WO2006051078A2 - Prüfen der integrität von produkten in behältern - Google Patents

Prüfen der integrität von produkten in behältern Download PDF

Info

Publication number
WO2006051078A2
WO2006051078A2 PCT/EP2005/055838 EP2005055838W WO2006051078A2 WO 2006051078 A2 WO2006051078 A2 WO 2006051078A2 EP 2005055838 W EP2005055838 W EP 2005055838W WO 2006051078 A2 WO2006051078 A2 WO 2006051078A2
Authority
WO
WIPO (PCT)
Prior art keywords
measurement results
product
good
container
measurement
Prior art date
Application number
PCT/EP2005/055838
Other languages
English (en)
French (fr)
Other versions
WO2006051078A3 (de
Inventor
Bernhard Heuft
Original Assignee
Heuft Systemtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heuft Systemtechnik Gmbh filed Critical Heuft Systemtechnik Gmbh
Priority to US11/667,259 priority Critical patent/US8538714B2/en
Priority to ES05801417T priority patent/ES2870563T3/es
Priority to BRPI0517608-5A priority patent/BRPI0517608A/pt
Priority to JP2007540641A priority patent/JP4733140B2/ja
Priority to EP05801417.6A priority patent/EP1809993B1/de
Priority to MX2007005537A priority patent/MX2007005537A/es
Priority to CA2586740A priority patent/CA2586740C/en
Priority to DK05801417.6T priority patent/DK1809993T3/da
Publication of WO2006051078A2 publication Critical patent/WO2006051078A2/de
Publication of WO2006051078A3 publication Critical patent/WO2006051078A3/de

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/14Quality control systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/0007Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm for discrete indicating and measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/28Flow-control devices, e.g. using valves
    • B67C3/282Flow-control devices, e.g. using valves related to filling level control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • G01F23/802Particular electronic circuits for digital processing equipment
    • G01F23/804Particular electronic circuits for digital processing equipment containing circuits handling parameters other than liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level

Definitions

  • the invention relates to a method for checking the integrity of products in
  • Containers where several characteristics of the product are detected by physical measuring methods and a good-bad signal is generated on the basis of the measurement results:
  • Products in containers, especially food, e.g. Beverages in plastic or glass bottles can be examined with different physical measuring methods.
  • the absorption of the product at certain wavelengths of light or infrared radiation can be measured, wherein the rotation of polarized light can also be measured.
  • the absorption of X-rays or gamma rays can be measured, in which case the absorption depends on the atomic weight of the elements present in the product.
  • the dielectric constant can be measured, which depends in particular on the salt content of beverages.
  • macroscopic properties e.g. the level of the product in the container or the mass of the product in the container are measured.
  • a multi-sensorial camera for quality assurance is known in which various, working on different physical principles imaging sensors such as b / w and color cameras, imaging 3D sensors, imaging sensors that work with penetrating radiation, imaging NIR spectroscopy sensors are used together.
  • the sensors are arranged so that they capture the same image field and ent speaking pixels of the sensors refer to the same pixels of the product surface.
  • the signals from the sensors are converted point by point into a class image with the aid of a classifier, in which each pixel is assigned a code which corresponds to its belonging to one of numerous previously learned classes. Shredded metal and plastic waste can be sorted out of a disordered bulk flow by means of this multisensory camera.
  • the object of the invention is to test the integrity of one in one
  • Container contained product, in particular a product contained in a sealed container.
  • this object is achieved in a method of the type mentioned above in that several of the measured results are related to one another in order to generate the good-bad signal.
  • the measurement results can be related to each other in different ways. Some possibilities are listed below:
  • the measured values are normalized to a reference value, which is the value that exists in a faultless product.
  • the normalized measurement results then indicate the deviation as a factor or as a percentage.
  • the deviations of the measurement results from the respective reference values can be added as scalar quantities. If the sum of the deviations exceeds a threshold value, then a bad signal is generated. In this case, it is possible to weight the individual measurement results so that the individual measurement methods influence the result to different degrees.
  • the measurement results can form a multidimensional space in which one or more interfaces the good and the bad value ranges from each other delimit.
  • This interface can be represented by a function with a number of variables corresponding to the number of measurement results.
  • mixed terms can also occur in this equation, ie the influence on a measurement result may depend on the value of another measurement result.
  • the good-bad interface then has no spherical shape, but any irregular shape. In practice, it is easier to read in a corresponding table of values during operation.
  • Suitable measuring methods are all methods suitable for the investigation of the respective product. With beverage bottles, it is in particular color, IR, X-ray or gamma spectroscopy, the determination of the rotation of polarized light by the product, the determination of the filling level or the determination of the Be ⁇ plierinnendrucks.
  • the combination of NIR spectroscopy, the measurement of the X-ray absorption and the measurement of the dielectric modulus has proven itself for the determination of beverages in glass or plastic bottles.
  • the NIR spectroscopy can already be considered as a plurality of measuring methods, namely according to the number of absorption peaks investigated.
  • the measurement results of a measurement method are first averaged over a large number of containers. For the values of the individual features of the product averaged over a larger number of containers, the permissible deviations can be set much smaller. With this embodiment of the invention, therefore, systematic product errors, whether intentional or unintentional, can be determined with high reliability.
  • the averaging is suitably gliding, i. the average is in each case formed over a certain number of the last checked containers. For example, the last hundred containers can be used for averaging.
  • the individual measurement results can additionally be evaluated in conventional manner for themselves, i. E. if a single measurement result is not within a certain range, then the container in question is excluded from the further production process.
  • each measurement result is checked for itself if it is within a certain range. If it is outside the range, the container is made ⁇ closed;
  • the measurement results of several measurement methods are related to each other, e.g. the percentage deviations from the respective reference values are added scalar, and the sum of the deviations is compared with a threshold value. They can also be used in a first-order or higher-order equation with a corresponding number of variables, and depending on whether the product in question lies within or outside a good-bad interface in this multi-dimensional space, the container is further processed or excluded.
  • a particular advantage of the method is that the container can be tested in the closed state and thus at the end of the manufacturing process, to which a subsequent violation of integrity is largely excluded.
  • the single figure shows schematically a device for testing the integrity of beverage bottles.
  • a plurality of beverage bottles 10 are successively transported at a small distance on a conveyor 12 by a plurality of inspection devices 21 to 25.
  • the filling level of the beverage in the bottle 10 is determined by means of X-rays and an RF field.
  • the determined values for the level are transmitted to a control device 30, in which the values are compared.
  • the X-ray absorption in the lower, zy ⁇ -cylindrical region of the bottles 10 is measured.
  • the internal pressure of the container is measured by means of the method known from WO 98/21557.
  • the absorption of an infrared ray of 1.06 ⁇ m is measured.
  • the measured values of all inspection devices 21 to 25 are transmitted to the controller 30.
  • the signals of the first and second inspection devices 21, 22 are compared with one another and a fill level difference signal is formed from both signals.
  • the filling level difference signal may not exceed a predetermined threshold value S for each individual container.
  • the values of the three other inspection devices 23, 24 and 25 are each compared with a reference value, wherein for each individual container the deviation from the reference value may not be more than 10%.
  • Bottles 10 are formed and this mean must not exceed one-tenth of the threshold value S. Likewise, the mean value of the signals from the inspection devices 23, 24 and 25 of the last hundred bottles 10 is formed and this mean value must deviate a maximum of one fifth of the value from the respective reference values, which applies to the deviation of the individual bottles 10, ie 2%.
  • the sum of the squares of the percentage deviations of the values averaged over in each case one hundred bottles 10 is calculated and this sum may not exceed a predetermined further threshold value.
  • This threshold value is set such that an error signal is already generated if the deviations of the measured values of the inspection devices 23, 24 and 25 in themselves are still acceptable.

Abstract

Zur Prüfung der Integrität von den Produkten in Behältern (10) werden mehrere Merkmale des Produktes mit physikalischen Messmethoden erfasst und wird auf Grund der Messergebnisse ein Gut-Schlecht-Signal erzeugt, wozu mehrere der Messergebnisse miteinander in Beziehung gesetzt werden. Das Miteinander-in-Beziehung-Setzen kann darin bestehen, dass die Abweichungen der einzelnen Messergebnisse von einem Referenzwert, eventuell nach Gewichtung und Normierung, aufsummiert werden und die Summe mit einem Schwellwert verglichen wird. Die Messergebnisse können auch einen multidimensionalen Raum bilden, in dem eine oder mehrere Grenzflächen die guten und die schlechten Wertebereiche voneinander abgrenzen.

Description

Beschreibung
PRÜFEN DER INTEGRITÄT VON PRODUKTEN IN
BEHÄLTERN
Technisches Umfeld
[0001] Die Erfindung betrifft ein Verfahren zum Prüfen der Integrität von Produkten in
Behältern, wobei mehrere Merkmale des Produktes mit physikalischen Messmethoden erfasst werden und auf Grund der Messergebnisse ein Gut-Schlecht-Signal erzeugt wird:
[0002] Produkte in Behältern, insbesondere Lebensmittel, z.B. Getränke in Kunststoff¬ oder Glasflaschen, können mit verschiedenen physikalischen Messmethoden untersucht werden. Es kann die Absorption des Produktes bei bestimmten Wel¬ lenlängen von Licht oder Infrarotstrahlung gemessen werden, wobei auch die Drehung von polarisiertem Licht gemessen werden kann. Ebenso kann die Absorption von Röntgen- oder Gammastrahlung gemessen werden, wobei hier die Absorption vom Atomgewicht der in dem Produkt vorhandenen Elemente abhängt. Mittels eines Hoch¬ frequenzfeldes kann die Dielektrizitätskonstante gemessen werden, die bei Getränken insbesondere vom Salzgehalt abhängt. Außer diesen Materialeigenschaften können auch makroskopische Eigenschaften, z.B. die Füllhöhe des Produkts in dem Behälter oder die Masse des Produkts in dem Behälter gemessen werden. In der deutschen Pa¬ tentanmeldung 10 2004 053 567.1 (Anmeldetag 5. November 2004, Titel: „Verfahren zur Feststellung der Integrität eines in einem Behälter befindlichen Produktes", eigenes Zeichen: 36144-de) wird ein vorgegebenes Merkmal des Produkts mittels zweier unter¬ schiedlicher physikalischen Messmethoden bestimmt, wobei Abweichungen der nach beiden Messmethoden erhaltenen Werten des vorgegebenen Merkmals ein Hinweis auf die Verletzung der Integrität des Produkts sind. Der Füllstand des Produktes in dem Behälter kann z.B. mittels Röntgenstrahlenabsorption und mittels Dämpfung eines HF- Feldes ermittelt werden. Beide Verfahren müssen kalibriert werden, da die Röntgen¬ strahlungsabsorption vom Atomgewicht und die Dämpfung des HF-Feldes von der Di¬ elektrizitätskonstante des Produktes abhängen. Wenn die mit beiden Messmethoden erhaltenen Werte nicht derselben Füllhöhe entsprechen, so bedeutet dies, dass entweder das Atomgewicht der in dem Produkt vorhandenen Elemente oder die Di¬ elektrizitätskonstante des Produktes nicht den Vorgaben, d.h. einem integeren oder un¬ verfälschten Produkt, entsprechen.
[0003] Aus DE-A-43 43 058 ist eine multisensorielle Kamera für die Qualitätssicherung bekannt, bei der verschiedene, auf unterschiedlichen physikalischen Prinzipien arbeitende bildgebende Sensoren wie s/w- und Farbkameras, bildgebende 3D-Sensoren, bildgebende Sensoren, die mit durchdringender Strahlung arbeiten, bildgebende NIR-Spektroskopie-Sensoren gemeinsam eingesetzt werden. Die Sensoren sind dabei so angeordnet, dass sie das gleiche Bildfeld erfassen und sich ent¬ sprechende Bildpunkte der Sensoren auf gleiche Bildpunkte der Produktoberfläche beziehen. Die Signale der Sensoren werden mit Hilfe eines Klassifikators bild- punktweise in ein Klassenbild umgewandelt, bei dem jedem Bildpunkt ein Code zugeordnet wird, welcher seine Zugehörigkeit zu einer von zahlreichen, vorher ein¬ gelernten Klassen entspricht. Mittels dieser multisensioriellen Kamera können ge- schredderte Metall- und Kunststoffabfälle aus einem ungeordneten Schüttstrom aussortiert werden.
[0004] Die Integrität oder Unverfälschtheit eines Produktes in einem Behälter wird ge¬ genwärtig durch chemische Laboruntersuchungen festgestellt, wozu das Produkt aus dem Behälter genommen wird. Offenbarung der Erfindung Technisches Problem
[0005] Die Aufgabe der Erfindung besteht in der Prüfung der Integrität eines in einem
Behälter enthaltenen Produktes, insbesondere eines in einem verschlossenen Behälter enthaltenen Produktes. Technische Lösung
[0006] Erfindungsgemäß wird diese Aufgabe bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass zur Erzeugung des Gut-Schlecht-Signals mehrere der Mess¬ ergebnisse miteinander in Beziehung gesetzt werden.
[0007] Dadurch, dass mehrere Merkmale des Produkts überprüft werden, kann die
Integrität mit größerer Zuverlässigkeit sichergestellt werden, als wenn nur ein einziges Merkmal überprüft wird.
[0008] Die Messergebnisse können auf unterschiedliche Weise miteinander in Beziehung gesetzt werden. Einige Möglichkeiten werden nachfolgend aufgezählt:
[0009] -Die Messwerte werden auf einen Referenzwert normiert, der der Wert ist, der bei einem fehlerfreien Produkt vorliegt. Die normierten Messergebnisse geben dann die Abweichung als Faktor oder als Prozentwert an. Die Abweichungen der Mess¬ ergebnisse von den jeweiligen Referenz werten können als skalare Größen addiert werden. Wenn die Summe der Abweichungen einen Schwellwert übersteigt, so wird ein Schlecht-Signal erzeugt. Es ist hierbei möglich, die einzelnen Messergebnisse zu wichten, sodass die einzelnen Messverfahren das Ergebnis unterschiedlich stark be¬ einflussen.
[0010] -Die Messergebnisse können einen multidimensionalen Raum bilden, in dem eine oder mehrere Grenzflächen die guten und die schlechten Wertebereiche voneinander abgrenzen. Diese Grenzfläche kann durch eine Funktion mit einer der Anzahl der Mes¬ sergebnisse entsprechenden Anzahl von Veränderlichen wiedergegeben werden. Ein einfacher Fall für eine mathematische Gleichung ist die Kugelfläche in einem mehrdi¬ mensionalen Raum (R = u + v + w + x ...). In dieser Gleichung können jedoch auch gemischte Terme auftreten, d.h. die Beeinflussung eines Messergebnisses kann von dem Wert eines anderen Messergebnisses abhängen. Die Gut-Schlecht-Grenzfläche hat dann keine Kugelform, sondern eine beliebige unregelmäßige Form. In der Praxis ist es einfacher, eine entsprechende Wertetabelle im laufenden Betrieb einzulesen.
[0011] -Schließlich können die Messergebnisse auch noch durch Fuzzy-Logik miteinander verknüpft sein.
[0012] Als Messverfahren kommen alle zur Untersuchung des jeweiligen Produktes geeigneten Verfahren in Frage. Bei Getränkeflaschen sind es insbesondere Färb-, IR-, Röntgen- oder Gamma-Spektroskopie, die Bestimmung der Drehung von polarisiertem Licht durch das Produkt, die Bestimmung der Füllhöhe oder die Bestimmung des Be¬ hälterinnendrucks .
[0013] Zur Bestimmung von Getränken in Glas- oder Kunststoffflaschen hat sich ins¬ besondere die Kombination von NIR-Spektroskopie, die Messung der Röntgen- Absorption und die Messung des Dielektrizitätsmoduls bewährt. Die NIR- Spektroskopie kann dabei bereits für sich als eine Mehrzahl von Messmethoden angesehen werden, nämlich entsprechend der Anzahl untersuchten Absorptionspeaks.
[0014] Bei der Überprüfung einzelner mit dem Produkt gefüllter Behälter müssen in Ab¬ hängigkeit von der verwendeten MessDmethode zum Teil relativ große Abweichungen zugelassen werden, da z.B. bei Glas- oder Kunststoffflaschen die Wandstärke des Behälters das Messergebnis sehr stark beeinflussen kann. Nach einem bevorzugten Verfahren werden die Messergebnisse zunächst einer Messmethode daher über eine große Anzahl von Behältern gemittelt. Für die über eine größere Anzahl von Behältern gemittelten Werte der einzelnen Merkmale des Produktes können die zulässigen Ab¬ weichungen wesentlich kleiner angesetzt werden. Mit dieser Ausgestaltung der Erfindung lassen sich daher systematische Produktfehler, seien sie absichtlich oder un¬ absichtlich verursacht, mit hoher Zuverlässigkeit feststellen.
[0015] Die Mittelwertbildung ist zweckmäßig gleitend, d.h. der Mittelwert wird jeweils über eine bestimmte Anzahl der zuletzt überprüften Behälter gebildet. Zum Beispiel können zur Mittelwertbildung jeweils die letzten hundert Behälter verwendet werden.
[0016] Selbstverständlich können die einzelnen Messergebnisse zusätzlich in her¬ kömmlicher Weise für sich ausgewertet werden, d.h. wenn ein einzelnes Messergebnis nicht in einem bestimmten Bereich liegt, so wird der betreffende Behälter aus dem weiteren Produktionsverfahren ausgeschlossen.
[0017] Insgesamt werden die Messergebnisse damit in dreifacher Weise verwendet: [0018] -Jedes Messergebnis wird für sich daraufhin überprüft, ob es in einem bestimmten Bereich liegt. Wenn es außerhalb des Bereiches liegt, wird der Behälter ausge¬ schlossen;
[0019] -Die Messergebnisse mehrerer Messmethoden werden miteinander in Beziehung gesetzt, z.B. werden die prozentualen Abweichungen von den betreffenden Refe¬ renzwerten skalar addiert, und die Summe der Abweichungen wird mit einem Schwellwert verglichen. Sie können auch in eine Gleichung erster oder höherer Ordnung mit einer entsprechenden Anzahl von Veränderlichen eingesetzt werden und je nach dem, ob das betreffende Produkt in diesem mehrdimensionalen Raum innerhalb oder außerhalb einer Gut-Schlecht-Grenzfläche liegt wird der Behälter wei¬ terverarbeitet oder ausgeschlossen.
[0020] -Es wird der Mittelwert der Messergebnisse der einzelnen Messmethoden über eine größere Anzahl von Behältern gebildet und dieser Mittelwert kann wieder so wie im ersten Fall für jede Messmethode getrennt mit einem Referenzwert verglichen werden und/oder die Mittelwerte der Messergebnisse mehrerer Messmethoden können wie unter 2. angegeben miteinander in Beziehung gesetzt werden.
[0021] Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die Behälter im verschlossenen Zustand und damit am Ende des Herstellungsverfahrens geprüft werden können, zu dem eine nachträgliche Verletzung der Integrität weitgehend ausgeschlossen ist. Kurze Beschreibung von Zeichnungen
[0022] Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung erläutert. Die einzige Figur zeigt dabei schematisch eine Vorrichtung zur Prüfung der Integrität von Getränkeflaschen.
[0023] Eine Vielzahl von Getränkeflaschen 10 werden aufeinander folgend mit geringem Abstand auf einem Transporteur 12 durch mehrere Inspektionseinrichtungen 21 bis 25 transportiert.
[0024] In der ersten und in der zweiten Inspektionseinrichtung 21, 22 wird die Füllhöhe des Getränks in der Flasche 10 mittels Röntgenstrahlen und einem HF-Feld ermittelt. Die ermittelten Werte für den Füllstand werden einer Steuerungseinrichtung 30 übertragen, in der die Werte verglichen werden.
[0025] In der dritten Inspektionseinrichtung 23 wird die Röntgenabsorption im unteren, zy¬ lindrischen Bereich der Flaschen 10 gemessen.
[0026] In der vierten Inspektionseinrichtung 24 wird mittels des aus WO 98/21557 bekannten Verfahrens der Innendruck des Behälters gemessen.
[0027] In der fünften Inspektionseinrichtung 25 wird die Absorption eines Infrarotstrahls von 1,06 μm gemessen. [0028] Die Mess werte aller Inspektionseinrichtungen 21 bis 25 werden an die Steuerung 30 übermittelt.
[0029] Wie bereits erwähnt, werden die Signale der ersten und zweiten Inspektionsein¬ richtungen 21, 22 miteinander verglichen und aus beiden Signalen wird ein Füllhöhe- Differenzsignal gebildet. Das Füllhöhe-Differenzsignal darf für jeden einzelnen Behälter einen vorgegebenen Schwellwert S nicht überschreiten. Die Werte der drei anderen Inspektionseinrichtungen 23, 24 und 25 werden jeweils mit einem Re¬ ferenzwert verglichen, wobei für jeden einzelnen Behälter die Abweichung vom Re¬ ferenzwert nicht mehr als 10 % betragen darf.
[0030] Für jeden Behälter werden die von den Inspektionseinrichtungen 23, 24 und 25 gemeldeten prozentualen Abweichungen vom Referenzwert außerdem aufsummiert, wobei die Summe der prozentualen Abweichungen nicht mehr als 20 % betragen darf.
[0031] Ferner wird der Mittelwert der Füllhöhe-Differenzsignale der letzten hundert
Flaschen 10 gebildet und dieser Mittelwert darf ein Zehntel des Schwellwertes S nicht übersteigen. Ebenso wird der Mittelwert der Signale der Inspektionseinrichtungen 23, 24 und 25 der letzten hundert Flaschen 10 gebildet und dieser Mittelwert darf maximal ein Fünftel des Wertes von den jeweiligen Referenzwerten abweichen, der für die Abweichung der einzelnen Flaschen 10 gilt, also 2 %.
[0032] Zusätzlich wird die Summe der Quadrate der prozentualen Abweichungen der über jeweils hundert Flaschen 10 gemittelten Werte berechnet und diese Summe darf einen vorgegebenen weiteren Schwellwert nicht übersteigen. Dieser Schwellwert ist dabei so gesetzt, dass ein Fehlersignal bereits erzeugt wird, wenn die Abweichungen der Messwerte der Inspektionseinrichtungen 23, 24 und 25 für sich betrachtet noch akzeptabel sind. Liste der Bezugszeichen: 10 Getränkeflasche 12 Transporteur
21, 22, 23, 24 und 25 Inspektionseinrichtung 30 Steuerungseinrichtung

Claims

Ansprüche
[0001] 1. Verfahren zum Prüfen der Integrität von Produkten in Behältern (10), wobei mehrere Merkmale des Produktes mit physikalischen Messmethoden erfasst werden und auf Grund der Messergebnisse ein Gut-Schlecht-Signal erzeugt wird, dadurch gekennzeichnet, dass zur Erzeugung des Gut-Schlecht-Signals mehrere der Messergebnisse miteinander in Beziehung gesetzt werden.
[0002] 2. Verfahren nach Anspruch 1, wobei es sich bei der physikalischen
Messmethode um Färb-, IR-, Röntgen- oder Gamma-Spektroskopie, die Bestimmung der Drehung von polarisiertem Licht durch das Produkt, die Bestimmung der Füllhöhe oder die Bestimmung des Behälterinnendrucks handelt.
[0003] 3. Verfahren nach Anspruch 1 oder 2, wobei zumindest für einige Mess¬ ergebnisse deren Abweichung von einem Referenzwert festgestellt wird und die Abweichungen als skalare Größen aufsummiert werden und die Summe der Ab¬ weichungen mit einem Schwellwert verglichen wird.
[0004] 4. Verfahren nach Anspruch 3, wobei die Messergebnisse gewichtet werden.
[0005] 5. Verfahren nach Anspruch 3 oder 4, wobei die Quadrate oder höheren Potenzen der Abweichungen aufsummiert werden.
[0006] 6. Verfahren nach Anspruch 1 oder 2, wobei die Messergebnisse einen multidi- mensionalen Raum bilden, in dem eine oder mehrere Grenzflächen die guten und die schlechten Wertebereiche voneinander abgrenzen.
[0007] 7. Verfahren nach Anspruch 1 oder 2, wobei die Messergebnisse durch Fuzzy-
Logik miteinander verknüpft werden.
[0008] 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Messergebnisse jeder
Messmethode über eine größere Anzahl von Behältern gemittelt werden.
[0009] 9. Verfahren nach einem der Ansprüche 1 bis 8, wobei zusätzlich für jedes
Produkt in einem Behälter (10) ein oder mehrere Messergebnisse getrennt ausgewertet werden.
[0010] 10. Verfahren nach einem der Ansprüche 1 bis 8, wobei
- für jedes Produkt in einem Behälter (10) mindestens ein Messergebnis getrennt ausgewertet wird,
- für jedes Produkt in einem Behälter (10) mehrere Messergebnisse zur Erzeugung des Gut-Schlecht-Signals miteinander in Beziehung gesetzt werden und
- zumindest die Messergebnisse einer Messmethode über mehrere Produkte gemittelt werden und die Messergebnisse miteinander in Beziehung gesetzt werden, um ein weiteres Gut-Schlecht-Signal zu erzeugen.
PCT/EP2005/055838 2004-11-09 2005-11-09 Prüfen der integrität von produkten in behältern WO2006051078A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/667,259 US8538714B2 (en) 2004-11-09 2005-11-09 Testing the integrity of products in containers
ES05801417T ES2870563T3 (es) 2004-11-09 2005-11-09 Comprobación de la integridad de productos en envases
BRPI0517608-5A BRPI0517608A (pt) 2004-11-09 2005-11-09 teste da integridade de produtos em recipientes
JP2007540641A JP4733140B2 (ja) 2004-11-09 2005-11-09 容器中の製品の完全性検査方法
EP05801417.6A EP1809993B1 (de) 2004-11-09 2005-11-09 Prüfen der integrität von produkten in behältern
MX2007005537A MX2007005537A (es) 2004-11-09 2005-11-09 Comprobar la integridad de productos en envases.
CA2586740A CA2586740C (en) 2004-11-09 2005-11-09 Testing the integrity of products in containers
DK05801417.6T DK1809993T3 (da) 2004-11-09 2005-11-09 Test af produkters integritet i beholdere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054349A DE102004054349A1 (de) 2004-11-09 2004-11-09 Prüfen der Integrität von Produkten in Behältern
DE102004054349.6 2004-11-09

Publications (2)

Publication Number Publication Date
WO2006051078A2 true WO2006051078A2 (de) 2006-05-18
WO2006051078A3 WO2006051078A3 (de) 2006-08-03

Family

ID=35840488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055838 WO2006051078A2 (de) 2004-11-09 2005-11-09 Prüfen der integrität von produkten in behältern

Country Status (13)

Country Link
US (1) US8538714B2 (de)
EP (1) EP1809993B1 (de)
JP (1) JP4733140B2 (de)
KR (1) KR20070085620A (de)
CN (1) CN100458378C (de)
BR (1) BRPI0517608A (de)
CA (1) CA2586740C (de)
DE (1) DE102004054349A1 (de)
DK (1) DK1809993T3 (de)
ES (1) ES2870563T3 (de)
MX (1) MX2007005537A (de)
RU (1) RU2389980C2 (de)
WO (1) WO2006051078A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048327A1 (de) * 2006-10-06 2008-04-10 Stratec Control-Systems Gmbh Verfahren und Vorrichtung zur optischen Erfassung von Fremdkörpern in mit Flüssigkeit gefüllten Flaschen
DE102010043653A1 (de) * 2010-11-09 2012-05-10 Krones Aktiengesellschaft Verfahren und Vorrichtung zum Erkennen einer Restflüssigkeit in Behältern
DE102012200203A1 (de) * 2012-01-09 2013-07-11 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur spektroskopischen Untersuchung eines Messobjekts

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8713993B2 (en) * 2007-10-29 2014-05-06 Toyo Seikan Kaisha, Ltd. Method and apparatus for inspecting pinhole in synthetic resin bottle
US8700150B2 (en) 2012-01-17 2014-04-15 Cyberonics, Inc. Implantable neurostimulator for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction with bounded titration
DE102012101653A1 (de) * 2012-02-29 2013-08-29 Krones Ag Preformtransport mit individueller Auswurfmöglichkeit
JP5591849B2 (ja) * 2012-03-09 2014-09-17 株式会社 日立産業制御ソリューションズ 異物検査装置、異物検査プログラム、異物検査方法
US8688212B2 (en) 2012-07-20 2014-04-01 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing bradycardia through vagus nerve stimulation
US8923964B2 (en) * 2012-11-09 2014-12-30 Cyberonics, Inc. Implantable neurostimulator-implemented method for enhancing heart failure patient awakening through vagus nerve stimulation
US9643008B2 (en) 2012-11-09 2017-05-09 Cyberonics, Inc. Implantable neurostimulator-implemented method for enhancing post-exercise recovery through vagus nerve stimulation
US9452290B2 (en) 2012-11-09 2016-09-27 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing tachyarrhythmia through vagus nerve stimulation
US9643011B2 (en) 2013-03-14 2017-05-09 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing tachyarrhythmic risk during sleep through vagus nerve stimulation
US9999773B2 (en) 2013-10-30 2018-06-19 Cyberonics, Inc. Implantable neurostimulator-implemented method utilizing multi-modal stimulation parameters
US9511228B2 (en) 2014-01-14 2016-12-06 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing hypertension through renal denervation and vagus nerve stimulation
US9950169B2 (en) 2014-04-25 2018-04-24 Cyberonics, Inc. Dynamic stimulation adjustment for identification of a neural fulcrum
US9409024B2 (en) 2014-03-25 2016-08-09 Cyberonics, Inc. Neurostimulation in a neural fulcrum zone for the treatment of chronic cardiac dysfunction
US9713719B2 (en) 2014-04-17 2017-07-25 Cyberonics, Inc. Fine resolution identification of a neural fulcrum for the treatment of chronic cardiac dysfunction
US9272143B2 (en) 2014-05-07 2016-03-01 Cyberonics, Inc. Responsive neurostimulation for the treatment of chronic cardiac dysfunction
US9415224B2 (en) 2014-04-25 2016-08-16 Cyberonics, Inc. Neurostimulation and recording of physiological response for the treatment of chronic cardiac dysfunction
US9737716B2 (en) 2014-08-12 2017-08-22 Cyberonics, Inc. Vagus nerve and carotid baroreceptor stimulation system
US9770599B2 (en) 2014-08-12 2017-09-26 Cyberonics, Inc. Vagus nerve stimulation and subcutaneous defibrillation system
US9533153B2 (en) 2014-08-12 2017-01-03 Cyberonics, Inc. Neurostimulation titration process
US9504832B2 (en) 2014-11-12 2016-11-29 Cyberonics, Inc. Neurostimulation titration process via adaptive parametric modification
WO2016105441A1 (en) * 2014-12-27 2016-06-30 Hill's Pet Nutrition, Inc. Food processing method and system
DE102019208299A1 (de) * 2019-06-06 2020-12-10 Krones Ag Verfahren und Vorrichtung zur optischen Inspektion von Behältern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818232A (en) * 1972-12-13 1974-06-18 Nuclearay Inc Container fill level inspector with product averaging system
DE3417338A1 (de) * 1984-05-10 1985-11-14 Conto control Braschos KG, 5900 Siegen Vorrichtung zur ueberpruefung des fuellzustandes von getraenkeflaschen
US5750998A (en) * 1994-10-03 1998-05-12 Baxter International, Inc. Apparatus and method for non invasively identifying components of liquid medium within a bag
US5864600A (en) * 1995-09-27 1999-01-26 Thermedics Detection Inc. Container fill level and pressurization inspection using multi-dimensional images
US6104033A (en) * 1998-06-15 2000-08-15 Uop Llc Method of determining fluid level and interface in a closed vessel
US6338272B1 (en) * 1996-11-12 2002-01-15 Heuft Systemtechnik Gmbh Method for determining parameters, for example level, pressure, gas composition in closed containers

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849070A (en) * 1972-09-25 1974-11-19 Brewer S Unlimited Inc Apparatus for and method of determining oxygen and carbon dioxide in sealed containers
US4050824A (en) * 1974-12-19 1977-09-27 Tsn Company, Inc. Method and apparatus for inspecting bottled goods
US4081991A (en) * 1976-08-09 1978-04-04 Powers Manufacturing, Inc. Apparatus for pressure testing frangible containers
GB8721175D0 (en) * 1987-09-09 1987-10-14 Boc Group Plc Apparatus for testing
JPH0627717B2 (ja) * 1988-04-13 1994-04-13 株式会社キリンテクノシステム 壜の胴部検査装置
US5002397A (en) * 1988-04-13 1991-03-26 International Integrated Systems, Inc. System of fluid inspection and/or identification
US4991433A (en) * 1989-09-21 1991-02-12 Applied Acoustic Research Phase track system for monitoring fluid material within a container
DE3938742C2 (de) * 1989-11-23 1997-10-23 Gok Gmbh & Co Kg Vorrichtung zur redundanten Überfüllsicherung
US5202932A (en) * 1990-06-08 1993-04-13 Catawa Pty. Ltd. X-ray generating apparatus and associated method
DE4029620C2 (de) * 1990-09-19 1995-04-06 Michael Dipl Ing Schillings Verfahren und Vorrichtung zum Dosieren von Chargen
US5369600A (en) * 1991-12-24 1994-11-29 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for measuring gas density and sugar content of a beverage within a sealed container and method of measuring the same
DE4205722C2 (de) * 1992-02-25 1994-07-14 Krieg Gunther Verfahren und Vorrichtung zur Identifikation und Unterscheidung zwischen Schadstoffen und Inhaltsstoffen in Behältern
DE4214958C2 (de) * 1992-05-11 1994-06-09 Kronseder Maschf Krones Kontinuierlich arbeitende Inspektionsmaschine für Gefäße
DE1258262T1 (de) * 1993-10-28 2003-04-10 Medrad Inc System zur Kontrastmittelabgabe
DE4343058A1 (de) 1993-12-19 1995-06-22 Robert Prof Dr Ing Massen Multisensorielle Kamera für die Qualitätssicherung
US5473161A (en) * 1994-06-21 1995-12-05 The Coca-Cola Company Method for testing carbonation loss from beverage bottles using IR spectroscopy
US5614672A (en) * 1996-01-23 1997-03-25 Legendre; W. J. Apparatus for measuring the liquid contents of a tank
US5869747A (en) * 1996-05-22 1999-02-09 William H. Hulsman Food container internal pressure analysis
US6226081B1 (en) * 1997-03-24 2001-05-01 Optikos Corporation Optical height of fill detection system and associated methods
DE19834185A1 (de) * 1998-07-29 2000-02-03 Heuft Systemtechnik Gmbh Verfahren zum Prüfen von Behälterverschlüssen
JP4227272B2 (ja) * 1999-08-11 2009-02-18 株式会社エヌテック 異なる波長の光を用いた物品の検査装置
AU768044B2 (en) * 1999-10-21 2003-11-27 Foss Electric A/S Method and apparatus for determination of properties of food or feed
FR2802643B1 (fr) * 1999-12-15 2002-03-08 Sgcc Procede de controle de la qualite d'un article notamment en verre
EP1122535A3 (de) * 2000-01-31 2004-09-22 The Penn State Research Foundation Verfahren zur Prüfung des Inhalts eines verschlossenen Behälters
JP2001221747A (ja) * 2000-02-03 2001-08-17 Suntory Ltd 液体充填用容器の撮像方法および装置
AU4733601A (en) * 2000-03-10 2001-09-24 Cyrano Sciences Inc Control for an industrial process using one or more multidimensional variables
US7219047B2 (en) * 2001-03-29 2007-05-15 Opnet Technologies, Inc. Simulation with convergence-detection skip-ahead
US20030023385A1 (en) * 2001-08-16 2003-01-30 Emmanuel Lazaridis Statistical analysis method for classifying objects
US6782752B2 (en) * 2001-10-02 2004-08-31 1 M International Corporation Real-time system for detecting foreign bodies in food containers using ultrasound
RU2227320C2 (ru) 2002-01-08 2004-04-20 Самарский государственный аэрокосмический университет им. акад. С.П. Королева Способ измерений показателей качества нефтепродуктов
US6863860B1 (en) * 2002-03-26 2005-03-08 Agr International, Inc. Method and apparatus for monitoring wall thickness of blow-molded plastic containers
SE0201970L (sv) * 2002-06-26 2003-12-27 Foss Tecator Ab Metod och anordning för spektrofotometrisk analys
JP2005533257A (ja) * 2002-07-17 2005-11-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 密封された容器を分析する方法および装置
US7079912B2 (en) * 2002-11-25 2006-07-18 Philip Morris Usa Inc. System and method for high speed control and rejection
CN1198120C (zh) * 2003-03-14 2005-04-20 郭云昌 利用γ射线测量物位的方法
US7085677B1 (en) * 2004-04-19 2006-08-01 Amazon Technologies, Inc. Automatically identifying incongruous item packages
US7771777B2 (en) * 2004-06-14 2010-08-10 Acushnet Company Apparatus and method for inspecting golf balls using infrared radiation
US7624622B1 (en) * 2006-05-26 2009-12-01 Mocon, Inc. Method of measuring the transmission rate of a permeant through a container and determining shelf life of a packaged product within the container
US7971470B2 (en) * 2007-04-13 2011-07-05 Madison Avenue Management Company, Inc. Method for detecting chemical substances in whole, closed and/or sealed containers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818232A (en) * 1972-12-13 1974-06-18 Nuclearay Inc Container fill level inspector with product averaging system
DE3417338A1 (de) * 1984-05-10 1985-11-14 Conto control Braschos KG, 5900 Siegen Vorrichtung zur ueberpruefung des fuellzustandes von getraenkeflaschen
US5750998A (en) * 1994-10-03 1998-05-12 Baxter International, Inc. Apparatus and method for non invasively identifying components of liquid medium within a bag
US5864600A (en) * 1995-09-27 1999-01-26 Thermedics Detection Inc. Container fill level and pressurization inspection using multi-dimensional images
US6338272B1 (en) * 1996-11-12 2002-01-15 Heuft Systemtechnik Gmbh Method for determining parameters, for example level, pressure, gas composition in closed containers
US6104033A (en) * 1998-06-15 2000-08-15 Uop Llc Method of determining fluid level and interface in a closed vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048327A1 (de) * 2006-10-06 2008-04-10 Stratec Control-Systems Gmbh Verfahren und Vorrichtung zur optischen Erfassung von Fremdkörpern in mit Flüssigkeit gefüllten Flaschen
DE102010043653A1 (de) * 2010-11-09 2012-05-10 Krones Aktiengesellschaft Verfahren und Vorrichtung zum Erkennen einer Restflüssigkeit in Behältern
DE102012200203A1 (de) * 2012-01-09 2013-07-11 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur spektroskopischen Untersuchung eines Messobjekts

Also Published As

Publication number Publication date
JP4733140B2 (ja) 2011-07-27
EP1809993B1 (de) 2021-03-31
CA2586740C (en) 2016-11-08
CN101061374A (zh) 2007-10-24
BRPI0517608A (pt) 2008-10-14
RU2389980C2 (ru) 2010-05-20
JP2008519287A (ja) 2008-06-05
MX2007005537A (es) 2007-07-05
DE102004054349A1 (de) 2006-05-11
DK1809993T3 (da) 2021-06-07
CA2586740A1 (en) 2006-05-18
US8538714B2 (en) 2013-09-17
US20080061240A1 (en) 2008-03-13
EP1809993A2 (de) 2007-07-25
KR20070085620A (ko) 2007-08-27
RU2007121700A (ru) 2008-12-20
WO2006051078A3 (de) 2006-08-03
ES2870563T3 (es) 2021-10-27
CN100458378C (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
EP1809993A2 (de) Prüfen der integrität von produkten in behältern
CH631811A5 (de) Verfahren und vorrichtung zur beruehrungsfreien bestimmung von qualitaetsmerkmalen eines pruefobjektes der fleischwaren-kategorie.
EP1809991A2 (de) Verfahren zur feststellung der integrität eines in einem behälter befindlichen produktes
DE102005017957A1 (de) Inspektionsvorrichtung
EP3559742A1 (de) Prüfung und/oder justierung einer kamera, insbesondere einer digitalen kamera, mittels eines optischen prüfnormals
DE102007013333A1 (de) Verfahren zur Parametrierung und zum Betrieb von Waagen
EP3011281A1 (de) Vorrichtung und verfahren zur gewichtsbestimmung insbesondere eines mit produkt befüllten behältnisses
DE102012217419B4 (de) Analyseverfahren für Röntgenstrahlbeugungsmessdaten
DE2820661A1 (de) Verfahren und vorrichtung zur feststellung von fremdkoerpern in fluessigkeiten
EP4139839A1 (de) Verfahren und vorrichtung zur optischen inspektion von behältern in einer getränkeverarbeitungsanlage
DE10156809B4 (de) Verfahren und Vorrichtung zur Blutzuckermessung
DE10326152A1 (de) Verfahren und Vorrichtung zur quantitativen Analyse von Lösungen und Dispersionen mittels Nahinfrarot-Spektroskopie
EP0938663A1 (de) Verfahren zum testen der zuverlässigkeit eines prüfgerätes, insbesondere eines leerflascheninspektors
DE102008039836B4 (de) Vorrichtung und Verfahren zur Bestimmung des Säuregehalts
EP2047248B1 (de) Verfahren und vorrichtung zur bestimmung des fettgehaltes einer gesamtheit von fleischstücken
DE202005006220U1 (de) Inspektionsvorrichtung
EP2795288B1 (de) Verfahren zum ermitteln einer partikeleigenschaft und zum klassifizieren einer partikelcharge sowie vorrichtung zum durchführen der verfahren
DE10308552A1 (de) Inspektions- und Überprüfungssystem und -Methode
EP2085935A2 (de) Erkennung von Material und Füllzustand von Leergutbehältern
WO2022228840A1 (de) Verfahren zum erfassen der detektionsempfindlichkeit eines röntgengeräts
DD157828A1 (de) Messvorrichtung und verfahren zur beruehrungslosen pruefung der geometrie und oberflaechenbeschaffenheit von koerpern,insbesondere feinkeramischer erzeugnisse
AT507266B1 (de) Verfahren zum automatischen erkennen eines defekts in einer elektronischen darstellung
EP4305640A1 (de) Instrumententracking und -inspektion zur automatischen identifikation medizinischer/chirurgischer gegenstände
WO2001036944A1 (de) Verfahren und vorrichtung zum bestimmen der materialsorte eines kunststoffes
DE102004060608A1 (de) Verfahren zur Korrektur der Schwächung der Compton-Streuquanten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2586740

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/005537

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007540641

Country of ref document: JP

Ref document number: 200580038264.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005801417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077012398

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007121700

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005801417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11667259

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11667259

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0517608

Country of ref document: BR