WO2006075493A1 - 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用 - Google Patents

沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用 Download PDF

Info

Publication number
WO2006075493A1
WO2006075493A1 PCT/JP2005/023520 JP2005023520W WO2006075493A1 WO 2006075493 A1 WO2006075493 A1 WO 2006075493A1 JP 2005023520 W JP2005023520 W JP 2005023520W WO 2006075493 A1 WO2006075493 A1 WO 2006075493A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
flow path
channel
sub
main flow
Prior art date
Application number
PCT/JP2005/023520
Other languages
English (en)
French (fr)
Inventor
Koichi Suzuki
Hiroshi Kawamura
Haruhiko Ohta
Yoshiyuki Abe
Original Assignee
Tokyo University Of Science Educational Foundation Administrative Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University Of Science Educational Foundation Administrative Organization filed Critical Tokyo University Of Science Educational Foundation Administrative Organization
Priority to EP05820340A priority Critical patent/EP1837612A1/en
Priority to US11/793,535 priority patent/US8061414B2/en
Publication of WO2006075493A1 publication Critical patent/WO2006075493A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/021Evaporators in which refrigerant is sprayed on a surface to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D7/00Devices using evaporation effects without recovery of the vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/908Fluid jets

Definitions

  • Boiling cooling method Boiling cooling method, boiling cooling apparatus, flow channel structure and application technical field thereof
  • the present invention relates to a boiling cooling method, a boiling cooling device that performs the boiling cooling method, a flow path structure used in the boiling cooling device, and an application product to which these are applied.
  • the liquid temperature gradually rises and eventually reaches a "saturation temperature” at which the liquid temperature does not rise any further. Further heating causes “liquid vaporization” inside the liquid. This state is boiling, and the saturation temperature is called the boiling point.
  • the liquid temperature does not rise, and the energy stored in the liquid by heating is consumed to “vaporize the liquid inside the liquid”.
  • This thermal energy is called “latent heat”!
  • the latent heat is extremely large compared to the heat energy that raises the temperature of the liquid. Therefore, a large cooling effect can be obtained by utilizing the boiling of the liquid.
  • boiling cooling Cooling using boiling is called “boiling cooling”, and various boiling cooling devices have been proposed.
  • it comprises a container that contains a cooling liquid and a pipe that passes through the cooling liquid, and the semiconductor element as the object to be cooled is immersed in the cooling liquid! /,
  • the cooling liquid in the pipe An immersion-type boiling cooling device has been proposed that has a lower boiling point than liquid and circulates liquid (see, for example, Patent Document 1).
  • the surface of a “heating block” made of metal or the like is immersed in a liquid, and the heating block is heated by heating to raise its heat transfer surface temperature.
  • the temperature of the heat transfer surface rises to a certain level, “fine bubbles with a size of about lmm or less” are generated on the surface of the heating block.
  • This state is a state where the temperature of the liquid layer portion in contact with the surface of the heating block reaches the saturation temperature and boiling occurs on the surface portion.
  • Heat flux is a physical quantity representing the effect of cooling due to boiling of a liquid.
  • heat flux is the amount of heat transferred from the unit area of the surface of the heating block (the surface in contact with the liquid) to the liquid per unit time, and the heat flux is large! Big.
  • the “increase rate of heat flux” increases, and if the heating block is further heated, the amount of bubbles generated on the surface of the heating block also increases.
  • the heat flux continues to increase with a large increase rate, but eventually saturates.
  • the “state where the heat flux is saturated” is a state where the surface of the heating block is covered with “large bubbles”.
  • This proposal is a cooling device that mainly uses a semiconductor device as a heating element, and uses two types of nozzles.
  • the first nozzle force low-temperature refrigerant liquid is injected toward the heating element, and the same low temperature is output from the second nozzle.
  • the refrigerant liquid is jetted toward the refrigerant liquid ejected from the first nozzle that becomes a high-temperature refrigerant liquid in a gas-liquid two-phase state due to the generation of boiling bubbles due to the heat of the heating element, and is rapidly cooled to condense the boiling bubbles.
  • a cooling method performed by extinguishing is performed.
  • the cooling liquid When a liquid with a large subcooling degree is used as the cooling liquid, the temperature at the gas-liquid interface between the combined bubble and the liquid that has grown is lowered in the transition boiling region, and the bubble becomes fine due to condensation (a phenomenon opposite to the boiling phenomenon). Since the liquid is supplied to the heat transfer surface by collapsing into bubbles, the transition boiling force can be cooled without shifting to film boiling, and the critical heat flux can be increased more than usual. . This phenomenon is called “bubble refined boiling”.
  • the heat transfer surface length of IC packages of high heat density electronic devices used in inverters for power conversion is typically 10-30 cm. Cooling that can cool the surface to be cooled with such a long heat transfer surface There is also a need for a cooling method that can cope with a wide range of thermal load fluctuations, such as when the heat generation suddenly increases due to sudden acceleration or abnormal operation in an electric vehicle.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-54654
  • Patent Document 2 Japanese Patent Laid-Open No. 5-136305
  • Non-patent document 1 “Subcooled flow boiling with bubble miniaturization” (The 41th Japan Heat Transfer Symposium Lecture Collection (June 2004) Vol. 1, pages 19-20)
  • the present invention provides boiling that enables boiling cooling by nucleate boiling for a larger cooling channel length in a high temperature region where transition boiling can occur in the boiling phenomenon process. It is an object to provide a cooling method and an apparatus therefor.
  • the present invention provides a wide range of heat generation from the low temperature region to the unprecedented high temperature region. It is an object of the present invention to provide a boiling cooling method and apparatus capable of continuously responding to thermal load fluctuations.
  • Still another object of the present invention is to provide a practical boiling cooling method and apparatus capable of reducing the size and weight and saving energy.
  • the inventors of the present invention sequentially installed a main flow path and a sub flow path as a cooling liquid flow path, adjacent to the cooling surface of an object to be cooled. And a cooling device in which a plurality of nozzles protrude from the main flow channel and the sub flow channel so that the tip portion approaches or abuts the cooling surface. It was confirmed that it was effective in solving the problem, and the present invention was created.
  • the boiling cooling device of the present invention uses the surface of the object to be cooled or the surface of the heat transfer member in close contact with the surface as a cooling surface (hereinafter also referred to as a heat transfer surface),
  • the sub-channels are formed sequentially from the cooling surface side, and a plurality of nozzles protruding through the partition walls separating the sub-channel and the main channel into the main channel are arranged in the direction of the main channel. This is characterized in that the front end portion is close to or in contact with the cooling surface.
  • the surface of the heat transfer member that is in close contact with the surface can be exemplified by a surface having a function of spreading heat flow by heat conduction, such as a metal plate that is in close contact with a heating element such as a heat spreader. .
  • the opening at the tip of the nozzle is installed so as to correspond to the cooling surface, and it is particularly preferable that the nozzle is provided substantially perpendicular to the cooling surface to enhance the cooling effect that is particularly preferred. It is effective.
  • the nozzle is a tubular body that has a notch structure at the opening and a nozzle with a force notch structure that can be used with or without a notch structure.
  • a nozzle it is preferable to place the opening close to the cooling surface.
  • the nozzle used in the present invention is made to protrude from the cooling surface so that the bubbles are made fine by the cooling liquid discharged from the nozzle force and the cooling effect of the present invention is exerted, and the tip of the nozzle is brought close to the cooling surface.
  • the nozzle protrudes in the main flow path, the surface inevitably rises in temperature by cooling the cooling surface in the main flow path. It has a heat dissipating fin effect that absorbs heat from the liquid.
  • the material constituting the nozzle has thermal conductivity, and that the nozzle arrangement and density are appropriately selected and set.
  • the boiling cooling method according to claim 1 has the following characteristics.
  • Cooling liquid is circulated through the main flow path and the sub flow path, the cooling surface is cooled by boiling of the cooling liquid flowing through the main flow path, and the cooling liquid on the sub flow path side is passed through each nozzle from the sub flow path side. It is characterized in that it is supplied so as to ooze out in the vicinity of the cooling surface.
  • the boiling cooling method according to claim 1 is called a “passive cooling method”.
  • the cooling liquid supplied in such a way as to ooze out enters the vicinity or the bottom of the bubbles generated in the main flow path by boiling, so that the cooling surface force bubbles are released and the cooling reduction phenomenon due to the bubbles is eliminated.
  • the aim is to contribute to cooling.
  • a minute bubble with a size of about lmm is generated on the cooling surface, and when this bubble grows to a few millimeters and adheres to the nozzle opening near the cooling surface, almost no flow occurs.
  • the coolant in the sub-channel moves to the nozzle, and the coolant in the nozzle is supplied so as to “bleed out” into the main channel at this portion.
  • the “cooling liquid supplied from the sub-flow path to the main flow path” effectively removes bubbles in the vicinity of the nozzle opening and simultaneously supplies the cooling liquid.
  • the cooling liquid Due to the oozing effect of the nozzle that comes into contact with or close to the cooling surface, the cooling liquid is supplied to the bottom and the periphery of the grown and enlarged bubbles, and the bubbles are removed.
  • the flow rate of the main channel in the “passive cooling method” is extremely small. For example, it is possible to remove the heat flux from about 60 to 70 WZcm 2 at a flow rate of about 0.03 to 0.06 mZ seconds. Is.
  • the “passive cooling method” allows the cooling liquid to flow at a low flow rate in the main flow path and passes through the sub flow path to make the nozzle force ooze out to achieve the above-mentioned limit heat flux. It is a very practical boiling cooling method suitable for small and light weight.
  • the boiling cooling method described in claim 2 uses the above “bubble refinement boiling phenomenon” and has the following characteristics.
  • Cooling using the surface of the object to be cooled or the surface of the heat transfer member in close contact with the surface as the cooling surface The main flow channel and the sub flow channel for liquid are formed in the above order from the cooling surface side.
  • a plurality of nozzles penetrating through the partition wall separating the sub-flow path and the main flow path and projecting into the main flow path are arranged in the flow direction of the main flow path, and the tips of the individual nozzles are brought close to or in contact with the cooling surface. .
  • the cooling liquid subcooled to a predetermined temperature in advance is circulated through the main channel and the sub channel with the pressure in the sub channel being higher than the pressure in the main channel, thereby boiling the coolant flowing in the main channel.
  • the cooling surface is further cooled, and the cooling fluid on the sub-flow channel side is forcibly ejected from the sub-flow channel side to the vicinity of the cooling surface due to the pressure difference between the cooling fluid of the main flow channel and the sub-flow channel. It is characterized by being supplied.
  • the boiling cooling method according to claim 2 is referred to as an “active cooling method”.
  • the coolant flowing from the beginning in the main channel cools the cooling surface, but then the boiling bubbles that are generated on the cooling surface in the main channel due to the above boiling phenomenon and obstruct the cooling are forcibly ejected near the cooling surface.
  • the cooling liquid (subcooled liquid) to which nozzle force is also supplied collapses into minute bubbles, eliminates the obstacles, and cools the cooling surface. Together, the cooling liquid to which nozzle force is also supplied passes through the main flow path. The cooling liquid flowing is brought about.
  • the flow rate of the coolant in the “active cooling method” is preferably adjusted to 0.3 to 0.6 mZ seconds in the main channel and 0.5 to 1. OmZ seconds in the sub channel.
  • the distance between the tip of the nozzle and the cooling surface is as follows.
  • the bubble refining function and the heat dissipating fin function of the cooling liquid supplied by the nozzle are exhibited, there is no particular limitation.
  • a device that implements only the “passive cooling method” and a combined device that implements both the “passive cooling method” and the “active cooling method” for example, about 0.1 to 1 mm is effective.
  • an apparatus that implements only the “active cooling method” it can be set according to the injection pressure level of the coolant, and for example, the interval can be made wider.
  • the "cooling surface” is the surface of the object to be cooled itself or the surface of the heat transfer member to be cooled.
  • the heat transfer member is provided in close contact with the surface of the object to be cooled, and boiling cooling of the object to be cooled is performed via the heat transfer member.
  • the surface shape of the cooling surface may be a flat surface or a curved surface such as a cylinder surface as long as the main flow channel and the sub flow channel can be formed.
  • a flat surface it is easy to form the main flow path and the sub flow path.
  • Examples of objects to be cooled include high-heat density electronic devices, hybrid power, electric vehicles, fuel cell vehicles, power conversion inverters for fuel cell power generation facilities, and power conversion inverters for railway and aircraft power systems. These heat transfer members can be mentioned.
  • Subcool means that the temperature of the coolant is set to “a temperature lower than the saturation temperature at which boiling of the coolant occurs at the contact portion with the surface to be cooled”.
  • the temperature difference between the coolant saturation temperature (the temperature at which boiling occurs in the main channel) and the subcooled coolant is called the “subcool degree”.
  • the subcooling degree, flow rate, main flow path and side flow of the cooling liquid are set so that the subcooling degree is 20K or more at the "downstream end of the cooling surface" in the main flow path. It is preferable to set the pressure difference of the coolant with the passageway (Claim 3).
  • the passive cooling method according to claim 1 and the active cooling method according to claim 2 or claim 3 can be "switched according to cooling conditions" (claim 4).
  • the bubbles are refined by “cooling liquid that oozes from the sub-channel side to the main channel side” through the nozzle. It is possible to effectively prevent the boiling form from “transitioning from the nucleate boiling form to transition boiling” and to achieve a high cooling effect without lowering the heat flux due to transition boiling.
  • the boiling cooling mode can be maintained up to a considerably high temperature region even with the passive cooling method. Is possible.
  • the passive cooling method is used in the low heat flux region
  • the active cooling method is used in the high heat flux region
  • either the passive cooling method or the active cooling method is one of them. Even if it is applied to a single cooling device that implements the above, it can be applied to a combined cooling device that implements both the passive cooling method and the active cooling method.
  • the "passive cooling method” in the low heat flux zone of less than about heat density of about 60 ⁇ 70WZcm 2 heat density is 70: In LOOWZcm 2 main passage It was confirmed that it is practically preferable to use the “active cooling method” by increasing the flow velocity to 0.5 m / sec and in the high heat flux region up to about 500 WZcm 2 .
  • the main flow path system and the sub flow path system in the fluid loop are different methods: a method of controlling the flow rate with a pump attached, and a method of controlling the flow rate with a flow rate adjusting valve with one pump.
  • the boiling cooling method of the present invention uses a passive cooling method and an active cooling method, so that it is possible to reduce a long heat transfer surface with a combined cooling device conventionally used without changing the structure of the device.
  • Heat flux area force It is possible to continuously remove heat up to a high heat flux area.
  • the nozzle arrangement form and the Z or arrangement density be made closer to the downstream side of the main flow path. It is preferable to increase the amount of coolant supplied from the sub-channel toward the downstream side of the main channel. (Claim 5)
  • the direction of the coolant flow is the same in the main channel and the sub-channel. Or “the flow directions in the main flow path and the sub flow path are opposite to each other”. When the flow direction of the coolant is “reverse to each other in the main flow path and the sub flow path”, the downstream side of the main flow path is upstream in the sub flow path.
  • the subcooled cooling liquid is supplied from the nozzle to the main flow path.
  • the temperature of the cooling liquid approaches the saturation temperature toward the downstream side.
  • the direction of the coolant flow is reversed so that the nozzle arrangement density becomes denser toward the downstream side of the main flow path, and the coolant supply amount from the sub flow path (with a higher subcooling degree) toward the downstream side of the main flow path.
  • This "nozzle arrangement form and Z or arrangement density” also affects the effect of the heat dissipating fins of the nozzle described above, and is adjusted in consideration of the characteristics of the coolant in the main flow path and its flow rate. It is preferable.
  • the cooling liquid used for the above-mentioned "cooling liquid that exudes nozzle force or cooling liquid that is jetted out of nozzle force" If the bubble can be made fine or collapsed, it can be used without any particular restrictions, but it is readily available, low cost, easy to handle, safe, chemical 'physical
  • water, alcohol, a mixed solution of water and alcohol, or a fluorine-based inert liquid is preferable (Claim 6).
  • water is particularly suitable as a coolant.
  • fluorine-based inert liquid for example, “Fuji Linert (registered trademark)” (Sumitomo 3EM) is commercially available.
  • the active cooling method of the present invention has the advantage of less vibration or noise in order to make the bubbles finer or collapse before the bubbles grow larger.
  • the inventors have confirmed that the use of the above mixed liquid as the cooling liquid can further improve the vibration or noise reduction effect and obtain a higher heat flux.
  • the present inventors performed boiling cooling by the active cooling method of the present invention using a mixture of ethyl alcohol and propyl alcohol as alcohols in a ratio of 5 to 15% with respect to water as a cooling liquid.
  • the heat fluctuation is about 30 to 50% higher than the case where only the coolant is water. I was able to.
  • the reason why a high heat flux can be obtained is that when the mixture of water and alcohol is boiled, the alcohol component with a low boiling point evaporates first in the vicinity of the high temperature heat transfer surface, causing bubbles on the heat transfer surface. There is a difference in concentration between the vicinity of the point of contact and the liquid mixture, and this concentration difference causes a difference in surface tension at the interface between the bubble and the liquid mixture. It is assumed that the liquid mixture is stretched in tension and a flow toward the top of the bubble (matango-convection) occurs!
  • the object to be cooled in the present invention is not particularly limited. However, from a practical standpoint, various semiconductor devices such as a reactor core part and a vehicle inverter are used.
  • the boiling cooling according to the present invention is effective for cooling the vice. For example, IGBTs using Si substrates, which are widely used at present, tend to increase in heat generation density with higher output, and the cooling method of the present invention is extremely effective when cooling such semiconductor devices. It is valid.
  • SiC semiconductor device capable of high-temperature operation is intended for practical use, but because SiC is still expensive, the current Si-based power device (IGBT) has been dominant for some time.
  • the present invention is also suitable for cooling a Si element having a high temperature operation and a high heat generation density. It can also handle the high load usage of current Si-based power devices (IGBTs).
  • the flow channel structure of the present invention is used for carrying out the boiling cooling method described above, and has the following characteristics (claim 7).
  • the surface of the object to be cooled or the surface of the heat transfer member in close contact with the surface is used as a cooling surface, and is formed integrally with a main channel formed integrally with the cooling surface and a partition so as to overlap the main channel.
  • the main flow path and the sub flow path have an integral structure, and the main flow path is integrated with the cooling surface, so the cooling surface is a "component of the flow path structure".
  • the cooling surface is the surface of the object to be cooled or the surface of the heat transfer member. Therefore, when the surface of the object to be cooled is used as a cooling surface, “the object to be cooled that forms the cooling surface itself also forms part of the flow path structure”.
  • the flow channel structure can be configured integrally with the object to be cooled, with the object to be cooled as a part of the constituent elements.
  • the surface of the heat transfer member is a cooling surface, it is integrated into the heat transfer member to form a main flow path and a sub flow path, and the flow path structure is separate from the object to be cooled.
  • the channel structure is made of a material having good thermal conductivity.
  • gold, silver, and aluminum have a large thermal conductivity.
  • silver is suitable as a material for a channel structure because of its high thermal conductivity. .
  • a nozzle composed of a material having a high thermal conductivity is effective in producing the above-described radiating fin effect.
  • a material having a stable heat resistance, corrosion resistance, and high heat resistance, which has a good thermal conductivity is preferable to use as the material for the flow path structure.
  • Aluminum, stainless steel, ceramics, etc. that have been subjected to are applicable.
  • the surface of the cooling surface facing the tip portions of the plurality of nozzles is a smooth surface, and the tip portions of the plurality of nozzles are minute gaps on the smooth surface. It is possible to adopt a configuration close to each other (claim 8).
  • the surface of the cooling surface facing the tip portions of the plurality of nozzles has a fine uneven structure, and the tip portions of the plurality of nozzles It can also be configured to abut against the fine concavo-convex structure (claim 9).
  • the fine concavo-convex structure on the surface of the cooling surface may be a “rough structure” (Claim 10), and “an aggregate of narrow grooves formed in an annular or spiral shape or along the main flow path”. (Claim 11).
  • the surface of the cooling surface is a “fine concavo-convex structure” as in the channel structure according to claims 9 to 11, the surface area of the cooling surface is increased, and the amount of heat transferred to the cooling liquid.
  • the nozzle tip can be brought into contact with the cooling surface, and the gap between the nozzle tip and the cooling surface can be effectively reduced to effectively promote “cooling liquid seepage”.
  • a plurality of nozzles can be used as “means for increasing the strength of the flow path structure”.
  • one or more "fine through holes and Z or fine slits and Z or notches" are provided at the tip of each nozzle. (Claim 12).
  • the cooling liquid flowing from the sub-flow path is dispersed and supplied into the main flow path, and the bubbles collapse more effectively. ,preferable.
  • the tip of the nozzle can be brought into contact with the cooling surface even if the cooling surface is a smooth surface. .
  • the flow channel cross-sectional area of the sub flow channel is made larger than the flow channel cross-sectional area of the main flow channel, and these cross-sectional areas are Due to the difference A configuration in which a dynamic pressure difference is generated so as to increase the pressure ”can be defined (claim 13).
  • the main flow channel is separated into one or more in a "direction perpendicular to the flow direction of the coolant along the cooling surface".
  • the structure can be separated by a partition wall (claim 14).
  • the sub-flow channel may be separated by one or more separation barriers in a “direction perpendicular to the direction of the coolant flow along the partition wall with the main flow channel” (claim 15).
  • the flow path structure according to claim 14 or claim 15 may have a "configuration in which the main flow path and the sub flow path are separated into a matching grid by the same number of separation partitions". 16). “Aligned grid” means that the separation partition of the main channel and the separation partition of the sub channel correspond to each other in a consistent manner, and the arrangement of the main channel part and the sub channel part separated by these separation partition walls Force ⁇ in the arrangement direction perpendicular to the flow direction of the coolant, and deviate from each other! Uh.
  • the flow path structure according to any one of claims 7 to 16 is "configured so that the nozzle arrangement density is closer to the downstream side of the main flow path". Claim 17).
  • the boiling cooling device of the present invention includes a flow channel structure and a coolant supply / circulation means (claim 18).
  • the “channel structure” is a main channel formed integrally with the cooling surface with the surface of the object to be cooled or the surface of the heat transfer member in close contact with the surface as a cooling surface, and is separated from the main channel.
  • Cooling liquid supply / circulation means supplies the cooling liquid, which is a liquid that is circulated through the main flow path and the sub flow path of the flow path structure and is used for cooling the cooling surface, to the flow path structure, It is a means for circulating in the main channel and the sub channel.
  • the flow direction of the coolant may be the same for the main flow path and the sub flow path, or may be opposite to each other.
  • the boiling cooling device according to claim 18 uses the structure according to claim 16 as the flow path structure, the flow of the cooling liquid in the adjacent flow paths (the flow path portions) is reversed. Can be set to “Orientation” (claim 19). In this way, “setting the coolant flow in the adjacent flow paths in opposite directions” also means that “the coolant flows in the opposite directions to the main flow path and the sub flow path. It is one of the modes to distribute.
  • the cooling liquid supply and circulation means has a "cooling liquid container for storing cooling liquid" and a cooling liquid in the cooling liquid container through the main channel.
  • ⁇ Pipe for pipe '', ⁇ sub-pump pump '' for circulating cooling liquid to the sub-flow path through the sub-flow pipe, and passing through the main flow path and returning to the cooling liquid container through the main flow path
  • the passive cooling method When the passive cooling method is performed, it is not always necessary to subcool the coolant supplied to the main flow path and the sub flow path. However, this does not mean that the subcooling is performed when the noisy cooling method is performed. It doesn't mean to do. It is also effective to “subcool the coolant” when using the noisy cooling method. For example, it is very effective in the passive cooling method to perform subcooling so that a subcooling degree of about 10K is obtained at the downstream end of the main flow path on the cooling surface.
  • the subcool liquid is inevitably used because the active cooling method needs to use the subcool liquid.
  • the cooling liquid supply and circulation means has a "cooling liquid container for storing cooling liquid" and a cooling liquid in the cooling liquid container introduced through the main channel.
  • a structure having a high pressure means “and that, be a cooling apparatus for carrying out the active cooling method (Claim 21).
  • the “aggregation means” in the boiling cooling device according to claim 20 or claim 21 can have a function as subcooling means or “part of subcooling means”.
  • the boiling cooling device is a pressure for switching the "pressure difference between the pressure of the cooling liquid flowing in the sub flow path and the pressure of the cooling liquid flowing in the main flow path" by the high pressure means. It has a switching means and can be configured so that the passive cooling method and the active cooling method can be switched according to the cooling conditions (claim 22).
  • “subcooling means on / off means for turning on / off the subcooling means” may be provided to turn on / off the subcooling means according to the cooling conditions.
  • the "high-pressure means for increasing the pressure of the coolant flowing through the sub-flow path higher than the pressure of the coolant flowing through the main flow path” means that the pressure of the sub-flow path pump It may be a means that has a function of making the pressure higher than the pressure, or by adjusting the valve that controls the flow rate on the inlet side and Z or outlet side of the secondary flow path to increase the pressure of the coolant in the secondary flow path, It may be a means having a function of adjusting the valve for controlling the flow rate on the inlet side and the Z or outlet side of the main flow path so that the pressure of the coolant in the main flow path is relatively lowered to the pressure in the main flow path.
  • it is configured to have "at least a pressure switching means for switching the pressure of the sub-channel pump high and low", and configured so that the passive cooling method and the active cooling method can be switched depending on the cooling conditions. be able to.
  • the cooling liquid may be stored in the cooling liquid container (claim 23).
  • the cooling liquid used in the boiling cooling device according to any one of claims 20 to 23 is the same as the cooling liquid according to the invention of claim 6; Can be used without particular limitation, and can be used without limitation as long as the bubbles can be refined or collapsed by the cooling liquid ejected from the tank, and are readily available, low cost, easy to handle, safe, chemical From the standpoint of physical stability and the like, water, alcohol, a mixture of water and alcohol, or a fluorine-based inert liquid is preferred (claim 24).
  • the object to be cooled which is the "object to be cooled" by the boiling cooling device according to claim 18 to claim 24.
  • the core part of the reactor and various semiconductor devices for example, automotive inverters such as Si-IGBT inverters, Si substrates.
  • the boiling cooling by the boiling cooling device of the present invention is extremely effective for cooling a semiconductor device using a SiC substrate.
  • the pressures of the main flow path pump and the sub flow path pump may be the same.
  • the road pump and the sub-flow pump can be shared as the same pump.
  • the ability of the aggregating means (which forms at least a part of the subcooling means in the active cooling method) can be reduced.
  • the passive cooling method is implemented, there is an advantage that there is little vibration and noise.
  • the active cooling method performed in the boiling cooling device according to claim 21 a high cooling effect by an extremely large heat flux can be realized.
  • the active cooling method is also extremely quiet.
  • the passive cooling method and the active cooling method are switched according to the cooling conditions as in the boiling cooling device according to claim 22, the passive cooling is performed by a cooling method suitable for the cooling conditions. Cooling can take advantage of the advantages of both the method and the active cooling method.
  • the boiling cooling device according to any one of claims 18 to 24 can be used as a cooling means for a product that generates heat during operation (claim 25).
  • an electronic element having a heating element or a fuel cell having a heating element is a main flow path of a flow path structure constituting a boiling cooling device.
  • a main flow path of a flow path structure constituting a boiling cooling device.
  • Such an electronic element or fuel cell is a main flow path of a flow path structure constituting a boiling cooling device.
  • power conversion control measures for hybrid vehicles, electric vehicles, fuel cell vehicles, fuel cell power generation facilities, railway trains, and aircraft equipped with high heat generation density electronic equipment mainly composed of electronic elements and heat transfer members Such a device can be applied to the power conversion control device of the power system of, constitutes a boiling cooling device
  • the main flow path of the flow path structure can be formed integrally with the surface of the heat transfer member (claim 27).
  • the present invention it is possible to provide a boiling cooling method, a boiling cooling device, and a flow channel structure that are not conventional. Microbubbles due to boiling cooling are generated in the very vicinity of the cooling surface.
  • the coolant flowing through the sub-flow path is supplied from the “opening close to the cooling surface” through the nozzle.
  • the microbubbles generated in the vicinity of the cooling surface can be effectively miniaturized or collapsed to effectively suppress the “boiling mode transition” to the transition boiling region. Even in the “high temperature region”, it is possible to achieve good boiling cooling by nucleate boiling.
  • FIG. 1 is a diagram for explaining one embodiment of a boiling cooling device.
  • FIG. 2 is a diagram showing three examples of nozzle configurations.
  • FIG. 3 is a diagram for explaining two examples of cross-sectional configurations of a main channel and a sub channel and an example of the direction of a coolant flow.
  • FIG. 4 is a diagram for explaining three examples of cooling surface configurations.
  • FIG. 5 is a diagram for explaining an example of a nozzle arrangement form.
  • FIG. 6 is a diagram for explaining bubble collapse in the passive cooling method.
  • FIG. 7 is a diagram for illustrating a control system in an embodiment of the invention.
  • Channel structure part (Integrated with object to be cooled ob to form channel structure)
  • FIG. 1 (a) schematically shows an embodiment of the boiling cooling device according to claim 22 only as a main part.
  • the symbol ob indicates “object to be cooled”.
  • the object to be cooled ob is a semiconductor device such as an inverter, and has heat generation sources H1, H2, H3, and the like, and a heat spreader SP that is a “heat dissipation means” is formed in contact with these heat generation sources. That is, the heat spreader SP is a constituent part of the object to be cooled ob, and the outer surface of the heat spreader SP is a “cooling surface”.
  • Reference numeral 10 denotes a “flow channel structure portion”.
  • the flow channel structure portion 10 uses the surface of the heat spreader SP as a cooling surface, and the main flow channel 1 OA for cooling liquid and the sub flow channel 10B force
  • the side force of the cooling surface is also They are formed in the above order.
  • the flow channel structure portion 10 is integrated with the “heat spreader SP that is a component of the object to be cooled ob”, the “flow channel structure (Claim 7)” is configured together with the object to be cooled ob. To do.
  • the channel structure portion 10 is made of a material having good thermal conductivity such as aluminum.
  • FIG. 1 (b) shows the internal structure of the flow channel structure portion 10 as an explanatory diagram.
  • the surface of the heat spreader SP which is an object to be cooled, is formed as a “cooling surface”, and the sub flow path 10B is separated from the main flow path 10A by the partition wall 10C.
  • a plurality of nozzles NZ are formed so as to penetrate the partition wall 10C from the side of the sub-flow channel 10B and have the tip portion close to the cooling surface (the surface of the heat spreader SP).
  • the size of the main channel 10A and the sub channel 10B in the vertical direction in FIG. 1 (b) is several mn! ⁇ 10 mm range.
  • the nozzle NZ has a ⁇ hollow cylinder shape '' with an inner diameter of about 1 to 2 mm and an outer diameter of about 2.5 to 4 mm. 1 to: Adjacent through a gap of about Lmm.
  • the cooling surface is a smooth surface and a gap is provided between nozzle NZ and the cooling surface”, but examples of FIGS. 2 (a), (b) and (c) described later are used.
  • the nozzle tip can be brought into contact with the cooling surface.
  • the "flow channel structure including the flow channel structure portion 10 and the object to be cooled ob" With the ob surface (the surface of the heat spreader SP) as the cooling surface, the main flow channel 10A formed integrally with the cooling surface and the sub flow channel 10B formed integrally with the main flow channel via the partition wall 10C
  • the cooling surface facing the tip of the plurality of nozzles NZ is a smooth surface, and the tips of the plurality of nozzles NZ are close to the smooth surface with a small gap (Claim 8). .
  • reference numeral 20 indicates a “cooling liquid container”, and reference numeral 21 indicates a “cooling liquid”.
  • Reference numeral 30 is a main flow path pump, 40 is a sub flow path pump, reference numerals 31A and 31B are “main flow path pipes”, reference numerals 41A and 41B are “sub flow path pipes”, and reference numeral 50 is Indicates "condensing means"
  • the main flow path pump 30, the sub flow path pump 40, and the aggregation means 50 are controlled by "control means not shown". Control by the control means will be described later.
  • the cooling liquid 21 water, alcohol, a mixed liquid of water and alcohol, or a fluorine-based inert liquid can be preferably used (claim 24).
  • the coolant 21 in the coolant container 20 is pumped up by the main channel pump 30 and supplied to the main channel 10A of the channel structure portion 10 through the main channel pipe 31A.
  • the coolant 21 supplied to the main flow path 10A performs boiling cooling of the object to be cooled ob while flowing through the main flow path 10A.
  • the coolant 21 that has passed through the main flow path 10A flows through the main flow path conduit 31B and returns to the coolant container 20, but is aggregated by the aggregating means 50 along the way.
  • the aggregating means 50 includes an aggregating part 51 incorporated in the main channel pipe 31B and a fan 52 for blowing cooling air 53 to the aggregating part 50.
  • the agglomeration part 50 has a long flow path, and the coolant 21 is cooled by the cooling air 53 while flowing through this part, and aggregates and returns to the coolant container 20.
  • the sub-channel pump 40 pumps the coolant 21 in the coolant container 20 and supplies it to the sub-channel 10B of the channel structure portion 10 through the sub-channel pipe 41A.
  • the coolant 21 supplied to the sub-flow channel 10B flows through the sub-flow channel 10B, but a part of the coolant 21 is supplied to the main flow channel 10A by the nozzle NZ and passes through the sub-flow channel 10B. It flows through 41B and is returned to the coolant container 20.
  • the same cooling liquid 21 contained in the cooling liquid container 20 is supplied to the main flow path 1 OA and the sub flow path 1 OB, but the sub flow path 1 OB is used as a cooling liquid.
  • a subcool means can be provided at a location from the coolant container 20 to the sub flow path 10B.
  • a boiling cooling device that provides two cooling liquid containers and supplies the cooling liquid to each of the main flow path 10A and the sub flow path 10B, and supplies the sub flow path 10B as necessary.
  • Subcooling means for making the coolant to be subcooled can be provided.
  • the surface of the object to be cooled ob is the cooling surface
  • the main flow path 10A formed integrally with the cooling surface is overlapped with the main flow path 10A.
  • a coolant supply / circulation means (30, 31A, 31B, 40, 41A, 41B) to be circulated to the passage 10B, and the flow passage structure according to claim 7 or claim 8 is used. (Claim 18).
  • the nozzle NZ has a “hollow cylinder shape” as shown in FIG. 1 (c), and the tip near the surface of the cooling surface is also a smooth surface around the opening.
  • Fig. 2 shows “another example of nozzle configuration”.
  • the three types of nozzles NZa, NZb, and NZc shown in Fig. 2 are all hollow cylinders.
  • the force is characterized by the proximity of the cooling surface, and the nozzle NZa has one or more at the tip near the cooling surface.
  • the nozzle NZb has fine notches KR1, KR2, KR3 'on the nozzle tip close to the cooling surface.
  • the nozzle NZc has a cooling surface on the cooling surface. Fine slits SL1, SL2, SL3 "are formed at the nozzle tip adjacent to the nozzle (claim 12).
  • FIG. 3 is a diagram illustrating an internal configuration of the flow channel structure portion, and shows a state of an end surface cut along a virtual cross section orthogonal to the flow direction of the coolant flowing through the flow channel structure.
  • the flow channel structure portion 12 illustrated in FIG. 3 (a) the interior is separated into a main flow channel 12A and a sub flow channel 12B, and both the main flow channel and the sub flow channel are “single flow channel”. is there.
  • Reference numeral 12a indicates a “connecting portion to the main flow path 12A” of the main flow path conduit that passes the coolant through the main flow path 1 OA.
  • Reference numeral 12b indicates a “connecting portion to the sub-channel 12B” of the sub-channel for the sub-channel that passes the coolant through the sub-channel 1OB.
  • the main flow path 13A has n main flow path sections 13 ⁇ 1,- ⁇ 13 Ai, ⁇ 'by one or more separation partitions in a direction perpendicular to the flow direction of the coolant along the cooling surface (left and right in the figure).
  • the sub-channel 13B also has one or more separation partitions in the direction perpendicular to the flow direction of the coolant along the partition with the main channel 13A (the horizontal direction in the figure). Are separated into ⁇ sub-channel portions 13 ⁇ 1,- ⁇ 13 ⁇ , ⁇ 13 ⁇ (claim 15).
  • the main channel 13A and the subchannel 13B are separated by the same number of separation partitions.
  • the separation partition wall of the main flow path 13A and the separation partition wall of the sub flow path 13B correspond to each other as shown in the figure, and the arrangement of the main flow path portion 13Ai and the sub flow path portion 13Bi separated by these separation partition walls is as follows. They are not shifted from each other in the arrangement direction (left-right direction in the figure) perpendicular to the flow direction of the coolant.
  • main flow path 13A and the sub flow path 13B are separated in a “matching lattice shape” by the same number of separation partitions (claim 16).
  • the broken-line circles drawn inside each main flow path portion indicate the "each flow path of the main flow path that passes the coolant to each main flow path portion 13Ai of the main flow path 13A.
  • the broken line circle drawn inside each sub-flow channel part indicates the ⁇ each sub-flow channel part '' of the sub-flow channel that passes the coolant to the sub-channel 13B. To the connection part ".
  • each sub flow channel portion 13Bi constituting the sub flow channel 13B is equal to each main flow channel constituting the main flow channel 13A.
  • the difference between these cross-sectional areas that is larger than the cross-sectional area of the portion 13Ai is “a configuration in which a dynamic pressure difference is generated so that the pressure in the sub-channel increases.” (Claim 13)
  • the direction of the coolant flowing in the main flow path 1 OA and the direction of the flow of the coolant flowing in the sub flow path 1 OB are opposite to each other”.
  • all the main flow channel portions constituting the main flow channel 13A are used.
  • the direction of the coolant flow in 13Ai is the “same direction”
  • the direction of the coolant flow in all the subchannel portions 13Bi constituting the subchannel 13B is “the same direction (the direction of the flow in the main channel, The same direction or the opposite direction), but as shown in Fig.
  • FIG. 4 shows an example of the form of the cooling surface.
  • Fig. 4 (a) shows an example in the case described with reference to Figs. 1 (b) and (c).
  • the cooling surface RS where the tip of each nozzle NZ is close to each other through a minute gap is shown. Is a smooth surface.
  • the surface of the cooling surface facing the tip of multiple nozzles has a ⁇ fine concavo-convex structure '', and the tips of multiple nozzles This is the case of “contacting the structure” (claim 9).
  • the fine uneven structure on the surfaces of the cooling surfaces RSb and RSc is a set of fine grooves formed along the main flow path (direction perpendicular to the drawing) ( Claim 11).
  • the shape of the groove may be a “V-shaped groove” as shown in FIG. 4 (b), or may be a “groove with a rectangular cross section” as shown in FIG. 4 (c).
  • Various types of grooves such as “grooves having a semicircular or semi-elliptical cross section” are acceptable.
  • the groove width should be about a fraction of the cross-sectional diameter of the nozzle tip.
  • the groove may be formed in an annular shape or a spiral shape in addition to the case of “forming along the main flow path”. Further, instead of forming the groove, the “cooling surface is roughened” to form a rough surface structure (claim 10).
  • the cooling surface of the object to be cooled should be a grooved force in the case of the noisy cooling method and a smooth surface in the case of the active cooling method. It is effective to use.
  • FIG. 4 shows an example of the nozzle NZ described with reference to FIGS. 1 (b) and 1 (c). Force Needless to say, the nozzles NZa, NZb, NZc, etc. described in connection with Fig. 2 can be used. When the nozzles NZb and NZc shown in FIG. 2 are used as described above, the nozzle tip may be brought into contact with the smooth surface RS.
  • the nozzles NZ are formed at “equal intervals in the direction of the coolant flow in the main flow path”.
  • the arrangement density of the nozzles NZ (the same applies to the nozzles NZa, NZb, NZc, etc. shown in Fig. 2) is set to "the downstream side of the main channel (Fig. 5 If you say, “It becomes denser” (claim 17).
  • the passive cooling method is performed in the embodiment shown in Fig. 1
  • the saturation temperature of the coolant 21 is a temperature near 100 ° C, and the coolant 21 may be substantially 100 ° C.
  • the boiling cooling device of the embodiment of FIG. 1 is "implemented by switching between the passive cooling method and the active cooling method", when the nose cooling method power is also switched to the active cooling method, Even when the passive cooling method is implemented, the coolant is subcooled so that the active cooling method can be implemented immediately.
  • the degree of subcooling depends on the downstream end of the main channel on the cooling surface, depending on the flow rate of the coolant 21 and the pressure difference between the coolant and the main channel when the active cooling method is performed. Set the subcool degree to 20K or higher. The subcool is based on the temperature of the coolant 21 in the coolant container 20, the temperature of the main channel outlet, the temperature of the sub-channel outlet, etc. This is performed so that the temperature of the coolant 21 has a “predetermined subcool degree”.
  • the main flow path pump 30 and the sub flow path pump 40 are operated to allow the coolant 21 to flow into the main flow path 10A and the sub flow path 10B. Supply each one. At this time, the supply amount of the coolant 21 by the main flow path pump 30 and the sub flow path pump 40 May be the same. Therefore, in the case of a boiling cooling apparatus that performs only the passive cooling method, the main flow path pump 30 and the sub flow path pump 40 are the same pump, and the main flow path pipe up to the coolant container 20 force pump.
  • the channel and the sub-flow channel can be shared.
  • the coolant 21 is circulated through the main channel 10A and the sub-channel 10B as described above, and the cooling surface (the surface of the heat spreader SP) is cooled by the boiling of the coolant flowing through the main channel 10A.
  • the side force of the passage 10B also supplies the coolant on the side of the secondary flow path to the vicinity of the cooling surface via each nozzle NZ, thereby cooling the coolant in the main flow path (Claim 1).
  • FIG. 6 illustrates the “state in the main flow path” during boiling cooling by the passive cooling method.
  • the coolant 21 flows in the direction of the arrow toward the left in the figure while contacting the cooling surface in the main channel. At this time, nucleate boiling occurs, and a bubble BL with a small cooling surface force is generated.
  • the generated bubbles BL, along with the coolant 21, flow along the cooling surface and grow slightly, increasing the size of the bubbles.
  • the bubble BLG has a size of! /, ! /, at most several millimeters, and is not “large enough to saturate the heat flux and shift the boiling form to the transition boiling form”. Therefore, in the exothermic region where cooling can be performed by the noisy cooling method, the bubbles are ⁇ repeatedly miniaturized '' while the coolant flows through the main flow path. Growing to “size” can maintain good nucleate boiling state and achieve good boiling cooling.
  • the cooling liquid supply / circulation means includes a cooling liquid container 20 for storing the cooling liquid 21, and a main flow path.
  • Main channel pipes 31A and 31B for introducing the coolant 21 of the coolant container 20 through 10A, and the main channel pump 30 for circulating the coolant 21 to the main channel 10A through the main channel pipes 31A and 31B
  • Sub-channel 1 for guiding the coolant 21 in the coolant container 20 through the sub-channel 1 OB A, 41B, sub-flow channel pump 40 for circulating coolant 21 through sub-flow channel 41A, 41B to sub-flow channel 10B, and main flow channel 10A, passing through main flow channel 41B
  • And aggregating means 50 for aggregating the coolant 21 returning to the coolant container 20 (claim 20).
  • the supply of the cooling liquid 21 by the capillary phenomenon described above is a typical “factor that causes the cooling liquid to ooze from the sub-flow path side to the main flow path side”.
  • the “dynamic pressure difference” according to claim 13 can be cited.
  • the cooling that has been subcooled to a predetermined temperature in the main flow path 10A and the sub flow path 10B in advance The liquid 21 is circulated with the pressure in the sub-channel 10B higher than the “pressure in the main channel 10A”, the cooling surface is cooled by the boiling of the coolant 21 flowing in the main channel 10A, and the side force of the sub-channel 10B
  • the coolant on the side of the sub-flow channel 10B is forcibly jetted and supplied to the vicinity of the cooling surface by the ⁇ pressure difference between the coolant on the main channel 10A and the sub-channel 10B '' via each nozzle NZ.
  • the cooling liquid in the flow path 10A is cooled, and the cooling surface is cooled while collapsing “fine bubbles generated in the cooling liquid in the main flow path 10A due to boiling” (Claim 2).
  • the coolant 21 is “subcooled to a predetermined temperature”, and the pressure of the coolant 21 in the sub flow channel 10B is set to the pressure of the coolant 21 in the main flow channel 10A.
  • the pressure of the main flow path pump 40 is set higher than the pressure of the sub flow path pump 30.
  • the temperature of the coolant 21 in the coolant container 20 depends on the flow rate of the coolant 21 as described above, the "pressure difference between the coolant of the main channel 1 OA and the sub-channel 1 OB", and the like.
  • the subcooling degree is set to 20K or more at the downstream end of the cooling surface (Claim 3).
  • the subcooled cooling liquid is forcibly supplied from the sub-flow channel side to the main flow channel side, so that microbubbles generated by nucleate boiling almost soon grow. 0 It collapses into “ultrafine bubbles” of about 1 mm or less and disappears. Therefore, the passive cooling method can realize good boiling cooling by nucleate boiling even on a cooling surface in a “high temperature region where transition boiling occurs”.
  • the boiling cooling apparatus shown in FIG. 1 is an apparatus that performs the active cooling method.
  • the cooling liquid supply and distribution means includes a cooling liquid container 20 that stores the cooling liquid 21, and a main cooling apparatus.
  • Flow path 1 Main flow lines 31 A and 31 B for introducing the cooling liquid 21 in the cooling liquid container 20 through the OA, and the main flow for circulating the cooling liquid 21 to the main flow path 10 A through the main flow path lines 31 A and 31 B.
  • Sub-channels 41A and 41B for guiding the coolant 21 in the coolant container 20 through the sub-channel pump 30 and the sub-channel 10B, and the sub-channels 41A and 41B for the sub-channel 21 A sub-flow channel pump 40 that circulates in the flow channel 10B, an aggregating means 50 that cools and aggregates the coolant that passes through the main flow channel 10A, returns to the coolant container 20 through the main flow channel 31B, and A subcooling means (not shown) for subcooling the coolant 21 supplied to the main flow path 1 OA and the subflow path 10B by the main flow path pump 30 and the sub flow path pump 40 at a predetermined subcool degree is provided.
  • the pressure of the coolant 21 flowing in the sub-channel 10B is increased by the action of the high pressure means for making the pressure higher than the pressure of the coolant 21 flowing in the main channel 10A.
  • Than secondary flow channel pump 40 is a pump 30 for the main channel is a high pressure (Claim 21).
  • the boiling cooling apparatus described in the embodiment in FIG. 1 can be applied to the passive cooling method and the active cooling method depending on the cooling conditions (the amount of heat generated by the object to be cooled ob).
  • This is an apparatus for performing the boiling cooling method to be switched (Claim 4).
  • control by “control means” is performed.
  • FIG. 7 simply shows the state of control by the control means 70 as an explanatory diagram.
  • the control means 70 is a “microcomputer”.
  • various sensors are used, and “cooling surface temperature”, “main channel inlet temperature” main channel inlet pressure, main channel inlet flow rate, main flow Channel outlet temperature, main channel outlet pressure, sub channel inlet pressure, sub channel inlet flow, sub channel outlet temperature, sub channel outlet pressure, sub channel outlet flow, Condensate outlet temperature / coolant container temperature / coolant container pressure ”is detected.
  • thermo sensors such as thermistors
  • pressure gauges such as Pitot tubes
  • flow rates are detected by “bench lily tubes etc.” This is done by a “flow meter”.
  • control means 70 drives and agglomerates the main flow path pump 30 and the sub flow path pump 40 according to the input information.
  • the control means 70 also switches the driving force of the main flow path pump 30 and the sub flow path pump 40 according to the level of the cooling surface temperature, and by this switching, "the passive cooling method and the active cooling method are switched. Switch ”.
  • the boil cooling device shown in FIG. 1 has a control means 70 as a pressure switching means for switching the pressure of the main flow path pump, and the passive cooling method and the active cooling method are cooled. It can be switched depending on conditions ”(claim 22).
  • the safety valves (valves) of the main flow path 10A and the sub flow path 10B are “high pressure means”, Control means for controlling this constitutes “pressure switching means”.
  • the configuration of the example apparatus is the same as that shown in the embodiment described with reference to FIG. Assuming that an inverter, which is a semiconductor device, is used as the object to be cooled, the inverter heat spreader is assumed to have a width of 100 mm and a length of 150 mm.
  • the heat spreader surface was used as a cooling surface on the heat spreader, and the explanation was made with reference to FIG.
  • the flow channel structure portion is made of aluminum with the length direction of the spreader as the flow channel direction, and the flow channel structure portion and the inverter are integrated into a “flow channel structure”, and the main flow channel and the sub flow It was assumed that both paths were divided into “matching grids” by partition walls in a direction perpendicular to the coolant flow direction and parallel to the cooling surface, such as the type shown in FIG. 3 (b). .
  • Each of the main flow path portion and the sub flow path portion divided as described above is referred to as a “channel”.
  • the main flow path and the sub flow path are V, and the deviation is 5 channels.
  • the shape of each channel is the same for both the main flow path and the sub flow path, and the width (perpendicular to the direction of the coolant flow, and The length in the direction parallel to the cooling surface) is assumed to be 20 mm, the length is 100 mm, and the height is 5 mm.
  • an experimental 1-channel 1Z2 model that is, an experimental flow channel structure with an experimental channel with a width of 10 mm, a length of 100 mm, and a height of 5 mm is constructed.
  • the nozzles that pass through the partition that separates the sub-flow path and the main flow path and project into the main flow path are arranged by arranging 9 nozzles linearly at 10 mm intervals in the center in the width direction of the test channel. did.
  • Each nozzle was of the type shown in Fig. 1 (c), and had an inner diameter of lmm and an outer diameter of S3mm, and was placed close to the cooling surface with a gap of lmm.
  • the cooling surface is a smooth surface.
  • distilled water with subcooling power OK is supplied as a coolant to the main flow channel at a flow rate of 0.5 mZ seconds, and to the sub flow channel at a flow rate of 0.3 mZ seconds. Then, when the “actual cooling method” was carried out, good boiling cooling was achieved with a heat flux of 300 W or more per lcm 2 and a maximum of 450 W, and the material to be cooled did not burn out.
  • the cooling channel length (flow direction of the coolant in the main channel) is 100 mm. This proves that it can be applied to a cooling object.
  • Distilled water is used as the coolant, the subcool degree is 40K, and the flow rate is 0.05 mZ seconds in the main channel.
  • needle nozzle force Coolant was supplied in a state of oozing toward the cooling surface, and when the “passive cooling method” was performed, a heat removal heat flux of 60 W / cm 2 was obtained.
  • the temperature sensor installed on the cooling surface detects the temperature and heat flux of the cooling surface, and the flow rate of the main channel is increased by changing the flow rate of the coolant as the heat generation amount on the cooling surface increases.
  • the flow rate is 0.5m / sec in the main channel, and the flow rate is 0.3 to 0.9mZ in the sub channel, depending on the heat generation, cooling the nozzle force
  • a heat removal heat flux of up to 500 WZcm 2 was obtained with almost no vibration or noise.
  • the present invention can be applied to an object to be cooled having a large cooling channel length of 10 cm in a temperature range as high as about 160 ° C where a heat removal heat flux with a boiling cooling method power of 500 WZcm 2 can be obtained. Therefore, it is proved that the force can continuously cope with a wide range of thermal load fluctuations.
  • the passive cooling method of the present invention achieves energy saving cooling by making the coolant driving force extremely small by making the flow velocity in the main flow path extremely low, and for example, a personal practical product field, for example, This is applicable to small-scale fuel cell power generators for household use.
  • the active cooling method of the present invention the coolant in the sub-channel is continuously and forcibly supplied to the main channel, and the minute bubbles generated on the cooling surface as described above are instantly “extra-fine bubbles”. Collapsed.
  • bubbles do not substantially grow and minute bubbles are instantaneously collapsed, so that cooling can be performed in an extremely quiet operation state, and high heat flux cooling can be performed. It can be maintained stably.
  • the bubbles formed on the heat transfer surface are refined before they become large to increase the heat removal limit, and as a result, the heat transfer member can be cooled in a high temperature region without causing burning and heat transfer. It is possible to cool a longer surface.
  • the passive cooling method and the active cooling method in the present invention can be applied to a device that performs any one of the cooling methods as necessary, such as a heat transfer member that is a cooling target. Apply both active cooling methods Apply to the combined device, change the supply state of the coolant by adjusting the pressure, perform in the oozing state when the heat is low, and switch to the injection state when the calorific value is high. When heat generation suddenly rises due to sudden acceleration or abnormal operation in a motor vehicle, it is possible to respond continuously to high heat generation of 500 W / cm 2 or more by making the maximum injection state.
  • the present invention has the most remarkable features and effects that the cooling limit of boiling cooling of the prior art can be greatly improved and that it can cope with a wide range of thermal load fluctuations. .
  • the cooling means that generates heat during operation and cools the heat is a component, There is no particular limitation.
  • an electronic device having a heating element such as a personal computer or a fuel cell having a heating element, a hybrid car, an electric vehicle, a fuel cell vehicle, a power conversion inverter for a fuel cell power generation facility, or a power conversion inverter for a railway train or aircraft power system And so on.
  • the main flow path of the flow path structure constituting the boiling cooling device of the present invention is integrated with the surface of the heating element.
  • the product can be made into a product by having a configuration formed automatically.
  • power conversion control devices for hybrid vehicles, electric vehicles, fuel cell vehicles, and fuel cell power generation devices or power conversion control devices for power systems for railroads or aircraft such devices include power conversion control devices.
  • Inverter a plurality of electronic elements including an electronic package for power control, and an electronic device mainly including a heat transfer member (for example, a heat spreader) are mounted, and the flow path structure constituting the boiling cooling device of the present invention
  • a product can be made by attaching the main flow path of the body to the surface of the heat transfer member constituting the electronic device and integrally forming it.
  • an electronic device with a high heat generation density is generally used. For example, since high power such as 50 kW or more is handled, the heat generation amount per unit area is large, and the heat generation density is lOOWZcm. Although two or more, and even 300 WZcm 2 can be considered, the present invention is also suitable for cooling such electronic devices.
  • the flow path structure of the present invention and the boiling cooling device provided with the flow path structure as a component can also be handled as individual products.
  • the boiling cooling device when handled as a single product, it may have a configuration in which the coolant is stored in the coolant container in advance or a configuration in which the coolant is not stored.
  • the cooling liquid in the case where the cooling liquid is stored in the cooling liquid container in advance, it can be handled in a state in which the cooling liquid is sealed in advance, so that the cooling liquid injection and the air venting work are possible. Can be omitted.
  • the boiling cooling device of the present invention is broad and can be said to be a technology that can be applied to a heat transfer member (heating block) in the technical field, and that can be developed with respect to environment and energy saving. it can.

Abstract

 沸騰現象のプロセスにおいて、遷移沸騰の生じうる温度領域における核沸騰による沸騰冷却をより大きな冷却面積に対して可能ならしめる。  本発明の沸騰冷却方法は、被冷却物obの表面もしくは該表面に密接する伝熱部材の表面を冷却面として、冷却液用の主流路10Aおよび副流路10Bを、冷却面の側から上記順序に形成し、副流路10Bと主流路10Aを隔てる隔壁10Cを貫通して主流路10A内に突出する複数のノズルNZを主流路の流路方向に配列し、個々のノズルNZの先端部を冷却面に近接もしくは接触させ、主流路10Aと副流路10Bとに、冷却液21を流通させ、主流路10Aを流れる冷却液の沸騰により冷却面を冷却するとともに、副流路10Bの側から各ノズルNZを介して副流路10B側の冷却液を冷却面近傍に供給し、主流路内の冷却液を冷却する。

Description

明 細 書
沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用 技術分野
[0001] この発明は、沸騰冷却方法、当該沸騰冷却方法を実施する沸騰冷却装置、および この沸騰冷却装置に使用される流路構造体、並びにこれらが適用された応用製品に 関する。
背景技術
[0002] 液体を加熱していくと次第に液温が上昇し、やがて液温がそれ以上に上昇しない「 飽和温度」に達する。さらに加熱すると、液体内部で「液体の気化」が発生する。この 状態が沸騰であり、上記飽和温度は沸騰点と呼ばれる。
[0003] 沸騰状態では、液温は上昇せず、加熱により液体にカ卩えられるエネルギーは「液体 内部で液体を気化」するのに消費される。この熱エネルギーは「潜熱」と呼ばれて!/、る 。潜熱は、液体を温度上昇させる熱エネルギーに比して極めて大きい。したがって、 液体の沸騰を利用することにより大きな冷却効果をあげることができる。
沸騰を利用した冷却は「沸騰冷却」と呼ばれ、従来から種々の沸騰冷却装置が提 案されている。
例えば、冷却用液体を収容する容器と該冷却用液体内を通るパイプとからなり、被 冷却物としての半導体素子を冷却用液体に浸漬して行な!/、、前記パイプ内に前記 冷却用液体よりも沸点の低 、液体を循環させるようにした、浸漬方式の沸騰冷却装 置が提案されている (例えば、特許文献 1参照。 ) o
[0004] 沸騰現象は一般に以下の如き経過を迪る。
液体中に例えば金属等よりなる「加熱ブロック」の表面を浸漬し、加熱ブロックをカロ 熱してその伝熱面温度を上昇させる。伝熱面温度がある程度まで高くなると、加熱ブ ロックの表面に「大きさが lmm程度以下の微小な気泡」が発生する。この状態は加熱 ブロックの表面に接する液層部分の温度が飽和温度に達し、上記表面部分で沸騰 が生じている状態」である。
[0005] 液体の沸騰による冷却の効果を表す物理量として「熱流束」がある。説明中の例に 喩えて言えば、熱流束とは「加熱ブロックの表面 (液体に接している表面)の単位面 積から単位時間あたりに液体に移る熱量」であり、熱流束が大き!/、ほど冷却効果が大 きい。
[0006] 加熱ブロックの表面に微小な気泡が発生するようになると「熱流束の増加率」が増 大し、加熱ブロックの加熱をさらに続けると、加熱ブロックの表面で発生する気泡の量 も増大し、熱流束も大きな増加率をもって増大しつづけるが、やがて飽和する。 このように「熱流束が飽和した状態」は、加熱ブロック表面が「大きな気泡」で覆われ た状態となっている。
[0007] 即ち、伝熱面での微小な気泡の発生量が増大すると、発生した気泡同士が合体し て伝熱面の大きさにもよるが数 cmにもなる「大きな気泡」に成長する。このように大き く成長した気泡は「押し潰されたような厚みの薄!、気泡」であり、このような大きな気泡 が加熱ブロック表面に付着して 、ると、付着部では加熱ブロックと液体が直接に接触 しないため沸騰が阻害され、熱流束が飽和するのである。このときの熱流束は「限界 熱流束」と呼ばれている。
[0008] 熱流束が限界熱流束に達した後も加熱ブロックを加熱すると、大きな気泡の部分で 伝熱面が乾き始めて伝熱面温度の急激な上昇に伴って熱流束は急激に減少し、冷 却効果が急速に低下する。加熱がさらに続くと、大きな気泡に覆われた部分で伝熱 面は完全に乾き、この部分は「薄い蒸気膜で覆われた状態」となる。そして、この乾燥 した部分では、加熱ブロックの熱エネルギーが輻射熱として液体へ伝えられ、熱流束 は再び増加に転ずる力 伝熱面は液体に接して 、な 、ため加熱ブロックの温度も上 昇し、この温度が加熱ブロックの融点を越えれば伝熱面は「焼損」する。
[0009] 加熱ブロックの表面に微小な気泡が発生し始める状態から、熱流束が限界熱流束 に達するまでの沸騰形態は「核沸騰」と呼ばれ、限界熱流束状態から熱流束が減少 し、熱流束が再度増加に転ずるまでの沸騰形態は「遷移沸騰」、熱流束の変化が再 度増加に転じた以後の沸騰形態は「膜沸騰」とそれぞれ呼ばれる。
[0010] 即ち、液体中に浸漬した加熱ブロックを加熱しつづけると、核沸騰、遷移沸騰、膜 沸騰の沸騰形態が順次に現れ、ついには加熱ブロックの焼損に至るのである。通常 、限界熱流束以後「遷移沸騰力 膜沸騰を経て焼損に至るプロセス」は極めて迅速 に生じ、制御が著しく困難であるところから、沸騰冷却は従来、一般に「限界熱流束 以下の核沸騰の領域」で行われて!/、た。
すなわち、従来の沸騰冷却方法では、例えば、長さ l〜2cmの伝熱面に対してせ Vヽぜぃ lOOWZcm2程度の熱流束 (約 100°C)しか得られな 、のが一般的であった。
[0011] 一方、高い熱流束を得るために種々の試みがなされており、例えば、ノズルを用い 沸騰気泡を速やかに消滅させて高 ヽ冷却効率を狙 ヽとした冷却装置が提案されて いる(例えば、特許文献 2参照。 )0
この提案は、主として半導体デバイスを発熱体とする冷却装置であって、二種類の ノズルを用い、第一のノズル力 低温冷媒液を発熱体に向けて噴射すると共に、第 二のノズルから同じ低温冷媒液を、発熱体の熱によって沸騰気泡が発生して気液二 相状態の高温冷媒液となる第一のノズルから噴射された冷媒液に向けて噴射させて 急冷し、沸騰気泡を凝縮、消滅させて行なう冷却方法を実施するものである。
この提案によると、 120°C程度の温度領域で 200WZcm2程度の熱流束が得られ るものと想定される力 半導体デバイスのような短い伝熱面の冷却にし力適用できな いものと考えられる。
[0012] 一方、冷却液を被冷却物の冷却面に沿わせて流通させつつ沸騰冷却を行う場合 に、冷却液を予め「飽和温度より低い温度」にサブクールして冷却面に供給すると、 冷却の開始力 ある程度の時間範囲では「遷移沸騰への移行」を生ずることなぐ相 当の高温度領域まで核沸騰形態を維持して良好な沸騰冷却を実現できることが報告 されている (非特許文献 1参照。 ) o
[0013] 冷却液を冷却面に沿わせて流通させつつ沸騰冷却を行う場合、冷却液がサブクー ルされていると、冷却面からの熱は、冷却面に接する冷却液の温度を、急速に飽和 温度まで昇温させ、そののち沸騰を生じさせる。このとき昇温して沸騰を生じるのは「 冷却面近傍の薄い層状の部分」であり、この層状部分の外側の領域には、サブクー ル状態、即ち、飽和温度よりも温度の低い冷却液が存在していると考えられる。
[0014] このような沸騰の生じて 、る層状領域の外側の「飽和温度よりも温度の低 、冷却液 」は、沸騰状態にある「層状領域の冷却液の温度」を低下させる。この温度低下により 「沸騰状態の冷却液中の気泡は、収縮したり崩壊したり」する。 伝熱面力 熱をさらに液体に伝えるため、サブクール液を用いると、限界熱流束を 高めることはでさる。
冷却液としてサブクール度の大きな液を用いると、遷移沸騰領域にぉ 、て生長した 合体気泡と液体との気液界面の温度が低下し、気泡は凝縮 (沸騰現象と逆の現象) によって微細な気泡に崩壊されて、伝熱面に液体が供給されることとなるので、遷移 沸騰力も膜沸騰に移行させることなく冷却を行うことができ、限界熱流束を通常の場 合より高めることができる。この現象は「気泡微細化沸騰」と呼ばれている。
[0015] し力しながら、サブクールした冷却液を用いて沸騰冷却を行う場合でも、冷却液が 冷却面に沿って流れる時間の経過と共に、冷却液全体の温度が次第に上昇し、サブ クールによる効果は不可避的に減じていくため、相当の高温度領域で、かつ「遷移 沸騰を起こすことなく大きな冷却面積に対して実施」することには限度がある。
近年、電力変換用のインバータに用いられる高発熱密度電子デバイスの ICパッケ イジの伝熱面長さは通常 10〜30cmである力 このような伝熱面の長い被冷却面の 冷却が可能な冷却方法、また、例えば電気自動車における急加速あるいは異常運 転によって発熱が急上昇する場合のような、幅広い熱負荷変動にも対応可能な冷却 方法が求められている。
そして、今後、 300WZcm2程度以上の熱流束が得られる冷却方法が必要になる ものと予想される力 従来の冷却方法ではこれらの要求に応じることはできず、これら の要求に対応可能な沸騰冷却方法の出現が望まれている。
[0016] 特許文献 1 :特開昭 61— 54654号公報
特許文献 2:特開平 5— 136305号公報
非特許文献 1 :「気泡微細化を伴うサブクール流動沸騰」(第 41回日本伝熱シンポジ ゥム講演論文集(2004年 6月) Vol. 1、第 19〜20頁)
発明の開示
[0017] 本発明は、上述したところに鑑み、沸騰現象のプロセスにおいて、遷移沸騰の生じ 得る高い温度領域において、核沸騰による沸騰冷却を、より大きな冷却流路長に対 して可能ならしめる沸騰冷却方法とその装置を提供することを課題とする。
また、本発明は、伝熱面の発熱が低温領域から従来にない高温領域まで、幅広い 熱負荷変動にも連続的に対応できる沸騰冷却方法とその装置を提供することを課題 とする。
さらにまた、本発明は、小型軽量化と省エネルギー化を図ることのできる実用的な 沸騰冷却方法とその装置を提供することを課題とする。
[0018] 本発明者等は、鋭意検討を重ねた結果、冷却対象となる被冷却物の冷却面に隣 接させて、冷却液の流路となる主流路と副流路とを順次設置し、かつ該主流路と該 副流路間の隔壁を貫通し先端部が該冷却面に近接又は当接するように、該副流路 力も複数のノズルを突設させた冷却装置が、上記課題を解決するのに効果的である ことを確認し、本発明を創出するに至った。
すなわち、本発明の沸騰冷却装置は、被冷却物の表面もしくは該表面に密接する 伝熱部材の表面を冷却面(以後、伝熱面とも言う。)として、冷却液用の主流路およ び副流路を冷却面の側から順次形成し、副流路と主流路を隔てる隔壁を貫通して主 流路内に突出する複数のノズルを主流路の流路方向に配列し、個々のノズルの先端 部を冷却面に近接もしくは当接させたものであることを特徴とするものである。
なお、表面に密接する伝熱部材の表面とは、例えば、ヒートスプレッダのような発熱 体に密着させた金属板のように、熱伝導で熱の流れを広げる機能を有する表面等を 挙げることができる。
[0019] ノズルの先端の開口部は冷却面に対応設置していることが特に重要であり、またノ ズルは冷却面にほぼ垂直に設けられることが特に好ましぐ冷却効果を高めるのに有 効である。
後述するように、ノズルとしては、管状体で、開口部に切り欠き構造を有するものと 有さな 、ものとの!/、ずれのものも用いることができる力 切り欠き構造を有するノズル の場合には開口部を冷却面に当接させて設置することが好ましぐ切り欠き構造を有 さな 、ノズルの場合には開口部を冷却面に近接させて設置することが好ま U、。 本発明に用いる該ノズルは、ノズル力 排出される冷却液によって気泡を微細化し 本発明の冷却効果を発揮させるために、冷却面に対して突設させてノズルの先端部 を冷却面に近接あるいは当接させている力 さらに、主流路内にノズルが突設されて いるために、その表面は必然的に、主流路内で冷却面を冷却することにより昇温した 液体から熱を吸収する放熱フィン効果を有し、そのために、ノズルを構成する材料は 熱伝導性を有し、さらにノズルの配列形態や配列密度等を適宜選択し設定すること が好ましい。
[0020] 請求項 1記載の沸騰冷却方法は、以下の如き特徴を有する。
主流路と副流路とには冷却液を流通させ、主流路を流れる冷却液の沸騰により冷 却面を冷却するとともに、副流路の側から各ノズルを介して、副流路側の冷却液を冷 却面近傍に滲み出るように供給することを特徴とする。この請求項 1記載の沸騰冷却 方法を「パッシブ冷却方法」と呼ぶ。
このように滲み出るように供給された冷却液が、沸騰により主流路内に発生した気 泡の近傍あるいは底部に入るようにして、冷却面力 気泡を離脱させて、気泡による 冷却低減現象を排除し冷却に寄与させることを狙 ヽとして ヽる。
主流路において冷却面に lmm程度の大きさの微小な気泡が発生し、この気泡が 成長して数 mm程度になって、冷却面に近接したノズル開口部に付着すると、ほとん ど流れのな 、副流路内の冷却液がノズルに移動し、この部分でノズル内の冷却液が 主流路内に「滲み出す」ように供給される。「副流路内から主流路内に供給される冷 却液」は、ノズル開口部の近傍にある気泡を効果的に除去すると同時に冷却液を供 給する。
冷却面に当接あるいは近接したノズルの滲みだし効果により、成長し大きくなつた 気泡の底部及び周辺に冷却液が供給されて、気泡が除去される。
「パッシブ冷却方法」における主流路の流速は極めて小さいことが好ましぐ例えば 、 0. 03〜0. 06mZ秒程度の流速にして、 60〜70WZcm2程度までの熱流束の除 熱を可能とするものである。
従って、該「パッシブ冷却方法」は、冷却液を主流路内で低流速で流しかつ副流路 を通りノズル力 滲み出し状態にして、上記の限界熱流束を達成可能としているため 、省エネルギー化および小型軽量ィ匕に適した極めて実用的な沸騰冷却方法である。
[0021] 請求項 2記載の記載の沸騰冷却方法は、上記「気泡微細化沸騰現象」を用いたも のであり、以下の如き特徴を有する。
被冷却物の表面もしくは該表面に密接する伝熱部材の表面を冷却面として、冷却 液用の主流路および副流路を、冷却面の側から上記順序に形成する。 副流路と主流路を隔てる隔壁を貫通して主流路内に突出する複数のノズルを主流 路の流路方向に配列し、個々のノズルの先端部を上記冷却面に近接もしくは当接さ せる。
[0022] 主流路と副流路とに、予め所定の温度にサブクールした冷却液を、副流路におけ る圧力を主流路における圧力より高めて流通させ、主流路を流れる冷却液の沸騰に より冷却面を冷却するとともに、副流路の側から各ノズルを介して、副流路側の冷却 液を、主流路と副流路の冷却液の圧力差により、強制的に冷却面近傍に噴出させて 供給することを特徴とする。この請求項 2記載の沸騰冷却方法を「アクティブ冷却方 法」と呼ぶ。
主流路内に当初から流す冷却液は冷却面を冷却するが、その後上記沸騰現象に よって主流路内の冷却面に生じ冷却の障害となる沸騰気泡を、強制的に冷却面近 傍に噴出状態でノズル力も供給される冷却液 (サブクール液)が、微小な気泡に崩壊 させて障害を排除して、冷却面を冷却することとなり、合わせて、ノズル力も供給され る冷却液は主流路内を流れる冷却液を冷却する効果をもたらす。
「アクティブ冷却方法」における冷却液の流速は、主流路内では 0. 3〜0. 6mZ秒 に、また副流路内では 0. 5〜1. OmZ秒に、それぞれ調整することが好ましい。
[0023] また、本発明の沸騰冷却装置にお!、ては、例えばノズルの先端部が冷却面に近接 するように突設される場合には、ノズルの先端部と冷却面との間隔は、ノズルが有す る、供給する冷却液による気泡微細化機能と放熱フィン機能とが発揮されさえすれば 、特に限定的ではない。例えば「パッシブ冷却方法」のみを実施する装置の場合、及 び「パッシブ冷却方法」と「アクティブ冷却方法」との両方を実施する併用装置の場合 には、例えば 0. l〜lmm程度が効果的であり、一方、「アクティブ冷却方法」のみを 実施する装置の場合には、冷却液の噴射圧力レベルに応じて設定することができ、 例えば該間隔をより広くすることができる。
[0024] 後述するように、アクティブ冷却方法では、冷却流路内に微小な気泡が生じても、こ れら微小な気泡は瞬時に 0. 1mm以下程度の「極めて微細な気泡」に崩壊され、大 きな気泡に成長する余地がなぐ高熱流束沸騰冷却を長い伝熱面で実現することが でき、また、大きく気泡が成長しないために、気泡崩壊時の振動も小さぐ低振動、低 騒音の高熱流束沸騰冷却が可能となる。
[0025] 上記の如く「冷却面」は、冷却の対象となる被冷却物自体の表面もしくは、伝熱部 材の表面である。伝熱部材が用いられる場合には、伝熱部材は被冷却物の表面に 密接して設けられ、伝熱部材を介して被冷却物の沸騰冷却が行われる。
冷却面の表面形状は、主流路および副流路の形成が可能な形状であればよぐ平 面であってもよいしシリンダ面等の曲面であってもよい。勿論、被冷却面が平面であ る場合には、主流路および副流路の形成が容易である。
冷却対象となる被冷却物としては、例えば、高発熱密度の電子機器、ハイブリッド力 一、電気自動車、燃料電池自動車、燃料電池発電設備の電力変換インバータ、鉄 道や航空機の電力システムの電力変換インバータ等を構成する、あるいはこれら〖こ 装着される伝熱部材を挙げることができる。
[0026] 「サブクール」とは、冷却液の温度を「被冷却面との接触部で冷却液に沸騰が生じ る飽和温度よりも低い温度」にすることを意味する。冷却液の飽和温度(主流路内で 沸騰が生じる温度)とサブクールされた冷却液との温度差を「サブクール度」と呼ぶ。
[0027] 上記請求項 2記載のアクティブ冷却方法は、主流路における「冷却面の下流側端 部」でサブクール度が 20K以上となるように、冷却液のサブクール度、流量、主流路 と副流路との冷却液の圧力差を設定することが好ま Uゝ (請求項 3)。
[0028] 請求項 1記載のパッシブ冷却方法と、請求項 2または請求項 3記載のアクティブ冷 却方法とを「冷却条件により切り替える」ことができる (請求項 4)。即ち、被冷却面の 温度がさほど高くなぐ被冷却面で生じた気泡の成長が比較的緩慢である場合には 、ノズルを通じて「副流路側から主流路側へ滲み出す冷却液」により気泡を微細化さ せるのみでも、沸騰形態が「核沸騰形態から遷移沸騰に移行」することを有効に抑え ることができ、遷移沸騰による熱流束の低下なしに、高い冷却効果を実現できる。な お、主流路を流れる冷却液の流速を大きくし、冷却面への単位時間あたりの冷却液 供給量を大きくすることにより、パッシブ冷却方法でもかなりの高温領域まで沸騰冷 却形態を維持することが可能である。
パッシブ冷却方法とアクティブ冷却方法との「冷却条件による切り替え」は、主流路 と副流路の冷却液の圧力差を、徐々に変化させるかあるいは急激に変化させるか、 状況に応じて行なうことができ、従って、パッシブ冷却方法とアクティブ冷却方法とを 切り替える方法を採用する場合には、アクティブ冷却方法における冷却液の供給方 法のように、必ずしも冷却液を強制的に噴出させて供給することは必要とされな 、。
[0029] 冷却面の温度がより高くなりパッシブ冷却方法では「遷移沸騰への移行」を抑えき れない状況においては、アクティブ冷却方法により微小な気泡を崩壊させることにより 、遷移沸騰への移行を有効に防止することができ、「主流路のみへの冷却液供給で は遷移沸騰が生じるような温度領域」においても良好な沸騰冷却を実現することがで きる。
[0030] 従って、本発明の沸騰冷却方法は、低熱流束域ではパッシブ冷却方法が用いられ 、高熱流束域ではアクティブ冷却方法が用いられ、パッシブ冷却方法およびァクティ ブ冷却方法の 、ずれか一方を実施する単独の冷却装置に適用しても、パッシブ冷 却方法およびアクティブ冷却方法の両方を実施する併用の冷却装置に適用すること ちでさる。
被冷却物の冷却を行うに際して、単独の冷却装置を用いるか併用の冷却装置を用 いるかの選択は、発熱体の熱流束の大小に依る。
併用の冷却装置に適用すると、実用面では、熱流束が低熱流束域から高熱流束域 まで変化するような、熱負荷変動の大きな発熱体の冷却に対応可能であり、このこと は、本発明の最大の特徴の 1つである。
本発明者等の実験によれば、目安として、発熱密度が約 60〜70WZcm2程度未 満の低熱流束域では「パッシブ冷却方法」を、発熱密度が 70〜: LOOWZcm2では主 流路の流速を 0. 5m/秒に増加することにより、またそれ以上の 500WZcm2程度ま での高熱流束域では「アクティブ冷却方法」を用いることが、実用上、好ましいことを 確認した。
また、「パッシブ冷却方法」から「アクティブ冷却方法」へ、または逆の切り替えは、例 えば、冷却面に設置された熱流束センサの信号に基づいて、主流路および副流路 の冷却液の流量を制御することにより容易に行なうことができる。
また、併用の冷却装置の場合には、例えば、流体ループで主流路系と副流路系に それぞれポンプをつけて流量を制御する方法と、ポンプーつで流量調整弁によって 流量を制御する方法の 、ずれの方法が用いられてもよ 、。
本発明の沸騰冷却方法は、パッシブ冷却方法とアクティブ冷却方法を用いることに より、装置の構造を変えることなしに従来より用いられている併用の冷却装置によって 、長い伝熱面に対して、低熱流束域力 高熱流束域までの除熱を連続的に行うこと を可能にしたものである。
これは、例えば、電気自動車のインバータなどの、運用上発熱負荷が変化する高 発熱密度機器の冷却に対応できるものである。
[0031] 上記請求項 1〜請求項 4の任意の 1に記載の沸騰冷却方法にお!、ては「ノズルの 配列形態及び Z又は配列密度を、主流路の下流側ほど密になるようにし、副流路か らの冷却液の供給量を、主流路の下流側ほど増大させる」ことが好ま ヽ(請求項 5) 冷却液の流れの向きは「主流路と副流路とで同じ向き」としてもよいし、「主流路と副 流路における流れの向きを互いに逆向き」にしてもよい。冷却液の流れの向きを「主 流路と副流路とで互いに逆」にすると、主流路の下流側ほど副流路では上流側となる 。アクティブ冷却方法では、サブクールされた冷却液がノズルから主流路へ供給され る力 主流路では下流側ほど冷却液の温度が飽和温度に近づいているので、上記 の如ぐ主流路および副流路で冷却液の流れの向きを逆にし、ノズルの配列密度を 主流路の下流側ほど密になるようにし、主流路の下流側ほど副流路からの(サブクー ル度の大きい)冷却液の供給量を増大させることにより、主流路内の冷却液の温度を 有効に低下させ、気泡崩壊の効果を維持することが容易になる。
この「ノズルの配列形態及び Z又は配列密度」は、先述したノズルの放熱フィン効 果を左右することにもなり、主流路内の冷却液の特性とその流速等を考慮に入れて、 調整することが好ましい。
[0032] 請求項 1〜請求項 5の任意の 1に記載の沸騰冷却方法にお!、て用いられる冷却液 は、上記「ノズル力 滲み出る冷却液や、ノズル力 噴出される冷却液により、気泡を 、微細化あるいは崩壊させることのできるもの」であれば、特に制限無く使用すること ができるが、入手容易性、低コスト性、取り扱いの容易性、安全性、化学的'物理的 安定性等の観点から、水あるいはアルコール、もしくは、水とアルコールの混合液、ま たは、フッ素系不活性液体が好適である(請求項 6)。「水」は、環境保全の面から言 えば、冷却液として特に好適なものである。フッ素系不活性液体としては、例えば「フ 口リナート (登録商標)」(住友スリーェム社)が市販されて!、る。
[0033] 本発明のアクティブ冷却方法は、気泡が大きく成長する前に当該気泡を微細化あ るいは崩壊させるために、振動あるいは騒音が少ない利点があることは上述したとお りであるが、本発明者等は、冷却液として上記混合液を用いると、振動あるいは騒音 の低減効果をさらに向上させることができ、かつより高い熱流束が得られることを確認 した。
すなわち、本発明者等は、アルコールとしてエチルアルコール、プロピルアルコー ルそれぞれを水に対し 5〜15%の割合で混合した液を冷却液として用いて、本発明 のアクティブ冷却方法による沸騰冷却を行なったところ、 Vヽずれの混合液とも冷却液 が水だけの場合に比して、崩壊時の圧力振動が 50%程度軽減するば力りでなぐ 3 0〜50%程度高 、熱流束を得ることができた。
このように圧力振動を軽減できる理由は、混合液の表面張力が水よりも小さぐ気泡 が崩壊しやすぐ崩壊時の圧力振動も水だけの場合に比して小さいためであると考 えられる。
さら〖こ、高い熱流束を得ることができる理由は、水とアルコールの混合液の沸騰で は、高温の伝熱面近傍で沸点の低いアルコール分が先に蒸発し、伝熱面の気泡付 着箇所の近傍と混合液の間で濃度の差が生じ、この濃度差が気泡と混合液の界面 に表面張力の差を生じさせて、気液界面の気泡上部の温度の低!、大きな表面張力 に混合液が弓 Iつ張られて、気泡上部に向かう流れ (マタンゴ-対流と 、う)が生じて!ヽ るものと想定される。
このため、冷却液体側力 補うように気泡と伝熱面の付着面に向力つて冷却液が供 給され、気液交換が促進されて、気泡微細化沸騰において水だけの場合よりも高い 熱流束が得られるものと考えられる。
[0034] 本発明における冷却の対象物、即ち、前記「被冷却物」には特に制限はないが、実 用的な見地力 すると、原子炉の炉心部分や、車両用インバータ等の各種半導体デ バイスの冷却につきこの発明による沸騰冷却は有効である。例えば、現在広く用いら れている、 Si基板を用いる IGBTは、高出力化に伴い発熱密度が増加する傾向にあ り、このような半導体デバイスに対する冷却を行うに際して、この発明の冷却方法は 極めて有効である。
[0035] また、近来「高温作動が可能な SiC半導体デバイス」の実用化が意図されて 、るが 、 SiCはまだ高価なため、現在の Siベースのパワーデバイス(IGBT)がしばらくは優 勢であろうが、本発明は高温作動、高発熱密度の Si素子の冷却にも好適である。ま た、現在の Siベースのパワーデバイス (IGBT)の高負荷使用にも十分対応可能であ る。
[0036] 本発明の流路構造体は、上に説明した沸騰冷却方法の実施に用いられるものであ つて、以下の如き特徴を有する(請求項 7)。
被冷却物の表面もしくは該表面に密接する伝熱部材の表面を冷却面として、冷却 面に一体的に形成される主流路およびこの主流路に重なるように隔壁を介して一体 的に形成される副流路と、副流路側力 隔壁を貫通し、先端部が冷却面に近接もしく は当接するように形成された複数のノズルを有する。
[0037] このように、主流路および副流路は一体構造であり、主流路は冷却面に一体化され るから、冷却面は「流路構造体の構成要素」である。そして、冷却面は被冷却物の表 面もしくは伝熱部材の表面である。したがって、被冷却物の表面を冷却面とする場合 には「冷却面の実体をなす被冷却物自体も流路構造体の一部を構成する」ことにな る。
[0038] 即ち、流路構造体は、被冷却物を構成要素の一部として、被冷却物と一体的に構 成することができる。また、伝熱部材の表面を冷却面とする場合には、伝熱部材にー 体化して主流路および副流路を形成して「被冷却物とは別体の流路構造体」となし、 その伝熱部材を被冷却物の表面に密接させて配置することにより、被冷却物の冷却 を行うようにすることができる。流路構造体は熱伝導性の良い材料で構成される。例 えば、金や銀やアルミニウムは大きな熱伝導率を持ち、特に、銀は熱伝導率の高さの 点で流路構造体の材料として適している力 コストの面力 するとアルミニウムが好適 である。 特に、熱伝導率の高い材料カゝら構成されるノズルは、先述した放熱フィン効果をも たらすのに有効である。
さらに、流路構造体の材料として、熱伝導性の良いものば力りでなぐ安定した耐鲭 性、耐腐食性、耐熱性の高いものを使用することが好ましぐ例えば、耐鲭性処理を 施したアルミニウム、ステンレス、さらにセラミックス等が適用可能である。
[0039] 請求項 7記載の流路構造体においては、複数のノズルの先端部に対向する冷却面 の表面が平滑面であり、上記複数のノズルの先端部が、上記平滑面に微小な間隙を 隔して近接した構成とすることができる(請求項 8)。
[0040] また、請求項 7記載の流路構造体にぉ 、て、複数のノズルの先端部に対向する冷 却面の表面が微細な凹凸構造を有するようにし、複数のノズルの先端部が上記微細 な凹凸構造に当接する構成とすることもできる (請求項 9)。この場合、冷却面の表面 の微細な凹凸構造は「粗面構造」としてもよ 、し (請求項 10)、「環状もしくは螺旋状ま たは主流路に沿って形成された細溝の集合」とすることもできる(請求項 11)。
[0041] 請求項 9〜請求項 11記載の流路構造体のように、冷却面の表面を「微細な凹凸構 造」とすると、冷却面の表面積が広がり、冷却液への熱の移動量を大きくすることがで きるとともに、ノズル先端部を冷却面に当接させることができ、ノズル先端部と冷却面 の間隙が有効に小さくなつて「冷却液の滲み出し」が有効に促進される。また、複数 のノズルを 「流路構造体の強度を高める手段」として使用することが可能となる。
[0042] 請求項 7〜請求項 11の任意の 1に記載の流路構造体においては、各ノズルの先端 部に「微小な貫通孔および Zまたは微細なスリットおよび Zまたは切欠き」を 1以上有 するように構成できる(請求項 12)。
このような微小な貫通孔、スリット、切欠きを有するノズルを使用すると、副流路から 流れる冷却液を分散して主流路内に供給し、より効果的に気泡崩壊を行なうことにな るので、好ましい。
ノズルが、先端部に上記微小な貫通孔、スリット、切欠き等を有する場合には「冷却 面が平滑面の場合」であっても、ノズルの先端部を冷却面に当接させることができる。
[0043] また、請求項 7〜請求項 12の任意の 1に記載の流路構造体においては、「副流路 の流路断面積を主流路の流路断面積より大きくし、これら断面積の差により副流路の 圧力が高くなるように動圧差を生じさせる構成」とすることができる(請求項 13)。
[0044] 請求項 7〜請求項 12の任意の 1に記載の流路構造体においては、主流路を「冷却 面に沿って、冷却液の流れの方向に直交する方向」へ 1以上の分離隔壁により分離 した構成とすることができる (請求項 14)。また、副流路を「主流路との隔壁に沿って、 冷却液の流れの方向に直交する方向」へ、 1以上の分離隔壁により分離した構成と することもできる (請求項 15)。
[0045] 請求項 14または請求項 15記載の流路構造体は、「主流路と副流路とを、同数の分 離隔壁により整合格子状に分離した構成」とすることができる (請求項 16)。「整合格 子状」とは、主流路の分離隔壁と副流路の分離隔壁とが互いに整合的に対応し、こ れら分離隔壁により分離された主流路部分および副流路部分の配列形態力 ^冷却液 の流れの方向に直交する配列方向にぉ 、て互いにずれて!/、な!/、」状態を!、う。
[0046] 請求項 7〜請求項 16の任意の 1に記載の流路構造体は、「ノズルの配列密度が、 主流路の下流側ほど密になるように構成」とすることが好ま ヽ(請求項 17)。
[0047] この発明の沸騰冷却装置は、流路構造体と、冷却液供給流通手段とを有する(請 求項 18)。
「流路構造体」は、被冷却物の表面もしくは該表面に密接する伝熱部材の表面を冷 却面として、冷却面に一体的に形成される主流路およびこの主流路に重なるように隔 壁を介して一体的に形成される副流路と、副流路側から上記隔壁を貫通し、先端部 が冷却面に近接もしくは当接するように形成された複数のノズルとを有するものであり 、前記請求項 7〜請求項 17の任意の 1に記載のものが用いられる。
[0048] 「冷却液供給流通手段」は、流路構造体の主流路と副流路とに流通され、冷却面の 冷却に供される液体である冷却液を流路構造体に供給し、主流路と副流路とに流通 させる手段である。冷却液の流通の向きは、主流路と副流路とで同じ向きでもよいし、 互いに逆の向きでもよい。
[0049] 請求項 18記載の沸騰冷却装置は、流路構造体として請求項 16記載のものを用い る場合には、「隣接する流路(上記流路部分)における冷却液の流れを互いに逆向き に設定」することができる(請求項 19)。このように「隣接する流路における冷却液の 流れを互いに逆向きに設定する」ことも「冷却液を主流路と副流路とに互いに逆向き に流通」させる態様の一つである。
[0050] 請求項 18または請求項 19記載の沸騰冷却装置は、冷却液供給流通手段が「冷却 液を貯留させる冷却液容器」と、主流路を通して冷却液容器内の冷却液を導液する「 主流路用管路」と、冷却液を主流路用管路により主流路に流通させる「主流路用ボン プ」と、副流路を通して冷却液容器内の冷却液を導液する「副流路用管路」と、冷却 液を副流路用管路により副流路に流通させる「副流路用ポンプ」と、主流路を通過し て主流路用管路を通って冷却液容器に戻る冷却液を凝集させる「凝集手段」とを有 する構成とし、ノ^シブ冷却方法を実施するための沸騰冷却装置とすることができる( 請求項 20)。
[0051] パッシブ冷却方法を行う場合、主流路および副流路に供給する冷却液をサブクー ルする必要は必ずしもないが、このことは、ノッシブ冷却方法の実施に際して「サブク ールを行うことを排除する」ことを意味するものではな 、。 ノッシブ冷却方法を行う場 合にも「冷却液をサブクールする」ことは有効である。例えば、冷却面における主流路 の下流側端部で 10K程度のサブクール度が得られるようにサブクールを行うことは、 パッシブ冷却方法においても極めて有効である。
一方、パッシブ冷却方法とアクティブ冷却方法との併用装置の場合には、ァクティ ブ冷却方法がサブクール液を使用することが必要とされることから、必然的にサブク ール液が使用される。
[0052] 請求項 18または請求項 19記載の沸騰冷却装置は、冷却液供給流通手段が「冷却 液を貯留させる冷却液容器」と、主流路を通して冷却液容器内の冷却液を導液する「 主流路用管路」と、冷却液を主流路用管路により主流路に流通させる「主流路用ボン プ」と、副流路を通して冷却液容器内の冷却液を導液する「副流路用管路」と、冷却 液を副流路用管路により副流路に流通させる「副流路用ポンプ」と、主流路を通過し て主流路用管路を通って冷却液容器に戻る冷却液を冷却して凝集させる「凝集手段 」と、主流路用ポンプと副流路用ポンプとにより主流路と副流路に供給される冷却液 を、所定のサブクール度にサブクールする「サブクール手段」と、「副流路に流通され る冷却液の圧力を、主流路に流通される冷却液の圧力より高くする高圧化手段」とを 有する構成とし、アクティブ冷却方法を実施するための沸騰冷却装置とすることがで きる(請求項 21)。請求項 20または請求項 21記載の沸騰冷却装置における「凝集手 段」は、サブクール手段もしくは「サブクール手段の一部」としての機能を有することが できる。
[0053] この請求項 21記載の沸騰冷却装置は、高圧化手段による「副流路に流通される冷 却液の圧力と主流路に流通される冷却液の圧力との圧力差」を切り替える圧力切り 替え手段を有し、パッシブ冷却方法とアクティブ冷却方法とを、冷却条件により切り替 え可能とするように構成することができる(請求項 22)。この場合、「サブクール手段を オン ·オフするサブクール手段オン ·オフ手段」を設け、冷却条件に応じてサブクール 手段をオン ·オフするようにしてもょ 、。
[0054] 「副流路に流通される冷却液の圧力を、主流路に流通される冷却液の圧力より高く する高圧化手段」は、副流路用ポンプの圧力を副流路用ポンプの圧力より高くする 機能を持つ手段であってもよいし、副流路の入口側および Zまたは出口側の流量を コントロールするバルブを調整して、副流路内の冷却液の圧力を高めたり、主流路の 入口側および Zまたは出口側の流量をコントロールするバルブを調整して、主流路 内の冷却液の圧力を主流路内の圧力に相対的に低くしたりする機能を持つ手段でも よい。
[0055] 例えば「少なくとも副流路用ポンプの圧力を高低切り替える圧力切り替え手段」を有 するように構成し、パッシブ冷却方法とアクティブ冷却方法とを、冷却条件により切り 替え可能とするように構成することができる。
[0056] 請求項 20〜請求項 22の任意の 1に記載の沸騰冷却装置においては、冷却液容 器に冷却液が貯留された構成とすることができる(請求項 23)。
請求項 20〜請求項 23の任意の 1に記載の沸騰冷却装置にお!、て用いられる冷却 液は、請求項 6の発明に係る冷却液と同様「ノズル力 滲み出る冷却液や、ノズル力 ら噴出される冷却液により、気泡を微細化あるいは崩壊させることのできるもの」であ れば特に制限無く使用することができ、入手容易性、低コスト性、取り扱いの容易性、 安全性、化学的'物理的安定性等の観点から、水あるいはアルコール、もしくは、水と アルコールの混合液、またはフッ素系不活性液体が好適である(請求項 24)。
[0057] また、請求項 18〜請求項 24の沸騰冷却装置による「冷却の対象物」である被冷却 物についても特に制限はないが、前述のように実用的な見地からして、原子炉の炉 心部分や、各種の半導体デバイス (例えば、車載用インバータゃ Si— IGBTインバー タ等、 Si基板や SiC基板を用いる半導体デバイス)の冷却に対して、この発明の沸騰 冷却装置による沸騰冷却は極めて有効である。
上記請求項 20記載の沸騰冷却装置においてパッシブ冷却方法を実施する場合に は、例えば、主流路用ポンプと副流路用ポンプの圧力は同じであってもよぐこのよう な場合には、主流路用ポンプと副流路用のポンプを「同一のポンプとして共用」する こともできる。また、ノッシブ冷却方法ではサブクールを必ずしも必要としないので、 凝集手段 (アクティブ冷却方法ではサブクール手段の少なくとも一部をなす。 )の能 力を小さくできる。また、パッシブ冷却方法を実施する場合、振動や騒音が少ないと いうメリットがある。
[0058] 請求項 21記載の沸騰冷却装置において実施されるアクティブ冷却方法では、極め て大きな熱流束による高い冷却効果を実現できる。また、副流路から主流路側へ噴 出させる冷却液量を増大させることにより、緊急時の冷却にも容易且つ確実に対応 できる。後述するように、アクティブ冷却方法の場合も極めて静かである。
[0059] 請求項 22記載の沸騰冷却装置のように、パッシブ冷却方法とアクティブ冷却方法と を、冷却条件により切り替えて実施するようにすれば、冷却条件に適した冷却方法に より、上記パッシブ冷却方法およびアクティブ冷却方法の両方の利点を生かした冷 却を行うことができる。
[0060] 以上のように、請求項 18〜請求項 24の任意の 1に記載の沸騰冷却装置は、稼動 中に熱を発生する製品の冷却手段として用いることができる(請求項 25)。
具体的には、例えば発熱体を有する電子素子または発熱体を有する燃料電池に 適用することができ、このような電子素子または燃料電池は、沸騰冷却装置を構成す る流路構造体の主流路が発熱体の表面に一体的に形成された構成とすることができ る (請求項 26)。 また、電子素子と伝熱部材とを主構成要素とする高発熱密度電子 機器が搭載された、ハイブリッド自動車、電気自動車、燃料電池自動車、燃料電池 発電設備の電力変換制御措置または鉄道電車あるいは航空機用の電力システムの 電力変換制御装置に適用することができ、このような装置は、沸騰冷却装置を構成 する流路構造体の主流路が伝熱部材の表面に一体的に形成された構成とすること ができる (請求項 27)。
[0061] 以上に説明したように、本発明によれば、従来にない沸騰冷却方法および沸騰冷 却装置、流路構造体を提供できる。沸騰冷却による微小な気泡は、冷却面の極く近 傍で発生する力 本発明によれば、副流路を流れる冷却液がノズルを通して「冷却面 に近接した開口部」から供給されるので、冷却面近傍で発生した微小な気泡を効率 的に微細化もしくは崩壊させ、遷移沸騰領域への「沸騰形態の移行」を有効に抑制 でき、「従来の沸騰冷却方法であれば遷移沸騰となるような高温領域」においても、 核沸騰による良好な沸騰冷却を実現することが可能である。
図面の簡単な説明
[0062] [図 1]沸騰冷却装置の実施の 1形態を説明するための図である。
[図 2]ノズルの形態を 3例示す図である。
[図 3]主流路および副流路の断面形態の 2例と冷却液の流れの向きの例を説明する ための図である。
[図 4]冷却面の形態を 3例説明するための図である。
[図 5]ノズル配列形態の 1例を説明するための図である。
[図 6]パッシブ冷却方法における気泡の崩壊を説明するための図である。
[図 7]発明の実施の形態における制御系統を説明するための図である。
符号の説明
[0063] ob 被冷却物
10 流路構造体部分 (被冷却物 obと一体化されて流路構造体をなす。 )
10A 主流路
10B 副流路
NZ ノズル
21 冷却液
30 主流路用ポンプ
40 副流路用ポンプ
発明を実施するための最良の形態 [0064] 以下、実施の形態を説明する。
図 1 (a)は、請求項 22記載の沸騰冷却装置の実施の 1形態を要部のみ、説明図と して略示している。
図 1 (a)において、符号 obは「被冷却物」を示している。被冷却物 obは、例えばイン バータ等の半導体デバイスであって発熱源 Hl、 H2、 H3等を有し、これら発熱源に 接して「放熱手段」であるヒートスプレッダ SPが形成されている。即ち、ヒートスプレツ ダ SPは被冷却物 obの構成部分であり、ヒートスプレッダ SPの外側表面が「冷却面」 である。
[0065] 符号 10は「流路構造体部分」を示す。流路構造体部分 10は、この実施の形態にお いてはヒートスプレッダ SPの表面を冷却面として、冷却液用の主流路 1 OAおよび副 流路 10B力 冷却面(ヒートスプレッダ SPの表面)の側力も上記順序に形成されてい る。
[0066] 即ち、流路構造体部分 10は「被冷却物 obの構成要素であるヒートスプレッダ SP」に 一体化されるから、被冷却物 obと共に「流路構造体 (請求項 7)」を構成する。流路構 造体部分 10は、例えばアルミニウム等の熱伝導性の良 、材料で構成される。
[0067] 図 1 (b)は、流路構造体部分 10の内部構造を説明図として示している。主流路 10 Aは、被冷却物であるヒートスプレッダ SPの表面が「冷却面」として形成されており、 副流路 10Bは、隔壁 10Cにより主流路 10Aと分離されている。そして、副流路 10Bの 側から隔壁 10Cを貫通し、先端部が冷却面 (ヒートスプレッダ SPの表面)に近接する ように複数のノズル NZが形成されて!、る。
[0068] 主流路 10A、副流路 10Bの、図 1 (b)上下方向における大きさは数 mn!〜 10数 m mの範囲である。ノズル NZは図 1 (c)に示すように「中空シリンダ状」で、内径が 1〜2 mm程度、外径が 2. 5〜4mm程度であり、先端部は、冷却面の表面に 0. 1〜: Lmm 程度の間隙を介して近接する。この実施の形態においては「冷却面は平滑面で、ノ ズル NZと冷却面との間に間隙を隔している」が、後述する図 2 (a)、 (b)及び (c)の例 にあるようなノズルを用いる場合には、ノズル先端部を冷却面に当接させることもでき る。
[0069] 即ち「流路構造体部分 10と被冷却物 obとで構成される流路構造体」は、被冷却物 obの表面(ヒートスプレッダ SPの表面)を冷却面として、冷却面に一体的に形成され る主流路 10Aおよびこの主流路に重なるように隔壁 10Cを介して一体的に形成され る副流路 10Bと、副流路 10B側力 隔壁 10Cを貫通し、先端部が冷却面に近接する ように形成された複数のノズル NZとを有する流路構造体 (請求項 7)である。また、複 数のノズル NZの先端部に対向する冷却面は平滑面であり、複数のノズル NZの先端 部は、平滑面に、微小な間隙を隔して近接している(請求項 8)。
[0070] 図 1 (a)に戻ると、符号 20は「冷却液容器」、符号 21は「冷却液」を夫々示す。また、 符号 30は主流路用ポンプ、 40は副流路用ポンプ、符号 31A、 31Bは「主流路用管 路」、符号 41A、 41Bは「副流路用管路」を示し、符号 50は「凝縮手段」を示している
[0071] 主流路用ポンプ 30、副流路用ポンプ 40および凝集手段 50は、「図示されない制 御手段」により制御される。制御手段による制御については後述する。冷却液 21とし ては、水あるいはアルコールもしくは、水とアルコールの混合液、または、フッ素系不 活性液体を好適に用いることができる(請求項 24)。
[0072] 冷却を行うときには、冷却液容器 20内の冷却液 21を主流路用ポンプ 30により汲み 上げ、主流路用管路 31Aを通して流路構造体部分 10の主流路 10Aに供給する。主 流路 10Aに供給された冷却液 21は主流路 10Aを流れつつ被冷却物 obの沸騰冷却 を行う。主流路 10Aを通過した冷却液 21は、主流路用管路 31B内を流れて冷却液 容器 20内に戻されるが、その途上に於いて凝集手段 50に依り凝集される。
[0073] 凝集手段 50は主流路用管路 31B内に組み込まれた凝集部 51と、この凝集部 50 に冷却風 53を吹き付けるファン 52とにより構成される。凝集部 50は流路を長く取つ ており、冷却液 21はこの部分を流れる間に冷却風 53により冷却され、凝集して冷却 液容器 20に戻される。
[0074] 一方、副流路用ポンプ 40は冷却液容器 20内の冷却液 21を汲み上げ、副流路用 管路 41Aを通して流路構造体部分 10の副流路 10Bに供給する。副流路 10Bに供 給された冷却液 21は副流路 10Bを流れつつ、その一部をノズル NZにより主流路 10 Aへ供給し、副流路 10Bを通過すると、副流路用管路 41B内を流れて冷却液容器 2 0内に戻される。 [0075] 図 1に示す沸騰冷却装置では、冷却液容器 20に収容される同じ冷却液 21が主流 路 1 OAと副流路 1 OBに供給されるが、副流路 1 OBに冷却液としてサブクール液を供 給する場合には、冷却液容器 20から副流路 10Bに至る箇所にサブクール手段を設 けることができる。
また、冷却液容器を 2つ設けて、そこ力も主流路 10Aと副流路 10Bそれぞれに冷却 液を供給する沸騰冷却装置とすることができ、さらに必要に応じて、副流路 10Bに供 給する冷却液をサブクール液にするためのサブクール手段を設けることができる。
[0076] 即ち、図 1に実施の形態を示す沸騰冷却装置は、被冷却物 obの表面を冷却面とし て、冷却面に一体的に形成される主流路 10Aおよびこの主流路 10Aに重なるよう〖こ 隔壁 10Cを介して一体的に形成される副流路 10Bと、副流路 10B側から隔壁 10Cを 貫通し、先端部が冷却面に近接するように形成された複数のノズル NZとを有する流 路構造体と、この流路構造体の主流路 10Aと副流路 10Bとに流通される冷却液 21と 、この冷却液 21を流路構造体に供給し、主流路 10Aと副流路 10Bとに流通させる冷 却液供給流通手段(30、 31A、 31B、 40、 41A、 41B)とを有し、流路構造体として 請求項 7または請求項 8記載のものが用いられて 、る(請求項 18)。
[0077] ここで、流路構造体部分 10における可能な構成例を説明する。
図 1に示す実施の形態において、ノズル NZは、図 1 (c)に示すように「中空シリンダ 状」で、冷却面の表面に近接する先端部も開口部の周囲は平滑な面となっている。 図 2に示すのは「ノズルの形態の別例」である。
図 2に示す 3つのタイプのノズル NZa、 NZb、 NZcは、何れも中空シリンダ状である 力 冷却面に近接する部分に特徴があり、ノズル NZaでは、冷却面に近接する先端 部に 1以上の微小な貫通孔 Κ1、 Κ2、 Κ3 · ·を有し、ノズル NZbでは、冷却面に近接 するノズル先端部に微細な切欠き KR1、 KR2、 KR3 ' ·を有し、ノズル NZcでは、冷 却面に近接するノズル先端部に微細なスリット SL1、 SL2、 SL3 "を形成されている( 請求項 12)。
[0078] これら貫通孔、切欠き、スリットの形成位置および個数は特に制限されないが、 3〜 6個程度を略等間隔に形成するのが実用的である。ノズルの形態は上記の如きもの に限らず「冷却面に向力つて縮径する形状」等、種々の形態が許容される。 [0079] 図 3は、流路構造体部分の内部の形態を例示する図であり、流路構造体内部を流 れる冷却液の流れ方向に直交する仮想的断面で切断した端面の状態を示して ヽる 図 3 (a)に例示する、流路構造体部分 12では、内部は主流路 12Aと副流路 12Bと に分離されており、主流路および副流路とも「単一流路」である。符号 12aは主流路 1 OAに冷却液を通ずる主流路用管路の「主流路 12Aへの連結部」を示す。符号 12b は副流路 1 OBに冷却液を通ずる副流路用管路の「副流路 12Bへの連結部」を示す。 図 3 (b)に例示する、流路構造体部分 13では、内部は主流路 13Aと副流路 13Bと に分離されている。主流路 13Aは、冷却面に沿って冷却液の流れの方向に直交す る方向(図の左右方向)へ、 1以上の分離隔壁により n個の主流路部分 13Α1、 - · 13 Ai、 · ' 13Αηに分離されており(請求項 14)、副流路 13Bも、主流路 13Aとの隔壁に 沿って冷却液の流れの方向に直交する方向(図の左右方向)へ、 1以上の分離隔壁 により η個の副流路部分 13Β1、 - · 13Βί, · · 13Βηに分離されている(請求項 15)。
[0080] 即ち、主流路 13Aと副流路 13Bとは同数の分離隔壁により分離されている。主流 路 13Aの分離隔壁と副流路 13Bの分離隔壁とは、図の如く互いに整合的に対応し、 これら分離隔壁により分離された主流路部分 13Aiおよび副流路部分 13Biの配列形 態は、冷却液の流れの方向に直交する配列方向(図の左右方向)において互いにず れていない。
即ち、主流路 13Aと副流路 13Bとは同数の分離隔壁により「整合格子状」に分離さ れている(請求項 16)。
[0081] なお、図 3 (b)において、各主流路部分の内部に描かれた破線の円は、主流路 13 Aの各主流路部分 13Aiに冷却液を通ずる主流路用管路の「各主流路部分への連 結部」を示し、各副流路部分の内部に描かれた破線の円は、副流路 13Bに冷却液を 通ずる副流路用管路の「各副流路部分への連結部」を示す。
[0082] また、図 3 (b)に示す流路構造体部分 13では、副流路 13Bを構成する各副流路部 分 13Biの流路断面積が、主流路 13Aを構成する各主流路部分 13Aiの流路断面積 より大きぐこれら断面積の差により「副流路の圧力が高くなるように動圧差を生じさせ る構成」である(請求項 13)。このような動圧差により副流路の圧力を高めることにより 「副流路から主流路への冷却液の滲み出しによる供給」を有効に助長できる。
[0083] 図 1に示した実施の形態においては「主流路 1 OAを流れる冷却液と副流路 1 OBを 流れる冷却液の流れの向きが互いに逆」である。図 3 (b)に示す流路構造体部分 13 のように「主流路および副流路が整合格子状に分離」されて 、る場合には、主流路 1 3Aを構成する全ての主流路部分 13Aiにおける冷却液の流れの向きを「同じ向き」と し、副流路 13Bを構成する全ての副流路部分 13Biにおける冷却液の流れの向きを「 同じ向き(主流路における流れの向きと、同じ向きもしくは逆の向き)」としてもよいが、 図 3 (c)に示すように、隣接する流路部分における冷却液の流れを「互いに逆向き( 各流路部分内の「三角印」は図面の表から裏へ向かう流れ、「 X印」は図面の裏から 表へ向かう流れを表す。)」に設定することもできる(請求項 19)。
[0084] 図 4に、冷却面の形態の例を示す。
図 4 (a)に示したのは、図 1 (b)、(c)に即して説明した場合の例であり、各ノズル NZ の先端部が微小な間隙を介して近接する冷却面 RSは平滑面である。
図 4 (b)、 (c)に例示するのは、複数のノズルの先端部に対向する冷却面の表面が 「微細な凹凸構造」を有し、複数のノズルの先端部が「微細な凹凸構造に当接」する 場合 (請求項 9)である。
図 4 (b)、(c)に示す例では、冷却面 RSb、 RScの表面の微細な凹凸構造は、主流 路(図面に直交する方向)に沿って形成された細溝の集合である (請求項 11)。
[0085] 溝の形状は、図 4 (b)に示すように「V字溝」でもよいし、図 4 (c)に示す「断面矩形 形状の溝」でもよぐさらには「U字溝」や「断面が半円形状や半楕円形状の溝」等、 種々の形態の溝が許容される。溝幅は、ノズル先端部の断面径の「数分の 1」程度が 良い。また、溝の形成状態も「主流路に沿って形成」する場合の他、環状もしくは螺 旋状に形成することもできる。また、溝を形成する変わりに「冷却面を粗し処理」して 粗面構造としてもょ 、 (請求項 10)。
パッシブ冷却方法とアクティブ冷却方法とを別装置とする場合には、被冷却物の冷 却面として、ノッシブ冷却方法の場合には溝付きのもの力 アクティブ冷却方法の場 合には平滑のものを用いることが効果的である。
[0086] 図 4にお!/、ては、ノズルとして、図 1 (b)、(c)に即して説明したノズル NZを例示した 力 図 2に即して説明したノズル NZa、 NZb、 NZc等を用い得ることは言うまでもない 。前述の如ぐ図 2のノズル NZbや NZcを用いる場合には、ノズル先端を平滑面 RS に当接させても良い。
[0087] 図 1に示す実施の形態においては、同図(b)に示すように、ノズル NZは「主流路に おける冷却液の流れの方向へ等間隔」に形成されているが、図 5に示す変形例のよう に、ノズル NZ (図 2に示すノズル NZa、 NZb、 NZc等の場合も同様である。)の配列 密度を「主流路の下流側(図 5にお 、て図の右方)ほど密になる」ようにしてもょ ヽ (請 求項 17)。
[0088] さて、図 1に示した実施の形態においてパッシブ冷却方法を実施する場合を説明 する。 前述した如ぐパッシブ冷却方法を実施する場合には、冷却液 21をサブクー ルする必要は必ずしもない。図 1の実施の形態においては、冷却液容器 20の上部は 開放しているので、主流路および副流路に流通される冷却液の圧力は 1気圧に近い 状態であり、ポンプ 30、 40による加圧もさほど大きくはない。従って、冷却液 21の飽 和温度は 100°C近傍の温度であり、冷却液 21は実質的に 100°Cとしておいてもよい
[0089] しかし、図 1の実施の形態の沸騰冷却装置は「パッシブ冷却方法とアクティブ冷却 方法とを切り替えて実施」するものであるので、ノ ッシブ冷却方法力もアクティブ冷却 方法に切り替えた場合に「直ちにアクティブ冷却方法を実施できる」ように、パッシブ 冷却方法を実施する場合においても冷却液をサブクールする。
[0090] サブクール度は、冷却液 21の流量や、アクティブ冷却方法を実施する場合の主流 路と副流路の冷却液の圧力差等に応じて、冷却面における主流路の下流側端部で サブクール度が 20K以上となるように設定する。サブクールは、冷却液容器 20内の 冷却液 21の温度、主流路出口温度、副流路出口温度等に基づき、凝縮手段 50に おけるファン 52による冷却風 53の風量制御により、冷却液容器 20内の冷却液 21の 温度に「所定のサブクール度」を持たせるように行われる。
[0091] 図 1の実施の形態により「パッシブ冷却方法」を行うときは、主流路用ポンプ 30、副 流路用ポンプ 40を作動させて、冷却液 21を主流路 10A、副流路 10Bに夫々供給す る。このとき、主流路用ポンプ 30および副流路用ポンプ 40による冷却液 21の供給量 は同じでよい。従って、パッシブ冷却方法のみを実施する沸騰冷却装置の場合であ れば、主流路用ポンプ 30と副流路用ポンプ 40とを同一のポンプとし、冷却液容器 20 力 ポンプまでの主流路用管路および副流路用管路を共通化することもできる。
[0092] 上記の如ぐ主流路 10Aと副流路 10Bとに冷却液 21を流通させ、主流路 10Aを流 れる冷却液の沸騰により冷却面 (ヒートスプレッダ SPの表面)を冷却するとともに、副 流路 10Bの側力も各ノズル NZを介して、副流路側の冷却液を冷却面近傍に供給し 、主流路内の冷却液を冷却する(請求項 1)。
[0093] 図 6は、パッシブ冷却方法による沸騰冷却中における「主流路内の状態」を説明図 的に示している。冷却液 21は主流路内を冷却面に接しつつ、図の左方へ向かう矢 印の向きに流れる。このとき核沸騰が生じ、冷却面力も微小な気泡 BLが発生する。 発生した気泡 BLは冷却液 21と共に、冷却面に沿って流れつつ、若干成長して気泡 の大きさが増す。
[0094] このように大きさを増した気泡 BLGが、図示の如ぐノズル NZの開口部に掛かると、 図の如ぐノズル開口部に「メニスカス面」が形成され、メニスカス面の外側(気泡の外 側)が低圧となって毛管現象を生じ、副流路側の冷却液 21が主流路内に供給される 。供給された冷却液は「若干成長した気泡 BLG」を微細化する。このようにして、若干 成長した気泡 BLGは「微細な気泡」に微細化される。
[0095] 気泡 BLGは、大き!/、と!/、つても高々数 mm程度の大きさであり「熱流束を飽和させ て沸騰形態を遷移沸騰形態に移行させるほどの大きさ」ではない。従って、ノ^シブ 冷却方法による冷却が可能な発熱領域では、冷却液が主流路を流れる間において「 気泡の微細化が繰り返される」ため、気泡が「沸騰形態を遷移沸騰形態に移行させる ほどの大きさ」に成長することはなぐ核沸騰状態を良好に維持して良好な沸騰冷却 を実現できる。
[0096] 即ち、図 1に実施の形態を示す沸騰冷却装置は、パッシブ冷却方法を実施する場 合には、冷却液供給流通手段が、冷却液 21を貯留させる冷却液容器 20と、主流路 10Aを通して冷却液容器 20の冷却液 21を導液する主流路用管路 31A、 31Bと、冷 却液 21を主流路用管路 31A、 31Bにより主流路 10Aに流通させる主流路用ポンプ 30と、副流路 1 OBを通して冷却液容器 20の冷却液 21を導液する副流路用管路 41 A、 41Bと、冷却液 21を副流路用管路 41A、 41Bにより副流路 10Bに流通させる副 流路用ポンプ 40と、主流路 10Aを通過し、主流路用管路 41Bを通って冷却液容器 2 0に戻る冷却液 21を凝集させる凝集手段 50とを有するものである(請求項 20)。
[0097] 上に説明した毛管現象による冷却液 21の供給は「副流路側から主流路側へ冷却 液を滲み出させる要因」の代表的なものである。冷却液 21を滲み出させる他の要因 としては、例えば、請求項 13記載の「動圧差」を挙げることができる。
[0098] 図 1に実施の形態を示す沸騰冷却装置にお!ヽて「アクティブ冷却方法」を実施する 場合には、主流路 10Aと副流路 10Bとに、予め所定の温度にサブクールした冷却液 21を、副流路 10Bにおける圧力を「主流路 10Aにおける圧力」より高めて流通させ、 主流路 10Aを流れる冷却液 21の沸騰により冷却面を冷却するとともに、副流路 10B の側力ゝら各ノズル NZを介して、副流路 10B側の冷却液を「主流路 10Aと副流路 10B の冷却液の圧力差」により強制的に冷却面近傍に噴出させて供給することにより、主 流路内 10Aの冷却液を冷却し「沸騰により主流路 10A内の冷却液に生じた微細な 気泡」を崩壊させつつ冷却面の冷却を行う(請求項 2)。
[0099] 即ち、アクティブ冷却方法を実施する場合には、冷却液 21は「所定の温度にサブク ール」され、副流路 10Bにおける冷却液 21の圧力を主流路 10Aにおける冷却液 21 の圧力より高めて流通させるために、主流路用ポンプ 40の圧力を副流路用ポンプ 3 0の圧力よりも高くする。
[0100] 冷却液容器 20内の冷却液 21の温度は、前述の如ぐ冷却液 21の流量や、上記「 主流路 1 OAと副流路 1 OBの冷却液の圧力差」等に応じて、冷却面の下流側端部で サブクール度が 20K以上となるように設定する(請求項 3)。
[0101] アクティブ冷却方法の場合には、副流路側から主流路側へ、サブクールされた冷 却液が強制的に供給されるので、核沸騰により生じた微小な気泡は殆ど成長する間 もなく 0. 1mm程度以下の「極微細な気泡」に崩壊し、消滅させられる。従って、パッ シブ冷却方法では「遷移沸騰が生じてしまうような高温度領域」の冷却面に対しても、 核沸騰による良好な沸騰冷却を実現することができる。
[0102] 即ち、図 1に実施の形態を示す沸騰冷却装置は、アクティブ冷却方法を実施する 装置としては、冷却液供給流通手段が、冷却液 21を貯留させる冷却液容器 20と、主 流路 1 OAを通して冷却液容器 20内の冷却液 21を導液する主流路用管路 31 A、 31 Bと、冷却液 21を主流路用管路 31A、 31Bにより主流路 10Aに流通させる主流路用 ポンプ 30と、副流路 10Bを通して冷却液容器 20内の冷却液 21を導液する副流路用 管路 41A、 41Bと、冷却液 21を副流路用管路 41A、 41Bにより副流路 10Bに流通さ せる副流路用ポンプ 40と、主流路 10Aを通過し、主流路用管路 31Bを通って冷却 液容器 20に戻る冷却液を冷却して凝集させる凝集手段 50と、主流路用ポンプ 30と 副流路用ポンプ 40とにより主流路 1 OAと副流路 10Bに供給される冷却液 21を、所 定のサブクール度にサブクールするサブクール手段(図示せず)とを有し、副流路 10 Bに流通される冷却液 21の圧力を、主流路 10Aに流通される冷却液 21の圧力より 高くする高圧化手段の働きにより、副流路用ポンプ 40が主流路用ポンプ 30よりも高 圧とされる (請求項 21)。
[0103] また、図 1に実施の形態を説明した沸騰冷却装置は、上に説明したように、パッシブ 冷却方法とアクティブ冷却方法とを、冷却条件 (被冷却物 obの発熱量の多寡)により 切り替える沸騰冷却方法 (請求項 4)を実施する装置である。
[0104] 図 1の実施の形態において、流路構造体部分 10の構成として、図 2〜図 5に即して 説明したものを適宜に用いることができることは言うまでもない。特に、図 5に示した「 ノズル NZの配列密度を、主流路の下流側ほど密になる」ようにした流路構造体部分 を用い、主流路の下流側ほど副流路からの冷却液の供給量を増大させるようにして 良好な沸騰冷却を実現することができる (請求項 5)。また、上に説明した沸騰冷却装 置の実施の形態においては、冷却液 21として「水あるいはアルコール、もしくは、水と アルコールの混合液、またはフッ素系不活性液体」が用いられる(請求項 6、請求項 2 4)。
[0105] 先に述べたように、図 1に示す実施の形態では「制御手段」による制御が行われる。
図 7は制御手段 70による制御の様子を説明図として簡単に示している。 制御手段 70は「マイクロコンピュータ」である。上には説明しな力つたが、図 1に示し た実施の形態では各種のセンサが用いられ、「冷却面温度」、「主流路入口温度'主 流路入口圧力 ·主流路入口流量 ·主流路出口温度 ·主流路出口圧力」、「副流路入 口圧力 ·副流路入口流量 ·副流路出口温度 ·副流路出口圧力 ·副流路出口流量」、「 凝縮部出口温度 ·冷却液容器温度 ·冷却液容器圧力」が検出される。
[0106] これらのうち、各種温度の検出は「サーミスタ等の温度センサ」により行われ、各種 圧力の検出は「ピトー管等の圧力計」により行われ、各種流量の検出は「ベンチユリ管 等の流量計」により行われる。
[0107] これら各種温度、流量、圧力等の検出結果は制御手段 70に入力され、制御手段 7 0は入力情報に応じて主流路用ポンプ 30および副流路用ポンプ 40の駆動、凝集手 段 50のファン 52の駆動力の強弱、「主流路圧力安全弁、副流路圧力安全弁、冷却 容器圧力安全弁」を制御して、冷却動作に支障がでないようにする。また、冷却面温 度が急激に上昇した場合 (冷却面温度が上昇しすぎて冷却面の焼損が生じた場合 が考えられる。)には、被冷却物の電源を遮断する。
[0108] 制御手段 70はまた、冷却面温度の高低に応じて、主流路用ポンプ 30および副流 路用ポンプ 40の駆動力を切り替え、この切り替えにより「パッシブ冷却方法とァクティ ブ冷却方法との切り替え」を行う。
[0109] 即ち、図 1に実施の形態を示した沸騰冷却装置は「主流路用ポンプの圧力を高低 切り替える圧力切り替え手段として制御手段 70を有し、パッシブ冷却方法とァクティ ブ冷却方法とが冷却条件により切り替え可能」である(請求項 22)。
[0110] また、制御手段 70により主流路 10Aおよび副流路 10Bの安全弁 (バルブ)を制御 することにより、アクティブ冷却方法による冷却の際の「副流路 10Bに流通される冷却 液 21の圧力を、主流路 10Aに流通される冷却液 21の圧力より高く」するようにしても よぐこの場合には、主流路 10Aおよび副流路 10Bの安全弁 (バルブ)が「高圧化手 段」、これを制御する制御手段が「圧力切り替え手段」を構成する。
実施例
[0111] 以下に、具体的な実施例を挙げて本発明を説明する。
[0112] く実施例 1 >
実施例装置の構成は、図 1に即して説明した実施の形態を示したのと同様ものであ る。 被冷却物として半導体デバイスであるインバータを用いる場合を想定し、インバ ータのヒートスプレッダとして、幅が 100mm、長さが 150mmのものを想定した。
[0113] ヒートスプレッダ上に、ヒートスプレッダ表面を冷却面として、図 1に即して説明した 如き流路構造体部分を、上記スプレッダの長さ方向を流路方向としてアルミニウムに より構成し、この流路構造体部分とインバータとを一体として「流路構造体」とし、主流 路および副流路を共に、図 3 (b)に示すタイプのものの如ぐ冷却液の流れの方向に 直交し、且つ、冷却面に平行な方向へ、隔壁により「整合格子状」に分割する場合を 想定した。上記のように分割された各主流路部分および副流路部分を「チャンネル」 と呼ぶ。
[0114] また、主流路および副流路は、 V、ずれも 5チャンネルで、各チャンネルの形状を主 流路および副流路ともに同じとし、幅 (冷却液の流れの方向に直交し、且つ、冷却面 に平行な方向の長さ)が 20mm、長さが 100mm、高さが 5mmを想定した。
[0115] 上記の如き想定に基づき、想定上の 1チャンネルの 1Z2のモデル、即ち、幅が 10 mm、長さが 100mm、高さが 5mmの実験用チャンネルを持つ実験用流路構造体を 構成し、副流路と主流路を隔てる隔壁を貫通して主流路内に突出するノズルは、実 験用チャンネルの幅方向中央部に 10mm間隔で、 9本のノズルを直線的に配列させ て配置した。個々のノズルは図 1 (c)に示したタイプのものであり、内径が lmm、外径 力 S3mmで、冷却面に対して lmmの間隙をあけて近接させた。冷却面は平滑面であ る。
[0116] 上記実験用流路構造体を用い、冷却液としてサブクール度力 OKの蒸留水を、主 流路に流速 0. 5mZ秒で供給し、副流路には流速 0. 3mZ秒で供給して「ァクティ ブ冷却方法」を実施したところ、 lcm2当たり 300W以上、最大 450Wの熱流束による 良好な沸騰冷却を実現でき、被冷却物の焼損は発生しな力つた。
この結果、本発明の沸騰冷却方法力 450WZcm2の除熱熱流束が得られる程の 155°C程度の高い温度領域において、 100mmの冷却流路長(主流路内冷却液の 流れ方向)の被冷却物に対して適用可能であることを立証するものである。
[0117] く実施例 2 >
図 2 (c)の切り欠きタイプのノズルと流路構造体の材質としてステンレスを用いたこと 以外は、流路構造体の構成が実施例 1に記載のものと同様のものを用いて、ノッシ ブ冷却方法とアクティブ冷却方法を行なった。
冷却液として蒸留水を用い、サブクール度が 40K、主流路に流速 0. 05mZ秒の 条件で、ニードルノズル力 冷却液を冷却面に向けて滲み出す状態で供給して、「パ ッシブ冷却方法」を実施したところ、 60W/cm2の除熱熱流束が得られた。
その後、冷却面に設置された温度センサによって、冷却面の温度と熱流束を検知 し、冷却面の発熱量が増加するに従って、冷却液の流量を変化させて、主流路の流 速を増加させ、発熱密度が lOOWZcm2当たりから、主流路に流速 0. 55m/秒で、 副流路には流速 0. 3〜0. 9mZ秒の間で発熱量に応じて変化させて、ノズル力 冷 却面へのサブクール液の供給を噴射状態に切り替えて「アクティブ冷却方法」を実施 したところ、振動も騒音もほとんど発生せずに、最大 500WZcm2の除熱熱流束が得 られた。
この結果、本発明の沸騰冷却方法力 500WZcm2の除熱熱流束が得られる程の 160°C程度の高い温度領域において、長さ 10cmの大きな冷却流路長の被冷却物 に対して適用可能であり、し力も、幅広い熱負荷変動にも連続的に対応可能なもの であることを立証するものである。
本発明のパッシブ冷却方法は、主流路内の流速を極めて低くすることにより冷却液 駆動力を極めて小さくし、これにより省エネ型冷却を実現したものであり、パーソナル な実用的な製品分野、例えば、家庭用の小規模の燃料電池用発電装置に適用可能 なものである。 一方、本発明のアクティブ冷却方法では、副流路の冷却液が連続し て強制的に主流路へ供給され、上記の如ぐ冷却面で発生する微小な気泡は瞬時 に「極微細な気泡」に崩壊される。
このように、本発明のアクティブ冷却方法によると気泡が実質的に成長せず、微小 な気泡は瞬時に崩壊されるので、極めて静かな運転状態で冷却を行うことができ、高 熱流束冷却を安定して維持することができる。
換言すれば伝熱面上に形成される気泡を大きくなる前に微細化して除熱限界を高 め、その結果、伝熱部材の焼損を発生させずにより高温領域での冷却を、かつ伝熱 面の長さがより長いのものの冷却を可能としたものである。
これに対して、気泡が大きくなつて力も崩壊させる方法では、気泡の成長と崩壊が 繰り返し生じることになつて、本発明のような高熱流束冷却を得ることが出来なくなる ばかりか、「かなり大きな騒音」が発生する。 また、本発明におけるパッシブ冷却方法およびアクティブ冷却方法は、冷却対象で ある伝熱部材等、必要に応じて、いずれか一方の冷却方法を実施する装置に適用 することもできるが、パッシブ冷却方法およびアクティブ冷却方法の両方を実施する 併用装置に適用して、圧力調整によって冷却液の供給状態を変化させ、低発熱時に は滲み出し状態で行ない、発熱量が高い場合には噴射状態にし、例えば電気自動 車における急加速あるいは異常運転によって発熱が急上昇する場合には最大の噴 射状態にして行なうことにより、 500W/cm2以上の高発熱まで連続的に対応するこ とがでさるちのである。
[0119] 本発明は、従来技術の沸騰冷却の冷却限界を大幅に向上させることができ、かつ 幅の広い熱負荷変動に対応可能にしたことが最もめざましい特徴および効果を有す るものである。
本発明の沸騰冷却装置が適用される技術分野または製品分野 (以下、製品と称す る)としては、稼動中に熱が発生しその熱を冷却する冷却手段を構成要素とするもの であれば、特に限定されない。
例えば、パソコンのような発熱体を有する電子素子または発熱体を有する燃料電池 、ハイブリッドカー、電気自動車、燃料電池自動車、燃料電池発電設備の電力変換 インバータ又は鉄道電車あるいは航空機の電力システムの電力変換インバータ等を 挙げることができる。
[0120] すなわち、例えばパソコンのような発熱体を有する電子素子または発熱体を有する 燃料電池については、本発明の沸騰冷却装置を構成する流路構造体の主流路を発 熱体の表面と一体的に形成した構成とすることにより、製品とすることができる。 また、ハイブリッド自動車、電気自動車、燃料電池自動車並びに燃料電池発電装 置の電力変換制御装置又は鉄道電車あるいは航空機用の電力システムの電力変換 制御装置については、このような装置には、電力変換のためのインバータ、電力制御 の電子パッケージを含む複数の電子素子および伝熱部材 (例えば、ヒートスプレッダ 一)を主構成要素とする電子機器が搭載されており、本発明の沸騰冷却装置を構成 する流路構造体の主流路を電子機器を構成する伝熱部材の表面に取り付けて一体 的に形成した構成とすることにより、製品とすることができる。 このような電子機器としては、一般的に高発熱密度電子機器が用いられており、例 えば 50kW以上のような高 、電力が扱われるので、単位面積当たりの発熱量が多く、 発熱密度が lOOWZcm2以上、さらには 300WZcm2にもなることも考えられるが、こ のような電子機器の冷却に対しても、本発明は好適である。
一方、本発明の流路構造体およびこの流路構造体を構成要素として備えた沸騰冷 却装置は、それぞれ単独の製品として扱うこともできる。
流路構造体を単独の製品として扱う場合には、沸騰冷却装置の構成要素として設 置する際に、被冷却物の大きさ、放熱器の最適取り付け場所、空間余裕によって配 管の長さ等を調節することができるが、冷却液が入っていないため、放熱器、送液ポ ンプ等を含む冷却系を組み上げた時に,空気が入らな 、ように冷却液を注入するこ とが必要とされる。
また、沸騰冷却装置を単独の製品として扱う場合には、冷却液容器に冷却液が予 め貯留された構成のものであっても、貯蔵されていない構成のものであっても、いず れのものも製品とすることができるが、冷却液容器に冷却液が予め貯留された構成の ものの場合には、予め冷却液を封入した状態で扱うことができるので、冷却液液注入 と空気抜き作業を省略することができる。
以上のように、本発明の沸騰冷却装置が広 、技術分野における伝熱部材 (加熱ブ ロック)の適用可能な、対環境性、対省エネルギー性に対して発展性のある技術と言 うことができる。

Claims

請求の範囲
[1] 被冷却物の表面もしくは該表面に密接する伝熱部材の表面を冷却面として、冷却 液用の主流路および副流路を、上記冷却面の側から上記順序に形成し、
上記副流路と主流路を隔てる隔壁を貫通して上記主流路内に突出する複数のノズ ルを主流路の流路方向に配列し、個々のノズルの先端部を上記冷却面に近接もしく は当接させ、
上記主流路と副流路とに冷却液を流通させ、上記主流路を流れる冷却液の沸騰に より上記冷却面を冷却するとともに、上記副流路側から各ノズルを介して副流路側の 冷却液を冷却面近傍に滲み出るように供給することを特徴とする沸騰冷却方法。
[2] 被冷却物の表面もしくは該表面に密接する伝熱部材の表面を冷却面として、冷却 液用の主流路および副流路を、上記冷却面の側から上記順序に形成し、
上記副流路と主流路を隔てる隔壁を貫通して上記主流路内に突出する複数のノズ ルを主流路の流路方向に配列し、個々のノズルの先端部を上記冷却面に近接もしく は当接させ、
上記主流路と副流路とに、予め所定の温度にサブクールした冷却液を、副流路に おける圧力を主流路における圧力より高めて流通させ、上記主流路を流れる冷却液 の沸騰により上記冷却面を冷却するとともに、上記副流路側カも各ノズルを介して、 副流路側の冷却液を上記主流路と副流路の冷却液の圧力差によって強制的に冷却 面近傍に噴出させて供給することを特徴とする沸騰冷却方法。
[3] 請求項 2記載の沸騰冷却方法にお 、て、
冷却面の下流側端部でサブクール度が 20K以上となるように、冷却液のサブクー ル度、流量、主流路と副流路の冷却液の圧力差を設定することを特徴とする沸騰冷 却方法。
[4] 請求項 1記載の沸騰冷却方法 (以下、パッシブ冷却方法と!/ヽぅ。 )と、請求項 2また は請求項 3記載の沸騰冷却方法 (以下、アクティブ冷却方法という。)とを、冷却条件 により切り替えることを特徴とする沸騰冷却方法。
[5] 請求項 1〜請求項 4の任意の 1に記載の沸騰冷却方法にぉ 、て、
ノズルの配列形態及び Z又は配列密度を、主流路の下流側ほど密になるようにし、 副流路からの冷却液の供給量を、主流路の下流側ほど増大させることを特徴とする 沸騰冷却方法。
[6] 請求項 1〜請求項 5の任意の 1に記載の沸騰冷却方法にぉ 、て、
冷却液が、水あるいはアルコール、もしくは、水とアルコールの混合液、または、フッ 素系不活性液体であることを特徴とする沸騰冷却方法。
[7] 被冷却物の表面もしくは該表面に密接する伝熱部材の表面を冷却面として、上記 冷却面に一体的に形成される主流路およびこの主流路に重なるように隔壁を介して 一体的に形成される副流路と、上記副流路側から上記隔壁を貫通し、先端部が上記 冷却面に近接もしくは当接するように形成された複数のノズルとを有する流路構造体
[8] 請求項 7記載の流路構造体にお 、て、
複数のノズルの先端部に対向する冷却面が平滑面であり、上記複数のノズルの先 端部が、上記平滑面に、微小な間隙を隔して近接していることを特徴とする流路構造 体。
[9] 請求項 7記載の流路構造体にぉ 、て、
複数のノズルの先端部に対向する冷却面の表面が平滑または、微細な凹凸構造を 有し、上記複数のノズルの先端部が、上記平滑面に近接もしくは微細な凹凸構造に 当接していることを特徴とする流路構造体。
[10] 請求項 9記載の流路構造体にぉ 、て、
冷却面の表面の微細な凹凸構造が、粗面構造であることを特徴とする流路構造体
[11] 請求項 9記載の流路構造体において、
冷却面の表面の微細な凹凸構造が、環状もしくは螺旋状または主流路に沿って形 成された細溝の集合であることを特徴とする流路構造体。
[12] 請求項 7〜請求項 11の任意の 1に記載の流路構造体にぉ 、て、
各ノズルの先端部に、微小な貫通孔および Zまたは微細なスリットおよび Zまたは 切欠きを 1以上有することを特徴とする流路構造体。
[13] 請求項 7〜請求項 12の任意の 1に記載の流路構造体において、 副流路の流路断面積が、主流路の流路断面積より大きぐこれら断面積の差により 副流路の圧力が高くなるように動圧差を生じさせる構成であることを特徴とする流路 構造体。
[14] 請求項 7〜請求項 12の任意の 1に記載の流路構造体において、
主流路が、冷却面に沿って、冷却液の流れの方向に直交する方向へ、 1以上の分 離隔壁により分離されていることを特徴とする流路構造体。
[15] 請求項 7〜請求項 12の任意の 1に記載の流路構造体において、
副流路が、主流路との隔壁に沿って、冷却液の流れの方向に直交する方向へ、 1 以上の分離隔壁により分離されていることを特徴とする流路構造体。
[16] 請求項 14または請求項 15記載の流路構造体において、
主流路と副流路とが、同数の分離隔壁により整合格子状に分離されていることを特 徴とする流路構造体。
[17] 請求項 7〜請求項 16の任意の 1に記載の流路構造体において、
ノズルの配列密度を、主流路の下流側ほど密になるように構成したことを特徴とする 流路構造体。
[18] 被冷却物の表面もしくは該表面に密接する伝熱部材の表面を冷却面として、上記 冷却面に一体的に形成される主流路およびこの主流路に重なるように隔壁を介して 一体的に形成される副流路と、上記副流路側から上記隔壁を貫通し、先端部が上記 冷却面に近接もしくは当接するように形成された複数のノズルとを有する流路構造体 と、
この流路構造体の上記主流路と副流路とに流通される冷却液を上記流路構造体 に供給し、上記主流路と副流路とに流通させる冷却液供給流通手段とを有し、 流路構造体として、請求項 7〜請求項 17の任意の 1に記載のものを用いることを特 徴とする沸騰冷却装置。
[19] 請求項 18記載の沸騰冷却装置において、
流路構造体が、請求項 16記載のものであり、隣接する流路における冷却液の流れ が互いに逆向きに設定されていることを特徴とする沸騰冷却装置。
[20] 請求項 18または請求項 19記載の沸騰冷却装置において、 冷却液供給流通手段が、冷却液を貯留させる冷却液容器と、主流路を通して上記 冷却液容器内の冷却液を導液する主流路用管路と、上記冷却液を上記主流路用管 路により主流路に流通させる主流路用ポンプと、副流路を通して上記冷却液容器内 の冷却液を導液する副流路用管路と、上記冷却液を上記副流路用管路により副流 路に流通させる副流路用ポンプと、上記主流路を通過し、上記主流路用管路を通つ て上記冷却液容器に戻る冷却液を凝集させる凝集手段とを有し、パッシブ冷却方法 を実施することを特徴とする沸騰冷却装置。
[21] 請求項 18または請求項 19記載の沸騰冷却装置において、
冷却液供給流通手段が、冷却液を貯留させる冷却液容器と、主流路を通して上記 冷却液容器内の冷却液を導液する主流路用管路と、上記冷却液を上記主流路用管 路により主流路に流通させる主流路用ポンプと、副流路を通して上記冷却液容器内 の冷却液を導液する副流路用管路と、上記冷却液を上記副流路用管路により副流 路に流通させる副流路用ポンプと、上記主流路を通過し、上記主流路用管路を通つ て上記冷却液容器に戻る冷却液を冷却して凝集させる凝集手段と、
上記主流路用ポンプと副流路用ポンプとにより上記主流路と副流路に供給される 冷却液を、所定のサブクール度にサブクールするサブクール手段と、
上記副流路に流通される冷却液の圧力を、上記主流路に流通される冷却液の圧 力より高くする高圧化手段とを有し、アクティブ冷却方法を実施することを特徴とする 沸騰冷却装置。
[22] 請求項 21記載の沸騰冷却装置において、
高圧化手段による、副流路に流通される冷却液の圧力と主流路に流通される冷却 液の圧力差を切り替える圧力切り替え手段を有し、
パッシブ冷却方法とアクティブ冷却方法とを、冷却条件により切り替え可能としたこ とを特徴とする沸騰冷却装置。
[23] 請求項 20〜請求項 22の任意の 1に記載の沸騰冷却装置において、
冷却液容器に冷却液が貯留されていることを特徴とする沸騰冷却装置。
[24] 請求項 20〜請求項 23の任意の 1に記載の沸騰冷却装置において、
冷却液を、水あるいはアルコール、もしくは、水とアルコールとの混合液、または、フ ッ素系不活性液体としたことを特徴とする沸騰冷却装置。
[25] 稼動中に熱を発生し該熱の冷却手段を構成要素とする製品であって、
請求項 18〜24の任意の 1に記載の沸騰冷却装置を冷却手段として備えていること を特徴とする製品。
[26] 請求項 25に記載の製品が発熱体を有する電子素子または発熱体を有する燃料電 池であって、
沸騰冷却装置を構成する流路構造体の主流路が発熱体の表面に一体的に形成さ れてなることを特徴とする電子素子または燃料電池。
[27] 請求項 25に記載の製品が、電子素子と伝熱部材とを主構成要素とする高発熱密 度電子機器が搭載された、ハイブリッド自動車、電気自動車、燃料電池自動車、燃 料電池発電設備の電力変換制御装置又は鉄道電車あるいは航空機用の電力シス テムの電力変換制御装置であって、
沸騰冷却装置を構成する流路構造体の主流路が伝熱部材の表面に一体的に形 成されてなることを特徴とするハイブリッド自動車、電気自動車、燃料電池自動車、燃 料電池発電設備の電力変換制御装置又は鉄道電車あるいは航空機用の電力シス テムの電力変換制御装置。
PCT/JP2005/023520 2004-12-22 2005-12-21 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用 WO2006075493A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05820340A EP1837612A1 (en) 2004-12-22 2005-12-21 Vapor cooling method, vapor cooling apparatus, and flow passage structure, and application thereof
US11/793,535 US8061414B2 (en) 2004-12-22 2005-12-21 Boil cooling method, boil cooling apparatus, flow channel structure, and applied technology field thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004372227 2004-12-22
JP2004-372227 2004-12-22
JP2005-310164 2005-10-25
JP2005310164 2005-10-25

Publications (1)

Publication Number Publication Date
WO2006075493A1 true WO2006075493A1 (ja) 2006-07-20

Family

ID=36677523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023520 WO2006075493A1 (ja) 2004-12-22 2005-12-21 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用

Country Status (3)

Country Link
US (1) US8061414B2 (ja)
EP (1) EP1837612A1 (ja)
WO (1) WO2006075493A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249318A (ja) * 2006-08-31 2008-10-16 Tokyo Univ Of Science 気泡微細化沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074825B2 (en) * 2007-09-28 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Heatsink apparatus and electronic device having the same
DE102007056783A1 (de) * 2007-11-23 2009-05-28 Micryon Technik Gmbh Verfahren zum Kühlen thermisch hochbelasteter Bauelemente und Vorrichtung zur Durchführung des Verfahrens
WO2012060461A1 (ja) * 2010-11-02 2012-05-10 日本電気株式会社 冷却装置及びその製造方法
US9826666B2 (en) 2015-01-14 2017-11-21 Uchicago Argonne, Llc System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
CA2956668A1 (en) * 2016-01-29 2017-07-29 Systemex Energies International Inc. Apparatus and methods for cooling of an integrated circuit
JP6658888B2 (ja) * 2016-07-26 2020-03-04 富士通株式会社 冷却装置及び電子装置
CN109642304B (zh) * 2016-08-22 2022-02-25 杰富意钢铁株式会社 高温金属的冷却方法及熔融镀锌钢带的制造方法
GB201705513D0 (en) * 2017-04-05 2017-05-17 Siemens Ag Cooling system and method
MX2021003176A (es) * 2018-11-16 2021-08-11 Tmgcore Llc Plataforma de enfriamiento por inmersion liquida.
CN110162157A (zh) * 2019-03-29 2019-08-23 联想(北京)有限公司 散热系统
US10966349B1 (en) * 2020-07-27 2021-03-30 Bitfury Ip B.V. Two-phase immersion cooling apparatus with active vapor management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437898A (en) * 1987-08-03 1989-02-08 Fujitsu Ltd Cooling module
JPH04147657A (ja) * 1990-10-11 1992-05-21 Nec Corp 電子部品冷却機構
JPH04151860A (ja) * 1990-10-16 1992-05-25 Fujitsu Ltd 電子装置の冷却装置
JPH04226057A (ja) * 1990-05-11 1992-08-14 Fujitsu Ltd 浸漬液冷用冷媒及びこれを用いた沸騰液冷式電子機器
JPH05136305A (ja) * 1991-11-08 1993-06-01 Hitachi Ltd 発熱体の冷却装置
JPH06104358A (ja) * 1992-09-04 1994-04-15 Hitachi Ltd 液体により冷却される電子装置
JP2002026210A (ja) * 2000-07-07 2002-01-25 Central Res Inst Of Electric Power Ind 微細化沸騰を利用した冷却方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154654A (ja) 1984-08-27 1986-03-18 Fujitsu Ltd 液冷装置
EP0298372B1 (en) * 1987-07-10 1993-01-13 Hitachi, Ltd. Semiconductor cooling apparatus
JP2708495B2 (ja) * 1988-09-19 1998-02-04 株式会社日立製作所 半導体冷却装置
EP0456508A3 (en) 1990-05-11 1993-01-20 Fujitsu Limited Immersion cooling coolant and electronic device using this coolant
CA2053055C (en) 1990-10-11 1997-02-25 Tsukasa Mizuno Liquid cooling system for lsi packages

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437898A (en) * 1987-08-03 1989-02-08 Fujitsu Ltd Cooling module
JPH04226057A (ja) * 1990-05-11 1992-08-14 Fujitsu Ltd 浸漬液冷用冷媒及びこれを用いた沸騰液冷式電子機器
JPH04147657A (ja) * 1990-10-11 1992-05-21 Nec Corp 電子部品冷却機構
JPH04151860A (ja) * 1990-10-16 1992-05-25 Fujitsu Ltd 電子装置の冷却装置
JPH05136305A (ja) * 1991-11-08 1993-06-01 Hitachi Ltd 発熱体の冷却装置
JPH06104358A (ja) * 1992-09-04 1994-04-15 Hitachi Ltd 液体により冷却される電子装置
JP2002026210A (ja) * 2000-07-07 2002-01-25 Central Res Inst Of Electric Power Ind 微細化沸騰を利用した冷却方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249318A (ja) * 2006-08-31 2008-10-16 Tokyo Univ Of Science 気泡微細化沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品

Also Published As

Publication number Publication date
US8061414B2 (en) 2011-11-22
EP1837612A1 (en) 2007-09-26
US20080104970A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006075493A1 (ja) 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用
JP4464914B2 (ja) 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品
JP4649359B2 (ja) 冷却器
Lohrasbi et al. A comprehensive review on the core thermal management improvement concepts in power electronics
CN106785822B (zh) 一种冷却超高热流密度热源的系统和方法
US20140347817A1 (en) Jet impingement coolers and power electronics modules comprising the same
US8199505B2 (en) Jet impingement heat exchanger apparatuses and power electronics modules
WO2007102498A1 (ja) 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品
JP2005079337A (ja) 液冷装置及び液冷システム
KR20140000065A (ko) 전력 모듈용 방열 시스템
JP4766427B2 (ja) 沸騰冷却方法、沸騰冷却装置およびその応用製品
Jiang et al. Design of micro-nano structures for counter flow diverging microchannel heat sink with extraordinarily high energy efficiency
JP6569522B2 (ja) 熱交換装置
JP3780953B2 (ja) 冷却装置付き電子回路装置
JP2008016872A (ja) 半導体素子の冷却装置
JP4766428B2 (ja) 沸騰冷却方法、沸騰冷却装置およびその応用製品
Tan et al. Enhancement of flow boiling in the microchannel with a bionic gradient wetting surface
CN107148201A (zh) 一种利用微细化沸腾高效换热技术的冷却装置
CN107895879B (zh) 一种散热组件及散热方法
CN110567302B (zh) 一种双层截断式多孔射流气泡微细化沸腾冷却装置
JP2008286503A (ja) 沸騰冷却方法、沸騰冷却装置および機能製品
JP2015002291A (ja) 半導体装置及びその冷却方法
JP5066751B2 (ja) 気泡微細化沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品
JP2015129594A (ja) 気泡ポンプ型冷却装置
JP2004270967A (ja) 吸収式冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005820340

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005820340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11793535

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11793535

Country of ref document: US