WO2006102172A2 - Using a fixed network wireless data collection system to improve utility responsiveness to power outages - Google Patents

Using a fixed network wireless data collection system to improve utility responsiveness to power outages Download PDF

Info

Publication number
WO2006102172A2
WO2006102172A2 PCT/US2006/009887 US2006009887W WO2006102172A2 WO 2006102172 A2 WO2006102172 A2 WO 2006102172A2 US 2006009887 W US2006009887 W US 2006009887W WO 2006102172 A2 WO2006102172 A2 WO 2006102172A2
Authority
WO
WIPO (PCT)
Prior art keywords
outage
collector
metering
conditions
power
Prior art date
Application number
PCT/US2006/009887
Other languages
French (fr)
Other versions
WO2006102172A3 (en
Inventor
Robert T. Mason, Jr.
Andrew J. Borleske
Kenneth C. Shuey
Original Assignee
Elster Electricity Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elster Electricity Llc filed Critical Elster Electricity Llc
Priority to CA2602289A priority Critical patent/CA2602289C/en
Publication of WO2006102172A2 publication Critical patent/WO2006102172A2/en
Publication of WO2006102172A3 publication Critical patent/WO2006102172A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/002Telephonic communication systems specially adapted for combination with other electrical systems with telemetering systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/40Networks; Topology
    • G01D2204/45Utility meters networked together within a single building
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/60Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Definitions

  • the present invention relates to wireless networks for collecting data, and more particularly, to systems and methods for monitoring utility system outages using a fixed network wireless data collection system to improve a utility's response thereto.
  • the collection of meter data from electrical energy, water, and gas meters has traditionally been performed by human meter-readers.
  • the meter-reader travels to the meter location, which is frequently on the customer's premises, visually inspects the meter, and records the reading.
  • the meter-reader may be prevented from gaining access to the meter as a result of inclement weather or, where the meter is located within the customer's premises, due to an absentee customer.
  • This methodology of meter data collection is labor intensive, prone to human error, and often results in stale and inflexible metering data.
  • Some meters have been enhanced to include a one-way radio transmitter for transmitting metering data to a receiving device.
  • a person collecting meter data that is equipped with an appropriate radio receiver need only come into proximity with a meter to read the meter data and need not visually inspect the meter.
  • a meter-reader may walk or drive by a meter location to take a meter reading. While this represents an improvement over visiting and visually inspecting each meter, it still requires human involvement in the process.
  • An automated means for collecting meter data involves a fixed wireless network.
  • Devices such as, for example, repeaters and gateways are permanently affixed on rooftops and pole-tops and strategically positioned to receive data from enhanced meters fitted with radio-transmitters.
  • these transmitters operate in the 902-928 MHz range and employ Frequency Hopping Spread Spectrum (FHSS) technology to spread the transmitted energy over a large portion of the available bandwidth.
  • FHSS Frequency Hopping Spread Spectrum
  • the present invention is directed to methods and systems for determining service outages and restorations that includes an outage management server (OMS) that generates reports of outages and restoration information for metering endpoints.
  • OMS outage management server
  • the outages may be caused by faults at various locations in the distribution network.
  • the metering endpoint may include a transmitter having a battery backup that transmits the outage information upon a failure to detect a voltage at the endpoint. The transmission of the information may be filtered based on configurable criteria.
  • the metering endpoints may also inform the OMS when power is restored. Thus, a utility may better service its customers by focusing manpower efforts using the outage and restoration information generated by the OMS.
  • a system for determining outage and restoration information for meters operating within a fixed wireless metering network includes a network configuration server that determines a network states; and an outage management system (OMS) that determines outage conditions and power restoration conditions.
  • OMS may provide a list of meters affected by the power outage and restoration conditions.
  • the system may also include a collector and non-collector metering points.
  • the non-collector metering points may collect and forward the outage information to the collector.
  • the collector and the non-collector metering points may perform filtering of the outage information.
  • the filtering may comprise at least one of: configurable delays at the non-collector metering points prior to transmitting an outage message, configurable delays at the non-collector metering points prior to transmitting a restoration message, configurable options in the collector that allow data to be aggregated prior to a call-in to the outage management system, and configurable options in the collector that allow call-ins to be suppressed during a large-scale outage.
  • the non-collector metering points may also select a random transmit slot within a first transmit period, a second transmit period, and a third transmit period.
  • the non-collector metering points and the collector may be adapted to verify a presence of power by measuring a voltage.
  • a subset of affected metering points may be identified, and the subset of affected metering points assigned to a corresponding subset of collectors for verification of power outage or power restoration.
  • the collector may be adapted to ping the non-collector metering points to determine an extent of the outage, wherein the ping comprises one of: a ping of each non- collector metering point directly, a ping of non-collector metering points in a communication path to determine if the communication path is available, and a ping of non-collector metering points farthest from the collector first in an attempt to validate all non-collector metering points in the communication path with one message.
  • FIG. 1 is a diagram of a wireless system for collecting data from remote devices
  • FIG. 2 expands upon the diagram of Fig. 1 and illustrates a system in which the present invention is embodied
  • Fig. 3 illustrates a typical distribution circuit and potential fault locations.
  • a plurality of meter devices which operate to track usage of a service or commodity such as, for example, electricity, water, and gas, are operable to wirelessly communicate with each other.
  • a collector is operable to automatically identify and register meters for communication with the collector. When a meter is installed, the meter registers with a collector that can provide a communication path to the meter.
  • the collectors receive and compile metering data from a plurality of meter devices via wireless communications.
  • a communications server communicates with the collectors to retrieve the compiled meter data.
  • Fig. 1 provides a diagram of an exemplary metering system 110.
  • System 110 comprises a plurality of meters 114, which are operable to sense and record usage of a service or commodity such as, for example, electricity, water, or gas.
  • Meters 114 may be located at customer premises such as, for example, a home or place of business.
  • Meters 114 comprise an antenna and are operable to transmit data, including service usage data, wirelessly.
  • Meters 114 may be further operable to receive data wirelessly as well, hi an illustrative embodiment, meters 114 may be, for example, electrical meters manufactured by Elster Electricity, LLC.
  • System 110 further comprises collectors 116.
  • Collectors 116 are also meters operable to detect and record usage of a service or commodity such as, for example, electricity, water, or gas.
  • Collectors 116 comprise an antenna and are operable to send and receive data wirelessly.
  • collectors 116 are operable to send data to and receive data from meters 114.
  • collectors 116 may be, for example, an electrical meter manufactured by Elster Electricity, LLC.
  • a collector 116 and the meters 114 for which it is configured to receive meter data define a subnet/LAN 120 of system 110.
  • meters 114 and collectors 116 maybe considered as nodes in me suonet 120.
  • data is collected at collector 116 and periodically transmitted to a data collection server 206.
  • the data collection server 206 stores the data for analysis and preparation of bills.
  • the data collection server 206 may be a specially programmed general purpose computing system and may communicate with collectors 116 wirelessly or via a wire line connection such as, for example, a dial-up telephone connection or fixed wire network.
  • collector 116 and meters 114 communicate with and amongst one another using any one of several robust wireless techniques such as, for example, frequency hopping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS).
  • FHSS frequency hopping spread spectrum
  • DSSS direct sequence spread spectrum
  • meters 114a are "first level" meters that communicate with collector 116
  • meters 114b are higher level meters that communicate with other meters in the network that forward information to the collector 116.
  • the system 200 includes a network management server (NMS)/metering automation server (MAS) 202 (the two terms are used interchangeably herein), a network management system (NMS) 204 and a data collection server 206 that together manage one or more subnets/LANs 120 and their constituent nodes.
  • NMS network management server
  • MAS metering automation server
  • NMS network management system
  • the NMS 204 tracks changes in network state, such as new nodes registering/unregistering with the system 200, node communication paths changing, etc. This information is collected for each subnet/LAN 120 and are detected and forwarded to the network management server 202 and data collection server 206.
  • a marriage file 208 may be used to correlate a customer serial number, a manufacturer serial number and LAN ID for each node (e.g., meters 114a and collectors 116) in the subnet/LAN 120.
  • a device configuration database 210 stores configuration information regarding the nodes. For example, in the metering system 110, the device configuration database may include data regarding time of use (TOU) switchpoints, etc. for the meters 114a and collectors 116 communicating to the system 200.
  • TOU time of use
  • a data collection requirements database 212 contains information regarding the data to be collected on a per node basis. For example, a user may specify that metering data such as load profile, demand, TOU, etc. is to be collected from particular meter(s) 114a. Reports 214 containing information on the network configuration may be automatically generated or in accordance with a user request.
  • lne networic management system (NMS) 204 maintains a database describing the current state of the global fixed network system (current network state 220) and a database describing the historical state of the system (historical network state 222).
  • the current network state 220 contains data regarding current meter to collector assignments, etc. for each subnet/LAN 120.
  • the historical network state 222 is a database from which the state of the network at a particular point in the past can be reconstructed.
  • the NMS 204 is responsible for, amongst other things, providing reports 214 about the state of the network.
  • the NMS 204 may be accessed via an API 220 that is exposed to a user interface 216 and a Customer Information System (CIS) 218.
  • CIS Customer Information System
  • Other external interfaces may be implemented in accordance with the present invention.
  • the data collection requirements stored in the database 212 may be set via the user interface 216 or CIS 218.
  • the data collection server 206 collects data from the nodes (e.g., collectors 116) and stores the data in a database 224.
  • the data includes metering information, such as energy consumption and may be used for billing purposes, etc. by a utility provider.
  • the network management server 202, network management system 204 and data collection server 206 communicate with the nodes in each subnet/LAN 120 via a communication system 226.
  • the communication system 226 may be a Frequency Hopping Spread Spectrum radio network, a mesh network, a Wi-Fi (802.11) network, a Wi-Max (802.16) network, a land line (POTS) network, etc., or any combination of the above and enables the system 200 to communicate with the metering system 110.
  • the mesh network automatically builds and re-configures itself, based on the most reliable communications paths, with each meter being able to function as a repeater if needed. While the mesh radio network provides robust communications to the end-point meters, and allows for communication paths to change if communications are obstructed, the communication network generally does not correspond to the physical distribution circuit.
  • the overall system of Fig. 2 includes such features as two-way communications to and from each electricity meter 114a/b.
  • This enables on-request verification of communications to an individual meter or to a group of meters, on-request retrieval of meter data, remote meter re-configuration, critical tier pricing, and remote actions such as service disconnect.
  • the system operates over an intelligent meter communications mesh network for path diversity and self healing.
  • the Metering Automation Server (MAS) unifies the mesh communication network, schedules meter data collection and billing dates, and provides meter network management information. Billing data may be calculated by and stored in the meter 114a/b.
  • the meter has data processing for functions such as Time-of-Use (TOU) metering, demand calculations, sum or net metering, and load profile data.
  • TOU Time-of-Use
  • the system architecture allows for new utility applications such as demand response or demand side management programs, energy management or home automation systems, and distribution automation.
  • the system 200 consists of three levels: the Metering Automation Server (MAS)/Network Management Server 202 for operation and data collection, the collectors 116, and electric meters with integrated two-way 900 MHz radios for residential and commercial metering.
  • the system 200 may comprise the EnergyAxis system available from Elster Electricity LLC, Raleigh, NC.
  • the collectors 116 may comprise an A3 ALPHA Meter and the meters 114a/ 114b may comprise A3 ALPHA or REX meters, which are available from Elster Electricity LLC, Raleigh, NC.
  • the system 200 may be used to determine an outage and aiding a utility's response thereto. Utilities continue to look for ways to improve customer service while reducing operating costs.
  • the use of a wireless data collection system 200 can help achieve both goals.
  • One area the utilities may seek to improve is customer service when an outage occurs.
  • a second area is the efficient utilization of manpower to restore power.
  • the present invention implants features in the system 200 to improve customer service and the efficiency of manpower utilization during outages.
  • IEEE 1159 defines an interruption in categories depending on the voltage variation (in per unit) and duration as shown in Table 1 below.
  • Utilities may also have their own definition for an outage. While momentary and temporary outages are useful in power quality analysis, they are not of interest to utility personnel responsible for power restoration. A sustained interruption occurs when a fault has been cleared by a fuse, recloser, or circuit breaker and it results in an outage for customers downstream of the protective device. It is the sustained outage that has the greatest impact on customers.
  • a customer outage can be caused by several different events. While an outage is typically caused by the clearing of a fault on the distribution system, it may also be caused by a fault or open circuit on the customer premises.
  • Fig. 3 shows a typical distribution circuit with various fault locations that could result in a customer outage. For each of the faults shown, the clearing mechanism and customer impact are summarized.
  • Fault at Fl For a fault at Fl , the fault is on the customer premises 300 and is cleared by an in-home circuit breaker resulting in a loss of power for the customer. Only one customer is affected.
  • Fault at F2 For a fault at F2, the fault is on distribution line 302 between a fused transformer and the customer premises 300 and would be cleared by the transformer fuse. Typically one to three customers are affected.
  • Fault at F3 For a fault at F3, the fault is on the distribution lateral 304 and is cleared by a fuse on the distribution lateral 304. Typically, at least one hundred customers are affected.
  • Fault at F4 For a fault at F4, the fault is on the distribution line 306 and would be cleared by a line recloser or station breaker with reclosing relay. Typically, at least three hundred customers are affected.
  • Fault at F5 For a fault at F5, the fault is on the transmission line 308 and would be cleared by a station breaker. Typically, at least one thousand customers are affected.
  • the location of the fault impacts the numbers of customer affected.
  • the likelihood of the outage being reported is small. This is particularly true of homes that are not occupied at the time of the outage (e.g. vacation homes or locations where no one is home at the time of the outage). Notification is therefore important so that the outage may be recognized and repair crews dispatched.
  • the utility is more likely to receive calls from some of those customers.
  • a large-scale outage often results in an overload of the trouble call system due to the large number of customers reporting the outage. In this case, the initial notification is less important, but it is important to verify that power has been restored to all customers.
  • Table 2 Utility Drivers Depending on Fault Location
  • the collector 116 can provide an outage call to MAS 202 when the collector is affected by an outage.
  • the collector 116 can provide a restoration call to MAS 202 when power is restored to the collector.
  • the meters 114a/b can send a radio frequency (RF) message to notify the collector 116 that power has been restored to the meter site.
  • the collector 116 can make one or more calls to report the restoration information to MAS 202.
  • RF radio frequency
  • the MAS 202 can provide this notification to an Outage Management System (OMS) 211 and to MAS operators.
  • OMS Outage Management System
  • an electricity meter end point 114a/b (REX Meter, A3 Node) in the system can transmit an outage message when power fails.
  • the electricity meter 114a/b can be configured to send the message immediately, or after a configurable delay period.
  • the configurable (e.g., 1-255 seconds) delay period would typically be set at the factory, or alternatively could be set via a download from MAS 202 or via customer programming software and an optical communication probe connected to the meter. The meter will only transmit an outage message if the outage lasts longer than the outage delay period.
  • the meter 114a/b will transmit a number of outage messages (e.g., 3) where each outage message is transmitted in a randomly selected transmit slot.
  • the meter can select from, e.g., 1 of 15 transmit slots.
  • the outage message transmitted by the electricity meter can be received by any other 2-way node in the system (e.g., 114a or 114b).
  • Each 2-way node has the capability to store multiple messages (e.g., 8) and forward the message to the collector. Multiple nodes in the system may receive the same outage message, thereby increasing the probability that the message is forwarded to the collector. Nodes that receive an outage exception will attempt to forward the message to the collector in an exception window. The node will continue to transmit a message to the collector until the collector acknowledges receipt of the message.
  • the collector 116 can also detect exception conditions as part of the normal billing read process. When reading billing data from a node 114a/b, the collector 116 will check if the node has any exception data that needs to be forwarded to the collector. If data is available, the collector 116 will read the exception conditions from the node, clearing the condition from the node and causing the node to stop transmitting the condition to the collector 116.
  • the device transmitting the outage message does not need to be an electricity meter.
  • the device could be a strategically located device, mounted near protective equipment or at a transformer location. It could also be a device installed inside a residence to signify that power has been lost to the site, hi the preferred embodiment, the outage notification feature is included in the electricity meter to minimize cost to the utility if all accounts are equipped with the feature.
  • a strategically placed outage notification deployment may be more cost effectively deployed with non-metering devices, and the present invention allows for a strategic deployment.
  • the collector 116 can be configured to respond in a variety of ways to the receipt of an outage message. The following options can be selected via collector configuration parameters per a particular utility's preferences:
  • the collector 116 may initiate a call to MAS 202 if a meter has reported an outage but not yet reported a restoration. To improve the filtering and to limit false alarms, the collector 116 can be configured to poll each meter 114a/b that reported an outage, using a lack of a response as an indication that the outage condition still exists. 4. Aggregate the outage and restoration mtormation as described in options 2 and 3, above, but do not initiate an inbound call if the number of meters in an outage condition exceeds a configurable threshold. This scenario assumes that it is a widespread outage and that customer call-ins will be sufficient to notify of and determine the extent of the outage. The collector filter prevents an overload of information to an Outage Management System (OMS) 211.
  • OMS Outage Management System
  • the collector 116 may initiate an inbound communication to the MAS 202 to report the outage condition.
  • the MAS 202 will forward the outage information to the outage management system (OMS) 211, which may also receive outage information through customer call-ins to a trouble call center.
  • OMS outage management system
  • the OMS 211 can use the system 200 to determine the extent of the outage. To do so, the OMS or a distribution operator can provide a list of electric meters that it would like to check for outage conditions. Using a small number of outage reports, the OMS 211 can probe logical points to determine if the outage is of type F2, F3, F4, or F5.
  • the list of meters may be derived from the distribution network topology (i.e., meters on the same feeder, lateral, or service transformer).
  • the MAS 202 After receiving the list of meters from the OMS 211 , the MAS 202 determines which collector(s) these meters communicate through and will instruct each identified collector to check for outage conditions on their subset of meters. The collector(s) involved will attempt to verify communications to each end point meter in the list. A lack of communications can be used to indicate a potential outage and communication to a meter will confirm the presence of power. The extent to which the system 200 can probe the outage condition is dependent on which meters in the communication path are powered. Since the network operates in a hierarchical repeater chain, an outage at a repeater/meter at a low level (closer to the collector 116), can affect communications to multiple downstream meters that may not be in an outage condition. As with any RF system, lack of communications to a given device will not always equate to an outage at that device.
  • the collector 1116 can use various algorithms to optimize the time required to check the list of meters. With a hierarchical system, if a collector 116 is able to communicate with a level farthest away from the collector, the collector 116 will know that all meters in the communication path are powered. Alternatively, the collector 116 could start from the level closest to the collector 116. If unable to communicate to the closest level, the collector knows that it cannot communicate to meters farther down the communication chain. [0057] After polling the meters identified by the MAS 202, the collector 116 updates the list with status information to indicate whether the meter is powered.
  • the status information will indicate that the meter responded (meter is powered), meter did not respond, or meter could not be checked due to a failure in the communication path ahead of the targeted end point.
  • the collector may identify the point in the communication path that is not responding, possibly identifying a meter in an outage condition.
  • the MAS 202 may issue the polling request to the collector and wait for the response as soon as it is completed, or it may issue the command to the collector and disconnect the WAN session (i.e., the link between the communication system 226, subnet/LAN A, subnet/LAN B, etc.) without waiting for the response.
  • the collector can be configured to initiate an inbound communication to the MAS 202 to report that the request has completed.
  • the MAS 202 can retrieve the information and pass outage or powered status to the OMS 211 for each of the requested meters.
  • the information available from the OMS 211 can be passed to utility operators and used to direct crews to the outage locations.
  • the collector may be configured to determine if an outage condition is present based on the communication success rate to a given meter.
  • the collector periodically communications with each meter to retrieve register (e.g. kWh) data and load profile data. Over time, the collector establishes a communication reliability rate, or performance rate, for each meter. After a minimum number of attempts to communicate to a meter have been made, the collector can determine typical performance rates for a meter flag abnormalities as a potential outage condition. This functionality is illustrated with the following example.
  • the collector After at least 100 communication attempts to a meter, the collector will have a communication performance score (e.g. 90/100) that indicates the likelihood of successful two- way communications between the collector and the meter. If the collector then fails to communicate with the meter on successive attempts, the collector can set a "potential outage" flag to indicate that the meter may be in an outage condition. The number of failed communication attempts required to set the "potential outage” flag is configurable based on the collector to meter communication performance rate. If, for example, the communication performance rate was 100%, two failed communication attempts would cause the collector to set the "potential outage" flag. If, on the other hand, the communication performance rate was 80%, six successive failed communication attempts would be required to set the "potential outage” flag.
  • a communication performance score e.g. 90/100
  • the collector may also delay between successive communication attempts to ensure that a momentary communication problem does not cause the "potential outage" flag to be falsely set.
  • the collector's ability to warn of a potential outage condition provides an outage detection algorithm for cases where metering points are not equipped with a means to transmit outage exception messages.
  • the collector's algorithm can also augment outage detection for systems with outage enabled meters.
  • the meter may be configured to transmit a power restoration message to the collector 116.
  • the meter can be programmed to delay for a configurable period of time (e.g., 1 to 10 minutes) prior to transmitting the restoration message to the collector 116.
  • the delay in the end point meter prevents a false indication of power restoration, that may occur as reclosers are operating.
  • the collector 116 can be configured to delay for a period of time after receiving the first restoration to allow additional messages to be aggregated prior to initiating a communication to the MAS 202.
  • the OMS in conjunction with MAS 202 can be used to verify that power has been restored to sites that were reported to be in an outage condition.
  • the OMS 211 can use either the restoration information as reported by the end point meter or the OMS 211 can send a list of meters to the collector 116 and request that the collector confirm power restoration to the given list.
  • the verification of power restoration is often times more important to a utility than is the outage reporting, as it allows the utility to optimize restoration crews and provide a positive confirmation to customers and to their systems that power has been restored.
  • the MAS 202 may provide a Geographic Information System (GIS) based network management component that provides GIS overlay images (shape files) for: the mesh communication paths, event/alarm information, and outage/restoration information.
  • GIS Geographic Information System
  • the geographic information that can be provided for visual overlay will include reported outages, reported restorations, polled information to show confirmed power on and probable power out locations.
  • OMS Outage Management System
  • the geographic network image could augment the information provided by the OMS 211.
  • a network image maintained by the system 200 may be used to assist the distribution operators witn geographic informaiion to augment other methods and tools used to diagnose outage and restoration efforts.
  • the meter may sense a decrease in voltage due to the fault, but the meter would remain powered after the fault is cleared by the house circuit breaker. If the customer calls the utility to report an outage, the utility may do an on-request read of the meter voltage. Since the REX meter is connected on the source side, it will indicate that voltage is present; allowing the utility to be aware the problem is on the customer site.
  • the REX meter would lose power, increment an outage counter, and stop responding to network RF messages.
  • periodic reads from the collector are not sufficient to quickly signal an outage condition and report the outage to MAS.
  • the probability of the utility becoming quickly aware of the fault due to customer call-ins is not good, unless the meter affected by the outage is equipped with outage notification hardware. If the utility is notified, the outage management system could then determine the extent of the outage by providing a list of suspect meters to MAS. The list of meters would be those around the meters identified by customer call-ins necessary to determine the extent of the outage.
  • MAS would distribute the meter list to the collector or collectors that serve the meters in the list. Each collector would receive a list consisting of only the meters that are a part of its local area network.
  • the customer call-in information would be augmented by the outage information provided by the system, allowing crews to be dispatched in a logical and efficient manner.
  • the meter transmits a restoration message to the collector and the collector will forward the restoration information to MAS.
  • MAS can then provide this restoration information to an OMS for confirmation of power restoration.
  • the restoration information can be used to confirm outage locations that have been cleared and allow work crews to be focused on areas that have not yet been confirmed restored.
  • the OMS can be used to "ping" a meter to verify power restoration after a crew has completed a field repair. The ping to the target meter is made by the source of the ping (e.g., the OMS) to verify that the target meter is powered and responsive.
  • Fault at F3 [0072] For a fault at F3 (distribution lateral), all meters past the fault point would register an outage and increment their outage counter. Using the assumptions of Table 2, more than 100 electric meters would experience the same event. The probability of the utility becoming quickly aware of the fault due to customer call-ins is good. As described for faults at F2, the OMS in conjunction with MAS could determine the extent of the outage and verify power restoration.
  • the meters would sense multiple outages due to the voltage fluctuations caused by recloser operations. Note that the time between recloser operations is typically in the milliseconds to seconds range, but some units may be programmed for up to 200 seconds for 4 recloser operations. Thus the recloser cycle may not be complete until 3 recloser trip times and 600 seconds closing delay time. Also, the fault location and resistance will affect the voltage seen by the meters. Using the assumptions of Table 2, more than 1000 electric meters would experience the same event. The probability of the utility becoming quickly aware of the fault due to customer call-ins is very high, and the system can then be used to determine the extent of the outage as well as to monitor the progress in restoring power to affected customers.

Abstract

A system for determining a service outages and restorations that includes an outage management server (OMS) that generates reports outages and restoration information for metering endpoints. The outages may be caused by faults at various locations in the distribution network. The metering endpoint may include a transmitter having a battery backup that transmits the outage information upon a failure to detect a voltage at the endpoint. The transmission of the information may be filtered based on configurable criteria. The metering endpoints may also inform the OMS when power is restored. Thus, a utility may better service its customers by focusing manpower efforts using the outage and restoration information generated by the OMS.

Description

USING A FIXED NETWORK WIRELESS DATA COLLECTION SYSTEM TO IMPROVE UTILITY RESPONSIVENESS TO POWER OUTAGES
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority of U.S. Provisional Patent Application No. 60/664,042, filed March 22, 2005 and U.S. Patent Application No. 11/236,479, filed September 27, 2005.
FIELD OF THE INVENTION
[0002] The present invention relates to wireless networks for collecting data, and more particularly, to systems and methods for monitoring utility system outages using a fixed network wireless data collection system to improve a utility's response thereto.
BACKGROUND OF THE INVENTION
[0003] The collection of meter data from electrical energy, water, and gas meters has traditionally been performed by human meter-readers. The meter-reader travels to the meter location, which is frequently on the customer's premises, visually inspects the meter, and records the reading. The meter-reader may be prevented from gaining access to the meter as a result of inclement weather or, where the meter is located within the customer's premises, due to an absentee customer. This methodology of meter data collection is labor intensive, prone to human error, and often results in stale and inflexible metering data.
[0004] Some meters have been enhanced to include a one-way radio transmitter for transmitting metering data to a receiving device. A person collecting meter data that is equipped with an appropriate radio receiver need only come into proximity with a meter to read the meter data and need not visually inspect the meter. Thus, a meter-reader may walk or drive by a meter location to take a meter reading. While this represents an improvement over visiting and visually inspecting each meter, it still requires human involvement in the process.
[0005] An automated means for collecting meter data involves a fixed wireless network. Devices such as, for example, repeaters and gateways are permanently affixed on rooftops and pole-tops and strategically positioned to receive data from enhanced meters fitted with radio-transmitters. Typically, these transmitters operate in the 902-928 MHz range and employ Frequency Hopping Spread Spectrum (FHSS) technology to spread the transmitted energy over a large portion of the available bandwidth.
[0006] Data is transmitted from the meters to the repeaters and gateways and ultimately communicated to a central location. While fixed wireless networks greatly reduce human involvement in the process of meter reading, such systems require the installation and maintenance of a fixed network of repeaters, gateways, and servers. Identifying an acceptable location for a repeater or server and physically placing the device in the desired location on top of a building or utility pole is a tedious and labor-intensive operation. Furthermore, each meter that is installed in the network needs to be manually configured to communicate with a particular portion of the established network. When a portion of the network fails to operate as intended, human intervention is typically required to test the effected components and reconfigure the network to return it to operation.
[0007] Thus, while existing fixed wireless systems have reduced the need for human involvement in the daily collection of meter data, such systems may provide benefits to utilities by monitoring for system outages. In so doing, fixed wireless systems may improve the utilities response to outages, improving customer service.
SUMMARY OF THE INVENTION
[0008] The present invention is directed to methods and systems for determining service outages and restorations that includes an outage management server (OMS) that generates reports of outages and restoration information for metering endpoints. The outages may be caused by faults at various locations in the distribution network. The metering endpoint may include a transmitter having a battery backup that transmits the outage information upon a failure to detect a voltage at the endpoint. The transmission of the information may be filtered based on configurable criteria. The metering endpoints may also inform the OMS when power is restored. Thus, a utility may better service its customers by focusing manpower efforts using the outage and restoration information generated by the OMS. [0009] In accordance with the present invention, there is provided a system for determining outage and restoration information for meters operating within a fixed wireless metering network. The system includes a network configuration server that determines a network states; and an outage management system (OMS) that determines outage conditions and power restoration conditions. The OMS may provide a list of meters affected by the power outage and restoration conditions.
[0010] The system may also include a collector and non-collector metering points. The non-collector metering points may collect and forward the outage information to the collector. The collector and the non-collector metering points may perform filtering of the outage information. The filtering may comprise at least one of: configurable delays at the non-collector metering points prior to transmitting an outage message, configurable delays at the non-collector metering points prior to transmitting a restoration message, configurable options in the collector that allow data to be aggregated prior to a call-in to the outage management system, and configurable options in the collector that allow call-ins to be suppressed during a large-scale outage.
[0011] The non-collector metering points may also select a random transmit slot within a first transmit period, a second transmit period, and a third transmit period.
[0012] The non-collector metering points and the collector may be adapted to verify a presence of power by measuring a voltage.
[0013] A subset of affected metering points may be identified, and the subset of affected metering points assigned to a corresponding subset of collectors for verification of power outage or power restoration.
[0014] The collector may be adapted to ping the non-collector metering points to determine an extent of the outage, wherein the ping comprises one of: a ping of each non- collector metering point directly, a ping of non-collector metering points in a communication path to determine if the communication path is available, and a ping of non-collector metering points farthest from the collector first in an attempt to validate all non-collector metering points in the communication path with one message.
[0015] Additional features and advantages of the invention will be made apparent from the following detailed description of illustrative embodiments that proceeds with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] The foregoing summary, as well as the following detailed description of preferred embodiments, is better understood when read in conjunction with the appended drawings. For the purpose oi illustrating the invention, there is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific methods and instrumentalities disclosed. In the drawings:
[0017] Fig. 1 is a diagram of a wireless system for collecting data from remote devices;
[0018] Fig. 2 expands upon the diagram of Fig. 1 and illustrates a system in which the present invention is embodied; and
[0019] Fig. 3 illustrates a typical distribution circuit and potential fault locations.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0020] Exemplary systems and methods for gathering meter data are described below with reference to Figs. 1-3. It will be appreciated by those of ordinary skill in the art that the description given herein with respect to those figures is for exemplary purposes only and is not intended in any way to limit the scope of potential embodiments.
[0021] Generally, a plurality of meter devices, which operate to track usage of a service or commodity such as, for example, electricity, water, and gas, are operable to wirelessly communicate with each other. A collector is operable to automatically identify and register meters for communication with the collector. When a meter is installed, the meter registers with a collector that can provide a communication path to the meter. The collectors receive and compile metering data from a plurality of meter devices via wireless communications. A communications server communicates with the collectors to retrieve the compiled meter data.
[0022] Fig. 1 provides a diagram of an exemplary metering system 110. System 110 comprises a plurality of meters 114, which are operable to sense and record usage of a service or commodity such as, for example, electricity, water, or gas. Meters 114 may be located at customer premises such as, for example, a home or place of business. Meters 114 comprise an antenna and are operable to transmit data, including service usage data, wirelessly. Meters 114 may be further operable to receive data wirelessly as well, hi an illustrative embodiment, meters 114 may be, for example, electrical meters manufactured by Elster Electricity, LLC.
[0023] System 110 further comprises collectors 116. Collectors 116 are also meters operable to detect and record usage of a service or commodity such as, for example, electricity, water, or gas. Collectors 116 comprise an antenna and are operable to send and receive data wirelessly. In particular, collectors 116 are operable to send data to and receive data from meters 114. hi an illustrative embodiment, collectors 116 may be, for example, an electrical meter manufactured by Elster Electricity, LLC.
[0024] A collector 116 and the meters 114 for which it is configured to receive meter data define a subnet/LAN 120 of system 110. As used herein, meters 114 and collectors 116 maybe considered as nodes in me suonet 120. For each subnet/LAN 120, data is collected at collector 116 and periodically transmitted to a data collection server 206. The data collection server 206 stores the data for analysis and preparation of bills. The data collection server 206 may be a specially programmed general purpose computing system and may communicate with collectors 116 wirelessly or via a wire line connection such as, for example, a dial-up telephone connection or fixed wire network.
[0025] Generally, collector 116 and meters 114 communicate with and amongst one another using any one of several robust wireless techniques such as, for example, frequency hopping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS). As illustrated, meters 114a are "first level" meters that communicate with collector 116, whereas meters 114b are higher level meters that communicate with other meters in the network that forward information to the collector 116.
[0026] Referring now to Fig. 2, there is illustrated a system 200 in which the present invention may be embodied. The system 200 includes a network management server (NMS)/metering automation server (MAS) 202 (the two terms are used interchangeably herein), a network management system (NMS) 204 and a data collection server 206 that together manage one or more subnets/LANs 120 and their constituent nodes. The NMS 204 tracks changes in network state, such as new nodes registering/unregistering with the system 200, node communication paths changing, etc. This information is collected for each subnet/LAN 120 and are detected and forwarded to the network management server 202 and data collection server 206.
[0027] In accordance with an aspect of the invention, communication between nodes and the system 200 is accomplished using the LAN ID, however it is preferable for customers to query and communicate with nodes using their own identifier. To this end, a marriage file 208 may be used to correlate a customer serial number, a manufacturer serial number and LAN ID for each node (e.g., meters 114a and collectors 116) in the subnet/LAN 120. A device configuration database 210 stores configuration information regarding the nodes. For example, in the metering system 110, the device configuration database may include data regarding time of use (TOU) switchpoints, etc. for the meters 114a and collectors 116 communicating to the system 200. A data collection requirements database 212 contains information regarding the data to be collected on a per node basis. For example, a user may specify that metering data such as load profile, demand, TOU, etc. is to be collected from particular meter(s) 114a. Reports 214 containing information on the network configuration may be automatically generated or in accordance with a user request. [0028] lne networic management system (NMS) 204 maintains a database describing the current state of the global fixed network system (current network state 220) and a database describing the historical state of the system (historical network state 222). The current network state 220 contains data regarding current meter to collector assignments, etc. for each subnet/LAN 120. The historical network state 222 is a database from which the state of the network at a particular point in the past can be reconstructed. The NMS 204 is responsible for, amongst other things, providing reports 214 about the state of the network. The NMS 204 may be accessed via an API 220 that is exposed to a user interface 216 and a Customer Information System (CIS) 218. Other external interfaces may be implemented in accordance with the present invention. In addition, the data collection requirements stored in the database 212 may be set via the user interface 216 or CIS 218.
[0029] The data collection server 206 collects data from the nodes (e.g., collectors 116) and stores the data in a database 224. The data includes metering information, such as energy consumption and may be used for billing purposes, etc. by a utility provider.
[0030] The network management server 202, network management system 204 and data collection server 206 communicate with the nodes in each subnet/LAN 120 via a communication system 226. The communication system 226 may be a Frequency Hopping Spread Spectrum radio network, a mesh network, a Wi-Fi (802.11) network, a Wi-Max (802.16) network, a land line (POTS) network, etc., or any combination of the above and enables the system 200 to communicate with the metering system 110.
[0031] The mesh network automatically builds and re-configures itself, based on the most reliable communications paths, with each meter being able to function as a repeater if needed. While the mesh radio network provides robust communications to the end-point meters, and allows for communication paths to change if communications are obstructed, the communication network generally does not correspond to the physical distribution circuit.
[0032] The overall system of Fig. 2 includes such features as two-way communications to and from each electricity meter 114a/b. This enables on-request verification of communications to an individual meter or to a group of meters, on-request retrieval of meter data, remote meter re-configuration, critical tier pricing, and remote actions such as service disconnect. The system operates over an intelligent meter communications mesh network for path diversity and self healing. The Metering Automation Server (MAS) unifies the mesh communication network, schedules meter data collection and billing dates, and provides meter network management information. Billing data may be calculated by and stored in the meter 114a/b. The meter has data processing for functions such as Time-of-Use (TOU) metering, demand calculations, sum or net metering, and load profile data. The system architecture allows for new utility applications such as demand response or demand side management programs, energy management or home automation systems, and distribution automation.
[0033] The system 200 consists of three levels: the Metering Automation Server (MAS)/Network Management Server 202 for operation and data collection, the collectors 116, and electric meters with integrated two-way 900 MHz radios for residential and commercial metering. The system 200 may comprise the EnergyAxis system available from Elster Electricity LLC, Raleigh, NC. The collectors 116 may comprise an A3 ALPHA Meter and the meters 114a/ 114b may comprise A3 ALPHA or REX meters, which are available from Elster Electricity LLC, Raleigh, NC.
[0034] The system 200 may be used to determine an outage and aiding a utility's response thereto. Utilities continue to look for ways to improve customer service while reducing operating costs. The use of a wireless data collection system 200 can help achieve both goals. One area the utilities may seek to improve is customer service when an outage occurs. A second area is the efficient utilization of manpower to restore power. The present invention implants features in the system 200 to improve customer service and the efficiency of manpower utilization during outages.
[0035] The word "outage" may have different meanings depending on who is analyzing the event. IEEE 1159 defines an interruption in categories depending on the voltage variation (in per unit) and duration as shown in Table 1 below.
Figure imgf000008_0001
Table 1
[0036] Utilities may also have their own definition for an outage. While momentary and temporary outages are useful in power quality analysis, they are not of interest to utility personnel responsible for power restoration. A sustained interruption occurs when a fault has been cleared by a fuse, recloser, or circuit breaker and it results in an outage for customers downstream of the protective device. It is the sustained outage that has the greatest impact on customers.
[0037] Sources of an Outage
[0038] A customer outage can be caused by several different events. While an outage is typically caused by the clearing of a fault on the distribution system, it may also be caused by a fault or open circuit on the customer premises. Fig. 3 shows a typical distribution circuit with various fault locations that could result in a customer outage. For each of the faults shown, the clearing mechanism and customer impact are summarized.
[0039] Fault at Fl : For a fault at Fl , the fault is on the customer premises 300 and is cleared by an in-home circuit breaker resulting in a loss of power for the customer. Only one customer is affected.
[0040] Fault at F2: For a fault at F2, the fault is on distribution line 302 between a fused transformer and the customer premises 300 and would be cleared by the transformer fuse. Typically one to three customers are affected.
[0041] Fault at F3 : For a fault at F3, the fault is on the distribution lateral 304 and is cleared by a fuse on the distribution lateral 304. Typically, at least one hundred customers are affected.
[0042] Fault at F4: For a fault at F4, the fault is on the distribution line 306 and would be cleared by a line recloser or station breaker with reclosing relay. Typically, at least three hundred customers are affected.
[0043] Fault at F5: For a fault at F5, the fault is on the transmission line 308 and would be cleared by a station breaker. Typically, at least one thousand customers are affected.
[0044] Utility Response to an Outage
[0045] Following an outage on the distribution grid, utilities want to be able to restore power to customers in as timely a manner as possible. One of the major factors that may influence what type of data a utility wants during an outage is the number of affected customers.
[0046] As shown Fig. 3, the location of the fault impacts the numbers of customer affected. When the number of affected customers is small, the likelihood of the outage being reported is small. This is particularly true of homes that are not occupied at the time of the outage (e.g. vacation homes or locations where no one is home at the time of the outage). Notification is therefore important so that the outage may be recognized and repair crews dispatched. For faults involving a large number of customers, the utility is more likely to receive calls from some of those customers. A large-scale outage often results in an overload of the trouble call system due to the large number of customers reporting the outage. In this case, the initial notification is less important, but it is important to verify that power has been restored to all customers.
[0047] The data for utilities as a function of fault location is summarized in Table 2.
Figure imgf000010_0001
epen ng on customer being at home.
Table 2: Utility Drivers Depending on Fault Location
[0048] System Response to Outages
In the system 200, the following outage/restoration features are implemented:
1. The collector 116 can provide an outage call to MAS 202 when the collector is affected by an outage.
2. The collector 116 can provide a restoration call to MAS 202 when power is restored to the collector.
3. The meters 114a/b can send a radio frequency (RF) message to notify the collector 116 that power has been restored to the meter site. The collector 116 can make one or more calls to report the restoration information to MAS 202.
4. Once notified of an outage or a restoration condition, the MAS 202 can provide this notification to an Outage Management System (OMS) 211 and to MAS operators.
[0049] When equipped with a means to hold up the power supply, an electricity meter end point 114a/b (REX Meter, A3 Node) in the system can transmit an outage message when power fails. The electricity meter 114a/b can be configured to send the message immediately, or after a configurable delay period. The configurable (e.g., 1-255 seconds) delay period would typically be set at the factory, or alternatively could be set via a download from MAS 202 or via customer programming software and an optical communication probe connected to the meter. The meter will only transmit an outage message if the outage lasts longer than the outage delay period. After the delay period, the meter 114a/b will transmit a number of outage messages (e.g., 3) where each outage message is transmitted in a randomly selected transmit slot. In the preferred embodiment, the meter can select from, e.g., 1 of 15 transmit slots.
[0050] The outage message transmitted by the electricity meter can be received by any other 2-way node in the system (e.g., 114a or 114b). Each 2-way node has the capability to store multiple messages (e.g., 8) and forward the message to the collector. Multiple nodes in the system may receive the same outage message, thereby increasing the probability that the message is forwarded to the collector. Nodes that receive an outage exception will attempt to forward the message to the collector in an exception window. The node will continue to transmit a message to the collector until the collector acknowledges receipt of the message.
[0051] The collector 116 can also detect exception conditions as part of the normal billing read process. When reading billing data from a node 114a/b, the collector 116 will check if the node has any exception data that needs to be forwarded to the collector. If data is available, the collector 116 will read the exception conditions from the node, clearing the condition from the node and causing the node to stop transmitting the condition to the collector 116.
[0052] It should be noted that the device transmitting the outage message does not need to be an electricity meter. The device could be a strategically located device, mounted near protective equipment or at a transformer location. It could also be a device installed inside a residence to signify that power has been lost to the site, hi the preferred embodiment, the outage notification feature is included in the electricity meter to minimize cost to the utility if all accounts are equipped with the feature. A strategically placed outage notification deployment may be more cost effectively deployed with non-metering devices, and the present invention allows for a strategic deployment.
[0053] The collector 116 can be configured to respond in a variety of ways to the receipt of an outage message. The following options can be selected via collector configuration parameters per a particular utility's preferences:
1. Make an immediate call to the MAS 202 after receiving an outage message from an electric meter. While possible, this is not expected to be the likely operating mode for most utilities.
2. Delay for a configurable period of time to allow for the aggregation of outage information from multiple end points, then call to notify MAS 202 regardless of whether power has been restored to some or all of the meters affected by the outage.
3. Delay for a configurable period of time (e.g., 1 to 15 minutes) to allow for the aggregation and filtering of outage and restoration information from multiple end points. After the delay, the collector 116 may initiate a call to MAS 202 if a meter has reported an outage but not yet reported a restoration. To improve the filtering and to limit false alarms, the collector 116 can be configured to poll each meter 114a/b that reported an outage, using a lack of a response as an indication that the outage condition still exists. 4. Aggregate the outage and restoration mtormation as described in options 2 and 3, above, but do not initiate an inbound call if the number of meters in an outage condition exceeds a configurable threshold. This scenario assumes that it is a widespread outage and that customer call-ins will be sufficient to notify of and determine the extent of the outage. The collector filter prevents an overload of information to an Outage Management System (OMS) 211.
[0054] The collector 116 may initiate an inbound communication to the MAS 202 to report the outage condition. The MAS 202 will forward the outage information to the outage management system (OMS) 211, which may also receive outage information through customer call-ins to a trouble call center. After receiving the initial report of an outage, either via outage messages from the AMR system or via a customer call, the OMS 211 can use the system 200 to determine the extent of the outage. To do so, the OMS or a distribution operator can provide a list of electric meters that it would like to check for outage conditions. Using a small number of outage reports, the OMS 211 can probe logical points to determine if the outage is of type F2, F3, F4, or F5. The list of meters may be derived from the distribution network topology (i.e., meters on the same feeder, lateral, or service transformer).
[0055] After receiving the list of meters from the OMS 211 , the MAS 202 determines which collector(s) these meters communicate through and will instruct each identified collector to check for outage conditions on their subset of meters. The collector(s) involved will attempt to verify communications to each end point meter in the list. A lack of communications can be used to indicate a potential outage and communication to a meter will confirm the presence of power. The extent to which the system 200 can probe the outage condition is dependent on which meters in the communication path are powered. Since the network operates in a hierarchical repeater chain, an outage at a repeater/meter at a low level (closer to the collector 116), can affect communications to multiple downstream meters that may not be in an outage condition. As with any RF system, lack of communications to a given device will not always equate to an outage at that device.
[0056] If instructed to poll a large number of meters or all meters 114a/b served by the collector 116, the collector 1116 can use various algorithms to optimize the time required to check the list of meters. With a hierarchical system, if a collector 116 is able to communicate with a level farthest away from the collector, the collector 116 will know that all meters in the communication path are powered. Alternatively, the collector 116 could start from the level closest to the collector 116. If unable to communicate to the closest level, the collector knows that it cannot communicate to meters farther down the communication chain. [0057] After polling the meters identified by the MAS 202, the collector 116 updates the list with status information to indicate whether the meter is powered. The status information will indicate that the meter responded (meter is powered), meter did not respond, or meter could not be checked due to a failure in the communication path ahead of the targeted end point. In the case of a communication path failure, the collector may identify the point in the communication path that is not responding, possibly identifying a meter in an outage condition. The MAS 202 may issue the polling request to the collector and wait for the response as soon as it is completed, or it may issue the command to the collector and disconnect the WAN session (i.e., the link between the communication system 226, subnet/LAN A, subnet/LAN B, etc.) without waiting for the response. In this scenario, the collector can be configured to initiate an inbound communication to the MAS 202 to report that the request has completed. The MAS 202 can retrieve the information and pass outage or powered status to the OMS 211 for each of the requested meters. The information available from the OMS 211 can be passed to utility operators and used to direct crews to the outage locations.
[0058] hi addition to the outage exception message received from a meter, the collector may be configured to determine if an outage condition is present based on the communication success rate to a given meter. In normal operating conditions, the collector periodically communications with each meter to retrieve register (e.g. kWh) data and load profile data. Over time, the collector establishes a communication reliability rate, or performance rate, for each meter. After a minimum number of attempts to communicate to a meter have been made, the collector can determine typical performance rates for a meter flag abnormalities as a potential outage condition. This functionality is illustrated with the following example.
[0059] After at least 100 communication attempts to a meter, the collector will have a communication performance score (e.g. 90/100) that indicates the likelihood of successful two- way communications between the collector and the meter. If the collector then fails to communicate with the meter on successive attempts, the collector can set a "potential outage" flag to indicate that the meter may be in an outage condition. The number of failed communication attempts required to set the "potential outage" flag is configurable based on the collector to meter communication performance rate. If, for example, the communication performance rate was 100%, two failed communication attempts would cause the collector to set the "potential outage" flag. If, on the other hand, the communication performance rate was 80%, six successive failed communication attempts would be required to set the "potential outage" flag. [0060] The collector may also delay between successive communication attempts to ensure that a momentary communication problem does not cause the "potential outage" flag to be falsely set. The collector's ability to warn of a potential outage condition provides an outage detection algorithm for cases where metering points are not equipped with a means to transmit outage exception messages. The collector's algorithm can also augment outage detection for systems with outage enabled meters.
[0061] When power is restored to the meter 114a/b, the meter may be configured to transmit a power restoration message to the collector 116. To avoid multiple restoration messages from a given meter, the meter can be programmed to delay for a configurable period of time (e.g., 1 to 10 minutes) prior to transmitting the restoration message to the collector 116. The delay in the end point meter prevents a false indication of power restoration, that may occur as reclosers are operating. The collector 116 can be configured to delay for a period of time after receiving the first restoration to allow additional messages to be aggregated prior to initiating a communication to the MAS 202.
[0062] Once power is believed to be restored to a site, the OMS in conjunction with MAS 202 can be used to verify that power has been restored to sites that were reported to be in an outage condition. The OMS 211 can use either the restoration information as reported by the end point meter or the OMS 211 can send a list of meters to the collector 116 and request that the collector confirm power restoration to the given list. The verification of power restoration is often times more important to a utility than is the outage reporting, as it allows the utility to optimize restoration crews and provide a positive confirmation to customers and to their systems that power has been restored.
[0063] In addition to the features described above, the MAS 202 may provide a Geographic Information System (GIS) based network management component that provides GIS overlay images (shape files) for: the mesh communication paths, event/alarm information, and outage/restoration information. This would provide the utility with geographic shapefile overlays that could be superimposed over their distribution network topology to gain better insight into what is actually happening during an outage event down to the level of each meter/residence. The geographic information that can be provided for visual overlay will include reported outages, reported restorations, polled information to show confirmed power on and probable power out locations. For utilities with an Outage Management System (OMS) 211, the geographic network image could augment the information provided by the OMS 211. For utilities without an OMS, a network image maintained by the system 200 may be used to assist the distribution operators witn geographic informaiion to augment other methods and tools used to diagnose outage and restoration efforts.
[0064] Exemplary Scenarios
[0065] The following examples of outages in the various scenarios help illustrate the outage and restoration process.
[0066] Fault at Fl:
[0067] For a fault at Fl , the meter may sense a decrease in voltage due to the fault, but the meter would remain powered after the fault is cleared by the house circuit breaker. If the customer calls the utility to report an outage, the utility may do an on-request read of the meter voltage. Since the REX meter is connected on the source side, it will indicate that voltage is present; allowing the utility to be aware the problem is on the customer site.
[0068] Fault at F2:
[0069] For a fault at F2, the REX meter would lose power, increment an outage counter, and stop responding to network RF messages. Normal, periodic reads from the collector are not sufficient to quickly signal an outage condition and report the outage to MAS. The probability of the utility becoming quickly aware of the fault due to customer call-ins is not good, unless the meter affected by the outage is equipped with outage notification hardware. If the utility is notified, the outage management system could then determine the extent of the outage by providing a list of suspect meters to MAS. The list of meters would be those around the meters identified by customer call-ins necessary to determine the extent of the outage. Then, MAS would distribute the meter list to the collector or collectors that serve the meters in the list. Each collector would receive a list consisting of only the meters that are a part of its local area network. The customer call-in information would be augmented by the outage information provided by the system, allowing crews to be dispatched in a logical and efficient manner.
[0070] Once the fault is cleared and power is restored, the meter transmits a restoration message to the collector and the collector will forward the restoration information to MAS. MAS can then provide this restoration information to an OMS for confirmation of power restoration. The restoration information can be used to confirm outage locations that have been cleared and allow work crews to be focused on areas that have not yet been confirmed restored. In addition to the restoration message from the meter, the OMS can be used to "ping" a meter to verify power restoration after a crew has completed a field repair. The ping to the target meter is made by the source of the ping (e.g., the OMS) to verify that the target meter is powered and responsive.
[0071] Fault at F3: [0072] For a fault at F3 (distribution lateral), all meters past the fault point would register an outage and increment their outage counter. Using the assumptions of Table 2, more than 100 electric meters would experience the same event. The probability of the utility becoming quickly aware of the fault due to customer call-ins is good. As described for faults at F2, the OMS in conjunction with MAS could determine the extent of the outage and verify power restoration.
[0073] Fault at F4:
[0074] For a feeder fault at F4 past a recloser, the meters would sense multiple outages due to the voltage fluctuations caused by recloser operations. Note that the time between recloser operations is typically in the milliseconds to seconds range, but some units may be programmed for up to 200 seconds for 4 recloser operations. Thus the recloser cycle may not be complete until 3 recloser trip times and 600 seconds closing delay time. Also, the fault location and resistance will affect the voltage seen by the meters. Using the assumptions of Table 2, more than 1000 electric meters would experience the same event. The probability of the utility becoming quickly aware of the fault due to customer call-ins is very high, and the system can then be used to determine the extent of the outage as well as to monitor the progress in restoring power to affected customers.
[0075] Fault at F5:
[0076] For a fault at F5, the meters act the same as in the previous Fault at F4 analysis; however, over 3000 electric meters are affected and the utility would probably become aware of the outage very quickly via the OMS.
[0077] While systems and methods have been described and illustrated with reference to specific embodiments, those skilled in the art will recognize that modification and variations may be made without departing from the principles described above and set forth in the following claims. Accordingly, reference should be made to the following claims as describing the scope of disclosed embodiments.

Claims

What is Claimed:
1. A system for determining outage and restoration information for meters operating within a fixed wireless metering network, comprising: a network configuration server that determines a network state; and an outage management system that determines outage conditions and power restoration conditions to determine meters affected by said outage conditions and power restoration conditions.
2. The system of claim 1, further comprising: a collector; and metering points, wherein said metering points collect and forward said outage information to said collector.
3. The system of claim 2, wherein said collector and said metering points perform filtering of said outage information.
4. The system of claim 3, wherein filtering comprises at least one of: configurable delays at said metering points prior to transmitting an outage message, configurable delays at said metering points prior to transmitting a restoration message, configurable options in said collector that allow data to be aggregated prior to a communicating with said outage management system, and configurable options in said collector that allow communications to be suppressed during a large-scale outage.
5. The system of claim 2, wherein said metering points select a random transmit slot within a predetermined transmission periods.
6. The system of claim 2, wherein said metering points and said collector are adapted to verify a presence of power by measuring a voltage.
7. The system of claim 2, wherein a subset of affected metering points are identified, and wherein said subset of affected metering points are assigned to a corresponding subset of collectors for verification of power outage or power restoration.
8. The system of claim 2, wherein said coilector is adapted to ping said metering points to determine an extent of the outage, wherein said ping comprises one of: a ping each metering point directly, a ping of metering points in a communication path to determine if said communication path is available, and a ping of metering points farthest from said collector first in an attempt to validate all metering points in the communication path with one message.
9. The system of claim 2, wherein said collector communicates power restoration information to said outage management system and wherein said collector receives power restoration information for said metering points.
10. The system of claim 1 , wherein said fixed wireless network comprises a mesh network that enables said meters to change communication paths.
11. The system of claim 1 , further comprising: a collector; and metering points, wherein said collector periodically communicates with said metering points to establish a communication performance rate.
12. The system of claim 11, wherein said collector sets a "potential outage" indication after a successive number of communication failures to a given metering point.
13. The system of claim 12, wherein the number of successive failures required to set a "potential outage" flag is determined based on the established communication performance rate between the collector and the meter.
14. A method for determining outage and restoration information for meters operating within a fixed wireless metering network, comprising: maintaining a network state; receiving outage and restoration communications from communication nodes in said fixed wireless network; and determining locations affected by said outage conditions and power restoration conditions.
15. The method of claim 11, further comprising forwarding outage and restoration communications from metering points associated with said locations to said communication nodes.
16. The method of claim 12, further comprising filtering said outage information to configure: delays in transmitting an outage message, delays prior to transmitting a restoration message, options that allow data to be aggregated prior to a communicating with an outage management system, and options that allow communications to be suppressed during a large- scale outage.
17. The method of claim 12, further comprising: identifying a subset of affected metering points; and assigning a subset of communications nodes to verify power outage conditions or power restoration conditions.
18. The method of claim 12, further comprising pinging said metering points to determine an extent of the outage.
19. The method of claim 11, further comprising superimposing a Geographic Information System (GIS) overlay over a distribution network topology to provide additional information regarding said outage conditions.
20. A method of determining power outage conditions and power restoration conditions in an electrical distribution network having metering endpoints that communicate via a fixed wireless network, comprising: determining the existence of said power outage conditions or said power restoration conditions at said metering endpoints; forwarding information regarding said power outage conditions or said power restoration conditions to a network management server via said fixed wireless network; and notifying an outage management system regarding said power outage conditions or said power restoration conditions.
21. The method of claim 17, further comprising filtering said information regarding said power outage conditions or said power restoration conditions at a collector provided in said fixed wirel eessss nneettwwoorrllcc,, ssaa:iα πiteπng proviαing for at least delays in communicating and aggregation of said information.
22. The method of claim 17, further comprising pinging said metering points to determine the extent of said outage conditions.
23. The method of claim 17, further comprising superimposing a Geographic Information System (GIS) overlay over said distribution network topology to provide additional information regarding said outage conditions.
PCT/US2006/009887 2005-03-22 2006-03-17 Using a fixed network wireless data collection system to improve utility responsiveness to power outages WO2006102172A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2602289A CA2602289C (en) 2005-03-22 2006-03-17 Using a fixed network wireless data collection system to improve utility responsiveness to power outages

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US66404205P 2005-03-22 2005-03-22
US60/664,042 2005-03-22
US11/236,479 US7308370B2 (en) 2005-03-22 2005-09-27 Using a fixed network wireless data collection system to improve utility responsiveness to power outages
US11/236,479 2005-09-27

Publications (2)

Publication Number Publication Date
WO2006102172A2 true WO2006102172A2 (en) 2006-09-28
WO2006102172A3 WO2006102172A3 (en) 2007-04-19

Family

ID=37024455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/009887 WO2006102172A2 (en) 2005-03-22 2006-03-17 Using a fixed network wireless data collection system to improve utility responsiveness to power outages

Country Status (3)

Country Link
US (1) US7308370B2 (en)
CA (1) CA2602289C (en)
WO (1) WO2006102172A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2010984A2 (en) * 2006-03-08 2009-01-07 Aclara Power-Line Systems Inc. Intelligent fault detector system and method
WO2009036048A2 (en) 2007-09-11 2009-03-19 Square D Company Automated configuration of a power monitoring system using hierarchical context
WO2009135940A2 (en) * 2008-05-09 2009-11-12 International Business Machines Corporation Intelligent monitoring of an electrical utility grid
EP2144040A1 (en) * 2008-07-11 2010-01-13 Siemens Aktiengesellschaft A method and a system for decentral processing of data streams
EP2487928A3 (en) * 2011-02-09 2013-08-28 General Electric Company Service dependency notification system
US8693353B2 (en) 2009-12-28 2014-04-08 Schneider Electric USA, Inc. Intelligent ethernet gateway system and method for optimizing serial communication networks
WO2014099765A1 (en) * 2012-12-18 2014-06-26 Jonathan Goose Method and apparatus for remote monitoring of a residence
US8930455B2 (en) 2011-12-22 2015-01-06 Silver Spring Networks, Inc. Power outage detection system for smart grid using finite state machines
CN104458340A (en) * 2014-11-26 2015-03-25 山东大学 Wireless sensor network based multi-water-intake weighting water intake system and method
EP2898493A4 (en) * 2012-09-21 2015-10-28 Silver Spring Networks Inc Power outage notification and determination
US9658081B2 (en) 2007-01-30 2017-05-23 Silver Spring Networks, Inc. Methods and system for utility network outage detection

Families Citing this family (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817063B2 (en) * 2005-10-05 2010-10-19 Abl Ip Holding Llc Method and system for remotely monitoring and controlling field devices with a street lamp elevated mesh network
CA2626283A1 (en) * 2005-10-20 2007-04-26 Itron, Inc. Automatic detection of unusual consumption by a utility meter
US20070183318A1 (en) * 2006-02-03 2007-08-09 Matthew Johnson Outage notification, such as fixed network positive outage notification
US20070183369A1 (en) * 2006-02-03 2007-08-09 Bruce Angelis System for verifying restored outages, such as in the field outage restoration of public utilities using automatic meter reading (AMR)
US7800512B1 (en) * 2006-05-10 2010-09-21 Reliance Controls Corporation Utility power restoration indicator for power management system
US8411590B2 (en) 2006-07-27 2013-04-02 Mobitrum Corporation Mesh network remote control device
US8305936B2 (en) 2006-07-27 2012-11-06 Mobitrum Corporation Method and system for dynamic information exchange on a mesh network in a vehicle
US7801058B2 (en) 2006-07-27 2010-09-21 Mobitrum Corporation Method and system for dynamic information exchange on mesh network devices
US8305935B2 (en) 2006-07-27 2012-11-06 Mobitrum Corporation Method and system for dynamic information exchange on location aware mesh network devices
USRE47894E1 (en) 2006-07-27 2020-03-03 Iii Holdings 2, Llc Method and system for dynamic information exchange on location aware mesh network devices
US8427979B1 (en) 2006-07-27 2013-04-23 Mobitrum Corporation Method and system for dynamic information exchange on location aware mesh network devices
US20080074285A1 (en) * 2006-08-31 2008-03-27 Guthrie Kevin D Interface between meter and application (IMA)
US7965758B2 (en) * 2006-09-15 2011-06-21 Itron, Inc. Cell isolation through quasi-orthogonal sequences in a frequency hopping network
US8787210B2 (en) 2006-09-15 2014-07-22 Itron, Inc. Firmware download with adaptive lost packet recovery
AU2011213894B2 (en) * 2007-01-30 2012-05-10 Itron Networked Solutions, Inc. Methods and system for utility newtork outage detection
US8739148B2 (en) 2007-02-09 2014-05-27 Elster Electricity, Llc Automated meter reading system
US8181071B2 (en) * 2007-06-29 2012-05-15 Microsoft Corporation Automatically managing system downtime in a computer network
EP2203911A4 (en) 2007-10-25 2011-12-28 Trilliant Networks Inc Gas meter having ultra-sensitive magnetic material retrofitted onto meter dial and method for performing meter retrofit
EP2215550A1 (en) 2007-11-25 2010-08-11 Trilliant Networks, Inc. Energy use control system and method
WO2009067261A1 (en) 2007-11-25 2009-05-28 Trilliant Networks, Inc. System and method for transmitting and receiving information on a neighborhood area network
EP2215556B1 (en) 2007-11-25 2019-08-28 Trilliant Networks, Inc. System and method for transmitting power status notifications in an advanced metering infrastructure network
US8138934B2 (en) 2007-11-25 2012-03-20 Trilliant Networks, Inc. System and method for false alert filtering of event messages within a network
WO2009067259A1 (en) 2007-11-25 2009-05-28 Trilliant Networks, Inc. Transport layer and model for an advanced metering infrastructure (ami) network
US7965195B2 (en) * 2008-01-20 2011-06-21 Current Technologies, Llc System, device and method for providing power outage and restoration notification
US8000913B2 (en) * 2008-01-21 2011-08-16 Current Communications Services, Llc System and method for providing power distribution system information
US7940679B2 (en) * 2008-05-08 2011-05-10 Elster Electricity, Llc Power outage management and power support restoration for devices in a wireless network
US8451907B2 (en) 2008-09-02 2013-05-28 At&T Intellectual Property I, L.P. Methods and apparatus to detect transport faults in media presentation systems
US8699377B2 (en) 2008-09-04 2014-04-15 Trilliant Networks, Inc. System and method for implementing mesh network communications using a mesh network protocol
US8498904B2 (en) 2008-11-05 2013-07-30 Targeted Instant Communications, Inc. Method, system, and program storage device for efficient fulfillment of work assignments
US8289182B2 (en) 2008-11-21 2012-10-16 Trilliant Networks, Inc. Methods and systems for virtual energy management display
US8891338B2 (en) 2009-01-29 2014-11-18 Itron, Inc. Measuring the accuracy of an endpoint clock from a remote device
US8248267B2 (en) 2009-01-29 2012-08-21 Itron, Inc. Systems and methods for improving reception of data in wireless communication environments
US8319658B2 (en) 2009-03-11 2012-11-27 Trilliant Networks, Inc. Process, device and system for mapping transformers to meters and locating non-technical line losses
MX2011009052A (en) 2009-05-07 2012-02-28 Dominion Resources Inc Voltage conservation using advanced metering infrastructure and substation centralized voltage control.
FR2946148B1 (en) * 2009-05-29 2011-05-27 Sagem Comm METHOD OF DETERMINING THE ORIGIN OF CURRENT FAILURES
US8462014B1 (en) * 2009-08-10 2013-06-11 Ecologic Analytics, LLC Meter data management systems, methods, and software with outage management capabilities
US8781462B2 (en) 2009-09-28 2014-07-15 Itron, Inc. Methodology and apparatus for validating network coverage
CN102055186B (en) * 2009-10-30 2013-07-10 国际商业机器公司 Method and device for processing power system topology structure information
US8855102B2 (en) * 2010-01-29 2014-10-07 Elster Solutions, Llc Wireless communications providing interoperability between devices capable of communicating at different data rates
CA2788327A1 (en) * 2010-01-29 2011-08-04 Elster Solutions, Llc Clearing redundant data in wireless mesh network
US9811553B2 (en) * 2010-03-11 2017-11-07 Entegrity LLC Methods and systems for data aggregation and reporting
US20110255548A1 (en) * 2010-04-16 2011-10-20 Itron, Inc. Gateway-based ami network
WO2012027634A1 (en) 2010-08-27 2012-03-01 Trilliant Networkd, Inc. System and method for interference free operation of co-located tranceivers
US20120050065A1 (en) * 2010-08-30 2012-03-01 Lombardi Steven A Systems and methods for network enabled data capture
WO2012037055A1 (en) 2010-09-13 2012-03-22 Trilliant Networks Process for detecting energy theft
EP2641137A2 (en) 2010-11-15 2013-09-25 Trilliant Holdings, Inc. System and method for securely communicating across multiple networks using a single radio
WO2012097204A1 (en) 2011-01-14 2012-07-19 Trilliant Holdings, Inc. Process, device and system for volt/var optimization
WO2012103072A2 (en) * 2011-01-25 2012-08-02 Trilliant Holdings, Inc. Aggregated real-time power outages/restoration reporting (rtpor) in a secure mesh network
US8774975B2 (en) 2011-02-08 2014-07-08 Avista Corporation Outage management algorithm
US8928489B2 (en) * 2011-02-08 2015-01-06 Avista Corporation Ping server
EP3285458B1 (en) 2011-02-10 2022-10-26 Trilliant Holdings, Inc. Device and method for facilitating secure communications over a cellular network
WO2012122310A1 (en) 2011-03-08 2012-09-13 Trilliant Networks, Inc. System and method for managing load distribution across a power grid
US20120265358A1 (en) * 2011-04-13 2012-10-18 Thoppay Rajeshbabu Kb Systems and methods for use in correcting intermittent utility service outages
US8810251B2 (en) * 2011-08-31 2014-08-19 General Electric Company Systems, methods, and apparatus for locating faults on an electrical distribution network
US9001787B1 (en) 2011-09-20 2015-04-07 Trilliant Networks Inc. System and method for implementing handover of a hybrid communications module
US10200476B2 (en) 2011-10-18 2019-02-05 Itron, Inc. Traffic management and remote configuration in a gateway-based network
FR2998748B1 (en) * 2012-11-23 2015-04-10 Commissariat Energie Atomique DEVICE AND METHOD FOR RETRANSMITTING DATA IN A NETWORK SWITCH
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10666996B1 (en) * 2012-12-27 2020-05-26 Arris Enterprises Llc Detecting sub-node plant service conditions using subscriber
US9188453B2 (en) 2013-03-07 2015-11-17 Sas Institute Inc. Constrained service restoration with heuristics
US9563218B2 (en) 2013-03-15 2017-02-07 Dominion Resources, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US9678520B2 (en) 2013-03-15 2017-06-13 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9582020B2 (en) 2013-03-15 2017-02-28 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
WO2014144948A1 (en) * 2013-03-15 2014-09-18 Stuart Micheal D Visible audiovisual annotation of infrared images using a separate wireless mobile device
US9553453B2 (en) 2013-03-15 2017-01-24 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9847639B2 (en) 2013-03-15 2017-12-19 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9756549B2 (en) 2014-03-14 2017-09-05 goTenna Inc. System and method for digital communication between computing devices
WO2015178810A1 (en) * 2014-05-21 2015-11-26 Telefonaktiebolaget L M Ericsson (Publ) Managing effects of a scheduled outage of mains power
CN104122470B (en) * 2014-07-28 2017-07-04 国家电网公司 A kind of method for judging the operation of power distribution network ring-type
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
CN105634122A (en) * 2014-11-04 2016-06-01 国家电网公司 Ammeter remote control system
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US10732656B2 (en) 2015-08-24 2020-08-04 Dominion Energy, Inc. Systems and methods for stabilizer control
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US10002504B2 (en) * 2015-10-01 2018-06-19 Honeywell International Inc. System and method of providing intelligent system trouble notifications using localization
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
JP6692257B2 (en) * 2016-08-29 2020-05-13 三菱電機株式会社 Wireless communication system
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10840691B2 (en) * 2017-02-27 2020-11-17 Florida Power And Light Company Lateral disturbance detection and remote tracking of automatic lateral switch operations
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10715886B2 (en) * 2017-06-06 2020-07-14 Landis+Gyr Technologies, Llc Power outage-assessment apparatuses and methods
US10655984B2 (en) * 2017-12-20 2020-05-19 Florida Power & Light Company Power state estimation for power grid serviced premises
US20190207652A1 (en) * 2018-01-02 2019-07-04 Honeywell International Inc. System and Method for Determining Power Status in a Metering Network
US10944669B1 (en) 2018-02-09 2021-03-09 GoTenna, Inc. System and method for efficient network-wide broadcast in a multi-hop wireless network using packet echos
US10712386B2 (en) * 2018-05-10 2020-07-14 Landis+Gyr Llc Device and method for data preservation and power loss recovery in an electric meter
US10833799B2 (en) 2018-05-31 2020-11-10 Itron Global Sarl Message correction and dynamic correction adjustment for communication systems
CA3107919A1 (en) 2018-07-27 2020-01-30 GoTenna, Inc. Vinetm: zero-control routing using data packet inspection for wireless mesh networks
US11651453B2 (en) 2018-10-19 2023-05-16 Eaton Intelligent Power Limited Enhanced status notification and outage detection systems and methods for electric utility networks
WO2020185707A1 (en) 2019-03-08 2020-09-17 goTenna Inc. Method for utilization-based traffic throttling in a wireless mesh network
PL3757583T3 (en) * 2019-06-25 2023-05-08 Reactive Technologies Limited System for determining electric parameters of an electric power grid
US11810209B2 (en) 2020-11-05 2023-11-07 International Business Machines Corporation Outage restoration time prediction during weather events and optimized solutions for recovery
CN113433507B (en) * 2021-06-22 2023-02-07 保定新云达电力设备有限责任公司 Electric energy meter metering fault analysis system and analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259972B1 (en) * 1998-01-16 2001-07-10 Enghouse Systems Usa, Inc. Method for processing and disseminating utility outage information
US20040001008A1 (en) * 2002-06-27 2004-01-01 Shuey Kenneth C. Dynamic self-configuring metering network
US20040061616A1 (en) * 2002-09-30 2004-04-01 Fischer Roger L. Outage notification device and method
US20060004679A1 (en) * 2004-07-02 2006-01-05 Cahill-O'brien Barry Distributed utility monitoring, such as for monitoring the quality or existence of a electrical, gas, or water utility

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361890A (en) 1958-06-17 1982-11-30 Gte Products Corporation Synchronizing system
US3445815A (en) 1965-09-27 1969-05-20 Motorola Inc Central to remote station signalling system
US4066964A (en) 1967-01-06 1978-01-03 Rockwell International Corporation Communication system
JPS5325202B2 (en) 1972-08-29 1978-07-25
US3858212A (en) 1972-08-29 1974-12-31 L Tompkins Multi-purpose information gathering and distribution system
DE2450727C1 (en) 1974-10-25 1979-11-29 Siemens Ag Arrangement for information transfer
US4031513A (en) 1974-11-08 1977-06-21 Northern Illinois Gas Company RF data exchange system
US3973240A (en) 1974-12-05 1976-08-03 General Electric Company Power line access data system
US4056107A (en) 1976-04-26 1977-11-01 Sperry Rand Corporation Crop residue deflector means
US4132981A (en) 1976-10-21 1979-01-02 Rockwell International Corporation Self-powered system for measuring and storing consumption of utility meter
US4190800A (en) 1976-11-22 1980-02-26 Scientific-Atlanta, Inc. Electrical load management system
US4204195A (en) 1977-05-23 1980-05-20 General Electric Company Meter terminal unit for use in automatic remote meter reading and control system
US4218737A (en) 1977-08-30 1980-08-19 The United States Of America As Represented By The Secretary Of The Army Revenue metering system for power companies
US4405829A (en) 1977-12-14 1983-09-20 Massachusetts Institute Of Technology Cryptographic communications system and method
US4254472A (en) 1978-08-14 1981-03-03 The Valeron Corporation Remote metering system
US4250489A (en) 1978-10-31 1981-02-10 Westinghouse Electric Corp. Distribution network communication system having branch connected repeaters
US4860379A (en) 1979-05-18 1989-08-22 General Instrument Corporation Data communications system
US4322842A (en) 1979-10-23 1982-03-30 Altran Electronics Broadcast system for distribution automation and remote metering
US4361851A (en) 1980-01-04 1982-11-30 Asip William F System for remote monitoring and data transmission over non-dedicated telephone lines
US4321582A (en) 1980-03-11 1982-03-23 Banghart Thomas S Data retrieval system and method
US4396915A (en) 1980-03-31 1983-08-02 General Electric Company Automatic meter reading and control system
US4328581A (en) 1980-06-20 1982-05-04 Rockwell International Corporation Adaptive HF communication system
US4757456A (en) 1981-05-19 1988-07-12 Ralph Benghiat Device and method for utility meter reading
US4415896A (en) 1981-06-09 1983-11-15 Adec, Inc. Computer controlled energy monitoring system
US4504831A (en) 1981-10-09 1985-03-12 Systems And Support, Incorporated Utility usage data and event data acquisition system
US4707852A (en) 1981-10-09 1987-11-17 Systems And Support, Incorporated Utility usage data and event data acquisition system
US4466001A (en) 1981-12-04 1984-08-14 Motorola, Inc. Polling system for multiple terminal units
JPS58207733A (en) 1982-05-28 1983-12-03 Nec Corp Battery saving circuit
US4525861A (en) 1982-11-12 1985-06-25 Motorola, Inc. Zoned data communications system for communicating message signals between portable radios and a host computer
US4608699A (en) 1982-12-27 1986-08-26 Motorola, Inc. Simulcast transmission system
US4631538A (en) 1983-02-28 1986-12-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Single frequency multitransmitter telemetry system
US4783748A (en) 1983-12-09 1988-11-08 Quadlogic Controls Corporation Method and apparatus for remote measurement
US4617566A (en) 1983-12-15 1986-10-14 Teleplex Corporation Addressable-port, daisy chain telemetry system with self-test capability
US4653076A (en) 1984-03-23 1987-03-24 Sangamo Weston, Inc. Timing signal correction system for use in direct sequence spread signal receiver
US4728950A (en) 1984-04-16 1988-03-01 Telemeter Corporation Magnetic sensor apparatus for remotely monitoring a utility meter or the like
US4600923A (en) 1984-05-04 1986-07-15 American Meter Company Remote meter display unit
US4628313A (en) 1984-09-12 1986-12-09 Telemeter Corporation Apparatus and method for remotely monitoring a utility meter by use of a liquid crystal display
US4672555A (en) 1984-10-18 1987-06-09 Massachusetts Institute Of Technology Digital ac monitor
US4644321A (en) 1984-10-22 1987-02-17 Westinghouse Electric Corp. Wireless power line communication apparatus
US4680704A (en) 1984-12-28 1987-07-14 Telemeter Corporation Optical sensor apparatus and method for remotely monitoring a utility meter or the like
US4614945A (en) 1985-02-20 1986-09-30 Diversified Energies, Inc. Automatic/remote RF instrument reading method and apparatus
US4769772A (en) 1985-02-28 1988-09-06 Honeywell Bull, Inc. Automated query optimization method using both global and parallel local optimizations for materialization access planning for distributed databases
US4611333A (en) 1985-04-01 1986-09-09 Motorola, Inc. Apparatus for despreading a spread spectrum signal produced by a linear feedback shift register (LFSR)
US4692761A (en) 1985-06-21 1987-09-08 Robinton Products, Inc. Adaptive communication network and method
US4638298A (en) 1985-07-16 1987-01-20 Telautograph Corporation Communication system having message repeating terminals
US4688038A (en) 1985-09-30 1987-08-18 Milton S. Gerstein Remote meter-reader device for gas meters, and the like
US4724435A (en) 1985-11-06 1988-02-09 Applied Spectrum Technologies, Inc. Bi-directional data telemetry system
US4804957A (en) 1985-11-27 1989-02-14 Triad Communications, Inc. Utility meter and submetering system
US4713837A (en) 1985-12-24 1987-12-15 Alastair Gordon Communication network
US4734680A (en) 1986-02-06 1988-03-29 Emhart Industries, Inc. Detection system with randomized transmissions
US4833618A (en) 1986-02-20 1989-05-23 Net Laboratories, Inc. System for automatically reading utility meters from a remote location
US4799059A (en) 1986-03-14 1989-01-17 Enscan, Inc. Automatic/remote RF instrument monitoring system
CA1277033C (en) 1986-04-30 1990-11-27 Johann Sollinger Automatic metering apparatus
US4749992B1 (en) 1986-07-03 1996-06-11 Total Energy Management Consul Utility monitoring and control system
JPH07123232B2 (en) 1986-08-06 1995-12-25 京セラ株式会社 Synchronous tracking device for spread spectrum communication
US4827514A (en) 1986-09-03 1989-05-02 Motorola, Inc. Method and apparatus to detect and recover a pseudo-random sequence
US4804938A (en) 1986-10-24 1989-02-14 Sangamo Weston, Inc. Distribution energy management system
US4792946A (en) 1987-04-07 1988-12-20 Spectrum Electronics, Inc. Wireless local area network for use in neighborhoods
GB2203920B (en) 1987-04-23 1990-05-16 Iberduero Sa Telemetering system for electrical power consumed by various users
US4884021A (en) 1987-04-24 1989-11-28 Transdata, Inc. Digital power metering
JP2624964B2 (en) 1987-06-09 1997-06-25 キヤノン株式会社 Wireless communication device
DE301127T1 (en) 1987-07-31 1989-08-24 Texas Instruments Deutschland Gmbh, 8050 Freising, De TRANSPONDER ARRANGEMENT.
US4839645A (en) 1987-08-06 1989-06-13 Lill Thomas M Weather data transmitting system
US5079715A (en) 1987-12-28 1992-01-07 Krishnan Venkataraman Electronic data recorder for electric energy metering
US4862493A (en) 1987-12-28 1989-08-29 General Electric Company Electronic remote data recorder for electric energy metering
US4940976A (en) 1988-02-05 1990-07-10 Utilicom Inc. Automated remote water meter readout system
US4868877A (en) 1988-02-12 1989-09-19 Fischer Addison M Public key/signature cryptosystem with enhanced digital signature certification
US4922518A (en) 1988-04-29 1990-05-01 Gordon Alastair T Selective dissemination of information
US4972507A (en) 1988-09-09 1990-11-20 Cellular Data, Inc. Radio data protocol communications system and method
US4912722A (en) 1988-09-20 1990-03-27 At&T Bell Laboratories Self-synchronous spread spectrum transmitter/receiver
US4940974A (en) 1988-11-01 1990-07-10 Norand Corporation Multiterminal communication system and method
US5067136A (en) 1988-11-02 1991-11-19 Axonn Corporation Wireless alarm system
US4964138A (en) 1988-11-15 1990-10-16 Agilis Corporation Differential correlator for spread spectrum communication system
US5086385A (en) 1989-01-31 1992-02-04 Custom Command Systems Expandable home automation system
US5007052A (en) 1989-04-11 1991-04-09 Metricom, Inc. Method for routing packets by squelched flooding
US5022046A (en) 1989-04-14 1991-06-04 The United States Of America As Represented By The Secretary Of The Air Force Narrowband/wideband packet data communication system
US5032833A (en) 1989-04-27 1991-07-16 Schlumberger Industries, Inc. Adaptive network routing for power line communications
US5136614A (en) 1989-05-08 1992-08-04 Sanyo Electric Co., Ltd. Spread spectrum communication system
GB8910997D0 (en) 1989-05-12 1989-06-28 Tunstall Telecom Ltd Radio transmission system
US5160926A (en) 1989-06-28 1992-11-03 Schweitzer Engineering Laboratories, Inc. Display transducer apparatus
US5115433A (en) 1989-07-18 1992-05-19 Metricom, Inc. Method and system for routing packets in a packet communication network
US4939726A (en) 1989-07-18 1990-07-03 Metricom, Inc. Method for routing packets in a packet communication network
US5142694A (en) 1989-07-24 1992-08-25 Motorola, Inc. Reporting unit
US5166664A (en) 1989-08-15 1992-11-24 David Fish Warning method and apparatus and parallel correlator particularly useful therein
US5090024A (en) 1989-08-23 1992-02-18 Intellon Corporation Spread spectrum communications system for networks
US4965533A (en) 1989-08-31 1990-10-23 Qualcomm, Inc. Direct digital synthesizer driven phase lock loop frequency synthesizer
JPH03108828A (en) 1989-09-22 1991-05-09 Clarion Co Ltd Spread spectrum receiver
US5086292A (en) 1989-10-31 1992-02-04 Iris Systems Inc. Tamper detection device for utility meter
JPH0779279B2 (en) 1989-11-02 1995-08-23 クラリオン株式会社 Spread spectrum receiver
US5056107A (en) 1990-02-15 1991-10-08 Iris Systems Inc. Radio communication network for remote data generating stations
JP2675890B2 (en) 1990-03-06 1997-11-12 キヤノン株式会社 Spread spectrum communication equipment
US5018165A (en) 1990-03-21 1991-05-21 Andrew Corporation Communication system using spread spectrum and leaky transmission line
US5079768A (en) 1990-03-23 1992-01-07 Metricom, Inc. Method for frequency sharing in frequency hopping communications network
US5130987A (en) 1990-03-23 1992-07-14 Metricom, Inc. Method for synchronizing a wide area network without global synchronizing
US5151866A (en) 1990-03-30 1992-09-29 The Dow Chemical Company High speed power analyzer
US5155481A (en) 1990-05-25 1992-10-13 Schlumberger Industries, Inc. Two and three wire utility data communications system
JPH0777361B2 (en) 1990-07-04 1995-08-16 クラリオン株式会社 Spread spectrum receiver
US6195018B1 (en) * 1996-02-07 2001-02-27 Cellnet Data Systems, Inc. Metering system
US7379981B2 (en) * 2000-01-31 2008-05-27 Kenneth W. Garrard Wireless communication enabled meter and network
US20020082748A1 (en) * 2000-06-15 2002-06-27 Internet Energy Systems, Inc. Utility monitoring and control systems
US20040113810A1 (en) * 2002-06-28 2004-06-17 Mason Robert T. Data collector for an automated meter reading system
US7739138B2 (en) * 2003-05-19 2010-06-15 Trimble Navigation Limited Automated utility supply management system integrating data sources including geographic information systems (GIS) data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259972B1 (en) * 1998-01-16 2001-07-10 Enghouse Systems Usa, Inc. Method for processing and disseminating utility outage information
US20040001008A1 (en) * 2002-06-27 2004-01-01 Shuey Kenneth C. Dynamic self-configuring metering network
US20040061616A1 (en) * 2002-09-30 2004-04-01 Fischer Roger L. Outage notification device and method
US20060004679A1 (en) * 2004-07-02 2006-01-05 Cahill-O'brien Barry Distributed utility monitoring, such as for monitoring the quality or existence of a electrical, gas, or water utility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN LIU ET AL.: 'Distribution system outage and restoration analysis using a wireless AMR system' IEEE, IEEE POWER ENGINEERING SOCIETY WINTER MEETING vol. 2, 27 January 2002 - 31 January 2002, pages 871 - 875, XP010578412 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2010984A4 (en) * 2006-03-08 2010-05-05 Aclara Power Line Systems Inc Intelligent fault detector system and method
EP2010984A2 (en) * 2006-03-08 2009-01-07 Aclara Power-Line Systems Inc. Intelligent fault detector system and method
US9658081B2 (en) 2007-01-30 2017-05-23 Silver Spring Networks, Inc. Methods and system for utility network outage detection
WO2009036048A2 (en) 2007-09-11 2009-03-19 Square D Company Automated configuration of a power monitoring system using hierarchical context
WO2009036048A3 (en) * 2007-09-11 2009-09-03 Square D Company Automated configuration of a power monitoring system using hierarchical context
US7639129B2 (en) 2007-09-11 2009-12-29 Jon Andrew Bickel Automated configuration of a power monitoring system using hierarchical context
JP2011525787A (en) * 2008-05-09 2011-09-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Transmission line network, method and program for managing transmission line network (intelligent monitoring of transmission line network)
WO2009135940A3 (en) * 2008-05-09 2010-07-29 International Business Machines Corporation Intelligent monitoring of an electrical utility grid
US8121741B2 (en) 2008-05-09 2012-02-21 International Business Machines Corporation Intelligent monitoring of an electrical utility grid
WO2009135940A2 (en) * 2008-05-09 2009-11-12 International Business Machines Corporation Intelligent monitoring of an electrical utility grid
EP2144040A1 (en) * 2008-07-11 2010-01-13 Siemens Aktiengesellschaft A method and a system for decentral processing of data streams
US8693353B2 (en) 2009-12-28 2014-04-08 Schneider Electric USA, Inc. Intelligent ethernet gateway system and method for optimizing serial communication networks
EP2487928A3 (en) * 2011-02-09 2013-08-28 General Electric Company Service dependency notification system
US8930455B2 (en) 2011-12-22 2015-01-06 Silver Spring Networks, Inc. Power outage detection system for smart grid using finite state machines
EP2898493A4 (en) * 2012-09-21 2015-10-28 Silver Spring Networks Inc Power outage notification and determination
US9689710B2 (en) 2012-09-21 2017-06-27 Silver Spring Networks, Inc. Power outage notification and determination
WO2014099765A1 (en) * 2012-12-18 2014-06-26 Jonathan Goose Method and apparatus for remote monitoring of a residence
CN104458340A (en) * 2014-11-26 2015-03-25 山东大学 Wireless sensor network based multi-water-intake weighting water intake system and method

Also Published As

Publication number Publication date
US20060217936A1 (en) 2006-09-28
CA2602289A1 (en) 2006-09-28
WO2006102172A3 (en) 2007-04-19
US7308370B2 (en) 2007-12-11
CA2602289C (en) 2011-05-10

Similar Documents

Publication Publication Date Title
US7308370B2 (en) Using a fixed network wireless data collection system to improve utility responsiveness to power outages
CN101617233B (en) Methods and system for utility network outage detection
US9829343B2 (en) System and method for controlling a connection of a meter to a power line
AU2009201398B2 (en) Power outage management and power support restoration for devices in a wireless network
US7251570B2 (en) Data integrity in a mesh network
CA2788325C (en) High priority data reads for acquisition of real-time data in wireless mesh network
JP5143537B2 (en) Wireless communication system
US20140167735A1 (en) Identifying phase connections in an electric distribution system
US9801113B2 (en) Collection system with a hybrid node performing both fixed network and mobile communications
US20120126793A1 (en) Polyphase meter with full service disconnect switch
AU2011213894B2 (en) Methods and system for utility newtork outage detection
CA2831119A1 (en) Improved use of a mobile data collection device
MX2007013710A (en) Data integrity in a mesh network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2602289

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06748444

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)