WO2006091865A2 - Internal nasal dilator and delivery mechanism - Google Patents

Internal nasal dilator and delivery mechanism Download PDF

Info

Publication number
WO2006091865A2
WO2006091865A2 PCT/US2006/006688 US2006006688W WO2006091865A2 WO 2006091865 A2 WO2006091865 A2 WO 2006091865A2 US 2006006688 W US2006006688 W US 2006006688W WO 2006091865 A2 WO2006091865 A2 WO 2006091865A2
Authority
WO
WIPO (PCT)
Prior art keywords
dilator
septum
nostril
compound
nostrils
Prior art date
Application number
PCT/US2006/006688
Other languages
French (fr)
Other versions
WO2006091865A3 (en
WO2006091865B1 (en
Inventor
Thomas W. Brown
Original Assignee
Brown Thomas W
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brown Thomas W filed Critical Brown Thomas W
Publication of WO2006091865A2 publication Critical patent/WO2006091865A2/en
Publication of WO2006091865A3 publication Critical patent/WO2006091865A3/en
Publication of WO2006091865B1 publication Critical patent/WO2006091865B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/08Devices for correcting deformities of the nose ; Devices for enlarging the nostril, e.g. for breathing improvement

Definitions

  • the present invention relates generally to mechanisms and methods for dilating nasal passages and delivering medication, drugs, or other compounds. More particularly, the present invention concerns an improved internal nasal dilator for increasing nasal breathing efficiency and for delivering a time-released compound within the nostrils of a user, and a method of making the same.
  • Prior art external nasal dilators often take the form of an adhesive strip that is worn on an exterior portion of the nose and function to lift the walls of the nasal passages.
  • Prior art external nasal dilators often take the form of an adhesive strip that is worn on an exterior portion of the nose and function to lift the walls of the nasal passages.
  • the frictional grab-strength required by these external dilators often causes discomfort or damage to the skin and soft facial tissues of the user.
  • external placement of these dilators exposes them to a variety of forces arising from rubbing against objects, such as pillows, that can prematurely dislodge the dilator.
  • Prior art internal nasal dilators function within the nostrils of the user, and as a result are not subject to being prematurely dislodged by external forces. These dilators are typically held in place by a clamping mechanism that pinches the septum generally along two contact points, or by stretching the nostrils enough to result in a compressive force on the dilator sufficient to hold it in place.
  • the non- adjustability of these dilators are problematic given that there are an infinite number of sizes and shapes of human nostrils.
  • the pinching mechanisms of these dilators are also problematic in that they cause discomfort to the user, including pain where prolonged usage is necessary.
  • the fact that some of these internal dilators must stretch the nostrils to a greater extent than is necessary to simply dilate the nostril also causes further discomfort and noticeability.
  • the prior art also includes nasal dilators combined with gaseous delivery systems for providing a measured flow of medicine to the user.
  • nasal dilators combined with gaseous delivery systems for providing a measured flow of medicine to the user.
  • These combinations typically require that an external source be securely connected to the dilator during usage, which makes them problematically cumbersome. Connection to an external source also reduces comfort by limiting the user to certain positions in order to ensure proper operation, which may further inhibit the user from sleeping.
  • these combinations include notoriously complex mechanical, electrical, or pneumatic components that make their manufacture time-consuming and expensive.
  • U.S. Pat. No. 6,561,188 to Ellis discloses an internal dilator having an internal medicine source.
  • an anti-histamine layer (27) is not attached to an external source, see FIGS. 8A-8E.
  • the layer (27) is ⁇ attached to other permeable filter layers and overlays the outlet of the nostrils when in place.
  • locating the antihistamine near the outlet of the nostrils reduces the effectiveness of delivery and may be wholly inappropriate for other types of medicines, drags, or compounds because the proximity to ambient air outside the nose results in a measurable percentage of undelivered medicine.
  • Locating the source up-stream from the mucosal lining within the nasal passageway further diminishes the effectiveness of the combination by preventing the administration of medicine during exhalation. Furthermore, the structure of the disclosed mechanism is so large (relative to the volume of the nasal passages) and complex that it may inhibit air flow during normal breathing and may be prohibitively costly to manufacture.
  • the present invention overcomes the problems and limitations in the prior art by providing an improved internal nasal dilator for increasing nasal breathing efficiency and for delivering a time-released compound within the nostrils of a user, and a method of making the same.
  • a first aspect of the invention concerns an internal nasal dilator adapted for use within a nose having first and second nostrils separated by a septum, with each of the nostrils defining in part an internal nasal passageway and an interior outer wall surface generally opposite the septum.
  • the dilator comprises a generally U-shaped clip configured to contact and apply a holding force to the septum when the dilator is donned.
  • the clip is further configured to contact the septum along first and second planar engaging surfaces.
  • the dilator also includes first and second nostril expanders, wherein each of the expanders further include a nostril engaging element configured to overlay and conform to a portion of the interior outer wall surface of said first or second nostril, and an arm interconnecting the nostril engaging element and clip.
  • the element, arm and clip are cooperatively configured to exert a force upon said portion of the interior outer wall surface.
  • a second aspect of the invention concerns an internal nasal apparatus adapted for use within a nose having first and second nostrils separated by a septum, each of the nostrils defining in part an internal nasal passageway, an outlet, and an interior outer wall surface generally opposite the septum.
  • the apparatus comprises a holding element configured to contact and apply a holding force to the nose so as to secure the apparatus at least partially within both nostrils when the apparatus is donned, and first and second delivery elements.
  • Each of the delivery elements is configured to retain a quantity of a medicine, drug, or other compound within the nasal passageway of one of said first or second nostrils and to discharge the quantity within the nasal passageway at a minimum distance from the outlet of said one of said first or second nostrils over a minimum period of time.
  • a third aspect of the present invention concerns a method of increasing the efficiency of nasal breathing and delivering a compound within a nose having a septum and first and second nostrils, wherein each nostril defines an inner outer wall surface, and a nasal passageway.
  • the method comprises the steps of engaging and applying outward forces to the inner outer wall surfaces, and engaging and applying compressive forces to the septum, so as to retain the nostrils in an expanded open position; and retaining a quantity of a medicine, drug, or other compound within the nostrils and gradually discharging the quantity at a minimum distance within the nasal passageway and over a minimum period of time.
  • FIG. 1 is a perspective view of an internal nasal dilator constructed in accordance with a first preferred embodiment of the present invention, particularly illustrating the dilator being worn by a user;
  • FIG. Ia is a schematic side-elevational view of the inner-structure of the human nose
  • FIG. Ib is an inferior view of the human nose
  • FIG. 2 is a plan view of the dilator shown in FIG. 1 in its normal condition;
  • FIG. 3 is a cross-sectional view of the dilator taken along the line A-A shown in FIG. 2, particularly illustrating the connection between the disk and arm;
  • FIG. 4 is a plan view of an internal nasal dilator, such as is shown in FIGS .
  • FIG. 5 is an enlarged fragmentary plan view of the dilator, particularly illustrating a compound delivery element
  • FIG. 5a is an enlarged fragmentary cross-sectional view of a removably fixed connection between a compound delivery element and an arm in accordance with a preferred embodiment of the present invention
  • FIG. 5b is an enlarged fragmentary plan view of the compound delivery elements, particularly showing the adjustable overlay
  • FIG. 6 is a perspective view of an internal nasal dilator constructed in accordance with a second preferred embodiment of the present invention.
  • FIG. 7 is a side-elevational view of the dilator shown in FIG. 6;
  • FIG. 8 is a front-elevational view of the dilator shown in FIGS. 6 and 7, particularly showing two compound delivery elements;
  • FIG. 9 is a plan view of the dilator shown in FIGS . 6 through 8 in its normal condition, particularly showing the compound delivery elements and septum engaging pads;
  • FIG. 9a is fragmentary side elevational view of a compound delivery element prong defining a plurality of openings.
  • FIG. 9b is a fragmentary side elevational view of a compound delivery element prong defining a continuous slot.
  • a nasal dilator, delivery mechanism, and method of making the same are herein described, shown, and otherwise disclosed in accordance with the preferred embodiments of the present invention. More specifically, the present invention concerns an improved internal nasal dilator for increasing nasal breathing efficiency and for delivering a time-released compound within the nostrils of a user, and a method of making the same.
  • a first preferred embodiment of the present invention concerns an improved internal nasal dilator 10 adapted for use predominately within a nose.
  • the present invention may be modified in size and shape to properly function within the noses of a variety of animals.
  • the structure of the dilator 10 could be elongated and broadened for equine or canine usage without departing from the present invention. It is also within the present invention to modify the configuration of the dilator, so long as compound storage and delivery occurs at the prescribed minimum distances within the nose.
  • the human olfaction organ is divided into an external portion, i.e. the visible projecting portion 12, to which the term "nose" is restricted herein, and an internal portion, consisting of two principal cavities, or nasal fossae 14, separated from each other by a vertical septum 16.
  • Each of the nasal cavities 14 fiuidly communicates with ambient air conditions through a constricted orifice, or ostium internum 18, located at the union of the two portions.
  • the nose 12 further presents first and second nostrils 20,22 also separated by the septum 16.
  • Each of the nostrils 20,22 define in part an internal nasal passageway 24, a nasal outlet 26, and a resistively elastic outer wall 28.
  • the internal nasal passageway 24 as used herein, is limited to the vestibules formed by the nose 12, and does not include the nasal cavities 14 and other inner workings of the organ.
  • the passageway distance is defined as the linear distance along the longitudinal axis of the vestibules as measured from the outlet 26 to the orifice 18.
  • the outer wall 28 presents an interior outer wall surface 30 generally opposite the septum 16.
  • a mucosal lining 31 further described herein overlays a significant portion of the nasal passageways 24 and cavities 14.
  • the improved internal nasal dilator 10 includes a septum constricting clip 32, and left and right nasal expanders 34,36 (i.e., dilating elements).
  • the septum constricting clip 32 is configured to retain and apply a holding force to a portion of the septum 16.
  • the preferred clip 32 presents a symmetric generally U-shaped body having constant depth and thickness and defining interior and exterior clip surfaces 44,46.
  • the clip 32 is formed by first and second linear portions 38,40 and a bent portion 42 interconnecting the linear portions 38,40.
  • the bent portion 42 is configured so as to place the linear portions 38,40 generally adjacent to the septum 16 by orienting the linear portions 38,40 generally towards the septum 16.
  • the linear portions 38,40 are configured to converge as they approach their distal ends spaced from the bent portion 42. More preferably, to minimize internal obstruction, at least a section of the linear portions 38,40 present tapered depths, as shown in FIG. 3. In this arrangement, the depth of the clip 32 gradually decreases as the linear portions 38,40 approach their distal ends.
  • Improved septum engaging pads 48,50 are attached to the clip 32 adjacent the distal ends and along the interior clip surface 44. Each of the pads 48,50 are configured to engage the septum 16 along planar innermost clip surfaces 52,54, so that the septum 16 is not pinched by single point sources of contact during usage.
  • Each of the pads 48,50 presents a trapezoidal shape, wherein the innermost clip surfaces 52,54 are oriented generally parallel to the septum 16 in the normal position (see FIG. 2). More preferably, each of the surfaces 52,54 presents a surface area not less than 0.2 square centimeters, and most preferably, not less than 0.5 square centimeters. Finally, so as not to damage the mucosal lining 31 during placement and removal, the preferred pads 48,50 present chamfered or filleted edges. It is believed that this improved design significantly increases comfort to the user, while stimulating the trigeminal nerve and dilating the nasal passage.
  • each of the nasal passage expanders 34,36 are virtually identically configured and, therefore, only nasal passage expander 34 will be described in detail, with the understanding that nasal passage expander 36 is similarly constructed.
  • the expander 34 is configured to retain the outer wall 28 of the nostril 20 in an open or dilated position as shown in FIG. 1.
  • the expander 34 generally includes an arm 56 spaced from the nostril and a nostril engaging disk 58 (see FIGs. 2 through 4). By engaging only the interior outer wall surface 30 with the disk 58, the improved expander 34 is configured to minimally engage the nostril 20, thereby reducing noticeability.
  • the arm 56 presents a thin planar body having a first pair of opposite major surfaces 60, and a second pair of parallel surfaces (not shown) generally perpendicular to the first. To reduce obstruction, the preferred arm 56 is oriented such that the major surfaces are parallel with the direction of air-flow during respiration.
  • the arm 56 is fixedly attached to the clip 32 on the outer surface 46 near the distal end of linear portion 40.
  • the arm 56 is flexibly fixed to the interior surface 66 of the disk 58.
  • the preferred second end 64 presents an oval or circular shape as shown in FIG. 3, which further enables disk 58 flexure.
  • FIGs. 2 and 3 the preferred first and second ends 62,64 are enlarged in comparison to the remainder of the arm 56 for increased durability.
  • the arm 56 is preferably bowed in an arcuate shape as shown in FIG. 2.
  • the preferred disk 58 is configured to be comfortably inserted within the nasal passageway 24 and to evenly apply a force therein.
  • the preferred disk 58 presents a thin slightly concave panel. As shown in the illustrated embodiment, the panel is preferably oval in shape.
  • a circumscribing margin 68 extends continuously around the panel and is inverted towards the center of the panel, so as to present a rounded radially outermost disk portion similar to a frisbee.
  • the disk 58 presents a surface area sufficiently sized to engage only a portion of the outer wall 28 of the nostril 20.
  • the dilator 10 also includes left and right compound delivery elements 70,72 that are attached to respective expanders 34,36.
  • the compound delivery elements 70,72 are detached, i.e. not connected to an external source, and, more particularly, are configured to store and deliver a quantity of a compound 74 to the mucosal lining 31.
  • the term "compound” shall not be given its strict definition in chemistry, but shall include elements, emulsions, suspensions, mixtures and other forms or combinations of substance suitable for use with the present invention.
  • the compound may be medicinal or non-medicinal in nature, and may, in that regard, include therapeutic or aromatic substances.
  • the clip 32 and delivery elements 70,72 are cooperatively configured to discharge the compound 74 at a distance not less than twenty-five percent (25%) of the overall nasal passageway length, which is where the mucosal lining 31 fully transitions from the outer epidermal. It is also appreciated by those skilled in the relevant art that numerous tiny blood vessels, or capillaries, lie just under the mucosal lining 31 of the nose, near the surface of the nasal passageways, and that delivery of the compound 74 to the lining 31 increases the efficiency of absorption into the blood stream.
  • each of the delivery elements 70,72 preferably presents a shallow carrying receptacle 76 that defines at least one discharge opening 78. More preferably, the receptacle 76 presents a rectangular shape having filleted leading edges, so as not to damage the lining 31 during placement, and a plurality of discharge openings 78.
  • the receptacle 76 preferably includes a flared base section 80 for greater strength of connection to the arm 56.
  • the openings 78 are located near and the floor 82 of the receptacle 76 is preferably sloped towards the distal end of the receptacle 76, (see FIG. 5a) so as to promote the discharge of the compound during use.
  • the compound 74 and delivery elements 70,72 are configured to discharge the compound 74 over a period of time. More preferably, the compound 74 is discharged over a period of at least one hour, and, most preferably, over a period of four to twelve hours.
  • the preferred receptacle 76 is ideally designed for carrying a time- released paste having sufficient viscosity to effect gradual discharge through the openings 78.
  • the paste may alternatively provide for the suspension and delivery of airborne molecules into the passageway 24. It will be appreciated by those in the art that gradually discharging the compound increases the efficiency of absorption into the blood stream, and, therefore, the effectiveness of the active ingredients.
  • a portion of the plurality of openings 78 can be safely overlaid with an adhesive-backed cover 84. It is also well within the ambit of the present invention, however, to utilize other structures for storing and delivering a compound at the proscribed locations in conjunction with the nasal dilator 10. For example, a tubular capsule having a pervious wall or an absorbent foam could be utilized.
  • the compound delivery elements 70,72 are preferably formed integrally with the other dilator components. More preferably, however, the delivery elements 70,72 are removably coupled to the dilator 10, and safe-guards are incorporated to prevent unwanted dislodgment during use. As shown in FIG. 5a, a plurality of button probes 86 are fixedly attached to each delivery element, and a plurality of depressions 88 in the corresponding arm are concentrically alignable, so as to enable the delivery elements 70,72 and arms 56 to snap into the interfitted position shown in FIG. 5a. It is certainly within the ambit of the invention, however, to provide other means for securing delivery elements to the remainder of the dilator 10. For example, a small cotter pin, screw, or other type of conventional fastener that does not interfere with the function of the nose could be utilized.
  • the dilator 10 is formed of any suitable non-toxic, hypoallergenic, and bendably rigid natural or synthetic material. More preferably, the dilator 10 is manufactured using a synthetic polymer composition. The selected material and the configuration of the disk 58, however, is preferably such that the preferred disk 58 is inelastically bendable and therefore permanently conformable to the shape of the nostril 20.
  • the dilator 10 is preferably constructed through conventional means, such as injection molding, and in a manner that results in seamless contact with the user. At least a portion of the dilator 10, including the septum engaging pads 50,52 and nostril engaging disks 58, can be further molded or double-dipped with a soft rubber material to present a more comfortable outer interface. More particularly, the coating material may comprise of a compressible soft foam, such as aurethane foam approximately .025 centimeters thick. A suitable coating may also be utilized to provide other desirable characteristics, such as fluorescence for night-time viability.
  • the physical state of the compound 74 may be selected from among various liquids, pastes, hard and soft gelatin capsules, solid pellets, and combinations thereof.
  • the compound 74 itself may comprise of any one or combination of conventional nasal delivery agents, including ionic zinc (see, U.S. Pat. No.6,080,783 to Davidson et al.), pain relief agents, antihistamines/decongestants, scenting agents, herbal supplements, insulin, growth hormones, asthma drug medication, germicides, microbicidal agents, and other beneficial agents.
  • the dilator 10 is installed by gently bending the expanders 34,36 inward and slightly opening the U-shaped clip to increase the distance between pads 50,52.
  • the expanders 34,36, linear portions 38,40 of the clip 32, and pads 50,52 are then inserted through the outlets 26 of the nostrils 20,22 and released.
  • the dilator 10 is slid further into the nostrils and adjusted as necessary to reach the desired final location. More preferably, the dilator 10 is maneuvered into place such that the vertex of the bent portion 42 is adjacent the exposed portion of the septum 16 (see FIG. 1).
  • the dilator 10 exerts holding and dilating forces upon the nose as it attempts to revert to its normal uncompressed condition shown in FIGs. 2 and 4. More particularly, the expanders 34,36 apply outward biasing forces to the outer walls 28 to maintain the nostrils 20,22 in the open position shown in FIG. 1, and the pads 50,52 compress the septum 16 to help breathing and reduce snoring.
  • the compound 74 is placed within or otherwise retained by attached delivery elements 70,72, prior to installation of the dilator 10. The compound 74 gradually discharges from the elements 70,72 over a period of at least one hour, and, most preferably, over a period of four to twelve hours.
  • the dilator 10 can be removed and stored in a sanitized environment or simply disposed of. If stored, the dilator 10 can be reused by replacing the dissipated compound with a second quantity and re-installing the dilator 10, though this ability will depend on the manner in which the compound is applied to the dilator 10.
  • dilator 100 is shown with a different configuration, particularly with regard to the expanders 102,104 (see FIGs. 6 through 9).
  • Dilator 100 may be similar to dilator 10 in all aspects including material composition, manufacture and modes of operation, except for the following modifications, and, as such, only those aspects of dilator 100 differing from dilator 10 will be further described in detail herein. [0049] As shown in FIG. 6, each of the preferably integrally formed expanders
  • the expanders 102,104 presents an arm portion 106 spaced from the nostrils 20,22, and a nostril engaging portion 108 adjacent to the distal end of the arm portion 106.
  • the expanders 102,104 of the second embodiment preferably present thin planar bodies having first pairs of opposite maj or surfaces, and second pairs of parallel surfaces (not shown) perpendicular to the first pairs.
  • the major surfaces of the nostril engaging portions 108 preferably present greater lateral widths than do the major surfaces of the arm portions 106 in order to more broadly apply the dilating force to the nostril.
  • the arm portions 106 are preferably oriented such that the major surfaces are parallel with the direction of air-flow during respiration. [0050] As best shown in FIG.
  • the arm portion 106 is fixedly attached to a U- shaped clip 110 similar to the clip 32 of the first embodiment.
  • the preferred expanders 102,104 are fixedly attached to the top surface of the linear portions of the clip 110 and pads, and generally project diagonally outward toward two and ten o'clock positions in the normal condition. More preferably, the expanders 102,104 generally project from the top surface of the clip 110 at an approximately forty-five degree vertical angle from horizontal. It is appreciated that where the flexible outer wall 28 defines a quarter circle between the face and septum 16 of the user, maximum dilation is achieved by orienting the dilating force vector in this direction.
  • the arm portions 106 preferably present upwardly bowed sections so as to promote bending and the application of a biasing force in a bent or flexed condition. As best shown in FIG. 8, the bowed sections more preferably extend along the entire length of the expanders 102,104, so that the expanders 102,104 present half circular or elliptical arcuate elevations. Also shown in FIGs. 6 and 8, the fixed ends of the expanders 102,104 are thicker in comparison to the remainder of the arm portions 106 for increased durability.
  • each expander 102,104 overlays and stems from the full top surface width of a pad and a section of a linear portion of the clip 110 adjacent its distal end.
  • the dilator 100 preferably presents filleted edges and rounded corners so as to prevent scraping and other damage to the mucosal lining 31 (see FIGs. 6 and 9) during insertion and removal.
  • the preferred delivery elements 112,114 are affixed to the lower surfaces 116,118 of the expanders 102,104, respectively.
  • the preferred elements 112, 114 present cylindrical prongs 120,122 that project toward the face of the user during use and generally perpendicular to the direction of air-flow during respiration. It will be appreciated that this configuration provides maximum interaction between the elements 112,114 and air-flow.
  • the prongs 120, 122 are each configured so as not to contact the mucosal lining 31 during use, and, more preferably, presents a length of approximately less than one centimeter. [0053] As shown in FIG.
  • prongs 120, 122 are configured to receive and retain a quantity of a medicinal, therapeutic, aromatic, drug, or other compound 124.
  • Each of the prongs 120,122 preferably presents a plurality of openings 126, or, alternatively, a continues open slot 128, (see FIGS. 9a,b) that aid in retaining the compound 124 on the prongs 120,122.
  • the compound 124 is preferably applied to and received on the prongs 120,122 in such a manner that the compound substantially covers the prongs 120,122 and passes completely through the prongs 120,122 at the locations of the openings 126 or slots 128. That portion of the compound 124 that passes through openings 126 or slots 128 acts as a structural retention mechanism to aid in retaining the compound on the prongs 120, 122.
  • the formation of the compound 124 onto the prongs 120,122 can be accomplished by any conventional means including injection molding, hot molding, manual dipping or the like. More preferably, the method of formation comprises the steps of providing the compound 124 in liquid or paste form, providing two negative molds configured to form and release a product of desired dimension, inserting prongs 120,122 within the molds, placing the compound within the molds and adjacent the prongs 120, 122, and allowing the compound to solidify and adhere to the prongs 120,122 over a period of time.
  • the prongs are inserted completely within the molds, such that the molds abut the lower surfaces 116,118 of the expanders 102,104, and the compound solidifies at room temperature, i.e., approximately seventy-three degrees Fahrenheit, and approximately sixty-five percent humidity within a period of four hours.
  • a catalyst may be added to the compound to accelerate the rate of curing to approximately thirty minutes or less
  • a releasing agent may be added to the mold to facilitate removal of the cast
  • a primer may be added to the prong surface to facilitate adhesion.
  • introduction of the compound and prongs into the molds is most preferably at least partially performed by conventional mechanical means, such as a suitable injection molding machine.
  • the process may include the steps of providing the compound 124 in a solid form, such as pellets or capsules, heating the molds to a temperature in excess of the melting point of the solid compound 124, allowing the compound 124 to liquify prior to inserting the prongs 120, 122, and providing an additional cool-down period to reduce the temperature of the compound 124. More preferably, a cool-down period of not less than approximately one-hour is provided, while the molds and compound 124 are exposed to a suitable cooling source (not shown) configured to accelerate the rate of temperature loss.
  • a suitable cooling source not shown
  • the compound 124 in order to enable its proper function, the compound 124 must have a melting point measurably greater than room temperature but less than the temperature typically present within the nasal passageway 24, and more preferably approximately between the range of 80° and 90° F. [0057]
  • the prongs 120, 122 and the compound 124 are cooperatively configured to deliver the beneficial agent to the user at a gradual rate and over a desired period of time by melting the compound so that the agent directly contacts the lining 31, by sublimation wherein the compound 124 releases airborne particles into the nasal cavity 14, or a combination of the two.

Abstract

An internal nasal dilator (10) and compound delivery method presents an improved dilator including a U-shaped clip (32) having septum engaging pads (48, 50), first and second nasal expanders (34, 36), and first and second delivery elements (70, 72). The (48, 50) pads engage the septum (16) along planar surfaces (52, 54). Each of the expanders (34, 36) further include a conforming nostril engaging element (58) and a flexible arm (56) interconnecting the engaging element (58) and clip (32). The delivery elements (70, 72) are each adapted to receive and retain a quantity of a compound and to discharge the compound over a period of time.

Description

INTERNAL NASAL DILATOR AND DELIVERY MECHANISM
BACKGROUND OF THE INVENTION
[0001] 1. FIELD OF THE INVENTION
[0002] The present invention relates generally to mechanisms and methods for dilating nasal passages and delivering medication, drugs, or other compounds. More particularly, the present invention concerns an improved internal nasal dilator for increasing nasal breathing efficiency and for delivering a time-released compound within the nostrils of a user, and a method of making the same.
[0003] 2. DISCUSSION OF THE PRIOR ART [0004] It is well documented that collapsed or constricted nasal passageways result in a multitude of bodily problems, including sleep apnea, sinus infection, and other respiratory ailments. Another well-known problem associated with reduced passageways is snoring. In this condition, audible sounds produced by the vibration of the soft palate and internal nasal structure can be a nuisance to persons within hearing distance and can affect the quality of sleep of the snoring person.
[0005] To alleviate these ailments and conditions, a variety of nasal dilator mechanisms, including external and internal versions, have been developed over time. Prior art external nasal dilators often take the form of an adhesive strip that is worn on an exterior portion of the nose and function to lift the walls of the nasal passages. Unfortunately, the frictional grab-strength required by these external dilators often causes discomfort or damage to the skin and soft facial tissues of the user. Furthermore, external placement of these dilators exposes them to a variety of forces arising from rubbing against objects, such as pillows, that can prematurely dislodge the dilator.
[0006] Prior art internal nasal dilators, on the other hand, function within the nostrils of the user, and as a result are not subject to being prematurely dislodged by external forces. These dilators are typically held in place by a clamping mechanism that pinches the septum generally along two contact points, or by stretching the nostrils enough to result in a compressive force on the dilator sufficient to hold it in place. The non- adjustability of these dilators, however, are problematic given that there are an infinite number of sizes and shapes of human nostrils. The pinching mechanisms of these dilators are also problematic in that they cause discomfort to the user, including pain where prolonged usage is necessary. The fact that some of these internal dilators must stretch the nostrils to a greater extent than is necessary to simply dilate the nostril also causes further discomfort and noticeability.
[0007] The prior art also includes nasal dilators combined with gaseous delivery systems for providing a measured flow of medicine to the user. These combinations, however, typically require that an external source be securely connected to the dilator during usage, which makes them problematically cumbersome. Connection to an external source also reduces comfort by limiting the user to certain positions in order to ensure proper operation, which may further inhibit the user from sleeping. Furthermore, these combinations include notoriously complex mechanical, electrical, or pneumatic components that make their manufacture time-consuming and expensive.
[0008] U.S. Pat. No. 6,561,188 to Ellis (Ellis '188), for example, discloses an internal dilator having an internal medicine source. In that arrangement, an anti-histamine layer (27) is not attached to an external source, see FIGS. 8A-8E. The layer (27) is \ attached to other permeable filter layers and overlays the outlet of the nostrils when in place. However, locating the antihistamine near the outlet of the nostrils reduces the effectiveness of delivery and may be wholly inappropriate for other types of medicines, drags, or compounds because the proximity to ambient air outside the nose results in a measurable percentage of undelivered medicine. Locating the source up-stream from the mucosal lining within the nasal passageway further diminishes the effectiveness of the combination by preventing the administration of medicine during exhalation. Furthermore, the structure of the disclosed mechanism is so large (relative to the volume of the nasal passages) and complex that it may inhibit air flow during normal breathing and may be prohibitively costly to manufacture.
[0009] Due to these and other problems and limitations in the prior art, an improved nasal dilator and delivery mechanism is needed. SUMMARY OF THE INVENTION
[0010] The present invention overcomes the problems and limitations in the prior art by providing an improved internal nasal dilator for increasing nasal breathing efficiency and for delivering a time-released compound within the nostrils of a user, and a method of making the same.
[0011] A first aspect of the invention concerns an internal nasal dilator adapted for use within a nose having first and second nostrils separated by a septum, with each of the nostrils defining in part an internal nasal passageway and an interior outer wall surface generally opposite the septum. The dilator comprises a generally U-shaped clip configured to contact and apply a holding force to the septum when the dilator is donned. The clip is further configured to contact the septum along first and second planar engaging surfaces. The dilator also includes first and second nostril expanders, wherein each of the expanders further include a nostril engaging element configured to overlay and conform to a portion of the interior outer wall surface of said first or second nostril, and an arm interconnecting the nostril engaging element and clip. The element, arm and clip are cooperatively configured to exert a force upon said portion of the interior outer wall surface.
[0012] A second aspect of the invention concerns an internal nasal apparatus adapted for use within a nose having first and second nostrils separated by a septum, each of the nostrils defining in part an internal nasal passageway, an outlet, and an interior outer wall surface generally opposite the septum. The apparatus comprises a holding element configured to contact and apply a holding force to the nose so as to secure the apparatus at least partially within both nostrils when the apparatus is donned, and first and second delivery elements. Each of the delivery elements is configured to retain a quantity of a medicine, drug, or other compound within the nasal passageway of one of said first or second nostrils and to discharge the quantity within the nasal passageway at a minimum distance from the outlet of said one of said first or second nostrils over a minimum period of time.
[0013] A third aspect of the present invention concerns a method of increasing the efficiency of nasal breathing and delivering a compound within a nose having a septum and first and second nostrils, wherein each nostril defines an inner outer wall surface, and a nasal passageway. The method comprises the steps of engaging and applying outward forces to the inner outer wall surfaces, and engaging and applying compressive forces to the septum, so as to retain the nostrils in an expanded open position; and retaining a quantity of a medicine, drug, or other compound within the nostrils and gradually discharging the quantity at a minimum distance within the nasal passageway and over a minimum period of time.
[0014] Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and the accompanying drawing figures.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
[0015] Several embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:
[0016] FIG. 1 is a perspective view of an internal nasal dilator constructed in accordance with a first preferred embodiment of the present invention, particularly illustrating the dilator being worn by a user;
[0017] FIG. Ia is a schematic side-elevational view of the inner-structure of the human nose;
[0018] FIG. Ib is an inferior view of the human nose;
[0019] FIG. 2 is a plan view of the dilator shown in FIG. 1 in its normal condition; [0020] FIG. 3 is a cross-sectional view of the dilator taken along the line A-A shown in FIG. 2, particularly illustrating the connection between the disk and arm;
[0021 ] FIG. 4 is a plan view of an internal nasal dilator, such as is shown in FIGS .
1 through 3, having two compound delivery elements;
[0022] FIG. 5 is an enlarged fragmentary plan view of the dilator, particularly illustrating a compound delivery element;
[0023] FIG. 5a is an enlarged fragmentary cross-sectional view of a removably fixed connection between a compound delivery element and an arm in accordance with a preferred embodiment of the present invention; [0024] FIG. 5b is an enlarged fragmentary plan view of the compound delivery elements, particularly showing the adjustable overlay;
[0025] FIG. 6 is a perspective view of an internal nasal dilator constructed in accordance with a second preferred embodiment of the present invention; [0026] FIG. 7 is a side-elevational view of the dilator shown in FIG. 6;
[0027] FIG. 8 is a front-elevational view of the dilator shown in FIGS. 6 and 7, particularly showing two compound delivery elements; and
[0028] FIG. 9 is a plan view of the dilator shown in FIGS . 6 through 8 in its normal condition, particularly showing the compound delivery elements and septum engaging pads;
[0029] FIG. 9a is fragmentary side elevational view of a compound delivery element prong defining a plurality of openings; and
[0030] FIG. 9b is a fragmentary side elevational view of a compound delivery element prong defining a continuous slot. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0031] With reference to the figures, a nasal dilator, delivery mechanism, and method of making the same are herein described, shown, and otherwise disclosed in accordance with the preferred embodiments of the present invention. More specifically, the present invention concerns an improved internal nasal dilator for increasing nasal breathing efficiency and for delivering a time-released compound within the nostrils of a user, and a method of making the same.
[0032] As best shown in FIG. 1, a first preferred embodiment of the present invention concerns an improved internal nasal dilator 10 adapted for use predominately within a nose. Although further described herein with respect to a human user, the present invention may be modified in size and shape to properly function within the noses of a variety of animals. For example, the structure of the dilator 10 could be elongated and broadened for equine or canine usage without departing from the present invention. It is also within the present invention to modify the configuration of the dilator, so long as compound storage and delivery occurs at the prescribed minimum distances within the nose.
[0033] Turning first to FIGs. 1, 1a and Ib, the human olfaction organ is divided into an external portion, i.e. the visible projecting portion 12, to which the term "nose" is restricted herein, and an internal portion, consisting of two principal cavities, or nasal fossae 14, separated from each other by a vertical septum 16. Each of the nasal cavities 14 fiuidly communicates with ambient air conditions through a constricted orifice, or ostium internum 18, located at the union of the two portions. The nose 12 further presents first and second nostrils 20,22 also separated by the septum 16. Each of the nostrils 20,22 define in part an internal nasal passageway 24, a nasal outlet 26, and a resistively elastic outer wall 28. The internal nasal passageway 24 as used herein, is limited to the vestibules formed by the nose 12, and does not include the nasal cavities 14 and other inner workings of the organ. The passageway distance is defined as the linear distance along the longitudinal axis of the vestibules as measured from the outlet 26 to the orifice 18. The outer wall 28 presents an interior outer wall surface 30 generally opposite the septum 16. Finally, a mucosal lining 31 further described herein overlays a significant portion of the nasal passageways 24 and cavities 14.
[0034] As illustrated in FIGs. 2 through 5, the improved internal nasal dilator 10 includes a septum constricting clip 32, and left and right nasal expanders 34,36 (i.e., dilating elements). The septum constricting clip 32 is configured to retain and apply a holding force to a portion of the septum 16. The preferred clip 32 presents a symmetric generally U-shaped body having constant depth and thickness and defining interior and exterior clip surfaces 44,46. The clip 32 is formed by first and second linear portions 38,40 and a bent portion 42 interconnecting the linear portions 38,40. The bent portion 42 is configured so as to place the linear portions 38,40 generally adjacent to the septum 16 by orienting the linear portions 38,40 generally towards the septum 16. Thus, the linear portions 38,40 are configured to converge as they approach their distal ends spaced from the bent portion 42. More preferably, to minimize internal obstruction, at least a section of the linear portions 38,40 present tapered depths, as shown in FIG. 3. In this arrangement, the depth of the clip 32 gradually decreases as the linear portions 38,40 approach their distal ends. [0035] Improved septum engaging pads 48,50 are attached to the clip 32 adjacent the distal ends and along the interior clip surface 44. Each of the pads 48,50 are configured to engage the septum 16 along planar innermost clip surfaces 52,54, so that the septum 16 is not pinched by single point sources of contact during usage. Each of the pads 48,50 presents a trapezoidal shape, wherein the innermost clip surfaces 52,54 are oriented generally parallel to the septum 16 in the normal position (see FIG. 2). More preferably, each of the surfaces 52,54 presents a surface area not less than 0.2 square centimeters, and most preferably, not less than 0.5 square centimeters. Finally, so as not to damage the mucosal lining 31 during placement and removal, the preferred pads 48,50 present chamfered or filleted edges. It is believed that this improved design significantly increases comfort to the user, while stimulating the trigeminal nerve and dilating the nasal passage.
[0036] Each of the nasal passage expanders 34,36 are virtually identically configured and, therefore, only nasal passage expander 34 will be described in detail, with the understanding that nasal passage expander 36 is similarly constructed. The expander 34 is configured to retain the outer wall 28 of the nostril 20 in an open or dilated position as shown in FIG. 1. In a first preferred embodiment of the present invention, the expander 34 generally includes an arm 56 spaced from the nostril and a nostril engaging disk 58 (see FIGs. 2 through 4). By engaging only the interior outer wall surface 30 with the disk 58, the improved expander 34 is configured to minimally engage the nostril 20, thereby reducing noticeability.
[0037] More preferably, the arm 56 presents a thin planar body having a first pair of opposite major surfaces 60, and a second pair of parallel surfaces (not shown) generally perpendicular to the first. To reduce obstruction, the preferred arm 56 is oriented such that the major surfaces are parallel with the direction of air-flow during respiration. At a first end 62, the arm 56 is fixedly attached to the clip 32 on the outer surface 46 near the distal end of linear portion 40. At the opposite second end 64, the arm 56 is flexibly fixed to the interior surface 66 of the disk 58. The preferred second end 64 presents an oval or circular shape as shown in FIG. 3, which further enables disk 58 flexure. However, other flexible connection configurations may be utilized, including ball-and-socket, without departing from the scope of the present invention. Also shown in FIGs. 2 and 3, the preferred first and second ends 62,64 are enlarged in comparison to the remainder of the arm 56 for increased durability. To facilitate bending, the arm 56 is preferably bowed in an arcuate shape as shown in FIG. 2.
[0038] The preferred disk 58 is configured to be comfortably inserted within the nasal passageway 24 and to evenly apply a force therein. The preferred disk 58 presents a thin slightly concave panel. As shown in the illustrated embodiment, the panel is preferably oval in shape. A circumscribing margin 68 extends continuously around the panel and is inverted towards the center of the panel, so as to present a rounded radially outermost disk portion similar to a frisbee. The disk 58 presents a surface area sufficiently sized to engage only a portion of the outer wall 28 of the nostril 20. [0039] As best shown in FIG. 4, where delivery of medicine, drugs, or other compounds is desired the dilator 10 also includes left and right compound delivery elements 70,72 that are attached to respective expanders 34,36. The compound delivery elements 70,72 are detached, i.e. not connected to an external source, and, more particularly, are configured to store and deliver a quantity of a compound 74 to the mucosal lining 31. As used herein, the term "compound" shall not be given its strict definition in chemistry, but shall include elements, emulsions, suspensions, mixtures and other forms or combinations of substance suitable for use with the present invention. Furthermore, it will be appreciated that the compound may be medicinal or non-medicinal in nature, and may, in that regard, include therapeutic or aromatic substances. [0040] More preferably, the clip 32 and delivery elements 70,72 are cooperatively configured to discharge the compound 74 at a distance not less than twenty-five percent (25%) of the overall nasal passageway length, which is where the mucosal lining 31 fully transitions from the outer epidermal. It is also appreciated by those skilled in the relevant art that numerous tiny blood vessels, or capillaries, lie just under the mucosal lining 31 of the nose, near the surface of the nasal passageways, and that delivery of the compound 74 to the lining 31 increases the efficiency of absorption into the blood stream. Most preferably, the clip 32 and delivery elements 70,72 are cooperatively configured to gradually deliver the compound 74 at a distance not less than fifty percent (50%) of total passageway length within the nose, so that compound 74 can also be absorbed by the lining 31 during exhalation. [0041] Each of the delivery elements 70,72 preferably presents a shallow carrying receptacle 76 that defines at least one discharge opening 78. More preferably, the receptacle 76 presents a rectangular shape having filleted leading edges, so as not to damage the lining 31 during placement, and a plurality of discharge openings 78. The receptacle 76 preferably includes a flared base section 80 for greater strength of connection to the arm 56. The openings 78 are located near and the floor 82 of the receptacle 76 is preferably sloped towards the distal end of the receptacle 76, (see FIG. 5a) so as to promote the discharge of the compound during use.
[0042] The compound 74 and delivery elements 70,72 are configured to discharge the compound 74 over a period of time. More preferably, the compound 74 is discharged over a period of at least one hour, and, most preferably, over a period of four to twelve hours. In this regard, the preferred receptacle 76 is ideally designed for carrying a time- released paste having sufficient viscosity to effect gradual discharge through the openings 78. The paste may alternatively provide for the suspension and delivery of airborne molecules into the passageway 24. It will be appreciated by those in the art that gradually discharging the compound increases the efficiency of absorption into the blood stream, and, therefore, the effectiveness of the active ingredients. Finally, to vary the discharge rate of the compound 74 a portion of the plurality of openings 78 can be safely overlaid with an adhesive-backed cover 84. It is also well within the ambit of the present invention, however, to utilize other structures for storing and delivering a compound at the proscribed locations in conjunction with the nasal dilator 10. For example, a tubular capsule having a pervious wall or an absorbent foam could be utilized.
[0043] The compound delivery elements 70,72 are preferably formed integrally with the other dilator components. More preferably, however, the delivery elements 70,72 are removably coupled to the dilator 10, and safe-guards are incorporated to prevent unwanted dislodgment during use. As shown in FIG. 5a, a plurality of button probes 86 are fixedly attached to each delivery element, and a plurality of depressions 88 in the corresponding arm are concentrically alignable, so as to enable the delivery elements 70,72 and arms 56 to snap into the interfitted position shown in FIG. 5a. It is certainly within the ambit of the invention, however, to provide other means for securing delivery elements to the remainder of the dilator 10. For example, a small cotter pin, screw, or other type of conventional fastener that does not interfere with the function of the nose could be utilized.
[0044] The dilator 10 is formed of any suitable non-toxic, hypoallergenic, and bendably rigid natural or synthetic material. More preferably, the dilator 10 is manufactured using a synthetic polymer composition. The selected material and the configuration of the disk 58, however, is preferably such that the preferred disk 58 is inelastically bendable and therefore permanently conformable to the shape of the nostril 20.
The dilator 10 is preferably constructed through conventional means, such as injection molding, and in a manner that results in seamless contact with the user. At least a portion of the dilator 10, including the septum engaging pads 50,52 and nostril engaging disks 58, can be further molded or double-dipped with a soft rubber material to present a more comfortable outer interface. More particularly, the coating material may comprise of a compressible soft foam, such as aurethane foam approximately .025 centimeters thick. A suitable coating may also be utilized to provide other desirable characteristics, such as fluorescence for night-time viability.
[0045] The physical state of the compound 74 may be selected from among various liquids, pastes, hard and soft gelatin capsules, solid pellets, and combinations thereof. The compound 74 itself may comprise of any one or combination of conventional nasal delivery agents, including ionic zinc (see, U.S. Pat. No.6,080,783 to Davidson et al.), pain relief agents, antihistamines/decongestants, scenting agents, herbal supplements, insulin, growth hormones, asthma drug medication, germicides, microbicidal agents, and other beneficial agents.
[0046] hi operation, after selecting a dilator 10 of a suitable size for the user, the dilator 10 is installed by gently bending the expanders 34,36 inward and slightly opening the U-shaped clip to increase the distance between pads 50,52. The expanders 34,36, linear portions 38,40 of the clip 32, and pads 50,52 are then inserted through the outlets 26 of the nostrils 20,22 and released. The dilator 10 is slid further into the nostrils and adjusted as necessary to reach the desired final location. More preferably, the dilator 10 is maneuvered into place such that the vertex of the bent portion 42 is adjacent the exposed portion of the septum 16 (see FIG. 1). Once in place, the dilator 10 exerts holding and dilating forces upon the nose as it attempts to revert to its normal uncompressed condition shown in FIGs. 2 and 4. More particularly, the expanders 34,36 apply outward biasing forces to the outer walls 28 to maintain the nostrils 20,22 in the open position shown in FIG. 1, and the pads 50,52 compress the septum 16 to help breathing and reduce snoring. [0047] Where compound delivery is desired, the compound 74 is placed within or otherwise retained by attached delivery elements 70,72, prior to installation of the dilator 10. The compound 74 gradually discharges from the elements 70,72 over a period of at least one hour, and, most preferably, over a period of four to twelve hours. Once the compound 74 is depleted and dilation is no longer desired, the dilator 10 can be removed and stored in a sanitized environment or simply disposed of. If stored, the dilator 10 can be reused by replacing the dissipated compound with a second quantity and re-installing the dilator 10, though this ability will depend on the manner in which the compound is applied to the dilator 10. [0048] In a second preferred embodiment of the present invention, dilator 100 is shown with a different configuration, particularly with regard to the expanders 102,104 (see FIGs. 6 through 9). Dilator 100 may be similar to dilator 10 in all aspects including material composition, manufacture and modes of operation, except for the following modifications, and, as such, only those aspects of dilator 100 differing from dilator 10 will be further described in detail herein. [0049] As shown in FIG. 6, each of the preferably integrally formed expanders
102, 104 presents an arm portion 106 spaced from the nostrils 20,22, and a nostril engaging portion 108 adjacent to the distal end of the arm portion 106. Like the expanders 34,36 of the first embodiment, the expanders 102,104 of the second embodiment preferably present thin planar bodies having first pairs of opposite maj or surfaces, and second pairs of parallel surfaces (not shown) perpendicular to the first pairs. The major surfaces of the nostril engaging portions 108 preferably present greater lateral widths than do the major surfaces of the arm portions 106 in order to more broadly apply the dilating force to the nostril. The arm portions 106 are preferably oriented such that the major surfaces are parallel with the direction of air-flow during respiration. [0050] As best shown in FIG. 6, the arm portion 106 is fixedly attached to a U- shaped clip 110 similar to the clip 32 of the first embodiment. However, unlike the dilator 10 of the first embodiment, the preferred expanders 102,104 are fixedly attached to the top surface of the linear portions of the clip 110 and pads, and generally project diagonally outward toward two and ten o'clock positions in the normal condition. More preferably, the expanders 102,104 generally project from the top surface of the clip 110 at an approximately forty-five degree vertical angle from horizontal. It is appreciated that where the flexible outer wall 28 defines a quarter circle between the face and septum 16 of the user, maximum dilation is achieved by orienting the dilating force vector in this direction. [0051] The arm portions 106 preferably present upwardly bowed sections so as to promote bending and the application of a biasing force in a bent or flexed condition. As best shown in FIG. 8, the bowed sections more preferably extend along the entire length of the expanders 102,104, so that the expanders 102,104 present half circular or elliptical arcuate elevations. Also shown in FIGs. 6 and 8, the fixed ends of the expanders 102,104 are thicker in comparison to the remainder of the arm portions 106 for increased durability.
The fixed end of each expander 102,104 overlays and stems from the full top surface width of a pad and a section of a linear portion of the clip 110 adjacent its distal end.
Finally, the dilator 100 preferably presents filleted edges and rounded corners so as to prevent scraping and other damage to the mucosal lining 31 (see FIGs. 6 and 9) during insertion and removal.
[0052] In the illustrated embodiment shown in FIGs. 6 through 9, the expanders
102,104 are also upwardly bowed to facilitate proper functioning of the compound delivery elements 112,114. As best shown in FIG. 9, the preferred delivery elements 112,114 are affixed to the lower surfaces 116,118 of the expanders 102,104, respectively. The preferred elements 112, 114 present cylindrical prongs 120,122 that project toward the face of the user during use and generally perpendicular to the direction of air-flow during respiration. It will be appreciated that this configuration provides maximum interaction between the elements 112,114 and air-flow. The prongs 120, 122 are each configured so as not to contact the mucosal lining 31 during use, and, more preferably, presents a length of approximately less than one centimeter. [0053] As shown in FIG. 9, prongs 120, 122 are configured to receive and retain a quantity of a medicinal, therapeutic, aromatic, drug, or other compound 124. Each of the prongs 120,122 preferably presents a plurality of openings 126, or, alternatively, a continues open slot 128, (see FIGS. 9a,b) that aid in retaining the compound 124 on the prongs 120,122. More specifically, the compound 124 is preferably applied to and received on the prongs 120,122 in such a manner that the compound substantially covers the prongs 120,122 and passes completely through the prongs 120,122 at the locations of the openings 126 or slots 128. That portion of the compound 124 that passes through openings 126 or slots 128 acts as a structural retention mechanism to aid in retaining the compound on the prongs 120, 122.
[0054] While the material composition and manufacture of the dilator 100 of the second embodiment is similar to the dilator 10 of the first, the formation of the compound 124 onto the prongs 120,122 can be accomplished by any conventional means including injection molding, hot molding, manual dipping or the like. More preferably, the method of formation comprises the steps of providing the compound 124 in liquid or paste form, providing two negative molds configured to form and release a product of desired dimension, inserting prongs 120,122 within the molds, placing the compound within the molds and adjacent the prongs 120, 122, and allowing the compound to solidify and adhere to the prongs 120,122 over a period of time. [0055] Most preferably, the prongs are inserted completely within the molds, such that the molds abut the lower surfaces 116,118 of the expanders 102,104, and the compound solidifies at room temperature, i.e., approximately seventy-three degrees Fahrenheit, and approximately sixty-five percent humidity within a period of four hours. Where desired, a catalyst may be added to the compound to accelerate the rate of curing to approximately thirty minutes or less, a releasing agent may be added to the mold to facilitate removal of the cast, and a primer may be added to the prong surface to facilitate adhesion. Finally, introduction of the compound and prongs into the molds is most preferably at least partially performed by conventional mechanical means, such as a suitable injection molding machine. It will be appreciated by those ordinarily skilled in the art that other desirable additives can be added to the compound; that any suitable conventional curative, catalyst, releasing agent, or primer effective for the intended purposes described maybe utilized; and that the utilization of mechanical means reduces manufacturing errors and increases productivity.
[0056] Where hot molding is utilized in formation, the process may include the steps of providing the compound 124 in a solid form, such as pellets or capsules, heating the molds to a temperature in excess of the melting point of the solid compound 124, allowing the compound 124 to liquify prior to inserting the prongs 120, 122, and providing an additional cool-down period to reduce the temperature of the compound 124. More preferably, a cool-down period of not less than approximately one-hour is provided, while the molds and compound 124 are exposed to a suitable cooling source (not shown) configured to accelerate the rate of temperature loss. It should be noted that in order to enable its proper function, the compound 124 must have a melting point measurably greater than room temperature but less than the temperature typically present within the nasal passageway 24, and more preferably approximately between the range of 80° and 90° F. [0057] In operation, the prongs 120, 122 and the compound 124 are cooperatively configured to deliver the beneficial agent to the user at a gradual rate and over a desired period of time by melting the compound so that the agent directly contacts the lining 31, by sublimation wherein the compound 124 releases airborne particles into the nasal cavity 14, or a combination of the two. [0058] The preferred forms of the present invention and modes of operation described above are to be considered illustrative only, and should not be utilized in a limiting sense in interpreting the scope of the present invention. Obvious modifications to the exemplary embodiments, as set forth above, could be readily made by those skilled in the relevant arts without departing from the spirit of the present invention or the contemplated scope of protection.
[0059] The inventor hereby states his intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as pertains to any apparatus not materially departing from but outside the literal scope of the invention as set forth in the following claims.

Claims

What is claimed is:
1. An internal nasal dilator for use within a nose having first and second nostrils separated by a septum, each of the nostrils defining in part an internal nasal passageway and an interior outer wall surface generally opposite the septum, the dilator comprising:
a clip configured to contact and apply an inward force to the septum when the dilator is donned, wherein the clip contacts the septum along first and second planar engaging surfaces; and first and second nostril expanders, each of the nostril expanders including - a nostril engaging element configured to overlay a portion of the interior outer wall surface of a respective nostril when the dilator is donned, and an arm interconnecting the nostril engaging element and the clip, wherein the nostril engaging element, the arm, and the clip cooperate to exert an outward force upon the portion of the interior outer wall surface.
2. The dilator as claimed in claim 1, wherein the arm is substantially planar and defines pairs of opposite major and minor surfaces, and the arm is oriented such that the major surfaces are generally parallel to a longitudinal axis of the internal nasal passageway when the dilator is donned.
3. The dilator as claimed in claim 1, wherein each of the first and second planar engaging surfaces have an area not less than 0.25 square centimeters.
4. The dilator as claimed in claim 3, wherein the area is not less than 0.5 square centimeters.
5. The dilator as claimed in claim 1 , wherein the dilator is generally formed of a substantially synthetic polymer composition.
6. The dilator as claimed in claim 5, wherein at least a portion of the dilator has a conformable outer layer.
7. The dilator as claimed in claim 1 , wherein the nostril engaging element and the arm are flexibly adjustable.
8. The dilator as claimed in claim 1, wherein each arm is spaced from a respective nostril and the septum.
9. The dilator as claimed in claim 1 , wherein the clip and the first and second nostril expanders are integrally formed.
10. The dilator as claimed in claim 1 , wherein the nostril engaging element is a convex disk attached to a distal end of the arm.
11. The dilator as claimed in claim 1 , wherein the arm has an arcuately bowed section.
12. An internal nasal apparatus for use within a nose having first and second nostrils separated by a septum, each of the nostrils defining in part an internal nasal passageway, an outlet, and an interior outer wall surface generally opposite the septum, the apparatus comprising: a holding element configured to contact and apply a holding force to the nose so as to secure the apparatus at least partially within the first and second nostrils when the apparatus is donned; and first and second delivery elements, wherein each of the delivery elements is positioned at least partly within respect nasal passageways when the apparatus is donned, and each delivery element is configured to retain a quantity of a compound and allow for natural discharge of the compound within the respective nasal passageway over a period of time.
13. The apparatus as claimed in claim 12, wherein each of the delivery elements includes a mechanism for adjusting a rate of discharge of the compound.
14. The apparatus as claimed in claim 12, wherein the compound is a time- release paste.
15. The apparatus as set forth in claim 12, wherein the compound is a time- release solid.
16. The apparatus as claimed in claim 12, wherein the period of time is approximately between one hour and twelve hours.
17. The apparatus as claimedin claim 12, wherein each of the delivery elements is a generally elongated prong.
18. The apparatus as claimedin claim 12, wherein each of the delivery elements defines a receptacle within which the compound is retained, and at least one opening in the receptacle through which the compound discharges.
19. The apparatus as claimed in claim 12, wherein, when the apparatus is donned, each of the delivery elements is positioned within a respect one of the internal nasal passageways at a distance of not less than approximately 25% of a total length of the internal nasal passageway as measured from the outlet.
20. The apparatus as claimed in claim 12, wherein the holding element includes a clip configured to contact and apply a holding force to the septum.
21. The apparatus as claimed in claim 20, wherein the clip defines opposite planar septum engaging surfaces and is further configured to apply the holding force solely along the planar septum engaging surfaces.
22. The apparatus as claimed in claim 20, wherein the holding element includes first and second dilating elements, with each dilating element being configured to exert an outward force on a portion of the interior outer wall surface of a respective one of the nostrils.
23. The apparatus as claimed in claim 22, wherein each of the dilating elements includes a disk and a connection member interconnecting the disk and the clip, and wherein each disk is configured to contact and exert the outward force on a portion of the interior outer wall surface of a respective one of the nostrils.
24. The apparatus as claimed in claim 22, wherein the clip, the dilating elements, and the delivery elements are integrally formed.
25. A method of increasing the efficiency of nasal breathing and delivering a compound within a nose having a septum and first and second nostrils, wherein each nostril defines an inner outer wall surface, an outlet and a nasal passageway, the method comprising the steps of:
(a) engaging and applying an outward force to each of the inner outer wall surfaces, and engaging and applying a compressive force to the septum, so as to retain the nostrils in an expanded state; and
(b) locating a time-release compound within the expanded nostrils so that the compound discharges within the nasal passageway over a period or time.
26. The method as claimed in claim 25, wherein step (a) includes applying the compressive force to the septum over a surface area of the septum.
27. The method as claimed in claim 25, wherein step (b) includes locating the time-release compound at a distance of not less than approximately 25% of a total length of the internal nasal passageway as measured from the outlet.
28. The method as claimed in claim 25, wherein step (b) includes the time- release compound being discharged over a period of approximately between one hour and twelve hours.
29. An internal nasal dilator for use within a nose having first and second nostrils separated by a septum, each of the nostrils defining in part an internal nasal passageway and an interior outer wall surface generally opposite the septum, the dilator comprising: a clip configured to contact and apply an inward force to the septum when the dilator is donned, wherein the clip contacts the septum along first and second planar engaging surfaces; and first and second nostril expanders, each of the nostril expanders including - a nostril engaging element configured to overlay a portion of the interior outer wall surface of a respective nostril when the dilator is donned, and compressible arm interconnecting the nostril engaging element and the clip, the compressible arm presenting pairs of opposite major and minor surfaces, and the arm being oriented such that the major surfaces are generally parallel to a longitudinal axis of the internal nasal passageway when the dilator is donned, wherein the compressed arm causes the nostril engaging element to exert an outward force upon the portion of the interior outer wall surface.
30. An internal nasal apparatus for use within a nose having first and second nostrils separated by a septum, each of the nostrils defining in part an internal nasal passageway, an outlet, and an interior outer wall surface generally opposite the septum, the apparatus comprising: a clip configured to contact and apply an inward force to the septum when the dilator is donned; first and second nostril expanders, each of the nostril expanders including - a nostril engaging element configured to overlay a portion of the interior outer wall surface of a respective nostril when the dilator is donned, and a compressible arm interconnecting the nostril engaging element and the clip, wherein the compressed arm causes the nostril engaging element to exert an outward force upon the portion of the interior outer wall surface; and first and second delivery elements respectively associated with the first and second nostril expanders, wherein each of the delivery elements is positioned at least partly within respective nasal passageways when the apparatus is donned, and each delivery element is configured to retain a quantity of a compound and allow for natural discharge of the compound within the respective nasal passageway over a period of time.
31. An internal nasal apparatus for use within a nose having first and second nostrils separated by a septum, each of the nostrils defining in part an internal nasal passageway, an outlet, and an interior outer wall surface generally opposite the septum, the apparatus comprising: a U-shaped clip including first and second linear portions and first and second septum-engaging pads, each of the septum-engaging pads being located at a distal end of a respective one of the linear portions, wherein the first and second septum-engaging pads are configured to contact and apply an inward force to the septum when the dilator is donned; first and second nostril expanders, each of the nostril expanders including - a nostril-engaging element configured to overlay a portion of the interior outer wall surface of a respective nostril when the dilator is donned, and a compressible arm interconnecting the nostril-engaging element and the U-shaped clip, the compressible arm presenting pairs of opposite major and minor surfaces, and the arm being oriented such that the major surfaces are generally parallel to a longitudinal axis of the internal nasal passageway when the dilator is donned, wherein the compressed arm causes the nostril engaging element to exert an outward force upon the portion of the interior outer wall surface; and first and second delivery elements respectively associated with the first and second nostril expanders, wherein each of the delivery elements is positioned at least partly within respective nasal passageways when the apparatus is donned, and each delivery element is configured to retain a quantity of a compound and allow for natural discharge of the compound within the respective nasal passageway over a period of time.
32. The apparatus as claimed in claim 31 , wherein each of the delivery elements includes a mechanism for adjusting a rate of discharge of the compound.
33. The apparatus as claimed in claim 31, wherein the period of time is approximately between one hour and twelve hours.
34. The apparatus as claimed in claim 31 , wherein each of the delivery elements defines a receptacle within which the compound is retained, and at least one opening in the receptacle through which the compound discharges.
PCT/US2006/006688 2005-02-24 2006-02-24 Internal nasal dilator and delivery mechanism WO2006091865A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/065,677 2005-02-24
US11/065,677 US7055523B1 (en) 2005-02-24 2005-02-24 Internal nasal dilator and delivery mechanism

Publications (3)

Publication Number Publication Date
WO2006091865A2 true WO2006091865A2 (en) 2006-08-31
WO2006091865A3 WO2006091865A3 (en) 2006-11-16
WO2006091865B1 WO2006091865B1 (en) 2007-01-04

Family

ID=36568769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/006688 WO2006091865A2 (en) 2005-02-24 2006-02-24 Internal nasal dilator and delivery mechanism

Country Status (2)

Country Link
US (4) US7055523B1 (en)
WO (1) WO2006091865A2 (en)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199245A1 (en) * 2001-11-02 2005-09-15 Brennan H. G. Nose airway for aromatherapy and detecting airborne pathogens
US20060260613A1 (en) * 2004-12-08 2006-11-23 Bsa, Llc Nasal appliance
US7055523B1 (en) * 2005-02-24 2006-06-06 Brown Thomas W Internal nasal dilator and delivery mechanism
US20060266367A1 (en) * 2005-05-27 2006-11-30 Alisa Noce Nasal dilator
US20070093867A1 (en) * 2005-10-20 2007-04-26 Ron Savoia Acupressure Treatment Device
US20070283963A1 (en) * 2006-06-12 2007-12-13 Sims Guadalupe V Nose air-filter
US7780730B2 (en) 2006-09-25 2010-08-24 Iyad Saidi Nasal implant introduced through a non-surgical injection technique
EP1908438A1 (en) * 2006-10-02 2008-04-09 Norina Honegger Instrument to adjust the shape of a bone
SE530707C2 (en) * 2006-12-27 2008-08-19 Adactive Marketing Ab nasal dilator
US7563271B2 (en) * 2007-01-04 2009-07-21 Howard Laurence E Breathing aid device that decreases incidence of snoring
US20090120441A1 (en) * 2007-11-13 2009-05-14 Wang Wen-Kuang Nasal cavity filter and manufacturing method thereof
US8834512B1 (en) * 2007-12-12 2014-09-16 International Patent Development Group, Llc Nasal dilator comprising joined legs with end pads and air passages
US20090198268A1 (en) * 2008-02-01 2009-08-06 Ernest Jerold Case Nasal dilation apparatus
US8682687B2 (en) 2008-04-24 2014-03-25 The Invention Science Fund I, Llc Methods and systems for presenting a combination treatment
US9662391B2 (en) 2008-04-24 2017-05-30 The Invention Science Fund I Llc Side effect ameliorating combination therapeutic products and systems
US8876688B2 (en) 2008-04-24 2014-11-04 The Invention Science Fund I, Llc Combination treatment modification methods and systems
US8930208B2 (en) 2008-04-24 2015-01-06 The Invention Science Fund I, Llc Methods and systems for detecting a bioactive agent effect
US9239906B2 (en) 2008-04-24 2016-01-19 The Invention Science Fund I, Llc Combination treatment selection methods and systems
US9449150B2 (en) 2008-04-24 2016-09-20 The Invention Science Fund I, Llc Combination treatment selection methods and systems
US20100069724A1 (en) * 2008-04-24 2010-03-18 Searete Llc Computational system and method for memory modification
US9026369B2 (en) 2008-04-24 2015-05-05 The Invention Science Fund I, Llc Methods and systems for presenting a combination treatment
US8615407B2 (en) 2008-04-24 2013-12-24 The Invention Science Fund I, Llc Methods and systems for detecting a bioactive agent effect
US9560967B2 (en) 2008-04-24 2017-02-07 The Invention Science Fund I Llc Systems and apparatus for measuring a bioactive agent effect
US9282927B2 (en) 2008-04-24 2016-03-15 Invention Science Fund I, Llc Methods and systems for modifying bioactive agent use
US9064036B2 (en) 2008-04-24 2015-06-23 The Invention Science Fund I, Llc Methods and systems for monitoring bioactive agent use
US9649469B2 (en) 2008-04-24 2017-05-16 The Invention Science Fund I Llc Methods and systems for presenting a combination treatment
US7974787B2 (en) * 2008-04-24 2011-07-05 The Invention Science Fund I, Llc Combination treatment alteration methods and systems
US8606592B2 (en) 2008-04-24 2013-12-10 The Invention Science Fund I, Llc Methods and systems for monitoring bioactive agent use
KR100893945B1 (en) 2008-09-10 2009-04-22 민경일 Snoring prevention apparatus
US9597220B2 (en) 2008-11-19 2017-03-21 Spirox, Inc. Apparatus and methods for correcting nasal valve collapse
WO2010077617A2 (en) * 2008-12-17 2010-07-08 Chen, Michael Device and method for intranasal delivery
US20100147300A1 (en) * 2008-12-17 2010-06-17 Clickmist, A Series Of The Invention Machine, Llc Nasal humidification and dispensing device
KR101116443B1 (en) 2009-04-20 2012-03-07 황청풍 Bio-coclip
US9095674B2 (en) 2009-08-10 2015-08-04 Dean M. Toriumi Nose clip
CH703013A2 (en) * 2009-09-04 2011-10-31 Oscimed Sa nasal dilator.
US9381332B2 (en) * 2009-10-30 2016-07-05 Brian Judd Nasal dilator
US8408211B2 (en) * 2009-12-11 2013-04-02 Ruthanna DeJule Method of facilitating inhalation of controlled quantities of exhaled air
US20110139163A1 (en) * 2009-12-15 2011-06-16 Hillila David J Vibration apparatus for stimulating paranasal sinuses
IT1398484B1 (en) * 2010-02-24 2013-03-01 Mistro NASAL ANATOMIC DILATOR.
ITBO20110182A1 (en) * 2011-04-07 2012-10-08 Gaetano Libra DEVICE FOR RESTRICTING THE COLUMELLA AND TO DILUTE THE NASAL VALVE
BRPI1105463A2 (en) * 2011-04-18 2013-07-23 Paulo Roberto Ferreira Godoy Nose Tensioner and Nose Opener and Nasal Tip Lifter for Treatment of Obstructive Sleep Apnea, Snoring, and Respiratory Obstructions
US9415194B2 (en) 2011-06-14 2016-08-16 Aerin Medical Inc. Post nasal drip treatment
US10722282B2 (en) 2011-06-14 2020-07-28 Aerin Medical, Inc. Methods and devices to treat nasal airways
US10456185B2 (en) 2011-06-14 2019-10-29 Aerin Medical, Inc. Methods and devices to treat nasal airways
US8986301B2 (en) 2012-06-13 2015-03-24 Aerin Medical Inc. Methods and devices to treat nasal airways
US11304746B2 (en) 2011-06-14 2022-04-19 Aerin Medical Inc. Method of treating airway tissue to reduce mucus secretion
EP2720632B8 (en) 2011-06-14 2020-03-04 Aerin Medical, Inc. Devices for treating nasal airways
US11241271B2 (en) 2011-06-14 2022-02-08 Aerin Medical Inc. Methods of treating nasal airways
US11033318B2 (en) 2011-06-14 2021-06-15 Aerin Medical, Inc. Methods and devices to treat nasal airways
US8752550B2 (en) 2012-07-06 2014-06-17 Toby S. Morgan, JR. Internal nose filter mounting device, method, and kit
WO2014058740A1 (en) * 2012-10-09 2014-04-17 Weir Kenneth Ray Nasal dilator
US8801751B2 (en) * 2012-10-26 2014-08-12 Heal Medical Llc Nasal splint
US8651106B1 (en) 2012-12-14 2014-02-18 Toby S. Morgan, JR. Internal nose filter mounting device, method, and kit
US9480594B2 (en) 2013-02-27 2016-11-01 Spirox, Inc. Nasal implants and systems and methods of use
US9259501B2 (en) * 2013-03-15 2016-02-16 Al Santelli, JR. Antimicrobial nasal insert and method of manufacturing
US20150000675A1 (en) * 2013-06-28 2015-01-01 James Kallikounis Nasal breathing aid
US20150005806A1 (en) * 2013-07-01 2015-01-01 Variety Children's Hospital d/b/a Miami Children's Hospital, Inc. Rhinoplasty appliance and method of forming the same
US8998986B1 (en) 2013-07-05 2015-04-07 Zdzislaw B. Malinowski Nasal stent
AU352915S (en) 2013-07-18 2013-12-16 Asap Breatheassist Pty Ltd Nasal dilator device
ITBO20130461A1 (en) * 2013-08-09 2015-02-10 Dan Air Italia S R L NASAL DILATOR.
US9687288B2 (en) 2013-09-30 2017-06-27 Arrinex, Inc. Apparatus and methods for treating rhinitis
AT515065B1 (en) * 2013-11-11 2016-03-15 Matthias Prodinger Device for improving the respiratory function
AU352986S (en) 2013-12-06 2013-12-17 Asap Breatheassist Pty Ltd Nasal dilation device
AU356550S (en) 2014-06-20 2014-07-18 Asap Breatheassist Pty Ltd Nasal dilator
AU356551S (en) 2014-06-20 2014-07-18 Asap Breatheassist Pty Ltd Nasal dilator
AU356549S (en) 2014-06-20 2014-07-18 Asap Breatheassist Pty Ltd Nasal dilator
AU2014398172B2 (en) * 2014-06-20 2019-11-21 Asap Breatheassist Pty Ltd Nasal dilator devices
US9763743B2 (en) 2014-07-25 2017-09-19 Arrinex, Inc. Apparatus and method for treating rhinitis
CA2958213A1 (en) 2014-08-26 2016-03-03 Spirox, Inc. Nasal implants and systems and method of use
US20160073736A1 (en) * 2014-09-13 2016-03-17 Brandon Swan Method For Preventing A Shoe Tongue From Decentralizing
AU360484S (en) 2015-01-30 2015-02-26 Asap Breatheassist Pty Ltd Nasal dilator device
AU363373S (en) 2015-06-05 2015-08-12 Asap Breatheassist Pty Ltd Nasal dilator device
NZ737761A (en) 2015-06-05 2020-07-31 Asap Breatheassist Pty Ltd Nasal dilators
US10406338B2 (en) * 2015-06-18 2019-09-10 Richard A. Davi Transdermal stimulator and medicant medical delivery device
US11154671B2 (en) 2015-07-31 2021-10-26 Asap Breatheassist Pty Ltd Nasal devices
US10525227B1 (en) 2015-09-10 2020-01-07 Stock IP Holdings LLC Nasal EPAP dilator
KR20180059863A (en) 2015-09-25 2018-06-05 스파이록스 인코포레이티드 Nasal implants and systems and methods of use
AU366601S (en) 2015-12-24 2016-01-15 Asap Breatheassist Pty Ltd Nasal dilator device
AU2017217934B2 (en) 2016-02-12 2021-02-18 Aerin Medical, Inc. Hyaline cartilage shaping
WO2017152061A1 (en) 2016-03-04 2017-09-08 Aerin Medical, Inc. Eustachian tube modification
AU2017261196B2 (en) 2016-05-02 2022-03-03 Entellus Medical, Inc. Nasal valve implants and methods of implanting the same
EP3534850A4 (en) 2016-11-03 2019-11-20 Spirox, Inc. Minimally invasive nasal implants and systems and methods
US11806071B2 (en) 2016-12-22 2023-11-07 Aerin Medical Inc. Soft palate treatment
US11116566B2 (en) 2016-12-22 2021-09-14 Aerin Medical, Inc. Soft palate treatment
CN110891507B (en) 2017-04-28 2023-06-23 阿里内克斯股份有限公司 Systems and methods for locating blood vessels in the treatment of rhinitis
USD880694S1 (en) 2017-05-01 2020-04-07 Aerin Medical, Inc. Nasal airway medical instrument
IT201700048002A1 (en) * 2017-05-04 2018-11-04 Amel Medical Div S R L NASAL DEVICE TO ENCOURAGE BREATHING
US11096738B2 (en) 2017-05-05 2021-08-24 Aerin Medical, Inc. Treatment of spinal tissue
US20210077292A1 (en) * 2017-05-08 2021-03-18 Schnozzle Llc Nasal dilation device and method of using
BR102017026941B1 (en) * 2017-12-14 2023-10-17 Wta- Watanabe Tecnologia Aplicada Eirele - Epp SELF-ADAPTABLE NASAL FIXATION DEVICE FOR ANIMALS
USD926612S1 (en) 2018-04-16 2021-08-03 Jesse Yepez-Patterson Diffuser ring
USD881904S1 (en) 2018-10-31 2020-04-21 Aerin Medical Inc. Display screen with animated graphical user interface
USD902412S1 (en) 2018-10-31 2020-11-17 Aerin Medical, Inc. Electrosurgery console
TWD206924S (en) * 2019-06-13 2020-09-01 澳大利亞商Asap呼吸援助有限公司 Nasal dilator device
DE102019126003A1 (en) * 2019-09-26 2021-04-01 Aspuraclip Gmbh Miniaturized inhalation device
US11628083B1 (en) 2020-03-25 2023-04-18 International Patent Development Group, Llc Nasal dilator with columella retainer for resisting withdrawal and adjustable sections for optimizing fit, comfort, and breathing performance
US20240016650A1 (en) * 2022-07-15 2024-01-18 Aso Llc External Nasal Dilator for Delivering Scent to the Nose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267831A (en) * 1979-09-24 1981-05-19 Aguilar Rogelio M Nasal air filter and medicament dispenser device
US20040059368A1 (en) * 2002-09-18 2004-03-25 Asap Breatheassist Pty Ltd. Nasal cavity dilator
US20040237967A1 (en) * 2003-05-31 2004-12-02 Davis Ralph A. Nasal breathing apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US513458A (en) * 1894-01-23 Nasal expander
US1069459A (en) * 1912-08-31 1913-08-05 Robert Armour Myles Respirator.
US1077574A (en) * 1913-01-15 1913-11-04 Henry R Woodward Nostril-expander.
US1255578A (en) * 1917-02-27 1918-02-05 George Boxley Nasal appliance.
US1672591A (en) * 1927-08-04 1928-06-05 Walter A Wells Nostril dilator
US1709740A (en) * 1927-09-02 1929-04-16 John R Rogers Nasal distender
US2243360A (en) * 1938-12-30 1941-05-27 Slatis Abraham Filter or medicament casing
US2674245A (en) * 1950-10-02 1954-04-06 Tanditter Benjamin Nostril protector device
ES149951Y (en) * 1969-06-30 1970-06-01 Ramos Caballero DEVICE TO FACILITATE NASAL BREATHING.
US4346709A (en) * 1980-11-10 1982-08-31 Alza Corporation Drug delivery devices comprising erodible polymer and erosion rate modifier
GB8627600D0 (en) 1986-11-19 1986-12-17 Petruson B Nasal device
US4759365A (en) * 1987-03-27 1988-07-26 Leo Askinazy Spring coil wire device
US5922006A (en) 1996-08-12 1999-07-13 Sugerman; Joseph H. Nasal appliance
DE10105592A1 (en) * 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US7108198B2 (en) * 2002-10-25 2006-09-19 Altadonna Jr James Nasal aromatherapy dispenser clip
US7055523B1 (en) * 2005-02-24 2006-06-06 Brown Thomas W Internal nasal dilator and delivery mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267831A (en) * 1979-09-24 1981-05-19 Aguilar Rogelio M Nasal air filter and medicament dispenser device
US20040059368A1 (en) * 2002-09-18 2004-03-25 Asap Breatheassist Pty Ltd. Nasal cavity dilator
US20040237967A1 (en) * 2003-05-31 2004-12-02 Davis Ralph A. Nasal breathing apparatus

Also Published As

Publication number Publication date
US7055523B1 (en) 2006-06-06
US7318438B2 (en) 2008-01-15
US8048102B2 (en) 2011-11-01
WO2006091865A3 (en) 2006-11-16
WO2006091865B1 (en) 2007-01-04
US20060185677A1 (en) 2006-08-24
US20060207598A1 (en) 2006-09-21
US7461651B2 (en) 2008-12-09
US20060185676A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US7055523B1 (en) Internal nasal dilator and delivery mechanism
US8491622B2 (en) Multi-layer internal nasal dilator with tubular expanders and compound delivery protrusions
US6106541A (en) Surgically implantable nasal dilator
US10085873B2 (en) Nasal congestion and obstruction relief and breathing assist devices
AU2006227253B2 (en) Internal nasal dilator filter
CN100591384C (en) Nasal dilator and uses thereof
US5931852A (en) Nose airway device
USRE35408E (en) Nasal devices
US6152137A (en) Pliable and resilient sealing pad
US20120046607A1 (en) Plug to be introduced into a passage such as a nasal passage or ear canal
US20090198268A1 (en) Nasal dilation apparatus
CN111068152A (en) Dilator for aromatic substance
EP2996645A1 (en) Nasal dilator
EP2734149A1 (en) Devices and methods for treating sleep disordered breathing
US20210077292A1 (en) Nasal dilation device and method of using
AU2013204827B2 (en) Improvements relating to nasal dilators
WO2020039095A1 (en) Nasal apparatus and method of drug delivery using said nasal apparatus
JP2008194411A (en) Hollow nasal plug for hay fever prevention
EP1105047A1 (en) Nose airway and drug delivery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06736093

Country of ref document: EP

Kind code of ref document: A2