WO2006085626A1 - Exposure method and system, and method for fabricating device - Google Patents

Exposure method and system, and method for fabricating device Download PDF

Info

Publication number
WO2006085626A1
WO2006085626A1 PCT/JP2006/302389 JP2006302389W WO2006085626A1 WO 2006085626 A1 WO2006085626 A1 WO 2006085626A1 JP 2006302389 W JP2006302389 W JP 2006302389W WO 2006085626 A1 WO2006085626 A1 WO 2006085626A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
reticle
illumination
area
wafer
Prior art date
Application number
PCT/JP2006/302389
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Motegi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007502664A priority Critical patent/JPWO2006085626A1/en
Publication of WO2006085626A1 publication Critical patent/WO2006085626A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane

Definitions

  • the present invention relates to an exposure technique for exposing an object with an exposure beam. More specifically, for example, various devices such as a semiconductor element, a liquid crystal display element, an imaging element (CCD, etc.), and a thin film magnetic head are manufactured.
  • the present invention relates to an exposure technique used to transfer a mask pattern onto a substrate during a photolithography process.
  • a circuit pattern formed on a reticle (or photomask) as a mask is exposed to light as a substrate via a projection optical system.
  • a projection exposure apparatus that projects onto a wafer or glass plate coated with a material (photoresist etc.) is used.
  • a step-and-repeat-type static exposure type (collective exposure type) exposure apparatus for example, a so-called stepper
  • a step-and-scan type scan exposure type exposure apparatus for example, W Yuru Scanning (Stepa) etc.
  • the integrated exposure amount (integrated exposure energy) for each point in each shot area of a wafer is within an appropriate range.
  • the exposure dose control method is the basic regardless of whether a continuous light source such as an ultra-high pressure mercury lamp or a pulsed laser light source such as an excimer laser light source is used as the exposure light source. In particular, cut-off control was employed.
  • a portion of the exposure light is split and guided to a photoelectric detector called an integrator sensor during exposure light irradiation to the wafer coated with the photosensitive material, and indirectly via this integrator sensor.
  • the amount of exposure on the wafer is detected, and laser emission is continued until the integrated value of the detection result exceeds a predetermined level (critical level) corresponding to the integrated exposure amount required for the photosensitive material.
  • Control is performed. Specifically, if the exposure light is continuous light, the exposure light path is changed to the shirt when the integrated exposure exceeds the critical level. When closed with a button, control is performed.
  • the first control method is a method in which the amount of light from each pulse illumination light is simply integrated to control the exposure amount (open exposure amount control method). It was.
  • a second control method for example, as disclosed in Japanese Patent Laid-Open No. 6-252022, a slit-shaped exposure region on a wafer (a region conjugate to a slit-shaped illumination region on a reticle).
  • the integrated exposure amount is measured in real time for each pulse illumination light, and the target energy of the next pulse illumination light is determined based on the integrated exposure amount.
  • a control method exposure control method for each pulse is also used.
  • the processes such as oxidation of the wafer surface (wafer surface), formation of an insulating film, electrode deposition, ion implantation, exposure, and etching are repeated many times.
  • a circuit pattern is formed.
  • the wafer size increases from 6 inches (150 mm) to 8 inches (200 mm), and further to 12 inches (300 mm)
  • the coating thickness of the photosensitive material is not uniform within the wafer surface. It may become. Further, even in the stage of developing the photosensitive material on the exposed wafer, a difference in development characteristics may occur depending on the location on the wafer surface.
  • the integrated exposure amount at each point in each shot area on the wafer is an integrated value of illuminance in the scanning direction (short direction) of the slit-shaped illumination area. Therefore, in order to control the integrated exposure amount at each point on the wafer, an exposure apparatus has been proposed in which the width in the scanning direction of the illumination area is variable by a mechanical mechanism for each of a plurality of positions in the non-scanning direction.
  • Patent Document 1 Japanese Patent No. 3093528
  • Patent Document 2 JP-A-10-340854
  • System LSIs have a structure in which single-function circuits are packed according to the application.
  • a logic circuit and a memory circuit can be included in one chip, and a chip having both characteristics of logic and a memory such as DRAM, SRAM, and NVRAM (Non-Volatile RAM) can be manufactured.
  • NVRAM Non-Volatile RAM
  • Patent Document 2 in which the width in the scanning direction of the illumination region is variable by a mechanical mechanism for each position in the non-scanning direction.
  • the mechanical mechanism because of the mechanical mechanism, it is difficult to change the width of the illumination area at high speed during stepping movement between shot areas or during exposure of one shot area.
  • a first object of the present invention is to provide an exposure technique capable of improving the line width uniformity of an image of a pattern exposed on an object such as a substrate.
  • a second object of the present invention is to provide an exposure technique capable of improving the line width uniformity of an image of a pattern exposed on an object such as a substrate when performing scanning exposure.
  • Another object of the present invention is to provide a device manufacturing technique using such an exposure technique.
  • An exposure apparatus is an exposure apparatus that exposes an object with an exposure beam from a light source, and includes a plurality of reflective elements each capable of controlling the reflection direction of the exposure beam, and the exposure on the object.
  • a reflection element array arranged between the light source and the object for adjusting the illuminance distribution in the illumination area of the beam, and a storage device storing exposure amount control data for controlling the exposure amount for the object; And a control device for controlling the reflective element array based on the exposure amount control data stored in the storage device.
  • the illuminance distribution of the illumination area on the object can be controlled by independently controlling the reflection direction of the exposure beam by the individual reflecting elements of the reflecting element array. Therefore, since exposure can be performed with an optimum exposure amount for each of a plurality of local regions in the illumination region, the line width uniformity of the pattern image exposed on the object can be improved.
  • the illuminance distribution in the illumination area of the exposure beam on the pattern is controlled.
  • the illuminance distribution in the illumination area of the exposure beam on the pattern is controlled.
  • the reflective element that illuminates the local region is controlled, and thereafter, the local exposure is controlled.
  • the area should not be illuminated by the exposure beam. This makes it possible to perform exposure with an optimum exposure amount for each local region on the object.
  • the reflective element array also has a digital micromirror device (DMD) force.
  • DMD digital micromirror device
  • Digital micromirror devices have hundreds of thousands to hundreds of minute reflective elements that can electrically control the tilt angle independently on a substrate such as silicon. About one million pieces are laid in a matrix.
  • a digital micromirror device which is currently used for projectors, for example, can be used.
  • each of the reflecting elements constituting the reflecting element array reflects the exposure beam in the first and second reflection directions so that the exposure beam from the light source is reflected.
  • a beam splitter that leads to the reflective element array and a diaphragm member that shields the exposure beam reflected in the second reflection direction may be further provided.
  • irradiation or non-irradiation of the exposure beam from each reflecting element can be switched by switching the reflecting direction of each reflecting element to the first or second reflecting direction. Therefore, the local illuminance distribution on the object can be controlled at high speed with a simple configuration.
  • the exposure amount control data may be set so that the line width distribution of the pattern image formed on the object has a predetermined distribution. Thereby, the line width uniformity of the pattern image can be further improved.
  • the exposure amount control data includes at least one of nonuniformity in the coating thickness of the photoconductor and nonuniformity in development characteristics depending on the position on the substrate. May be set so as to correct. As a result, it is possible to improve the deterioration of the line width uniformity due to uneven coating thickness or development characteristics of the photoreceptor.
  • the reflective element array is disposed at a position that is substantially shared with the object between the light source and the object, or at a position that is offset by a predetermined amount of this conjugate power. Can do.
  • the reflective element array is placed at a substantially conjugate position, the illuminance distribution on the object is determined according to the distribution in the reflection direction of the exposure beam of the reflective element array, so the illuminance distribution can be easily controlled.
  • the reflective element array is shifted by a predetermined amount of its substantially conjugate positional force, the image of the boundary of each reflective element in the reflective element array is not projected onto the object, reducing illuminance unevenness. It may be done.
  • the image processing apparatus further includes an arithmetic unit that calculates an integrated exposure amount of the exposure beam for the object during the exposure of the object, and the control unit includes an integration unit that is calculated by the arithmetic unit.
  • the reflective element array may be controlled based on the exposure amount and the exposure amount control data. Thereby, the integrated exposure amount on the object can be controlled with high accuracy.
  • the exposure apparatus is a scanning exposure type that moves the object relative to the exposure beam during the exposure of the object.
  • the exposure apparatus when the exposure apparatus is of a scanning exposure type, the exposure apparatus further includes a position detection device that measures position information of the object in the scanning direction, and the control device is obtained by the position detection device.
  • the reflective element array may be controlled based on the position information and the exposure amount control data.
  • the exposure amount control data may be set such that the integrated light amount in the scanning direction of the illumination area of the exposure beam is substantially uniform in the non-scanning direction orthogonal to the scanning direction. . In this case, the distribution of the integrated exposure amount on the object after scanning exposure becomes uniform.
  • the exposure control data can also be set so that the distribution of the integrated light quantity in the non-scanning direction becomes non-uniform.
  • the reflective element array includes a plurality of reflective elements arranged in one or more lines in a region corresponding to a predetermined location in the scanning direction of the illumination region of the exposure beam.
  • the one or a plurality of reflecting elements arranged in a line are arranged substantially in parallel in the non-scanning direction orthogonal to the scanning direction of the object, for example.
  • control device may control the width of the exposure beam in the scanning direction in the scanning direction by controlling the reflective element array.
  • the width of the illumination area can be controlled with high reproducibility at a high speed and with a fine pitch compared to, for example, mechanically controlling the width of the field stop of the illumination optical system.
  • the distribution of integrated exposure can be controlled with high accuracy.
  • the exposure amount control data may be set for each of a plurality of partitioned areas on the object. Thereby, for example, even when the optimal exposure amount distribution differs for each of the plurality of partitioned regions on the object, the distribution of the exposure amount can be optimized for each partitioned region.
  • an exposure method according to the present invention is an exposure method for irradiating an object with an exposure beam from a light source to expose the object, and for each of a plurality of partitioned regions on the object. Is positioned between the light source and the object, and the reflection direction of the exposure beam can be controlled respectively. And a second step of controlling the illuminance distribution in the illumination area of the exposure beam on the object based on the exposure amount control data using a reflective element array including a plurality of reflective elements.
  • the reflection direction of the exposure beam by the individual reflecting elements of the reflecting element array is controlled independently of each other, so that it is optimal for each of a plurality of local areas in the illumination area.
  • the exposure can be performed with a proper illuminance distribution. Accordingly, it is possible to improve the line width uniformity of the pattern image exposed on the object.
  • the device manufacturing method according to the present invention uses the exposure apparatus or exposure method of the present invention.
  • the present invention it is possible to improve the line width uniformity of a pattern image exposed on an object, so that a device having a configuration in which a plurality of circuits having different functions are combined like a system LSI can be manufactured with high accuracy.
  • exposure can be performed with an optimal exposure amount for each local region on the object.
  • FIG. 1 is a view showing a schematic configuration of a projection exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view showing an exposure amount map on a reticle of the first embodiment.
  • FIG. 3 is a view showing a reflection surface of DMD 128 in FIG. 1 corresponding to the exposure amount map in FIG.
  • FIG. 4A is a diagram showing an example of an illuminance distribution in an exposure area on a wafer
  • FIG. 4B is a diagram showing a corrected exposure dose map for correcting the illuminance distribution in FIG. 4A.
  • FIG. 5 (a) is a diagram showing the exposure dose distribution to be corrected on the wafer due to the resist process, and (b) is a diagram showing a corrected exposure dose map on the reticle corresponding to FIG. 5 (a). .
  • FIG. 6 (a) is a diagram showing an example of a change in integrated exposure amount of the first embodiment, and (b) is a diagram showing a change in energy per unit time corresponding to FIG. 6 (a). 7]
  • FIG. 7 is a view showing a schematic configuration of a projection exposure apparatus according to a second embodiment of the present invention.
  • FIG. 8 is a perspective view showing an optical path from the reflecting mirror 11 to the reticle R in FIG.
  • FIG. 9 is a perspective view showing a configuration of mirror element portions Dl and D2 of the reflecting mirror 11 of FIG.
  • FIG. 10 is a view showing an exposure amount map on a reticle R of a second embodiment.
  • FIG. 11 is a plan view showing a change in relative position between reticle R and illumination area 42R in FIG.
  • FIG. 12 Each mirror element of mirror element portion D1 of reflecting mirror 11 in FIG. 7 at time t in FIG.
  • FIG. 13 Each mirror element of mirror element section D1 of reflecting mirror 11 in FIG. 7 at time t in FIG.
  • FIG. 11 is a perspective view showing an ON or OFF state of each mirror element of the mirror element part D1 of the mirror 11.
  • FIG. 15 (a) is a diagram showing the exposure dose distribution to be corrected on the wafer due to the resist process, and (b) is a diagram showing a corrected exposure dose map on the shot region corresponding to FIG. 15 (a). is there.
  • FIG. 16 (a) is a diagram showing an example of the illuminance distribution of the exposure area on the wafer during scanning exposure, and (b) is the integrated exposure in the non-scanning direction after scanning exposure with the illuminance distribution of FIG. 16 (a). It is a figure which shows quantity distribution.
  • FIG. 17 (a) is a diagram showing an example of the illuminance distribution when the width of the exposure area on the wafer during scanning exposure is controlled, and (b) is a diagram after scanning exposure with the illuminance distribution of Fig. 17 (a). It is a figure which shows the integrated exposure amount distribution of a non-scanning direction.
  • FIG. 18 is a diagram showing a schematic configuration of a projection exposure apparatus according to a modification of the second embodiment.
  • FIG. 19 is a perspective view showing an optical path from reflection mirror 11 to reticle R in FIG.
  • FIG. 20 (a) is a diagram showing the illuminance distribution in the scanning direction of the illumination area 42R when all the mirror element portions D3 are turned on in the projection exposure apparatus of FIG. 18, and FIG. 20 (b) is the projection exposure of FIG.
  • FIG. 6 is a diagram showing an illumination distribution in the scanning direction of an illumination region 42R when all the mirror element portions D3 are turned off in the apparatus.
  • a preferred first embodiment of the present invention will be described below with reference to FIGS.
  • the present invention is applied to the case where exposure is performed by a projection exposure apparatus comprising a strobe as a batch exposure type exposure apparatus.
  • FIG. 1 shows a schematic configuration of the projection exposure apparatus of this example.
  • a mercury lamp 101 is used as a light source for exposure.
  • exposure light sources include excimer lasers such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm), and F lasers (wavelength 157 ⁇ ).
  • Illumination light IL as an exposure beam from the mercury lamp 101 is collected by an elliptic mirror 102, and then includes a condensing optical system 103a and an optical filter 103b for selecting light in a desired wavelength band (for example, i-line). It reaches the shirt 104 through the optical filter system 103.
  • the shatter 104 is opened and closed by the shatter control mechanism 105 based on a command from the timer control system 106.
  • the illumination light IL becomes a substantially parallel light beam through the input lens 107 and enters the fly-eye lens 108 as an optical integrator (unifomizer or homogenizer).
  • a large number of secondary light source images are formed on the exit surface of the fly-eye lens 108 (the pupil plane of the illumination optical system), and the illuminance distribution of the illumination light IL that illuminates the reticle 119 is thereby flattened.
  • the illumination light IL that has passed through the fly-eye lens 108 enters the beam splitter 109 having a reflectivity of about 98%.
  • Illumination light IL reflected by the beam splitter 109 is reflected by the first relay lens 113.
  • the illumination blind (variable field stop) 114 whose aperture shape is controlled by the blind drive system 115 is limited to a light beam that illuminates a predetermined variable illumination area.
  • a main control system 125 that controls the operation of the entire apparatus controls the shape of the opening of the illumination blind 114 and the shape of the illumination area on the reticle 119 via the blind drive system 115.
  • Illumination light passing through illumination blind 114 IL force Reflection of digital micromirror device (hereinafter referred to as DMD) 128 as a reflective element array via second relay lens 116, beam splitter 126, and condenser lens 127 Illuminate the surface with a uniform illumination distribution.
  • the DMD128 includes a number of mirror elements as minute reflective elements with variable tilt angles of the reflective surface.
  • the reflective surface of the DMD128 includes the pattern surface (pattern forming surface) of the reticle 119 as a mask. It is in a conjugate position.
  • the main control system 125 independently controls the tilt angles of the reflecting surfaces of the individual mirror elements of the DMD 128 via the DMD driving device 131 (control device).
  • the reflected light from the DMD 128 passes through the condenser lens 127 and the beam splitter 126 again and is incident on the light shield 129 having a circular opening 129a formed at the center as a diaphragm member.
  • an absorber that absorbs light may be used instead of the light shield 129.
  • Many mirror element forces of DMD128 Illumination light IL reflected in a predetermined direction passes through aperture 1 29a of light shield 129 and then passes through condenser lens 118 to pattern in the illumination area of the pattern surface of reticle 119. Illuminate.
  • At least a part of a light source device for exposure is configured including a mercury lamp 101, an elliptical mirror 102, and a condensing filter system 103, and includes a shirter 104, an input lens 107, a fly-eye lens 108, a beam splitter 109, At least one of the illumination optical system including the first relay lens 113, the illumination blind (variable field stop) 114, the second relay lens 116, the beam splitter 126, the condenser lens 127, the DMD1 28, the light shield 129, and the condenser lens 118.
  • the part is composed.
  • the pattern in the illumination area of reticle 119 is projected on both sides (or one side) through telecentric projection optical system 120 (for example, 1Z4, 1Z5, etc.)
  • projection exposure is performed on an exposure region on one shot region of the wafer 121 coated with a photoresist (photosensitive material or photosensitive material) as a substrate.
  • the surface of wafer 121 is Each is divided into a number of rectangular shot areas (partition areas) onto which the pattern image of the reticle 119 is transferred.
  • the illumination area on reticle 119 and the exposure area on wafer 121 are shared, and the exposure area on wafer 121 can also be regarded as the illumination area.
  • the wafer 121 is a disk-shaped substrate having a diameter of about 200 to 300 mm, such as a semiconductor (silicon etc.) or SOI (silicon on insulator).
  • the distribution of reflected light of illumination light IL by each mirror element constituting DMD128 is as follows. This corresponds almost directly to the illumination distribution of the illumination area of the reticle 119 (or the exposure area on the wafer 121).
  • the reflective surface of the DMD128 is moved over the reticle 119. Place yourself at a position that deviates from the position conjugate with the pattern surface by a predetermined amount (in this case, until the illuminance distribution falls within the allowable range).
  • the illumination light transmitted through the beam splitter 109 is incident on an integrator sensor 111, which is a photoelectric conversion optical sensor, via a condenser lens 110, and this output signal is an illuminance calculation system 112.
  • the integrator sensor 111 is at a position substantially conjugate with the pattern surface of the reticle 119.
  • the conversion coefficient between the exposure energy per unit time on the wafer 121 and the illuminance on the integrator sensor 111 is calculated in advance. It is stored in the illuminance calculation system 112.
  • the exposure energy (illuminance) per unit time on the wafer 121 is obtained by multiplying the output signal of the integrator sensor 111 by the conversion factor.
  • the obtained exposure energy per unit time is supplied to the main control system 125 (arithmetic unit for obtaining the integrated exposure amount).
  • the exposure time obtained by dividing the appropriate exposure amount on the wafer 121 (photoresist) by the exposure energy per unit time at the time of exposure is input to the timer control system 106.
  • the timer control system 106 can control the exposure amount on the wafer 121 by opening the shirter 104 for the exposure time as an example.
  • each mirror element is controlled.
  • the exposure time (integrated exposure) for each illumination light reflected by each mirror element can be controlled.
  • the exposure energy E per unit time on the wafer 121 can be determined by measuring the average exposure energy reaching the image plane side of the projection optical system PL before starting the exposure of the wafer 121. Further, in this example, the exposure time ti is supplied to the longest time ti force timer control system 106, and the shirter 104 is closed when the maximum exposure time ti has elapsed max max.
  • the main control system 125 controls the tilt angle of each mirror element of the DMD 128 based on the integrated value of the exposure energy ⁇ per unit time measured via the integrator sensor 111, and thereby controls each partial region PTi.
  • the exposure time is controlled for each partial area PTi so that the integrated exposure amount becomes the appropriate exposure amount Pi.
  • the appropriate exposure amount Pi for each partial region PTi on the reticle 119 is stored in advance in the storage device 130 connected to the main control system 125 as exposure amount map information.
  • the exposure map information is created based on the measurement result obtained by transferring the pattern on reticle 119 onto a test wafer, measuring the test wafer, the line width of the pattern image formed on the test wafer, and the like. This is data obtained so that each pattern has a desired line width in the shot area (first step).
  • a correction map is also stored that includes a corrected exposure that is added to the integrated exposure (or subtracted if the value is negative) to correct changes in the line width of subsequent patterns.
  • the correction map may be set for each partial area obtained by further dividing each force shot area that is set for each shot area on the wafer 121.
  • the main control system 125 adjusts the illumination light IL in order to obtain a desired distribution of the integrated exposure amount of each shot area on the wafer 121 based on the exposure amount map and the correction map stored in the storage device 130.
  • Control irradiation As an example, during the exposure of each shot area, each partial area is subjected to exposure so that the distribution of accumulated exposure obtained by adding the exposure determined by the correction map to the appropriate exposure determined by the exposure map described above.
  • the illuminance distribution of the illumination light IL is controlled (second step).
  • the control of the illuminance distribution includes at least one of the control of the illuminance distribution in the illumination area on the reticle 119 and the control of the illuminance distribution in the shot area on the wafer 121.
  • the Z-axis is taken in parallel to the optical axis AX of the projection optical system 120
  • the X-axis is taken in a direction perpendicular to the paper surface of FIG. 1 in a plane perpendicular to the Z-axis, and parallel to the paper surface of FIG.
  • reticle 119 is held by suction on reticle stage 132, and reticle stage 132 positions reticle 119 in the XY plane on a reticle base (not shown).
  • a laser interferometer system (not shown) for measuring the position of reticle stage 132 in the XY plane is also provided.
  • Ueno 121 is sucked onto wafer stage 133 via a wafer holder (not shown).
  • the wafer stage 133 is stepped in the X and Y directions within the XY plane on the wafer base 134 to position the wafer 121.
  • a laser interferometer system (not shown) for measuring the position of the wafer stage 133 in the XY plane is also provided.
  • the main control system 125 performs positioning of the reticle stage 132 and step movement of the wafer stage 133 based on the measurement values of these laser interferometer systems.
  • a reticle alignment microscope (not shown) for aligning the reticle 119 and an alignment sensor (not shown) for aligning the wafer 121 are also provided.
  • illumination light IL is irradiated onto reticle 119, and the pattern of reticle 119 is transferred onto one shot area on wafer 121 via projection optical system 120, and the wafer.
  • the operation of moving the next shot area on the wafer 121 to the exposure area of the projection optical system 120 by driving the stage 133 and moving the wafer 121 stepwise in the X and Y directions is repeated.
  • the integrated exposure amount in each shot area can be set to a desired distribution.
  • DMD128 digital microphone aperture mirror device
  • the DMD 128 has hundreds of thousands of minute mirror elements (reflective elements) that can electrically control the tilt angle of the reflecting surface independently of each other at predetermined pitches in the X and Y directions on the lower surface of the silicon substrate. ⁇ It is made up of several million pieces.
  • the illumination area on the reticle 119 is divided into a number of minute parts in the X and Y directions, and the mirror elements are irradiated so that illumination light from the corresponding mirror elements of the DMD128 is irradiated to each minute part. Are arranged in a matrix.
  • each mirror element changes its tilt angle by about ⁇ 12 °.
  • the tilt angles of + 12 ° and 12 ° correspond to the on and off states, respectively.
  • Each mirror element can be switched on and off at a cycle of thousands of cycles per second by digital control.
  • each mirror element is irradiated with light of sufficient light source power, for example, the light reflected by the mirror element at 12 ° (off state) is absorbed by the light absorbing plate arranged separately, and + 12 ° (on state).
  • the light reflected by the mirror element is applied to the screen through the projection lens. Then, the density of the projected image can be expressed by controlling the number of on / off times of a large number of mirror elements on the DMD.
  • the DMD is used to irradiate a reticle 119 instead of the screen.
  • Currently available DMDs have 720 x 1280 mirror elements, so if the shot area on the wafer (shot size) is 20 x 35 mm 2 , each mirror The illumination light from the element is equivalent to irradiating a 28 m square area.
  • the DMD 128 used in this example has an overall reflecting surface that is substantially perpendicular to the optical axis AX of the projection optical system 120.
  • each reflecting surface of each mirror element is It is desirable to tilt at 0 ° parallel to the plane perpendicular to the optical axis AX in the on state and to 12 ° or 112 ° relative to the plane perpendicular to the optical axis AX in the off state.
  • the illumination light IL reflected by the on-state mirror element in the DMD 128 is reflected in the first direction, passes through the opening 129a of the light shield 129, and corresponds to the illumination area of the reticle 119. Illuminate the part.
  • the illumination light IL reflected by the off-state mirror element in the DMD 128 is reflected in the second direction, is shielded by the light shield 129, and is not irradiated to the reticle 119.
  • the DMD driving device 131 switches each mirror element in the DMD 128 on and off.
  • the exposure amount control operation of this example will be specifically described.
  • the pattern area PA of reticle 119 is formed with several different types of circuits (three types in Fig. 2) and different pattern characteristics divided into partial areas PT1, PT2, and PT3.
  • the appropriate exposure amount for each partial area is set to Dosel, Dose2, and Dose3.
  • the appropriate exposure amount corresponds to the appropriate exposure amount Pi of each partial region PTi described above.
  • the exposure time for the partial areas PT1 to PT3 for obtaining the appropriate exposure amount is obtained by dividing the appropriate exposure amount Dose 1 to Dose 3 by the exposure energy ⁇ ⁇ per unit time, respectively.
  • the size of the appropriate exposure is Assume that you are in charge.
  • the largest dose 3 is used as the appropriate exposure amount for determining the upper limit of the exposure time when the wafer 121 is exposed via the reticle 119 of FIG. That is, the exposure time t3 corresponding to Dose3 is supplied in advance from the main control system 125 to the timer control system 106, and the shirter 104 is closed when the elapsed time corresponding to the exposure start force of each shot area reaches t3.
  • FIG. 3 shows partial regions MD1, MD2, and MD3 on DMD 128 corresponding to partial regions PT1 to PT3 of reticle 119 in FIG. Note that the arrangement shown in FIG. 3 is reversed with respect to the arrangement shown in FIG. 2 by the imaging optical system including the condenser lenses 127 and 118 shown in FIG. In the explanation of this example, for the sake of simplicity, the power to be divided into three partial areas is not limited to this. In principle, illumination is performed with the number of mirror elements constituting the DMD 128 as the upper limit. It is possible to divide the region.
  • DMD 128 in FIG. 1 Prior to exposure, all mirror elements of DMD128 are in the ON state (no tilt), and the reflected light is ready to illuminate all pattern areas of reticle 119 (assuming they match the illumination area). ing. Since an area on the wafer 121 that is not desired to be exposed generally corresponds to a light shielding pattern on the reticle 119, it is not necessary to consider an area having an appropriate exposure amount of zero. However, if correction exposure is performed on a shot area on a wafer once exposed, there may be an area where the appropriate exposure is set to zero. In such a case, the mirror element corresponding to the region can be initially turned off (with tilt).
  • the mirror element corresponding to that area After performing exposure in the off state (with tilt) from the beginning, the exposure conditions may be changed to perform exposure with only the mirror elements corresponding to a part of the region turned on (no tilt).
  • the main control system 125 accumulates the value of the exposure energy ⁇ sent to the main control system 125 by the illuminance calculation system 112, and the reticle 119 is The integrated exposure dose irradiated to the wafer 121 via .
  • the integrated exposure amount reaches the smallest optimum exposure amount Dosel, all mirror elements in the corresponding partial area MD1 of the DMD 128 in FIG. 3 are turned off.
  • the reflected light having the mirror element power in the off state is not guided to the condenser lens 118 in FIG. For this reason, the partial area PT1 of the pattern area PA of the reticle 119 in FIG.
  • the partial area PT1 is controlled to the appropriate exposure amount Dosel.
  • the integrated exposure amount reaches the appropriate exposure amount Dose2
  • all mirror elements in the partial region MD2 of the DMD 128 are turned off, and the local region in the shot region on the wafer 121 corresponding to the partial region PT2 of the reticle 119 The area is not irradiated with illumination light IL thereafter. That is, the partial area PT2 is controlled to an appropriate exposure amount Dose2.
  • the shirter 104 is closed, so that the local region in the shot region on the wafer 121 corresponding to the partial region PT3 of the reticle 119 is subsequently irradiated with the illumination light IL.
  • the partial area PT3 is controlled to an appropriate exposure dose Dose3. As a result, the entire shot area on the wafer 121 is exposed with an appropriate exposure amount.
  • the present embodiment for example, when exposing a pattern of reticle 119 having locally different pattern characteristics on wafer 121 as in a system LSI, for each local region.
  • the exposure time of the illumination light IL is controlled for each local region using the DMD 128 so that the exposure is performed with the optimum integrated exposure amount. Therefore, the pattern image can be transferred with the optimum integrated exposure amount over the entire shot area on the wafer 121, and the line width uniformity of the pattern image is improved.
  • the illumination light IL has a uniform illuminance over the entire exposure area on the wafer.
  • the illuminance distribution is not always uniform.
  • FIG. 4 (a) shows an example of the illuminance distribution of the exposure region 135 on the wafer.
  • the peripheral region of the exposure region 135 has lower illuminance than the others.
  • a correction map is set in the illumination area 135M of the reticle to set a larger exposure amount in the peripheral area than in other areas.
  • the correction map in Fig. 4 (b) shows the illuminance (exposure per unit time) that makes the illuminance uniform over the entire exposure area 135 when added to the illuminance distribution in Fig. 4 (a).
  • This is a map of correction values.
  • the exposure time to each partial area by each mirror element of DMD128 in Fig. 1 is adjusted to obtain a more appropriate integrated exposure dose distribution for each partial area in the exposure area 135 on the wafer. Exposure can be performed.
  • the correction components resulting from the resist process are generally distributed concentrically with the central force of the wafer 121 as shown in FIG.
  • Fig. 5 (a) darker areas indicate that more exposure is required.
  • the correction map on the reticle focusing on the shot area F in the wafer 121 is shown in Fig. 5 (b), and the correction map shown in Fig. 5 (b) is set for each shot area in the wafer 121. Is done. If the reticle pattern shown in Fig. 2 is exposed, the exposure amount obtained by adding the exposure amount map shown in Fig. 2 to the exposure amount map determined by the correction maps shown in Figs. 4 (b) and 5 (b). Based on the map, the DMD 128 may be controlled to perform exposure as in the above embodiment.
  • the correction map can be determined similarly when the exposure dose component to be corrected due to the resist process is distributed elliptically with respect to the center of the wafer 121.
  • the force that forms a map of the optimum exposure amount for each shot area and performs exposure is about 70% if the maximum exposure amount is 100%: LOO Expected to be in the% range.
  • exposure may be performed in the shortest time, and the amount of light applied to the DMD 128 may be adjusted within one shot exposure time in order to perform exposure with high accuracy at each optimum exposure amount. That is, as shown in Fig. 6 (a), until the integrated exposure dose ⁇ ⁇ on the wafer reaches the minimum value Dosel (70% of the maximum value in Fig. 6 (a)) of Fig.
  • FIG. 6 (b) Illuminance (unit area, energy per unit time) IU as shown in Increase to 70% in a short time.
  • the horizontal axes in Figs. 6 (a) and (b) are the time ts from the start of exposure.
  • the power to increase the output of the mercury lamp 101 in FIG. 1 or the amount of light reduced by the light quantity adjustment mechanism (not shown) disposed between the mercury lamp 101 and the fly-eye lens 108, for example is reduced. do it.
  • the illuminance IU is reduced as shown in Fig. 6 (b), and each mirror element is turned on. What is necessary is just to be able to control the switching time of OFF accurately.
  • the main control system 125 uses the DMD driving device 131 to provide each mirror element based on the integrated value of the exposure energy ⁇ per unit time supplied from the illuminance calculation system 112.
  • the on-state force of the control unit controls the switching timing to the off-state, but without using the output from the illuminance calculation system 112, based on the above equation (1), the partial areas on the reticle 119 PTl, PT2
  • the exposure times tl, t2, t3 for each local area in the shot area corresponding to PT3 and PT3 are obtained, and when the elapsed time of the exposure start force reaches the exposure times tl, t2, t3 in sequence, the partial areas
  • the mirror elements in MD1, MD2, and MD3 may be sequentially switched to the on state force and the off state.
  • the light source is a pulse light source such as an excimer laser
  • the energy per unit time described above for example, the illuminance IU in Fig. 6 (b)
  • Similar effects can be obtained.
  • the target irradiation pulse number Nl for each local region in the shot region corresponding to the partial regions PTl, PT2, and PT3 of the reticle 119 in FIG. , N2 and N3 are determined, and when the count value of the number of irradiation pulses from the start of exposure reaches the target number of irradiation pulses Nl, N2 and N3 in sequence, the values in the partial areas MD1, MD2 and MD3 in Fig. 3
  • the mirror elements may be sequentially switched from the on state to the off state.
  • each mirror element is alternately turned on / off during one-shot exposure. It is also possible to perform so-called duty control, which is repeated at high speed and adjusts the number of times of ON.
  • the exposure amount control of this example is also effective in an exposure apparatus that uses an X-ray source as a light source.
  • the illumination blind 114 is used to define the shape and size of the illumination area on the reticle 119.
  • the size of the illumination area on the reticle 119 is also determined using the DMD 128. You may prescribe.
  • the number is small, it is not necessary to create a correction map.
  • the present invention is applied to the case where exposure is performed by a scanning exposure type projection exposure apparatus (scanning type exposure apparatus) comprising a scanning stepper.
  • FIG. 7 shows a schematic configuration of the scanning exposure apparatus 10 of the present example.
  • this scanning exposure apparatus 10 uses a step-and-excitation using an excimer laser light source 16 as a Norse light source as an exposure light source.
  • 'It is a scanning projection exposure apparatus.
  • the scanning exposure apparatus 10 includes an illumination system 12 including an excimer laser light source 16, a reticle stage RST that holds a reticle R illuminated by illumination light IL from the illumination system 12, and illumination light IL emitted from the reticle R as a wafer. It includes a projection optical system PL that projects onto W, an XY stage 14 on which a Z tilt stage 58 that holds the wafer W is mounted, and a control system for these.
  • the illumination system 12 includes an excimer laser light source 16, a beam shaping optical system 18, an energy coarse adjuster 20, a fly-eye lens 22, an illumination system aperture stop plate 24, a beam splitter 26, a first relay lens 28, A reticle blind 30, a second relay lens 29, a beam splitter 13, a condenser lens 37, a reflection mirror 11 provided with a digital micromirror device, a light shield 55 as a diaphragm member, and a condenser lens 32 are provided.
  • each component of the illumination system 12 will be described.
  • the excimer laser light source 16 a KrF excimer laser light source (oscillation wavelength 248 nm), an ArF excimer laser light source (oscillation wavelength 193 nm), or the like is used.
  • a pulsed light source such as a metal vapor laser light source, a harmonic generator of a YAG laser, or a mercury lamp is used.
  • a secondary light source may be used.
  • the average value of energy per pulse of the excimer laser source 16 is usually the force stabilized at a given center energy E.
  • the average value of Rugi is a predetermined variable range above and below its energy E (for example, about 10%
  • the beam shaping optical system 18 shapes the cross-sectional shape of the laser beam LB pulsed by the excimer laser light source 16 so that it efficiently enters the fly-eye lens 22 provided behind the optical path of the laser beam LB.
  • the transmissivity for the laser beam LB can be switched from 100% in multiple steps in a geometric series.
  • the drive motor 38 is controlled by the main controller 50.
  • the fly-eye lens 22 is arranged on the optical path of the laser beam LB emitted from the energy coarse adjuster 20, and forms a large number of secondary light sources for illuminating the reticle R with a uniform illuminance distribution. In the following, this laser light beam that also emits the secondary light source power is called illumination light IL.
  • an illumination system aperture stop plate 24 that also serves as a disk-shaped member is disposed.
  • the illumination system aperture stop plate 24 has an equal angular interval, for example, an aperture stop composed of a normal circular aperture, an aperture stop composed of a small circular aperture, an aperture stop for reducing the coherence factor ⁇ value, and annular illumination.
  • a ring-shaped aperture stop, and a modified aperture stop in which a plurality of apertures are eccentrically arranged for the modified light source method (only two of these aperture stops are shown in FIG. 7). Has been placed.
  • the illumination system aperture stop plate 24 is rotated by a drive device 40 such as a motor controlled by the main control device 50, so that one of the aperture stops is selectively placed on the optical path of the illumination light IL.
  • a drive device 40 such as a motor controlled by the main control device 50
  • a beam splitter 26 having a low reflectance and a high transmittance is arranged on the optical path of the illumination light IL emitted from the illumination system aperture stop plate 24, and further, a reticle blind 30 is interposed on the optical path behind this.
  • the relay optical system consisting of 1 relay lens 28 and 2nd relay lens 29 Has been placed.
  • the reticle blind 30 includes a fixed blind and a variable blind.
  • the fixed blind is arranged on a surface slightly defocused with respect to the pattern surface of the reticle R, and defines an illumination area 42R on the reticle R.
  • a rectangular opening is formed.
  • the variable blind in the reticle blind 30 forms an opening having a variable position and width in the scanning direction, and the opening further has a leading edge and a trailing edge in the scanning direction at the start and end of scanning exposure, respectively.
  • the position of the direction of the arrow in the figure is controlled by the main controller 50 via the drive unit 31 to prevent exposure of an unnecessary part on the reticle R.
  • an integrator sensor 46 including a condenser lens 44 and a photoelectric conversion element is disposed on a reflected light path by the beam splitter 26 in the illumination system 12. Illumination light IL reflected by the beam splitter 26 is received by the integrator sensor 46 through the condenser lens 44, and the photoelectric conversion signal force of the integrator sensor 46 is not shown. And is supplied as an output DS (digit / pulse) to the main controller 50 (arithmetic unit for calculating the integrated exposure amount). The correlation coefficient between the output DS of the integrator sensor 46 and the pulse energy (exposure amount) per unit area of the illumination light IL on the surface of the wafer W is obtained in advance and stored in the main controller 50. Has been.
  • the illumination light IL that has passed through the rectangular opening of the reticle blind 30 passes through the second relay lens 29, is reflected by the beam splitter 13, and passes through the condenser lens 37.
  • the reflecting mirror 11 is illuminated with a uniform illumination distribution.
  • the reflected light from the reflecting mirror 11 passes through the condenser lens 37, the beam splitter 13, the aperture 55a of the light shielding member (which may be a light absorber) 55 as the diaphragm member, and the condenser lens 32 to reach the reticle R again. Illuminate the illumination area 42R uniformly.
  • mirror elements similar to the mirror elements of the digital micromirror device used in the first embodiment are matrixed in the elongated ridge regions at both ends corresponding to the scanning direction of the reticle R of the reflective mirror 11.
  • the mirror element parts D1 and D2 arranged in a shape are arranged.
  • the mirror elements Dl and D2 are in the ON state where the tilt angle of the reflecting surface is 0 ° (first reflection direction) and other predetermined angles (first 2), the illumination light reflected when the mirror elements are in the on state passes through the opening 55a of the light shield 55, and the mirror elements are turned off.
  • the illumination light IL reflected in the state is shielded by the light shield 55.
  • the movable blind of the reticle blind 30, the reflecting surface of the reflecting mirror 11, and the pattern surface of the reticle R are arranged at optically conjugate positions. In some cases, it is better to have a gradient of the exposure dose distribution at the edge of the lighting area 42R in the direction of travel. For this case, the position of the fixed blind of the reticle blind 30 is determined from its conjugate position. It is placed at a slightly defocused position.
  • projection optical system PL is composed of a plurality of lens elements arranged so as to have a bilateral telecentric optical arrangement.
  • 8 of the projection optical system PL is a reduction magnification of 1Z4, 1Z5, etc., for example.
  • the horizontal axis is taken parallel to the optical axis of the projection optical system PL
  • the X axis is taken in the direction perpendicular to the paper surface of FIG. 7 in the plane perpendicular to the Z axis
  • the Y axis is parallel to the paper surface of FIG.
  • Reticle R is sucked and held on reticle stage RST.
  • Reticle stage RST can be finely driven in the XY plane, and is scanned within a predetermined stroke range in the scanning direction (Y direction) by reticle stage driving unit 48.
  • the position of reticle stage RST during scanning is measured by an external laser interferometer 54R through a movable mirror 52R fixed on reticle stage RST, and the measured value of laser interferometer 54R is measured by main controller 50R. To be supplied.
  • the wafer W is sucked and held on the Z tilt stage 58 via a wafer holder (not shown).
  • the Z tilt stage 58 is mounted on the XY stage 14.
  • the heel stage 14 is two-dimensionally driven on a wafer base (not shown) by a wafer stage driving unit 56 in the heel direction which is the scanning direction in the heel surface and in the X direction perpendicular thereto.
  • the ⁇ tilt stage 58 has a function of adjusting the position (focus position) in the ⁇ direction on the wafer W and adjusting the tilt angle of the wafer W with respect to the ⁇ plane.
  • the position of the stage 14 (wafer W) is measured by an external laser interferometer 54W (position detection device) via a movable mirror 52W fixed on the tilt stage 58. The measured value is supplied to the main controller 50.
  • an illuminance unevenness sensor 59 that also has photoelectric conversion element force is permanently installed in the vicinity of the wafer W on the tilt stage 58, and the light receiving surface of the illuminance unevenness sensor 59 is set to the same height as the surface of the wafer W.
  • the detection signal of the illuminance unevenness sensor 59 is supplied to a main controller 50 functioning as an exposure controller via a peak hold circuit (not shown) and an AZD change.
  • the main controller 50 is configured to include a computer and controls, for example, synchronous scanning of the reticle R and the wafer W, stepping of the wafer W, exposure timing, and the like so that the exposure operation is performed accurately. In the present embodiment, the main controller 50 also performs exposure amount control during scanning exposure described later.
  • main controller 50 for example, during scanning exposure, synchronizes with reticle R being scanned at speed V in the + Y direction (or -Y direction) via reticle stage RST.
  • the wafer W is scanned through the XY stage 14 with respect to the exposure area 42W — in the Y direction (or + Y direction) at a velocity ⁇ ⁇ ⁇ ( ⁇ is the reticle R to the wafer, and the projection magnification for W).
  • reticle stage RST and XY stage 14 are controlled via reticle stage drive unit 48 and wafer stage drive unit 56, respectively, based on the measurement values of laser interferometers 54R and 54W. Further, at the time of stepping, main controller 50 controls the position of XY stage 14 via wafer stage drive unit 56 based on the measurement value of laser interferometer 54W.
  • main controller 50 controls the light emission power and the like of excimer laser light source 16 by supplying control information TS to excimer laser light source 16.
  • the main control device 50 includes an energy coarse adjuster 20 and an illumination system aperture stop plate 24 for a motor 38 and a drive device, respectively.
  • the opening / closing operation of the movable blind in the reticle blind 30 is controlled via the driving device 31 in synchronization with the operation information of the stage system.
  • it also serves as the main controller 50 force exposure controller and stage controller.
  • these controllers may be provided separately from the main controller 50.
  • the main controller 50 is connected with a storage device 51 and an input / output device 62 such as a console.
  • the storage device 51 stores information on an exposure amount map and a correction map indicating the appropriate exposure amount for each partial region of the reticle R.
  • the reflecting mirror 11 includes a portion where a dielectric multilayer film or an aluminum thin film is formed on the surface (reflecting surface) of the substrate having a high flatness in order to reflect the illumination light IL well, and the surface along the surface.
  • two mirror element parts Dl and D2 in which a plurality of mirror elements of a digital micromirror device (DMD) are arranged are provided.
  • the individual mirror elements of the mirror element portions Dl and D2 are driven by the main controller 50 via the DMD driving device 33.
  • mirror elements similar to the mirror element portions Dl and D2 may be arranged on the entire reflecting surface of the reflecting mirror 11, but for the exposure control, the entire area is not necessarily limited to mirror elements. There is no need. Further, instead of the mirror element parts Dl and D2, one mirror element part may be provided, or three or more mirror element parts may be provided.
  • FIG. 8 shows the conjugate relationship between the reflecting mirror 11 and the illumination area 42R on the reticle R.
  • the reflecting mirror 11 is a perspective view of the back surface force of the reflecting surface.
  • each point of the reflection mirror 11 and the corresponding point (almost conjugate point) of the illumination area 42R are inverted vertically and horizontally as shown schematically using a virtual letter "F".
  • the mirror element parts Dl and D2 are arranged in a line along the non-scanning direction at both end positions in the scanning direction on the reflecting surface of the reflecting mirror 11, and the reflected light is the illumination area of the reticle R.
  • Edges R1 and R2 are the leading edge and the trailing edge, respectively, if the scanning direction of reticle R is the Y direction, and the trailing edge if the scanning direction of reticle R is the + Y direction (direction SD (+)). And the front edge.
  • both the mirror element portions D1 and D2 are driven by the reflecting mirror 11.
  • Edge force in the heel direction (Y direction) is also n lines in the scanning direction (each line is dl, dl,.
  • n ⁇ m mirror elements are arranged in a matrix.
  • n and m are arbitrary integers of 1 or more.
  • the number (n) of mirror elements in the scanning direction does not have to be the number that can illuminate the entire scanning direction of the illumination region 42R, but the number (m) of mirror elements in the non-scanning direction It is desirable to set the number to be able to irradiate the entire area of the area 42R in the non-scanning direction.
  • the mirror element of portion A in the mirror element portion D1 is turned off (tilt) by the DMD driving device 33 of FIG.
  • the light reflected by the mirror element force of part A is a light-shielding body (or absorption element) placed at the pupil position of the illumination system between the condenser lens 37 and the condenser lens 32. (It may be a body.)
  • Light is blocked at 55, and no illumination light enters the conjugate position A 'on the reticle R.
  • the exposure amount of area B on the reticle is reduced compared to other areas.
  • the exposure amount of the area on the wafer W corresponding to the area B also decreases. This is because the width in the scanning direction of the exposure area of this portion is substantially reduced, and the amount of exposure that decreases as the number of mirror elements that are turned off (the number of rows) along the scanning direction increases. .
  • the reflecting mirror 11 is placed at a position optically conjugate with the reticle R. Although it is necessary, the reflecting mirror 11 may be slightly shifted from the conjugate position so that the mechanical gaps between adjacent mirror elements are not projected as dark lines.
  • the exposure amount map in the shot area is stored in advance for each reticle to be used by the operator via the input / output device 62.
  • FIG. 10 shows an example of an exposure map in the pattern area PA of the reticle R.
  • several types of functional circuits are formed in the partial area PT1, PT2, PT3 in the pattern area PA.
  • the appropriate exposure amounts are set to Dosel, Dose2, and Dose3 (assuming Dosel>Dose2> Dose3).
  • This exposure amount is The data obtained based on the measurement result of the line width distribution of the transfer image of the isolated pattern in the transfer image obtained by transferring the pattern of the reticle R to the shot areas on the wafer W. Desirably, the data should equalize the pattern line width of each shot area (first step).
  • Isolation pattern for example, isolation line, contact hole pattern
  • Isolation pattern Since it is more sensitive to exposure than a dense pattern, it can be obtained based on the measurement results of the line width distribution of the transfer image of the isolation pattern.
  • the exposure amount in the same shot determined in this way is expected to be set in a range where the average exposure amount is increased or decreased by several% to 10%.
  • the steps of scanning and exposing the photoresist on the wafer W in FIG. 7 using the reticle R having the pattern shown in FIG. 10 will be described in order.
  • the illumination area 42R does not move, and the reticle R is scanned with the movement of the reticle stage.
  • the illumination area 42R is moved for convenience, and the pattern of the reticle R
  • the positional relationship with area PA shall be indicated.
  • one movable blind of the reticle blind 30 in FIG. 7 corresponding to the trailing edge of the scanning direction SD (—) is closed and the pattern area PA (that is, the corresponding shot area SA on the wafer W) is closed.
  • the outer peripheral area is not exposed.
  • the partial area PT1 is first exposed, and when the illumination area 42R is completely in the pattern area PA, the movable blind is fully open. Scanning exposure in this state is performed until time t when the leading edge 42RF of the illumination area 42R reaches the end (position B2) of the partial area PT1. [0079] As shown in FIG. 12, at the time t when the front edge of the illumination area 42R reaches the partial area PT2.
  • the entire area in the non-scanning direction (all m columns) is turned off (with tilt) so that the reflected light from the mirror elements in the P row is not projected onto the partial area PT2 in FIG.
  • the mirror element Md in the off state is shaded.
  • the number of rows P of the mirror elements to be turned off is determined so that the integrated exposure amount of the partial region PT2 becomes Dose2.
  • the exposure amount is set to Dose 1 when all the mirror elements are in the on state! Therefore, the width in the scanning direction of the illumination area 42R at this time is set to L If so, the width in the scanning direction should be LX (Dose2 / Do sel).
  • the width of the mirror element with the number of rows P is determined to be L X (1—Dose2ZDosel).
  • Exposure is performed with the mirror elements in the P1 rows from D1 to D1 being off. And time t
  • one of the reticle blinds 30 corresponding to the front edge in the scanning direction is not exposed so that the outer peripheral area of the pattern area PA (that is, the shot area SA on the wafer W) is not exposed.
  • the movable blind is closed in synchronization with the scan.
  • the force described with reference to the case where the exposure amount of the pattern area to be scanned becomes smaller as the scanning exposure progresses may be Dose3> Dose2.
  • the width of the mirror element with the number of rows P—S is determined to be L X (1—Dose3ZDosel) as described above.
  • a part of the mirror element part D2 disposed at the rear edge of the illumination area 42R is turned off in advance, and when the rear edge reaches the boundary between the partial areas PT2 and PT3, the mirror element part D2 Make sure to turn on the columns to irradiate the partial area PT3 with the required number of rows.
  • a scanning type exposure apparatus when performing exposure of the next shot area, it is general to perform scanning exposure in a direction opposite to the scanning direction of the immediately preceding shot area.
  • the mirror element part D1 described above may be operated by replacing it with the mirror element part D2 corresponding to the front edge part in the scanning direction.
  • the storage device 51 in FIG. 7 cancels the fluctuation component of the line width caused by the device manufacturing process such as non-uniformity of the coating thickness of the photosensitive material on the wafer and non-uniformity at the time of development.
  • the corrected exposure amount for this is stored as a correction map for each position on the wafer.
  • this corrected exposure dose is generally distributed concentrically (or elliptically) from the center of the wafer W.
  • the first, second, or higher order function of the distance from the force center indicates that a larger exposure is required in proportion to the distance of the center force. It may become.
  • the operator may input a function of the distance of the central force to the input device 62 in FIG. 7 so that a correction map is set in the storage device 51 for each position of each shot area SA.
  • the correction map of the shot area SA whose center coordinate is (X, y) is calculated from the input function and the shape of the shot area SA, and is generated as shown in FIG.
  • the mirror of the reflecting mirror 11 of FIG. 7 in the positional relationship between the illumination area 42R and the shot area SA according to the correction map of FIG. If the mirror element of the single element portion D1 or D2 is driven, exposure can be performed with an exposure amount to compensate for the line width error caused by the device manufacturing process.
  • the storage device 51 in FIG. 7 has illumination in the non-scanning direction caused by the exposure device (illumination system 12). Data for correcting degree uniformity is also stored.
  • the force that is desired to be uniform in the exposure area is not necessarily uniform in the light quantity distribution of the shot area SA on the wafer.
  • the illumination distribution in the exposure area IA on the shot area SA of the wafer is a distribution in which the illuminance IIL decreases as the illumination intensity increases toward the center.
  • the integrated exposure amount ⁇ on the wafer by scanning exposure has a distribution as shown in FIG. 16 (b) in which the illuminance in the scanning direction SD is integrated for each point in the non-scanning direction NSD.
  • the integrated exposure dose distribution in the scanning direction SD is flattened by scanning, but the non-uniformity of the integrated exposure dose distribution in the non-scanning direction NSD is not eliminated.
  • the width of the exposure area IA on the wafer shot area SA is adjusted in the scanning direction SD for each position in the non-scanning direction NSD. It should be uniform as shown in Fig. 17 (b).
  • the illumination unevenness correction map is obtained by using the width in the scanning direction of the shot area for each position in the non-scanning direction NSD, and the illumination unevenness correction map is also stored in the storage device 51 of FIG.
  • the shape of the illumination region 42R is changed to ON / OFF of one of the mirror elements D1 or D2 (or both of them) of the reflecting mirror 11 of FIG.
  • the exposure area (b) may be the same shape as the IA. It is known that the illuminance uniformity of the exposure apparatus changes over time depending on the exposure conditions, and in the method of this example, the shape of the illumination area 42R can be arbitrarily changed. It can be easily corrected.
  • the exposure operation according to the representative three types of data stored in the storage device 51 of FIG. 7 has been described independently. Corrective correction (superimposition correction) is also possible. Further, the exposure amount control for each shot area may be performed without using the correction map as described above.
  • the reflecting mirror 11 has the two mirror element portions D1 and D2 has been described.
  • the mirror element portion may be provided only on one side.
  • a technique may be used in which the illumination distribution on the front edge and the rear edge of the illumination area 42R is intentionally inclined to increase the accuracy of exposure uniformity. In such a case, as shown in FIG. It is good as a configuration arranged in the center of the direction.
  • FIG. 18 shows a modification of the scanning exposure apparatus of FIG. 7.
  • the rectangular blind part 30 of the reticle blind 30 is passed.
  • the illumination light IL passes through the second relay lens 29 and illuminates the reflection mirror 11 disposed at an inclination of 45 ° with respect to the optical axis through the condenser lens 49 with a uniform illumination distribution.
  • the downward reflected light from the reflection mirror 11 passes through the condenser lens 42, the opening of the light shield 55, and the condenser lens 32, and uniformly illuminates the illumination area 42R on the reticle R.
  • a mirror element portion D3 similar to the mirror element portion D1 in FIG.
  • Each mirror element of the mirror element part D3 is in the ON state where the tilt angle of the reflecting surface is 0 ° (first reflection direction) and other predetermined angles (second).
  • the illumination light reflected when the mirror elements are in the on state passes through the opening of the light shield 55 and the mirror elements are in the off state.
  • the illumination light IL reflected at this time is shielded by the light shield 55.
  • the mirror element D3 is also controlled by the DMD driving device 33.
  • the other configuration is the same as that of the scanning exposure apparatus of FIG.
  • FIG. 19 shows the conjugate relationship between the reflection mirror 11 of the scanning exposure apparatus of FIG. 18 and the illumination area 42R on the reticle R.
  • the mirror element portion D3 in the reflection mirror 11 is the same as the reticle R. Therefore, the reflected light irradiates the position corresponding to the center portion in the scanning direction of the illumination area 42R on the reticle R.
  • the mirror element D3 has n rows in the scanning direction (each row is d3, d3,-- ⁇ ⁇ 3) and m columns in the non-scanning direction (each row is 1, 2,... !!
  • N x m mirror elements are arranged in a matrix.
  • the mirror element of the central portion C in the mirror element portion D3 (corresponding to a plurality of adjacent mirror elements in FIG. 19) is turned off (tilted) by the DMD driving device 33 in FIG. ,
  • the reflected light of the mirror element force turned off (indicated by the dotted line)
  • the light is shielded by a light shield 55 (or an absorber) 55 disposed at the optical pupil position between the lens 14 and the condenser lens 32, and the illumination light does not reach the conjugate position C ′ on the reticle R. Not irradiated.
  • the amount of exposure in area E on reticle R decreases compared to other areas.
  • the exposure amount of the area on the wafer W corresponding to the area E also decreases. This is because the width in the scanning direction of the exposed area 42W of this portion decreases, and the amount of exposure that decreases as the number of mirror elements that are turned off increases in the scanning direction increases.
  • the reflecting mirror 11 is arranged at a position optically conjugate with reticle R. Although it is necessary, in the configuration shown in FIGS. 18 and 19, the mirror element portion D3 is arranged almost at the conjugate position with the conjugate position as the center.
  • FIGS. 20 (a) and 20 (b) are graphs of the illuminance IIL distribution in the illumination area 42R in the configuration of FIG. 18 with the scanning direction SD as the horizontal axis.
  • the illuminance distribution when all the mirror elements of the mirror element portion D3 of the reflecting mirror 11 are in the on state is almost flat as shown in FIG.
  • the illuminance distribution when all of the mirror elements in the mirror element D3 are in the OFF state is the force at which the illuminance IIL near the center is 0 as shown in Fig. 20 (b).
  • the slope of the illuminance distribution at the trailing edge is maintained.
  • the integrated exposure amount of each point on the photoresist on the wafer W corresponds to the area (integrated value) of the illuminance distribution graph in FIG. 20 (a) or FIG. 20 (b). It can be easily understood that the greater the number of rows of mirror elements that are turned off, the smaller the integrated exposure. Since the difference between the largest exposure to be irradiated and the smallest exposure in a shot area is considered to be about 10%, the mirror elements in all rows are turned on for normal exposure control. It is sufficient to provide the number of rows of mirror elements so that the area is reduced by 10% with respect to the area of the graph.
  • the force interferometer 54R (or the interferometer 54W) is configured to control the mirror element elements Dl, D2, D3 based on the time during the scanning of the reticle R.
  • the mirror element units Dl, D2, and D3 may be controlled based on the values.
  • the projection optical system may be an equal magnification or an enlargement system. Either a system or a reflection system may be used.
  • a step of performing functional / performance design of the device a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, It is manufactured through a step of transferring a reticle pattern to a wafer by a projection exposure apparatus (exposure apparatus), a device assembly step (including a dicing process, a bonding process, a knocking process), and an inspection step.
  • a projection exposure apparatus exposure apparatus
  • a device assembly step including a dicing process, a bonding process, a knocking process
  • the present invention can also be applied to the case where exposure is performed with an immersion type exposure apparatus disclosed in, for example, International Publication No. 99/49504 pamphlet.
  • the present invention can also be applied to an exposure apparatus that uses extreme ultraviolet light (EUV light) having a wavelength of about 1 to 1 OO nm as an exposure beam.
  • EUV light extreme ultraviolet light
  • the optical system using EUV light is a reflection type
  • the reflection element array of the present invention is a reflection type optical member and can be used as it is for EUV light.
  • the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device, but is used for manufacturing a display including a liquid crystal display element, a plasma display, etc., and an exposure apparatus for transferring a device pattern onto a glass plate, a thin film Devices used for manufacturing magnetic heads Applicable to exposure devices that transfer non-turns onto ceramic wafers, and exposure devices used to manufacture image sensors (CCDs, etc.), organic EL, micromachines, DNA chips, etc. be able to.
  • a circuit on a glass substrate or a silicon wafer is used to manufacture a mask used in a light exposure apparatus, EUV exposure apparatus, X-ray exposure apparatus, electron beam exposure apparatus, and the like, which are formed only by microdevices such as semiconductor elements.
  • the present invention can also be applied to an exposure apparatus that transfers a pattern.
  • the present invention since it is possible to perform exposure with an optimum exposure amount for each of a plurality of local regions, it is possible to improve the line width uniformity of a pattern image exposed on an object. Therefore, a device in which a plurality of circuits are integrated into one chip can be manufactured with high accuracy and high yield.

Abstract

An exposure system for enhancing line width uniformity of a pattern image being exposed onto an object such as a substrate. In the exposure system for exposing a wafer (121) with illumination light (IL) from a light source (101) through a reticle (119) and a projection optical system (120), a digital micromirror device (128) as a reflection element array including a plurality of mirror elements capable of respectively controlling the reflecting direction of the illumination light (IL) is arranged at a position substantially conjugate to the reticle (119) in an illumination optical system for illuminating the reticle (119) with the illumination light (IL), and illuminance distribution in the illumination region on the reticle (119) is controlled by controlling the reflection angle of each mirror element of the digital micromirror device (128) independently.

Description

明 細 書  Specification
露光方法及び装置、並びにデバイス製造方法  Exposure method and apparatus, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、露光ビームで物体を露光する露光技術に関し、更に詳しくは、例えば半 導体素子、液晶表示素子、撮像素子 (CCD等)、及び薄膜磁気ヘッド等の各種デバ イスを製造するためのフォトリソグラフイエ程中でマスクパターンを基板上に転写する ために使用される露光技術に関する。  TECHNICAL FIELD [0001] The present invention relates to an exposure technique for exposing an object with an exposure beam. More specifically, for example, various devices such as a semiconductor element, a liquid crystal display element, an imaging element (CCD, etc.), and a thin film magnetic head are manufactured. The present invention relates to an exposure technique used to transfer a mask pattern onto a substrate during a photolithography process.
背景技術  Background art
[0002] 半導体素子あるいは液晶表示素子等のデバイスの製造工程におけるフォトリソダラ フイエ程では、マスクとしてのレチクル (又はフォトマスク等)に形成された回路パター ンを投影光学系を介して基板としての感光材料 (フォトレジスト等)が塗布されたゥェ ハ又はガラスプレート上に投影する投影露光装置が用いられている。力かる投影露 光装置として、ステップ 'アンド'リピート方式の静止露光型 (一括露光型)の露光装置 (例えばいわゆるステツパ)、及びステップ ·アンド'スキャン方式の走査露光型の露光 装置 (例えば 、わゆるスキャニング'ステツパ)等が使用されて!、る。  [0002] In a photolithographic process in the manufacturing process of a device such as a semiconductor element or a liquid crystal display element, a circuit pattern formed on a reticle (or photomask) as a mask is exposed to light as a substrate via a projection optical system. A projection exposure apparatus that projects onto a wafer or glass plate coated with a material (photoresist etc.) is used. As a powerful projection exposure apparatus, a step-and-repeat-type static exposure type (collective exposure type) exposure apparatus (for example, a so-called stepper) and a step-and-scan type scan exposure type exposure apparatus (for example, W Yuru Scanning (Stepa) etc. is used!
[0003] 例えば半導体素子の製造工程で使用される投影露光装置における 1つの基本的 な機能として、ウェハの各ショット領域内の各点に対する積算露光量 (積算露光エネ ルギ一)を適正範囲内に収めるための露光量制御機能がある。ステツパのような静止 露光型の露光装置では、露光光源として超高圧水銀ランプのような連続光源、又は エキシマレーザ光源のようなパルスレーザ光源の何れを使用する場合でも、露光量 制御方法としては基本的にはカットオフ制御が採用されていた。このカットオフ制御 では、感光材料が塗布されたウェハへの露光光の照射中にその露光光の一部を分 岐してインテグレータセンサと呼ばれる光電検出器に導き、このインテグレータセンサ を介して間接的にウェハ上での露光量を検出し、この検出結果の積算値が当該感 光材料で必要とされる積算露光量に対応する所定のレベル (クリティカルレベル)を 超えるまでレーザ発光を続けるというような制御が行われる。具体的に、露光光が連 続光の場合には、積算露光量がクリティカルレベルを超えたら露光光の光路をシャツ タで閉じると 、うような制御が行われる。 [0003] For example, as one basic function in a projection exposure apparatus used in a semiconductor element manufacturing process, the integrated exposure amount (integrated exposure energy) for each point in each shot area of a wafer is within an appropriate range. There is an exposure amount control function for storing. In a static exposure type exposure apparatus such as a stepper, the exposure dose control method is the basic regardless of whether a continuous light source such as an ultra-high pressure mercury lamp or a pulsed laser light source such as an excimer laser light source is used as the exposure light source. In particular, cut-off control was employed. In this cut-off control, a portion of the exposure light is split and guided to a photoelectric detector called an integrator sensor during exposure light irradiation to the wafer coated with the photosensitive material, and indirectly via this integrator sensor. The amount of exposure on the wafer is detected, and laser emission is continued until the integrated value of the detection result exceeds a predetermined level (critical level) corresponding to the integrated exposure amount required for the photosensitive material. Control is performed. Specifically, if the exposure light is continuous light, the exposure light path is changed to the shirt when the integrated exposure exceeds the critical level. When closed with a button, control is performed.
[0004] 一方、スキャニング 'ステツパ等の走査露光型の露光装置では、ウェハ上の一点だ けに着目した露光量制御が適用できないために、上述のカットオフ制御が適用でき ない。そこで、露光光源がパルスレーザ光源の場合においては、第 1の制御方式とし て、単純に各パルス照明光の光量を積算して露光量制御を行う方式 (オープン露光 量制御方式)が使用されていた。また、第 2の制御方式として、例えば、特開平 6— 2 52022号公報に開示されて 、るように、ウェハ上のスリット状の露光領域(レチクル上 のスリット状の照明領域に共役な領域であって、ウェハはこの露光領域に対して相対 走査される。 )に対する積算露光量をパルス照明光毎にリアルタイムで計測し、その 積算露光量に基づ 、て次のパルス照明光の目標エネルギーを制御する方式 (パル ス毎露光量制御方式)も使用されて 、る。  On the other hand, in a scanning exposure type exposure apparatus such as a scanning stepper, the above-described cut-off control cannot be applied because exposure amount control focusing on only one point on the wafer cannot be applied. Therefore, when the exposure light source is a pulse laser light source, the first control method is a method in which the amount of light from each pulse illumination light is simply integrated to control the exposure amount (open exposure amount control method). It was. As a second control method, for example, as disclosed in Japanese Patent Laid-Open No. 6-252022, a slit-shaped exposure region on a wafer (a region conjugate to a slit-shaped illumination region on a reticle). Then, the wafer is scanned relative to this exposure area.) The integrated exposure amount is measured in real time for each pulse illumination light, and the target energy of the next pulse illumination light is determined based on the integrated exposure amount. A control method (exposure control method for each pulse) is also used.
[0005] また、半導体素子の製造工程の内のウェハ'プロセスでは、ウェハ表面(ウェハ面) の酸化、絶縁膜形成、電極の蒸着、イオン打ち込み、露光、及びエッチングといった 工程を多数回繰り返すことにより回路パターンが形成される。このプロセスにおいて は、ウェハの大きさが 6インチ(150mm)から 8インチ(200mm)、さらには 12インチ( 300mm)へと大型化してくると、感光材料の塗布膜厚がウェハ面内で不均一になる 場合がある。更に、露光されたウェハ上の感光材料を現像する段階においても、ゥェ ハ面内の場所によって現像特性の差が生じる場合がある。このような原因から、一枚 のウェハにおいてショット領域の位置によって、さらには、ショット領域内の位置によつ てパターン線幅のシフトや解像不良が起こり製品の歩留まりを低下させる問題が生じ ている。この問題を解決するために、走査露光型の露光装置において、パルス照明 光の光量をウェハ上の位置に応じて調整して、感光材料に照射される光量を補正す る方法が提案されている (例えば、特許文献 1参照)。 [0005] In addition, in the wafer process in the semiconductor device manufacturing process, the processes such as oxidation of the wafer surface (wafer surface), formation of an insulating film, electrode deposition, ion implantation, exposure, and etching are repeated many times. A circuit pattern is formed. In this process, when the wafer size increases from 6 inches (150 mm) to 8 inches (200 mm), and further to 12 inches (300 mm), the coating thickness of the photosensitive material is not uniform within the wafer surface. It may become. Further, even in the stage of developing the photosensitive material on the exposed wafer, a difference in development characteristics may occur depending on the location on the wafer surface. For these reasons, depending on the position of the shot area on a single wafer, and further, depending on the position within the shot area, there is a problem that the pattern line width shifts and the resolution deteriorates, resulting in a decrease in product yield. Yes. In order to solve this problem, in a scanning exposure type exposure apparatus, a method has been proposed in which the amount of pulse illumination light is adjusted according to the position on the wafer to correct the amount of light irradiated to the photosensitive material. (For example, see Patent Document 1).
[0006] また、走査露光型の露光装置においては、ウェハ上の各ショット領域における各点 の積算露光量はスリット状の照明領域の走査方向(短手方向)における照度の積分 値である。そこで、ウェハ上の各点での積算露光量を制御するために、照明領域の 走査方向の幅を非走査方向の複数の位置毎に機械的な機構で可変にした露光装 置が提案されている (例えば、特許文献 2参照)。 特許文献 1:特許第 3093528号公報 [0006] In a scanning exposure type exposure apparatus, the integrated exposure amount at each point in each shot area on the wafer is an integrated value of illuminance in the scanning direction (short direction) of the slit-shaped illumination area. Therefore, in order to control the integrated exposure amount at each point on the wafer, an exposure apparatus has been proposed in which the width in the scanning direction of the illumination area is variable by a mechanical mechanism for each of a plurality of positions in the non-scanning direction. (For example, see Patent Document 2). Patent Document 1: Japanese Patent No. 3093528
特許文献 2:特開平 10— 340854号公報  Patent Document 2: JP-A-10-340854
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 近年、多数の機能の回路を 1個のチップ上に集積して多くの機能を持たせたシステ ム LSIの需要が高まっている。システム LSIは、単機能の回路を用途に合わせて、詰 め合わせたような構造になっている。この構造によって、例えばロジック回路及びメモ リ回路を 1つのチップに含めて、ロジックと、 DRAM、 SRAM, NVRAM(Non- Volatil e RAM)等のメモリとの特徴を併せ持つチップの製造が可能となる。このような半導体 チップは製造工程を複雑ィ匕し、しばしば異なる回路毎に工程の最適化を図る必要が ある。例えば、回路の寸法はそれぞれの回路の特性に敏感に影響するため、同一チ ップ上でロジック部分とメモリ部分とで最適な回路寸法が異なる。今後、ますます集積 度が上がって各回路パターンの線幅の製造精度 (線幅均一性)はより厳しくなる一方 で、同一チップ上に組み込まれる異なる機能の回路の数が増加すると、各ショット領 域の異なる機能の回路毎にそれぞれ所望の線幅均一性でパターンを転写することが 困難になると ヽぅ問題が生じて ヽる。  [0007] In recent years, there has been an increasing demand for system LSIs in which a large number of functions are integrated on a single chip to have many functions. System LSIs have a structure in which single-function circuits are packed according to the application. With this structure, for example, a logic circuit and a memory circuit can be included in one chip, and a chip having both characteristics of logic and a memory such as DRAM, SRAM, and NVRAM (Non-Volatile RAM) can be manufactured. Such a semiconductor chip complicates the manufacturing process, and it is often necessary to optimize the process for each different circuit. For example, since the circuit dimensions sensitively affect the characteristics of each circuit, the optimal circuit dimensions differ between the logic portion and the memory portion on the same chip. In the future, as the degree of integration increases, the line width manufacturing accuracy (line width uniformity) of each circuit pattern will become stricter. On the other hand, as the number of circuits with different functions incorporated on the same chip increases, If it becomes difficult to transfer a pattern with the desired line width uniformity for each circuit having different functions, a problem will occur.
[0008] また、感光材料の塗布膜厚及び Zまたは現像特性がウェハ面内で不均一になるこ とに起因して、一枚のウェハにおいてショット領域の位置、さらにはショット領域内の 位置によってパターン線幅のシフトや解像不良が起こりデバイスの歩留まりを低下さ せると 、う問題に関して、上述の特許文献 1に開示されて 、るようにパルス照明光の 光量をウェハ上での位置に応じて調整する方法では、非走査方向の光量分布を補 正することはできな 、と 、う問題がある。  [0008] Further, due to the non-uniformity of the coating thickness and Z or development characteristics of the photosensitive material within the wafer surface, depending on the position of the shot area and also the position within the shot area of a single wafer. When the pattern line width shift or resolution failure occurs and the device yield is reduced, the amount of pulse illumination light depends on the position on the wafer as disclosed in the above-mentioned Patent Document 1 regarding the problem. However, there is a problem that the light amount distribution in the non-scanning direction cannot be corrected by the adjustment method.
[0009] また、非走査方向の露光量分布を制御するために、照明領域の走査方向の幅を非 走査方向の位置毎に機械的な機構で可変にする特許文献 2に開示されている方式 では、機械的な機構を用いるが故に、ショット領域間のステッピング移動中や 1つのシ ヨット領域の露光中に照明領域の幅を高速に変更することは困難である。  [0009] Further, in order to control the exposure amount distribution in the non-scanning direction, a method disclosed in Patent Document 2 in which the width in the scanning direction of the illumination region is variable by a mechanical mechanism for each position in the non-scanning direction. However, because of the mechanical mechanism, it is difficult to change the width of the illumination area at high speed during stepping movement between shot areas or during exposure of one shot area.
本発明は斯力る事情の下になされたもので、基板等の物体上に露光されるパター ンの像の線幅均一性を向上させることができる露光技術を提供することを第 1の目的 とする。 The present invention has been made under such circumstances. A first object of the present invention is to provide an exposure technique capable of improving the line width uniformity of an image of a pattern exposed on an object such as a substrate. And
[0010] また、本発明は、走査露光を行う場合に、基板等の物体上に露光されるパターンの 像の線幅均一性を向上させることができる露光技術を提供することを第 2の目的とす る。  [0010] In addition, a second object of the present invention is to provide an exposure technique capable of improving the line width uniformity of an image of a pattern exposed on an object such as a substrate when performing scanning exposure. Suppose that
また、本発明は、そのような露光技術を用いるデバイス製造技術を提供することをも 目的とする。  Another object of the present invention is to provide a device manufacturing technique using such an exposure technique.
課題を解決するための手段  Means for solving the problem
[0011] 本発明による露光装置は、光源からの露光ビームで物体を露光する露光装置にお いて、その露光ビームの反射方向をそれぞれ制御可能な複数の反射素子を含み、 その物体上のその露光ビームの照明領域における照度分布を調整するためにその 光源とその物体との間に配置された反射素子アレイと、その物体に対する露光量を 制御するための露光量制御データが格納された記憶装置と、その記憶装置に記憶さ れて 、るその露光量制御データに基づ 、て、その反射素子アレイを制御する制御装 置とを備えたものである。 [0011] An exposure apparatus according to the present invention is an exposure apparatus that exposes an object with an exposure beam from a light source, and includes a plurality of reflective elements each capable of controlling the reflection direction of the exposure beam, and the exposure on the object. A reflection element array arranged between the light source and the object for adjusting the illuminance distribution in the illumination area of the beam, and a storage device storing exposure amount control data for controlling the exposure amount for the object; And a control device for controlling the reflective element array based on the exposure amount control data stored in the storage device.
[0012] 斯カる本発明によれば、その反射素子アレイの個々の反射素子による露光ビーム の反射方向を互いに独立に制御することによって、その物体上の照明領域の照度分 布を制御できる。従って、その照明領域内の複数の局所的な領域毎に最適な露光 量で露光を行うことができるため、その物体上に露光されるパターンの像の線幅均一 性を向上できる。  [0012] According to the present invention, the illuminance distribution of the illumination area on the object can be controlled by independently controlling the reflection direction of the exposure beam by the individual reflecting elements of the reflecting element array. Therefore, since exposure can be performed with an optimum exposure amount for each of a plurality of local regions in the illumination region, the line width uniformity of the pattern image exposed on the object can be improved.
なお、その物体を例えば所定のパターンを介して露光する場合には、そのパターン 上の露光ビームの照明領域における照度分布を制御する。また、一括露光の場合に は、一例としてその物体上の各局所領域に対する積算露光量が適正露光量に達し たときに、当該局所領域を照明する反射素子を制御して、それ以降はその局所領域 が露光ビームで照明されないようにすればよい。これによつて、その物体上の局所領 域毎に最適な露光量で露光が行えるようになる。  When the object is exposed through, for example, a predetermined pattern, the illuminance distribution in the illumination area of the exposure beam on the pattern is controlled. In the case of batch exposure, for example, when the integrated exposure amount for each local region on the object reaches an appropriate exposure amount, the reflective element that illuminates the local region is controlled, and thereafter, the local exposure is controlled. The area should not be illuminated by the exposure beam. This makes it possible to perform exposure with an optimum exposure amount for each local region on the object.
[0013] 本発明にお 、て、一例としてその反射素子アレイは、デジタルマイクロミラーデバイ ス(DMD)力もなるものである。デジタルマイクロミラーデバイスは、例えばシリコン等 の基板上に独立してチルト角を電気的に制御可能な微小な反射素子が数十万〜数 百万個程度マトリックス状に敷き詰められたものである。また、その反射素子アレイと しては、現在例えばプロジェクタ等に用いられて ヽるデジタルマイクロミラーデバイス を使用することができる。 In the present invention, as an example, the reflective element array also has a digital micromirror device (DMD) force. Digital micromirror devices have hundreds of thousands to hundreds of minute reflective elements that can electrically control the tilt angle independently on a substrate such as silicon. About one million pieces are laid in a matrix. As the reflective element array, a digital micromirror device which is currently used for projectors, for example, can be used.
[0014] また、一例として、その反射素子アレイを構成する各反射素子は、それぞれその露 光ビームを第 1及び第 2の反射方向の 、ずれかに反射し、その光源からのその露光 ビームをその反射素子アレイに導くビームスプリッタと、その第 2の反射方向に反射さ れたその露光ビームを遮光する絞り部材とをさらに備えてもよい。この場合、各反射 素子の反射方向をその第 1又は第 2の反射方向に切り替えることによって、それぞれ 各反射素子からの露光ビームのその物体に対する照射又は非照射を切り替えること ができる。従って、簡単な構成で、その物体上の局所的な照度分布を高速に制御で きる。  [0014] Further, as an example, each of the reflecting elements constituting the reflecting element array reflects the exposure beam in the first and second reflection directions so that the exposure beam from the light source is reflected. A beam splitter that leads to the reflective element array and a diaphragm member that shields the exposure beam reflected in the second reflection direction may be further provided. In this case, irradiation or non-irradiation of the exposure beam from each reflecting element can be switched by switching the reflecting direction of each reflecting element to the first or second reflecting direction. Therefore, the local illuminance distribution on the object can be controlled at high speed with a simple configuration.
[0015] また、その露光量制御データは、その物体上に形成されるパターン像の線幅分布 が所定分布になるように設定されてもよい。これによつて、そのパターン像の線幅均 一性をさらに向上できる。  [0015] Further, the exposure amount control data may be set so that the line width distribution of the pattern image formed on the object has a predetermined distribution. Thereby, the line width uniformity of the pattern image can be further improved.
また、その物体が感光体が塗布された基板であるときに、その露光量制御データは 、その基板上の位置によるその感光体の塗布厚の不均一性及び現像特性の不均一 性の少なくとも一方を補正するように設定されてもよい。これによつて、感光体の塗布 厚むら又は現像特性のむらに起因する線幅均一性の劣化を改善できる。  Further, when the object is a substrate coated with a photoconductor, the exposure amount control data includes at least one of nonuniformity in the coating thickness of the photoconductor and nonuniformity in development characteristics depending on the position on the substrate. May be set so as to correct. As a result, it is possible to improve the deterioration of the line width uniformity due to uneven coating thickness or development characteristics of the photoreceptor.
[0016] また、その反射素子アレイは、その光源とその物体との間のその物体と実質的に共 役の位置、又はこの実質的に共役の位置力 所定量だけずれた位置に配置すること ができる。その反射素子アレイをその実質的に共役な位置に配置したときには、その 反射素子アレイの露光ビームの反射方向の分布に応じてその物体上の照度分布が 定まるため、照度分布の制御が容易である。一方、その反射素子アレイをその実質 的に共役な位置力 所定量だけずらして配置したときには、その反射素子アレイの各 反射素子の境界部の像がその物体上に投影されないため、照度むらが低減される 場合がある。  [0016] Further, the reflective element array is disposed at a position that is substantially shared with the object between the light source and the object, or at a position that is offset by a predetermined amount of this conjugate power. Can do. When the reflective element array is placed at a substantially conjugate position, the illuminance distribution on the object is determined according to the distribution in the reflection direction of the exposure beam of the reflective element array, so the illuminance distribution can be easily controlled. . On the other hand, when the reflective element array is shifted by a predetermined amount of its substantially conjugate positional force, the image of the boundary of each reflective element in the reflective element array is not projected onto the object, reducing illuminance unevenness. It may be done.
[0017] また、その物体の露光中にその物体に対するその露光ビームの積算露光量を求め る演算装置をさらに備え、その制御装置は、その演算装置によって求められる積算 露光量及びその露光量制御データに基づ 、て、その反射素子アレイを制御してもよ い。これによつて、その物体上の積算露光量を高精度に制御できる。 [0017] In addition, the image processing apparatus further includes an arithmetic unit that calculates an integrated exposure amount of the exposure beam for the object during the exposure of the object, and the control unit includes an integration unit that is calculated by the arithmetic unit. The reflective element array may be controlled based on the exposure amount and the exposure amount control data. Thereby, the integrated exposure amount on the object can be controlled with high accuracy.
また、一例として、その露光装置は、その物体の露光中にその露光ビームに対して その物体を移動する走査露光型である。  As an example, the exposure apparatus is a scanning exposure type that moves the object relative to the exposure beam during the exposure of the object.
[0018] このようにその露光装置が走査露光型である場合、その物体の走査方向の位置情 報を計測する位置検出装置をさらに備え、その制御装置は、その位置検出装置によ つて求められる位置情報及びその露光量制御データに基づいて、その反射素子ァ レイを制御してもよい。これによつて、走査露光後に物体上に露光されるパターンの 像の線幅均一性を向上できる。  [0018] Thus, when the exposure apparatus is of a scanning exposure type, the exposure apparatus further includes a position detection device that measures position information of the object in the scanning direction, and the control device is obtained by the position detection device. The reflective element array may be controlled based on the position information and the exposure amount control data. As a result, the line width uniformity of the pattern image exposed on the object after scanning exposure can be improved.
また、その露光量制御データは、その露光ビームの照明領域の走査方向の光量積 算値がその走査方向に直交する非走査方向に渡って実質的に均一となるように設 定されてもよい。この場合、走査露光後の物体上の積算露光量の分布が均一になる 。もちろん、非走査方向における光量積算値の分布が不均一となるように露光量制 御データを設定することもできる。  Further, the exposure amount control data may be set such that the integrated light amount in the scanning direction of the illumination area of the exposure beam is substantially uniform in the non-scanning direction orthogonal to the scanning direction. . In this case, the distribution of the integrated exposure amount on the object after scanning exposure becomes uniform. Of course, the exposure control data can also be set so that the distribution of the integrated light quantity in the non-scanning direction becomes non-uniform.
また、一例として、その反射素子アレイは、その露光ビームの照明領域の走査方向 の所定箇所に対応する領域に 1本又は複数本のライン状に配列された複数の反射 素子を含むものである。この場合、そのライン状に配列された 1本又は複数本の複数 の反射素子は、例えばその物体の走査方向に直交する非走査方向にほぼ平行に配 置される。これによつて、細長い小型の反射素子アレイを用いるだけで、走査露光後 の積算露光量の分布を制御できる。  As an example, the reflective element array includes a plurality of reflective elements arranged in one or more lines in a region corresponding to a predetermined location in the scanning direction of the illumination region of the exposure beam. In this case, the one or a plurality of reflecting elements arranged in a line are arranged substantially in parallel in the non-scanning direction orthogonal to the scanning direction of the object, for example. As a result, the distribution of the integrated exposure amount after scanning exposure can be controlled only by using an elongated and small reflective element array.
[0019] また、その制御装置は、その反射素子アレイを制御して、その露光ビームの照明領 域の走査方向における幅を制御してもよい。これによつて、例えば機械的に照明光 学系の視野絞りの幅を制御する場合に比べて、高速にかつ細かいピッチでその照明 領域の幅をより再現性よく制御できるため、非走査方向の積算露光量の分布を高精 度に制御できる。  [0019] Further, the control device may control the width of the exposure beam in the scanning direction in the scanning direction by controlling the reflective element array. As a result, the width of the illumination area can be controlled with high reproducibility at a high speed and with a fine pitch compared to, for example, mechanically controlling the width of the field stop of the illumination optical system. The distribution of integrated exposure can be controlled with high accuracy.
また、その露光量制御データは、その物体上の複数の区画領域のそれぞれに対し て設定されてもよい。これによつて、例えばその物体上の複数の区画領域毎に最適 な露光量分布が異なる場合でも、各区画領域毎に露光量の分布を最適化できる。 [0020] 次に、本発明による露光方法は、光源からの露光ビームを物体に照射して、その物 体を露光する露光方法にぉ 、て、その物体上の複数の区画領域のそれぞれに対す る露光量及び露光量分布の少なくとも一方を制御するための露光量制御データを求 める第 1工程と、その光源とその物体との間に配置され、それぞれその露光ビームの 反射方向を制御可能な複数の反射素子を含む反射素子アレイを用いて、その露光 量制御データに基づきその物体上のその露光ビームの照明領域における照度分布 を制御する第 2工程とを有するものである。 The exposure amount control data may be set for each of a plurality of partitioned areas on the object. Thereby, for example, even when the optimal exposure amount distribution differs for each of the plurality of partitioned regions on the object, the distribution of the exposure amount can be optimized for each partitioned region. [0020] Next, an exposure method according to the present invention is an exposure method for irradiating an object with an exposure beam from a light source to expose the object, and for each of a plurality of partitioned regions on the object. Is positioned between the light source and the object, and the reflection direction of the exposure beam can be controlled respectively. And a second step of controlling the illuminance distribution in the illumination area of the exposure beam on the object based on the exposure amount control data using a reflective element array including a plurality of reflective elements.
[0021] 斯カる本発明によれば、その反射素子アレイの個々の反射素子による露光ビーム の反射方向を互いに独立に制御することによって、その照明領域内の複数の局所的 な領域毎に最適な照度分布で露光を行うことができる。従って、その物体上に露光さ れるパターンの像の線幅均一性を向上できる。  [0021] According to the present invention, the reflection direction of the exposure beam by the individual reflecting elements of the reflecting element array is controlled independently of each other, so that it is optimal for each of a plurality of local areas in the illumination area. The exposure can be performed with a proper illuminance distribution. Accordingly, it is possible to improve the line width uniformity of the pattern image exposed on the object.
また、本発明によるデバイス製造方法は、本発明の露光装置又は露光方法を用い るものである。本発明の適用によって物体上に露光されるパターンの像の線幅均一 性を向上できるため、システム LSIのように複数の異なる機能の回路を組み合わせた 構成のデバイスを高精度に製造できる。  The device manufacturing method according to the present invention uses the exposure apparatus or exposure method of the present invention. By applying the present invention, it is possible to improve the line width uniformity of a pattern image exposed on an object, so that a device having a configuration in which a plurality of circuits having different functions are combined like a system LSI can be manufactured with high accuracy.
発明の効果  The invention's effect
[0022] 本発明によれば、物体上の局所領域毎に最適な露光量で露光を行うことができる。  [0022] According to the present invention, exposure can be performed with an optimal exposure amount for each local region on the object.
従って、基板等の物体上に露光されるパターンの像の線幅均一性を向上できる。 図面の簡単な説明  Accordingly, it is possible to improve the line width uniformity of the pattern image exposed on the object such as the substrate. Brief Description of Drawings
[0023] [図 1]本発明の第 1の実施形態の投影露光装置の概略構成を示す図である。  FIG. 1 is a view showing a schematic configuration of a projection exposure apparatus according to a first embodiment of the present invention.
[図 2]第 1の実施形態のレチクル上の露光量マップを示す図である。  FIG. 2 is a view showing an exposure amount map on a reticle of the first embodiment.
[図 3]図 2の露光量マップに対応する図 1の DMD 128の反射面を示す図である。  3 is a view showing a reflection surface of DMD 128 in FIG. 1 corresponding to the exposure amount map in FIG.
[図 4] (a)はウェハ上の露光領域の照度分布の一例を示す図、(b)は図 4 (a)の照度 分布を補正するための補正露光量マップを示す図である。  4A is a diagram showing an example of an illuminance distribution in an exposure area on a wafer, and FIG. 4B is a diagram showing a corrected exposure dose map for correcting the illuminance distribution in FIG. 4A.
[図 5] (a)はレジストプロセスに起因するウェハ上の補正すべき露光量分布を示す図 、 (b)は図 5 (a)に対応するレチクル上の補正露光量マップを示す図である。  [FIG. 5] (a) is a diagram showing the exposure dose distribution to be corrected on the wafer due to the resist process, and (b) is a diagram showing a corrected exposure dose map on the reticle corresponding to FIG. 5 (a). .
[図 6] (a)は第 1の実施形態の積算露光量の変化の一例を示す図、(b)は図 6 (a)に 対応する単位時間当たりのエネルギーの変化を示す図である。 圆 7]本発明の第 2の実施形態の投影露光装置の概略構成を示す図である。 [FIG. 6] (a) is a diagram showing an example of a change in integrated exposure amount of the first embodiment, and (b) is a diagram showing a change in energy per unit time corresponding to FIG. 6 (a). 7] FIG. 7 is a view showing a schematic configuration of a projection exposure apparatus according to a second embodiment of the present invention.
[図 8]図 7の反射ミラー 11からレチクル Rまでの光路を示す斜視図である。  8 is a perspective view showing an optical path from the reflecting mirror 11 to the reticle R in FIG.
[図 9]図 7の反射ミラー 11のミラー素子部 Dl, D2の構成を示す透視図である。  FIG. 9 is a perspective view showing a configuration of mirror element portions Dl and D2 of the reflecting mirror 11 of FIG.
[図 10]第 2の実施形態のレチクル R上の露光量マップを示す図である。  FIG. 10 is a view showing an exposure amount map on a reticle R of a second embodiment.
[図 11]図 10のレチクル Rと照明領域 42Rとの相対的な位置の変化を示す平面図であ る。  FIG. 11 is a plan view showing a change in relative position between reticle R and illumination area 42R in FIG.
[図 12]図 11の時刻 t における図 7の反射ミラー 11のミラー素子部 D1の各ミラー素子  [FIG. 12] Each mirror element of mirror element portion D1 of reflecting mirror 11 in FIG. 7 at time t in FIG.
1  1
のオン又はオフの状態を示す透視図である。 It is a perspective view which shows the state of ON or OFF of.
[図 13]図 11の時刻 t における図 7の反射ミラー 11のミラー素子部 D1の各ミラー素子  [FIG. 13] Each mirror element of mirror element section D1 of reflecting mirror 11 in FIG. 7 at time t in FIG.
2  2
のオン又はオフの状態を示す透視図である。 It is a perspective view which shows the state of ON or OFF of.
[図 14]適正露光量が次第に大きくなる場合の、図 11の時刻 t における図 7の反射ミ  [Fig. 14] Reflection mirror in Fig. 7 at time t in Fig. 11 when the appropriate exposure gradually increases.
2  2
ラー 11のミラー素子部 D1の各ミラー素子のオン又はオフの状態を示す透視図であ る。 FIG. 11 is a perspective view showing an ON or OFF state of each mirror element of the mirror element part D1 of the mirror 11.
[図 15] (a)はレジストプロセスに起因するウェハ上の補正すべき露光量分布を示す図 、 (b)は図 15 (a)に対応するショット領域上の補正露光量マップを示す図である。  [FIG. 15] (a) is a diagram showing the exposure dose distribution to be corrected on the wafer due to the resist process, and (b) is a diagram showing a corrected exposure dose map on the shot region corresponding to FIG. 15 (a). is there.
[図 16] (a)は走査露光時のウェハ上の露光領域の照度分布の一例を示す図、(b)は 図 16 (a)の照度分布で走査露光した後の非走査方向の積算露光量分布を示す図 である。 [FIG. 16] (a) is a diagram showing an example of the illuminance distribution of the exposure area on the wafer during scanning exposure, and (b) is the integrated exposure in the non-scanning direction after scanning exposure with the illuminance distribution of FIG. 16 (a). It is a figure which shows quantity distribution.
[図 17] (a)は走査露光時のウェハ上の露光領域の幅を制御した場合の照度分布の 一例を示す図、(b)は図 17 (a)の照度分布で走査露光した後の非走査方向の積算 露光量分布を示す図である。  [Fig. 17] (a) is a diagram showing an example of the illuminance distribution when the width of the exposure area on the wafer during scanning exposure is controlled, and (b) is a diagram after scanning exposure with the illuminance distribution of Fig. 17 (a). It is a figure which shows the integrated exposure amount distribution of a non-scanning direction.
圆 18]第 2の実施形態の変形例の投影露光装置の概略構成を示す図である。 18] FIG. 18 is a diagram showing a schematic configuration of a projection exposure apparatus according to a modification of the second embodiment.
[図 19]図 18の反射ミラー 11からレチクル Rまでの光路を示す斜視図である。  FIG. 19 is a perspective view showing an optical path from reflection mirror 11 to reticle R in FIG.
[図 20] (a)は図 18の投影露光装置においてミラー素子部 D3を全部オン状態にしたと きの照明領域 42Rの走査方向の照度分布を示す図、 (b)は図 18の投影露光装置に おいてミラー素子部 D3を全部オフ状態にしたときの照明領域 42Rの走査方向の照 度分布を示す図である。  20 (a) is a diagram showing the illuminance distribution in the scanning direction of the illumination area 42R when all the mirror element portions D3 are turned on in the projection exposure apparatus of FIG. 18, and FIG. 20 (b) is the projection exposure of FIG. FIG. 6 is a diagram showing an illumination distribution in the scanning direction of an illumination region 42R when all the mirror element portions D3 are turned off in the apparatus.
符号の説明 [0024] 11· ··反射ミラー、 Dl, D2, D3"'ミラー素子部、 12· ··照明系、 13…ビームスプリツ タ、 16…エキシマレーザ光源、 33 .DMD駆動装置、 37…コンデンサーレンズ、 PL …投影光学系、 R…レチクル、 W…ウエノ、、 SA…ショット領域、 42R…照明領域、 42 W…露光領域、 50· ··主制御装置、 51· ··記憶装置、 54W…レーザ干渉計、 55· ··遮 光体、 101· ··水銀ランプ、 126· ··ビームスプリッタ、 127· ··コンデンサーレンズ、 128 …デジタルマイクロミラーデバイス(DMD)、 129· ··遮光体、 119· ··レチクル、 120· ·· 投影光学系、 121…ウエノ、、 125· ··主制御系、 130…記憶装置、 131 -DMD駆動 装置 Explanation of symbols [0024] 11 ··· Reflection mirror, Dl, D2, D3 "'mirror element, 12 ··· Illumination system, 13 ··· Beam splitter, 16 · ··· Excimer laser light source, · 33 · DMD drive device, · 37 · Condenser lens, PL: Projection optical system, R: Reticle, W: Ueno, SA ... Shot area, 42R ... Illumination area, 42 W ... Exposure area, 50 ... Main controller, 51 ... Storage device, 54W ... Laser interference Total 55 ··· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··· Reticle, 120 ··· Projection optical system, 121… Ueno, ·························································
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] [第 1の実施形態] [First Embodiment]
以下、本発明の好ましい第 1の実施形態につき図 1〜図 6を参照して説明する。本 例は、一括露光型の露光装置としてのステツバよりなる投影露光装置で露光を行う場 合に本発明を適用したものである。  A preferred first embodiment of the present invention will be described below with reference to FIGS. In this example, the present invention is applied to the case where exposure is performed by a projection exposure apparatus comprising a strobe as a batch exposure type exposure apparatus.
図 1は、本例の投影露光装置の概略構成を示し、この図 1において、露光用の光源 としては水銀ランプ 101が使用されている。ただし、露光用の光源としては、 KrF (波 長 248nm)若しくは ArF (波長 193nm)等のエキシマレーザ、 Fレーザ(波長 157η  FIG. 1 shows a schematic configuration of the projection exposure apparatus of this example. In FIG. 1, a mercury lamp 101 is used as a light source for exposure. However, exposure light sources include excimer lasers such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm), and F lasers (wavelength 157 η).
2  2
m)、 YAGレーザの高調波発生装置、又は固体レーザ (半導体レーザ等)の高調波 発生装置等も使用することができる。水銀ランプ 101からの露光ビームとしての照明 光 ILは、楕円鏡 102によって集光された後、集光光学系 103a及び所望の波長帯の 光 (例えば i線)を選択する光学フィルタ 103bを含む集光フィルタ系 103を経てシャツ タ 104に達する。シャツタ 104は、タイマ制御系 106からの指令に基づいてシャツタ制 御機構 105により開閉される。シャツタ 104が開状態の場合、照明光 ILはインプットレ ンズ 107を介してほぼ平行光束となって、オプティカル 'インテグレータ(ュニフォマイ ザ又はホモジナイザ)としてのフライアイレンズ 108に入射する。  m), a harmonic generator of a YAG laser, or a harmonic generator of a solid-state laser (semiconductor laser, etc.) can also be used. Illumination light IL as an exposure beam from the mercury lamp 101 is collected by an elliptic mirror 102, and then includes a condensing optical system 103a and an optical filter 103b for selecting light in a desired wavelength band (for example, i-line). It reaches the shirt 104 through the optical filter system 103. The shatter 104 is opened and closed by the shatter control mechanism 105 based on a command from the timer control system 106. When the shirter 104 is in the open state, the illumination light IL becomes a substantially parallel light beam through the input lens 107 and enters the fly-eye lens 108 as an optical integrator (unifomizer or homogenizer).
[0026] フライアイレンズ 108の射出面(照明光学系の瞳面)には多数の 2次光源像が形成 され、これらによりレチクル 119を照明する照明光 ILの照度分布が平坦ィ匕される。フ ライアイレンズ 108を通過した照明光 ILは、反射率が 98%程度のビームスプリッタ 10 9に入射する。ビームスプリッタ 109で反射された照明光 ILは、第 1リレーレンズ 113 を経て、ブラインド駆動系 115により開口の形状が制御された照明用ブラインド (可変 視野絞り) 114上で所定の可変の照明領域を照明する光束に制限される。装置全体 の動作を制御する主制御系 125が、ブラインド駆動系 115を介して照明用ブラインド 114の開口の形状、ひいてはレチクル 119上の照明領域の形状を制御する。照明用 ブラインド 114を通過した照明光 IL力 第 2リレーレンズ 116、ビームスプリッタ 126、 及びコンデンサーレンズ 127を介して、反射素子アレイとしてのデジタルマイクロミラ 一デバイス (以下、 DMDと言う。 ) 128の反射面を均一な照度分布で照明する。後述 のように DMD128は反射面のチルト角が可変の微小な反射素子としての多数のミラ 一素子を備えており、 DMD128の反射面は、マスクとしてのレチクル 119のパターン 面 (パターン形成面)と共役な位置にある。主制御系 125が、 DMD駆動装置 131 ( 制御装置)を介して DMD128の個々のミラー素子の反射面のチルト角を互いに独 立に制御する。 A large number of secondary light source images are formed on the exit surface of the fly-eye lens 108 (the pupil plane of the illumination optical system), and the illuminance distribution of the illumination light IL that illuminates the reticle 119 is thereby flattened. The illumination light IL that has passed through the fly-eye lens 108 enters the beam splitter 109 having a reflectivity of about 98%. Illumination light IL reflected by the beam splitter 109 is reflected by the first relay lens 113. After that, the illumination blind (variable field stop) 114 whose aperture shape is controlled by the blind drive system 115 is limited to a light beam that illuminates a predetermined variable illumination area. A main control system 125 that controls the operation of the entire apparatus controls the shape of the opening of the illumination blind 114 and the shape of the illumination area on the reticle 119 via the blind drive system 115. Illumination light passing through illumination blind 114 IL force Reflection of digital micromirror device (hereinafter referred to as DMD) 128 as a reflective element array via second relay lens 116, beam splitter 126, and condenser lens 127 Illuminate the surface with a uniform illumination distribution. As will be described later, the DMD128 includes a number of mirror elements as minute reflective elements with variable tilt angles of the reflective surface. The reflective surface of the DMD128 includes the pattern surface (pattern forming surface) of the reticle 119 as a mask. It is in a conjugate position. The main control system 125 independently controls the tilt angles of the reflecting surfaces of the individual mirror elements of the DMD 128 via the DMD driving device 131 (control device).
[0027] DMD128からの反射光は、再びコンデンサーレンズ 127及びビームスプリッタ 126 を経て絞り部材としての中央に円形の開口 129aが形成された遮光体 129に入射す る。遮光体 129の代わりに、光を吸収する吸収体を使用することもできる。 DMD128 の多数のミラー素子力 所定の方向に反射された照明光 ILが、遮光体 129の開口 1 29aを通過した後、コンデンサーレンズ 118を介してレチクル 119のパターン面の照 明領域内のパターンを照明する。  [0027] The reflected light from the DMD 128 passes through the condenser lens 127 and the beam splitter 126 again and is incident on the light shield 129 having a circular opening 129a formed at the center as a diaphragm member. Instead of the light shield 129, an absorber that absorbs light may be used. Many mirror element forces of DMD128 Illumination light IL reflected in a predetermined direction passes through aperture 1 29a of light shield 129 and then passes through condenser lens 118 to pattern in the illumination area of the pattern surface of reticle 119. Illuminate.
[0028] 水銀ランプ 101、楕円鏡 102、及び集光フィルタ系 103を含んで露光用の光源装 置の少なくとも一部が構成され、シャツタ 104、インプットレンズ 107、フライアイレンズ 108、ビームスプリッタ 109、第 1リレーレンズ 113、照明用ブラインド (可変視野絞り) 114、第 2リレーレンズ 116、ビームスプリッタ 126、コンデンサーレンズ 127、 DMD1 28、遮光体 129、及びコンデンサーレンズ 118を含んで照明光学系の少なくとも一 部が構成されている。  [0028] At least a part of a light source device for exposure is configured including a mercury lamp 101, an elliptical mirror 102, and a condensing filter system 103, and includes a shirter 104, an input lens 107, a fly-eye lens 108, a beam splitter 109, At least one of the illumination optical system including the first relay lens 113, the illumination blind (variable field stop) 114, the second relay lens 116, the beam splitter 126, the condenser lens 127, the DMD1 28, the light shield 129, and the condenser lens 118. The part is composed.
[0029] 照明光 ILのもとで、レチクル 119の照明領域内のパターンが両側(又は片側)テレ セントリックな投影光学系 120を介して投影倍率 ( は例えば 1Z4、 1Z5等の縮 小倍率)で、基板としてのフォトレジスト (感光体又は感光材料)が塗布されたウェハ 1 21の一つのショット領域上の露光領域に投影露光される。ウェハ 121の表面は、そ れぞれレチクル 119のパターンの像が転写される多数の矩形のショット領域(区画領 域)に区画されている。レチクル 119上の照明領域とウェハ 121上の露光領域とは共 役であり、ウェハ 121上の露光領域は照明領域とみなすこともできる。ウェハ 121は 例えば半導体(シリコン等)又は SOI(silicon on insulator)等の直径が 200〜300mm 程度の円板状の基板である。 [0029] Under illumination light IL, the pattern in the illumination area of reticle 119 is projected on both sides (or one side) through telecentric projection optical system 120 (for example, 1Z4, 1Z5, etc.) Thus, projection exposure is performed on an exposure region on one shot region of the wafer 121 coated with a photoresist (photosensitive material or photosensitive material) as a substrate. The surface of wafer 121 is Each is divided into a number of rectangular shot areas (partition areas) onto which the pattern image of the reticle 119 is transferred. The illumination area on reticle 119 and the exposure area on wafer 121 are shared, and the exposure area on wafer 121 can also be regarded as the illumination area. The wafer 121 is a disk-shaped substrate having a diameter of about 200 to 300 mm, such as a semiconductor (silicon etc.) or SOI (silicon on insulator).
[0030] なお、本例では DMD128の反射面とレチクル 119のパターン面とが光学的に共役 な位置に配置されているため、 DMD128を構成する各ミラー素子による照明光 ILの 反射光の分布がほぼそのままレチクル 119の照明領域 (又はウェハ 121上の露光領 域)の照度分布に対応する。し力しながら、 DMD128上の各ミラー素子の境界がレ チクル 119のノターン面に格子状に投影されて、照度分布が許容範囲力 外れる恐 れがある場合は、 DMD128の反射面をレチクル 119のパターン面と共役な位置から 所定量だけ (ここでは、その照度分布がその許容範囲内に収まるまで)ずれた位置に 酉己置してちょい。 [0030] In this example, since the reflecting surface of DMD128 and the pattern surface of reticle 119 are arranged at optically conjugate positions, the distribution of reflected light of illumination light IL by each mirror element constituting DMD128 is as follows. This corresponds almost directly to the illumination distribution of the illumination area of the reticle 119 (or the exposure area on the wafer 121). However, if the boundary of each mirror element on the DMD128 is projected in a grid pattern on the no-turn surface of the reticle 119 and the illuminance distribution is likely to deviate from the allowable range, the reflective surface of the DMD128 is moved over the reticle 119. Place yourself at a position that deviates from the position conjugate with the pattern surface by a predetermined amount (in this case, until the illuminance distribution falls within the allowable range).
[0031] また、照明光学系において、ビームスプリッタ 109を透過した照明光は、集光レンズ 110を介して光電変換用の光センサであるインテグレータセンサ 111に入射し、この 出力信号が照度算出系 112に供給される。インテグレータセンサ 111は、例えばレチ クル 119のパターン面とほぼ共役な位置にある。例えばレチクル 119に回路パターン が形成されて ヽな 、場合 (透過率が 1)の、ウェハ 121での単位時間当たりの露光ェ ネルギ一とインテグレータセンサ 111上での照度との間の換算係数が予め照度算出 系 112に記憶されて 、る。照度算出系 112にお 、てインテグレータセンサ 111の出 力信号にその換算係数を乗ずることにより、ウェハ 121での単位時間当たりの露光ェ ネルギー(照度)が求められる。求められた単位時間当たりの露光エネルギーは主制 御系 125 (積算露光量を求める演算装置)に供給される。さらに、この露光時の単位 時間当たりの露光エネルギーでウェハ 121 (フォトレジスト)上での適正露光量を除算 して得られる露光時間をタイマ制御系 106に入力する。これに応じてタイマ制御系 10 6が、一例としてその露光時間だけシャツタ 104を開状態にすることにより、ウェハ 12 1上での露光量を制御できる。  In the illumination optical system, the illumination light transmitted through the beam splitter 109 is incident on an integrator sensor 111, which is a photoelectric conversion optical sensor, via a condenser lens 110, and this output signal is an illuminance calculation system 112. To be supplied. For example, the integrator sensor 111 is at a position substantially conjugate with the pattern surface of the reticle 119. For example, in the case where a circuit pattern is formed on the reticle 119 (transmittance is 1), the conversion coefficient between the exposure energy per unit time on the wafer 121 and the illuminance on the integrator sensor 111 is calculated in advance. It is stored in the illuminance calculation system 112. In the illuminance calculation system 112, the exposure energy (illuminance) per unit time on the wafer 121 is obtained by multiplying the output signal of the integrator sensor 111 by the conversion factor. The obtained exposure energy per unit time is supplied to the main control system 125 (arithmetic unit for obtaining the integrated exposure amount). Further, the exposure time obtained by dividing the appropriate exposure amount on the wafer 121 (photoresist) by the exposure energy per unit time at the time of exposure is input to the timer control system 106. In response to this, the timer control system 106 can control the exposure amount on the wafer 121 by opening the shirter 104 for the exposure time as an example.
[0032] ただし、本例では後述のように DMD128においても、各ミラー素子の反射角の制 御によって各ミラー素子によって反射される照明光毎の露光時間 (積算露光量)が制 御できる。 [0032] However, in this example, as described later, also in DMD128, the reflection angle of each mirror element is controlled. The exposure time (integrated exposure) for each illumination light reflected by each mirror element can be controlled.
また、レチクル 119上にパターンの特性 (パターン線幅、パターンの繰り返し周期( ピッチ)、パターン密度など)が異なる複数の部分領域 (局所領域) PTi (i= l, 2, · ··) が存在する場合には、レチクル 119上の複数の部分領域 PTi毎に積算露光量を制 御する。このために、レチクル 119上の部分領域 PTi毎に、各部分領域 PTiの特性に 応じて決定された適正露光量 Piが求められる。そして、ウェハ 121上での単位時間 当たりの露光エネルギー Eで各部分領域 PTi毎の適正露光量 Piを除算すると、各部 分領域 PTi毎の露光時間 ti(i= l, 2, 3· ··)が求められる。  There are also multiple partial areas (local areas) PTi (i = l, 2, ...) with different pattern characteristics (pattern line width, pattern repetition period (pitch), pattern density, etc.) on reticle 119 In this case, the integrated exposure amount is controlled for each of the plurality of partial areas PTi on the reticle 119. Therefore, for each partial area PTi on the reticle 119, an appropriate exposure amount Pi determined according to the characteristics of each partial area PTi is obtained. Then, by dividing the appropriate exposure dose Pi for each partial area PTi by the exposure energy E per unit time on the wafer 121, the exposure time ti (i = l, 2, 3, ...) for each partial area PTi Is required.
[0033] すなわち、以下のような関係がある。 [0033] That is, there is the following relationship.
ti=Pi/E (i= l, 2, · ··)  ti = Pi / E (i = l, 2, ...)
なお、ウェハ 121上における単位時間当たりの露光エネルギー Eは、投影光学系 P Lの像面側に到達する平均的な露光エネルギーをウェハ 121の露光を開始する前 に計測することによって決めることができる。また、本例においては、露光時間 tiの中 で最も長い時間 ti 力タイマ制御系 106に供給され、その最長露光時間 ti が経過 max max したときにシャツタ 104が閉じられる。  The exposure energy E per unit time on the wafer 121 can be determined by measuring the average exposure energy reaching the image plane side of the projection optical system PL before starting the exposure of the wafer 121. Further, in this example, the exposure time ti is supplied to the longest time ti force timer control system 106, and the shirter 104 is closed when the maximum exposure time ti has elapsed max max.
[0034] また、本例においては、インテグレータセンサ 111を介して計測される単位時間当 たりの露光エネルギー Δ Eの積算値が適正露光量 Piとなった時点でその部分領域 P Tiへの露光を停止する。すなわち、主制御系 125は、インテグレータセンサ 111を介 して計測される単位時間当たりの露光エネルギー Δ Εの積算値に基づいて DMD12 8の各ミラー素子のチルト角を制御して、各部分領域 PTiの積算露光量が適正露光 量 Piとなるように、各部分領域 PTi毎に露光時間を制御する。これにより、レチクル 11 9上のパターン特性に応じて積算露光量が最適化されて、ショット領域内におけるパ ターンの像の線幅均一性を向上させることができる。  [0034] Further, in this example, when the integrated value of the exposure energy ΔE per unit time measured via the integrator sensor 111 becomes the appropriate exposure amount Pi, the partial area P Ti is exposed. Stop. That is, the main control system 125 controls the tilt angle of each mirror element of the DMD 128 based on the integrated value of the exposure energy ΔΕ per unit time measured via the integrator sensor 111, and thereby controls each partial region PTi. The exposure time is controlled for each partial area PTi so that the integrated exposure amount becomes the appropriate exposure amount Pi. Thereby, the integrated exposure amount is optimized according to the pattern characteristics on the reticle 119, and the line width uniformity of the pattern image in the shot area can be improved.
[0035] このようにパターンの特性が異なる複数の部分領域 PTiを持つレチクル 119を介し てウェハ 121上のショット領域を露光する場合に、そのショット領域の露光中に、レチ クル 119上の部分領域 PTiに対応する照明領域内の照度分布を制御 (調整)するこ とによって、その部分領域 PTiに対応するショット領域内の局所領域毎に積算露光量 を最適化することができる。 [0035] When a shot area on wafer 121 is exposed through reticle 119 having a plurality of partial areas PTi having different pattern characteristics as described above, partial areas on reticle 119 are exposed during the exposure of the shot areas. By controlling (adjusting) the illuminance distribution in the illumination area corresponding to PTi, the integrated exposure amount for each local area in the shot area corresponding to that partial area PTi Can be optimized.
[0036] なお、レチクル 119上の部分領域 PTi毎の適正露光量 Piは露光量マップ情報とし て主制御系 125に接続された記憶装置 130に予め格納されて 、る。露光量マップ情 報は、例えばレチクル 119上のパターンをテストウェハ上に転写し、そのテストウエノ、 上に形成されたパターン像の線幅などを計測し、その計測結果に基づ 、て作成され るもので、ショット領域内において各パターンが所望の線幅となるように求められたデ ータである(第 1工程)。  Note that the appropriate exposure amount Pi for each partial region PTi on the reticle 119 is stored in advance in the storage device 130 connected to the main control system 125 as exposure amount map information. For example, the exposure map information is created based on the measurement result obtained by transferring the pattern on reticle 119 onto a test wafer, measuring the test wafer, the line width of the pattern image formed on the test wafer, and the like. This is data obtained so that each pattern has a desired line width in the shot area (first step).
[0037] また、その記憶装置 130には、後述のように、照明光学系による照明光 ILの照度む ら、及びウェハ 121上のフォトレジストの塗布厚のむら、現像むらに起因して生じる現 像後のパターンの線幅の変化を補正するために、積算露光量に加算 (値が負の場合 には減算)される補正露光量を含む補正マップも格納されている。その補正マップは 、一例としてウェハ 121上の各ショット領域毎に設定されるものである力 各ショット領 域をさらに分割した部分領域毎に設定してもよい。露光時に主制御系 125は、記憶 装置 130に記憶されているその露光量マップ及び補正マップに基づいてウェハ 121 上の各ショット領域の積算露光量を所望の分布にするために、照明光 ILの照射を制 御する。一例として、上述の露光量マップで定まる適正露光量にその補正マップで 定まる露光量を加算して得られる積算露光量の分布となるように、各ショット領域の露 光中に、各部分領域に対する照明光 ILの照度分布が制御される (第 2工程)。この場 合の照度分布の制御は、そのレチクル 119上の照明領域内の照度分布の制御、及 びウェハ 121上のショット領域内の照度分布の制御のうちの少なくとも一方の意味を 含むものである。  [0037] Further, in the storage device 130, as will be described later, the image generated due to unevenness in the illumination light IL by the illumination optical system, unevenness in the coating thickness of the photoresist on the wafer 121, and unevenness in development. A correction map is also stored that includes a corrected exposure that is added to the integrated exposure (or subtracted if the value is negative) to correct changes in the line width of subsequent patterns. As an example, the correction map may be set for each partial area obtained by further dividing each force shot area that is set for each shot area on the wafer 121. At the time of exposure, the main control system 125 adjusts the illumination light IL in order to obtain a desired distribution of the integrated exposure amount of each shot area on the wafer 121 based on the exposure amount map and the correction map stored in the storage device 130. Control irradiation. As an example, during the exposure of each shot area, each partial area is subjected to exposure so that the distribution of accumulated exposure obtained by adding the exposure determined by the correction map to the appropriate exposure determined by the exposure map described above. The illuminance distribution of the illumination light IL is controlled (second step). In this case, the control of the illuminance distribution includes at least one of the control of the illuminance distribution in the illumination area on the reticle 119 and the control of the illuminance distribution in the shot area on the wafer 121.
[0038] 以下、投影光学系 120の光軸 AXに平行に Z軸を取り、 Z軸に垂直な平面内で図 1 の紙面に垂直な方向に X軸を取り、図 1の紙面に平行な方向に Y軸を取って説明す る。このとき、レチクル 119は、レチクルステージ 132上に吸着保持され、レチクルステ ージ 132は、レチクルベース(不図示)上の XY平面内でレチクル 119の位置決めを 行う。レチクルステージ 132の XY平面内での位置を計測するためのレーザ干渉計シ ステム (不図示)も備えられている。  [0038] Hereinafter, the Z-axis is taken in parallel to the optical axis AX of the projection optical system 120, the X-axis is taken in a direction perpendicular to the paper surface of FIG. 1 in a plane perpendicular to the Z-axis, and parallel to the paper surface of FIG. Take the Y axis in the direction. At this time, reticle 119 is held by suction on reticle stage 132, and reticle stage 132 positions reticle 119 in the XY plane on a reticle base (not shown). A laser interferometer system (not shown) for measuring the position of reticle stage 132 in the XY plane is also provided.
[0039] 一方、ウエノ、 121は、不図示のウェハホルダを介してウェハステージ 133上に吸着 保持され、ウェハステージ 133は、ウェハベース 134上の XY平面内で X方向及び Y 方向にステップ移動してウェハ 121の位置決めを行う。ウェハステージ 133の XY平 面内での位置を計測するためのレーザ干渉計システム (不図示)も備えられている。 主制御系 125は、それらのレーザ干渉計システムの計測値に基づ 、てレチクルステ ージ 132の位置決め及びウェハステージ 133のステップ移動を行う。また、レチクル 1 19のァライメントを行うためのレチクルァライメント顕微鏡(不図示)及びウェハ 121の ァライメントを行うためのァライメントセンサ(不図示)も備えられている。 On the other hand, Ueno 121 is sucked onto wafer stage 133 via a wafer holder (not shown). The wafer stage 133 is stepped in the X and Y directions within the XY plane on the wafer base 134 to position the wafer 121. A laser interferometer system (not shown) for measuring the position of the wafer stage 133 in the XY plane is also provided. The main control system 125 performs positioning of the reticle stage 132 and step movement of the wafer stage 133 based on the measurement values of these laser interferometer systems. Further, a reticle alignment microscope (not shown) for aligning the reticle 119 and an alignment sensor (not shown) for aligning the wafer 121 are also provided.
[0040] ウェハ 121の露光時には、照明光 ILをレチクル 119に照射して、レチクル 119のノ ターンを投影光学系 120を介してウェハ 121上の一つのショット領域上に転写する動 作と、ウェハステージ 133を駆動してウェハ 121を X方向、 Y方向にステップ移動して 、ウェハ 121上の次のショット領域を投影光学系 120の露光領域に移動する動作と が繰り返される。 [0040] At the time of exposure of wafer 121, illumination light IL is irradiated onto reticle 119, and the pattern of reticle 119 is transferred onto one shot area on wafer 121 via projection optical system 120, and the wafer. The operation of moving the next shot area on the wafer 121 to the exposure area of the projection optical system 120 by driving the stage 133 and moving the wafer 121 stepwise in the X and Y directions is repeated.
[0041] さて、レチクル 119の照明領域内のパターンの像でウェハ 121上の各ショット領域 を露光する際に、その照明領域内の複数の部分領域でパターン特性が異なる場合 でも、本例によれば、その複数の部分領域に対する照明光 ILの露光時間を制御する ことによって、その各ショット領域内での積算露光量を所望の分布にすることができる 。先ず、その露光量制御で使用する反射素子アレイとしての DMD128 (デジタルマ イク口ミラーデバイス)の構成につき説明する。  [0041] Now, when each shot area on the wafer 121 is exposed with an image of the pattern in the illumination area of the reticle 119, even if the pattern characteristics are different in a plurality of partial areas in the illumination area, this example is used. For example, by controlling the exposure time of the illumination light IL for the plurality of partial areas, the integrated exposure amount in each shot area can be set to a desired distribution. First, the configuration of DMD128 (digital microphone aperture mirror device) as a reflective element array used in the exposure amount control will be described.
[0042] DMD128は、一例としてシリコン基板の下面に X方向及び Y方向に所定ピッチで、 互いに独立に電気的に反射面のチルト角が制御可能な微小なミラー素子 (反射素子 )を数十万〜数百万個程度敷き詰めて構成されている。この場合、レチクル 119上の 照明領域内を X方向、 Y方向に多数の微小部分に分け、それぞれの微小部分に D MD128の対応するミラー素子からの照明光が照射されるように、そのミラー素子は マトリックス状に配置されて 、る。  [0042] As an example, the DMD 128 has hundreds of thousands of minute mirror elements (reflective elements) that can electrically control the tilt angle of the reflecting surface independently of each other at predetermined pitches in the X and Y directions on the lower surface of the silicon substrate. ~ It is made up of several million pieces. In this case, the illumination area on the reticle 119 is divided into a number of minute parts in the X and Y directions, and the mirror elements are irradiated so that illumination light from the corresponding mirror elements of the DMD128 is irradiated to each minute part. Are arranged in a matrix.
[0043] DMD128としては、現在、プロジェクタ等に広く用いられているデジタルマイクロミ ラーデバイス (DMD)を使用することができる。 DMDをプロジェクタに使用する際、 各ミラー素子はそれぞれ約 ± 12° チルト角が変化する。この際に一例として、 + 12 ° 及び 12° のチルト角がそれぞれオン状態及びオフ状態に対応しているとともに 、各ミラー素子のオン'オフは、デジタル制御によって 1秒間に数千回のサイクルで切 り替え可能である。各ミラー素子に光源力もの光が照射されると、例えば 12° (ォ フ状態)のミラー素子に反射された光は別配置された光吸収板に吸収され、 + 12° (オン状態)のミラー素子に反射された光は投影用レンズを通してスクリーンに照射さ れる。そして、 DMD上の多数のミラー素子のオン'オフの回数を制御することによつ て投影像の濃度が表現されるようになって ヽる。 [0043] As the DMD 128, a digital micromirror device (DMD) that is currently widely used in projectors and the like can be used. When DMD is used in a projector, each mirror element changes its tilt angle by about ± 12 °. As an example, the tilt angles of + 12 ° and 12 ° correspond to the on and off states, respectively. Each mirror element can be switched on and off at a cycle of thousands of cycles per second by digital control. When each mirror element is irradiated with light of sufficient light source power, for example, the light reflected by the mirror element at 12 ° (off state) is absorbed by the light absorbing plate arranged separately, and + 12 ° (on state). The light reflected by the mirror element is applied to the screen through the projection lens. Then, the density of the projected image can be expressed by controlling the number of on / off times of a large number of mirror elements on the DMD.
[0044] 本例は、その DMDを用いて、そのスクリーンの代わりにレチクル 119を照射するよ うにしたものである。現在、一般的に入手可能な DMDは 720 X 1280個のミラー素 子が配置されているため、ウェハ上のショット領域の大きさ(ショットサイズ)を 20 X 35 mm2とするならば、各ミラー素子からの照明光は 28 m角の領域を照射することに 相当する。また、本例で使用される DMD128は、図 1に示すように、全体としての反 射面がほぼ投影光学系 120の光軸 AXに垂直であるため、各ミラー素子の個々の反 射面はオン状態で光軸 AXに垂直な面と平行な 0° 、オフ状態で光軸 AXに垂直な 面に対して 12° あるいは一 12° の一方にチルトするものが望ましい。このとき、図 1 において、 DMD128内のオン状態のミラー素子で反射された照明光 ILは、第 1方向 に反射され、遮光体 129の開口 129aを通過してレチクル 119の照明領域内の対応 する部分を照明する。一方、 DMD128内のオフ状態のミラー素子で反射された照明 光 ILは、第 2方向に反射され、遮光体 129で遮光されてレチクル 119には照射され ない。主制御系 125から DMD駆動装置 131に切替指令が供給されると、 DMD駆 動装置 131は、 DMD128内の各ミラー素子のオンとオフとを切り替える。 [0044] In this example, the DMD is used to irradiate a reticle 119 instead of the screen. Currently available DMDs have 720 x 1280 mirror elements, so if the shot area on the wafer (shot size) is 20 x 35 mm 2 , each mirror The illumination light from the element is equivalent to irradiating a 28 m square area. In addition, as shown in FIG. 1, the DMD 128 used in this example has an overall reflecting surface that is substantially perpendicular to the optical axis AX of the projection optical system 120. Therefore, each reflecting surface of each mirror element is It is desirable to tilt at 0 ° parallel to the plane perpendicular to the optical axis AX in the on state and to 12 ° or 112 ° relative to the plane perpendicular to the optical axis AX in the off state. At this time, in FIG. 1, the illumination light IL reflected by the on-state mirror element in the DMD 128 is reflected in the first direction, passes through the opening 129a of the light shield 129, and corresponds to the illumination area of the reticle 119. Illuminate the part. On the other hand, the illumination light IL reflected by the off-state mirror element in the DMD 128 is reflected in the second direction, is shielded by the light shield 129, and is not irradiated to the reticle 119. When a switching command is supplied from the main control system 125 to the DMD driving device 131, the DMD driving device 131 switches each mirror element in the DMD 128 on and off.
[0045] 次に、本例の露光量制御動作について具体的に説明する。図 2の露光量マップに 示すように、レチクル 119のパターン領域 PAには数種類(図 2では 3種類)の異なる 機能でパターン特性も異なる回路が部分領域 PT1, PT2, PT3に分けて形成されて おり、それぞれの部分領域に対する適正露光量が Dosel、 Dose2、 Dose3に設定さ れているものとする。その適正露光量は、上述の各部分領域 PTiの適正露光量 Piに 対応するものである。そして、その適正露光量を得るための部分領域 PT1〜PT3〖こ 対する露光時間は、単位時間当たりの露光エネルギー Εで適正露光量 Dose l〜Do se3をそれぞれ除算することによって得られる。ここで、適正露光量の大きさは次の関 係にあると仮定する。 Next, the exposure amount control operation of this example will be specifically described. As shown in the exposure map in Fig. 2, the pattern area PA of reticle 119 is formed with several different types of circuits (three types in Fig. 2) and different pattern characteristics divided into partial areas PT1, PT2, and PT3. It is assumed that the appropriate exposure amount for each partial area is set to Dosel, Dose2, and Dose3. The appropriate exposure amount corresponds to the appropriate exposure amount Pi of each partial region PTi described above. Then, the exposure time for the partial areas PT1 to PT3 for obtaining the appropriate exposure amount is obtained by dividing the appropriate exposure amount Dose 1 to Dose 3 by the exposure energy 単 位 per unit time, respectively. Here, the size of the appropriate exposure is Assume that you are in charge.
[0046] DoseK Dose2< Dose3 · '· (2) [0046] DoseK Dose2 <Dose3 · '· (2)
このとき、図 1のレチクル 119を介してウェハ 121を露光する際の露光時間の上限 を決定するための適正露光量としては、最も大きな Dose3が用いられる。すなわち、 Dose3に対応する露光時間 t3が予め主制御系 125からタイマ制御系 106に供給さ れ、各ショット領域の露光開始力もの経過時間が t3に達した時点でシャツタ 104が閉 じられる。  At this time, the largest dose 3 is used as the appropriate exposure amount for determining the upper limit of the exposure time when the wafer 121 is exposed via the reticle 119 of FIG. That is, the exposure time t3 corresponding to Dose3 is supplied in advance from the main control system 125 to the timer control system 106, and the shirter 104 is closed when the elapsed time corresponding to the exposure start force of each shot area reaches t3.
[0047] また、図 3は、図 2のレチクル 119の部分領域 PT1〜PT3に対応する DMD128上 の部分領域 MD1, MD2, MD3を示している。なお、図 1のコンデンサーレンズ 127 及び 118よりなる結像光学系によって、図 3の配置は図 2の配置に対して反転して 、 る。なお、本例の説明では簡略ィ匕のために、 3つの部分領域に分けて説明する力 こ れに限定されるものでは無ぐ原理的には DMD128を構成するミラー素子の個数を 上限として照明領域を分割することが可能である。  FIG. 3 shows partial regions MD1, MD2, and MD3 on DMD 128 corresponding to partial regions PT1 to PT3 of reticle 119 in FIG. Note that the arrangement shown in FIG. 3 is reversed with respect to the arrangement shown in FIG. 2 by the imaging optical system including the condenser lenses 127 and 118 shown in FIG. In the explanation of this example, for the sake of simplicity, the power to be divided into three partial areas is not limited to this. In principle, illumination is performed with the number of mirror elements constituting the DMD 128 as the upper limit. It is possible to divide the region.
[0048] 次に、図 1の DMD128の動作について説明する。露光に先立ち、 DMD128の全 ミラー素子はオン状態 (チルト無し)であり、その反射光はレチクル 119の全てのパタ ーン領域 (照明領域に一致しているとする)を照射可能な状態になっている。仮に、ゥ ェハ 121上で全く露光したくない領域は、一般にはレチクル 119上の遮光パターン に対応しているので、適正露光量が 0の領域は考える必要は無い。し力しながら、一 度露光したウェハ上のショット領域に補正露光を施すような場合は、適正露光量を 0 と設定する領域が有り得る。このような場合は、その領域に対応するミラー素子を初 め力もオフ状態 (チルト有り)にすることも可能である。また、ショット領域内の一部の 領域を他の領域と異なる露光条件 (露光光の偏光特性、照明 ΝΑ等)で露光を行!ヽ たい場合には、その一部の領域に対応するミラー素子をはじめからオフ状態 (チルト 有り)で露光を行った後に、露光条件を変えてその一部の領域に対応するミラー素子 のみをオン状態 (チルト無し)にして露光を行っても良い。  Next, the operation of DMD 128 in FIG. 1 will be described. Prior to exposure, all mirror elements of DMD128 are in the ON state (no tilt), and the reflected light is ready to illuminate all pattern areas of reticle 119 (assuming they match the illumination area). ing. Since an area on the wafer 121 that is not desired to be exposed generally corresponds to a light shielding pattern on the reticle 119, it is not necessary to consider an area having an appropriate exposure amount of zero. However, if correction exposure is performed on a shot area on a wafer once exposed, there may be an area where the appropriate exposure is set to zero. In such a case, the mirror element corresponding to the region can be initially turned off (with tilt). Also, if you want to expose some areas in the shot area under different exposure conditions (polarization characteristics of exposure light, illumination, etc.) than other areas, the mirror element corresponding to that area After performing exposure in the off state (with tilt) from the beginning, the exposure conditions may be changed to perform exposure with only the mirror elements corresponding to a part of the region turned on (no tilt).
[0049] シャツタ 104が開かれ露光が開始されると、照度算出系 112によって主制御系 125 に送出された単位時間当たりの露光エネルギー Δ Εの値を主制御系 125は積算し、 レチクル 119を介してウェハ 121に照射された積算露光量をリアルタイムで計測する 。まず、積算露光量が最も小さな最適露光量 Doselに達したとき、図 3の DMD128 の対応する部分領域 MD1内の全てのミラー素子をオフ状態とする。このとき、オフ状 態のミラー素子力もの反射光はミラー面が傾斜しているため、図 1のコンデンサーレン ズ 118には導かれず遮光体 129上に導かれる。このため図 2のレチクル 119のパタ ーン領域 PAの部分領域 PT1は照明されなくなって、この部分に対応するウェハ 121 上のショット領域内の局所領域はこれ以降照明光 ILが照射されない。すなわち、部 分領域 PT1は適正露光量 Doselに制御される。引き続き、積算露光量が適正露光 量 Dose2に達したとき、 DMD128の部分領域 MD2内の全てのミラー素子がオフ状 態となり、レチクル 119の部分領域 PT2に対応するウェハ 121上のショット領域内の 局所領域はこれ以降照明光 ILが照射されない。すなわち、部分領域 PT2は適正露 光量 Dose2に制御される。また、積算露光量が適正露光量 Dose3に達したときには 、シャツタ 104が閉じられるため、レチクル 119の部分領域 PT3に対応するウェハ 12 1上のショット領域内の局所領域は、それ以降照明光 ILが照射されなくなり、部分領 域 PT3は適正露光量 Dose3に制御される。この結果、ウェハ 121上のショット領域で は全面が適正露光量で露光される。このとき、 DMD128の部分領域 MD3内の全て のミラー素子を単位時間当たりの露光エネルギー Δ Εの積算値に基づいてオフ状態 として、レチクル 119の部分領域 PT3に対応するウェハ 121上のショット領域内の局 所領域に照明光 ILが照射されないようにしても、なんら差し支えない。 [0049] When the shatter 104 is opened and exposure is started, the main control system 125 accumulates the value of the exposure energy ΔΕ sent to the main control system 125 by the illuminance calculation system 112, and the reticle 119 is The integrated exposure dose irradiated to the wafer 121 via . First, when the integrated exposure amount reaches the smallest optimum exposure amount Dosel, all mirror elements in the corresponding partial area MD1 of the DMD 128 in FIG. 3 are turned off. At this time, since the mirror surface is inclined, the reflected light having the mirror element power in the off state is not guided to the condenser lens 118 in FIG. For this reason, the partial area PT1 of the pattern area PA of the reticle 119 in FIG. 2 is not illuminated, and the local area in the shot area on the wafer 121 corresponding to this area is not irradiated with the illumination light IL thereafter. That is, the partial area PT1 is controlled to the appropriate exposure amount Dosel. Subsequently, when the integrated exposure amount reaches the appropriate exposure amount Dose2, all mirror elements in the partial region MD2 of the DMD 128 are turned off, and the local region in the shot region on the wafer 121 corresponding to the partial region PT2 of the reticle 119 The area is not irradiated with illumination light IL thereafter. That is, the partial area PT2 is controlled to an appropriate exposure amount Dose2. Further, when the integrated exposure amount reaches the appropriate exposure amount Dose3, the shirter 104 is closed, so that the local region in the shot region on the wafer 121 corresponding to the partial region PT3 of the reticle 119 is subsequently irradiated with the illumination light IL. The partial area PT3 is controlled to an appropriate exposure dose Dose3. As a result, the entire shot area on the wafer 121 is exposed with an appropriate exposure amount. At this time, all mirror elements in the partial region MD3 of the DMD 128 are turned off based on the integrated value of the exposure energy Δ Δ per unit time, and the shot region on the wafer 121 corresponding to the partial region PT3 of the reticle 119 Even if the illumination light IL is not irradiated to the local area, there is no problem.
[0050] このようにして、本実施形態によれば、例えばシステム LSI用のように、局所的に異 なるパターン特性を有するレチクル 119のパターンをウェハ 121上に露光する際に、 各局所領域毎に最適な積算露光量で露光が行われるように、 DMD128を用いて各 局所領域毎に照明光 ILの露光時間を制御している。従って、ウェハ 121上のショット 領域の全域に対して最適な積算露光量でパターン像の転写を行うことができ、バタ ーン像の線幅均一性が向上する。  Thus, according to the present embodiment, for example, when exposing a pattern of reticle 119 having locally different pattern characteristics on wafer 121 as in a system LSI, for each local region. The exposure time of the illumination light IL is controlled for each local region using the DMD 128 so that the exposure is performed with the optimum integrated exposure amount. Therefore, the pattern image can be transferred with the optimum integrated exposure amount over the entire shot area on the wafer 121, and the line width uniformity of the pattern image is improved.
[0051] なお、予め設定された最適な露光量の設定値には、前述のようなパターン特性に 応じて設定される成分だけでなぐ照明光学系による照明光 ILの照度均一性を補正 するための成分やレジストプロセスに起因する成分 (補正マップ)を重畳させてもよい 。すなわち、照明光 ILはウェハ上の露光領域の全域に渡って照度が均一であること が望まれるが、必ずしも均一な照度分布で無い場合がある。 [0051] Note that, in order to correct the illuminance uniformity of the illumination light IL by the illumination optical system, which is obtained by using only the components set in accordance with the pattern characteristics as described above, as the optimal setting value of the optimum exposure amount. Or a component (correction map) resulting from the resist process may be superimposed. That is, the illumination light IL has a uniform illuminance over the entire exposure area on the wafer. However, there is a case where the illuminance distribution is not always uniform.
[0052] 例えば、図 4 (a)はウェハ上の露光領域 135の照度分布の一例を示したもので、図 4 (a)において、露光領域 135の周辺領域が他に比べて照度が低いものとする。これ を補正するために、図 4 (b)に示すように、レチクルの照明領域 135Mにおいて、周 辺領域の露光量を他の領域に比べて多めに設定する補正マップを設定する。すな わち、図 4 (b)の補正マップは、図 4 (a)の照度分布に加算した場合に、露光領域 13 5の全面で照度が均一となる照度(単位時間当たりの露光量)の補正値のマップであ る。その補正値に対応して図 1の DMD128の各ミラー素子による各部分領域への露 光時間を加減することで、ウェハ上の露光領域 135内の各部分領域毎により適正な 積算露光量分布で露光を行うことができる。  For example, FIG. 4 (a) shows an example of the illuminance distribution of the exposure region 135 on the wafer. In FIG. 4 (a), the peripheral region of the exposure region 135 has lower illuminance than the others. And In order to correct this, as shown in FIG. 4 (b), a correction map is set in the illumination area 135M of the reticle to set a larger exposure amount in the peripheral area than in other areas. In other words, the correction map in Fig. 4 (b) shows the illuminance (exposure per unit time) that makes the illuminance uniform over the entire exposure area 135 when added to the illuminance distribution in Fig. 4 (a). This is a map of correction values. Corresponding to the correction value, the exposure time to each partial area by each mirror element of DMD128 in Fig. 1 is adjusted to obtain a more appropriate integrated exposure dose distribution for each partial area in the exposure area 135 on the wafer. Exposure can be performed.
[0053] 一方、レジストプロセスに起因する補正成分は、図 5 (a)のようにウェハ 121の中心 力もの同心円状に分布することが一般的である。図 5 (a)では色の濃い部分はより多 めの露光をする必要があることを示すものとする。例えば、ウェハ 121中のショット領 域 Fに着目したレチクル上での補正マップが図 5 (b)であり、図 5 (b)に示すような補 正マップがウェハ 121中のショット領域毎に設定される。今仮に、図 2に示すレチクル パターンの露光を行うとき、図 2の露光量マップに図 4 (b)、及び図 5 (b)の補正マップ で定まる補正露光量をカ卩えて得られる露光量マップに基づ 、て、 DMD128を制御し て上記の実施形態と同様に露光を行うようにすればよい。  On the other hand, the correction components resulting from the resist process are generally distributed concentrically with the central force of the wafer 121 as shown in FIG. In Fig. 5 (a), darker areas indicate that more exposure is required. For example, the correction map on the reticle focusing on the shot area F in the wafer 121 is shown in Fig. 5 (b), and the correction map shown in Fig. 5 (b) is set for each shot area in the wafer 121. Is done. If the reticle pattern shown in Fig. 2 is exposed, the exposure amount obtained by adding the exposure amount map shown in Fig. 2 to the exposure amount map determined by the correction maps shown in Figs. 4 (b) and 5 (b). Based on the map, the DMD 128 may be controlled to perform exposure as in the above embodiment.
なお、レジストプロセスに起因する補正すべき露光量成分がウェハ 121の中心に対 して楕円状に分布する場合にも、同様に補正マップを定めることができることは言うま でもない。  Needless to say, the correction map can be determined similarly when the exposure dose component to be corrected due to the resist process is distributed elliptically with respect to the center of the wafer 121.
[0054] このように、ショット領域毎に最適露光量のマップを形成して露光を行う訳である力 最適露光量の設定は最大露光量を 100%とするならば、約 70%〜: LOO%の範囲に なることが予想される。このような場合には、露光を最短時間で行うとともに、それぞれ の最適露光量で高精度に露光するために、 DMD128に照射される光量を 1ショット の露光時間内において調整しても良い。すなわち、図 6 (a)のように、ウェハに対する 積算露光量 Σ Εが最適露光量の最小値 Dosel (図 6 (a)では最大値の 70%)に達す るまでは、図 6 (b)に示すように照度(単位面積、単位時間当たりのエネルギー) IUを 大きくして短い時間で 70%に達するようにする。なお、図 6 (a)及び (b)の横軸は、露 光開始からの時間 tsである。このためには、図 1の水銀ランプ 101の出力を大きくす る力、又は例えば水銀ランプ 101とフライアイレンズ 108との間に配置された光量調 整機構 (不図示)での減光量を少なくすればよい。そして、図 6 (a)の最適露光量が 最大値の 70%〜: LOO%の間では、図 6 (b)に示すように照度 IUを小さくして、それぞ れのミラー素子のオン'オフの切り替え時刻を精度よく制御できるようにすれば良い。 As described above, the force that forms a map of the optimum exposure amount for each shot area and performs exposure. The setting of the optimum exposure amount is about 70% if the maximum exposure amount is 100%: LOO Expected to be in the% range. In such a case, exposure may be performed in the shortest time, and the amount of light applied to the DMD 128 may be adjusted within one shot exposure time in order to perform exposure with high accuracy at each optimum exposure amount. That is, as shown in Fig. 6 (a), until the integrated exposure dose Σ Ε on the wafer reaches the minimum value Dosel (70% of the maximum value in Fig. 6 (a)) of Fig. 6 (b) Illuminance (unit area, energy per unit time) IU as shown in Increase to 70% in a short time. The horizontal axes in Figs. 6 (a) and (b) are the time ts from the start of exposure. For this purpose, the power to increase the output of the mercury lamp 101 in FIG. 1 or the amount of light reduced by the light quantity adjustment mechanism (not shown) disposed between the mercury lamp 101 and the fly-eye lens 108, for example, is reduced. do it. When the optimum exposure in Fig. 6 (a) is between 70% and LOO% of the maximum value, the illuminance IU is reduced as shown in Fig. 6 (b), and each mirror element is turned on. What is necessary is just to be able to control the switching time of OFF accurately.
[0055] なお、本例においては、主制御系 125は、照度算出系 112から供給される単位時 間当たりの露光エネルギー Δ Εの積算値に基づいて、 DMD駆動装置 131を介して 各ミラー素子のオン状態力 オフ状態への切替タイミングを制御して 、るが、照度算 出系 112からの出力を使わずに、上記(1)式に基づいて、レチクル 119上の部分領 域 PTl, PT2, PT3に対応するショット領域内の各局所領域毎の露光時間 tl, t2, t 3を求めておき、露光開始時点力 の経過時間が順次露光時間 tl, t2, t3に達した 時点で部分領域 MD1, MD2, MD3内のミラー素子を順次オン状態力 オフ状態 に切替えるようにしてもよい。  In this example, the main control system 125 uses the DMD driving device 131 to provide each mirror element based on the integrated value of the exposure energy ΔΕ per unit time supplied from the illuminance calculation system 112. The on-state force of the control unit controls the switching timing to the off-state, but without using the output from the illuminance calculation system 112, based on the above equation (1), the partial areas on the reticle 119 PTl, PT2 The exposure times tl, t2, t3 for each local area in the shot area corresponding to PT3 and PT3 are obtained, and when the elapsed time of the exposure start force reaches the exposure times tl, t2, t3 in sequence, the partial areas The mirror elements in MD1, MD2, and MD3 may be sequentially switched to the on state force and the off state.
[0056] なお、光源がエキシマレーザのようなパルス光源の場合には、上記説明の単位時 間当たりのエネルギー(例えば図 6 (b)の照度 IU)をパルス当たりのエネルギーに読 み替えることで同様な効果が得られる。  [0056] When the light source is a pulse light source such as an excimer laser, the energy per unit time described above (for example, the illuminance IU in Fig. 6 (b)) can be read as energy per pulse. Similar effects can be obtained.
なお、パルス光源力 発射される各パルスのエネルギーがほぼ一定の場合には、 図 2のレチクル 119の部分領域 PTl, PT2, PT3に対応するショット領域内の各局所 領域毎に目標照射パルス数 Nl, N2, N3を決定しておき、露光開始時点からの照 射パルス数のカウント値が順次目標照射パルス数 Nl, N2, N3に達した時点で図 3 の部分領域 MD1, MD2, MD3内のミラー素子を順次オン状態からオフ状態に切り 替えるようにしてもよい。  When the energy of each pulse emitted is almost constant, the target irradiation pulse number Nl for each local region in the shot region corresponding to the partial regions PTl, PT2, and PT3 of the reticle 119 in FIG. , N2 and N3 are determined, and when the count value of the number of irradiation pulses from the start of exposure reaches the target number of irradiation pulses Nl, N2 and N3 in sequence, the values in the partial areas MD1, MD2 and MD3 in Fig. 3 The mirror elements may be sequentially switched from the on state to the off state.
[0057] また、本例では、上述のように 1ショットの露光中に DMD128の各ミラー素子のオン •オフを切り替えるものと説明した力 1ショットの露光中に各ミラー素子のオン'オフを 交互に高速で繰り返し、オンである回数を調整するいわゆるデューティ制御を行って も良い。また、 X線源を光源とする露光装置においても本例の露光量制御は有効で ある。 なお、本例においては、照明用ブラインド 114を用いてレチクル 119上における照 明領域の形状、大きさを規定しているが、レチクル 119上での照明領域の形状ゃ大 きさも DMD128を使って規定してもよい。 Further, in this example, as described above, the force described as switching on / off of each mirror element of DMD128 during one-shot exposure As described above, each mirror element is alternately turned on / off during one-shot exposure. It is also possible to perform so-called duty control, which is repeated at high speed and adjusts the number of times of ON. The exposure amount control of this example is also effective in an exposure apparatus that uses an X-ray source as a light source. In this example, the illumination blind 114 is used to define the shape and size of the illumination area on the reticle 119. However, the size of the illumination area on the reticle 119 is also determined using the DMD 128. You may prescribe.
また、本例においては、照明光 ILの照度むら、レジストの塗布むら、現像むら等に 起因するパターン線幅の変化を補正するために、補正マップを作成するようにしてい る力 これらの影響が少ない場合には補正マップを作成しなくてもよい。また、補正マ ップを作成せずに、パターンの特性、照明光 ILの照度むら、レジストの塗布むら、現 像むら等を考慮した露光量マップだけを作成するようにしてもょ 、。  In addition, in this example, the force used to create a correction map to correct variations in pattern line width caused by uneven illumination intensity of illumination light IL, uneven application of resist, uneven development, etc. When the number is small, it is not necessary to create a correction map. Instead of creating a correction map, you may create only an exposure map that takes into account pattern characteristics, illumination illumination IL illumination unevenness, resist coating unevenness, and image unevenness.
[0058] [第 2の実施形態] [Second Embodiment]
次に本発明の第 2の実施形態につき図 7〜図 20を参照して説明する。本例は、ス キヤニング 'ステツパよりなる走査露光型の投影露光装置(走査型露光装置)で露光 を行う場合に本発明を適用したものである。  Next, a second embodiment of the present invention will be described with reference to FIGS. In this example, the present invention is applied to the case where exposure is performed by a scanning exposure type projection exposure apparatus (scanning type exposure apparatus) comprising a scanning stepper.
図 7は、本例の走査型露光装置 10の概略構成を示し、この図 7において、この走査 型露光装置 10は、露光用光源にノ ルス光源としてのエキシマレーザ光源 16を用い たステップ ·アンド'スキャン方式の投影露光装置である。走査型露光装置 10は、ェ キシマレーザ光源 16を含む照明系 12、この照明系 12からの照明光 ILにより照明さ れるレチクル Rを保持するレチクルステージ RST、レチクル Rから射出された照明光 I Lをウェハ W上に投射する投影光学系 PL、ウェハ Wを保持する Zチルトステージ 58 が搭載された XYステージ 14、及びこれらの制御系等を備えて 、る。  FIG. 7 shows a schematic configuration of the scanning exposure apparatus 10 of the present example. In FIG. 7, this scanning exposure apparatus 10 uses a step-and-excitation using an excimer laser light source 16 as a Norse light source as an exposure light source. 'It is a scanning projection exposure apparatus. The scanning exposure apparatus 10 includes an illumination system 12 including an excimer laser light source 16, a reticle stage RST that holds a reticle R illuminated by illumination light IL from the illumination system 12, and illumination light IL emitted from the reticle R as a wafer. It includes a projection optical system PL that projects onto W, an XY stage 14 on which a Z tilt stage 58 that holds the wafer W is mounted, and a control system for these.
[0059] そして、照明系 12は、エキシマレーザ光源 16、ビーム整形光学系 18、エネルギー 粗調器 20、フライアイレンズ 22、照明系開口絞り板 24、ビームスプリッタ 26、第 1リレ 一レンズ 28、レチクルブラインド 30、第 2リレーレンズ 29、ビームスプリッタ 13、コンデ ンサーレンズ 37、デジタルマイクロミラーデバイスを備えた反射ミラー 11、絞り部材と しての遮光体 55、及びコンデンサーレンズ 32を有する。  [0059] The illumination system 12 includes an excimer laser light source 16, a beam shaping optical system 18, an energy coarse adjuster 20, a fly-eye lens 22, an illumination system aperture stop plate 24, a beam splitter 26, a first relay lens 28, A reticle blind 30, a second relay lens 29, a beam splitter 13, a condenser lens 37, a reflection mirror 11 provided with a digital micromirror device, a light shield 55 as a diaphragm member, and a condenser lens 32 are provided.
[0060] この照明系 12の上記構成各部について説明する。エキシマレーザ光源 16としては 、 KrFエキシマレーザ光源 (発振波長 248nm)、 ArFエキシマレーザ光源 (発振波長 193nm)等が使用される。なお、このエキシマレーザ光源 16に代えて、金属蒸気レ 一ザ光源や YAGレーザの高調波発生装置等のパルス光源や水銀ランプなどの連 続光源を使用しても良い。エキシマレーザ光源 16の 1パルス当たりのエネルギーの 平均値は通常、所定の中心エネルギー E において安定化されている力 そのエネ [0060] Each component of the illumination system 12 will be described. As the excimer laser light source 16, a KrF excimer laser light source (oscillation wavelength 248 nm), an ArF excimer laser light source (oscillation wavelength 193 nm), or the like is used. Instead of the excimer laser light source 16, a pulsed light source such as a metal vapor laser light source, a harmonic generator of a YAG laser, or a mercury lamp is used. A secondary light source may be used. The average value of energy per pulse of the excimer laser source 16 is usually the force stabilized at a given center energy E.
0  0
ルギ一の平均値はそのエネルギー Eの上下の所定の可変範囲(例えば士 10%程 The average value of Rugi is a predetermined variable range above and below its energy E (for example, about 10%
0  0
度)で制御できるように構成されている。ビーム整形光学系 18は、エキシマレーザ光 源 16力もパルス発光されたレーザビーム LBの断面形状を、該レーザビーム LBの光 路後方に設けられたフライアイレンズ 22に効率よく入射するように整形するもので、 例えばシリンダレンズ、ビームエキスパンダ (いずれも図示省略)等で構成される。ェ ネルギー粗調器 20は、ビーム整形光学系 18後方のレーザビーム LBの光路上に配 置され、ここでは、回転板 34の周囲に透過率( = 1—減光率)の異なる複数個(例え ば 6個)の NDフィルタ(図 7ではその内の 2個の NDフィルタ 36A, 36D力 S示されてい る。)を配置し、その回転板 34を駆動モータ 38で回転することにより、入射するレー ザビーム LBに対する透過率を 100%から等比級数的に複数段階で切り替えることが できるようになつている。駆動モータ 38は、主制御装置 50によって制御される。フライ アイレンズ 22は、エネルギー粗調器 20から射出されたレーザビーム LBの光路上に 配置され、レチクル Rを均一な照度分布で照明するために多数の 2次光源を形成す る。この 2次光源力も射出されるノ ルスレーザビームを以下においては、照明光 ILと 呼ぶ。 It is configured so that it can be controlled in degrees. The beam shaping optical system 18 shapes the cross-sectional shape of the laser beam LB pulsed by the excimer laser light source 16 so that it efficiently enters the fly-eye lens 22 provided behind the optical path of the laser beam LB. For example, it is composed of a cylinder lens, a beam expander (both not shown), and the like. The energy coarse adjuster 20 is arranged on the optical path of the laser beam LB behind the beam shaping optical system 18, and here, a plurality of different transmittances (= 1−attenuation rate) around the rotating plate 34 ( For example, six ND filters (two ND filters 36A and 36D force S are shown in Fig. 7) are arranged, and the rotating plate 34 is rotated by the drive motor 38 to make the incident. The transmissivity for the laser beam LB can be switched from 100% in multiple steps in a geometric series. The drive motor 38 is controlled by the main controller 50. The fly-eye lens 22 is arranged on the optical path of the laser beam LB emitted from the energy coarse adjuster 20, and forms a large number of secondary light sources for illuminating the reticle R with a uniform illuminance distribution. In the following, this laser light beam that also emits the secondary light source power is called illumination light IL.
フライアイレンズ 22の射出面の近傍に、円板状部材カもなる照明系開口絞り板 24 が配置されている。この照明系開口絞り板 24には、等角度間隔で、例えば通常の円 形開口よりなる開口絞り、小さな円形開口よりなりコヒーレンスファクタである σ値を小 さくするための開口絞り、輪帯照明用の輪帯状の開口絞り、及び変形光源法用に複 数の開口を偏心させて配置してなる変形開口絞り(図 7ではこのうちの 2種類の開口 絞りのみが図示されている。)等が配置されている。この照明系開口絞り板 24は、主 制御装置 50により制御されるモータ等の駆動装置 40により回転されるようになって おり、これによりいずれかの開口絞りが照明光 ILの光路上に選択的に設定される。照 明系開口絞り板 24から射出された照明光 ILの光路上に、反射率が小さく透過率の 大きなビームスプリッタ 26が配置され、更にこの後方の光路上に、レチクルブラインド 30を介在させて第 1リレーレンズ 28及び第 2リレーレンズ 29からなるリレー光学系が 配置されている。 In the vicinity of the exit surface of the fly-eye lens 22, an illumination system aperture stop plate 24 that also serves as a disk-shaped member is disposed. The illumination system aperture stop plate 24 has an equal angular interval, for example, an aperture stop composed of a normal circular aperture, an aperture stop composed of a small circular aperture, an aperture stop for reducing the coherence factor σ value, and annular illumination. A ring-shaped aperture stop, and a modified aperture stop in which a plurality of apertures are eccentrically arranged for the modified light source method (only two of these aperture stops are shown in FIG. 7). Has been placed. The illumination system aperture stop plate 24 is rotated by a drive device 40 such as a motor controlled by the main control device 50, so that one of the aperture stops is selectively placed on the optical path of the illumination light IL. Set to A beam splitter 26 having a low reflectance and a high transmittance is arranged on the optical path of the illumination light IL emitted from the illumination system aperture stop plate 24, and further, a reticle blind 30 is interposed on the optical path behind this. The relay optical system consisting of 1 relay lens 28 and 2nd relay lens 29 Has been placed.
[0062] レチクルブラインド 30は、固定ブラインドと可変ブラインドとを備え、固定ブラインド は、レチクル Rのパターン面に対する共役面力 僅かにデフォーカスした面に配置さ れ、レチクル R上の照明領域 42Rを規定する矩形開口が形成されている。また、レチ クルブラインド 30中の可変ブラインドは、走査方向の位置及び幅が可変の開口部を 形成し、更にこの開口部は走査露光の開始時及び終了時にそれぞれ走査方向の前 縁部及び後縁部に対応し、主制御装置 50により駆動装置 31を介して図中の矢印方 向の位置が制御され、レチクル R上の不要な部分の露光が防止されるようになってい る。  [0062] The reticle blind 30 includes a fixed blind and a variable blind. The fixed blind is arranged on a surface slightly defocused with respect to the pattern surface of the reticle R, and defines an illumination area 42R on the reticle R. A rectangular opening is formed. In addition, the variable blind in the reticle blind 30 forms an opening having a variable position and width in the scanning direction, and the opening further has a leading edge and a trailing edge in the scanning direction at the start and end of scanning exposure, respectively. The position of the direction of the arrow in the figure is controlled by the main controller 50 via the drive unit 31 to prevent exposure of an unnecessary part on the reticle R.
[0063] また、照明系 12内のビームスプリッタ 26による反射光路上には、集光レンズ 44及 び光電変換素子よりなるインテグレータセンサ 46が配置されている。ビームスプリッタ 26で反射された照明光 ILは、集光レンズ 44を介してインテグレータセンサ 46で受光 され、インテグレータセンサ 46の光電変換信号力 不図示のピークホールド回路及 びアナログ 'デジタル変換器 (以下、 AZD変換器と略述する。)を介して出力 DS(digi t/pulse)として主制御装置 50 (積算露光量を求める演算装置)に供給される。このィ ンテグレータセンサ 46の出力 DSと、ウェハ Wの表面上での照明光 ILの単位面積当 たりのパルスエネルギー(露光量)との相関係数は予め求められて、主制御装置 50 に記憶されている。  [0063] Further, an integrator sensor 46 including a condenser lens 44 and a photoelectric conversion element is disposed on a reflected light path by the beam splitter 26 in the illumination system 12. Illumination light IL reflected by the beam splitter 26 is received by the integrator sensor 46 through the condenser lens 44, and the photoelectric conversion signal force of the integrator sensor 46 is not shown. And is supplied as an output DS (digit / pulse) to the main controller 50 (arithmetic unit for calculating the integrated exposure amount). The correlation coefficient between the output DS of the integrator sensor 46 and the pulse energy (exposure amount) per unit area of the illumination light IL on the surface of the wafer W is obtained in advance and stored in the main controller 50. Has been.
[0064] 第 1リレーレンズ 28を経た後、レチクルブラインド 30の矩形の開口部を通過した照 明光 ILは、第 2リレーレンズ 29を通過してビームスプリッタ 13で反射され、コンデンサ 一レンズ 37を介して、反射ミラー 11を均一な照明分布で照明する。反射ミラー 11か らの反射光は、再びコンデンサーレンズ 37、ビームスプリッタ 13、絞り部材としての遮 光体(光吸収体でもよい) 55の開口 55a、及びコンデンサーレンズ 32を通過してレチ クル R上の照明領域 42Rを均一に照射する。また、反射ミラー 11のレチクル Rの走査 方向に対応する両端部の細長 ヽ領域に、第 1の実施形態で使用されたデジタルマイ クロミラーデバイスのミラー素子と同様のミラー素子 (反射素子)がマトリックス状に配 列されたミラー素子部 D1及び D2が配置されている。ミラー素子部 Dl, D2とその背 面の基板と力 反射素子アレイとしてのデジタルマイクロミラーデバイス (DMD)が構 成されている。ミラー素子部 Dl, D2の各ミラー素子は、図 1の DMD128の各ミラー 素子と同様に反射面のチルト角が 0° (第 1の反射方向)のオン状態と、それ以外の 所定角度 (第 2の反射方向)のオフ状態とに制御可能であり、それらのミラー素子が オン状態のときに反射された照明光 ILは、遮光体 55の開口 55aを通過して、それら のミラー素子がオフ状態のときに反射された照明光 ILは遮光体 55で遮光される。 [0064] After passing through the first relay lens 28, the illumination light IL that has passed through the rectangular opening of the reticle blind 30 passes through the second relay lens 29, is reflected by the beam splitter 13, and passes through the condenser lens 37. Thus, the reflecting mirror 11 is illuminated with a uniform illumination distribution. The reflected light from the reflecting mirror 11 passes through the condenser lens 37, the beam splitter 13, the aperture 55a of the light shielding member (which may be a light absorber) 55 as the diaphragm member, and the condenser lens 32 to reach the reticle R again. Illuminate the illumination area 42R uniformly. Also, mirror elements (reflective elements) similar to the mirror elements of the digital micromirror device used in the first embodiment are matrixed in the elongated ridge regions at both ends corresponding to the scanning direction of the reticle R of the reflective mirror 11. The mirror element parts D1 and D2 arranged in a shape are arranged. Mirror element parts Dl, D2 and the substrate on the back, and force Digital micromirror device (DMD) as a reflective element array It is made. The mirror elements Dl and D2 are in the ON state where the tilt angle of the reflecting surface is 0 ° (first reflection direction) and other predetermined angles (first 2), the illumination light reflected when the mirror elements are in the on state passes through the opening 55a of the light shield 55, and the mirror elements are turned off. The illumination light IL reflected in the state is shielded by the light shield 55.
[0065] このとき、レチクルブラインド 30の可動ブラインド、反射ミラー 11の反射面、及びレ チクル Rのパターン面は互いに光学的な共役位置に配置される。照明領域 42Rの走 查方向のエッジ部分に露光量分布の傾斜分布を持たせた方が良い場合があり、この 様な場合のために、レチクルブラインド 30の固定ブラインドの位置はその共役位置か ら少しデフォーカスした位置に配置されて 、る。 [0065] At this time, the movable blind of the reticle blind 30, the reflecting surface of the reflecting mirror 11, and the pattern surface of the reticle R are arranged at optically conjugate positions. In some cases, it is better to have a gradient of the exposure dose distribution at the edge of the lighting area 42R in the direction of travel. For this case, the position of the fixed blind of the reticle blind 30 is determined from its conjugate position. It is placed at a slightly defocused position.
[0066] 投影光学系 PLは、ここでは両側テレセントリックな光学配置になるように配置された 複数枚のレンズエレメントから構成されている。投影光学系 PLの投影倍率 |8は例え ば 1Z4、 1Z5等の縮小倍率である。上述の如ぐ照明光 ILによりレチクル R上の照 明領域 42Rが照明されると、そのレチクル Rに形成された照射領域 42R内のパター ンを投影光学系 PLによって投影倍率 βで縮小した像 (部分倒立像)が、表面にフォ トレジスト (感光材料)が塗布されたウェハ W上の照射領域 42Rと共役なスリット状の 露光領域 42Wに形成される。以下、投影光学系 PLの光軸に平行に Ζ軸を取り、 Z軸 に垂直な平面内で図 7の紙面に垂直な方向に X軸を取り、図 7の紙面に平行な方向 に Y軸を取って説明する。ここでは、 XY平面がほぼ水平面である。また、 Y軸に平行 な方向(Y方向)が走査露光時のレチクル R及びウェハ Wの走査方向 SDであり、 X軸 に垂直な方向(X方向)がその走査方向に垂直な非走査方向 NSDである。  Here, projection optical system PL is composed of a plurality of lens elements arranged so as to have a bilateral telecentric optical arrangement. The projection magnification | 8 of the projection optical system PL is a reduction magnification of 1Z4, 1Z5, etc., for example. When the illumination region 42R on the reticle R is illuminated by the illumination light IL as described above, an image obtained by reducing the pattern in the illumination region 42R formed on the reticle R by the projection optical system PL with the projection magnification β ( A partially inverted image is formed in a slit-shaped exposure region 42W conjugate with the irradiation region 42R on the wafer W having a photoresist (photosensitive material) coated on the surface. Hereinafter, the horizontal axis is taken parallel to the optical axis of the projection optical system PL, the X axis is taken in the direction perpendicular to the paper surface of FIG. 7 in the plane perpendicular to the Z axis, and the Y axis is parallel to the paper surface of FIG. Take and explain. Here, the XY plane is almost horizontal. The direction parallel to the Y axis (Y direction) is the scanning direction SD of the reticle R and wafer W during scanning exposure, and the direction perpendicular to the X axis (X direction) is the non-scanning direction perpendicular to the scanning direction NSD. It is.
[0067] そして、レチクル Rはレチクルステージ RST上に吸着保持されている。レチクルステ ージ RSTは、 XY平面内で微小駆動可能であるとともに、レチクルステージ駆動部 48 によって走査方向(Y方向)に所定のストローク範囲で走査される。この走査中のレチ クルステージ RSTの位置は、レチクルステージ RST上に固定された移動鏡 52Rを介 して外部のレーザ干渉計 54Rによって計測され、このレーザ干渉計 54Rの計測値が 主制御装置 50に供給される。  [0067] Reticle R is sucked and held on reticle stage RST. Reticle stage RST can be finely driven in the XY plane, and is scanned within a predetermined stroke range in the scanning direction (Y direction) by reticle stage driving unit 48. The position of reticle stage RST during scanning is measured by an external laser interferometer 54R through a movable mirror 52R fixed on reticle stage RST, and the measured value of laser interferometer 54R is measured by main controller 50R. To be supplied.
[0068] また、ウェハ Wは、不図示のウェハホルダを介して Zチルトステージ 58上に吸着保 持され、 Zチルトステージ 58は XYステージ 14上に搭載されている。 ΧΥステージ 14 は、不図示のウェハベース上でウェハステージ駆動部 56によって ΧΥ面内で走査方 向である Υ方向及びこれに直交する X方向に 2次元駆動される。 Ζチルトステージ 58 は、ウェハ W上の Ζ方向の位置(フォーカス位置)を調整すると共に、 ΧΥ平面に対す るウェハ Wの傾斜角を調整する機能を有する。また、 ΧΥステージ 14 (ウェハ W)の位 置は、 Ζチルトステージ 58上に固定された移動鏡 52Wを介して外部のレーザ干渉計 54W (位置検出装置)により計測され、このレーザ干渉計 54Wの計測値が主制御装 置 50に供給される。 [0068] Further, the wafer W is sucked and held on the Z tilt stage 58 via a wafer holder (not shown). The Z tilt stage 58 is mounted on the XY stage 14. The heel stage 14 is two-dimensionally driven on a wafer base (not shown) by a wafer stage driving unit 56 in the heel direction which is the scanning direction in the heel surface and in the X direction perpendicular thereto. The Ζ tilt stage 58 has a function of adjusting the position (focus position) in the Ζ direction on the wafer W and adjusting the tilt angle of the wafer W with respect to the ΧΥ plane. The position of the stage 14 (wafer W) is measured by an external laser interferometer 54W (position detection device) via a movable mirror 52W fixed on the tilt stage 58. The measured value is supplied to the main controller 50.
[0069] また、 Ζチルトステージ 58上のウェハ Wの近傍に光電変換素子力もなる照度むらセ ンサ 59が常設され、該照度むらセンサ 59の受光面はウェハ Wの表面と同じ高さに設 定されている。照度むらセンサ 59の検出信号が不図示のピークホールド回路及び A ZD変 を介して露光コントローラとして機能する主制御装置 50に供給される。主 制御装置 50は、コンピュータを含んで構成され、露光動作が的確に行われるように、 例えばレチクル Rとウェハ Wとの同期走査、ウェハ Wのステッピング、露光タイミング 等を統括して制御する。また、本実施形態では、主制御装置 50は後述する走査露光 の際の露光量制御も行う。  [0069] In addition, an illuminance unevenness sensor 59 that also has photoelectric conversion element force is permanently installed in the vicinity of the wafer W on the tilt stage 58, and the light receiving surface of the illuminance unevenness sensor 59 is set to the same height as the surface of the wafer W. Has been. The detection signal of the illuminance unevenness sensor 59 is supplied to a main controller 50 functioning as an exposure controller via a peak hold circuit (not shown) and an AZD change. The main controller 50 is configured to include a computer and controls, for example, synchronous scanning of the reticle R and the wafer W, stepping of the wafer W, exposure timing, and the like so that the exposure operation is performed accurately. In the present embodiment, the main controller 50 also performs exposure amount control during scanning exposure described later.
[0070] 具体的に、主制御装置 50は、例えば走査露光時には、レチクル Rがレチクルステ ージ RSTを介して +Y方向(または— Y方向)に速度 V で走査されるのに同期して、  [0070] Specifically, main controller 50, for example, during scanning exposure, synchronizes with reticle R being scanned at speed V in the + Y direction (or -Y direction) via reticle stage RST.
R R
XYステージ 14を介してウェハ Wが露光領域 42Wに対して— Y方向(または +Y方 向)に速度 β ·ν ( βはレチクル Rからウエノ、 Wに対する投影倍率)で走査されるよう The wafer W is scanned through the XY stage 14 with respect to the exposure area 42W — in the Y direction (or + Y direction) at a velocity β · ν (β is the reticle R to the wafer, and the projection magnification for W).
R  R
に、レーザ干渉計 54R, 54Wの計測値に基づいてレチクルステージ駆動部 48、ゥェ ハステージ駆動部 56をそれぞれ介してレチクルステージ RST、XYステージ 14の位 置及び速度を制御する。また、ステッピングの際に主制御装置 50は、レーザ干渉計 5 4Wの計測値に基づいてウェハステージ駆動部 56を介して XYステージ 14の位置を 制御する。  In addition, the position and speed of reticle stage RST and XY stage 14 are controlled via reticle stage drive unit 48 and wafer stage drive unit 56, respectively, based on the measurement values of laser interferometers 54R and 54W. Further, at the time of stepping, main controller 50 controls the position of XY stage 14 via wafer stage drive unit 56 based on the measurement value of laser interferometer 54W.
[0071] また、主制御装置 50は、制御情報 TSをエキシマレーザ光源 16に供給することによ つて、エキシマレーザ光源 16の発光パワー等を制御する。また、主制御装置 50は、 エネルギー粗調器 20及び照明系開口絞り板 24をそれぞれモータ 38及び駆動装置 40を介して制御し、更にステージ系の動作情報に同期して駆動装置 31を介してレチ クルブラインド 30中の可動ブラインドの開閉動作を制御する。このように本例では、主 制御装置 50力 露光コントローラ及びステージコントローラの役目をも有している。こ れらのコントローラを主制御装置 50とは別に設けても良いことは勿論である。また、主 制御装置 50には、記憶装置 51及びコンソール等の入出力装置 62が接続されてい る。記憶装置 51には、第 1の実施形態と同様に、レチクル Rの部分領域毎の適正露 光量を示す露光量マップや補正マップの情報が記憶されている。 Further, main controller 50 controls the light emission power and the like of excimer laser light source 16 by supplying control information TS to excimer laser light source 16. In addition, the main control device 50 includes an energy coarse adjuster 20 and an illumination system aperture stop plate 24 for a motor 38 and a drive device, respectively. Further, the opening / closing operation of the movable blind in the reticle blind 30 is controlled via the driving device 31 in synchronization with the operation information of the stage system. Thus, in this example, it also serves as the main controller 50 force exposure controller and stage controller. Of course, these controllers may be provided separately from the main controller 50. The main controller 50 is connected with a storage device 51 and an input / output device 62 such as a console. As in the first embodiment, the storage device 51 stores information on an exposure amount map and a correction map indicating the appropriate exposure amount for each partial region of the reticle R.
[0072] ここで、本例の特徴である反射ミラー 11について説明する。反射ミラー 11は、照明 光 ILを良好に反射するために基板の高平面度の表面 (反射面)上に誘電体多層膜 あるいはアルミ薄膜等が形成されている部分と、その表面に沿って上記のようにデジ タルマイクロミラーデバイス(DMD)の複数個のミラー素子が配列された 2つのミラー 素子部 Dl, D2とを備えている。ミラー素子部 Dl, D2の個々のミラー素子の駆動は 、 DMD駆動装置 33を介して主制御装置 50によってなされる。  Here, the reflection mirror 11 that is a feature of this example will be described. The reflecting mirror 11 includes a portion where a dielectric multilayer film or an aluminum thin film is formed on the surface (reflecting surface) of the substrate having a high flatness in order to reflect the illumination light IL well, and the surface along the surface. In this way, two mirror element parts Dl and D2 in which a plurality of mirror elements of a digital micromirror device (DMD) are arranged are provided. The individual mirror elements of the mirror element portions Dl and D2 are driven by the main controller 50 via the DMD driving device 33.
[0073] なお、反射ミラー 11の反射面の全面にミラー素子部 Dl, D2と同様のミラー素子が 配列されて 、ても構わな 、が、露光量制御のためには必ずしも全域がミラー素子で ある必要は無い。また、ミラー素子部 Dl, D2の代わりに 1つのミラー素子部を設けて もよぐ 3つ以上のミラー素子部を設けてもよい。  [0073] It should be noted that mirror elements similar to the mirror element portions Dl and D2 may be arranged on the entire reflecting surface of the reflecting mirror 11, but for the exposure control, the entire area is not necessarily limited to mirror elements. There is no need. Further, instead of the mirror element parts Dl and D2, one mirror element part may be provided, or three or more mirror element parts may be provided.
図 8は、反射ミラー 11とレチクル R上の照明領域 42Rとの共役関係を示し、この図 8 において、反射ミラー 11は反射面の裏面力もの透視図となっている。また、反射ミラ 一 11の各点と照明領域 42Rの対応する点(ほぼ共役な点)とは、仮想的な文字" F" を用いて模式ィ匕して示すように、上下左右は反転するが 1 : 1に対応している。図 8に 示すように、ミラー素子部 Dl, D2は、反射ミラー 11の反射面において走査方向の両 端位置に非走査方向に沿ってライン状に配置され、その反射光はレチクル Rの照明 領域 42Rの走査方向の縁部 R1あるいは縁部 R2に相当する位置を照射する。縁部 R 1及び R2はレチクル Rの走査方向が Y方向であればそれぞれ前縁部及び後縁部 となり、レチクル Rの走査方向が +Y方向(方向 SD ( + ) )であればそれぞれ後縁部 及び前縁部となる。  FIG. 8 shows the conjugate relationship between the reflecting mirror 11 and the illumination area 42R on the reticle R. In FIG. 8, the reflecting mirror 11 is a perspective view of the back surface force of the reflecting surface. In addition, each point of the reflection mirror 11 and the corresponding point (almost conjugate point) of the illumination area 42R are inverted vertically and horizontally as shown schematically using a virtual letter "F". Corresponds to 1: 1. As shown in FIG. 8, the mirror element parts Dl and D2 are arranged in a line along the non-scanning direction at both end positions in the scanning direction on the reflecting surface of the reflecting mirror 11, and the reflected light is the illumination area of the reticle R. The position corresponding to the edge R1 or edge R2 in the scanning direction of 42R is irradiated. Edges R1 and R2 are the leading edge and the trailing edge, respectively, if the scanning direction of reticle R is the Y direction, and the trailing edge if the scanning direction of reticle R is the + Y direction (direction SD (+)). And the front edge.
[0074] 図 9の透視図で示すように、ミラー素子部 D1及び D2はともに、反射ミラー 11の走 查方向(Y方向)のエッジ力も走査方向に n行 (各行をそれぞれ dl , dl , · ··, dl、及 [0074] As shown in the perspective view of FIG. 9, both the mirror element portions D1 and D2 are driven by the reflecting mirror 11. Edge force in the heel direction (Y direction) is also n lines in the scanning direction (each line is dl, dl,.
1 2 n び d2 , d2 , - --d2とする)、非走査方向(X方向)に m列(各列をそれぞれ 1, 2, · ··, 1 2 n and d2, d2,---d2), m columns in the non-scanning direction (X direction) (each column is 1, 2, ...,
1 2 n 1 2 n
mとする)のマトリックス状に n X m個のミラー素子が配置されて 、るものとする。 n及び mは 1以上の任意の整数である。  m)), n × m mirror elements are arranged in a matrix. n and m are arbitrary integers of 1 or more.
このとき、走査方向のミラー素子の数 (n)は、照明領域 42Rの走査方向の全域を照 射可能な数である必要はないが、非走査方向のミラー素子の数 (m)は、照明領域 4 2Rの非走査方向の全域に渡って照射可能となる数にすることが望ましい。  At this time, the number (n) of mirror elements in the scanning direction does not have to be the number that can illuminate the entire scanning direction of the illumination region 42R, but the number (m) of mirror elements in the non-scanning direction It is desirable to set the number to be able to irradiate the entire area of the area 42R in the non-scanning direction.
[0075] ここで、図 8において、例えばミラー素子部 D1中の部分 Aのミラー素子(図 8では隣 接する複数のミラー素子に相当する)が図 7の DMD駆動装置 33によってオフに (チ ルトされた状態)されたとすると、部分 Aのミラー素子力 の反射光 (一点鎖線で示す) はコンデンサーレンズ 37とコンデンサーレンズ 32との間の照明系の瞳位置に配置さ れた遮光体 (又は吸収体でもよい) 55で遮光され、レチクル R上の共役位置 A'には 照明光は入射しない。仮に、走査露光中の時刻 ta〜tbまでの間で、部分 Aのミラー 素子がオフにされたとすると、レチクル上の領域 Bの露光量は他の領域に比べて減 少する。当然ながら、この領域 Bに相当するウェハ W上の領域の露光量も減少する。 これはこの部分の露光領域の走査方向の幅が実質的に減少するためであり、オフに されるミラー素子の走査方向に沿った数 (行数)が多 ヽほど減少する露光量は大きく なる。なお、レチクル R上、あるいはウェハ W上の光量を減少させたい領域とそうでな V、領域とを正確に分離するためには、反射ミラー 11はレチクル Rと光学的に共役な 位置に配置する必要があるが、隣接する各ミラー素子との機械的な隙間が暗線とし て投影されないためには、反射ミラー 11を共役位置カゝら僅かにずらして配置しても良 い。 Here, in FIG. 8, for example, the mirror element of portion A in the mirror element portion D1 (corresponding to a plurality of adjacent mirror elements in FIG. 8) is turned off (tilt) by the DMD driving device 33 of FIG. The light reflected by the mirror element force of part A (shown by the alternate long and short dash line) is a light-shielding body (or absorption element) placed at the pupil position of the illumination system between the condenser lens 37 and the condenser lens 32. (It may be a body.) Light is blocked at 55, and no illumination light enters the conjugate position A 'on the reticle R. If the mirror element in part A is turned off between times ta and tb during scanning exposure, the exposure amount of area B on the reticle is reduced compared to other areas. Naturally, the exposure amount of the area on the wafer W corresponding to the area B also decreases. This is because the width in the scanning direction of the exposure area of this portion is substantially reduced, and the amount of exposure that decreases as the number of mirror elements that are turned off (the number of rows) along the scanning direction increases. . In order to accurately separate the region on the reticle R or the wafer W where the amount of light is to be reduced from the V and region that are likely to be reduced, the reflecting mirror 11 is placed at a position optically conjugate with the reticle R. Although it is necessary, the reflecting mirror 11 may be slightly shifted from the conjugate position so that the mechanical gaps between adjacent mirror elements are not projected as dark lines.
[0076] また、図 7の記憶装置 51には、予めオペレータによって入出力装置 62を介してショ ット領域内の露光量マップが使用されるレチクル毎に格納されている。  Further, in the storage device 51 of FIG. 7, the exposure amount map in the shot area is stored in advance for each reticle to be used by the operator via the input / output device 62.
図 10は、レチクル Rのパターン領域 PA内の露光量マップの一例を示し、この図 10 において、そのパターン領域 PAには数種類の機能回路が部分領域 PT1, PT2, P T3に分けて形成され、それぞれの適正露光量が Dosel、 Dose2、 Dose3 (仮に、 D osel >Dose2>Dose3とする)に設定されているものとする。この露光量は、予めゥ ェハ W上の複数のショット領域にレチクル Rのパターンを転写して得られる転写像の 内の孤立パターンの転写像の線幅分布の計測結果に基づいて求められたデータで あり、その複数のショット領域のそれぞれのパターン線幅を均一化するデータである ことが望ましい (第 1工程)。孤立パターン (例えば、孤立ライン、コンタクトホールのパ ターン)の方力 密集パターンに比べて露光量に対して敏感であるため、かかる孤立 パターンの転写像の線幅分布の計測結果に基づいて求められた複数のショット領域 のそれぞれのパターン線幅を所望の線幅に均一化する露光量をデータとして用いる ことにより、より高精度な露光量制御を実現でき、パターン線幅の精度をより向上させ ることができる。このようにして決められた同一ショット内の露光量は平均露光量に対 して数%〜10%程度増減する範囲で設定されるものと予想される。 FIG. 10 shows an example of an exposure map in the pattern area PA of the reticle R. In FIG. 10, several types of functional circuits are formed in the partial area PT1, PT2, PT3 in the pattern area PA. Assume that the appropriate exposure amounts are set to Dosel, Dose2, and Dose3 (assuming Dosel>Dose2> Dose3). This exposure amount is The data obtained based on the measurement result of the line width distribution of the transfer image of the isolated pattern in the transfer image obtained by transferring the pattern of the reticle R to the shot areas on the wafer W. Desirably, the data should equalize the pattern line width of each shot area (first step). Isolation pattern (for example, isolation line, contact hole pattern) Since it is more sensitive to exposure than a dense pattern, it can be obtained based on the measurement results of the line width distribution of the transfer image of the isolation pattern. In addition, by using the exposure amount that equalizes the pattern line width of each shot area to the desired line width as data, more accurate exposure amount control can be realized and the pattern line width accuracy can be further improved. be able to. The exposure amount in the same shot determined in this way is expected to be set in a range where the average exposure amount is increased or decreased by several% to 10%.
[0077] 以下に、図 10に示すパターンのレチクル Rを用いて、図 7のウェハ W上のフォトレジ ストを走査露光する工程を順を追って説明する。ここで、反射ミラー 11のミラー素子 部 Dl, D2の全部のミラー素子がオン状態(照明領域 42Rの全域が照明光 ILで照射 される状態)の走査露光で、フォトレジストに照射される露光量がパターン領域中で最 も大きな適正露光量である Doselとなるように、エネルギー粗調器 20の NDフィルタ の選択とエキシマレーザ光源 16の発光パワーの調整との少なくとも一方を行って照 明光 ILの強度が調整されているものとする。  Hereinafter, the steps of scanning and exposing the photoresist on the wafer W in FIG. 7 using the reticle R having the pattern shown in FIG. 10 will be described in order. Here, in the scanning exposure in which all the mirror elements of the mirror element portions Dl and D2 of the reflecting mirror 11 are in the ON state (the entire illumination area 42R is irradiated with the illumination light IL), the exposure amount irradiated to the photoresist Is selected as the ND filter of the energy coarse adjuster 20 and at least one of the adjustment of the emission power of the excimer laser light source 16 so that Dosel is the largest appropriate exposure dose in the pattern area. Assume that the strength is adjusted.
[0078] また、走査中のレチクル Rを示す図 11において、時刻 t において、照明領域 42R  [0078] In FIG. 11 showing reticle R during scanning, illumination region 42R at time t
0  0
は位置 B1に示す位置関係にあるものとする。実際の走査型露光装置では、照明領 域 42Rは不動であり、レチクル Rの方がレチクルステージの移動に伴って走査される 力 図 11では便宜的に照明領域 42Rを移動させてレチクル Rのパターン領域 PAと の位置関係を示すものとする。このとき、走査方向 SD (—)の後縁部に相当する図 7 のレチクルブラインド 30の一方の可動ブラインドが閉じて、パターン領域 PA (すなわ ち、それに対応するウェハ W上のショット領域 SA)の外周域が露光されないようにな つている。走査の開始に同期して閉じていた可動ブラインドが開いて先ず部分領域 P T1が露光され、照明領域 42Rが完全にパターン領域 PAにあるときには可動ブライ ンドは全開状態にある。この状態での走査露光は、照明領域 42Rの前縁部 42RFが 部分領域 PT1の終端 (位置 B2)に達する時刻 t まで行われる。 [0079] 照明領域 42Rの前縁部が部分領域 PT2に達した時刻 t において、図 12に示すよ Is in the positional relationship shown in position B1. In an actual scanning exposure apparatus, the illumination area 42R does not move, and the reticle R is scanned with the movement of the reticle stage. In FIG. 11, the illumination area 42R is moved for convenience, and the pattern of the reticle R The positional relationship with area PA shall be indicated. At this time, one movable blind of the reticle blind 30 in FIG. 7 corresponding to the trailing edge of the scanning direction SD (—) is closed and the pattern area PA (that is, the corresponding shot area SA on the wafer W) is closed. The outer peripheral area is not exposed. When the movable blind that was closed in synchronization with the start of scanning is opened, the partial area PT1 is first exposed, and when the illumination area 42R is completely in the pattern area PA, the movable blind is fully open. Scanning exposure in this state is performed until time t when the leading edge 42RF of the illumination area 42R reaches the end (position B2) of the partial area PT1. [0079] As shown in FIG. 12, at the time t when the front edge of the illumination area 42R reaches the partial area PT2.
1  1
うに、反射ミラー 11の一方のミラー素子部 D1の dl lの  D1 of mirror element D1 of reflection mirror 11
1〜d P行のミラー素子を順次、 P  1 to d P rows of mirror elements sequentially, P
非走査方向の全域 (m列全て)に渡ってオフ状態 (チルト有り)にして、図 11の部分領 域 PT2にはその P行のミラー素子からの反射光が投影されないようにする。なお、図 12 (図 13、図 14も同様)においては、オフ状態のミラー素子 Mdには斜線が施されて いる。図 12において、オフにされるミラー素子の行数 Pは、部分領域 PT2の積算露 光量が Dose2となるように決められる。具体的には、前述したように全てのミラー素子 がオン状態であるときに露光量が Dose 1となるように設定されて!、るので、このときの 照明領域 42Rの走査方向の幅を Lとするならば、走査方向の幅が L X (Dose2/Do sel)となればよい。従って、行数 Pのミラー素子の幅が L X (1— Dose2ZDosel)と なるように決められる。図 11で照明領域 42Rの後縁部が部分領域 PT1と PT2との境 界部に達したときに、部分領域 PT1の露光は終了し、部分領域 PT1は Doselで露 光される。  The entire area in the non-scanning direction (all m columns) is turned off (with tilt) so that the reflected light from the mirror elements in the P row is not projected onto the partial area PT2 in FIG. In FIG. 12 (the same applies to FIGS. 13 and 14), the mirror element Md in the off state is shaded. In FIG. 12, the number of rows P of the mirror elements to be turned off is determined so that the integrated exposure amount of the partial region PT2 becomes Dose2. Specifically, as described above, the exposure amount is set to Dose 1 when all the mirror elements are in the on state! Therefore, the width in the scanning direction of the illumination area 42R at this time is set to L If so, the width in the scanning direction should be LX (Dose2 / Do sel). Therefore, the width of the mirror element with the number of rows P is determined to be L X (1—Dose2ZDosel). In FIG. 11, when the rear edge of the illumination area 42R reaches the boundary between the partial areas PT1 and PT2, the exposure of the partial area PT1 is completed, and the partial area PT1 is exposed by Dosel.
[0080] これ以降、照明領域 42Rの前縁部(正確には、 dl 行目のミラー素子からの反射  [0080] Thereafter, the front edge of the illumination area 42R (more precisely, the reflection from the mirror element in the dl row)
P+i  P + i
光で露光される領域)が部分領域 PT3 (位置 B3)に達する時刻 t まで、ミラー素子部  Mirror element section until time t when the area exposed to light reaches partial area PT3 (position B3)
2  2
D1の dl〜dlの P行のミラー素子がオフの状態で露光が行われる。そして、時刻 t Exposure is performed with the mirror elements in the P1 rows from D1 to D1 being off. And time t
1 p 2 において、図 13に示すように、ミラー素子部 Dl中の l〜r列で dl At 1 p 2, as shown in FIG.
P+l〜dlの行のミラ Q  Mira Q in the row of P + l ~ dl
一素子が順次オフにされる。この l〜r列は図 11の部分領域 PT3の非走査方向の幅 X3を照射するミラー素子の数に相当している。行数 Qのミラー素子の幅は前述と同 様に、 L X (l— Dose3ZDosel)となるように決められる。このようにして、図 11の照 明領域 42Rの後縁部がパターン領域 PAの終端に達する時刻 t まで走査露光が行  One element is turned off sequentially. These columns l to r correspond to the number of mirror elements that irradiate the width X3 of the partial region PT3 in FIG. 11 in the non-scanning direction. The width of the mirror element with the number of rows Q is determined to be L X (l—Dose3ZDosel) as described above. In this way, scanning exposure is performed until time t when the trailing edge of the illumination area 42R in FIG. 11 reaches the end of the pattern area PA.
3  Three
われる訳である力 走査開始時と同様にパターン領域 PA (すなわち、ウェハ W上の ショット領域 SA)の外周域が露光されないように、走査方向の前縁部に相当するレチ クルブラインド 30の一方の可動ブラインドが走査に同期して閉じられるようになつてい る。  As with the start of scanning, one of the reticle blinds 30 corresponding to the front edge in the scanning direction is not exposed so that the outer peripheral area of the pattern area PA (that is, the shot area SA on the wafer W) is not exposed. The movable blind is closed in synchronization with the scan.
[0081] 以上の説明では、走査露光が進むに従って走査すべきパターン領域の露光量が 小さくなる場合を例に取って説明した力 仮に Dose3 >Dose2の場合があり得る。こ のような場合には、図 11の時刻 t において、それまでオフ状態であったミラー素子の うち、図 14の l〜r列の dl In the above description, the force described with reference to the case where the exposure amount of the pattern area to be scanned becomes smaller as the scanning exposure progresses may be Dose3> Dose2. In such a case, at the time t in FIG. Of these, dl in rows l to r in Fig. 14
p〜dlの行のミラー素子が順次オンにされるようにすれば p  If the mirror elements in rows p to dl are turned on sequentially, p
よい。行数 P— Sのミラー素子の幅は前述と同様に、 L X (1— Dose3ZDosel)とな るように決められる。あるいは、照明領域 42Rの後縁部に配置されるミラー素子部 D2 の一部を予めオフ状態にしておき、その後縁部が部分領域 PT2と PT3との境界部に 達したときにミラー素子部 D2の部分領域 PT3を照射する列を必要な行数でオンに するようにしてちょい。  Good. The width of the mirror element with the number of rows P—S is determined to be L X (1—Dose3ZDosel) as described above. Alternatively, a part of the mirror element part D2 disposed at the rear edge of the illumination area 42R is turned off in advance, and when the rear edge reaches the boundary between the partial areas PT2 and PT3, the mirror element part D2 Make sure to turn on the columns to irradiate the partial area PT3 with the required number of rows.
[0082] 以上の工程により、ウェハ W上の 1つのショット領域の露光が完了し、レチクル R上 の各部分領域毎にそれぞれ最適な露光量で露光が行われる(第 2工程)。走査型露 光装置では、次のショット領域の露光を行う際には直前のショット領域の走査方向と は逆の方向に走査露光するのが一般的である。この場合には、前記説明のミラー素 子部 D1を走査方向の前縁部に相当するミラー素子部 D2に置き換えて動作させれ ばよい。  Through the above steps, exposure of one shot area on the wafer W is completed, and exposure is performed with an optimum exposure amount for each partial area on the reticle R (second process). In a scanning type exposure apparatus, when performing exposure of the next shot area, it is general to perform scanning exposure in a direction opposite to the scanning direction of the immediately preceding shot area. In this case, the mirror element part D1 described above may be operated by replacing it with the mirror element part D2 corresponding to the front edge part in the scanning direction.
[0083] また、図 7の記憶装置 51には、ウェハ上の感光材料の塗布膜厚の不均一や、現像 時の不均一性等のデバイス製造工程に起因する線幅の変動成分を相殺するための 補正露光量が、ウェハ上の位置毎に補正マップとして格納されて 、る。  In addition, the storage device 51 in FIG. 7 cancels the fluctuation component of the line width caused by the device manufacturing process such as non-uniformity of the coating thickness of the photosensitive material on the wafer and non-uniformity at the time of development. The corrected exposure amount for this is stored as a correction map for each position on the wafer.
図 15 (a)に示すように、この補正露光量は、ウェハ Wの中心から同心円状 (または 楕円状)に分布するのが一般的である。図 15 (a)では中心力もの距離に比例して、よ り多めの露光量が必要であることを示している力 中心からの距離の 1次、 2次、ある いはさらに高次の関数となる場合もある。例えば、オペレータは中心力もの距離の関 数を図 7の入力装置 62に入力することで、記憶装置 51には各ショット領域 SAの位置 毎に補正マップが設定されるようにすればよい。例えば、その中心座標が (X, y)であ るショット領域 SAの補正マップは、入力された関数とショット領域 SAの形状とから計 算されて図 15 (b)のように生成される。  As shown in FIG. 15 (a), this corrected exposure dose is generally distributed concentrically (or elliptically) from the center of the wafer W. In Fig. 15 (a), the first, second, or higher order function of the distance from the force center indicates that a larger exposure is required in proportion to the distance of the center force. It may become. For example, the operator may input a function of the distance of the central force to the input device 62 in FIG. 7 so that a correction map is set in the storage device 51 for each position of each shot area SA. For example, the correction map of the shot area SA whose center coordinate is (X, y) is calculated from the input function and the shape of the shot area SA, and is generated as shown in FIG.
[0084] 図 11から図 14を参照して説明した動作と同様に、照明領域 42Rとショット領域 SA との位置関係において、図 15 (b)の補正マップに従って、図 7の反射ミラー 11のミラ 一素子部 D1あるいは D2のミラー素子を駆動すれば、デバイス製造工程に起因する 線幅の誤差を補うための露光量で露光することができる。  [0084] Similar to the operation described with reference to FIGS. 11 to 14, the mirror of the reflecting mirror 11 of FIG. 7 in the positional relationship between the illumination area 42R and the shot area SA according to the correction map of FIG. If the mirror element of the single element portion D1 or D2 is driven, exposure can be performed with an exposure amount to compensate for the line width error caused by the device manufacturing process.
また、図 7の記憶装置 51には、露光装置 (照明系 12)に起因する非走査方向の照 度均一性を補正するためのデータも格納されて 、る。ウェハ上のショット領域 SAの 光量分布は露光領域内で均一であることが望まれる力 必ずしも均一とは限らない。 In addition, the storage device 51 in FIG. 7 has illumination in the non-scanning direction caused by the exposure device (illumination system 12). Data for correcting degree uniformity is also stored. The force that is desired to be uniform in the exposure area is not necessarily uniform in the light quantity distribution of the shot area SA on the wafer.
[0085] 例えば、図 16 (a)に示すように、ウェハのショット領域 SA上の露光領域 IA内での照 度分布が中央部で強ぐ周囲に向力つて照度 IILが低下する分布であるとする。この とき、走査露光によってウェハ上の積算露光量 Σ Εは、非走査方向 NSDの各点毎に その走査方向 SDの照度を積算した図 16 (b)のような分布となる。すなわち、走査方 向 SDの積算露光量分布は走査によって平坦化されるが、非走査方向 NSDの積算 露光量分布の不均一性は解消されない。これを解消する方法として、図 17 (a)のよう にウェハのショット領域 SA上の露光領域 IAの走査方向 SDの幅を非走査方向 NSD の位置毎に調整し、その積算露光量∑ Eが図 17 (b)のように均一となるようにすれば よい。照明むら補正マップは、非走査方向 NSDの位置毎にショット領域の走査方向 の幅をデータとしたものであり、その照明むら補正マップも図 7の記憶装置 51に記憶 されている。 [0085] For example, as shown in FIG. 16 (a), the illumination distribution in the exposure area IA on the shot area SA of the wafer is a distribution in which the illuminance IIL decreases as the illumination intensity increases toward the center. And At this time, the integrated exposure amount ΣΕ on the wafer by scanning exposure has a distribution as shown in FIG. 16 (b) in which the illuminance in the scanning direction SD is integrated for each point in the non-scanning direction NSD. In other words, the integrated exposure dose distribution in the scanning direction SD is flattened by scanning, but the non-uniformity of the integrated exposure dose distribution in the non-scanning direction NSD is not eliminated. As a method of solving this, as shown in Fig. 17 (a), the width of the exposure area IA on the wafer shot area SA is adjusted in the scanning direction SD for each position in the non-scanning direction NSD. It should be uniform as shown in Fig. 17 (b). The illumination unevenness correction map is obtained by using the width in the scanning direction of the shot area for each position in the non-scanning direction NSD, and the illumination unevenness correction map is also stored in the storage device 51 of FIG.
[0086] この場合、図 7の反射ミラー 11のミラー素子部 D1あるいは D2の一方 (又は両方を 用いても良い)のミラー素子のオン Zオフを切り替えて、照明領域 42Rの形状が図 1 7 (b)の露光領域 IAと同じ形状になるようにすれば良い。露光装置の照度均一性は 露光条件によって経時的にも変化することが知られており、本例の方法では照明領 域 42Rの形状を任意に変えられるので、様々な分布の照度不均一性を容易に補正 することができる。  [0086] In this case, the shape of the illumination region 42R is changed to ON / OFF of one of the mirror elements D1 or D2 (or both of them) of the reflecting mirror 11 of FIG. The exposure area (b) may be the same shape as the IA. It is known that the illuminance uniformity of the exposure apparatus changes over time depending on the exposure conditions, and in the method of this example, the shape of the illumination area 42R can be arbitrarily changed. It can be easily corrected.
[0087] なお、本例においては、上述のように図 7の記憶装置 51に記憶された代表的な 3種 類のデータに応じた露光動作をそれぞれ独立に説明したが、それぞれのデータを複 合的に用いた補正 (重ね合わせた補正)も可能である。また、上述のような補正マップ を使わずに各ショット領域に対する露光量制御を行うようにしてもよい。  In this example, as described above, the exposure operation according to the representative three types of data stored in the storage device 51 of FIG. 7 has been described independently. Corrective correction (superimposition correction) is also possible. Further, the exposure amount control for each shot area may be performed without using the correction map as described above.
以上の実施形態では、図 7に示すように、反射ミラー 11に 2つのミラー素子部 D1, D2を有する場合について説明したが、どちらか一方の側にだけミラー素子部があつ ても構わない。また、走査型露光装置では照明領域 42Rの前縁部及び後縁部の照 度分布にわざと傾斜を付けて、露光量均一性の精度を高める手法が用いられる場合 がある。このような場合には、図 18のようにミラー素子部 D3を反射ミラー 11の走査方 向の中央部に配置した構成としても良 、。 In the above embodiment, as shown in FIG. 7, the case where the reflecting mirror 11 has the two mirror element portions D1 and D2 has been described. However, the mirror element portion may be provided only on one side. In the scanning exposure apparatus, a technique may be used in which the illumination distribution on the front edge and the rear edge of the illumination area 42R is intentionally inclined to increase the accuracy of exposure uniformity. In such a case, as shown in FIG. It is good as a configuration arranged in the center of the direction.
[0088] 図 18は、図 7の走査型露光装置の変形例を示し、この図 7に対応する部分に同一 符号を付して示す図 18において、レチクルブラインド 30の矩形の開口部を通過した 照明光 ILは、第 2リレーレンズ 29を通過してコンデンサーレンズ 49を介して、光軸に 対して 45° 傾斜して配置された反射ミラー 11を均一な照明分布で照明する。反射ミ ラー 11からの下方への反射光は、コンデンサーレンズ 42、遮光体 55の開口、及びコ ンデンサーレンズ 32を通過してレチクル R上の照明領域 42Rを均一に照射する。ま た、反射ミラー 11の中央の細長い領域に、図 7のミラー素子部 D1と同様のミラー素 子部 D3が配置されている。ミラー素子部 D3の各ミラー素子は、ミラー素子部 D1の各 ミラー素子と同様に反射面のチルト角が 0° (第 1の反射方向)のオン状態と、それ以 外の所定角度 (第 2の反射方向)のオフ状態とに制御可能であり、それらのミラー素 子がオン状態のときに反射された照明光 ILは、遮光体 55の開口を通過して、それら のミラー素子がオフ状態のときに反射された照明光 ILは遮光体 55で遮光される。そ のミラー素子部 D3も DMD駆動装置 33によって制御される。これ以外の構成は図 7 の走査型露光装置と同様である。  FIG. 18 shows a modification of the scanning exposure apparatus of FIG. 7. In FIG. 18, in which parts corresponding to those of FIG. 7 are given the same reference numerals, the rectangular blind part 30 of the reticle blind 30 is passed. The illumination light IL passes through the second relay lens 29 and illuminates the reflection mirror 11 disposed at an inclination of 45 ° with respect to the optical axis through the condenser lens 49 with a uniform illumination distribution. The downward reflected light from the reflection mirror 11 passes through the condenser lens 42, the opening of the light shield 55, and the condenser lens 32, and uniformly illuminates the illumination area 42R on the reticle R. Further, a mirror element portion D3 similar to the mirror element portion D1 in FIG. Each mirror element of the mirror element part D3 is in the ON state where the tilt angle of the reflecting surface is 0 ° (first reflection direction) and other predetermined angles (second The illumination light reflected when the mirror elements are in the on state passes through the opening of the light shield 55 and the mirror elements are in the off state. The illumination light IL reflected at this time is shielded by the light shield 55. The mirror element D3 is also controlled by the DMD driving device 33. The other configuration is the same as that of the scanning exposure apparatus of FIG.
[0089] 図 18において、反射ミラー 11の全ての反射領域をレチクル Rと光学的に共役な位 置に配置する必要はなぐミラー素子部 D3がある反射ミラー 11の中央がレチクル R のパターン面と共役になるように、反射ミラー 11を配置すればよいので、光学系の配 置が簡単になる利点がある。  In FIG. 18, it is not necessary to arrange all the reflection regions of the reflection mirror 11 at positions optically conjugate with the reticle R. The center of the reflection mirror 11 having the mirror element D3 is the pattern surface of the reticle R. Since the reflecting mirror 11 may be arranged so as to be conjugate, there is an advantage that the arrangement of the optical system is simplified.
図 19は、図 18の走査型露光装置の反射ミラー 11とレチクル R上の照明領域 42Rと の共役関係を示し、この図 19において、反射ミラー 11中のミラー素子部 D3は、レチ クル Rとの共役位置を中心に配置されたので、その反射光はレチクル R上の照明領 域 42Rの走査方向の中央部分に相当する位置を照射する。ミラー素子部 D3は走査 方向に n行 (各行を d3 , d3 , - -·ά3 とする)、非走査方向に m列(各列を 1, 2, …!!!  FIG. 19 shows the conjugate relationship between the reflection mirror 11 of the scanning exposure apparatus of FIG. 18 and the illumination area 42R on the reticle R. In FIG. 19, the mirror element portion D3 in the reflection mirror 11 is the same as the reticle R. Therefore, the reflected light irradiates the position corresponding to the center portion in the scanning direction of the illumination area 42R on the reticle R. The mirror element D3 has n rows in the scanning direction (each row is d3, d3,--· ά3) and m columns in the non-scanning direction (each row is 1, 2,… !!
1 2 n  1 2 n
とする)のマトリックス状に n X m個のミラー素子が配置されて 、るものとする。ここで、 例えば、ミラー素子部 D3中の中央部分 Cのミラー素子(図 19では隣接する複数のミ ラー素子に相当する。 )が図 18の DMD駆動装置 33によってオフ状態 (チルトされた 状態)にされたとすると、オフにされたミラー素子力 の反射光 (点線で示す)は、コン デンサ一レンズ 42とコンデンサーレンズ 32との間の光学的な瞳位置に配置された遮 光体 55 (又は吸収体でもよい) 55で遮光され、レチクル R上の共役位置 C'には照明 光は照射されない。 N x m mirror elements are arranged in a matrix. Here, for example, the mirror element of the central portion C in the mirror element portion D3 (corresponding to a plurality of adjacent mirror elements in FIG. 19) is turned off (tilted) by the DMD driving device 33 in FIG. , The reflected light of the mirror element force turned off (indicated by the dotted line) The light is shielded by a light shield 55 (or an absorber) 55 disposed at the optical pupil position between the lens 14 and the condenser lens 32, and the illumination light does not reach the conjugate position C ′ on the reticle R. Not irradiated.
[0090] 仮に、走査露光の開始時刻 t で全てのミラー素子がオン状態 (チルトされない状態  [0090] Temporarily, at the start time t of scanning exposure, all mirror elements are turned on (not tilted)
0  0
)であり、時刻 ta〜tbまでの間で、部分 Cのミラー素子がオフにされたとすると、レチク ル R上の領域 Eの露光量は他の領域に比べて減少する。当然ながら、この領域 Eに 相当するウェハ W上の領域の露光量も減少する。これはこの部分の露光領域 42W の走査方向の幅が減少するため、オフになるミラー素子の走査方向に沿った数が多 いほど減少する露光量は大きくなる。なお、レチクル R上あるいはウェハ W上の露光 量を減少させた 、領域とそうでな ヽ領域とを正確に分離するためには、反射ミラー 11 はレチクル Rと光学的に共役な位置に配置する必要があるが、図 18及び図 19の構 成ではその共役な位置を中心としてミラー素子部 D3はほぼ共役位置に配置されて いる。  If the mirror element in part C is turned off between time ta and tb, the amount of exposure in area E on reticle R decreases compared to other areas. Naturally, the exposure amount of the area on the wafer W corresponding to the area E also decreases. This is because the width in the scanning direction of the exposed area 42W of this portion decreases, and the amount of exposure that decreases as the number of mirror elements that are turned off increases in the scanning direction increases. In addition, in order to accurately separate the area where the exposure amount on reticle R or wafer W is reduced from the ridge area which is likely to be, the reflecting mirror 11 is arranged at a position optically conjugate with reticle R. Although it is necessary, in the configuration shown in FIGS. 18 and 19, the mirror element portion D3 is arranged almost at the conjugate position with the conjugate position as the center.
[0091] 図 20 (a)及び (b)は、図 18の構成における照明領域 42Rの照度 IILの分布を走査 方向 SDを横軸にしてグラフ化したものである。反射ミラー 11のミラー素子部 D3のミラ 一素子が全てオン状態の場合の照度分布は、図 20 (a)のようにほぼ平坦となる。一 方、ミラー素子部 D3のミラー素子が全てオフ状態の照度分布は、図 20 (b)のように 中央付近の照度 IILが 0となる力 走査方向 SDの両側の縁部(前縁部又は後縁部) の照度分布の傾斜は保持される。走査露光によって、ウェハ W上のフォトレジストの 各点への積算露光量は図 20 (a)又は図 20 (b)の照度分布のグラフの面積 (積分値) に相当するから、ミラー素子部 D3のミラー素子のオフにする行数が多いほど積算露 光量が小さくなることが容易に理解できる。 1つのショット領域内の照射すべき最も大 きな露光量と最も小さな露光量との差は 10%程度と考えられるため、通常の露光量 制御のためには、全ての行のミラー素子をオンにしたときのグラフの面積に対して、 面積が 10%低下するだけのミラー素子の行数を設けておけば良い。  FIGS. 20 (a) and 20 (b) are graphs of the illuminance IIL distribution in the illumination area 42R in the configuration of FIG. 18 with the scanning direction SD as the horizontal axis. The illuminance distribution when all the mirror elements of the mirror element portion D3 of the reflecting mirror 11 are in the on state is almost flat as shown in FIG. On the other hand, the illuminance distribution when all of the mirror elements in the mirror element D3 are in the OFF state is the force at which the illuminance IIL near the center is 0 as shown in Fig. 20 (b). The slope of the illuminance distribution at the trailing edge is maintained. As a result of scanning exposure, the integrated exposure amount of each point on the photoresist on the wafer W corresponds to the area (integrated value) of the illuminance distribution graph in FIG. 20 (a) or FIG. 20 (b). It can be easily understood that the greater the number of rows of mirror elements that are turned off, the smaller the integrated exposure. Since the difference between the largest exposure to be irradiated and the smallest exposure in a shot area is considered to be about 10%, the mirror elements in all rows are turned on for normal exposure control. It is sufficient to provide the number of rows of mirror elements so that the area is reduced by 10% with respect to the area of the graph.
なお、上述の第 2実施形態においては、レチクル Rの走査中の時刻に基づいてミラ 一素子部 Dl, D2, D3を制御するようにしている力 干渉計 54R (または干渉計 54 W)の計測値に基づいてミラー素子部 Dl, D2, D3を制御するようにしてもよい。 [0092] 以上の通り、本例によれば、ショット領域内に転写されるパターンの特性に応じて、 ショット領域内の局所領域毎に最適な露光量で露光を行うことができる。また、フォト レジストの塗布むら、現像むらに起因するパターン線幅の誤差を補正できると共に、 露光装置 (照明系 12等)に起因する照度不均一性を補正することも可能となる。 上記各実施形態では、投影光学系として縮小系を用いる場合について説明したが 、これに限らず、投影光学系として等倍あるいは拡大系を用いても良いし、投影光学 系は屈折系、反射屈折系、又は反射系のいずれであっても良い。 In the second embodiment described above, the force interferometer 54R (or the interferometer 54W) is configured to control the mirror element elements Dl, D2, D3 based on the time during the scanning of the reticle R. The mirror element units Dl, D2, and D3 may be controlled based on the values. As described above, according to this example, it is possible to perform exposure with an optimum exposure amount for each local area in the shot area in accordance with the characteristics of the pattern transferred in the shot area. In addition, it is possible to correct pattern line width errors caused by uneven application of photoresist and uneven development, and it is also possible to correct illuminance non-uniformity caused by an exposure apparatus (such as illumination system 12). In each of the above-described embodiments, the case where the reduction system is used as the projection optical system has been described. However, the present invention is not limited to this, and the projection optical system may be an equal magnification or an enlargement system. Either a system or a reflection system may be used.
[0093] また、例えば半導体デバイスは、デバイスの機能 ·性能設計を行うステップ、この設 計ステップに基づ 、てレチクルを製作するステップ、シリコン材料からウェハを製作す るステップ、前述した実施形態の投影露光装置 (露光装置)によりレチクルのパターン をウェハに転写するステップ、デバイス組み立てステップ (ダイシング工程、ボンディ ング工程、ノ ッケージ工程を含む)、及び検査ステップ等を経て製造される。  [0093] Further, for example, for a semiconductor device, a step of performing functional / performance design of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, It is manufactured through a step of transferring a reticle pattern to a wafer by a projection exposure apparatus (exposure apparatus), a device assembly step (including a dicing process, a bonding process, a knocking process), and an inspection step.
[0094] また、本発明は、例えば国際公開第 99/49504号パンフレットに開示されている 液浸型露光装置で露光を行う場合にも適用することができる。また、本発明は、露光 ビームとして波長 1〜 1 OOnm程度の極端紫外光 (EUV光)を用 Vヽる露光装置にも適 用できる。 EUV光を使用する光学系は反射型となるが、本発明の反射素子アレイは 反射型の光学部材であるため、 EUV光にもそのまま使用できる。  The present invention can also be applied to the case where exposure is performed with an immersion type exposure apparatus disclosed in, for example, International Publication No. 99/49504 pamphlet. The present invention can also be applied to an exposure apparatus that uses extreme ultraviolet light (EUV light) having a wavelength of about 1 to 1 OO nm as an exposure beam. Although the optical system using EUV light is a reflection type, the reflection element array of the present invention is a reflection type optical member and can be used as it is for EUV light.
[0095] また、本発明は、半導体デバイス製造用の露光装置に限らず、液晶表示素子ゃプ ラズマディスプレイなどを含むディスプレイの製造に用いられる、デバイスパターンを ガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられるデバイス ノターンをセラミックスウェハ上に転写する露光装置、及び撮像素子 (CCDなど)、有 機 EL、マイクロマシーン、 DNAチップなどの製造に用いられる露光装置などにも適 用することができる。また、半導体素子などのマイクロデバイスだけでなぐ光露光装 置、 EUV露光装置、 X線露光装置、及び電子線露光装置などで使用されるマスクを 製造するために、ガラス基板又はシリコンウェハなどに回路パターンを転写する露光 装置にも本発明を適用できる。  Further, the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device, but is used for manufacturing a display including a liquid crystal display element, a plasma display, etc., and an exposure apparatus for transferring a device pattern onto a glass plate, a thin film Devices used for manufacturing magnetic heads Applicable to exposure devices that transfer non-turns onto ceramic wafers, and exposure devices used to manufacture image sensors (CCDs, etc.), organic EL, micromachines, DNA chips, etc. be able to. In addition, a circuit on a glass substrate or a silicon wafer is used to manufacture a mask used in a light exposure apparatus, EUV exposure apparatus, X-ray exposure apparatus, electron beam exposure apparatus, and the like, which are formed only by microdevices such as semiconductor elements. The present invention can also be applied to an exposure apparatus that transfers a pattern.
[0096] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (ま たは、位相パターン '減光パターン)を形成した光透過型マスクを用いた力 これらの マスクに代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露 光すべきパターンの電子データに基づいて透過パターンまたは反射パターンを形成 する電子マスクを用いてもょ 、。 [0096] In the above-described embodiment, force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern') is formed on a light-transmitting substrate. Instead of a mask, an electronic mask that forms a transmission pattern or a reflection pattern based on electronic data of a pattern to be exposed, for example, as disclosed in US Pat. No. 6,778,257, may be used. ,.
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で 種々の構成を取り得ることは勿論である。また、明細書、特許請求の範囲、図面、及 び要約を含む 2005年 2月 14日付け提出の日本国特許出願第 2005— 035383の 全ての開示内容は、そっくりそのまま引用して本願に組み込まれて 、る。  It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be taken without departing from the gist of the present invention. In addition, the entire disclosure of Japanese Patent Application No. 2005-0335383 filed on February 14, 2005, including the description, claims, drawings, and abstract, is incorporated herein by reference in its entirety. And
産業上の利用可能性 Industrial applicability
本発明によれば、複数の局所領域毎に最適な露光量で露光を行うことができるた め、物体上に露光されるパターンの像の線幅均一性を向上することができる。従って 、複数の回路を 1つのチップにまとめたようなデバイスを高精度に高い歩留りで製造 することができる。  According to the present invention, since it is possible to perform exposure with an optimum exposure amount for each of a plurality of local regions, it is possible to improve the line width uniformity of a pattern image exposed on an object. Therefore, a device in which a plurality of circuits are integrated into one chip can be manufactured with high accuracy and high yield.

Claims

請求の範囲 The scope of the claims
[1] 光源からの露光ビームで物体を露光する露光装置にぉ 、て、  [1] In an exposure apparatus that exposes an object with an exposure beam from a light source,
前記露光ビームの反射方向をそれぞれ制御可能な複数の反射素子を含み、前記 物体上の前記露光ビームの照明領域における照度分布を調整するために前記光源 と前記物体との間に配置された反射素子アレイと、  A plurality of reflecting elements each capable of controlling a reflection direction of the exposure beam, and a reflecting element disposed between the light source and the object for adjusting an illuminance distribution in an illumination area of the exposure beam on the object An array,
前記物体に対する露光量を制御するための露光量制御データが格納された記憶 装置と、  A storage device storing exposure amount control data for controlling the exposure amount of the object;
前記記憶装置に記憶されて 、る前記露光量制御データに基づ 、て、前記反射素 子アレイを制御する制御装置とを備えたことを特徴とする露光装置。  An exposure apparatus comprising: a control device that controls the reflective element array based on the exposure amount control data stored in the storage device.
[2] 前記反射素子アレイは、デジタルマイクロミラーデバイス力 なることを特徴とする請 求項 1に記載の露光装置。  [2] The exposure apparatus according to claim 1, wherein the reflective element array has a digital micromirror device force.
[3] 前記反射素子アレイを構成する各反射素子は、それぞれ前記露光ビームを第 1及 び第 2の反射方向のいずれかに反射し、 [3] Each reflecting element constituting the reflecting element array reflects the exposure beam in one of the first and second reflecting directions,
前記光源からの前記露光ビームを前記反射素子アレイに導くビームスプリッタと、 前記第 2の反射方向に反射された前記露光ビームを遮光する絞り部材とをさらに備 えたことを特徴とする請求項 1又は 2に記載の露光装置。  2. The beam splitter according to claim 1, further comprising: a beam splitter that guides the exposure beam from the light source to the reflection element array; and a diaphragm member that blocks the exposure beam reflected in the second reflection direction. 2. The exposure apparatus according to 2.
[4] 前記露光量制御データは、前記物体上に形成されるパターン像の線幅分布が所 定分布になるように設定されることを特徴とする請求項 1から 3のいずれか一項に記 載の露光装置。 [4] The exposure amount control data is set so that a line width distribution of a pattern image formed on the object is a predetermined distribution. The exposure apparatus described.
[5] 前記物体は感光体が塗布された基板であり、 [5] The object is a substrate coated with a photoreceptor,
前記露光量制御データは、前記基板上の位置による前記感光体の塗布厚の不均 一性及び現像特性の不均一性の少なくとも一方を補正するように設定されることを特 徴とする請求項 1から 4のいずれか一項に記載の露光装置。  The exposure amount control data is set so as to correct at least one of a non-uniformity in coating thickness of the photosensitive member and a non-uniformity in development characteristics depending on a position on the substrate. The exposure apparatus according to any one of 1 to 4.
[6] 前記反射素子アレイは、前記光源と前記物体との間の前記物体と実質的に共役の 位置、又は該実質的に共役の位置力 所定量だけずれた位置に配置されることを特 徴とする請求項 1から 5のいずれか一項に記載の露光装置。 [6] The reflective element array is disposed at a position substantially conjugate with the object between the light source and the object, or at a position shifted by a predetermined amount of the conjugate force of the conjugate. The exposure apparatus according to any one of claims 1 to 5, wherein
[7] 前記物体の露光中に前記物体に対する前記露光ビームの積算露光量を求める演 算装置をさらに備え、 前記制御装置は、前記演算装置によって求められる積算露光量及び前記露光量 制御データに基づいて、前記反射素子アレイを制御することを特徴とする請求項 1か ら 6の 、ずれか一項に記載の露光装置。 [7] The apparatus further includes an arithmetic unit for obtaining an integrated exposure amount of the exposure beam for the object during the exposure of the object, 7. The deviation according to claim 1, wherein the control device controls the reflective element array based on an integrated exposure amount obtained by the arithmetic device and the exposure amount control data. Exposure equipment.
[8] 前記露光装置は、前記物体の露光中に前記露光ビームに対して前記物体を移動 する走査露光型であることを特徴とする請求項 1から 7のいずれか一項に記載の露光 装置。 8. The exposure apparatus according to any one of claims 1 to 7, wherein the exposure apparatus is a scanning exposure type that moves the object with respect to the exposure beam during exposure of the object. .
[9] 前記物体の走査方向の位置情報を計測する位置検出装置をさらに備え、  [9] The apparatus further comprises a position detection device that measures position information in the scanning direction of the object,
前記制御装置は、前記位置検出装置によって求められる位置情報及び前記露光 量制御データに基づ 、て、前記反射素子アレイを制御することを特徴とする請求項 8 に記載の露光装置。  The exposure apparatus according to claim 9, wherein the control apparatus controls the reflective element array based on position information obtained by the position detection apparatus and the exposure amount control data.
[10] 前記露光量制御データは、前記露光ビームの照明領域の走査方向の光量積算値 が前記走査方向に直交する非走査方向に渡って実質的に均一となるように設定され ることを特徴とする請求項 8又は 9に記載の露光装置。  [10] The exposure amount control data is set such that an integrated light amount value in the scanning direction of the illumination area of the exposure beam is substantially uniform in a non-scanning direction orthogonal to the scanning direction. An exposure apparatus according to claim 8 or 9.
[11] 前記反射素子アレイは、前記露光ビームの照明領域の走査方向の所定箇所に対 応する領域に 1本又は複数本のライン状に配列された複数の反射素子を含むことを 特徴とする請求項 8から 10のいずれか一項に記載の露光装置。  [11] The reflective element array includes a plurality of reflective elements arranged in one or a plurality of lines in a region corresponding to a predetermined position in the scanning direction of the illumination region of the exposure beam. The exposure apparatus according to any one of claims 8 to 10.
[12] 前記制御装置は、前記反射素子アレイを制御して、前記露光ビームの照明領域の 走査方向における幅を制御することを特徴とする請求項 8から 11のいずれか一項に 記載の露光装置。  [12] The exposure according to any one of [8] to [11], wherein the control device controls the width of the illumination region of the exposure beam in a scanning direction by controlling the reflective element array. apparatus.
[13] 前記露光量制御データは、前記物体上の複数の区画領域のそれぞれに対して設 定されていることを特徴とする請求項 1から 12のいずれか一項に記載の露光装置。  13. The exposure apparatus according to any one of claims 1 to 12, wherein the exposure amount control data is set for each of a plurality of partitioned regions on the object.
[14] 前記制御装置は、前記物体上の一つの区画領域の露光中に、前記露光量制御デ ータに基づいて、前記照明領域内の照度分布を変更することを特徴とする請求項 1 力 13のいずれか一項に記載の露光装置。 14. The control device according to claim 1, wherein the illuminance distribution in the illumination area is changed based on the exposure amount control data during exposure of one section area on the object. The exposure apparatus according to claim 13.
[15] 前記反射素子アレイ力 の露光ビームで所定のパターンが形成されたマスクを照 明し、該マスクのパターンの像を前記物体上に投影することによって、前記物体を露 光する請求項 1から 14のいずれか一項に記載の露光装置。 15. The object according to claim 1, wherein the object is exposed by illuminating a mask on which a predetermined pattern is formed with the exposure beam having the reflection element array force and projecting an image of the pattern of the mask onto the object. 15. The exposure apparatus according to any one of 14 to 14.
[16] 前記光源と前記マスクとの間に配置され、前記光源からの露光ビームを均一な照 度分布で前記反射素子アレイに入射させるオプティカルインテグレータをさらに備え た請求項 15に記載の露光装置。 [16] It is disposed between the light source and the mask, and the exposure beam from the light source is uniformly illuminated. 16. The exposure apparatus according to claim 15, further comprising an optical integrator that is incident on the reflective element array with a degree distribution.
[17] 光源からの露光ビームを物体に照射して、前記物体を露光する露光方法において 前記物体上の複数の区画領域のそれぞれに対する露光量及び露光量分布の少な くとも一方を制御するための露光量制御データを求める第 1工程と、 [17] An exposure method for exposing an object by irradiating the object with an exposure beam from a light source, for controlling at least one of an exposure amount and an exposure amount distribution for each of a plurality of partitioned regions on the object A first step for obtaining exposure control data;
前記光源と前記物体との間に配置され、それぞれ前記露光ビームの反射方向を制 御可能な複数の反射素子を含む反射素子アレイを用いて、  Using a reflective element array that is disposed between the light source and the object and includes a plurality of reflective elements each capable of controlling the reflection direction of the exposure beam,
前記露光量制御データに基づき前記物体上の前記露光ビームの照明領域におけ る照度分布を制御する第 2工程とを有することを特徴とする露光方法。  And a second step of controlling an illuminance distribution in an illumination area of the exposure beam on the object based on the exposure amount control data.
[18] 請求項 1から 16のいずれか一項に記載の露光装置を用いることを特徴とするデバ イス製造方法。 18. A device manufacturing method using the exposure apparatus according to any one of claims 1 to 16.
PCT/JP2006/302389 2005-02-14 2006-02-10 Exposure method and system, and method for fabricating device WO2006085626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007502664A JPWO2006085626A1 (en) 2005-02-14 2006-02-10 Exposure method and apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005035383 2005-02-14
JP2005-035383 2005-02-14

Publications (1)

Publication Number Publication Date
WO2006085626A1 true WO2006085626A1 (en) 2006-08-17

Family

ID=36793195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302389 WO2006085626A1 (en) 2005-02-14 2006-02-10 Exposure method and system, and method for fabricating device

Country Status (2)

Country Link
JP (1) JPWO2006085626A1 (en)
WO (1) WO2006085626A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111369A (en) * 2007-10-12 2009-05-21 Nikon Corp Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2010541259A (en) * 2007-10-04 2010-12-24 カール・ツァイス・エスエムティー・ゲーエムベーハー OPTICAL ELEMENT HAVING ELECTROCONDUCTIVE REGION AND ILLUMINATION SYSTEM HAVING OPTICAL ELEMENT
WO2011108188A1 (en) 2010-03-04 2011-09-09 信越半導体株式会社 Method for producing and method for designing soi wafer
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2014042073A (en) * 2007-11-06 2014-03-06 Nikon Corp Exposure method, device, and device manufacturing method
JP2014146814A (en) * 2014-03-05 2014-08-14 Carl Zeiss Smt Gmbh Illumination system for illuminating mask in microlithography projection exposure apparatus
US9007563B2 (en) 2007-08-30 2015-04-14 Carl Zeiss Smt Gmbh Illumination system having a beam deflection array for illuminating a mask in a microlithographic projection exposure apparatus
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2016035606A (en) * 2015-12-18 2016-03-17 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system for illuminating mask in microlithography projection exposure apparatus
KR20190097226A (en) * 2016-12-30 2019-08-20 에이에스엠엘 네델란즈 비.브이. Lithography Process and Apparatus and Inspection Process and Apparatus
CN110876045A (en) * 2018-08-31 2020-03-10 青岛海信激光显示股份有限公司 Projection method and projector
JP2020531871A (en) * 2017-08-31 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Exposure equipment, exposure method and photolithography method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313842A (en) * 1995-05-15 1996-11-29 Nikon Corp Lighting optical system and aligner provided with the optical system
JPH1022209A (en) * 1996-07-08 1998-01-23 Sony Corp Aligner
JP2004303951A (en) * 2003-03-31 2004-10-28 Nikon Corp Aligner and exposure method
JP2004304135A (en) * 2003-04-01 2004-10-28 Nikon Corp Exposure device, exposing method and manufacturing method of micro-device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113849A (en) * 1997-06-12 1999-01-06 Sony Corp Deformable illumination filter and semiconductor aligner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313842A (en) * 1995-05-15 1996-11-29 Nikon Corp Lighting optical system and aligner provided with the optical system
JPH1022209A (en) * 1996-07-08 1998-01-23 Sony Corp Aligner
JP2004303951A (en) * 2003-03-31 2004-10-28 Nikon Corp Aligner and exposure method
JP2004304135A (en) * 2003-04-01 2004-10-28 Nikon Corp Exposure device, exposing method and manufacturing method of micro-device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10241416B2 (en) 2007-08-30 2019-03-26 Carl Zeiss Smt Gmbh Illumination system having a beam deflection array for illuminating a mask in a microlithographic projection exposure apparatus
US9007563B2 (en) 2007-08-30 2015-04-14 Carl Zeiss Smt Gmbh Illumination system having a beam deflection array for illuminating a mask in a microlithographic projection exposure apparatus
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP2010541259A (en) * 2007-10-04 2010-12-24 カール・ツァイス・エスエムティー・ゲーエムベーハー OPTICAL ELEMENT HAVING ELECTROCONDUCTIVE REGION AND ILLUMINATION SYSTEM HAVING OPTICAL ELEMENT
US8553200B2 (en) 2007-10-04 2013-10-08 Carl Zeiss Smt Gmbh Optical element with at least one electrically conductive region, and illumination system with the optical element
JP2009111369A (en) * 2007-10-12 2009-05-21 Nikon Corp Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2013138255A (en) * 2007-10-12 2013-07-11 Nikon Corp Illumination optical device, exposure device, and device manufacturing method
JP2016035593A (en) * 2007-10-12 2016-03-17 株式会社ニコン Illumination optical apparatus, exposure apparatus, and method for manufacturing device
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2017045064A (en) * 2007-10-12 2017-03-02 株式会社ニコン Illumination optical apparatus, exposure apparatus, and method for manufacturing device
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2015073129A (en) * 2007-10-12 2015-04-16 株式会社ニコン Illumination optical device, exposure device, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2014042073A (en) * 2007-11-06 2014-03-06 Nikon Corp Exposure method, device, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
KR20120121909A (en) 2010-03-04 2012-11-06 신에쯔 한도타이 가부시키가이샤 Method for producing and method for designing soi wafer
US8741741B2 (en) 2010-03-04 2014-06-03 Shin-Etsu Handotai Co., Ltd. Method for designing SOI wafer and method for manufacturing SOI wafer
WO2011108188A1 (en) 2010-03-04 2011-09-09 信越半導体株式会社 Method for producing and method for designing soi wafer
JP2014146814A (en) * 2014-03-05 2014-08-14 Carl Zeiss Smt Gmbh Illumination system for illuminating mask in microlithography projection exposure apparatus
JP2016035606A (en) * 2015-12-18 2016-03-17 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system for illuminating mask in microlithography projection exposure apparatus
KR102469136B1 (en) 2016-12-30 2022-11-18 에이에스엠엘 네델란즈 비.브이. Lithographic process and apparatus and inspection process and apparatus
JP2020504321A (en) * 2016-12-30 2020-02-06 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic process and apparatus, and inspection process and apparatus
US11599027B2 (en) 2016-12-30 2023-03-07 Asml Netherlands B.V. Lithographic process and apparatus and inspection process and apparatus
KR20190097226A (en) * 2016-12-30 2019-08-20 에이에스엠엘 네델란즈 비.브이. Lithography Process and Apparatus and Inspection Process and Apparatus
US11199782B2 (en) 2016-12-30 2021-12-14 Asml Netherlands B.V. Lithographic process and apparatus and inspection process and apparatus
JP2022001965A (en) * 2016-12-30 2022-01-06 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic process and lithographic apparatus, and inspection process and inspection apparatus
KR102358361B1 (en) * 2016-12-30 2022-02-03 에이에스엠엘 네델란즈 비.브이. Lithographic Process and Apparatus, and Inspection Process and Apparatus
KR20220018095A (en) * 2016-12-30 2022-02-14 에이에스엠엘 네델란즈 비.브이. Lithographic process and apparatus and inspection process and apparatus
CN114114850A (en) * 2016-12-30 2022-03-01 Asml荷兰有限公司 Lithographic process and apparatus and inspection process and apparatus
JP2020531871A (en) * 2017-08-31 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Exposure equipment, exposure method and photolithography method
US11294288B2 (en) 2017-08-31 2022-04-05 Boe Technology Group Co., Ltd. Exposure device, exposure method and photolithography method
JP7246928B2 (en) 2017-08-31 2023-03-28 京東方科技集團股▲ふん▼有限公司 Exposure apparatus, exposure method and photolithography method
CN110876045A (en) * 2018-08-31 2020-03-10 青岛海信激光显示股份有限公司 Projection method and projector
CN110876045B (en) * 2018-08-31 2023-03-14 青岛海信激光显示股份有限公司 Projection method and projector

Also Published As

Publication number Publication date
JPWO2006085626A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
WO2006085626A1 (en) Exposure method and system, and method for fabricating device
JP4345098B2 (en) Exposure apparatus, exposure method, and device manufacturing method
EP1589792B1 (en) Light source apparatus and exposure apparatus having the same
TWI471679B (en) Alterable slit device, lighting device, exposure device, exposure method and device manufacturing method
US6699630B2 (en) Method and apparatus for exposure, and device manufacturing method
US20090263736A1 (en) Exposure apparatus, exposure method, and device manufacturing method
WO1999005708A1 (en) Projection exposure method, projection aligner, and methods of manufacturing and optically cleaning the aligner
JPH0794393A (en) Projection aligner
JPH09190969A (en) Projecting exposure system and manufacture of device using it
JP2004335864A (en) Aligner and exposure method
JPWO2007100081A1 (en) Exposure method and apparatus, and device manufacturing method
JP3937580B2 (en) Projection exposure apparatus and device manufacturing method using the same
JP5223921B2 (en) Illumination optical system, exposure apparatus, and exposure method
US8343693B2 (en) Focus test mask, focus measurement method, exposure method and exposure apparatus
WO1999031716A1 (en) Aligner, exposure method and method of manufacturing device
US7130024B2 (en) Exposure apparatus
JP2003068622A (en) Aligner, control method thereof, and method of manufacturing device
JP2009194204A (en) Aligner, exposure system, and method of manufacturing device
JP2005302825A (en) Exposure system
JP2000114164A (en) Scanning projection aligner and manufacture of device using the same
TWI295577B (en) Exposure apparatus and method
JP2001144009A (en) Exposure method, aligner and method of manufacturing device
JP2011108697A (en) Method of controlling amount of exposure, exposure method, and method of manufacturing device
JP2001305745A (en) Scanning exposure system and scanning type exposure device
JP2010118403A (en) Scanning aligner and method of manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502664

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713531

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713531

Country of ref document: EP