WO2006085373A1 - Non-volatile semiconductor memory and semiconductor device - Google Patents

Non-volatile semiconductor memory and semiconductor device Download PDF

Info

Publication number
WO2006085373A1
WO2006085373A1 PCT/JP2005/002006 JP2005002006W WO2006085373A1 WO 2006085373 A1 WO2006085373 A1 WO 2006085373A1 JP 2005002006 W JP2005002006 W JP 2005002006W WO 2006085373 A1 WO2006085373 A1 WO 2006085373A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
gate
control circuit
pulse
erase
Prior art date
Application number
PCT/JP2005/002006
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Yamaki
Jiro Ishikawa
Toshihiro Tanaka
Akira Kato
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to JP2007502516A priority Critical patent/JP4683494B2/en
Priority to PCT/JP2005/002006 priority patent/WO2006085373A1/en
Publication of WO2006085373A1 publication Critical patent/WO2006085373A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/102External programming circuits, e.g. EPROM programmers; In-circuit programming or reprogramming; EPROM emulators

Definitions

  • Nonvolatile semiconductor memory and semiconductor device are nonvolatile semiconductor memory and semiconductor device
  • the present invention relates to a nonvolatile semiconductor memory that employs a method of injecting hot holes into a charge storage region to lower the threshold voltage of a nonvolatile memory cell, and a semiconductor device equipped with the nonvolatile semiconductor memory, and is applied to, for example, a flash memory.
  • a nonvolatile semiconductor memory that employs a method of injecting hot holes into a charge storage region to lower the threshold voltage of a nonvolatile memory cell, and a semiconductor device equipped with the nonvolatile semiconductor memory, and is applied to, for example, a flash memory.
  • MONOS Metal Oxide Nitride Oxide Semiconductor
  • one of the erasures using the hot carrier method is A high electric field is generated from the source / drain electrode end to the memory gate, and the one source / drain electrode force also causes a current to flow through the substrate.
  • an ionizing collision occurs in the vicinity of the one end of the source and drain electrodes, and electron and hole pairs are generated.
  • holes with sufficient energy to exceed the potential barrier of the gate oxide film become hot holes and are injected into the nitride film.
  • Patent Document 1 describes a general technique in which the write timing is shifted for each memory cell to be written in order to reduce the peak value of current consumption.
  • Patent Document 2 describes a technique for injecting hot holes in an erase operation of a memory cell.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-109894
  • Patent Document 2 Pamphlet of International Publication No. 02Z19342
  • the nonvolatile memory described in Patent Document 2 has a constant voltage boost rate change applied to the well region depending on the number of memory cells to be erased during the erase operation.
  • the power that is being considered for devising It has become clear that the amount of current flowing in the channel formation region of the memory cell to be erased has been studied.
  • An object of the present invention is to provide a nonvolatile semiconductor memory capable of suppressing an increase in the overall processing time as much as possible even when hot hole injection is performed by shifting the application timing of a high voltage pulse to a nonvolatile memory cell. It is to provide.
  • the threshold voltage is increased by injection of electrons into the charge storage region, and the threshold voltage is increased by injection of hot holes into the charge storage region.
  • a plurality of non-volatile memory cells (1) to be lowered are provided, and a plurality of non-volatile memory cells selected as hot hole injection targets are shifted in timing one by one to generate a high voltage pulse for hot hole injection.
  • a control circuit (25, 36) capable of repeating the process to be applied in a plurality of times until a desired threshold voltage is reached, and the control circuit performs non-high-speed application of a plurality of high-voltage pulses shifted in timing; A choice between burlap or partial overlap is possible.
  • the current decreases as hot holes are injected into the charge storage region. Focusing on this property, when the process of applying a high voltage pulse for hot hole injection is repeated several times until the desired threshold voltage is reached, the latter flows to one source 'drain end compared to the first The current becomes smaller. Therefore, since a large current flows at the end of one source 'drain at first, it is convenient to suppress the current peak by making the high voltage pulse non-overlapping. In the latter case, the current force S flowing through one of the source and drain ends is decreasing, so it is better to partially overlap the high voltage pulse during processing. It is convenient for shortening the interval, and it does not cause the current peak to be excessive.
  • control circuit can select a degree of partial overlap of the high voltage pulse.
  • the current flowing to one of the source and drain ends becomes smaller.
  • the control circuit performs non-overlapping application of a high-voltage pulse that is shifted in timing in the first hot hole injection that is repeated in a plurality of times. In the later hot hole injection, which is repeated several times, the application of high voltage pulses with different timings is partially overlapped.
  • This method is suitable when a control method that focuses on the above properties is adopted in the control circuit.
  • control circuit when the control circuit reduces the threshold voltage of the nonvolatile memory cell, the electric field directed from the channel region to the storage region of the nonvolatile memory cell. Then, hot holes generated at the end of one source / drain electrode (3) are injected into the storage region (6).
  • a typical semiconductor device (60) according to the present invention includes a nonvolatile semiconductor memory (20), and the nonvolatile semiconductor memory is provided in the source and drain regions (3, 4).
  • An array (21) of nonvolatile memory cells (1) having a charge storage region (6) and a memory gate region (8), which are insulated on the sandwiched channel forming region (2), respectively, and the nonvolatile memory A first wiring (SL) to which one source / drain region (3) of the cell is coupled and a second wiring (BL) to which the other source / drain region (4) of the nonvolatile memory cell is coupled.
  • MG third wiring
  • the control circuit preferably performs a process of applying a high voltage pulse for hot hole injection to a plurality of nonvolatile memory cells selected as hot hole injection targets while shifting the timing thereof part by part. Can be repeated multiple times until the threshold voltage is reached It is possible to select whether a plurality of high voltage pulses with different timings are non-overlapping or partially overlapping.
  • the control circuit has a configuration capable of selecting the degree of partial overlap of the high voltage pulse.
  • the control circuit in the first hot hole injection that is repeated in a plurality of times, the application of a high voltage pulse with a shifted timing is made non-overlapping, and the latter one that is repeated in a plurality of times is repeated.
  • hot hole injection it is recommended to adopt a configuration in which the application of high-voltage pulses with different timing is partially overlapped.
  • the control circuit when the threshold voltage of the non-volatile memory cell is lowered, the control circuit generates a force field from the channel region of the non-volatile memory cell to the storage region. In the formed state, hot holes generated at one end of the source / drain electrodes are injected into the storage region.
  • a plurality of nonvolatile memory cells are arranged in a matrix in the array, and the plurality of nonvolatile memory cells arranged in a matrix share the first wiring (SL) in units of rows and are arranged in column units. Share the second wiring (BL) and the third wiring (MG) in units of multiple rows, and the control circuit includes a first high voltage pulse (-5V) on the selected third wiring. Is applied to the first wiring connected to the plurality of nonvolatile memory cells sharing the selected third wiring, and the second high voltage pulse (5 V) is shifted in timing between the first wiring. A configuration in which the voltage is applied may be adopted.
  • the control circuit forms a plurality of selection signals for selecting a plurality of first wirings related to a plurality of rows of nonvolatile memory cells sharing the third wiring.
  • Circuit (50) and a counter control circuit (51) for controlling change timings of the plurality of selection signals, and the counter circuit performs a shift operation in synchronization with a change of a shift clock (SCLK).
  • Storage stages (50A-50D) in series, and the outputs of the plurality of storage stages are the plurality of selection signals,
  • the counter control circuit includes a pulse generation circuit (56) for generating a pulse (EPLS) to be supplied to the first stage of the counter circuit, and a pulse width selection circuit for selecting a width of a pulse generated by the pulse generation circuit. (55) and the pulse by selecting the shift clock cycle. And a shift amount selection circuit (58) that makes the shift amount of the shift variable.
  • the pulse width and overlap amount of the high voltage pulse can be varied with a relatively simple configuration.
  • the non-volatile memory cell includes a select gate via an insulating film on the channel formation region on the source / drain region side to which the second wiring is connected.
  • a region (10) is formed and has a split gate structure in which the select gate region and the memory gate region are separated. At this time, the gate breakdown voltage seen from the selection gate region is preferably lower than the gate breakdown voltage seen from the memory gate region.
  • a controller (61) for controlling access to the nonvolatile semiconductor memory is further provided, and a gate breakdown voltage viewed from the selection gate region is a gate constituting the controller. It may be the same as the gate breakdown voltage of the insulating field effect transistor.
  • FIG. 1 is a block diagram illustrating a configuration of a flash memory.
  • FIG. 2 is a longitudinal sectional view illustrating a longitudinal sectional structure of a split gate type nonvolatile memory cell as a state where many electrons are accumulated in a charge accumulation region.
  • FIG. 4 A characteristic diagram showing the relationship between the time and erase current when hot holes are gradually injected into the nonvolatile memory cell in which many electrons are injected as shown in FIG. It is.
  • FIG. 5 Relationship between erase current and time when erasing is started from the state where the threshold voltage of the nonvolatile memory cell has decreased to some extent (the state where the number of electrons accumulated in the charge storage region is small).
  • FIG. 6 is a circuit diagram showing a detailed example of a memory array and a write / erase decoder.
  • FIG. 7 is a logic circuit diagram showing a specific example of a selection timing control circuit (TCNT).
  • FIG. 8 is a timing chart showing the waveform of the selection signal countO-count3 when the pulse width PW1 of the erase pulse EPLS is set to one cycle of the shift clock SCLK.
  • FIG. 9 is a timing chart showing the waveform of the selection signal countO-count3 when the pulse width PW2 of the erase pulse EPLS is set to four periods of the shift clock SCLK.
  • FIG. 10 is a timing chart of the erase operation when the erase pulse width and the erase pulse shift amount are made equal in the erase block EBLK0 having the circuit configuration of FIG.
  • FIG. 11 is a timing chart of the erase operation when the erase pulse width is longer than the erase pulse shift amount in the erase block EBLK0 having the circuit configuration of FIG.
  • FIG. 12 is a flowchart showing an example of an erasing flow.
  • FIG. 13 is a block diagram showing the overall configuration of a microcomputer with on-chip flash memory.
  • FIG. 2 illustrates a vertical cross-sectional structure of a split gate nonvolatile memory cell.
  • the nonvolatile memory cell 1 has a channel formation region 2 in a p-type well region 16 provided on a silicon substrate, and a pair of source and drain regions 3 and 4 are formed with the channel formation region 2 interposed therebetween.
  • source 3 is referred to as source 3 and the other as drain 4.
  • the source / drain regions 3 and 4 are constituted by n-type diffusion layers (n-type impurity regions).
  • a charge storage region (for example, a silicon nitride film) 6, an insulating film 7 and a memory gate (for example, an n-type polysilicon layer) 8 are arranged on the channel forming region 2 via a gate oxide film 5 near the source 3. Is done.
  • a selection gate (for example, an n-type polysilicon layer) 10 is formed on the channel formation region 2 near the drain 4 via a gate oxide film 9.
  • the charge storage region 6, the memory gate 8 and the selection gate 10 are insulated from each other by an insulating film 11.
  • the vicinity of the channel formation region 2 near the source 3, the charge storage region 6 and the memory gate 8 is referred to as a memory transistor portion, and the vicinity of the channel formation region 2 near the drain 4 and the selection gate 10 is referred to as a selection transistor portion.
  • the thickness of the insulating film 11 (referred to as the memory gate insulating layer) is tm
  • the thickness of the gate insulating film 9 of the selection gate 10 is tc
  • the thickness of the insulating film 11 between the selection gate 10 and the memory gate 8 is ti.
  • the relationship tc ⁇ tm ⁇ ti is realized. Due to the difference in film thickness (layer thickness), the gate withstand voltage of the select transistor portion is made lower than the gate withstand voltage of the memory transistor portion.
  • drain 4 assigned for convenience in the source / drain region means that it functions as the drain electrode of the MOS transistor in the data read operation
  • source 3 means that it functions as the source electrode of the MOS transistor in the data read operation. To do. In the erase / write operation, drain 4 and source 3 do not always function exactly as they are named, and vice versa.
  • the threshold voltage of the nonvolatile memory cell is increased by injection of electrons into the charge storage region 6 (for example, referred to as writing), and threshold voltage is increased by injection of hot holes into the charge storage region 6 (for example, referred to as erasing). Is lowered.
  • the memory gate 8 voltage (Vmg) is 8V
  • the source 3 voltage (Vs) is 5V
  • the selection gate 10 The voltage (Vcg) of the memory cell is 1.8 V
  • the voltage (Vd) of the drain 4 of the write selected memory cell is OV (the ground potential of the circuit)
  • the voltage (Vd) of the drain 4 of the memory cell not selected is 1.8 V
  • a current flows from the source 3 to the drain 4, and a high electric field is formed in a portion of the channel region 2 immediately below the insulating layer 11. Hot electrons generated thereby are injected into the charge storage region 6.
  • Vmg —5V
  • Vs 5V
  • the substrate is set to OV
  • an end force of the source 3 and a high electric field is formed on the memory gate 8
  • the source Current is passed from 3 to the substrate.
  • an ionizing collision occurs near the end of the source 3 to generate electron and hole pairs.
  • holes with sufficient energy to exceed the potential barrier of the gate oxide film 5 become hot holes and are injected into the charge storage region 6.
  • hot holes When hot holes are injected into the charge storage region 6, they act in the direction of neutralizing the electrons that have already been injected therein, and this causes the threshold voltage of the nonvolatile memory cell 1 to decrease and change in the direction. It is.
  • 12-14 are equipotential lines near the source at the time of erasing.
  • the equipotential line 12 is, for example, 3V
  • the equipotential line 13 is, for example, IV
  • the equipotential line 14 is, for example, OV.
  • the state shown in FIG. 2 is a state in which a large amount of electrons are accumulated in the charge accumulation region 6 and is a state immediately after the start of the erasing operation.
  • the electrons Since the electrons are captured, it acts to strengthen the electric field between the source end portion 15 and the potential of the portion 15 is lowered, so that the equipotential lines become dense, in other words, the voltage of the portion 15
  • the slope of the descent is relatively large, as indicated by the large arrow, from the source 3 to the p-type wel region 16.
  • FIG. 3 shows that erasing has progressed from a state where the threshold voltage of the nonvolatile memory cell 1 has decreased to some extent (that is, a state in which the number of trapped electrons in the charge storage region 6 has decreased to some extent). Indicates when to do.
  • the influence of the electrons accumulated in the charge accumulation region 6 is small, and the potential of the substrate immediately below the charge accumulation region 6 is higher than that in FIG. Therefore, close to the source end 15 In the vicinity, the interval between equipotential lines 12-14 is wider than in Fig. 2.
  • the slope of the voltage drop becomes small, and the current flowing from the source 3 to the p-type well region 16 is less than J / J from FIG.
  • FIG. 4 shows the relationship between time and erase current when hot holes are gradually injected into the nonvolatile memory cell 1 in which many electrons are injected as shown in FIG. Indicates.
  • the peak current is large.
  • the erasing current gradually decreases.
  • FIG. 5 shows the case where erasing has progressed and the threshold voltage of the nonvolatile memory cell 1 is low to some extent, and erasing is started from the state (that is, the state where the electrons accumulated in the charge storage region 6 are few).
  • the relationship between time and erase current is shown. Since the effect of electrons stored in the charge storage region 6 is small, the peak current is smaller than in FIG. As the erasure progresses over time, the erase current gradually decreases as in Fig. 4.
  • FIG. 1 illustrates the configuration of the flash memory.
  • the flash memory 20 has a memory array (ARY) 21 in which a plurality of nonvolatile memory cells 1 of FIG. Figure 2 shows two representatives. Multiple non-volatile memory cells 1 arranged in a matrix have selection gate 10 connected to selection gate line CG, memory gate 8 connected to memory gate line MG, source 3 connected to source line SL, and drain 4 connected to bit line BL. Is done.
  • the X address decoder (XDEC) 22 decodes the X address signal input to the address buffer (ADB) 23.
  • the selection gate driver circuit (CGDRV) 24 selectively drives the selection gate line CG according to the decoding result.
  • the nonvolatile memory cell 1 is selected by selective driving with respect to the selection gate line CG.
  • a write / erase decoder (PEDEC) 25 selects a memory gate line MG and a source line SL in writing and erasing. For the selection during the write operation, the decoding result by the X address decoder 22 is used via the selection gate line CG. The selection at the time of erase operation is performed based on the instruction information of the erase block to be erased.
  • the driver circuit (PEDRV) 27 drives the memory gate line MG and the source line SL based on the selection signal output from the write / erase decoder 25.
  • a sense latch (SL) and a data register circuit (DREG) 30 are connected to the bit line BL.
  • the sense latch (SL) detects and holds the storage information read from the nonvolatile memory cell 1 to the bit line BL.
  • Data register (DREG) is externally supplied write data Is used for holding memory cell memory information to be saved before erasing and erasing, and the held data is used for controlling the bit line BL level in the write operation.
  • the sense latch and data register circuit 30 is connected to a data input / output buffer (DTB) 32 via a Y selection circuit (YG) 31, and can interface with a data bus 33D included in an external bus 33.
  • the Y selection circuit 31 selects the read data latched in the sense latch (SL) according to the address decode signal output from the Y address decoder (YDEC) 34.
  • the selected read data can be output to the outside via the data input / output buffer 32.
  • the Y address decoder 34 controls which bit line BL the write data supplied from the data input / output buffer 32 is to be latched in the data register (DREG).
  • the address signal is supplied from the address bus 33 A of the external bus to the address buffer 23, and is supplied from the address buffer 23 to the X address decoder 22 and the Y address decoder 34.
  • the booster circuit (VPG) 35 generates the high voltages VPP1, VPP2,..., VPPi such as 5V, ⁇ 5V, 8V, etc. necessary for reading, erasing and writing based on the external power sources Vdd and Vss.
  • a control circuit (CONT) 36 performs a control sequence of a read operation, an erase operation, a write operation, and a switching control of an operation power source according to control information set in a control register (CREG) 37.
  • the operation power supply switching control is control that appropriately switches the operation power supply of the driver circuits 24 and 27 according to the operation mode in accordance with the read operation, the erase operation, and the write operation.
  • FIG. 6 shows a detailed example of the memory array and the write / erase decoder.
  • the memory array includes a plurality of nonvolatile memory cells MMOO-MMxy arranged in a matrix.
  • Nonvolatile memory cell MMOO—MMxy has the same device structure as the nonvolatile memory cell 1 described above.
  • Non-volatile memory cell MMOO— MMxy selection gate 1 0 is connected to the corresponding selection gate line CGO—CGy in row units
  • nonvolatile memory cell M MOO—MMxy source 3 is the source line corresponding to row units SLO—SLy
  • the drain 4 of the nonvolatile memory cell MMOO—MMxy is connected to the corresponding bit line BLO—B Lx in a column unit.
  • Non-volatile memory cell MMOO For MMxy, erasing with non-volatile memory cells of 4 sectors as the erasing unit A block and an erase block having a non-volatile memory cell for one sector as an erasing unit are allocated, and the memory gate 8 of the non-volatile memory cell is commonly connected to the memory gate line MG in an erasing block unit.
  • the erase block EBLKO for four sectors, which is representatively shown in FIG. 6, is commonly connected to the memory gate line MGO, and the erase block EBLKm for one sector is commonly connected to the memory gate line MGm.
  • the driver circuit (PEDRV) 27 has an output inverter 40 and a level conversion circuit (LVSFT) 41 corresponding to each source line SLO—SLy and memory gate line MGO—MGm.
  • the output power of the output inverter 40 is switched according to the operation mode of erasing, writing, and reading.
  • the level conversion circuit (LVSFT) 41 converts the input signal having the preceding stage power into a signal level corresponding to the operating power supply of the output inverter 40.
  • the driver circuit (PEDRV) 27 uses a high voltage MOS transistor in relation to its operating power supply.
  • the write / erase decoder (PEDEC) 25 includes an output inverter 42 whose output is coupled to the level conversion circuit 41, a selector 46 that also includes three NAND gates (NAND) 43-45, and a selection timing control circuit. (TCNT) 47 and decode logic (DECLCG) 48.
  • mgselO—mgselm is a selection signal for the memory gate line MGO—MGm, and the corresponding one is set to the selection level based on the selection signal transmitted via the selection gate line CGO—CGy.
  • prog is the instruction signal for the write operation
  • slselO— slsely is the source line SL0—SLy selection signal for the write operation.
  • the corresponding source line is set to the selection level based on the selection signal transmitted through the selection gate lines CG0-CGy, and the write operation can be performed on a sector basis.
  • Erase is an erase operation instruction signal
  • EraseblockO—eraseblockm is a selection signal for the erase block EBL K0—EBLKm.
  • Erase block selection signal eraseblockO—erasebloc km is set to the selection level according to the erase block designation information supplied from CREG37 to DECLCG48.
  • the memory gate control line selection signal mgselO is set to high level (H)
  • the memory gate line MG0 is set to -5V
  • the erase block selection signal eraseblockO is set to high level (H)
  • the erase operation instruction signal When erase is at high level (H), the source line selection signal in the erase block
  • the memory gate line MG0 of the memory array 21 is set to ⁇ 5V and the source line SLO is set to 5V as illustrated in FIG.
  • Memory cell MMOO—Erasing pulse is applied to MMxO.
  • the sector to which the erase pulse is applied is sequentially switched to SCT0, SCT1, SCT2, and SCT3 as the selection signal power s countO, count 1, count2, and count3 are sequentially activated. In this way, it is possible to apply the high voltage noise for hot hole injection by shifting the timing in units of sectors in the erase block.
  • FIG. 7 shows a specific example of the selection timing control circuit (TCNT) 47.
  • the selection timing control circuit 47 includes a counter circuit (COUNT) 50 that forms the selection signal countO-count3, and a counter control circuit (CUCNT) 51 that controls change timings of the plurality of selection signals countO-count3.
  • the counter circuit 50 includes a plurality of storage stages, for example, D-type flip-flops (FF) 50A and 50D, which perform a shift operation in synchronization with the change of the shift clock SCLK, and outputs the plurality of flip-flops 50A-50D. Is the plurality of selection signals countO-count3.
  • FF D-type flip-flops
  • the counter control circuit 51 is output from an oscillator (OSC) 52, a frequency divider (DIV) 53 that divides the output of the oscillator 52 to form a plurality of frequency-divided clock signals, and a frequency divider circuit.
  • OSC oscillator
  • DIV frequency divider
  • An erase pulse width selector (EPWS) 55 that selects one of a plurality of divided clock signals by an erase pulse width selector signal 54 and a divided clock signal selected by the erase pulse width selector 55 Erase one of the pulse generator circuit (PGEN) 56 for generating the erase pulse EPLS supplied to the first stage flip-flop 50A of the counter circuit 50 and the plurality of divided clock signals output from the divider circuit 53 It comprises an erase pulse shift amount selector (EPSS) 58 that is selected by a pulse shift amount selector signal 57 and selects the period of the shift clock SCLK.
  • EPWS erase pulse width selector
  • FIGS. 8 and 9 illustrate waveforms of the selection signal countO-count3 formed according to the period of the shift clock SCLK and the pulse width of the erase pulse EPLS.
  • the erase pulse shift amount SFT is one cycle of the shift clock SCLK.
  • the shift clock cycle can be changed.
  • the pulse width PW1 of the erase pulse EPLS is one period of the shift clock SCLK.
  • the selection signal countO One count3 is sequentially pulse-changed with non-overlap.
  • the pulse width PW2 of the erase pulse EPL S is four periods of the shift clock SCLK.
  • the selection signal count0-count3 is sequentially pulse-changed by four periods of the shift clock SCLK with an overlap shifted by one period of the shift clock SCLK.
  • the selection signal countO and count3 are set to non-overlap or overlap.
  • the overlap amount can be variably selected.
  • FIGS. 10 and 11 show timing charts of the erase operation in the erase block EBLK0 having the circuit configuration of FIG.
  • OV is applied to the selection gate lines CG0, CG1, CG2, CG3, and bit lines BL0, Set BLx to open, for example.
  • the erase signal erase is set to high level (H)
  • the selection signal eraseblockO is set to high level (H) to select the erase block EBLK0.
  • the selection signal mgselO is set to high level (H), and 5 V, for example, is applied to the memory gate line MG0.
  • the signal countO is set to high level (H) and 5V is applied to the source line SL0 to erase the nonvolatile memory cell in the erase sector SCT0.
  • the signal countO is set to the low level (and the voltage of the source line SL0 is set to 0V.
  • the signal countl is set to the noise level (H), for example, 5V is applied to the source line SL1, and the non-volatile memory of the erase sector SCT1 Erasing the cells, similarly, changing the pulses of the signals count2 and count3, and sequentially erasing the non-volatile memory cells in the erase sector SCT2 and erase sector SCT3, the time of the signal countO-count3's noise level (H) period
  • H noise level
  • the erase pulse width, the time difference between the rise of the signal counti and the rise of the next signal counti + 1 signal for example, the time difference between the rise time of countO and the rise time of counti is defined as the erase pulse shift amount.
  • the sum of the erase currents flowing through SL1, SL2, SL 3, and Sly is defined as the total source current.
  • FIG. 10 shows a timing chart when the erase pulse width is equal to the erase pulse shift amount.
  • FIG. 11 shows a timing chart in the case where the erase pulse width is longer than the erase nors shift amount.
  • the peak current of the total source current becomes the largest during the period when all the source lines SLO, SL1, SL2, and SL3 are selected.
  • the selection period of the source lines SLO, SL1, SL2, and SL3 is overlapped, the erase time can be shortened.
  • the force in which the ratio between the erase pulse width and the erase pulse shift amount is 4: 1 is not limited to this.
  • FIG. 12 shows an example of the erasing flow.
  • the first erase is performed using the timing chart of FIG. 10, that is, the erase pulse width and erase pulse shift amount are set equal (SI, S2).
  • SI, S2 erase pulse width and erase pulse shift amount are set equal
  • S3 it is verified whether all the areas to be erased have been erased. If the erasure has not been completed, the second erasure is performed according to the timing chart of FIG. 11, that is, the erase pulse width is set longer than the erase pulse shift amount (S4, S5).
  • the power that erased all the areas to be erased is verified (S6).
  • the third and subsequent times are the same as the second time.
  • the number of electrons held in the charge storage region 6 is decreasing as shown in FIG. Therefore, since the current flowing from the source 3 to the substrate 16 is small, the peak current of the total source current can be suppressed even when the timing chart of FIG. 11 is applied. Furthermore, since the source line selection timing (erase pulse application timing) is overlapped, the erase time can be shortened.
  • FIG. 13 shows the overall configuration of a microcomputer on-chip of the flash memory 20.
  • the microcomputer 60 is not particularly limited, but is made of single crystal silicon. It is formed on such a single semiconductor substrate (semiconductor chip) by CMOS integrated circuit manufacturing technology.
  • the microcomputer 60 includes a central processing unit (CPU) 61, a RAM 62 as a volatile memory, a flash memory (FLASH) 20 as a non-volatile memory, a nos state controller (BSC) 63, and an input / output port circuit.
  • An input / output circuit (IZO) 64 is provided, and these circuit modules are connected to an internal bus 66.
  • the internal bus 66 includes address, data, and control signal lines.
  • the CPU 61 includes an instruction control unit and an execution unit, decodes the footed instruction, and performs arithmetic processing according to the decoding result.
  • the flash memory 20 stores the CPU 61 operation program and data.
  • the RAM 62 is used as a work area or a data storage area for the CPU 61.
  • the operation of the flash memory 20 is controlled based on the control data set in the control register 37 by the CPU 61.
  • the bus state controller 63 controls access via the internal bus 66, the number of access cycles for external node access, wait state insertion, bus width, and the like.
  • a circuit other than the region 69 surrounded by a two-dot chain line means a circuit portion constituted by a MOS transistor having a relatively thin gate oxide film.
  • the circuit in region 69 is a circuit portion constituted by a high-voltage MOS transistor having a comparatively thick gate oxide film.
  • the area where PEDRV27 etc. is formed is the high voltage MOS transistor circuit part
  • the area where CGDRV24 etc. is formed is the MOS transistor circuit part where the gate oxide film is thin It is said.
  • the erase panoramic shift amount is set to one cycle of the shift clock SCLK, but is not limited to one cycle.
  • the erase panorace width and the erase panorace shift amount are set equal only for the first erase, but such setting is not limited to the first. Erasing is performed several times with the erase pulse width and erase norse shift amount set equal to each other. The remaining pulse width may be set longer than the erase pulse shift amount. Further, the erase pulse width, erase pulse shift amount, memory gate voltage, and source voltage may be arbitrarily changed according to the number of times of erasure.
  • the nonvolatile memory cell is not limited to the split gate structure.
  • the charge storage region is not limited to an insulating trap region such as silicon nitride, but may be a floating nonvolatile memory cell having a conductive charge storage region such as polysilicon. .
  • the present invention can be widely applied to a flash memory and a microcomputer equipped with the flash memory.

Abstract

A non-volatile semiconductor memory (20) includes a plurality of non-volatile memory cells (1) having a threshold voltage which is increased by electron injection into a charge accumulation region and lowered by hot hole injection into the charge accumulation region. The non-volatile semiconductor memory (20) further includes control circuits (25, 36) capable of repeating the process for applying high voltage pulses for hot hole injection to a plurality of non-volatile memory cells selected as hot hole injection objects while shifting the timing by some of the cells until a desired threshold voltage is obtained. The control circuit can select non-overlap or partial overlap of the high voltage pulses for which the timing is shifted. If the non-overlap is selected firstly, it is possible to minimize the peak value of the current consumption accompanying the application of the high voltage pulse. When overlap mode is selected later, the peak value of the current consumption is not increased so much but it is possible to reduce the entire processing time required for lowering the threshold voltage.

Description

明 細 書  Specification
不揮発性半導体メモリ及び半導体装置  Nonvolatile semiconductor memory and semiconductor device
技術分野  Technical field
[0001] 本発明は不揮発性メモリセルの閾値電圧を低くするのに電荷蓄積領域にホットホー ルを注入する方法を採用した不揮発性半導体メモリ及びそれを搭載した半導体装置 に関し、例えばフラッシュメモリに適用して有効な技術に関する。  The present invention relates to a nonvolatile semiconductor memory that employs a method of injecting hot holes into a charge storage region to lower the threshold voltage of a nonvolatile memory cell, and a semiconductor device equipped with the nonvolatile semiconductor memory, and is applied to, for example, a flash memory. Related to effective technology.
背景技術  Background art
[0002] 不揮発性メモリセルの電荷蓄積領域に対する電子の注入 (例えば書き込みと称す る)と放出もしくは中和(例えば消去と称する)を行う手法として、ゲート電極の下全面 でトンネル電流を用いて電子の出し入れを行う F— Nトンネル電流による方法と、ホット キャリアによる方法がある。前者は書込動作及び消去の動作電圧を高くすることが必 要であるが、動作電流を少なくすることが出来ることから、書込動作又は消去動作の 対象となるメモリセルの数が多 、不揮発性メモリに用いられることが多 、。また後者は 書き込み及び消去の動作電圧を低くすることができ、且つその動作を高速に行うこと ができることから、書込動作又は消去動作の対象となるメモリセルが比較的少なぐ高 速動作が必要な不揮発性メモリに用いられることが多!、。  [0002] As a technique for injecting (for example, writing) and discharging or neutralizing (for example, erasing) electrons into a charge storage region of a non-volatile memory cell, electrons are generated using a tunnel current all over the gate electrode. There are a method using F—N tunnel current and a method using hot carriers. In the former, it is necessary to increase the operation voltage for the write operation and the erase operation. However, since the operation current can be reduced, the number of memory cells to be subjected to the write operation or the erase operation is large. Often used for sex memory. In the latter case, the write and erase operation voltages can be lowered and the operation can be performed at a high speed. Therefore, a high-speed operation requiring relatively few memory cells for the write or erase operation is required. Often used in non-volatile memory!
[0003] 例えばチャンネル形成領域の上に相互に絶縁されたナイトライド膜とメモリゲートが 形成された MONOS (Metal Oxide Nitride Oxide Semiconductor)型の不揮発性メモ リセルにおいて、ホットキャリア方式による消去では、一方のソース'ドレイン電極端か らメモリゲートに向力 高電界を形成して、前記一方のソース ·ドレイン電極力も基板 に電流を流す。これによつて、前記一方のソース'ドレイン電極端近傍で電離性衝突 が起こり、電子、正孔対が発生する。発生した正孔のうちゲート酸ィ匕膜のポテンシャ ル障壁を越えるだけの十分なエネルギーを持った正孔がホットホールとなり、ナイトラ イド膜に注入される。ホットホールはナイトライド膜に注入されると、そこに既に注入さ れて 、る電子を中和する方向に作用し、これによつてメモリセルの閾値電圧が低!、方 向に変化される。このホットホール注入による消去では一方にソース'ドレイン領域か らチャンネル形成領域に電流を流さなければならな ヽ。消去の単位とされる不揮発 性メモリセルの数が増えれば全体として大きな電流をながさなければならず、電流容 量の大きな電源回路若しくは昇圧回路が必要になる。 [0003] For example, in a MONOS (Metal Oxide Nitride Oxide Semiconductor) type nonvolatile memory cell in which a nitride film and a memory gate insulated from each other are formed on a channel formation region, one of the erasures using the hot carrier method is A high electric field is generated from the source / drain electrode end to the memory gate, and the one source / drain electrode force also causes a current to flow through the substrate. As a result, an ionizing collision occurs in the vicinity of the one end of the source and drain electrodes, and electron and hole pairs are generated. Of the generated holes, holes with sufficient energy to exceed the potential barrier of the gate oxide film become hot holes and are injected into the nitride film. When hot holes are injected into the nitride film, they are already injected there and act to neutralize the electrons, thereby lowering the threshold voltage of the memory cell and changing it in the direction. . In this erase by hot hole injection, on the one hand, a current must flow from the source / drain region to the channel formation region. Nonvolatile as a unit of erasure If the number of memory cells increases, a large current must be drawn as a whole, and a power supply circuit or a booster circuit having a large current capacity is required.
[0004] 特許文献 1では消費電流のピーク値を低減するために書込対象のメモリセル毎に 書き込みタイミングをずらすようにした一般的な技術が記載される。また特許文献 2で はメモリセルの消去動作にホットホール注入を行う技術が記載される。  [0004] Patent Document 1 describes a general technique in which the write timing is shifted for each memory cell to be written in order to reduce the peak value of current consumption. Patent Document 2 describes a technique for injecting hot holes in an erase operation of a memory cell.
[0005] 特許文献 1:特開 2002-109894号公報  [0005] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-109894
特許文献 2 :国際公開第 02Z19342号パンフレット  Patent Document 2: Pamphlet of International Publication No. 02Z19342
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明者は、特許文献 1に記載された不揮発性半導体メモリについて検討した。特 許文献 1に記載された不揮発性メモリは 1の書込動作の対象がワード線単位であり、 1の消去動作の対象が複数のワード線を含むブロック単位であることから、書込動作 時に書込対象となるメモリセルの数と、消去動作時に消去対象となるメモリセルの数と では、消去対象となるメモリセルの方が多いと考えることができる。消去動作をホットホ ール注入により行うとした場合にメモリセルのチャネル形成領域に流す電流と、書込 動作にお 、てホットエレクトロン注入を行うためにメモリセルのチャネル形成領域に流 す電流とを比較した場合、消去動作において必要とされる電流量は、書込動作にお いて必要とされる電流量よりも多くなることが明ら力となった。  [0006] The inventor studied the nonvolatile semiconductor memory described in Patent Document 1. In the nonvolatile memory described in Patent Document 1, one write operation target is a word line unit, and one erase operation target is a block unit including a plurality of word lines. In terms of the number of memory cells to be written and the number of memory cells to be erased during the erase operation, it can be considered that there are more memory cells to be erased. When the erase operation is performed by hot hole injection, the current that flows in the channel formation region of the memory cell and the current that flows in the channel formation region of the memory cell to perform hot electron injection in the write operation In comparison, it has become clear that the amount of current required for the erase operation is greater than the amount of current required for the write operation.
[0007] その一方で、特許文献 2に記載された不揮発性メモリは、消去動作時において消 去対象となるメモリセルの多少に応じて、ゥエル領域に印可する電圧の昇圧速度の 変化を一定ィ匕することについて検討している力 消去対象のメモリセルのチャネル形 成領域に流れる電流量につ 、ては検討して 、な 、ことが明ら力となった。  [0007] On the other hand, the nonvolatile memory described in Patent Document 2 has a constant voltage boost rate change applied to the well region depending on the number of memory cells to be erased during the erase operation. The power that is being considered for devising It has become clear that the amount of current flowing in the channel formation region of the memory cell to be erased has been studied.
[0008] 以上の検討を基に、本発明者は外部力 指定可能な消去単位であるブロックを更 に分割し、 1ワード線に接続されるメモリセルを単位としたセクタ単位で消去を行うこと によって最大消去電流を削減する方式について検討した。要するに、前記一方のソ ース 'ドレイン領域に印加する高電圧の消去パルスをセクタ単位でずらしていく。しか しながら、消去パルスの印加をずらす分だけ消去処理時間が長くなるという問題点の あることが本発明者によって明らかにされた。 [0009] 本発明の目的は、不揮発性メモリセルに高電圧パルスの印加タイミングをずらして ホットホールの注入を行っても全体としての処理時間の増大を極力抑えることができ る不揮発性半導体メモリを提供することにある。 [0008] Based on the above examination, the present inventor further divides a block, which is an erasing unit that can be specified by an external force, and performs erasing in units of sectors in units of memory cells connected to one word line. We studied a method to reduce the maximum erase current. In short, the high-voltage erase pulse applied to the one source / drain region is shifted sector by sector. However, the present inventor has revealed that there is a problem that the erase processing time becomes longer by the amount of application of the erase pulse. [0009] An object of the present invention is to provide a nonvolatile semiconductor memory capable of suppressing an increase in the overall processing time as much as possible even when hot hole injection is performed by shifting the application timing of a high voltage pulse to a nonvolatile memory cell. It is to provide.
[0010] 本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面 力 明らかになるであろう。  [0010] The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
課題を解決するための手段  Means for solving the problem
[0011] 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記 の通りである。  [0011] The outline of typical ones of the inventions disclosed in the present application will be briefly described as follows.
[0012] 〔1〕本発明に係る代表的な一つの不揮発性半導体メモリは、電荷蓄積領域に対す る電子の注入によって閾値電圧が高くされ、前記電荷蓄積領域に対するホットホー ルの注入によって閾値電圧が低くされる不揮発性メモリセル(1)を複数個備え、前記 ホットホールの注入対象として選択された複数の不揮発性メモリセルに対してその一 部ずつタイミングをずらしてホットホール注入用の高電圧パルスを印加する処理を所 望の閾値電圧になるまで複数回に分けて繰り返すことが可能な制御回路(25, 36) を有し、前記制御回路は、前記タイミングをずらした複数の高電圧パルスをノンォー バーラップとするか又は部分的にオーバーラップとするかの選択が可能である。  [1] In a typical nonvolatile semiconductor memory according to the present invention, the threshold voltage is increased by injection of electrons into the charge storage region, and the threshold voltage is increased by injection of hot holes into the charge storage region. A plurality of non-volatile memory cells (1) to be lowered are provided, and a plurality of non-volatile memory cells selected as hot hole injection targets are shifted in timing one by one to generate a high voltage pulse for hot hole injection. A control circuit (25, 36) capable of repeating the process to be applied in a plurality of times until a desired threshold voltage is reached, and the control circuit performs non-high-speed application of a plurality of high-voltage pulses shifted in timing; A choice between burlap or partial overlap is possible.
[0013] 複数の高電圧パルスをノンオーバーラップとすれば高電圧パルスの印加に伴う消 費電流のピーク値を最小にすることができ、複数の高電圧パルスをオーバーラップと すればそのオーバーラップの度合!/、が増えるに従って消費電流のピーク値が増える と共に閾値電圧を低くするための全体的な処理時間が短縮される。  [0013] If a plurality of high voltage pulses are non-overlapping, the peak value of the consumption current accompanying the application of the high voltage pulse can be minimized, and if a plurality of high voltage pulses are overlapped, the overlap is achieved. As the degree of! Increases, the peak value of the current consumption increases and the overall processing time for lowering the threshold voltage is shortened.
[0014] 不揮発性メモリセルの一方のソース ·ドレイン端に流れる電流がホットホールの発生 に寄与する力 その電流は電荷蓄積領域にホットホールが注入されるに従って小さく なる。この性質に着目すると、ホットホール注入用の高電圧パルスを印加する処理を 所望の閾値電圧になるまで複数回に分けて繰り返す場合、最初に比べて後の方が 一方のソース'ドレイン端に流れる電流が小さくなる。従って、最初は一方のソース'ド レイン端に大きな電流が流れるから高電圧パルスをノンオーバーラップとするのが電 流ピークの抑制に好都合である。後の方では一方のソース ·ドレイン端に流れる電流 力 S小さくなつているので、高電圧パルスを部分的にオーバーラップとした方が処理時 間の短縮に好都合であり、そうしたからといって電流ピークが過大になることもない。 [0014] The force that the current flowing through one source / drain end of the nonvolatile memory cell contributes to the generation of hot holes. The current decreases as hot holes are injected into the charge storage region. Focusing on this property, when the process of applying a high voltage pulse for hot hole injection is repeated several times until the desired threshold voltage is reached, the latter flows to one source 'drain end compared to the first The current becomes smaller. Therefore, since a large current flows at the end of one source 'drain at first, it is convenient to suppress the current peak by making the high voltage pulse non-overlapping. In the latter case, the current force S flowing through one of the source and drain ends is decreasing, so it is better to partially overlap the high voltage pulse during processing. It is convenient for shortening the interval, and it does not cause the current peak to be excessive.
[0015] 上記より、不揮発性メモリセルに高電圧パルスの印加タイミングをずらしてホットホー ルの注入を行っても全体としての処理時間の増大を極力抑えることが可能になる。  [0015] From the above, even if hot hole injection is performed by shifting the application timing of the high voltage pulse to the nonvolatile memory cell, it is possible to suppress the increase in the overall processing time as much as possible.
[0016] 本発明の具体的な一つの形態として、前記制御回路は、前記高電圧パルスの部分 的なオーバーラップの度合を選択可能である。一方のソース ·ドレイン端にながれる 電流が小さくなる前記後の方の高電圧パルス印加処理では、最初のほうよりもパルス 印加時間を長くした方が望ましい場合もあり、そのような要望に対応可能になる。  [0016] As a specific form of the present invention, the control circuit can select a degree of partial overlap of the high voltage pulse. In the latter high-voltage pulse application process, the current flowing to one of the source and drain ends becomes smaller. In some cases, it may be desirable to set the pulse application time longer than the first. Become.
[0017] 本発明の具体的な別の一つの形態として、前記制御回路は、複数回に分けて繰り 返される最初の方のホットホール注入ではタイミングをずらした高電圧パルスの印加 をノンオーバーラップとし、複数回に分けて繰り返される後の方のホットホール注入で はタイミングをずらした高電圧パルスの印加を部分的にオーバーラップとする。上記 性質に着目した制御手法を制御回路に採用する場合に好適である。  [0017] As another specific form of the present invention, the control circuit performs non-overlapping application of a high-voltage pulse that is shifted in timing in the first hot hole injection that is repeated in a plurality of times. In the later hot hole injection, which is repeated several times, the application of high voltage pulses with different timings is partially overlapped. This method is suitable when a control method that focuses on the above properties is adopted in the control circuit.
[0018] 本発明の具体的な別の一つの形態として、前記制御回路は、不揮発性メモリセル の閾値電圧を低くするとき、不揮発性メモリセルのチャネル領域カゝら蓄積領域に向か う電界を形成した状態で、一方のソース ·ドレイン電極 (3)端で発生するホットホール を蓄積領域 (6)に注入する。  [0018] As another specific form of the present invention, when the control circuit reduces the threshold voltage of the nonvolatile memory cell, the electric field directed from the channel region to the storage region of the nonvolatile memory cell. Then, hot holes generated at the end of one source / drain electrode (3) are injected into the storage region (6).
[0019] 〔2〕本発明に係る代表的な一つの半導体装置 (60)は、不揮発性半導体メモリ (20) を有し、前記不揮発性半導体メモリは、ソース'ドレイン領域 (3, 4)に挟まれたチヤネ ル形成領域 (2)の上に夫々絶縁された電荷蓄積領域 (6)及びメモリゲート領域 (8) を有する不揮発性メモリセル(1)のアレイ (21)と、前記不揮発性メモリセルの一方のソ ース'ドレイン領域 (3)が結合された第 1配線 (SL)と、前記不揮発性メモリセルの他方 のソース'ドレイン領域 (4)が結合された第 2配線 (BL)と、前記不揮発性メモリセルの メモリゲート領域が結合された第 3配線 (MG)と、前記不揮発性メモリセルの電荷蓄積 領域に電子を注入して閾値電圧を高くする制御を行うと共に、前記電荷蓄積領域に ホットホールを注入して閾値電圧を低くする制御を行う制御回路 (25, 36)と、を備え、 前記制御回路は、前記ホットホールの注入対象として選択された複数の不揮発性メ モリセルに対してその一部ずつタイミングをずらしてホットホール注入用の高電圧パ ルスを印加する処理を所望の閾値電圧になるまで複数回に分けて繰り返すことが可 能であって、前記タイミングをずらした複数の高電圧パルスをノンオーバーラップとす るか又は部分的にオーバーラップとするかの選択が可能である。 [2] A typical semiconductor device (60) according to the present invention includes a nonvolatile semiconductor memory (20), and the nonvolatile semiconductor memory is provided in the source and drain regions (3, 4). An array (21) of nonvolatile memory cells (1) having a charge storage region (6) and a memory gate region (8), which are insulated on the sandwiched channel forming region (2), respectively, and the nonvolatile memory A first wiring (SL) to which one source / drain region (3) of the cell is coupled and a second wiring (BL) to which the other source / drain region (4) of the nonvolatile memory cell is coupled. And a third wiring (MG) to which the memory gate region of the nonvolatile memory cell is coupled, and a control for increasing the threshold voltage by injecting electrons into the charge storage region of the nonvolatile memory cell, and the charge A control circuit (25, 36) that controls the threshold voltage to be lowered by injecting hot holes into the storage region; The control circuit preferably performs a process of applying a high voltage pulse for hot hole injection to a plurality of nonvolatile memory cells selected as hot hole injection targets while shifting the timing thereof part by part. Can be repeated multiple times until the threshold voltage is reached It is possible to select whether a plurality of high voltage pulses with different timings are non-overlapping or partially overlapping.
[0020] 前記同様に、前記制御回路には、前記高電圧パルスの部分的なオーバーラップの 度合を選択可能な構成を採用するのがよい。また、前記制御回路には、複数回に分 けて繰り返される最初の方のホットホール注入ではタイミングをずらした高電圧パルス の印加をノンオーバーラップとし、複数回に分けて繰り返される後の方のホットホール 注入ではタイミングをずらした高電圧パルスの印加を部分的にオーバーラップとする 構成を採用するのがよい。  [0020] In the same manner as described above, it is preferable that the control circuit has a configuration capable of selecting the degree of partial overlap of the high voltage pulse. In the control circuit, in the first hot hole injection that is repeated in a plurality of times, the application of a high voltage pulse with a shifted timing is made non-overlapping, and the latter one that is repeated in a plurality of times is repeated. In hot hole injection, it is recommended to adopt a configuration in which the application of high-voltage pulses with different timing is partially overlapped.
[0021] 本発明の具体的な一つの形態として、前記制御回路は、不揮発性メモリセルの閾 値電圧を低くするとき、不揮発性メモリセルのチャネル領域から蓄積領域に向力ゝぅ電 界を形成した状態で、一方のソース ·ドレイン電極端で発生するホットホールを蓄積 領域に注入する。  [0021] As one specific form of the present invention, when the threshold voltage of the non-volatile memory cell is lowered, the control circuit generates a force field from the channel region of the non-volatile memory cell to the storage region. In the formed state, hot holes generated at one end of the source / drain electrodes are injected into the storage region.
[0022] このとき、前記アレイには複数の不揮発性メモリセルがマトリクス配置され、マトリクス 配置された複数の不揮発性メモリセルは、行単位で第 1の配線 (SL)を共有し、列単 位で第 2の配線 (BL)を共有し、複数行単位で第 3の配線 (MG)を共有し、前記制御 回路には、選択した第 3の配線に第 1の高電圧パルス (-5V)を印加し、前記選択し た第 3の配線を共有する複数の不揮発性メモリセルに接続された第 1の配線に第 1の 配線相互間でタイミングをずらして第 2の高電圧パルス (5V)を印加する構成を採用 すればよい。  [0022] At this time, a plurality of nonvolatile memory cells are arranged in a matrix in the array, and the plurality of nonvolatile memory cells arranged in a matrix share the first wiring (SL) in units of rows and are arranged in column units. Share the second wiring (BL) and the third wiring (MG) in units of multiple rows, and the control circuit includes a first high voltage pulse (-5V) on the selected third wiring. Is applied to the first wiring connected to the plurality of nonvolatile memory cells sharing the selected third wiring, and the second high voltage pulse (5 V) is shifted in timing between the first wiring. A configuration in which the voltage is applied may be adopted.
[0023] また、このとき、前記制御回路は、前記第 3の配線を共有する複数行の不揮発性メ モリセルに係る複数の第 1の配線を選択するための複数の選択信号を形成するカウ ンタ回路 (50)と、前記複数の選択信号の変化タイミングを制御するカウンタ制御回路 ( 51)とを有し、前記カウンタ回路は、シフトクロック (SCLK)の変化に同期してシフト動 作を行う複数の記憶段 (50A— 50D)を直列に有し、前記複数の記憶段の出力が前 記複数の選択信号とされ、  [0023] At this time, the control circuit forms a plurality of selection signals for selecting a plurality of first wirings related to a plurality of rows of nonvolatile memory cells sharing the third wiring. Circuit (50) and a counter control circuit (51) for controlling change timings of the plurality of selection signals, and the counter circuit performs a shift operation in synchronization with a change of a shift clock (SCLK). Storage stages (50A-50D) in series, and the outputs of the plurality of storage stages are the plurality of selection signals,
前記カウンタ制御回路は、前記カウンタ回路の初段に供給するパルス (EPLS)を生 成するパルス生成回路 (56)と、前記パルス生成回路で生成するパルスの幅を選択可 能とするパルス幅選択回路 (55)と、前記シフトクロックの周期選択によって前記パル スのシフト量を可変とするシフト量選択回路 (58)と、を有するように構成することができ る。比較的簡単な構成によって前記高電圧パルスのパルス幅とオーバーラップ量が 可変可能になる。 The counter control circuit includes a pulse generation circuit (56) for generating a pulse (EPLS) to be supplied to the first stage of the counter circuit, and a pulse width selection circuit for selecting a width of a pulse generated by the pulse generation circuit. (55) and the pulse by selecting the shift clock cycle. And a shift amount selection circuit (58) that makes the shift amount of the shift variable. The pulse width and overlap amount of the high voltage pulse can be varied with a relatively simple configuration.
[0024] 本発明の更に具体的な一つの形態として、前記不揮発性メモリセルは、前記第 2の 配線が接続されるソース'ドレイン領域側の前記チャネル形成領域上に絶縁膜を介し て選択ゲート領域 (10)が形成され、選択ゲート領域と前記メモリゲート領域が分離さ れたスプリットゲート構造を有する。このとき、前記選択ゲート領域から見たゲート耐圧 は前記メモリゲート領域から見たゲート耐圧よりも低くするのがよい。スプリットゲート 構造故に、電荷蓄積領域に対する電子やホットホールの注入に際して前記一方のソ ース 'ドレイン端に高電圧を印力!]しても、選択ゲート領域側の他方のソース'ドレイン 端にチャネル領域を介して高電圧が印加されな ヽから、選択ゲート領域側を高耐圧 とすることを要しないからである。これにより、不揮発性メモリセルの記憶情報を選択 ゲート領域側力も読み出すとき、選択ゲート領域側の相互コンダクタンス (gm)を大き くすることが容易になる。  As a more specific form of the present invention, the non-volatile memory cell includes a select gate via an insulating film on the channel formation region on the source / drain region side to which the second wiring is connected. A region (10) is formed and has a split gate structure in which the select gate region and the memory gate region are separated. At this time, the gate breakdown voltage seen from the selection gate region is preferably lower than the gate breakdown voltage seen from the memory gate region. Due to the split gate structure, even if electrons or hot holes are injected into the charge storage region, even if the high voltage is applied to the one source 'drain end!', The channel on the other source 'drain end on the select gate region side This is because it is not necessary to make the select gate region high withstand voltage since a high voltage is not applied through the region. This facilitates increasing the mutual conductance (gm) on the side of the selection gate region when the storage information of the nonvolatile memory cell is also read out.
[0025] 本発明の更に具体的な一つの形態として、前記不揮発性半導体メモリをアクセス制 御するコントローラ (61)を更に有し、前記選択ゲート領域から見たゲート耐圧は前記 コントローラを構成するゲート絶縁型の電界効果トランジスタのゲート耐圧と同じであ つてよい。  [0025] As a more specific form of the present invention, a controller (61) for controlling access to the nonvolatile semiconductor memory is further provided, and a gate breakdown voltage viewed from the selection gate region is a gate constituting the controller. It may be the same as the gate breakdown voltage of the insulating field effect transistor.
発明の効果  The invention's effect
[0026] 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説 明すれば下記の通りである。  [0026] The effects obtained by the representative inventions disclosed in the present application will be briefly described as follows.
[0027] すなわち、不揮発性メモリセルに高電圧パルスの印加タイミングをずらしてホットホ ールの注入を行っても全体としての処理時間の増大を極力抑えることができる。 図面の簡単な説明 That is, even if hot hole injection is performed by shifting the application timing of the high voltage pulse to the nonvolatile memory cell, an increase in the overall processing time can be suppressed as much as possible. Brief Description of Drawings
[0028] [図 1]フラッシュメモリの構成を例示するブロック図である。 FIG. 1 is a block diagram illustrating a configuration of a flash memory.
[図 2]スプリットゲート型の不揮発性メモリセルの縦断面構造を電荷蓄積領域に多くの 電子が蓄積された状態として例示する縦断面図である。  FIG. 2 is a longitudinal sectional view illustrating a longitudinal sectional structure of a split gate type nonvolatile memory cell as a state where many electrons are accumulated in a charge accumulation region.
[図 3]図 2に対して電荷蓄積領域の捕獲電子の数が少なくなつた状態として不揮発性 メモリセルの縦断面構造を例示した縦断面図である。 [Figure 3] Non-volatile as the number of trapped electrons in the charge storage region is smaller than in Figure 2 It is the longitudinal cross-sectional view which illustrated the longitudinal cross-section structure of the memory cell.
[図 4]図 2のように多くの電子が注入されている状態の不揮発性メモリセルに対して徐 々にホットホールを注入して 、つたときの時間と消去電流との関係を示す特性図であ る。  [Fig. 4] A characteristic diagram showing the relationship between the time and erase current when hot holes are gradually injected into the nonvolatile memory cell in which many electrons are injected as shown in FIG. It is.
[図 5]消去が進んで不揮発性メモリセルの閾値電圧がある程度低くなつた状態 (電荷 蓄積領域に蓄積された電子が少ない状態)からの消去を始めたときの時間と消去電 流との関係を示す特性図である。  [Fig. 5] Relationship between erase current and time when erasing is started from the state where the threshold voltage of the nonvolatile memory cell has decreased to some extent (the state where the number of electrons accumulated in the charge storage region is small). FIG.
[図 6]メモリアレイ及び書き込み消去デコーダの詳細な一例を示す回路図である。  FIG. 6 is a circuit diagram showing a detailed example of a memory array and a write / erase decoder.
[図 7]選択タイミング制御回路 (TCNT)の具体例を示す論理回路図である。  FIG. 7 is a logic circuit diagram showing a specific example of a selection timing control circuit (TCNT).
[図 8]消去パルス EPLSのパルス幅 PW1がシフトクロック SCLKの 1周期にされた場 合における選択信号 countO— count3の波形を示すタイミングチャートである。  FIG. 8 is a timing chart showing the waveform of the selection signal countO-count3 when the pulse width PW1 of the erase pulse EPLS is set to one cycle of the shift clock SCLK.
[図 9]消去パルス EPLSのパルス幅 PW2がシフトクロック SCLKの 4周期にされた場 合における選択信号 countO— count3の波形を示すタイミングチャートである。  FIG. 9 is a timing chart showing the waveform of the selection signal countO-count3 when the pulse width PW2 of the erase pulse EPLS is set to four periods of the shift clock SCLK.
[図 10]図 6の回路構成の消去ブロック EBLK0において消去パルス幅と消去パルスシ フト量を等しくしたときの消去動作のタイミングチャートである。  10 is a timing chart of the erase operation when the erase pulse width and the erase pulse shift amount are made equal in the erase block EBLK0 having the circuit configuration of FIG.
[図 11]図 6の回路構成の消去ブロック EBLK0において消去パルス幅を消去パルス シフト量よりも長くしたときの消去動作のタイミングチャートである。  FIG. 11 is a timing chart of the erase operation when the erase pulse width is longer than the erase pulse shift amount in the erase block EBLK0 having the circuit configuration of FIG.
[図 12]消去フローの一例を示すフローチャートである。  FIG. 12 is a flowchart showing an example of an erasing flow.
[図 13]フラッシュメモリをオンチップしたマイクロコンピュータの全体的な構成を示すブ ロック図である。  FIG. 13 is a block diagram showing the overall configuration of a microcomputer with on-chip flash memory.
符号の説明 Explanation of symbols
1 不揮発性メモリセル  1 Nonvolatile memory cell
2 チャネル形成領域  2 channel formation region
3 一方のソース'ドレイン領域(ソース)  3 One source 'drain region (source)
4 他方のソース'ドレイン領域(ドレイン)  4 The other source 'drain region (drain)
6 電荷蓄積領域  6 Charge storage area
8 メモリゲート  8 Memory gate
10 選択ゲート 20 フラッシュメモリ 10 selection gate 20 Flash memory
21 メモリアレイ  21 Memory array
CG 選択ゲート線  CG selection gate line
MG メモリゲート線  MG memory gate line
SL ソース線  SL source line
BL ビット線  BL bit line
24 選択ゲートドライバ  24 selection gate driver
25 書き込み消去デコーダ  25 Program / erase decoder
27 ドライバ回路  27 Driver circuit
MMOO— MMxy 不揮発性メモリセノレ MMOO— MMxy nonvolatile memory sensing
CGO-CGy 選択ゲート線 CGO-CGy selection gate line
SLO— SLy ソース線  SLO—SLy source line
BLO— BL ピ'ッ卜線  BLO— BL PI Line
47 選択タイミング制御回路 (TCNT) countO— count3 選択信号  47 Selection timing control circuit (TCNT) countO— count3 selection signal
50 カウンタ回路 (COUNT)  50 Counter circuit (COUNT)
51 カウンタ制御回路 (CUCNT) 51 Counter control circuit (CUCNT)
SCLK シフトクロック SCLK shift clock
50A— 50D 。开フリップフロップ(FF) 50A—50D. Open flip-flop (FF)
52 発振器 (OSC) 52 Oscillator (OSC)
53 分周回路 (DIV)  53 Divider (DIV)
54 消去パルス幅セレクタ信号  54 Erase pulse width selector signal
55 消去ノ ルス幅セレクタ (EPWS) 55 Erase Nose Width Selector (EPWS)
EPLS 消去パノレス EPLS Erase Panores
56 パルス生成回路 (PGEN)  56 Pulse generation circuit (PGEN)
57 消去パルスシフト量セレクタ信号 57 Erase pulse shift amount selector signal
58 消去ノ ノレスシフト量セレクタ (EPSS)58 Erase No-less Shift Amount Selector (EPSS)
60 マイクロコンピュータ 61 CPU 60 Microcomputer 61 CPU
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 図 2はスプリットゲート型の不揮発性メモリセルの縦断面構造が例示される。不揮発 性メモリセル 1は、シリコン基板上に設けられた p型ゥエル領域 16にチャネル形成領 域 2を有し、チャネル形成領域 2を挟んで一対のソース'ドレイン領域 3, 4が形成され る。便宜上一方をソース 3、他方をドレイン 4と称する。ソース'ドレイン領域 3, 4は n型 拡散層(n型不純物領域)によって構成される。チャネル形成領域 2の上にはソース 3 寄りにゲート酸ィ匕膜 5を介して電荷蓄積領域 (例えばシリコン窒化膜) 6、絶縁膜 7及 びメモリゲート(例えば n型ポリシリコン層) 8が配置される。チャネル形成領域 2の上に はドレイン 4寄りにゲート酸ィ匕膜 9を介して選択ゲート(例えば n型ポリシリコン層) 10が 形成される。前記電荷蓄積領域 6、メモリゲート 8及び選択ゲート 10は絶縁膜 11で相 互に絶縁されている。便宜上、ソース 3寄りのチャネル形成領域 2、電荷蓄積領域 6 及びメモリゲート 8の近傍をメモリトランジスタ部、ドレイン 4寄りのチャネル形成領域 2 及び選択ゲート 10の近傍を選択トランジスタ部と称する。  FIG. 2 illustrates a vertical cross-sectional structure of a split gate nonvolatile memory cell. The nonvolatile memory cell 1 has a channel formation region 2 in a p-type well region 16 provided on a silicon substrate, and a pair of source and drain regions 3 and 4 are formed with the channel formation region 2 interposed therebetween. For convenience, one is referred to as source 3 and the other as drain 4. The source / drain regions 3 and 4 are constituted by n-type diffusion layers (n-type impurity regions). A charge storage region (for example, a silicon nitride film) 6, an insulating film 7 and a memory gate (for example, an n-type polysilicon layer) 8 are arranged on the channel forming region 2 via a gate oxide film 5 near the source 3. Is done. A selection gate (for example, an n-type polysilicon layer) 10 is formed on the channel formation region 2 near the drain 4 via a gate oxide film 9. The charge storage region 6, the memory gate 8 and the selection gate 10 are insulated from each other by an insulating film 11. For convenience, the vicinity of the channel formation region 2 near the source 3, the charge storage region 6 and the memory gate 8 is referred to as a memory transistor portion, and the vicinity of the channel formation region 2 near the drain 4 and the selection gate 10 is referred to as a selection transistor portion.
[0031] 前記電荷蓄積領域 6とその表裏に配置された絶縁膜 5および絶縁膜 7とを併せた層  [0031] A layer that combines the charge storage region 6 and the insulating film 5 and the insulating film 7 disposed on the front and back sides thereof.
(メモリゲート絶縁層と称する)の膜厚を tm、選択ゲート 10のゲート絶縁膜 9の膜厚を tc、選択ゲート 10とメモリゲート 8との間の絶縁膜 11の膜厚を tiとすると、 tc<tm≤ti の関係が実現されている。その膜厚 (層厚)寸法差より、選択トランジスタ部のゲート 絶縁耐圧はメモリトランジスタ部のゲート絶縁耐圧よりも低くされる。尚、ソース'ドレイ ン領域に便宜上割り当てたドレイン 4はデータ読み出し動作においてそれが MOSト ランジスタのドレイン電極として機能し、ソース 3はデータ読み出し動作においてそれ が MOSトランジスタのソース電極として機能することを意味する。消去 ·書き込み動作 ではドレイン 4とソース 3が必ずしもその名称通りに機能するとは限らず逆の場合もあ る。  The thickness of the insulating film 11 (referred to as the memory gate insulating layer) is tm, the thickness of the gate insulating film 9 of the selection gate 10 is tc, and the thickness of the insulating film 11 between the selection gate 10 and the memory gate 8 is ti. The relationship tc <tm≤ti is realized. Due to the difference in film thickness (layer thickness), the gate withstand voltage of the select transistor portion is made lower than the gate withstand voltage of the memory transistor portion. Note that drain 4 assigned for convenience in the source / drain region means that it functions as the drain electrode of the MOS transistor in the data read operation, and source 3 means that it functions as the source electrode of the MOS transistor in the data read operation. To do. In the erase / write operation, drain 4 and source 3 do not always function exactly as they are named, and vice versa.
[0032] 前記不揮発性メモリセルは、電荷蓄積領域 6に対する電子の注入 (例えば書き込み と称する)によって閾値電圧が高くされ、前記電荷蓄積領域 6に対するホットホールの 注入 (例えば消去と称する)によって閾値電圧が低くされる。書き込み動作では、例え ば、メモリゲート 8の電圧(Vmg)を 8V、ソース 3の電圧(Vs)を 5Vとし、選択ゲート 10 の電圧(Vcg)を 1. 8V、書き込み選択メモリセルのドレイン 4の電圧(Vd)を OV (回路 の接地電位)、書き込み非選択メモリセルのドレイン 4の電圧 (Vd)を 1. 8Vとすること により、ソース 3からドレイン 4に電流が流れ、絶縁層 11直下のチャンネル領域 2の部 分で高電界が形成され、これによつて発生したホットエレクトロンが電荷蓄積領域 6に 注入される。 [0032] The threshold voltage of the nonvolatile memory cell is increased by injection of electrons into the charge storage region 6 (for example, referred to as writing), and threshold voltage is increased by injection of hot holes into the charge storage region 6 (for example, referred to as erasing). Is lowered. In the write operation, for example, the memory gate 8 voltage (Vmg) is 8V, the source 3 voltage (Vs) is 5V, and the selection gate 10 The voltage (Vcg) of the memory cell is 1.8 V, the voltage (Vd) of the drain 4 of the write selected memory cell is OV (the ground potential of the circuit), and the voltage (Vd) of the drain 4 of the memory cell not selected is 1.8 V As a result, a current flows from the source 3 to the drain 4, and a high electric field is formed in a portion of the channel region 2 immediately below the insulating layer 11. Hot electrons generated thereby are injected into the charge storage region 6.
[0033] 消去動作では、図 2に示されるように、 Vmg=— 5V、 Vs = 5V、基板を OVとし、ソー ス 3の端力 メモリゲート 8に向力 高電界を形成して、前記ソース 3から基板に電流を 流す。これによつて、前記ソース 3端近傍で電離性衝突が起こり、電子、正孔対が発 生する。発生した正孔のうちゲート酸ィ匕膜 5のポテンシャル障壁を越えるだけの十分 なエネルギーを持った正孔がホットホールとなり、電荷蓄積領域 6に注入される。ホッ トホールは電荷蓄積領域 6に注入されると、そこに既に注入されている電子を中和す る方向に作用し、これによつて不揮発性メモリセル 1の閾値電圧が低 、方向に変化さ れる。  [0033] In the erase operation, as shown in FIG. 2, Vmg = —5V, Vs = 5V, the substrate is set to OV, an end force of the source 3 and a high electric field is formed on the memory gate 8, and the source Current is passed from 3 to the substrate. As a result, an ionizing collision occurs near the end of the source 3 to generate electron and hole pairs. Of the generated holes, holes with sufficient energy to exceed the potential barrier of the gate oxide film 5 become hot holes and are injected into the charge storage region 6. When hot holes are injected into the charge storage region 6, they act in the direction of neutralizing the electrons that have already been injected therein, and this causes the threshold voltage of the nonvolatile memory cell 1 to decrease and change in the direction. It is.
[0034] 不揮発性メモリセル 1に対する上記書き込み及び消去動作では、選択ゲート 10及 びドレインには高電圧の印加を要しない。このことは、選択トランジスタ部のゲート耐 圧が比較的低くてよ!ヽことを保証する。  In the above write and erase operations on the nonvolatile memory cell 1, it is not necessary to apply a high voltage to the selection gate 10 and the drain. This means that the gate voltage of the select transistor is relatively low!ヽ Guarantee that.
[0035] 図 2において 12— 14は消去時におけるソース近傍の等電位線である。等電位線 1 2は例えば 3V、等電位線 13は例えば IV、等電位線 14は例えば OVである。図 2に示 される状態は電荷蓄積領域 6に多くの電子が蓄積された状態力 消去動作を開始し た直後の状態であり、電荷蓄積領域 6には中和されずに比較的多くの自由電子が捕 獲されているので、ソース端部分 15との間の電界を強めるように作用し、その部分 15 の電位が低くなるため等電位線が密になり、換言すればその部分 15の電圧降下の 傾きは大きぐ矢印で示されるようにソース 3から p型ゥエル領域 16に流れる電流は比 較的大きくなる。  In FIG. 2, 12-14 are equipotential lines near the source at the time of erasing. The equipotential line 12 is, for example, 3V, the equipotential line 13 is, for example, IV, and the equipotential line 14 is, for example, OV. The state shown in FIG. 2 is a state in which a large amount of electrons are accumulated in the charge accumulation region 6 and is a state immediately after the start of the erasing operation. Since the electrons are captured, it acts to strengthen the electric field between the source end portion 15 and the potential of the portion 15 is lowered, so that the equipotential lines become dense, in other words, the voltage of the portion 15 The slope of the descent is relatively large, as indicated by the large arrow, from the source 3 to the p-type wel region 16.
[0036] 図 3には消去が進んで不揮発性メモリセル 1の閾値電圧がある程度低くなつたとき の状態 (すなわち、電荷蓄積領域 6の捕獲電子の数がある程度少なくなつた状態)か ら消去を行う場合を示す。電荷蓄積領域 6に蓄積された電子の影響は少なぐ電荷 蓄積領域 6直下の基板の電位は図 2よりも高くなる。そのため、ソース端部分 15の近 傍では図 2よりも等電位線 12— 14の間隔が広がる。すなわち、ソース端部分 15の近 傍では電圧降下の傾きが小さくなり、ソース 3から p型ゥエル領域 16に流れる電流が 図 2よりち/ J、さくなる。 [0036] FIG. 3 shows that erasing has progressed from a state where the threshold voltage of the nonvolatile memory cell 1 has decreased to some extent (that is, a state in which the number of trapped electrons in the charge storage region 6 has decreased to some extent). Indicates when to do. The influence of the electrons accumulated in the charge accumulation region 6 is small, and the potential of the substrate immediately below the charge accumulation region 6 is higher than that in FIG. Therefore, close to the source end 15 In the vicinity, the interval between equipotential lines 12-14 is wider than in Fig. 2. In other words, in the vicinity of the source end portion 15, the slope of the voltage drop becomes small, and the current flowing from the source 3 to the p-type well region 16 is less than J / J from FIG.
[0037] 図 4には図 2のように多くの電子が注入されている状態の不揮発性メモリセル 1に対 して徐々にホットホールを注入していったときの時間と消去電流との関係を示す。こ の場合、ピーク電流は大きい。また、時間経過とともに消去が進むので、徐々に消去 電流は減少する。これに対し、図 5は消去が進み、不揮発性メモリセル 1の閾値電圧 がある程度低 、状態から (すなわち、電荷蓄積領域 6に蓄積された電子が少な 、状 態)から消去を始めたときの時間と消去電流との関係を示す。電荷蓄積領域 6に蓄積 された電子の影響が小さいので、図 4よりもピーク電流は小さい。時間経過とともに消 去が進むので、図 4と同様に徐々に消去電流は減少する。  [0037] FIG. 4 shows the relationship between time and erase current when hot holes are gradually injected into the nonvolatile memory cell 1 in which many electrons are injected as shown in FIG. Indicates. In this case, the peak current is large. In addition, as the erasing progresses with time, the erasing current gradually decreases. On the other hand, FIG. 5 shows the case where erasing has progressed and the threshold voltage of the nonvolatile memory cell 1 is low to some extent, and erasing is started from the state (that is, the state where the electrons accumulated in the charge storage region 6 are few). The relationship between time and erase current is shown. Since the effect of electrons stored in the charge storage region 6 is small, the peak current is smaller than in FIG. As the erasure progresses over time, the erase current gradually decreases as in Fig. 4.
[0038] 図 1にはフラッシュメモリの構成が例示される。フラッシュメモリ 20は図 2の不揮発性 メモリセル 1を複数個マトリクス配置したメモリアレイ (ARY)21を有する。図 1には代表 的に 2個を図示してある。マトリクス配置された複数の不揮発性メモリセル 1は、選択 ゲート 10が選択ゲート線 CGに、メモリゲート 8がメモリゲート線 MGに、ソース 3がソー ス線 SLに、ドレイン 4がビット線 BLに接続される。 Xアドレスデコーダ (XDEC)22はァ ドレスバッファ (ADB)23に入力された Xアドレス信号をデコードする。選択ゲートドラ ィバ回路 (CGDRV)24はそのデコード結果に従って選択ゲート線 CGを選択的に駆 動する。読み出し動作及びべリファイ動作では選択ゲート線 CGに対する選択的駆動 によって不揮発性メモリセル 1の選択が行われる。書き込み消去デコーダ (PEDEC)2 5は書き込み及び消去におけるメモリゲート線 MG及びソース線 SLの選択を行う。書 き込み動作時の選択は選択ゲート線 CGを介して Xアドレスデコーダ 22によるデコー ド結果を用いる。消去動作時の選択は消去対象である消去ブロックの指示情報に基 づいて行う。ドライバ回路 (PEDRV) 27は書き込み消去デコーダ 25から出力される 選択信号に基づいてメモリゲート線 MG及びソース線 SLを駆動する。  FIG. 1 illustrates the configuration of the flash memory. The flash memory 20 has a memory array (ARY) 21 in which a plurality of nonvolatile memory cells 1 of FIG. Figure 2 shows two representatives. Multiple non-volatile memory cells 1 arranged in a matrix have selection gate 10 connected to selection gate line CG, memory gate 8 connected to memory gate line MG, source 3 connected to source line SL, and drain 4 connected to bit line BL. Is done. The X address decoder (XDEC) 22 decodes the X address signal input to the address buffer (ADB) 23. The selection gate driver circuit (CGDRV) 24 selectively drives the selection gate line CG according to the decoding result. In the read operation and the verify operation, the nonvolatile memory cell 1 is selected by selective driving with respect to the selection gate line CG. A write / erase decoder (PEDEC) 25 selects a memory gate line MG and a source line SL in writing and erasing. For the selection during the write operation, the decoding result by the X address decoder 22 is used via the selection gate line CG. The selection at the time of erase operation is performed based on the instruction information of the erase block to be erased. The driver circuit (PEDRV) 27 drives the memory gate line MG and the source line SL based on the selection signal output from the write / erase decoder 25.
[0039] ビット線 BLにはセンスラッチ (SL)及びデータレジスタ回路 (DREG)30が接続される 。センスラッチ (SL)は不揮発性メモリセル 1からビット線 BLに読み出された記憶情報 を検出して保持する。データレジスタ (DREG)は外部力 供給される書き込みデータ の保持及び消去前に退避すべきメモリセル記憶情報の保持などに利用され、保持さ れたデータは書き込み動作におけるビット線 BLレベルの制御に利用される。センスラ ツチ及びデータレジスタ回路 30は Y選択回路 (YG) 31を介してデータ入出力バッフ ァ(DTB) 32に接続され、外部バス 33に含まれるデータバス 33Dとインタフェース可 能にされる。読み出し動作において Y選択回路 31は、 Yアドレスデコーダ (YDEC) 3 4から出力されるアドレスデコード信号に従って、センスラッチ (SL)にラッチされた読 み出しデータを選択する。選択された読み出しデータはデータ入出力バッファ 32を 介して外部に出力可能にされる。書き込み動作において Yアドレスデコーダ 34は、 データ入出力バッファ 32から供給される書込みデータをどのビット線 BLに対応させ てデータレジスタ (DREG)にラッチさせるかを制御する。 A sense latch (SL) and a data register circuit (DREG) 30 are connected to the bit line BL. The sense latch (SL) detects and holds the storage information read from the nonvolatile memory cell 1 to the bit line BL. Data register (DREG) is externally supplied write data Is used for holding memory cell memory information to be saved before erasing and erasing, and the held data is used for controlling the bit line BL level in the write operation. The sense latch and data register circuit 30 is connected to a data input / output buffer (DTB) 32 via a Y selection circuit (YG) 31, and can interface with a data bus 33D included in an external bus 33. In the read operation, the Y selection circuit 31 selects the read data latched in the sense latch (SL) according to the address decode signal output from the Y address decoder (YDEC) 34. The selected read data can be output to the outside via the data input / output buffer 32. In the write operation, the Y address decoder 34 controls which bit line BL the write data supplied from the data input / output buffer 32 is to be latched in the data register (DREG).
[0040] アドレス信号は外部バスのアドレスバス 33Aからアドレスバッファ 23に供給され、ァ ドレスバッファ 23から Xアドレスデコーダ 22及び Yアドレスデコーダ 34に供給される。 読み出し、消去、書き込みに必要な 5V、—5V、 8Vなどの高電圧 VPP1, VPP2、… 、 VPPiを昇圧回路 (VPG)35が外部電源 Vdd, Vssに基づいて生成する。  The address signal is supplied from the address bus 33 A of the external bus to the address buffer 23, and is supplied from the address buffer 23 to the X address decoder 22 and the Y address decoder 34. The booster circuit (VPG) 35 generates the high voltages VPP1, VPP2,..., VPPi such as 5V, −5V, 8V, etc. necessary for reading, erasing and writing based on the external power sources Vdd and Vss.
[0041] 制御回路 (CONT) 36は制御レジスタ(CREG) 37に設定された制御情報に従って 、読み出し動作、消去動作、及び書き込み動作の制御シーケンスや動作電源の切換 え制御を行う。動作電源の切換え制御とは、読み出し動作、消去動作、及び書き込 み動作に応じて、ドライバ回路 24、 27の動作電源などをその動作態様に従って適切 に切換える制御である。  A control circuit (CONT) 36 performs a control sequence of a read operation, an erase operation, a write operation, and a switching control of an operation power source according to control information set in a control register (CREG) 37. The operation power supply switching control is control that appropriately switches the operation power supply of the driver circuits 24 and 27 according to the operation mode in accordance with the read operation, the erase operation, and the write operation.
[0042] 図 6にはメモリアレイ及び書き込み消去デコーダの詳細な一例が示される。同図に おいてメモリアレイにはマトリクス配置された複数個の不揮発性メモリセル MMOO— MMxyが例示される。不揮発性メモリセル MMOO— MMxyは前記不揮発性メモリセ ル 1と同じデバイス構造を持つ。不揮発性メモリセル MMOO— MMxyの選択ゲート 1 0は行単位で対応する選択ゲート線 CGO— CGyに接続され、不揮発性メモリセル M MOO— MMxyのソース 3は行単位で対応するソース線 SLO— SLyに接続され、不 揮発性メモリセル MMOO— MMxyのドレイン 4は列単位で対応するビット線 BLO— B Lx〖こ接続される。不揮発性メモリセルの 1行分をセクタと称する。不揮発性メモリセル MMOO— MMxyに対しては 4セクタ分の不揮発性メモリセルを消去単位とする消去 ブロックと、 1セクタ分の不揮発性メモリセルを消去単位とする消去ブロックとが割り当 てられ、消去ブロック単位で不揮発性メモリセルのメモリゲート 8がメモリゲート線 MG に共通接続される。図 6において代表的に示された 4セクタ分の消去ブロック EBLKO はメモリゲート線 MGOに共通接続され、 1セクタ分の消去ブロック EBLKmはメモリゲ ート線 MGmに共通接続される。 FIG. 6 shows a detailed example of the memory array and the write / erase decoder. In the figure, the memory array includes a plurality of nonvolatile memory cells MMOO-MMxy arranged in a matrix. Nonvolatile memory cell MMOO—MMxy has the same device structure as the nonvolatile memory cell 1 described above. Non-volatile memory cell MMOO— MMxy selection gate 1 0 is connected to the corresponding selection gate line CGO—CGy in row units, and nonvolatile memory cell M MOO—MMxy source 3 is the source line corresponding to row units SLO—SLy The drain 4 of the nonvolatile memory cell MMOO—MMxy is connected to the corresponding bit line BLO—B Lx in a column unit. One row of nonvolatile memory cells is called a sector. Non-volatile memory cell MMOO — For MMxy, erasing with non-volatile memory cells of 4 sectors as the erasing unit A block and an erase block having a non-volatile memory cell for one sector as an erasing unit are allocated, and the memory gate 8 of the non-volatile memory cell is commonly connected to the memory gate line MG in an erasing block unit. The erase block EBLKO for four sectors, which is representatively shown in FIG. 6, is commonly connected to the memory gate line MGO, and the erase block EBLKm for one sector is commonly connected to the memory gate line MGm.
[0043] ドライバ回路(PEDRV) 27は、各々のソース線 SLO— SLyとメモリゲート線 MGO— MGmに対応して出力インバータ 40とレベル変換回路 (LVSFT) 41を有する。出力 インバータ 40は消去、書き込み、読み出しの動作形態に応じて動作電源が切換えら れる。レベル変換回路 (LVSFT) 41は前段力もの入力信号を出力インバータ 40の 動作電源に応ずる信号レベルに変換する。ドライバ回路 (PEDRV) 27はその動作 電源との関係で高耐圧 MOSトランジスタが用いられている。  The driver circuit (PEDRV) 27 has an output inverter 40 and a level conversion circuit (LVSFT) 41 corresponding to each source line SLO—SLy and memory gate line MGO—MGm. The output power of the output inverter 40 is switched according to the operation mode of erasing, writing, and reading. The level conversion circuit (LVSFT) 41 converts the input signal having the preceding stage power into a signal level corresponding to the operating power supply of the output inverter 40. The driver circuit (PEDRV) 27 uses a high voltage MOS transistor in relation to its operating power supply.
[0044] 書き込み消去デコーダ (PEDEC)25は、レベル変換回路 41に出力が結合された出 力インバータ 42と、 3個のナンドゲート (NAND) 43— 45力も構成されるセレクタ 46と 、選択タイミング制御回路 (TCNT)47と、デコードロジック(DECLCG) 48とを有する 。 mgselO— mgselmはメモリゲート線 MGO— MGmの選択信号であり、前記選択ゲ ート線 CGO— CGyを介して伝達される選択信号に基づいて対応するものが選択レ ベルにされる。 progは書き込み動作の指示信号、 slselO— slselyは書き込み動作に おけるソース線 SL0— SLyの選択信号とされる。書き込み動作では前記選択ゲート 線 CG0— CGyを介して伝達される選択信号に基づいて対応するソース線が選択レ ベルにされ、書き込み動作はセクタ単位で行うことができる。  The write / erase decoder (PEDEC) 25 includes an output inverter 42 whose output is coupled to the level conversion circuit 41, a selector 46 that also includes three NAND gates (NAND) 43-45, and a selection timing control circuit. (TCNT) 47 and decode logic (DECLCG) 48. mgselO—mgselm is a selection signal for the memory gate line MGO—MGm, and the corresponding one is set to the selection level based on the selection signal transmitted via the selection gate line CGO—CGy. prog is the instruction signal for the write operation, and slselO— slsely is the source line SL0—SLy selection signal for the write operation. In the write operation, the corresponding source line is set to the selection level based on the selection signal transmitted through the selection gate lines CG0-CGy, and the write operation can be performed on a sector basis.
[0045] eraseは消去動作の指示信号、 eraseblockO— eraseblockmは消去ブロック EBL K0— EBLKmの選択信号である。消去ブロック選択信号 eraseblockO— erasebloc kmは CREG37から DECLCG48に供給される消去ブロック指定情報に従って選択 レベルにされる。 countO— count3は消去動作時における消去ブロック内のソース 線 SL4i、 SL4i+ l、 SL4i+ 2、 SL4i+ 3 (i=0— n)の選択信号である。  “Erase” is an erase operation instruction signal, and “eraseblockO—eraseblockm” is a selection signal for the erase block EBL K0—EBLKm. Erase block selection signal eraseblockO—erasebloc km is set to the selection level according to the erase block designation information supplied from CREG37 to DECLCG48. countO—count3 is a selection signal for source lines SL4i, SL4i + 1, SL4i + 2, and SL4i + 3 (i = 0–n) in the erase block during the erase operation.
[0046] 例えば消去動作ではメモリゲート制御線選択信号 mgselOがハイレベル (H)にされ てメモリゲート線 MG0が— 5Vにされ、消去ブロック選択信号 eraseblockOがハイレべ ル (H)、消去動作指示信号 eraseがハイレベル (H)、消去ブロック内ソース線選択信 号 countOがハイレベル(H)にされることによって、図 6に例示されるように、メモリァレ ィ 21のメモリゲート線 MG0が— 5Vにされ、ソース線 SLOが 5Vにされて、セクタ SCTO の不揮発性メモリセル MMOO— MMxOに消去パルスが印加される。順次活性化さ れる選択信号力 scountO、 count 1, count2、 count3に変化されるに従って、消去 パルスが印加されるセクタが SCT0、 SCT1、 SCT2、 SCT3に順次切り換えられるこ とになる。このようにして消去ブロック内におけるセクタ単位でタイミングをずらしてホッ トホール注入用の高電圧ノ ルスを印加することが可能とされる。 [0046] For example, in the erase operation, the memory gate control line selection signal mgselO is set to high level (H), the memory gate line MG0 is set to -5V, the erase block selection signal eraseblockO is set to high level (H), and the erase operation instruction signal When erase is at high level (H), the source line selection signal in the erase block When the signal countO is set to the high level (H), the memory gate line MG0 of the memory array 21 is set to −5V and the source line SLO is set to 5V as illustrated in FIG. Memory cell MMOO—Erasing pulse is applied to MMxO. The sector to which the erase pulse is applied is sequentially switched to SCT0, SCT1, SCT2, and SCT3 as the selection signal power s countO, count 1, count2, and count3 are sequentially activated. In this way, it is possible to apply the high voltage noise for hot hole injection by shifting the timing in units of sectors in the erase block.
[0047] 図 7には選択タイミング制御回路 (TCNT)47の具体例が示される。選択タイミング 制御回路 47は、前記選択信号 countO— count3を形成するカウンタ回路 (COUNT )50と、前記複数の選択信号 countO— count3の変化タイミングを制御するカウンタ 制御回路 (CUCNT)51とを有する。前記カウンタ回路 50は、シフトクロック SCLKの 変化に同期してシフト動作を行う複数の記憶段例えば D形フリップフロップ (FF) 50A 一 50Dを直列に有し、前記複数のフリップフロップ 50A— 50Dの出力が前記複数の 選択信号 countO— count3とされる。  FIG. 7 shows a specific example of the selection timing control circuit (TCNT) 47. The selection timing control circuit 47 includes a counter circuit (COUNT) 50 that forms the selection signal countO-count3, and a counter control circuit (CUCNT) 51 that controls change timings of the plurality of selection signals countO-count3. The counter circuit 50 includes a plurality of storage stages, for example, D-type flip-flops (FF) 50A and 50D, which perform a shift operation in synchronization with the change of the shift clock SCLK, and outputs the plurality of flip-flops 50A-50D. Is the plurality of selection signals countO-count3.
[0048] 前記カウンタ制御回路 51は、発振器 (OSC) 52、発振器 52の出力を分周して複数 の分周クロック信号を形成する分周回路 (DIV)53、分周回路カゝら出力される複数の 分周クロック信号の中から消去パルス幅セレクタ信号 54によって一つを選択する消 去パルス幅セレクタ (EPWS)55、及び消去パルス幅セレクタ 55で選択された分周ク ロック信号に基づいて前記カウンタ回路 50の初段フリップフロップ 50Aに供給する消 去パルス EPLSを生成するパルス生成回路 (PGEN)56、及び前記分周回路 53から 出力される複数の分周クロック信号の中から一つを消去パルスシフト量セレクタ信号 57によって選択して前記シフトクロック SCLKの周期を選択する消去パルスシフト量 セレクタ (EPSS)58から成る。  [0048] The counter control circuit 51 is output from an oscillator (OSC) 52, a frequency divider (DIV) 53 that divides the output of the oscillator 52 to form a plurality of frequency-divided clock signals, and a frequency divider circuit. An erase pulse width selector (EPWS) 55 that selects one of a plurality of divided clock signals by an erase pulse width selector signal 54 and a divided clock signal selected by the erase pulse width selector 55 Erase one of the pulse generator circuit (PGEN) 56 for generating the erase pulse EPLS supplied to the first stage flip-flop 50A of the counter circuit 50 and the plurality of divided clock signals output from the divider circuit 53 It comprises an erase pulse shift amount selector (EPSS) 58 that is selected by a pulse shift amount selector signal 57 and selects the period of the shift clock SCLK.
[0049] 図 8及び図 9にはシフトクロック SCLKの周期と消去パルス EPLSのパルス幅に応じ て形成される選択信号 countO— count3の波形が例示される。各図において消去 パルスのシフト量 SFTはシフトクロック SCLKの 1周期になる。シフト量 SFTを変化さ せるにはシフトクロックの周期を変えればよい。図 8において消去パルス EPLSのパ ルス幅 PW1はシフトクロック SCLKの 1周期とされる。これによつて選択信号 countO 一 count3は順次ノンオーバーラップでパルス変化される。図 9では消去パルス EPL Sのパルス幅 PW2はシフトクロック SCLKの 4周期とされる。これによつて選択信号 co untO— count3は順次シフトクロック SCLKの 1周期づっずれたオーバーラップでシ フトクロック SCLKの 4周期分づっパルス変化される。 FIGS. 8 and 9 illustrate waveforms of the selection signal countO-count3 formed according to the period of the shift clock SCLK and the pulse width of the erase pulse EPLS. In each figure, the erase pulse shift amount SFT is one cycle of the shift clock SCLK. To change the shift amount SFT, the shift clock cycle can be changed. In FIG. 8, the pulse width PW1 of the erase pulse EPLS is one period of the shift clock SCLK. As a result, the selection signal countO One count3 is sequentially pulse-changed with non-overlap. In Fig. 9, the pulse width PW2 of the erase pulse EPL S is four periods of the shift clock SCLK. As a result, the selection signal count0-count3 is sequentially pulse-changed by four periods of the shift clock SCLK with an overlap shifted by one period of the shift clock SCLK.
[0050] 以上のように、消去パルス幅セレクタ 55によって選択する消去パルス幅、消去パル スシフト量セレクタ 58によって選択する消去パルスシフト量により、選択信号 countO 一 count3をノンオーバーラップとするかオーバーラップとするかの選択と共に、その オーバーラップ量を可変に選択可能になる。  [0050] As described above, depending on the erase pulse width selected by the erase pulse width selector 55 and the erase pulse shift amount selected by the erase pulse shift amount selector 58, the selection signal countO and count3 are set to non-overlap or overlap. Along with the selection of whether or not, the overlap amount can be variably selected.
[0051] 図 10および図 11には図 6の回路構成の消去ブロック EBLK0における消去動作の タイミングチャートが示される。消去ブロック EBLK0の不揮発性メモリセル MM00、 MMxO、 MM01、 MMxl、 MM02、 MMx2、 MM03、 MMx3を消去するために、 選択ゲート線 CG0、 CG1、 CG2、 CG3に例えば OVを印加し、ビット線 BL0、 BLxを 例えば openにする。次に消去信号 eraseをハイレベル (H)にし、その後選択信号 er aseblockOをハイレベル(H)にして消去ブロック EBLK0を選択する。次に選択信号 mgselOをハイレベル(H)とし、メモリゲート線 MG0に例えば 5Vを印加する。その 後信号 countOをハイレベル(H)とし、ソース線 SL0に例えば 5Vを印加し、消去セク タ SCT0の不揮発性メモリセルを消去する。一定時間後信号 countOをローレベル( とし、ソース線 SL0の電圧を 0Vにする。次に信号 countlをノヽィレベル(H)とし、 ソース線 SL1に例えば 5Vを印加し、消去セクタ SCT1の不揮発性メモリセルを消去 する。同様に信号 count2と count3をパルス変化させ、消去セクタ SCT2と消去セク タ SCT3の不揮発性メモリセルを順次消去する。なお、信号 countO— count3のノヽ ィレベル(H)期間の時間を消去パルス幅、信号 countiの立上りと次の信号 counti + 1信号の立上りの時間差、例えば countOの立上り時刻と countiの立上り時刻と の時間差を消去パルスシフト量と定義する。消去中にソース線 SL0、 SL1、 SL2、 SL 3、 Slyに流れる消去電流の総和をソース総電流と定義する。  FIGS. 10 and 11 show timing charts of the erase operation in the erase block EBLK0 having the circuit configuration of FIG. In order to erase the non-volatile memory cells MM00, MMxO, MM01, MMxl, MM02, MMx2, MM03, MMx3 in the erase block EBLK0, for example, OV is applied to the selection gate lines CG0, CG1, CG2, CG3, and bit lines BL0, Set BLx to open, for example. Next, the erase signal erase is set to high level (H), and then the selection signal eraseblockO is set to high level (H) to select the erase block EBLK0. Next, the selection signal mgselO is set to high level (H), and 5 V, for example, is applied to the memory gate line MG0. After that, the signal countO is set to high level (H) and 5V is applied to the source line SL0 to erase the nonvolatile memory cell in the erase sector SCT0. After a certain time, the signal countO is set to the low level (and the voltage of the source line SL0 is set to 0V. Next, the signal countl is set to the noise level (H), for example, 5V is applied to the source line SL1, and the non-volatile memory of the erase sector SCT1 Erasing the cells, similarly, changing the pulses of the signals count2 and count3, and sequentially erasing the non-volatile memory cells in the erase sector SCT2 and erase sector SCT3, the time of the signal countO-count3's noise level (H) period The erase pulse width, the time difference between the rise of the signal counti and the rise of the next signal counti + 1 signal, for example, the time difference between the rise time of countO and the rise time of counti is defined as the erase pulse shift amount. The sum of the erase currents flowing through SL1, SL2, SL 3, and Sly is defined as the total source current.
[0052] 図 10は消去パルス幅と消去パルスシフト量が等しい場合のタイミングチャートを示 す。この場合、ソース線 SL0、 SL1、 SL2、 SL3の電圧が 5Vになる期間、すなわち選 択期間は重ならない。そのため、図示のように、ソース総電流のピーク電流と各々の ソース線のピーク電流は等 U、。 FIG. 10 shows a timing chart when the erase pulse width is equal to the erase pulse shift amount. In this case, the period during which the source lines SL0, SL1, SL2, and SL3 are 5V, that is, the selection periods do not overlap. Therefore, as shown in the figure, the peak current of the total source current and each The peak current of the source line is U, etc.
[0053] 図 11は消去パルス幅が消去ノルスシフト量よりも長 、場合のタイミングチャートを示 す。この場合、ソース線 SLO、 SL1、 SL2、 SL3の選択期間の中で重なる期間がある 。そのため、ソース線 SLO、 SL1、 SL2、 SL3が全部選択された期間、ソース総電流 のピーク電流が最も大きくなる。し力し、ソース線 SLO、 SL1、 SL2、 SL3の選択期間 を重ねたため、消去時間を短縮できる。尚、図 11では消去パルス幅と消去パルスシ フト量との比が 4 : 1である力 これに限定されるものではない。  FIG. 11 shows a timing chart in the case where the erase pulse width is longer than the erase nors shift amount. In this case, there are overlapping periods among the selection periods of the source lines SLO, SL1, SL2, and SL3. Therefore, the peak current of the total source current becomes the largest during the period when all the source lines SLO, SL1, SL2, and SL3 are selected. However, since the selection period of the source lines SLO, SL1, SL2, and SL3 is overlapped, the erase time can be shortened. In FIG. 11, the force in which the ratio between the erase pulse width and the erase pulse shift amount is 4: 1 is not limited to this.
[0054] 図 12に消去フローの一例を示す。この消去フローでは、 1回目の消去を図 10のタ イミングチャートで実施、すなわち消去パルス幅と消去パルスシフト量を等しく設定し て実施する (SI, S2)。次に、消去対象エリアが全て消去されたかをべリファイする (S 3)。消去が完了していなければ、 2回目の消去を図 11のタイミングチャートで実施、 すなわち消去パルス幅を消去パルスシフト量より長く設定して実施する(S4, S5)。 次に、消去対象エリアが全て消去された力をべリファイする (S6)。 3回目以降は 2回目 と同様である。  FIG. 12 shows an example of the erasing flow. In this erase flow, the first erase is performed using the timing chart of FIG. 10, that is, the erase pulse width and erase pulse shift amount are set equal (SI, S2). Next, it is verified whether all the areas to be erased have been erased (S3). If the erasure has not been completed, the second erasure is performed according to the timing chart of FIG. 11, that is, the erase pulse width is set longer than the erase pulse shift amount (S4, S5). Next, the power that erased all the areas to be erased is verified (S6). The third and subsequent times are the same as the second time.
[0055] ステップ SI, S2の 1回目の消去では図 2のように電荷蓄積領域 6には多くの電子が 注入されている。従って、消去動作においてソース 3から基板 16に流れる電流は大き いため、図 10のタイミングチャートを適用し、ソース総電流のピーク電流を抑える。ソ ース総電流のピーク電流を抑えることで、ソース電流を供給する電源回路 35の電流 供給能力を抑えることができる。ソース電流を供給する電源回路の電流供給能力を 抑制可能になるので、その電源回路面積を低減でき、チップの小型化に資すること ができる。  [0055] In the first erasing of steps SI and S2, many electrons are injected into the charge storage region 6 as shown in FIG. Therefore, since a large current flows from the source 3 to the substrate 16 in the erase operation, the timing chart of FIG. 10 is applied to suppress the peak current of the total source current. By suppressing the peak current of the total source current, the current supply capability of the power supply circuit 35 that supplies the source current can be suppressed. Since the current supply capability of the power supply circuit that supplies the source current can be suppressed, the area of the power supply circuit can be reduced, contributing to the miniaturization of the chip.
[0056] 2回目以降の消去では図 3のように電荷蓄積領域 6に保持されている電子の数は少 なくなつている。従って、ソース 3から基板 16に流れる電流は小さいため、図 11のタイ ミングチャートを適用しても、ソース総電流のピーク電流を抑えることができる。さらに 、ソース線の選択タイミング (消去パルスの印加タイミング)がオーバーラップされてい るので、消去時間を短縮することができる。  In the second and subsequent erasures, the number of electrons held in the charge storage region 6 is decreasing as shown in FIG. Therefore, since the current flowing from the source 3 to the substrate 16 is small, the peak current of the total source current can be suppressed even when the timing chart of FIG. 11 is applied. Furthermore, since the source line selection timing (erase pulse application timing) is overlapped, the erase time can be shortened.
[0057] 図 13には前記フラッシュメモリ 20をオンチップしたマイクロコンピュータの全体的な 構成が示される。マイクロコンピュータ 60は、特に制限されないが、単結晶シリコンの ような 1個の半導体基板 (半導体チップ)に、 CMOS集積回路製造技術により形成さ れる。このマイクロコンピュータ 60は、中央処理装置(CPU) 61、揮発性メモリとして の RAM62、不揮発性メモリとしてのフラッシュメモリ (FLASH)20、ノ スステートコント ローラ (BSC)63、及び入出力ポート回路などの入出力回路 (IZO) 64を備え、それら 回路モジュールは内部バス 66に接続される。内部バス 66はアドレス、データ、及び 制御信号の各信号線を備える。 CPU61は命令制御部と実行部を備え、フ ツチした 命令を解読し、解読結果にしたがって演算処理を行う。フラッシュメモリ 20は CPU61 の動作プログラムやデータを格納する。 RAM62は CPU61のワーク領域もしくはデ 一ター時記憶領域とされる。フラッシュメモリ 20の動作は CPU61が制御レジスタ 37 に設定した制御データに基づいて制御される。バスステートコントローラ 63は内部バ ス 66を介するアクセス、外部ノ スアクセスに対するアクセスサイクル数、ウェイトステー ト挿入、バス幅等の制御を行う。 FIG. 13 shows the overall configuration of a microcomputer on-chip of the flash memory 20. The microcomputer 60 is not particularly limited, but is made of single crystal silicon. It is formed on such a single semiconductor substrate (semiconductor chip) by CMOS integrated circuit manufacturing technology. The microcomputer 60 includes a central processing unit (CPU) 61, a RAM 62 as a volatile memory, a flash memory (FLASH) 20 as a non-volatile memory, a nos state controller (BSC) 63, and an input / output port circuit. An input / output circuit (IZO) 64 is provided, and these circuit modules are connected to an internal bus 66. The internal bus 66 includes address, data, and control signal lines. The CPU 61 includes an instruction control unit and an execution unit, decodes the footed instruction, and performs arithmetic processing according to the decoding result. The flash memory 20 stores the CPU 61 operation program and data. The RAM 62 is used as a work area or a data storage area for the CPU 61. The operation of the flash memory 20 is controlled based on the control data set in the control register 37 by the CPU 61. The bus state controller 63 controls access via the internal bus 66, the number of access cycles for external node access, wait state insertion, bus width, and the like.
[0058] 図 13において 2点鎖線で囲んだ領域 69以外の回路は比較的ゲート酸ィ匕膜の薄い MOSトランジスタによって構成される回路部分を意味する。領域 69の回路は、比較 的ゲート酸ィ匕膜の厚い高耐圧 MOSトランジスタによって構成される回路部分になる 。例えばフラッシュメモリ 20にお!/、て PEDRV27等が形成される領域が高耐圧 MOS トランジスタ回路部分とされ、フラッシュメモリ 20において CGDRV24等が形成される 領域はゲート酸ィ匕膜の薄い MOSトランジスタ回路部分とされる。  In FIG. 13, a circuit other than the region 69 surrounded by a two-dot chain line means a circuit portion constituted by a MOS transistor having a relatively thin gate oxide film. The circuit in region 69 is a circuit portion constituted by a high-voltage MOS transistor having a comparatively thick gate oxide film. For example, in the flash memory 20, the area where PEDRV27 etc. is formed is the high voltage MOS transistor circuit part, and in the flash memory 20, the area where CGDRV24 etc. is formed is the MOS transistor circuit part where the gate oxide film is thin It is said.
[0059] 以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、 本発明はそれに限定されるものではなぐその要旨を逸脱しない範囲において種々 変更可能であることは言うまでもな 、。  [0059] While the invention made by the present inventor has been specifically described based on the embodiments, it goes without saying that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. .
[0060] 例えば図 7では消去パノレスシフト量をシフトクロック SCLKの 1周期としたが、 1周期 に限定されるものではない。この場合図 7において、フリップフロップ 50Αの前段にフ リップフロップを追加し、或いはフリップフロップ 50Α— 50Dの各々の間に別のフリツ プフロップを挿入すればょ 、。  For example, in FIG. 7, the erase panoramic shift amount is set to one cycle of the shift clock SCLK, but is not limited to one cycle. In this case, add a flip-flop in front of flip-flop 50Α in Figure 7, or insert another flip-flop between each of flip-flops 50 に お い て -50D.
[0061] また、図 12の消去フローでは 1回目の消去のみ消去パノレス幅と消去パノレスシフト量 を等しく設定したが、そのような設定は 1回目に限定されるわけではない。消去パルス 幅と消去ノルスシフト量を等しく設定した状態で数回消去を行い、以降の消去は、消 去パルス幅を消去パルスシフト量より長く設定して実施してもよい。また、消去の回数 に応じて消去パルス幅、消去パルスシフト量、メモリゲート電圧、ソース電圧を任意に 変更してもよい。 In the erase flow of FIG. 12, the erase panorace width and the erase panorace shift amount are set equal only for the first erase, but such setting is not limited to the first. Erasing is performed several times with the erase pulse width and erase norse shift amount set equal to each other. The remaining pulse width may be set longer than the erase pulse shift amount. Further, the erase pulse width, erase pulse shift amount, memory gate voltage, and source voltage may be arbitrarily changed according to the number of times of erasure.
[0062] また、不揮発性メモリセルはスプリットゲート構造に限定されな 、。また、電荷蓄積 領域はシリコンナイトライドのような絶縁性トラップ領域であることに限定されず、ポリシ リコンのような導電性の電荷蓄積領域を備えたフローティング型の不揮発性メモリセ ルであってもよい。  [0062] Further, the nonvolatile memory cell is not limited to the split gate structure. In addition, the charge storage region is not limited to an insulating trap region such as silicon nitride, but may be a floating nonvolatile memory cell having a conductive charge storage region such as polysilicon. .
産業上の利用可能性  Industrial applicability
[0063] 本発明はフラッシュメモリ、更にはフラッシュメモリを搭載したマイクロコンピュータな どに広く適用することができる。 [0063] The present invention can be widely applied to a flash memory and a microcomputer equipped with the flash memory.

Claims

請求の範囲 The scope of the claims
[1] 電荷蓄積領域に対する電子の注入によって閾値電圧が高くされ、前記電荷蓄積領 域に対するホットホールの注入によって閾値電圧が低くされる不揮発性メモリセルを 複数個備え、  [1] comprising a plurality of nonvolatile memory cells whose threshold voltage is increased by injection of electrons into the charge storage region and whose threshold voltage is decreased by injection of hot holes into the charge storage region;
前記ホットホールの注入対象として選択された複数の不揮発性メモリセルに対して その一部ずつタイミングをずらしてホットホール注入用の高電圧パルスを印加する処 理を所望の閾値電圧になるまで複数回に分けて繰り返すことが可能な制御回路を有 し、  The process of applying a high voltage pulse for hot hole injection to a plurality of nonvolatile memory cells selected as the hot hole injection target is shifted several times until a desired threshold voltage is reached. Has a control circuit that can be divided into
前記制御回路は、前記タイミングをずらした複数の高電圧パルスをノンオーバーラ ップとするか又は部分的にオーバーラップとするかの選択が可能である不揮発性半 導体メモリ。  The control circuit is a non-volatile semiconductor memory capable of selecting whether the plurality of high voltage pulses with shifted timings are non-overlapping or partially overlapping.
[2] 前記制御回路は、前記高電圧パルスの部分的なオーバーラップの度合を選択可 能である請求項 1記載の不揮発性半導体メモリ。  2. The nonvolatile semiconductor memory according to claim 1, wherein the control circuit is capable of selecting a degree of partial overlap of the high voltage pulse.
[3] 前記制御回路は、複数回に分けて繰り返される最初の方のホットホール注入ではタ イミングをずらした高電圧パルスの印加をノンオーバーラップとし、複数回に分けて繰 り返される後の方のホットホール注入ではタイミングをずらした高電圧パルスの印加を 部分的にオーバーラップとする請求項 1記載の不揮発性半導体メモリ。  [3] In the first hot hole injection that is repeated in a plurality of times, the control circuit sets a non-overlapping application of a high-voltage pulse that is shifted in timing, and is repeated after a plurality of times. 2. The nonvolatile semiconductor memory according to claim 1, wherein in the hot hole injection, the application of a high voltage pulse with a shifted timing is partially overlapped.
[4] 前記制御回路は、不揮発性メモリセルの閾値電圧を低くするとき、不揮発性メモリ セルのチャネル領域から蓄積領域に向力う電界を形成した状態で、一方のソース'ド レイン電極端で発生するホットホールを蓄積領域に注入する請求項 1記載の不揮発 性半導体メモリ。  [4] When the threshold voltage of the non-volatile memory cell is lowered, the control circuit forms an electric field that is directed from the channel region of the non-volatile memory cell to the storage region, and at one end of the source drain electrode. 2. The nonvolatile semiconductor memory according to claim 1, wherein hot holes generated are injected into the storage region.
[5] 不揮発性半導体メモリを有する半導体装置であって、  [5] A semiconductor device having a nonvolatile semiconductor memory,
前記不揮発性半導体メモリは、ソース ·ドレイン領域に挟まれたチャネル形成領域 の上に夫々絶縁された電荷蓄積領域及びメモリゲート領域を有する不揮発性メモリ セルのアレイと、  The nonvolatile semiconductor memory includes an array of nonvolatile memory cells each having a charge storage region and a memory gate region insulated on a channel formation region sandwiched between source / drain regions, and
前記不揮発性メモリセルの一方のソース'ドレイン領域が結合された第 1配線と、 前記不揮発性メモリセルの他方のソース'ドレイン領域が結合された第 2配線と、 前記不揮発性メモリセルのメモリゲート領域が結合された第 3配線と、 前記不揮発性メモリセルの電荷蓄積領域に電子を注入して閾値電圧を高くする制 御を行うと共に、前記電荷蓄積領域にホットホールを注入して閾値電圧を低くする制 御を行う制御回路と、を備え、 A first wiring coupled to one source / drain region of the nonvolatile memory cell; a second wiring coupled to the other source / drain region of the nonvolatile memory cell; and a memory gate of the nonvolatile memory cell. A third wire with a combined region; A control circuit that performs control to inject electrons into the charge storage region of the nonvolatile memory cell to increase the threshold voltage, and controls to inject hot holes into the charge storage region to lower the threshold voltage; With
前記制御回路は、前記ホットホールの注入対象として選択された複数の不揮発性 メモリセルに対してその一部ずつタイミングをずらしてホットホール注入用の高電圧パ ルスを印加する処理を所望の閾値電圧になるまで複数回に分けて繰り返すことが可 能であって、前記タイミングをずらした複数の高電圧パルスをノンオーバーラップとす るか又は部分的にオーバーラップとするかの選択が可能である半導体装置。  The control circuit performs a process of applying a high voltage pulse for hot hole injection to a plurality of nonvolatile memory cells selected as the hot hole injection target by shifting a timing at a desired threshold voltage. It is possible to repeat a plurality of times until it reaches the end, and it is possible to select whether the plurality of high-voltage pulses with shifted timings are non-overlapping or partially overlapping Semiconductor device.
[6] 前記制御回路は、前記高電圧パルスの部分的なオーバーラップの度合を選択可 能である請求項 5記載の半導体装置。  6. The semiconductor device according to claim 5, wherein the control circuit is capable of selecting a degree of partial overlap of the high voltage pulse.
[7] 前記制御回路は、複数回に分けて繰り返される最初の方のホットホール注入ではタ イミングをずらした高電圧パルスの印加をノンオーバーラップとし、複数回に分けて繰 り返される後の方のホットホール注入ではタイミングをずらした高電圧パルスの印加を 部分的にオーバーラップとする請求項 5記載の半導体装置。 [7] In the first hot hole injection that is repeated in a plurality of times, the control circuit sets a non-overlapping application of a high voltage pulse with a shifted timing, and then repeats a plurality of times. 6. The semiconductor device according to claim 5, wherein in the hot hole injection, the application of a high voltage pulse with a shifted timing is partially overlapped.
[8] 前記制御回路は、不揮発性メモリセルの閾値電圧を低くするとき、不揮発性メモリ セルのチャネル領域から蓄積領域に向力う電界を形成した状態で、一方のソース'ド レイン電極端で発生するホットホールを蓄積領域に注入する請求項 5記載の半導体 装置。 [8] When the threshold voltage of the non-volatile memory cell is lowered, the control circuit forms an electric field that is directed from the channel region of the non-volatile memory cell to the storage region, and at one end of the source drain electrode. 6. The semiconductor device according to claim 5, wherein hot holes that are generated are injected into the storage region.
[9] 前記アレイには複数の不揮発性メモリセルがマトリクス配置され、  [9] A plurality of nonvolatile memory cells are arranged in a matrix in the array,
マトリクス配置された複数の不揮発性メモリセルは、行単位で第 1の配線を共有し、 列単位で第 2の配線を共有し、複数行単位で第 3の配線を共有し、  Multiple non-volatile memory cells arranged in a matrix share the first wiring in rows, share the second wiring in columns, share the third wiring in rows,
前記制御回路は、選択した第 3の配線に第 1の高電圧パルスを印加し、前記選択し た第 3の配線を共有する複数の不揮発性メモリセルに接続された第 1の配線に第 1の 配線相互間でタイミングをずらして第 2の高電圧パルスを印加する請求項 5記載の半 導体装置。  The control circuit applies a first high voltage pulse to the selected third wiring, and the first wiring is connected to the first wiring connected to the plurality of nonvolatile memory cells sharing the selected third wiring. 6. The semiconductor device according to claim 5, wherein the second high voltage pulse is applied while shifting the timing between the wirings.
[10] 前記制御回路は、前記第 3の配線を共有する複数行の不揮発性メモリセルに係る 複数の第 1の配線を選択するための複数の選択信号を形成するカウンタ回路と、前 記複数の選択信号の変化タイミングを制御するカウンタ制御回路とを有し、 前記カウンタ回路は、シフトクロックの変化に同期してシフト動作を行う複数の記憶 段を直列に有し、前記複数の記憶段の出力が前記複数の選択信号とされ、 前記カウンタ制御回路は、前記カウンタ回路の初段に供給するパルスを生成する パルス生成回路と、前記パルス生成回路で生成するパルスの幅を選択可能とするパ ルス幅選択回路と、前記シフトクロックの周期選択によって前記パルスのシフト量を可 変とするシフト量選択回路と、を有する請求項 9記載の半導体装置。 [10] The control circuit includes: a counter circuit that forms a plurality of selection signals for selecting a plurality of first wirings related to a plurality of rows of nonvolatile memory cells sharing the third wiring; And a counter control circuit for controlling the change timing of the selection signal of The counter circuit includes a plurality of storage stages that perform a shift operation in synchronization with a change of a shift clock in series, and outputs of the plurality of storage stages serve as the plurality of selection signals. The counter control circuit includes: A pulse generation circuit that generates a pulse to be supplied to the first stage of the counter circuit; a pulse width selection circuit that enables selection of a pulse width generated by the pulse generation circuit; and a shift amount of the pulse by selecting a period of the shift clock. 10. A semiconductor device according to claim 9, further comprising a shift amount selection circuit that makes the variable variable.
[11] 前記不揮発性メモリセルは、前記第 2の配線が接続されるソース ·ドレイン領域側の 前記チャネル形成領域上に絶縁膜を介して選択ゲート領域が形成され、選択ゲート 領域と前記メモリゲート領域が分離されたスプリットゲート構造を有する請求項 9記載 の半導体装置。 [11] In the nonvolatile memory cell, a selection gate region is formed on the channel formation region on the source / drain region side to which the second wiring is connected via an insulating film, and the selection gate region and the memory gate 10. The semiconductor device according to claim 9, wherein the semiconductor device has a split gate structure in which regions are separated.
[12] 前記選択ゲート領域力 見たゲート耐圧は前記メモリゲート領域力 見たゲート耐 圧よりも低い請求項 11記載の半導体装置。  12. The semiconductor device according to claim 11, wherein the gate breakdown voltage seen from the selection gate region force is lower than the gate breakdown voltage seen from the memory gate region force.
[13] 前記不揮発性半導体メモリをアクセス制御するコントローラを更に有し、前記選択ゲ ート領域力 見たゲート耐圧は前記コントローラを構成するゲート絶縁型の電界効果 トランジスタのゲート耐圧と同じである請求項 12記載の半導体装置。  [13] The apparatus further includes a controller that controls access to the nonvolatile semiconductor memory, and the gate breakdown voltage in terms of the selective gate region force is the same as the gate breakdown voltage of the gate insulating field effect transistor that constitutes the controller. Item 13. A semiconductor device according to Item 12.
PCT/JP2005/002006 2005-02-10 2005-02-10 Non-volatile semiconductor memory and semiconductor device WO2006085373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007502516A JP4683494B2 (en) 2005-02-10 2005-02-10 Nonvolatile semiconductor memory and semiconductor device
PCT/JP2005/002006 WO2006085373A1 (en) 2005-02-10 2005-02-10 Non-volatile semiconductor memory and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002006 WO2006085373A1 (en) 2005-02-10 2005-02-10 Non-volatile semiconductor memory and semiconductor device

Publications (1)

Publication Number Publication Date
WO2006085373A1 true WO2006085373A1 (en) 2006-08-17

Family

ID=36792948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002006 WO2006085373A1 (en) 2005-02-10 2005-02-10 Non-volatile semiconductor memory and semiconductor device

Country Status (2)

Country Link
JP (1) JP4683494B2 (en)
WO (1) WO2006085373A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041613A1 (en) * 2006-09-29 2008-04-10 Fujitsu Microelectronics Limited Nonvolatile semiconductor storage device
WO2008041306A1 (en) * 2006-09-29 2008-04-10 Fujitsu Microelectronics Limited Nonvolatile semiconductor storage apparatus, reading method thereof, writing method thereof and erasing method thereof
JP2008226332A (en) * 2007-03-12 2008-09-25 Renesas Technology Corp Nonvolatile semiconductor memory
JPWO2008041613A1 (en) * 2006-09-29 2010-02-04 富士通マイクロエレクトロニクス株式会社 Nonvolatile semiconductor memory device
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
CN113129983A (en) * 2019-12-31 2021-07-16 杭州海康存储科技有限公司 Method, apparatus and computer storage medium for calibrating threshold voltage set

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260073A (en) * 1998-03-11 1999-09-24 Matsushita Electric Ind Co Ltd Semiconductor memory device and data erase method in semiconductor memory device
JPH11353886A (en) * 1998-06-03 1999-12-24 Toshiba Corp Nonvolatile semiconductor memory
WO2003012878A1 (en) * 2001-07-27 2003-02-13 Renesas Technology Corp. Semiconductor device
JP2004533697A (en) * 2001-03-30 2004-11-04 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド I / O splitting system and method for reducing interband tunnel current during erase

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594626B2 (en) * 1993-03-04 2004-12-02 株式会社ルネサステクノロジ Non-volatile memory device
JP4601287B2 (en) * 2002-12-26 2010-12-22 ルネサスエレクトロニクス株式会社 Nonvolatile semiconductor memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260073A (en) * 1998-03-11 1999-09-24 Matsushita Electric Ind Co Ltd Semiconductor memory device and data erase method in semiconductor memory device
JPH11353886A (en) * 1998-06-03 1999-12-24 Toshiba Corp Nonvolatile semiconductor memory
JP2004533697A (en) * 2001-03-30 2004-11-04 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド I / O splitting system and method for reducing interband tunnel current during erase
WO2003012878A1 (en) * 2001-07-27 2003-02-13 Renesas Technology Corp. Semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014198B2 (en) 2006-09-29 2011-09-06 Fujitsu Semiconductor Limited Nonvolatile semiconductor memory device
US8400828B2 (en) 2006-09-29 2013-03-19 Fujitsu Semiconductor Limited Nonvolatile semiconductor memory device
WO2008041613A1 (en) * 2006-09-29 2008-04-10 Fujitsu Microelectronics Limited Nonvolatile semiconductor storage device
US8089808B2 (en) 2006-09-29 2012-01-03 Fujitsu Semiconductor Limited Nonvolatile semiconductor memory device, and reading method, writing method and erasing method of nonvolatile semiconductor memory device
JPWO2008041306A1 (en) * 2006-09-29 2010-01-28 富士通マイクロエレクトロニクス株式会社 Nonvolatile semiconductor memory device and read method, write method, and erase method thereof
JPWO2008041613A1 (en) * 2006-09-29 2010-02-04 富士通マイクロエレクトロニクス株式会社 Nonvolatile semiconductor memory device
KR101043980B1 (en) * 2006-09-29 2011-06-24 후지쯔 세미컨덕터 가부시키가이샤 Nonvolatile semiconductor storage apparatus, reading method thereof, writing method thereof and erasing method thereof
KR101045256B1 (en) * 2006-09-29 2011-06-29 후지쯔 세미컨덕터 가부시키가이샤 Nonvolatile semiconductor storage device
WO2008041303A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Nonvolatile semiconductor storage apparatus, reading method thereof, writing method thereof and erasing method thereof
US8503234B2 (en) 2006-09-29 2013-08-06 Fujitsu Semiconductor Limited Nonvolatile semiconductor memory device
CN101517653B (en) * 2006-09-29 2013-07-03 富士通半导体股份有限公司 Nonvolatile semiconductor storage device
JP4985648B2 (en) * 2006-09-29 2012-07-25 富士通セミコンダクター株式会社 Nonvolatile semiconductor memory device and read method, write method, and erase method thereof
JP5126063B2 (en) * 2006-09-29 2013-01-23 富士通セミコンダクター株式会社 Nonvolatile semiconductor memory device
WO2008041306A1 (en) * 2006-09-29 2008-04-10 Fujitsu Microelectronics Limited Nonvolatile semiconductor storage apparatus, reading method thereof, writing method thereof and erasing method thereof
JP2008226332A (en) * 2007-03-12 2008-09-25 Renesas Technology Corp Nonvolatile semiconductor memory
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
US9030877B2 (en) 2007-08-30 2015-05-12 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
CN113129983B (en) * 2019-12-31 2022-09-06 杭州海康存储科技有限公司 Method and device for calibrating threshold voltage group and computer storage medium
CN113129983A (en) * 2019-12-31 2021-07-16 杭州海康存储科技有限公司 Method, apparatus and computer storage medium for calibrating threshold voltage set

Also Published As

Publication number Publication date
JPWO2006085373A1 (en) 2008-06-26
JP4683494B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US7110295B2 (en) Semiconductor data processing device
US8243517B2 (en) Nonvolatile semiconductor memory, method for reading out thereof, and memory card
US10127985B2 (en) Semiconductor memory device
JP3626221B2 (en) Nonvolatile semiconductor memory device
JP3730508B2 (en) Semiconductor memory device and operation method thereof
US7379335B2 (en) Nonvolatile semiconductor memory device and a method for programming NAND type flash memory
JP4683494B2 (en) Nonvolatile semiconductor memory and semiconductor device
JP2010514196A (en) 2TNOR type nonvolatile memory cell array and data processing method for 2TNOR type nonvolatile memory
JP5305856B2 (en) Nonvolatile semiconductor memory
US6785182B2 (en) Nonvolatile semiconductor memory device
KR100338548B1 (en) A circuit for boosting of semiconductor memory device
JP3410747B2 (en) Nonvolatile semiconductor memory device
JP3914340B2 (en) Flash memory device
US7436714B2 (en) Nonvolatile semiconductor memory
US20090052259A1 (en) Non-volatile semiconductor memory device
US8824206B2 (en) Non-volatile semiconductor memory device and readout method thereof
US7933150B2 (en) Nonvolatile semiconductor memory device and programming method thereof
JP3978062B2 (en) Method of applying voltage to semiconductor memory element and semiconductor memory device
JP2009076188A (en) Nonvolatile semiconductor memory
JPH0528778A (en) Nonvolatile semiconductor memory
JP2002133881A (en) Non-volatile semiconductor memory and erasing method of its storage
JP2009301703A (en) Semiconductor device
JP3114797B2 (en) Nonvolatile semiconductor memory device
JPH0877786A (en) Nonvolatile semiconductor storage device
KR100908537B1 (en) High voltage providing device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502516

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05710058

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5710058

Country of ref document: EP