Ltd 燃料電池発電システムの出力制御装置
JPH05151983A (ja) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd ハイブリツド燃料電池システム
JPH06253451A (ja) * 1993-03-03 1994-09-09 Hitachi Ltd 直流電力供給装置
JPH07153474A (ja) * 1993-09-06 1995-06-16 Imra Europ Sa 燃料電池発電装置
JPH0973328A (ja) * 1995-09-04 1997-03-18 Osaki Electric Co Ltd 太陽光発電制御装置
JPH10112328A (ja) * 1996-10-09 1998-04-28 Fuji Electric Co Ltd 燃料電池発電装置
JP2002112408A (ja) * 2000-09-27 2002-04-12 Nissan Motor Co Ltd 燃料電池車の電力制御装置
US6590370B1 (en) * 2002-10-01 2003-07-08 Mti Microfuel Cells Inc. Switching DC-DC power converter and battery charger for use with direct oxidation fuel cell power source

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039119B2 (ja) * 1992-03-31 2000-05-08 日産自動車株式会社 車両用電源装置
JP3719229B2 (ja) * 2001-12-19 2005-11-24 トヨタ自動車株式会社 電源装置
JP3832417B2 (ja) * 2002-10-22 2006-10-11 日産自動車株式会社 燃料電池システム
US20040217732A1 (en) * 2003-04-29 2004-11-04 Ballard Power Systems Inc. Power converter architecture and method for integrated fuel cell based power supplies
JP4583010B2 (ja) * 2003-08-19 2010-11-17 パナソニック株式会社 電源装置の制御方法
US7362073B2 (en) * 2003-11-21 2008-04-22 Mti Microfuel Cells, Inc. Dynamic fuel cell system management controller
US7446501B2 (en) * 2004-03-19 2008-11-04 More Energy Ltd. Integrated fuel cell controller for devices
JP4397739B2 (ja) * 2004-06-03 2010-01-13 本田技研工業株式会社 燃料電池車両の電圧状態設定方法
CN1893216B (zh) * 2005-06-30 2010-10-27 松下电器产业株式会社 电子设备和该电子设备所用的电池组件及负载装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132218A (en) * 1981-02-06 1982-08-16 Toshiba Corp Coupling control method for direct current power source of different kind
JPH02291668A (ja) * 1989-01-09 1990-12-03 Fuji Electric Co Ltd 燃料電池発電システムの制御装置
JPH0451466A (ja) * 1990-06-20 1992-02-19 Fuji Electric Co Ltd 燃料電池発電システムの出力制御装置
JPH05151983A (ja) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd ハイブリツド燃料電池システム
JPH06253451A (ja) * 1993-03-03 1994-09-09 Hitachi Ltd 直流電力供給装置
JPH07153474A (ja) * 1993-09-06 1995-06-16 Imra Europ Sa 燃料電池発電装置
JPH0973328A (ja) * 1995-09-04 1997-03-18 Osaki Electric Co Ltd 太陽光発電制御装置
JPH10112328A (ja) * 1996-10-09 1998-04-28 Fuji Electric Co Ltd 燃料電池発電装置
JP2002112408A (ja) * 2000-09-27 2002-04-12 Nissan Motor Co Ltd 燃料電池車の電力制御装置
US6590370B1 (en) * 2002-10-01 2003-07-08 Mti Microfuel Cells Inc. Switching DC-DC power converter and battery charger for use with direct oxidation fuel cell power source

Also Published As

Publication number Publication date
CN100561788C (zh) 2009-11-18
CN1989644A (zh) 2007-06-27
JP4979885B2 (ja) 2012-07-18
KR20070073601A (ko) 2007-07-10
US7719252B2 (en) 2010-05-18
EP1821359A1 (en) 2007-08-22
KR101142607B1 (ko) 2012-05-10
US20080116873A1 (en) 2008-05-22
JP2006134601A (ja) 2006-05-25

Similar Documents

Publication Publication Date Title
WO2006048978A1 (ja) 電源装置
JP5261942B2 (ja) 充電制御回路への電源供給を行う電源回路、その電源回路を備えた充電装置及び充電制御回路への電源供給方法
US20120013196A1 (en) Fuel cell system and power managing method of the same
US20060035116A1 (en) Equipment with a built-in fuel cell
US7750597B2 (en) Power supply apparatus
JP2008043146A (ja) 電源装置
KR20070003636A (ko) 전자 기기, 그 전자 기기에 이용되는 전지 팩 및 부하 장치
KR100768849B1 (ko) 계통 연계형 연료전지 시스템의 전원공급장치 및 방법
JP4629319B2 (ja) 電源装置
US8404393B2 (en) Liquid fuel cell system and boosting unit of the same
WO2011118111A1 (ja) 燃料電池システム、及びその制御方法
Kwon et al. High-efficiency active DMFC system for portable applications
US20080241634A1 (en) Pump driving module and fuel cell system equipped with the same
JP2007043888A (ja) 電子機器並びに該電子機器に用いられる電池パック及び負荷装置
JP2005346984A (ja) 電子機器システム、燃料電池ユニットおよび給電制御方法
US20080224538A1 (en) Grid-connected fuel cell system and load using the same
WO2013080410A1 (ja) 直接酸化型燃料電池システム
JP2004164973A (ja) 燃料電池及び燃料電池の電圧制御方法、並びに携帯端末
KR20080027702A (ko) 연료전지 시스템의 직류/직류변환장치
JP4564231B2 (ja) 携帯用電子機器
KR102472813B1 (ko) 연료전지용 전자 전달 증대장치 및 그 방법
JP2004048891A (ja) 電子機器用ハイブリッド電源
JP2006120442A (ja) 燃料電池の運転制御装置および燃料電池システム
KR20060107149A (ko) 전력 환매용 휴대용 연료전지 시스템
JP2013030436A (ja) 燃料電池システムおよびその制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005783604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067025122

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11628778

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580024351.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005783604

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628778

Country of ref document: US