WO2006074580A1 - Diviseur de faisceau sans difference de trajectoire optique - Google Patents

Diviseur de faisceau sans difference de trajectoire optique Download PDF

Info

Publication number
WO2006074580A1
WO2006074580A1 PCT/CN2005/000179 CN2005000179W WO2006074580A1 WO 2006074580 A1 WO2006074580 A1 WO 2006074580A1 CN 2005000179 W CN2005000179 W CN 2005000179W WO 2006074580 A1 WO2006074580 A1 WO 2006074580A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical path
mirror
hole
imaging system
Prior art date
Application number
PCT/CN2005/000179
Other languages
English (en)
French (fr)
Inventor
Dazhong Shen
Original Assignee
Suzhou Synta Optical Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Synta Optical Technology Co., Ltd filed Critical Suzhou Synta Optical Technology Co., Ltd
Priority to DE112005003365T priority Critical patent/DE112005003365T5/de
Priority to US11/351,276 priority patent/US7369315B2/en
Publication of WO2006074580A1 publication Critical patent/WO2006074580A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/04Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors for the purpose of beam splitting or combining, e.g. fitted with eyepieces for more than one observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/14Viewfinders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/108Beam splitting or combining systems for sampling a portion of a beam or combining a small beam in a larger one, e.g. wherein the area ratio or power ratio of the divided beams significantly differs from unity, without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/16Beam splitting or combining systems used as aids for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the invention relates to a spectroscopic device in a converging optical path of an optical imaging system such as a telescope, a sighting mirror and a sight, and particularly relates to a non-optical-path differential optical device.
  • the device is characterized by no optical path differential light. When moving out and moving into the optical path, there is no optical path difference and no need to refocus, which makes visual observation and digital camera switching more convenient.
  • a conventional optical aiming telescope people directly observe and capture the target from the eyepiece.
  • Such a telescope can only be used for observation and cannot be photographed.
  • the principle of the optical path is shown in Fig. 1.
  • the parallel light is imaged by the objective lens 1 at the focal plane of the focus F, and the human eye 3 is aimed and observed in the eyepiece 2.
  • Fig. 2(a) is a schematic diagram of the optical path when the spectroscope is not inserted. After the incident parallel rays pass through the objective lens 1, the convergence is imaged on the focal plane passing through the focal point F.
  • 2(b) is a schematic diagram of the optical path when the beam splitter is inserted, and a conventional cube prism beam splitter is inserted between the objective lens 1 and the focus F.
  • the beam splitter is glued by two right angle prisms 6 and is glued in the middle.
  • the surface is plated with a beam splitting film 5, so that the light is split into two paths on the spectroscopic surface, one channel is transmitted, and the other is reflected.
  • the refractive index n-glass of the beam splitting prism is different from the refractive index n of the air (generally, the refractive index n of the air is approximately 1, and the refractive index n of the glass is about 1.5)
  • the thickness of the beam splitter is L
  • the digital telescope can be realized by the above-mentioned spectroscopic principle, that is, a cube prism beam splitter is inserted between the objective lens and the focus F, so that the light transmitted through the objective lens is split into two paths on the spectroscopic beam splitting surface, and one pass transmits to the eyepiece, and is aimed by the human eye. Observe, the other way is reflected to the optical image sensor for photography, as shown in Figure 3.
  • the plated film is easy to produce color distortion and light loss
  • the first method is fixed in the light path regardless of the aiming observation or the photographic beam splitter, so that the light passing through the objective lens is divided into two parts, which are used for aiming observation and Photographing, which causes a large loss of light energy, will affect the effects of observation and photography.
  • the second way is to move the beam splitter into the light path when using the aiming camera function, and move the beam splitter out of the light path when using the simple observation function. This can reduce the loss of light energy and make the observation more clear.
  • the beam splitter moves in and out, the optical path difference generated in the optical path is visually observed, and the eyepiece needs to be refocused. Obviously, there are obvious defects in both ways.
  • the invention provides a non-optical-path differential optical device in an optical path of an optical imaging system, the purpose of which is to make the spectroscope have no optical path difference when moving in and out of the convergence optical path, thereby avoiding refocusing of the eyepiece.
  • the technical solution adopted by the present invention is: a non-optical-path differential optical device in an optical path of a converging optical path of an optical imaging system, which is composed of a spectroscope inserted between an objective lens of a converging optical path and a focal point F, the spectroscope As a mirror, the reflecting surface of the mirror is at an angle to the optical axis.
  • the mirror has a through hole. A part of the light passing through the objective lens is focused and imaged through the through hole, and the other part is reflected by the reflecting surface to be focused and imaged.
  • the through hole on the mirror is preferably located at the center of the mirror, and the axis of the through hole coincides with the optical axis.
  • the axis of the mirror through hole is at an angle of 45 with the reflecting surface.
  • the mirror may be composed of a flat lens, and the reflective surface is plated with a total reflection film.
  • the flat lens can be constructed of glass or other materials.
  • the mirror is supported by a moving or rotating mechanism, and is switched between two working states of moving in and out of the optical path, thereby achieving two functions of simple observation and aiming. It is also possible to fix the mirror in the light path.
  • the aperture d dimension of the central through hole of the mirror it should be determined according to the different requirements of the visual and camera brightness, according to the area of the hole and the ratio of the spot area of the objective lens imaging beam on the mirror, and select the appropriate ratio. In the range of 5% to 30%, it is preferably about 10%.
  • the working principle of the invention is: moving the central apertured mirror into the optical path, as shown in Fig. 6(a), the light in the central part of the optical path passes through the central aperture and reaches the focal plane, as shown in the shaded portion of the figure. Most of the remaining light is reflected by the spot reflection surface outside the center hole of the mirror to form another light, as shown in the shaded portion shown in Figure 6 (b). It can be seen from the comparison between Fig.
  • the mirror When used alone for visual aiming, the mirror is moved out of the optical path. At this time, the light passing through the objective lens is not restricted by the central hole of the mirror, and all of it is imaged in the field of view of the eyepiece to obtain sufficient brightness.
  • the mirror with a hole in the center When used for photography, the mirror with a hole in the center is moved into the optical path. At this time, the light is divided into two parts, and the light passing through the central hole portion is imaged in the field of view of the eyepiece for visual observation, and the rest of the light is reflected by the reflecting surface.
  • the optical path in the visual path is the same, no change, no optical path difference, and thus a spectroscopic system without optical path difference.
  • the present invention has the following advantages and effects compared with the prior art:
  • the spectroscope of the invention is easy to produce, as long as a flat glass with a hole in the middle, and a total reflection film on one side can perform optical path splitting;
  • the spectroscope of the present invention is only plated with a total reflection film, and does not generate spectral color distortion;
  • Figure 1 is a schematic diagram of the optical path of the telescope
  • Figure 2 (a) is a schematic diagram of the optical path of the telescope when the existing beam splitter is removed;
  • Figure 2 (b) is a schematic diagram of the optical path of the telescope when moving into the beam splitter;
  • Figure 3 is a schematic diagram of a digital telescope
  • Figure 4 is a cross-sectional view of a perforated mirror of the present invention.
  • Figure 5 is a left side view of Figure 4.
  • Figure 6 (a) is a schematic diagram of the optical pathless differential light of the present invention (1)
  • Figure 6 (b) is a schematic diagram of the optical path difference optical light of the present invention (2).
  • Figure 7 is a schematic diagram of the optical path of the telescope type digital telescope according to the present invention.
  • Figure 8 is a distribution diagram of the A-direction splitting beam in Figure 7.
  • a non-optical-path differential optical device for a digital telescope is composed of a beam splitter inserted between an objective lens 1 and a focal point F, and the beam splitter is a mirror 8.
  • the mirror 8 has a through hole 9 in the center thereof, and the axis of the through hole 9 coincides with the optical axis 12 and is at an angle of 45 with the reflecting surface of the mirror 8.
  • the mirror 8 is composed of flat glass, and its reflecting surface is plated with a total reflection film 10 (see Fig. 4).
  • the aperture d dimension of the central through-hole 9 of the mirror is determined according to the area of the aperture and the ratio of the area of the aperture of the imaging beam of the objective lens on the spectroscope. The appropriate ratio is generally selected to be about 10%.
  • the mirror 8 is supported by a moving or rotating mechanism and switches between two operating states of moving in and out of the optical path. When used alone for visual aiming observation, the mirror 8 is moved out of the optical path by a moving or rotating mechanism, and the light passing through the objective lens 1 is not restricted by the central through hole 9 of the mirror 8, and all are imaged in the field of view of the eyepiece 2, Can get enough brightness, as shown in Figure 1.
  • the mirror 8 having the through hole 9 in the center When used for photography, the mirror 8 having the through hole 9 in the center is moved into the optical path. At this time, the light is divided into two parts, and the light passing through the central through hole 9 is imaged in the field of view of the eyepiece 2 for visual observation.
  • the optical path of the optical path is not visually observed.
  • Fig. 8 is a distribution diagram of the A-direction splitting beam in Fig. 7, and the shaded portion in the figure indicates the reflected beam section 11.
  • the invention can be used in other similar converging optical paths in addition to the digital telescope, and achieves the purpose of no optical path difference when the optical switching is performed.

Description

无光程差分光装置
技术领域
本发明涉及望远镜、 观靶镜、 瞄准镜等光学成像系统会聚光路中的分光装 置, 具体涉及一种无光程差分光装置。 该装置以无光程差分光为特征, 在移 出、 移入光路时, 无光程差, 不需重新调焦, 从而使目视观察和数码照相切 换更加方便。
背景技术
在普通光学瞄准的望远镜中, 人们直接从目镜中观察和捕捉目标。 这种望 远镜只能用于观察, 不能照相, 其光路原理见图 1所示, 平行光经物镜 1成 像在位于焦点 F 的焦平面上, 人眼 3在目镜 2中进行瞄准和观察。
为了用望远镜实现既能瞄准观察, 又能照相的功能, 需要在图 1的焦点 F, 前插入一分光镜, 使光线在分光面上分成二路, 其中, 一路透射到目镜 2, 用于人眼瞄准观察, 而另一路反射至影傳 _传感器 7 (见图 3 ), 用于照相。 图 2(a)为没有插入分光镜时的光路原理图, 入射平行光线通过物镜 1后, 会聚 成像在通过焦点 F 的焦平面上。 图 2(b)为插入分光镜时的光路原理图, 图 示在物镜 1和焦点 F 间插入一传统的立方棱镜分光镜, 该分光镜由二块直 角棱镜 6胶合而成, 在中间胶^ !·面上镀有分光膜 5, 使光线在分光面上分 成二路, 一路透射, 另一路反射。 而加入立方棱镜分光镜后, 由于分光棱镜 的折射率 n玻与空气的折射率 n不同 (一般情况下, 空气的折射率 n近似 1, 而玻璃的折射率 n玻约为 1.5左右), 因此在光路中, 若分光镜的厚度为 L, 通过厚度为 L玻璃的光程为 L/ n 玻=1 1.5=0.671^, 与不加入分光镜时的光程 差 A=L— L/ n玻 =0.33L, 即像面需往后移 0.33L。 分光棱镜的厚度越大, 光程 差也越大, 像面需移动的距离也越大。
数码望远镜可以利用以上分光原理来实现, 即在物镜与焦点 F, 间插入一 立方棱鏡分光镜, 使透过物镜的光线在分光镜分光面上分成二路, 一路透射 到达目镜, 由人眼瞄准观察, 另一路反射到光学影像传感器, 用于照相, 见 图 3所示。 在立方棱镜分光镜的设置上, 有两种方式, 第一种是将分光镜固 定在会聚光路中; 第二种是采用一个移动或转动机构将分光镜安置在望远镜 中, 通过移入、 移出光路来实现单纯观察与瞄准照相之间的功能切换。
针对现有技术, 从分光镜本身来看, 采用立方棱镜有以下三点不足: 1、 所需尺寸大, 分光面要镀分光膜, 不易制作, 再加精密的棱镜材料, 成本高;
2、 镀分光膜易产生颜色失真及光线的损耗;
3、 因尺寸大, 移入、 移出光路时, 会产生较大的光程差。
从立方棱镜分光镜的两种设置方式来看, 第一种方式不论瞄准观察或照相 分光镜均固定在光路中, 这样透过物镜的光线就要分为二部份, 分别用于瞄 准观察和照相, 使光能损失较大, 将会影响观察和照相的效果。 第二种方式 在使用瞄准照相功能时需将分光镜移入光路, 而在使用单纯观察功能时可将 分光镜移出光路。 这样虽能减少光能损失, 使单纯观察变得更加清楚, 但由 于分光镜的移入, 移出, 在目视观察光路中产生的光程差, 又使目镜需要重 新调焦。 显然两种方式均存在明显缺陷。
发明内容
本发明提出了一种光学成像系统会聚光路中的无光程差分光装置, 其目的 是使分光镜在会聚光路中移入、 移出切换时无光程差, 从而避免目镜重新调 焦。
为达到上述目的, 本发明采用的技术方案是: 一种光学成像系统会聚光路 中的无光程差分光装置, 由一插入会聚光路物镜与焦点 F, 之间的分光镜构 成, 所述分光镜为一反射镜, 反射镜的反射面与光轴成角度, 该反射镜上有 一通孔, 经过物镜的光线一部分穿过通孔聚焦成像, 另一部分经过反射面反 射后聚焦成像。
上述技术方案中的有关内容解释如下:
1、 上述方案中, 所述反射镜上的通孔设在反射镜中心位置较好, 此时通 孔的轴线与光轴重合。
2、 上述方案中, 为了筒化结构, 所述反射镜通孔的轴线与反射面成 45° 角。
3、 上述方案中, 所述反射镜可以由平板镜片构成, 其反射面镀有全反射 膜。 平板镜片可以由玻璃或其它材料构成。
4、 上述方案中, 所述反射镜由一移动或转动机构支撑, 并在移入和移出 光路两种工作状态之间进行切换, 以此实现单纯观察和瞄准照相两种功能。 也可以将反射镜固定设置在光路中。
5、 关于反射镜中心通孔的孔径 d尺寸, 应根据目视和照相对亮度的不同 要求, 按照孔的面积和物镜成像光束在反射镜上所截光斑面积之比确定, 选 择合适比例, 一般在 5%〜30%范围内, 较好的可取 10%左右。 本发明工作原理是: 将中心有孔反射镜移入光路, 见图 6 ( a )所示, 光 路中心部分的光线通过中心孔, 到达焦面, 见图中的阴影部分。 其余大部分 光线, 由反射镜中心孔外的光斑反射面反射, 构成另一路光线, 见图 6 ( b ) 所示阴影部分。 从图 6 ( a )与图 6 ( b )的比较可以看出, 两路光线从分光面 到达像面的距离相等, 即 L1 = L2。 当单独用于目视瞄准观察时, 将反射镜 移出光路, 此时通过物镜的光线不受反射镜中心孔限制, 全部成像在目镜视 场内, 能够获得足够的亮度。 当用于照相时, 将中心有孔的反射镜移入光路, 此时, 光线分成两部分, 通过中心孔部分的光线成像在目镜视场, 用于目视 观察, 其余部分光线经反射面反射, 有 90%左右的光能射到影像传感器, 有 足够的光能用于照相。 在中心有孔反射镜移入和移出光路的整个过程中, 目 视光路中的光程都一样, 没有变化, 不产生光程差, 因而是一个无光程差的 分光系统。
由于上述技术方案运用, 本发明与现有技术相比具有下列优点和效果:
1、 本发明分光镜易生产、 只要一块中间有孔的平板玻璃, 一面镀全反射 膜即可进行光路分光;
2、 本发明分光镜只镀全反射膜, 不产生分光颜色失真;
3、 本发明分光镜移入、 移出光路时, 不产生光程差, 目视观察时不需要 重新调焦。
附图说明
下面结合附图及实施例对本发明作进一步描述:
附图 1为望远镜光路原理图;
附图 2 ( a )为现有移出分光镜时的望远鏡光路原理图;
附图 2 ( b )为现有移入分光镜时的望远镜光路原理图;
附图 3为数码望远镜原理图;
附图 4为本发明有孔反射镜剖视图;
附图 5为图 4的左视图;
附图 6 ( a )为本发明无光程差分光原理图 (一);
附图 6 ( b )为本发明无光程差分光原理图 (二);
附图 7为本发明用于望远镜式数码望远镜时光路原理图;
附图 8为图 7中的 A向分光光束分布图。
以上附图中, 1、 物镜; 2、 目镜; 3、 人眼; 4、 光程差; 5、 分光膜; 6、 直角棱镜; 7、 影像传感器; 8、 反射镜; 9、 通孔; 10、 全反射膜; 11、 反射 光束截面; 12、 光轴。 具体实施方式
实施例: 参见图 7所示, 一种用于数码望远镜的无光程差分光装置, 由一 插入会聚光路物镜 1 与焦点 F 之间的分光镜构成, 所述分光镜为一反射镜 8, 见图 4和图 5所示, 该反射镜 8中心有一通孔 9, 通孔 9的轴线与光轴 12 重合, 并与反射镜 8的反射面成 45° 角。 反射镜 8由平板玻璃构成, 其反射 面镀有全反射膜 10 (见图 4 )。 反射镜中心通孔 9的孔径 d尺寸, 按照孔的面 积和物镜成像光束在分光镜上所截光斑面积之比确定, 选择合适比例, 一般 可取 10%左右。 为了使数码望远镜同时具有单独观察和瞄准照相两种功能, 反射镜 8 由一移动或转动机构支撑, 并在移入和移出光路两种工作状态之间 进行切换。 当单独用于目视瞄准观察时, 通过移动或转动机构将反射镜 8移 出光路, 此时通过物镜 1的光线不受反射镜 8中心通孔 9的限制, 全部成像 在目镜 2视场内, 能够获得足够的亮度, 见图 1所示。 当用于照相时, 将中 心有通孔 9的反射镜 8移入光路, 此时, 光线分成两部分, 通过中心通孔 9 部分的光线成像在目镜 2视场, 用于目视观察, 见图 6 ( a ) 中的阴影部分; 其余部分光线经反射面反射, 有 90%左右的光能射到影像传感器 7, 有足够 的光能用于照相, 见图 6 ( b ) 中的阴影部分。 在中心有通孔 9的反射镜 8移 入和移出光路的整个过程中, 目视观察光路的光程不发生变化。
图 8为图 7中的 A向分光光束分布图,图中阴影部分表示反射光束截面 11。 本发明除了用于数码望远镜外, 也能用于其它类似的会聚光路中, 达到分 光切换时无光程差的目的。
上述实施例只为说明本发明的技术构思及特点, 其目的在于让熟悉此项技 术的人士能够了解本发明的内容并据以实施, 并不能以此限制本发明的保护 范围。 凡根据本发明精神实质所作的等效变化或修饰, 都应涵盖在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种光学成像系统会聚光路中的无光程差分光装置, 由一插入会聚光 路物镜与焦点 F, 之间的分光镜构成, 其特征在于: 所述分光镜为一反射镜, 反射镜的反射面与光轴成角度, 该反射镜上有一通孔, 经过物镜的光线一部 分穿过通孔聚焦成像, 另一部分经过反射面反射后聚焦成像。
2、 根据权利要求 1所述的光学成像系统会聚光路中的无光程差分光装置, 其特征在于: 所述反射镜上的通孔设在反射镜中心位置, 通孔的轴线与光轴 重合。
3、 根据权利要求 1所述的光学成像系统会聚光路中的无光程差分光装置, 其特征在于: 所述反射镜通孔的轴线与反射面成 45。 角。
4、 根据权利要求 1所述的光学成像系统会聚光路中的无光程差分光装置, 其特征在于: 所述反射镜由平板镜片构成, 其反射面镀有全反射膜。
5、 根据权利要求 1所述的光学成像系统会聚光路中的无光程差分光装置, 其特征在于: 所述反射镜上通孔的孔径 d尺寸, 以孔的面积与物镜成像光束 在反射镜上所截光斑面积之比在 5%〜30%范围内确定。
6、 根据权利要求 1所述的光学成像系统会聚光路中的无光程差分光装置, 其特征在于: 所述反射镜由一移动或转动机构支撑, 并在移入和移出光路两 种工作状态之间进行切换。
7、 根据权利要求 1所述的光学成像系统会聚光路中的无光程差分光装置, 其特征在于: 所述反射镜固定设置在光路中。
PCT/CN2005/000179 2005-01-12 2005-02-06 Diviseur de faisceau sans difference de trajectoire optique WO2006074580A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112005003365T DE112005003365T5 (de) 2005-01-12 2005-02-06 Spektrometeranordnung ohne Lichtwegdifferenz
US11/351,276 US7369315B2 (en) 2005-01-12 2006-02-08 Beam splitter and optical imaging systems incorporating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2005100381112A CN1658014A (zh) 2005-01-12 2005-01-12 光学成像系统会聚光路中的无光程差分光装置
CN2005100338111.2 2005-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/351,276 Continuation-In-Part US7369315B2 (en) 2005-01-12 2006-02-08 Beam splitter and optical imaging systems incorporating same

Publications (1)

Publication Number Publication Date
WO2006074580A1 true WO2006074580A1 (fr) 2006-07-20

Family

ID=35007609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000179 WO2006074580A1 (fr) 2005-01-12 2005-02-06 Diviseur de faisceau sans difference de trajectoire optique

Country Status (4)

Country Link
US (1) US7369315B2 (zh)
CN (1) CN1658014A (zh)
DE (1) DE112005003365T5 (zh)
WO (1) WO2006074580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199991A (zh) * 2015-09-18 2016-12-07 王治霞 分光片及其激光共轴测距仪和应用
CN114252420A (zh) * 2021-12-06 2022-03-29 深圳铭毅智造科技有限公司 一种测序仪荧光分光系统及分光方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076052A1 (zh) * 2009-12-23 2011-06-30 杭州远方光电信息股份有限公司 一种亮度测量装置
KR101617069B1 (ko) 2010-09-15 2016-04-29 이-비전 스마트 옵틱스, 아이엔씨. 이미지 관리 시스템, 장치 및 방법
CN102455511B (zh) * 2010-10-28 2013-05-22 中国科学院微电子研究所 利用平面反射镜合光的成像系统及光学测量装置
KR101737085B1 (ko) * 2010-11-05 2017-05-17 삼성전자주식회사 3차원 카메라
JP5946611B2 (ja) * 2011-07-15 2016-07-06 株式会社エンプラス 光レセプタクルおよびこれを備えた光モジュール
DE102011115717A1 (de) * 2011-10-12 2013-04-18 Carl Zeiss Sports Optics Gmbh Handgehaltenes Fernglas mit Spektrometer
US9563053B2 (en) 2012-04-10 2017-02-07 California Institute Of Technology Systems and methods for modularized control of robotic adaptive optics and laser systems
US20150124336A1 (en) * 2013-06-25 2015-05-07 Public Service Solutions, Inc. Wide spectrum optical systems and devices implementing first surface mirrors
DE102013015083A1 (de) * 2013-09-05 2015-03-05 Jenoptik Optical Systems Gmbh Mehrkanaliges optisches Abbildungssystem
JP2015148569A (ja) * 2014-02-07 2015-08-20 株式会社ミツトヨ 光学式プローブ、取付カバー、および形状測定装置
CN105737055B (zh) * 2014-06-23 2018-02-23 佛山市环佛汽车照明有限公司 瞭望汽车灯
CN106090775A (zh) * 2014-06-23 2016-11-09 充梦霞 采用数码摄像头、摄像控制模块的高亮led瞭望汽车灯的工作方法
CN105739080A (zh) * 2014-12-09 2016-07-06 信泰光学(深圳)有限公司 瞄准器
CN107219590B (zh) * 2017-06-05 2018-12-25 峻立科技股份有限公司 具有监控分光路径的光学元件
JP2022026276A (ja) * 2020-07-30 2022-02-10 キヤノン株式会社 観察装置及びそれを有する撮像装置
CN114414063B (zh) * 2021-12-17 2024-01-19 杭州麦乐克科技股份有限公司 双调焦红外高温测温装置
CN114413683A (zh) * 2021-12-21 2022-04-29 北京遥感设备研究所 一种便携式多工况通用校轴装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968362A (en) * 1975-08-11 1976-07-06 Honeywell Inc. Optical system for laser doppler homodyne detection
SU761847A1 (ru) * 1978-06-30 1980-09-07 Igor A Kibalko Устройство для бесконтактного измерения линейных перемещений и резонансных частот изделий 1
US4586190A (en) * 1982-11-19 1986-04-29 Shimadzu Corporation Blood cell discriminator and counter utilizing transmitted and scattered light
JP3200777B2 (ja) * 1992-09-10 2001-08-20 株式会社オーク製作所 投影露光機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163256A (en) 1972-06-27 1979-07-31 Texas Instruments Incorporated Electronic photography system
US4131919A (en) 1977-05-20 1978-12-26 Eastman Kodak Company Electronic still camera
US4420773A (en) 1980-06-30 1983-12-13 Nippon Kogaku K.K. Electronic photographic camera
DE3264093D1 (en) * 1981-02-24 1985-07-18 Commw Of Australia An optical system for a spectrophotometer
US4735497A (en) * 1983-07-01 1988-04-05 Aoi Systems, Inc. Apparatus for viewing printed circuit boards having specular non-planar topography
JPH02240532A (ja) 1989-03-13 1990-09-25 Shimadzu Corp 分光光度計
US5365367A (en) * 1993-06-17 1994-11-15 Visidyne, Inc. High-resolution synthetic aperture telescope system
US5450240A (en) * 1993-07-22 1995-09-12 Elsag International N.V. Device and method for light beam splitting for dual sensor flame detector
KR100592135B1 (ko) 1997-09-03 2006-08-30 마쯔시다덴기산교 가부시키가이샤 디지털카메라
US7358998B2 (en) 2004-07-01 2008-04-15 Asia Optical Co., Inc. Image switching apparatus providing an optical compensator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968362A (en) * 1975-08-11 1976-07-06 Honeywell Inc. Optical system for laser doppler homodyne detection
SU761847A1 (ru) * 1978-06-30 1980-09-07 Igor A Kibalko Устройство для бесконтактного измерения линейных перемещений и резонансных частот изделий 1
US4586190A (en) * 1982-11-19 1986-04-29 Shimadzu Corporation Blood cell discriminator and counter utilizing transmitted and scattered light
JP3200777B2 (ja) * 1992-09-10 2001-08-20 株式会社オーク製作所 投影露光機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199991A (zh) * 2015-09-18 2016-12-07 王治霞 分光片及其激光共轴测距仪和应用
CN106199991B (zh) * 2015-09-18 2020-04-21 王治霞 激光共轴测距仪
CN114252420A (zh) * 2021-12-06 2022-03-29 深圳铭毅智造科技有限公司 一种测序仪荧光分光系统及分光方法
CN114252420B (zh) * 2021-12-06 2024-01-26 深圳铭毅智造科技有限公司 一种测序仪荧光分光系统及分光方法

Also Published As

Publication number Publication date
CN1658014A (zh) 2005-08-24
DE112005003365T5 (de) 2007-11-22
US7369315B2 (en) 2008-05-06
US20060180744A1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
WO2006074580A1 (fr) Diviseur de faisceau sans difference de trajectoire optique
US6546208B1 (en) Stereoscopic telescope with camera
JPS6053915A (ja) 倒立型光学顕微鏡
JPH1068866A (ja) 自動焦点装置を有する顕微鏡
US4057318A (en) Microscope eye piece focusing apparatus for use in producing sharp photographs
US5371557A (en) Stereoscopic retinal camera
JPH08278448A (ja) 鏡筒光学系
JP5379154B2 (ja) デュアル焦点距離レンズ系
JPH0498236A (ja) カメラ
JPS6125372B2 (zh)
JPH01233430A (ja) ケプラー式ファインダー光学系
US20170212356A1 (en) Microscope having a beam splitter assembly
JPS60100114A (ja) 合焦検出装置
TWI269888B (en) Splitter with zero optical path difference in light-focusing path of optics imagery system
JPS58199317A (ja) 一眼レフカメラ用アタツチメント光学系
JPH08322799A (ja) 眼底カメラ
US2526204A (en) Reflex focus determining view finder for cameras
JPS6217722A (ja) 単対物双眼立体視顕微鏡
JPH07261096A (ja) 双眼実体顕微鏡
JP2010020298A (ja) 結像装置及び顕微鏡
JP2007093888A (ja) ファインダ光学系及びこれを搭載する光学機器
KR200248338Y1 (ko) 두개의접안부를가지는실상식파인더_
JPH0554779B2 (zh)
CN2760593Y (zh) 光学成像系统会聚光路中的无光程差分光装置
JP3049180U (ja) 広視界双眼鏡

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11351276

Country of ref document: US

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 11351276

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050033651

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005003365

Country of ref document: DE

Date of ref document: 20071122

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05706616

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5706616

Country of ref document: EP