WO2006104237A1 - Spatial information detection device - Google Patents

Spatial information detection device Download PDF

Info

Publication number
WO2006104237A1
WO2006104237A1 PCT/JP2006/307004 JP2006307004W WO2006104237A1 WO 2006104237 A1 WO2006104237 A1 WO 2006104237A1 JP 2006307004 W JP2006307004 W JP 2006307004W WO 2006104237 A1 WO2006104237 A1 WO 2006104237A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
pump
spatial information
probe
Prior art date
Application number
PCT/JP2006/307004
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Itoh
Keisuke Isobe
Kiichi Fukui
Wataru Watanabe
Shogo Kataoka
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Priority to JP2007510580A priority Critical patent/JPWO2006104237A1/en
Publication of WO2006104237A1 publication Critical patent/WO2006104237A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties

Definitions

  • the present invention relates to a spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted by a target substance in the sample, and more particularly, by detecting induced parametric fluorescence in a so-called four-wave mixing process. This is related to the observation of spatial information of internal materials. Background art
  • fluorescence microscopes exist as such images. This microscope detects the spatial distribution of fs molecules, etc. by observing the fluorescence generated by irradiating excitation light after fluorescent staining of the molecules or tissues of the observation sample.
  • a two-photon excitation (or multi-photon excitation) of a sampler or the like is performed with a short wavelength pulsed light having a long wavelength as an irradiation light by an ultrashort pulsed laser to improve the three-dimensional performance.
  • a multiphoton excitation fluorescence microscope has been developed to observe the fluorescence.
  • this microscope has a problem in that it is difficult to desire a microscope for observing a sample visually with a high three-dimensional capability because the emitted fluorescence intensity is low and the light utilization efficiency is low. In addition, there is a problem that this specimen cannot be observed unless it is stained with a fluorescent dye. Furthermore, it has been pointed out that conventional multiphoton-excited fluorescence microscopy makes it difficult to observe multiple substances in a sample at the same time. It has been.
  • CARS S light Coherent anti-stokes Raman scattering light
  • CAR S simple Coherent anti-stokes Raman scattering light
  • the observation target and name Ru C AR S light enhancement depends on the ⁇ wave of the incident light of the two different frequencies Since the observed CAR S light also depends on the wave of incident light, it has been pointed out that it is difficult to adjust the realization design, especially when there are a plurality of objective test elements.
  • CARS light enhanced by resonance with the molecular vibration of the target sample molecule is the object of observation, and it is not intended to observe fluorescence like a fluorescence microscope. There was also a problem that it could not be used to enhance the selection of observation light.
  • Japanese Patent Application Laid-Open No. 2000-0100 1 includes a document showing the above-described conventional technology. Disclosure of the invention
  • the present invention is capable of simultaneously detecting a large number of target sample substances with high sensitivity and invasion, and is not essential for fluorescent staining of samples.
  • the purpose of this is to provide a means for detecting spatial information. Means for deciding ⁇ 3 ⁇ 4
  • the first aspect of the present invention is a spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted from a target substance in the sample.
  • a light source that irradiates short-wavelength light having a long wavelength (see, for example, the laser light source 1 in the embodiment), and a first diversion unit that divides the irradiation light from the light source into two optical paths (for example, the embodiment)
  • a probe light generating means for generating a preset probe light on one of the two optical paths, and Fujimi pump light and Tsuji probe light are spatially superimposed by joining the two optical paths.
  • Merging means for example, the beam splitter BS 2 of the embodiment
  • sample irradiation means for converging the pump light and the probe light superimposed by the merging means to illuminate the sample (for example, the objective lens pair 9 of the embodiment, The Stage 10, objective lens + 9 a) and the sample irradiation means illuminate the Fujimi pump light and the probe light.
  • the target emission extraction means for example, the objective lens 9 b and the filter 11 in the embodiment
  • the objective light extraction means for extracting emission light having a preset wavelength from the light emitted from the irradiated sample
  • the objective light extraction means And a detector (for example, the detector 12 of the embodiment) that detects the extracted wavelength light, and the preset pump light has a frequency ⁇ 1, such that the substance in the sample is multiphoton and electron resonance occurs.
  • the emission light of the preset wavelength set by ⁇ 2, ⁇ ⁇ and extracted by the target emission light extraction means is preset with the sum of the pump light frequencies ⁇ 1, ⁇ 2, ⁇ ⁇
  • the probe light frequency ⁇ + 1 and ⁇ l wavenumber ⁇ + 2 ( ⁇ 1 + ⁇ 2+ to ⁇ ) — set to approach ⁇ ⁇ + 1 (for example, the pump light in the sample It is set at frequencies ⁇ 1 and ⁇ 2 at which electron resonance occurs when a substance is two photons, and the emitted light is the frequency of the pump light.
  • the pump light generation means or the probe light generation means may include an optical path length expansion / contraction means that changes the optical path length of one of the optical paths from the first diversion means to the merging means.
  • the preset pump light is set at frequencies ⁇ 1 and ⁇ 2 at which electron resonance occurs in two photons.
  • the preset pump light frequencies ⁇ 1 and ⁇ 2 are preferably the same frequency ⁇ 1.
  • the probe light generation means includes a probe light extraction means for extracting light in a preset wavelength region from the optical fiber that generates broadband wavelength light from the transmitted light and the broadband wavelength light emitted from the optical fiber. And it is preferable to have.
  • the pump light generation means may include an oscillator that performs frequency conversion of transmitted light (for example, OPO: opti cal ame tr cico sc ci l la tor in the embodiment).
  • the pump light generation means may have an optical fiber that generates broadband wavelength light from the transmitted light, and light in a wavelength range set in advance from the broadband wavelength light emitted from the optical fiber. It is conceivable to provide a pump light extraction means for extracting the light, and to have a pump light extraction means for extracting light in a preset wavelength region from the wide band wavelength light emitted from the optical fiber.
  • the pump light generation means transmits the transmitted light.
  • An oscillator that performs frequency conversion of the light
  • a second diversion means that diverts the light converted by the oscillator into two or more optical paths, and light that transmits one of the optical paths that are diverted by the diversion means
  • an optical system that combines the pump lights that transmit the optical paths branched by the second diversion means and superimposes them on the probe light.
  • the pump light generating means includes a second diversion means for diverting the transmitted light to two or more optical paths, and a diversion by the second diversion means.
  • the optical fiber that generates broadband wavelength light from the light transmitted through one of the optical paths, and the frequency conversion of the light transmitted through the other optical path of the optical paths shunted by the second shunting means.
  • the merging means may be an optical system that combines the pump lights transmitted through the optical paths diverted by the second diversion means and superimposes them on the probe light.
  • the light source generates a broadband wavelength light (not shown in FIG. 5), or the optical band in the optical path from the light source to the first diversion means
  • An optical fiber that generates light of a wavelength is provided.
  • the probe light generation means extracts a light in a preset wavelength range from the broadband wavelength light transmitted from the first shunting means.
  • the pump light generating means has a light extracting means, and the pump light generating means is a light that transmits one light path among the second shunting means for shunting the transmitted light into two or more light paths and the light path shunted by the second shunting means. And an optical system that combines the pump lights transmitted through the optical paths diverted by the second diversion means and superimposes them on the probe light.
  • the present invention also carries a specific configuration of the sample irradiation means.
  • a configuration having a sample moving means including at least a stage for placing a sample and a driving means for moving the stage in three dimensions, or a conveying means for sequentially conveying one or more samples such as a cell sorter in one direction There is also a configuration with
  • the spatial information detection means is a spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted by a target substance in the sample, and has a plurality of predetermined intensities or more.
  • Light irradiation means for irradiating one ultrashort pulse light including frequency light ⁇ ⁇ , ⁇ 2, ⁇ ' ⁇ ⁇ ⁇ , and frequency light ⁇ 1, ⁇ 2, ...
  • Time difference compensation means for temporally superimposing two pump lights ⁇ ⁇ and probe light ⁇ d set from among the above, and pump light ⁇ ⁇ and probe light ⁇ d superimposed by the time difference compensation means are condensed
  • a sample irradiating means for irradiating the sample and light emitted from the sample irradiated with the pump light ⁇ ⁇ and the probe light ⁇ d by the sample irradiating means. Wavelength light extracted by the emitted light extraction means and the target light extraction means And a detector for detecting + .
  • the pump destination ⁇ ⁇ here is the sample
  • the emitted light of the wavelength extracted by the target emission light extraction means is the ⁇ ! Wave number of the sum of the pump light ⁇ d and the probe light ⁇ d.
  • coSPE 2 ⁇ d — Set to approach ⁇ d.
  • the light irradiating means irradiates pulse light having a single broadband spectrum, and the pump light ⁇ and the probe light ⁇ d are separated from the center frequency of the irradiated pulse light in two directions.
  • the time difference compensation means may be set for each wave number component, and the pump light wd and the probe light cod may be superimposed in time.
  • the light irradiation means has a spectrum including a plurality of top strengths. Irradiate the light, pump light ⁇ ⁇ , probe light co d and force are set with the frequency components at the two tops of the tops, respectively, and the time difference compensation means includes the pump light wd and the probe light co d Both may be superimposed in time.
  • the light irradiating means may be configured to at least convert the light emitted from the light source into broadband wavelength light using an optical fiber, or at least a light source, a diversion means for diverting the irradiation light from the light source, and a diversion A configuration may be provided that includes an oscillator that converts each of the irradiated light to a desired frequency.
  • the above-described target light extraction means includes a local oscillation light emitting and oscillating device that generates local oscillation light in the same band as the signal light that is disposed on the optical path that is slightly shifted before and after the sample, and local oscillation.
  • the first spatial information detection apparatus of the present invention such as the microscope
  • the structure is such that the induced parametric light ⁇ 4 with a frequency of ⁇ 1 + ⁇ 2 ⁇ ⁇ 3 is emitted by irradiating the probe light ⁇ 3 to the target substance that is electronically excited by the pump light.
  • the guided parametric light set for each target substance depends on the pump light and does not depend much on the probe light, so multiple target substances can be detected simultaneously without fluorescent staining. It is very ⁇ as a way to do it.
  • the excitation light emission in this optical system is performed in a coherent state, the light emission is also coherent with respect to the incident light, and the light emission can be obtained in the same pulse as the excitation light.
  • the pump light can be generated based on broadband wavelength light or multispectral pulse light in the present invention device, the frequency of the emitted light (stimulated parametric light) from the sample does not depend on the frequency of the probe light. In combination with this, it is possible to easily detect stimulated parametric emission at different frequencies for a large number (theoretically innumerable) target substances.
  • the apparatus of the present invention uses electronic excitation as the target that causes the co-effect, it can be said to be a fluorescence enhancement technique (although non-fluorescent staining) in a broad sense, and the pump light so that the induced parametric fluorescence is enhanced. It is possible to observe two-photon fluorescence at the same time as induced parametric fluorescence, and follow the conventional observation method of staining and observing substances in a sample that could not be obtained with the CAR S microscope at the same time. It is also very usable. Furthermore, since the output light generates ultrashort light pulses similar to the incident light, it is also preferred for synchronous detection and for dyne dyne amplification.
  • the apparatus of the present invention includes not only scanning detection of the same sample but also sample irradiation means for sequentially detecting a specific substance contained in a plurality of samples, and the specific substance is contained in the biological cells of a plurality of patients. It is possible to use a quick detection method even when detecting whether or not.
  • specific embodiments of the present invention will be exemplified.
  • the spatial information detection device of the second aspect of the present invention unlike the case of the first aspect of the present invention, it is not necessary to split the irradiation light from the laser in order to generate the pump light and the probe light. Since the pump light and the probe light are generated from the frequency components contained in the single pulse light, and the dispersion compensation element can compensate for the time difference so that the induced parametric light (SPE) can be generated, the optical system As a result, it is easy to adjust, and a simple and inexpensive product can be used.
  • signal enhancement can be easily performed by causing local oscillation light to interfere with a guided parametric optical signal.
  • the induced parametric light intensity force S depends on the refractive index and the absorptivity of the sample, so the spatial distribution of the refractive index and the absorptivity can be obtained.
  • the interference signal from the sample (the signal from the sample
  • the information of the refractive index and the absorptivity of the sample can be obtained separately from the phase information of the signal light that causes the oscillation light to interfere.
  • FIG. 1 shows an example of an optical system according to the first embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of the main configuration of the optical system example of FIG.
  • FIG. 3 schematically shows another example of the optical system of the present invention.
  • FIG. 4 is a modification of the optical + system example of FIG. '
  • FIG. 5 shows another modification of the optical system example of FIG.
  • FIG. 6 shows the C A R S process, which is the basic principle of C A R S manifestation.
  • FIG. 7 shows an aspect of the guided parametric process that is the basic principle of the spatial information detecting device of the present invention.
  • FIG. 8 shows one variation of the guided parametric process of FIG.
  • FIG. 9 schematically shows an example of a method for temporally superimposing light transmitted through the three optical paths.
  • FIG. 10 is a schematic diagram of an example of the optical system of the second present invention.
  • FIG. 11 shows a spectrum of single pulse light irradiated by the light irradiation means of FIG.
  • FIG. 12 shows a spectrum of single panoramic light irradiated by the light irradiation means of FIG.
  • FIG. 13 shows a spectrum of single pulse light irradiated by the light irradiation means of FIG.
  • FIG. 14 shows another example of the optical system according to the second aspect of the present invention.
  • FIG. 15 shows another example of the optical system according to the second aspect of the present invention.
  • Figure 16 shows the actual spectrum of the ultrashort optical pulse that has passed through the optical fiber.
  • Figure 17 shows an example optical system for enhancing Ninging parametric light.
  • a nonlinear optical effect as a principle, particularly, four-wave mixing as an example will be outlined.
  • Four-wave mixing is attributed to a nonlinear process involving four electromagnetic waves, and is a third-order nonlinear optical process that has characteristics governed by the third-order nonlinear susceptibility.
  • the second-order nonlinear optical effect occurs in all materials regardless of the presence or absence of inversion symmetry of the molecule, but the effect is weak compared to the second-order nonlinear optical effect.
  • the weakness of the effect can be solved by using incident light with a high peak intensity by the laser and utilizing the symptom of the material, making it possible to detect the third-order nonlinear optical effect. To do.
  • FIGS. show the energy level of the CARS process.
  • ⁇ 1 is the frequency of incident light as pump light
  • ⁇ 3 is the frequency of incident light as probe light superimposed on pump light ⁇ 1
  • ⁇ 4 is the frequency of CARS light.
  • the wave number ⁇ of the two-photon pump light ⁇ 1 and the probe light ⁇ 3 is the sample; the CARS light that is emitted when it resonates (matches the molecular frequency inherent to the sample molecule) Because it has a feature that enhances, when designing the output light wavelength (CARS light wavelength), it is necessary to design with the correlation of both the pump light and the probe light.
  • the output light wavelength approaches the pump light and the probe light, it depends on the wavelength. It is difficult to select an appropriate wavelength, such as when the output light cannot be extracted by spectroscopy.
  • the CARS process depends on molecular vibration resonance, which has a narrow bandwidth in which resonance occurs, it is difficult to efficiently observe CARS light using a pulse with a spectral width.
  • ⁇ ⁇ is the frequency of the incident light as pump light
  • ⁇ 3 is the frequency of the incident light as probe light superimposed on the pump light ⁇ 1
  • ⁇ 4 is the frequency of the output light.
  • the pump light ⁇ 1 is focused on the same molecule on the sample surface or inside by an ultrashort pulsed laser capable of two-photon excitation to excite the electronic excitation of the sample molecule and simultaneously superimpose.
  • the output light of ⁇ 4 2 ⁇ 1 ⁇ 3 that emits light by applying a strong electric field to the sample molecules excited by condensing the probe light ⁇ 3.
  • the stimulated parametric light (fluorescence) signal has a characteristic that it enhances when it resonates with the electronic excitation of the two-photon pump light ⁇ repulsive force S sampler, so it depends on the wavelength of the pump light. No; Therefore, unlike the case of the above CARS process, By simply changing the wavelength, the guided parametric light wavelength can be freely designed, and the output light wavelength that is easy to observe can be selected (the wavelength selection of the output light is easy). Also, in the induced parametric process, the band width in which electron resonance occurs is wider than the band in which molecular vibration resonance occurs in the CAR S process, so it is possible to efficiently observe induced parametric fluorescence using a pulse with a spectral width. it can.
  • Fig. 1 is a specific configuration example based on the basic example (Fig. 2 described later) of the optical system of the present invention (hereinafter referred to as "guided parametric fluorescence microscope" and "T").
  • the parametric fluorescence microscope uses a laser light source 1 composed of an ultrashort pulse laser of femtosecond order to several tens of femtosecond order as a light source.
  • an extremely high optical signal intensity can be obtained due to these high output light intensities.
  • a prism pair 3 is provided between the half mirror HM 1 and the mirror M l in the optical path of the laser light. Dispersion of the laser beam can be compensated by reciprocating the prism pair 3. Further, the optical path of the laser light that has been dispersion-compensated by the prism pair 3 is converted by 90 degrees to provide mirrors M 1 to M 5 that constitute a predetermined optical system, and light that passes through the mirrors M 1 to M 5 Is incident on the beam splitter BS1. In addition, it is preferable to provide an isolator 2 in the optical path after the laser 1 in order to prevent reflected light from returning from the system.
  • the light incident on the beam splitter BS 1 is divided into two parts, and one of the lights passes through a mirror M 6 and an object lens 6-1 ( ⁇ hotoniccryata 1 fiber, hereinafter “PCF”). It is incident on 7.
  • PCF object lens 6-1
  • a nonlinear optical effect is generated inside the PCF, generating broadband pulsed light.
  • a desired wavelength light is extracted from the broadband pulse light by the filter 8 to form a probe light force, and is incident on the beam splitter BS 2 via the mirror 7.
  • the filter 8 that extracts the probe light is configured by combining, for example, an extraction filter having a center wavelength to be extracted, an interference filter with a direct width of ⁇ , and a mouth-pass filter (or one short-pass filter) having a cutoff wavelength.
  • transmission light generates broadband wavelength light when it passes through the PCF, but at the same time the pulse width is expanded, so it is necessary to add an optical system that compensates for dispersion on the optical path after the PCF 7 (also in the embodiments described below + Dispersion compensation is necessary to allow PCF to pass through. Is omitted since it is a known technology).
  • the other light split (divided) by the beam splitter B S 1 generates pump light.
  • a retroreflector (an optical element that reflects incident light in the reverse direction by three mirrors) 4 is incident and reflected, reaches the beam splitter BS 2, and is spatially superimposed on the pump light described above.
  • the retro-reflector 14 is disposed on a time delay stage (not shown), and the optical path length to the beam splitter B S 2 changes according to the reciprocation of the stage. As a result, if the time delay stage (delay line) is adjusted, the pump light and the probe light can be superimposed in time. Thereafter, the superposed light is reflected by the mirror M8 and applied to the objective lens pair 9a, 9b.
  • the extracted guided parametric light is incident on a detector 12 such as a CCD with an image intensifier, and the received guided parametric light is converted into an electric signal by the detector 12 and then a computer (not shown). And receive the prescribed calculation processing.
  • the guided parametric light is angled in 37 degrees, and the state of the target sample material as a result of this angle analysis is displayed three-dimensionally on a predetermined screen.
  • Fig. 1 shows that the sample is positioned by the stage 10 so that it can reciprocate between the objective lens pair 9a, 9b.
  • the induction parametric process is performed by the objective lens.
  • 9 Since it occurs near the focal point of the laser beam focused by a (because it is a nonlinear optical process), it can be scanned in the depth and plane directions of the sample so that the focal point matches the material (three-dimensional scanning is possible) ). Therefore, if the target substance in the sample to be observed is electronically excited and the two-photon pump light ⁇ 1 that resonates with the shoe is set, and the stage 10 is reciprocated, it will be enhanced if the target substance is near the focal point of the laser beam.
  • the guided parametric light is observed and detected by the detector 1 2 through the filter 1 1.
  • the embodiment of FIG. 1 can also observe various kinds of substances in the sample.
  • the output intensity of the induced parametric light which is the observation light, depends on the pump light because the output intensity is enhanced by exciting the electron excitation near the condensing point with the pump light. Is not very dependent on the nature.
  • the probe light is once generated into a broadband pulse by PCF 7, and then only the desired wavelength is extracted by filter 8. Is fixed. That is, in the embodiment of FIG. 1, the probe light can be fixed even if the pump light is changed.
  • the probe light ⁇ 3 is common and the emitted parametric light frequency ⁇ 4 is 2 ⁇ 1— ⁇ 3, which corresponds to the frequency (or wavelength) of the pump light. Since guided parametric light is determined on a one-to-one basis, it is possible to easily observe a plurality of substances in a sample having different electron resonance characteristics by setting different pump lights.
  • FIG. 2 A schematic diagram of the main configuration up to the sample in the above optical system and the frequency of the light transmitted through the optical path is shown in FIG. 2 (helping understanding for comparison and reference in other optical systems described later) It is a figure and the reference numbers overlap with those in figure 1).
  • the sample is positioned on a stage 10 that can be moved three-dimensionally. By moving the stage, the target substance exists at an arbitrary three-dimensional position in the sample.
  • the configuration of the so-called 37 fire source scanning detection in which the presence is detected and imaged by the detector is shown.
  • the embodiment of the present invention is not limited to this.
  • a tubular transporter such as a cell sorter can be provided between the objective lens pair 9a and 9b, and a plurality of samples can be allowed to flow therethrough.
  • the pump light having different frequencies is set in accordance with the target sample substance. It is also possible to enlarge the plurality of pump lights to a larger number of pump lights. More specifically, the optical system in FIG. 2 utilizes the process of obtaining the emitted light ⁇ 3 and the induced parametric light ⁇ 4 by superimposing the two-photon pump light ⁇ 1 and the probe light ⁇ 3 as incident light.
  • one of the two photon pump light shifts is converted into broadband pulse light (for example, white pulse light with a wavelength extending from 39 to 90 nm) by PCF. Broadband pulse It may be possible to emit guided parametric light ⁇ 4 by extracting the desired wavelength (frequency ⁇ 2) from the sensor.
  • the frequency of the irradiation light from the laser 1 is the probe light ⁇ 3
  • the frequency of the incident light ⁇ 1 is ⁇ 2
  • the emitted light ⁇ 3 is shown
  • An optical system that emits induced parametric light ⁇ 4 is shown.
  • the irradiation light of the laser 1 is shunted and transmitted as it is as the probe light ⁇ 3 in one optical path.
  • the frequency is converted to ⁇ 1 by ⁇ ⁇ ⁇ 20 and then shunted by the beam splitter BS 3 and transmitted as it is in one optical path to generate pump light ⁇ 1.
  • ⁇ CF 2 2 generates pump light of broadband wavelength light ⁇ 2.
  • the probe light with the common frequency ⁇ 3 is synchronized to illuminate the sample, so that the frequency of the emitted parametric light is set for each purpose.
  • fixed ⁇ 4 ⁇ 1 + ⁇ 2 ⁇ ⁇ 3.
  • the guided parametric light corresponding to each target substance is provided with a spectroscope as an alternative to the filter 1 or a filter after the PCF (filter 8 in Fig. 2). It is preferable to provide
  • FIG. 4 a modification of the optical system in FIG. 3 is shown. Specifically, the irradiation light from laser 1 is shunted to generate probe light ⁇ 3 in one optical path, and the other light path is further shunted to generate pump lights ⁇ 1 and ⁇ 2. 3, but in the case of the optical system shown in Fig. 4, instead of placing ⁇ ⁇ ⁇ 20 on the optical path before beam splitter BS 3 in Fig. 3, the beam is split by beam splitter BS 3. A configuration is adopted in which 6 ⁇ ⁇ 26 is placed on the optical path other than the optical path where PCF 24 is installed.
  • the optical system in FIG. 5 is also a modification of the optical system in FIG.
  • the pump light ⁇ 1 and ⁇ 2 and the probe light ⁇ 3 are generated by diverting the irradiation light from the laser 1 _ ⁇ Fig. 3 Forces that are similar to the emission from ⁇ ⁇ ⁇ ray 1 of the optical system in Figure 5 Before the light is diverted, it is converted into broadband wavelength light by PCF 28. this! ⁇ , Emission light ⁇ 1 emitted from PCF 2 8 is diverted, wavelength is extracted by phi-inletter 8 in the optical path on the probe light generation side, and probe light ⁇ 3 is emitted.
  • Fig. 6 shows a configuration that generates broadband wavelength light from the emitted light of laser 1 with 2 CF 28. In the case of laser 1 that originally emits broadband wavelength light, ⁇ ⁇ ⁇ 2 8 No frequency conversion is required.
  • the method of detecting the emission fluorescence (stimulated parametric light) of the substance in the sample and obtaining the spatial information of the substance in the sample was shared, but it can also be used in combination with the known two-photon fluorescence observation It is.
  • the known two-photon fluorescence observation is an observation method in which the observation substance (molecule) is stained with a fluorescent sample and the emitted fluorescence is detected by irradiating the fluorescent sample with excitation light.
  • the pump light that enhances the guided parametric light is selected, enters the fluorescent sample together with the probe light, and the fluorescence generated from the fluorescent sample is detected.
  • the electron resonance characteristics of the fluorescent sample are those
  • the laser light frequency is transmitted as it is to the optical path on the probe light generation side as ⁇ 3 to generate pump light.
  • An optical system that generates broadband wavelength light (frequency ⁇ 1) by PCF in the optical path on the side is also conceivable.
  • FIG. 3 and a modification of FIGS. 4 to 5 (a mode using the optical process of FIG.
  • the frequency of the laser light is directly transmitted to the optical path on the probe light generation side, and the prop 3 or converted to a specific frequency ⁇ 3 by ⁇ ⁇ ⁇ in the optical path on the probe light generation side to generate probe light ⁇ 3, and broadband wavelength light (frequency ⁇ ⁇ , ⁇ by PCF in the optical path on the pump light generation side
  • An optical system that generates 2) is also conceivable.
  • the ultrashort pulse light from the laser 1 is once shunted to the two optical systems, and the frequency is generated by at least one of the optical systems.
  • the pump light and the probe light are generated by modulation, and the guided parametric light is generated by illuminating the sample. In contrast, the irradiation light from the laser is not shunted. Pump light and probe light that can generate guided parametric light are generated.
  • FIG. 10 shows a simplified optical system according to the first embodiment of the second invention.
  • light irradiation means including a laser
  • the irradiation light from the light irradiation means irradiates the sample through the phase modulation means 1 0 2.
  • the generation of the irradiation light from the light irradiation means 100, the pump light, and the probe light will be mentioned.
  • Light power S is mentioned.
  • the irradiation light itself of the two-photon laser is formed in such a predetermined band spectrum. Accordingly, the light irradiation means 100 using the irradiation light having a continuous spectrum as shown in FIG. 11 may be the laser 1 itself.
  • the intensity of the spectrum of the irradiated light increases according to the frequency component.
  • the frequency band is formed so that the intensity decreases according to the frequency component. Is wide.
  • the width of this band has the property of increasing as it goes through the optical system, and is called dispersion.
  • frequency components at both ends of a band of a predetermined intensity or higher are used as pump light ⁇ ⁇ and probe light od, respectively.
  • the probe light is also called dump light and is denoted as ⁇ d.
  • the ultrashort light pulse that is the irradiating light is dispersed, and the undispersed ⁇ is roughly aligned with the reference time centered on the frequency (wavelength) component included (in terms of time).
  • Superposition When force is distributed, each frequency component deviates from the reference time, and some frequency components are before the reference time, and some frequency components are after the reference time. Therefore, even if the predetermined frequency component of the single pulse light having a continuous spectrum as described above is set as the pump light ⁇ ⁇ and the probe ⁇ d, both transmit STT over time. In other words, even if the sample is irradiated as it is, no induced parametric emission occurs under the condition of substantially simultaneous irradiation.
  • the phase of the frequency light ⁇ ⁇ and ⁇ d set as the pump light and the probe light is modulated by the phase modulation means (time difference compensation means) 102 and phase-resonated with each other.
  • time compensation is performed by superimposing the two in time.
  • a prism pair, a diffraction grating, and a spatial light modulator (SLM) that are generally used as dispersion compensation elements are used as the phase modulation means 102.
  • SLM spatial light modulator
  • the frequency component of ⁇ and the frequency component of ⁇ d are phase-resonated, the other frequency components cause phase interference, and as a result, the intensity of the frequency component of ⁇ ⁇ and the frequency component of ⁇ d becomes the other frequency component. It becomes much larger than that.
  • pump light and probe light that can generate guided parametric light are generated at a level that does not divert irradiation light from the laser.
  • the optical system shown in FIG. 10 is also applied to the second embodiment described here, and irradiation from the light irradiating means 100 is used to generate pump light and probe light as described above. There is no optical system force S for diverting light, and the light irradiated from the light irradiation means 100 is irradiated through the phase modulation means 1002 and the sample.
  • a single irradiation light generated by the light irradiation means 100 in this case forms a spectrum (double spectrum) having intensity peaks in two frequency ranges co p and ⁇ d as shown in FIG.
  • Single pulsed light single pulsed light (single pulsed light).
  • frequency components having two peak intensities are used as pump light ⁇ p and probe light d, respectively. It is said.
  • the pump light ⁇ ⁇ and the probe d propagate with a time shift, and it is necessary to superimpose both in order to generate the guided parametric light. .
  • the phases of the frequency lights ⁇ ⁇ and ⁇ d set as the pump light and the probe light are modulated by the phase modulation means 102 and superposed on each other by phase resonance with each other. Time compensation, and this is also phase modulation
  • a dispersion compensation element such as a prism pair, a diffraction grating, a spatial light modulator (SLM), or a deformable mirror is generally used.
  • SLM spatial light modulator
  • the pump light that can generate the induced parametric light without diverting the irradiation light from the laser As shown schematically in the optical system shown in FIG. 10, the irradiation light from the light irradiation means 100 is not shunted, and the irradiation light from the light irradiation means 100 passes through the phase modulation means 102. After that, the sample is irradiated.
  • one irradiation light generated by the light irradiation means 100 has an intensity peak in a plurality of frequency regions ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,..., ⁇ ⁇ as shown in FIG.
  • Spectrum (multispectrum) force S is a single-pulse light that is formed.
  • any frequency component ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,. are used as pump light ⁇ ⁇ and probe light ⁇ d, respectively.
  • the irradiation light is generated so as to have a broadband spectrum by passing the irradiation light from the laser (oscillator) 1 1 2 through the optical fiber (PCF) 1 14.
  • the actual spectrum generated by the optical fiber (PCF) 114 is usually multispectral light having a plurality of peak intensities as shown in FIG. Therefore, by arbitrarily setting two of the frequency components of each peak as pump light and probe light, and superimposing both of them in time with a dispersion compensation element, guided parametric light can be generated.
  • FIG. 16 shows another example of the light irradiation means 100 of the third embodiment.
  • the irradiated light from the laser (oscillator) 1 1 2 is shunted by the beam splitter BS, and each is converted into a desired frequency component by ⁇ ⁇ ⁇ 1 1 6.
  • PCF photonic crystal fiber
  • PCF photonic crystal fiber
  • the broadband local transmitted light of the same frequency (wavelength) band generated by the local oscillator 20 0 0 is spatially superimposed on the broadband guided parametric light ⁇ 4 and the spectrometer 2 0 2 It is also preferable to extract and measure the target wavelength light.
  • the spectroscope 2 0 2 by introducing an appropriate delay time between the rametric light and the local light (refer to reference numeral 4 in FIG. 1 and FIG. 9 as a delay means) It is possible to interfere with the spectrum and to enhance the obtained guided parametric optical signal.
  • local oscillator 200 is separately provided after shunting ultrashort pulse light (pump light, probe light) from the light irradiation means (laser 1 etc.)
  • the generation of the local oscillation light for enhancing the induced parametric light is not limited to this, and the local jf oscillation light is generated on the same optical path without diversion.
  • ⁇ It may be generated by providing a 3 ⁇ 4 position.
  • a method of focusing on a lens provided at a position different from the focusing point of the test may be used, or it may be focused on a cover glass covering the sample instead of the lens. It is advantageous because it is strong.
  • the local oscillation light emission position may be generated either before or after the sample. Furthermore, since it is sufficient to perform spectral interference, it is possible to use a part of the broad-band spectrum light as the local oscillation light.

Abstract

There is provided a spatial information detection device capable of simultaneously detecting a plenty of in-sample substances by detecting induction parametric light emitted from the sample by four-wave mixing without performing fluorescent coloring. The irradiation light from the laser is divided into two optical paths. On one of the optical paths, pump light is generated. On the other optical path, a preset probe light is generated. Moreover, these two optical paths are joined so that the pump light and the probe light are superimposed spatially and temporally. After this, the superimposed pump light and the probe light are converged to irradiate the sample. An emission light of the preset wavelength is extracted from the light emitted from the sample and is simultaneously detected by the detector. The pump light is set with such frequency ω1, ω2, ... ωn that the electron resonance is caused by the multiphoton in-sample substance. A wavelength emission light extracted from the sample emission light is preset so as to approach the difference frequency ωn + 2 = (ω1 + ω2 + ... ωn) -ωn + 1 between the sum of the pump light frequencies ω1, ω2, ... ωn and the probe light frequency ωn + 1.

Description

糸田 空間情報検出装置 技術分野  Itoda Spatial Information Detector Technical Field
本発明は、試料内の目的物質が放出する光を検出することにより試料内物質の空間情報 を取得する空間情報検出装置、 とりわけ所謂 4光波混^ ϋ程における誘導パラメトリック 蛍光を検出することによって試料内物質の空間情報を取得する顕^^に関する。 背景技術  The present invention relates to a spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted by a target substance in the sample, and more particularly, by detecting induced parametric fluorescence in a so-called four-wave mixing process. This is related to the observation of spatial information of internal materials. Background art
近年、 生体細胞等の観察、 特に生体内のタンパク質を可視化することが求められており、 これを実現すベく種々のタイプの光学顕 が開発されてレヽる。 このような画 »として 従来から蛍光顕 が存在する。 この顕 は、 観察試料の分子又は組織を蛍光染色した 後に励起光を照射して発生する蛍光を観察することで観察試; fs 子等の空間分布を検出し ている。 近年、 このような蛍光顕微鏡において、 3次元 能向上のため超短パルス光レ 一ザにより照射光として長波長の短レヽパルス光で試粉子等を 2光子励起 (又は多光子励 起) し、 その蛍光を観測する多光子励起蛍光顕 が開発されている。  In recent years, there has been a demand for observation of living cells and the like, in particular, visualization of proteins in the living body, and various types of optical microscopes have been developed to realize this. Conventionally, fluorescence microscopes exist as such images. This microscope detects the spatial distribution of fs molecules, etc. by observing the fluorescence generated by irradiating excitation light after fluorescent staining of the molecules or tissues of the observation sample. In recent years, in such a fluorescence microscope, a two-photon excitation (or multi-photon excitation) of a sampler or the like is performed with a short wavelength pulsed light having a long wavelength as an irradiation light by an ultrashort pulsed laser to improve the three-dimensional performance. A multiphoton excitation fluorescence microscope has been developed to observe the fluorescence.
しかしながら、 この顕 «は放出される蛍光強度が低いため光の利用効率が悪く、 高い 3次元;^能で可視的に試料観測する顕纖を所望し難いという問題があった。 また、 こ の顕纖では蛍光 '性の試料、 あるレ、は蛍光色素で染色しなければ観測することができな ヽ という問題も並存している。 さらに、 従来の多光子励起蛍光顕 ί«では試料内の複数物質 を同時に観測することが困難であり、 生職料等にぉレ、ては物質相互間の相対動作を認識 できないという問題も指摘されて 、る。  However, this microscope has a problem in that it is difficult to desire a microscope for observing a sample visually with a high three-dimensional capability because the emitted fluorescence intensity is low and the light utilization efficiency is low. In addition, there is a problem that this specimen cannot be observed unless it is stained with a fluorescent dye. Furthermore, it has been pointed out that conventional multiphoton-excited fluorescence microscopy makes it difficult to observe multiple substances in a sample at the same time. It has been.
また、 近年、 他の顕 として、 周波数の異なる 2つ光パルスを試料内分子に同時に入 射させ、 その^!波により分子振動や回転稱立を励起し、 さらに上の仮想萌立を励起する ことによって発せられるコヒーレントアンチストークスラマン散乱光 (Cohe r e n t An t i s t o k e s Raman Sp e c t r o s c o py :以下、 「CAR S光」 と称する) を観測するコヒーレントアンチスト一タスラマン散乱顕微鏡 (以下、 「CAR S簡 」 と称する) が開発されている。 この顕 では、 試; fs ^子への入射光の周波数差が試;^子固有の分子振動 立と共鳴 したときに C AR S光が増幅されるという光学原理を利用したものであり、試 子に蛍 光染色を行うことなく試料観測可能である点では有利である力 s、 その反面、観測対象とな る C AR S光の増強は 2つの異なる周波数の入射光の^波に依存し、 観測される CAR S光も該入射光の難波に依存するものであるため、 実現化設計、 特に目的試^ ·子が複 数に亘る における調整の困難性力 S指摘されている。 また、 0八 3画«では、 目的 試料分子の分子振動 立との共鳴で増強された C A R S光を観測対象としており蛍光顕微 鏡のように蛍光観測するものではないため、 既存の蛍 色技術を活用して観測光の選択 増強をすることもできないという問題もあった。 Also, in recent years, as another observation, two light pulses with different frequencies are simultaneously incident on the molecules in the sample, and the molecular vibration and rotation are excited by the ^! Coherent anti-stokes Raman scattering light (hereinafter referred to as “CAR S light”) (hereinafter referred to as “CAR S simple”) ) Has been developed. In this experiment, the frequency difference of the incident light to the fs ^ child is tested; the optical principle that CARS light is amplified when resonating with the molecular vibration inherent in the child is used. force s is in that it is a sample observable advantageously without the fluorescent dye to the child, the other hand, the observation target and name Ru C AR S light enhancement depends on the ^ wave of the incident light of the two different frequencies Since the observed CAR S light also depends on the wave of incident light, it has been pointed out that it is difficult to adjust the realization design, especially when there are a plurality of objective test elements. In addition, on the 083 screen, CARS light enhanced by resonance with the molecular vibration of the target sample molecule is the object of observation, and it is not intended to observe fluorescence like a fluorescence microscope. There was also a problem that it could not be used to enhance the selection of observation light.
例えば、 上記従来技術を示す文献として日本国特開 2 0 0 2— 1 0 7 3 0 1号公報のご ときが存在する。 発明の開示  For example, Japanese Patent Application Laid-Open No. 2000-0100 1 includes a document showing the above-described conventional technology. Disclosure of the invention
発明力 S解決しょうとする課題 Inventive power S Problems to be solved
以上の事'隋に鑑みて、 本発明は多数の目的試料物質を高感度、 ί氐侵襲に同時検出するこ とができ、 且つ試; le )質への蛍光染色を必須としない顕«等の空間情報検出手段を することを目的とする。 ί¾ を角军決するための手段  In view of the above, the present invention is capable of simultaneously detecting a large number of target sample substances with high sensitivity and invasion, and is not essential for fluorescent staining of samples. The purpose of this is to provide a means for detecting spatial information. Means for deciding ί¾
第一の本発明は、 試料内の目的物質が放出する光を検出することにより試料内物質の空 間情報を取得する空間情報検出装置を している。 具体的には、 長波長の短パルス光を 照射する光源 (例えば、 実施形態におけるレーザ光源 1を参照) と、 光源からの照射光を 2つの光路に分流する第 1分流手段 (例えば、 実施形態におけるビームスプリッタ B S 1 ) と、 第 1分流手段により分けられた 2つの光路のうち一方の光路上で予め設定された ポンプ光を生成するポンプ光生成手段と、 第 1分流手段により分けられた 2つの光路のう ち他方の光路上で予め設定されたプロ一ブ光を生成するプロープ光生成手段と、 2つの光 路を合流させて藤己ポンプ光と爾己プロープ光とを空間的に重畳させる合流手段 (例えば、 実施形態のビームスプリッタ B S 2 ) と、 合流手段で重畳されたポンプ光とプローブ光と を収束させて試料を照 る試料照射手段 (例えば、 実施形態の対物レンズ対 9、 ステー ジ 1 0、 対物レンズ +9 a ) と、 試料照射手段により藤己ポンプ光と前記プローブ光とを照 射された試料から放出される光から予め設定された波長の放出光を抽出する目的放出光抽 出手段 (例えば、 実施形態の対物レンズ 9 b、 フィルター 1 1) と、 目的光抽出手段によ り抽出された波長光を検出する検出器 (例えば、 実施形態の検出器 12) とを備え、 予め 設定されたポンプ光は、 試料内物質が多光子で電子共鳴が起こるような周波数 ω 1, ω 2, ·'·ωηで設定され、 目的放出光抽出手段により抽出される予め設定された波長の放出 光は、 ポンプ光の周波数 ω 1, ω 2, · · · ω ηの和と予め設定されたプローブ光の周波数 ωη+ 1との^ l波数 ωη + 2= (ω 1 + ω 2+〜ωη) — ω η + 1に近づくように設 定される (例えば、 ポンプ光は、 試料内物質が 2光子で電子共鳴が起こるような周波数 ω 1, ω 2で設定され、 放出光は、 ポンプ光の周波数 ω 1, ω 2の和と予め設定された プローブ光の周波数 ω 3との ¾J¾波数 ω4 = ω 1+ ω 2-ω 3に近づくように設定され る) 。 The first aspect of the present invention is a spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted from a target substance in the sample. Specifically, a light source that irradiates short-wavelength light having a long wavelength (see, for example, the laser light source 1 in the embodiment), and a first diversion unit that divides the irradiation light from the light source into two optical paths (for example, the embodiment) The beam splitter BS 1) and the pump light generating means for generating the preset pump light on one of the two optical paths divided by the first diversion means and the first diversion means 2 A probe light generating means for generating a preset probe light on one of the two optical paths, and Fujimi pump light and Tsuji probe light are spatially superimposed by joining the two optical paths. Merging means (for example, the beam splitter BS 2 of the embodiment) and sample irradiation means for converging the pump light and the probe light superimposed by the merging means to illuminate the sample (for example, the objective lens pair 9 of the embodiment, The Stage 10, objective lens + 9 a) and the sample irradiation means illuminate the Fujimi pump light and the probe light. The target emission extraction means (for example, the objective lens 9 b and the filter 11 in the embodiment) for extracting emission light having a preset wavelength from the light emitted from the irradiated sample, and the objective light extraction means And a detector (for example, the detector 12 of the embodiment) that detects the extracted wavelength light, and the preset pump light has a frequency ω 1, such that the substance in the sample is multiphoton and electron resonance occurs. The emission light of the preset wavelength set by ω 2, ··· ωη and extracted by the target emission light extraction means is preset with the sum of the pump light frequencies ω1, ω2, ··· ωη The probe light frequency ωη + 1 and ^ l wavenumber ωη + 2 = (ω 1 + ω 2+ to ωη) — set to approach ω η + 1 (for example, the pump light in the sample It is set at frequencies ω 1 and ω 2 at which electron resonance occurs when a substance is two photons, and the emitted light is the frequency of the pump light. omega 1, Ru is set to be close to ¾J¾ wavenumber ω4 = ω 1+ ω 2-ω 3 of the frequency omega 3 of the sum of omega 2 a preset probe light).
上記ポンプ光生成手段又はプローブ光生成手段は、 第 1分流手段から合流手段までの一 方の光路の光路長を変化させる光路長伸縮手段を有することができる。 また、 予め設定さ れたポンプ光は 2光子で電子共鳴が起こるような周波数 ω 1, ω 2で設定されることが 好ましレヽ。 予め設定されたポンプ光の周波数 ω 1, ω 2は、 同一の周波数 ω 1であるこ とが好ましい。  The pump light generation means or the probe light generation means may include an optical path length expansion / contraction means that changes the optical path length of one of the optical paths from the first diversion means to the merging means. In addition, it is preferable that the preset pump light is set at frequencies ω 1 and ω 2 at which electron resonance occurs in two photons. The preset pump light frequencies ω 1 and ω 2 are preferably the same frequency ω 1.
また、 プローブ光生成手段は、 伝送される光から広帯域波長光を生成する光ファイバと 該光フアイバから放出された広帯域波長光から予め設定された波長域の光を抽出するプロ ーブ光抽出手段とを有することが好ましレ、。  The probe light generation means includes a probe light extraction means for extracting light in a preset wavelength region from the optical fiber that generates broadband wavelength light from the transmitted light and the broadband wavelength light emitted from the optical fiber. And it is preferable to have.
ポンプ光生成手段は、伝送される光の周波数変換を行う発振器 (例えば、 実施形態にお る OPO : o p t i c a l p a r ame t r i c o s c i l l a t o r) を有して も良い。 また、 ポンプ光生成手段は、 伝送される光から広帯域波長光を生成する光フアイ バを有しても良く、 この^、 光ファイバから放出された広帯域波長光から予め設定され た波長域の光を抽出するポンプ光抽出手段を供えることや、 光ファイバから放出された広 帯域波長光から予め設定された波長域の光を抽出するポンプ光抽出手段を有することが考 えられる。  The pump light generation means may include an oscillator that performs frequency conversion of transmitted light (for example, OPO: opti cal ame tr cico sc ci l la tor in the embodiment). The pump light generation means may have an optical fiber that generates broadband wavelength light from the transmitted light, and light in a wavelength range set in advance from the broadband wavelength light emitted from the optical fiber. It is conceivable to provide a pump light extraction means for extracting the light, and to have a pump light extraction means for extracting light in a preset wavelength region from the wide band wavelength light emitted from the optical fiber.
また、 ポンプ光 ω 1、 ω 2、 ω 3それぞれ異なる周波数に設定する光学系として、 第 1として (図 3及びこれを参照する実施形態の説明参照) 、 ポンプ光生成手段は、 伝送さ れる光の周波数変換を行う発振器と、 発振器で変換された光を 2つ以上の光路に分流する 第 2分流手段と、 第^分流手段により分流された光路のうち一つの光路を伝送する光から 広帯域の波長光を生成する光フアイバとを有し、 合流手段は、 第 2分流手段により分流さ れた光路を伝送するそれぞれのポンプ光を合流させてプローブ光に重畳させる光学系が提 供される。 In addition, as an optical system for setting the pump lights ω 1, ω 2, and ω 3 to different frequencies, as a first (see FIG. 3 and the description of the embodiment that refers to this), the pump light generation means transmits the transmitted light. An oscillator that performs frequency conversion of the light, a second diversion means that diverts the light converted by the oscillator into two or more optical paths, and light that transmits one of the optical paths that are diverted by the diversion means And an optical system that combines the pump lights that transmit the optical paths branched by the second diversion means and superimposes them on the probe light. The
第 2として (図 4及びこれを参照する実施形態の説明参照) 、 ポンプ光生成手段は、 伝 送される光を 2つ以上の光路に分流する第 2分流手段と、 第 2分流手段により分流された 光路のうち一つの光路を伝送する光から広帯域の波長光を生成する光ファイバと、 第 2分 流手段により分流された光路のうち他の一つの光路を伝送する光の周波数変換を行う発振 器とを有し、 合流手段は、 第 2分流手段により分流された光路を伝送するそれぞれのボン プ光を合流させてプローブ光に重畳させる光学系も される。  Secondly (see FIG. 4 and the description of the embodiment referring to this), the pump light generating means includes a second diversion means for diverting the transmitted light to two or more optical paths, and a diversion by the second diversion means. The optical fiber that generates broadband wavelength light from the light transmitted through one of the optical paths, and the frequency conversion of the light transmitted through the other optical path of the optical paths shunted by the second shunting means The merging means may be an optical system that combines the pump lights transmitted through the optical paths diverted by the second diversion means and superimposes them on the probe light.
さらに、 第 3として (図 5及びこれを参照する実施形態の説明参照) 、 光源が広帯域の 波長光を生成し (図 5に示さず) 、 又は光源から第 1分流手段までの光路に光帯域の波長 光を生成する光ファイバを配設し (図 5参照) 、 さらに、 プローブ光生成手段は、 第 1 分流手段から伝送される広帯域波長光から予め設定された波長域の光を抽出するプローブ 光抽出手段を有し、 ポンプ光生成手段は、伝送される光を 2つ以上の光路に分流する第 2 分流手段と、 第 2分流手段により分流された光路のうち一つの光路を伝送する光の周波数 変換を行う発振器とを有し、 合流手段は、 第 2分流手段により分流された光路を伝送する それぞれのポンプ光を合流させてプローブ光に重畳させる光学系も提供される。  Further, as the third (see FIG. 5 and the description of the embodiment referring to this), the light source generates a broadband wavelength light (not shown in FIG. 5), or the optical band in the optical path from the light source to the first diversion means An optical fiber that generates light of a wavelength (see FIG. 5) is provided. Further, the probe light generation means extracts a light in a preset wavelength range from the broadband wavelength light transmitted from the first shunting means. The pump light generating means has a light extracting means, and the pump light generating means is a light that transmits one light path among the second shunting means for shunting the transmitted light into two or more light paths and the light path shunted by the second shunting means. And an optical system that combines the pump lights transmitted through the optical paths diverted by the second diversion means and superimposes them on the probe light.
また、 本発明は試料照射手段の具体的構成も搬している。 例えば、 少なくとも試料を 載置するステージと該ステージを 3次元移動させる,駆動手段とを備えた試料移動手段を有 する構成や、 セルソータのごとき 1つ以上の試料を順次一方向に搬送する搬送手段を有す る構成も される。  The present invention also carries a specific configuration of the sample irradiation means. For example, a configuration having a sample moving means including at least a stage for placing a sample and a driving means for moving the stage in three dimensions, or a conveying means for sequentially conveying one or more samples such as a cell sorter in one direction. There is also a configuration with
第二の本発明の空間情報検出手段は、 試料内の目的物質が放出する光を検出することに より試料内物質の空間情報を取得する空間情報検出装置であって、複数の所定強度以上の 周波数光 ω ΐ , ω 2, · ' · ω ηを含む一の超短パルス光を照射する光照射手段と、 光照射手 段からの照射光に含まれる周波数光 ω 1、 ω 2、 … ω ηのうちから設定される 2つのポン プ光 ω ρとプローブ光 ω dとを時間的に重畳させる時間差補償手段と、 時間差補償手段で 重畳されたポンプ光 ω ρとプローブ光 ω dとを集光させて試料に照射する試料照射手段と、 試料照射手段によりポンプ光 ω ρとプローブ光 ω dとを照射された試料から放出される光 カゝら予め設定された波長の放出光を抽出する目的放出光抽出手段と、 目的光抽出手段によ り抽出された波長光を +検出する検出器とを備えている。 ここで言うポンプ先 ω ρは、 試料 内物質が多光子で電子共鳴が起こるような周波数成分を有し、 目的放出光抽出手段により 抽出される波長の放出光は、 ポンプ光 ω dの和と前記プローブ光 ω dとの^!波数 coSPE = 2 ω d— ω dに近づくように設定される。 The spatial information detection means according to the second aspect of the present invention is a spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted by a target substance in the sample, and has a plurality of predetermined intensities or more. Light irradiation means for irradiating one ultrashort pulse light including frequency light ω ΐ, ω 2, · '· ω η, and frequency light ω 1, ω 2, ... ω η included in the light irradiated from the light irradiation means Time difference compensation means for temporally superimposing two pump lights ω ρ and probe light ω d set from among the above, and pump light ω ρ and probe light ω d superimposed by the time difference compensation means are condensed A sample irradiating means for irradiating the sample and light emitted from the sample irradiated with the pump light ω ρ and the probe light ω d by the sample irradiating means. Wavelength light extracted by the emitted light extraction means and the target light extraction means And a detector for detecting + . The pump destination ω ρ here is the sample The emitted light of the wavelength extracted by the target emission light extraction means is the ^! Wave number of the sum of the pump light ω d and the probe light ω d. coSPE = 2 ω d — Set to approach ω d.
また、 光照射手段は、 単一の広帯域スぺク トルを有するパルス光を照射し、 ポンプ光 ω とプローブ光 ω dとは、 照射されるパルス光の中心周波数から前後に離間した 2つの周 波数成分でそれぞれ設定され、 時間差補償手段は、 ポンプ光 w dとプローブ光 co dとの両 者を時間的に重畳させても良い。 また、 光照射手段が、 複数の頂部強度を含むスぺクトル を有する単一のノ、。ルス光を照射し、 ポンプ光 ω ρとプローブ光 co dと力 複数の頂部のう ちの 2つの頂部における周波数成分でそれぞれ設定され、 さらに、 時間差補償手段が、 ポ ンプ光 w dとプローブ光 co dとの両者を時間的に重畳させても良い。 さらに、 光照射手段 は少なくとも、 光源からの照射光を光ファイバにより広帯域波長光に変換するように構成 しても良いし、 少なくとも、 光源と、 光源からの照射光を分流する分流手段と、 分流され た各照射光をそれぞれ所望の周波数変換する発振器とを備える構成であっても良い。 なお、 上述する目的光抽出手段は、 試料の前後 ヽずれかの光路上に配設され試料から放出される 信号光と同じ帯域の局所発振光を生成する局所発振光発振動装置と、 局所発振光発振動装 置からの信号光と試料から放出される信号光とを空間的に重畳させる光学系と、 重畳させ た信号光の相互間に所定の遅延時間を付与する光学系と、 を備えることが好まし 誘導 パラメトリック光信号の増強が容易に可能である。 発明の効果  The light irradiating means irradiates pulse light having a single broadband spectrum, and the pump light ω and the probe light ω d are separated from the center frequency of the irradiated pulse light in two directions. The time difference compensation means may be set for each wave number component, and the pump light wd and the probe light cod may be superimposed in time. Further, the light irradiation means has a spectrum including a plurality of top strengths. Irradiate the light, pump light ω ρ, probe light co d and force are set with the frequency components at the two tops of the tops, respectively, and the time difference compensation means includes the pump light wd and the probe light co d Both may be superimposed in time. Furthermore, the light irradiating means may be configured to at least convert the light emitted from the light source into broadband wavelength light using an optical fiber, or at least a light source, a diversion means for diverting the irradiation light from the light source, and a diversion A configuration may be provided that includes an oscillator that converts each of the irradiated light to a desired frequency. Note that the above-described target light extraction means includes a local oscillation light emitting and oscillating device that generates local oscillation light in the same band as the signal light that is disposed on the optical path that is slightly shifted before and after the sample, and local oscillation. An optical system that spatially superimposes the signal light from the light-oscillating device and the signal light emitted from the sample, and an optical system that gives a predetermined delay time between the superimposed signal light Inductive Parametric optical signal enhancement is easily possible. The invention's effect
第一の本発明の空間情報検出装置 (顕 ί«等) によれば多光子、 とりわけ試料内物質を 電子励起 立を 2光子のポンプ光 ω 1、 ω 2 (ω 2 = ω 1も含む) で共鳴させ、 ポンプ 光で電子励起された目的物質にプローブ光 ω 3を照 ることで ω 1 + ω 2— ω 3の周 波数の誘導パラメトリック光 ω 4を放出される構成を採用している。 この光学系を採用 すれば、 目的物質ごとに設定される誘導パラメトリック光をポンプ光に依存させ、 プロ一 ブ光にあまり依存させないこととなるので、 複数の目的物質を蛍光染色せずに同時に検出 する方法として非常に^^である。 また、 この光学系における励起'発光は全てコヒーレ ントな状態で行われ、 発光も入射光に対してコヒーレントであり、 発光は励起光と同様の パルスになるという特性を得ることもできる。 また、本発明装置ではポンプ光を広帯域波長光やマルチスぺク トルパルス光に基づいて 生成することができるので上記試料からの放出光 (誘導パラメトリック光) の周波数がプ ロープ光の周波数に依存しない性質と相俟って、 同時に多数 (理論的には無数) の目的物 質ごとに異なる周波数の誘導パラメトリック発光を容易に検出することができる。 さらに、 本発明装置は、 共 3|¾果を起こす対象を電子励起 立としているため広義には蛍光増強技 術 (非蛍光染色でありながら) といえ、 誘導パラメトリック蛍光が増強するようにポンプ 光を設定しておけば、 誘導パラメトリック蛍光と同時に 2光子蛍光を観察することも可能 であり、 CAR S顕微鏡ではできなかつた試料内物質を蛍光染色し観察する従来の観察手 法を同時に踏襲することもでき、 非常にユーザビリティが高い。 さらに、 出力光が入射光 と同様の超短光パルスを生成するため、 同期検出やへテ口ダイン増幅にも好ましレヽ。 According to the first spatial information detection apparatus of the present invention (such as the microscope), multiphotons, in particular, two-photon pump light ω 1 and ω 2 (including ω 2 = ω 1) The structure is such that the induced parametric light ω 4 with a frequency of ω 1 + ω 2− ω 3 is emitted by irradiating the probe light ω 3 to the target substance that is electronically excited by the pump light. . If this optical system is used, the guided parametric light set for each target substance depends on the pump light and does not depend much on the probe light, so multiple target substances can be detected simultaneously without fluorescent staining. It is very ^^ as a way to do it. Moreover, all of the excitation light emission in this optical system is performed in a coherent state, the light emission is also coherent with respect to the incident light, and the light emission can be obtained in the same pulse as the excitation light. In addition, since the pump light can be generated based on broadband wavelength light or multispectral pulse light in the present invention device, the frequency of the emitted light (stimulated parametric light) from the sample does not depend on the frequency of the probe light. In combination with this, it is possible to easily detect stimulated parametric emission at different frequencies for a large number (theoretically innumerable) target substances. Furthermore, since the apparatus of the present invention uses electronic excitation as the target that causes the co-effect, it can be said to be a fluorescence enhancement technique (although non-fluorescent staining) in a broad sense, and the pump light so that the induced parametric fluorescence is enhanced. It is possible to observe two-photon fluorescence at the same time as induced parametric fluorescence, and follow the conventional observation method of staining and observing substances in a sample that could not be obtained with the CAR S microscope at the same time. It is also very usable. Furthermore, since the output light generates ultrashort light pulses similar to the incident light, it is also preferred for synchronous detection and for dyne dyne amplification.
また、本発明装置では、 同一試料の走査検出のみならず、 複数の試料に含まれる特定物 質を順次検出する試料照射手段も «されており、 複数患者の生体細胞に特定物質が含ま れているかを検出する場合等においても迅速な検出方法を »することができる。 以下、 本発明の具体的な実施形態を例示する。  In addition, the apparatus of the present invention includes not only scanning detection of the same sample but also sample irradiation means for sequentially detecting a specific substance contained in a plurality of samples, and the specific substance is contained in the biological cells of a plurality of patients. It is possible to use a quick detection method even when detecting whether or not. Hereinafter, specific embodiments of the present invention will be exemplified.
なお、第二の本発明の空間情報検出装置によれば、 第一の本発明の場合と異なり、 ボン プ光とプローブ光とを生成するためにレーザからの照射光を分流する必要がなく、 シング ルパルス光のうちに含まれる周波数成分からポンプ光とプローブ光とを生成し、誘導パラ メトリック光 (S P E) を生成し得るように分散補償素子により両者を時間差補償するこ とできるので、 光学系として調整し易く、 シンプル、 安価なものを «可能となる。 また、 本発明によれば誘導パラメトリック光信号に局所発振光を干渉させることで信号増強も容 易である。 さらに、 誘導パラメトリック光強度力 S試料の屈折率、 吸収率に依存するため、 屈折率、 吸収率の空間分布を取得可能であり、 このとき試料からの干渉信号 (試料からの 信号およびこれに局所発振光を干渉させた信号光) の位相情報から試料の屈折率と吸収率 の情報を分離して取得可能である。 図面の簡単な説明  According to the spatial information detection device of the second aspect of the present invention, unlike the case of the first aspect of the present invention, it is not necessary to split the irradiation light from the laser in order to generate the pump light and the probe light. Since the pump light and the probe light are generated from the frequency components contained in the single pulse light, and the dispersion compensation element can compensate for the time difference so that the induced parametric light (SPE) can be generated, the optical system As a result, it is easy to adjust, and a simple and inexpensive product can be used. In addition, according to the present invention, signal enhancement can be easily performed by causing local oscillation light to interfere with a guided parametric optical signal. In addition, the induced parametric light intensity force S depends on the refractive index and the absorptivity of the sample, so the spatial distribution of the refractive index and the absorptivity can be obtained. At this time, the interference signal from the sample (the signal from the sample The information of the refractive index and the absorptivity of the sample can be obtained separately from the phase information of the signal light that causes the oscillation light to interfere. Brief Description of Drawings
図 1は、 第一の本発明の実施形態の光学系例を示している。  FIG. 1 shows an example of an optical system according to the first embodiment of the present invention.
図 2は、 図 1の光学系例の主たる構成の略図を示している。  FIG. 2 shows a schematic diagram of the main configuration of the optical system example of FIG.
図 3は、本発明の他の光学系例を略示している。  FIG. 3 schematically shows another example of the optical system of the present invention.
図 4は、 図 3の光学 +系例の変形例である。 ' 図 5は、 図 3の光学系例の他の変形例である。 FIG. 4 is a modification of the optical + system example of FIG. ' FIG. 5 shows another modification of the optical system example of FIG.
図 6は、 C A R S顕纖の基本原理である C A R S過程を示している。  Figure 6 shows the C A R S process, which is the basic principle of C A R S manifestation.
図 7は、 本発明の空間情報検出装置の基本原理である誘導パラメトリック過程の一態様 を示している。  FIG. 7 shows an aspect of the guided parametric process that is the basic principle of the spatial information detecting device of the present invention.
図 8は、 図 7の誘導パラメトリック過程の変形態様の一つを示している。  FIG. 8 shows one variation of the guided parametric process of FIG.
図 9は、 3つの光路を伝送する光を時間的に重畳させる方法の一例を略示している。 図 1 0は、 第二の本発明の光学系例の略図である。  FIG. 9 schematically shows an example of a method for temporally superimposing light transmitted through the three optical paths. FIG. 10 is a schematic diagram of an example of the optical system of the second present invention.
図 1 1は、 図 1 0の光照射手段で照射されるシングルパルス光のスぺクトルを示してい る。  FIG. 11 shows a spectrum of single pulse light irradiated by the light irradiation means of FIG.
図 1 2は、 図 1 0の光照射手段で照射されるシングルパノレス光のスぺクトルを示してレヽ る。  FIG. 12 shows a spectrum of single panoramic light irradiated by the light irradiation means of FIG.
図 1 3は、 図 1 0の光照射手段で照射されるシングルパルス光のスぺクトルを示してい る。  FIG. 13 shows a spectrum of single pulse light irradiated by the light irradiation means of FIG.
図 1 4は、 第二の本発明の他の光学系例を示している。  FIG. 14 shows another example of the optical system according to the second aspect of the present invention.
図 1 5は、 第二の本発明の他の光学系例を示している。  FIG. 15 shows another example of the optical system according to the second aspect of the present invention.
図 1 6は、 光ファイバを通過した超短光パルスの実際のスぺクトルを略示したものであ る。  Figure 16 shows the actual spectrum of the ultrashort optical pulse that has passed through the optical fiber.
図 1 7は、寧導パラメトリック光を増強するための光学系例が示されている。 発明を実施するための最良の形態  Figure 17 shows an example optical system for enhancing Ninging parametric light. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 第一の本発明の具体的な実施形態を説明するにあたって ¾^原理となる非線形光 学効果、 特に一例としての 4波混合について概説する。 4波混合は、 4つの電磁波を伴う 非線形過程に帰属されるものであり、 また 3次の非線形光学過程であり 3次の非線形感受 率に支配される特性を有して^ヽる。 この 3次の非線形光学効果とは、 3つの周波数 ω 1, 2, ω 3の光を物質に入 ると、 ω 4 = ω 1土 ω 2土 3 の周波数をもつ光が放出 される現象であるが、 2次の非線形光学効果と異なり分子の反転対称性の有無に拘わらず 全ての物質で生じる反面、 2次の非線形光学効果に比してその効果が弱 ヽという特徴を有 する。 しかしながら、 その効果の脆弱性は、 レーザにより高いピーク強度の入射光を使用し、 物質の共 カ果を利用することで解決することができ、 3次の非線形光学効果を検出する ことを可能とするものである。 First, in describing a specific embodiment of the first aspect of the present invention, an outline of a nonlinear optical effect as a principle, particularly, four-wave mixing as an example will be outlined. Four-wave mixing is attributed to a nonlinear process involving four electromagnetic waves, and is a third-order nonlinear optical process that has characteristics governed by the third-order nonlinear susceptibility. This third-order nonlinear optical effect is a phenomenon in which light with a frequency of ω 4 = ω 1 soil ω 2 soil 3 is emitted when light of three frequencies ω 1, 2, and ω 3 enters the material. However, unlike the second-order nonlinear optical effect, it occurs in all materials regardless of the presence or absence of inversion symmetry of the molecule, but the effect is weak compared to the second-order nonlinear optical effect. However, the weakness of the effect can be solved by using incident light with a high peak intensity by the laser and utilizing the symptom of the material, making it possible to detect the third-order nonlinear optical effect. To do.
ここでは具体的説明として、 上述する CARS顕纖の基本光学過程となる CARS過 程と本発明の画«の基本光学過程として定義された誘導パラメトリック過程について図 6〜 7を参照しつつ概説することで 4波混合における 3次の非線形光学過程の説明に代替 する。 まず、 図 6は CARS過程のエネルギー準位を略示している。 この図において ω 1はポンプ光としての入射光の周波数、 ω 3はポンプ光 ω 1に重畳するプローブ光とし ての入射光の周波数、 ω 4は CARS光の周波数である。 具体的には、 超短パルス光レー ザにより試料表面又は内部の同一分子にポンプ光 ω 1とプローブ光 ω 3とを同時に集光 AI†させ、 この 2つの光波の周波数差 Ω = ω 1-ω 3 が試;^子の分子振動数に一致 することによって発せられる CARS光 ω 4を観測する。 CARS過程では、 2光子の ポンプ光 ω 1とプローブ光 ω 3との 波数 Ωが試; 子が固有に有する分子振動' と共鳴 (試料分子固有の分子振動数と一致) すると発せられる CARS光が増強する特徴 を有するので、 出力光波長 (CARS光波長) を設計する際にポンプ光及びプローブ光の 両者の相関をもって設計する必要があり、 出力光波長がポンプ光やプローブ光と近づくと 波長による分光で出力光を抽出することができない^がある等、 適切な波長選択をする こと力 S難しくなる。 また、 CARS過程では共鳴が生じる帯域幅が狭い分子振動共鳴に依 存するためスぺクトル幅をもったパルスを用いて効率良く CARS光を観測することも難 しくなる。  Here, as a concrete explanation, the CARS process, which is the basic optical process of the CARS observation described above, and the guided parametric process defined as the basic optical process of the present invention will be outlined with reference to FIGS. Instead, it replaces the explanation of the third-order nonlinear optical process in four-wave mixing. First, Figure 6 shows the energy level of the CARS process. In this figure, ω 1 is the frequency of incident light as pump light, ω 3 is the frequency of incident light as probe light superimposed on pump light ω 1, and ω 4 is the frequency of CARS light. Specifically, the ultrashort pulse light laser simultaneously collects the pump light ω 1 and the probe light ω 3 on the same molecule on the sample surface or inside the AI †, and the frequency difference between the two light waves Ω = ω 1- Observe the CARS light ω 4 emitted when ω 3 matches the molecular frequency of the sample. In the CARS process, the wave number Ω of the two-photon pump light ω 1 and the probe light ω 3 is the sample; the CARS light that is emitted when it resonates (matches the molecular frequency inherent to the sample molecule) Because it has a feature that enhances, when designing the output light wavelength (CARS light wavelength), it is necessary to design with the correlation of both the pump light and the probe light. When the output light wavelength approaches the pump light and the probe light, it depends on the wavelength. It is difficult to select an appropriate wavelength, such as when the output light cannot be extracted by spectroscopy. In addition, since the CARS process depends on molecular vibration resonance, which has a narrow bandwidth in which resonance occurs, it is difficult to efficiently observe CARS light using a pulse with a spectral width.
これに対して、 誘導パラメトリック過程ではこのような問題が解決される。 図 7を 参照すれば、 誘導パラメトリック過程のエネルギー 立を略示している。 ここでも ω ΐ はポンプ光としての入射光の周波数、 ω 3はポンプ光 ω 1に重畳するプローブ光として の入射光の周波数、 ω 4は出力光の周波数である。 具体的には、 2光子励起可能な超短パ ルス光レーザにより試 «面又は内部の同一分子にポンプ光 ω 1を集光 A させて試料 分子の電子励起 立を励起し、 同時重畳的にプローブ光 ω 3を集光 Λίさせることで励 起された試料分子に強い電場を付与して発光する ω4 = 2ω 1—ω 3の出力光を観測す る。 誘導パラメトリック光 (蛍光) 信号は、 2光子のポンプ光 ω ΐ力 S試粉子が固有に 有する電子励起 立と共鳴すると増強する特徴を有するので、 ポンプ光の波長に依存する がプローブ光には依; しない。 従って、 上記 CARS過程の場合と相異し、'プローブ光の 波長を変ィ匕させるだけで誘導パラメトリック光波長を自由に設計することができ、 観測し 易い出力光波長を選択することができる (出力光の波長選択が容易である) 。 また、 誘導 パラメトリック過程では電子共鳴が生じる帯域幅が CAR S過程における分子振動共鳴が 生じる帯域よりも広いため、 スぺクトル幅をもったパルスを用いて効率良く誘導パラメト リック蛍光を観測することができる。 In contrast, the guided parametric process solves this problem. Referring to Fig. 7, the energy standing of the induced parametric process is schematically shown. Here, ω ΐ is the frequency of the incident light as pump light, ω 3 is the frequency of the incident light as probe light superimposed on the pump light ω 1, and ω 4 is the frequency of the output light. Specifically, the pump light ω 1 is focused on the same molecule on the sample surface or inside by an ultrashort pulsed laser capable of two-photon excitation to excite the electronic excitation of the sample molecule and simultaneously superimpose. Observe the output light of ω4 = 2ω 1−ω 3 that emits light by applying a strong electric field to the sample molecules excited by condensing the probe light ω 3. The stimulated parametric light (fluorescence) signal has a characteristic that it enhances when it resonates with the electronic excitation of the two-photon pump light ω repulsive force S sampler, so it depends on the wavelength of the pump light. No; Therefore, unlike the case of the above CARS process, By simply changing the wavelength, the guided parametric light wavelength can be freely designed, and the output light wavelength that is easy to observe can be selected (the wavelength selection of the output light is easy). Also, in the induced parametric process, the band width in which electron resonance occurs is wider than the band in which molecular vibration resonance occurs in the CAR S process, so it is possible to efficiently observe induced parametric fluorescence using a pulse with a spectral width. it can.
次に、 この誘導パラメトリック過程を活用した本発明の觀« (誘導パラメトリック蛍 光顕纖) の実施形態を詳細に説明する。 図 1は、 本発明の顕纖 (以下、 「誘導パラメ トリック蛍光顕纖」 と^ "Tる) の光学系の基本例 (後述の図 2 ) に基づく具体的構成例 である。 図 1に示 導パラメトリック蛍光顕纖は、 まず光源としてフェムト秒オーダ 〜数十フエムト秒オーダの超短パルスレーザなどから構成されるレーザ光源 1を使用して いる。 レーザ光源をこのようなフエムト秒オーダ〜数十フエムト秒オーダの超短パルスレ 一ザ、 すなわち数十フエムト秒オーダ以下の超短パルスレーザから構成することにより、 これらの高い出力光強度に起因して極めて高い光信号強度を得ることができる。  Next, an embodiment of the present invention (induced parametric fluorescence microscopy) utilizing this induced parametric process will be described in detail. Fig. 1 is a specific configuration example based on the basic example (Fig. 2 described later) of the optical system of the present invention (hereinafter referred to as "guided parametric fluorescence microscope" and "T"). First, the parametric fluorescence microscope uses a laser light source 1 composed of an ultrashort pulse laser of femtosecond order to several tens of femtosecond order as a light source. By constructing from an ultrashort pulse laser of the order of 10 femtoseconds, that is, an ultrashort pulse laser of the order of several tens of femtoseconds, an extremely high optical signal intensity can be obtained due to these high output light intensities.
また、 レーザ光の光路には、 ハーフミラー HM 1とミラー M lとの間にプリズム対 3が 設けられる。 このプリズム対 3を往復入射することでレーザ光の分散を補償することとが できる。 さらに、 プリズム対 3により分散補償されたレーザ光の光路は 9 0度変換されて 所定の光学系を構成すベくミラー M 1〜M 5が設けられ、 ミラー M 1〜M 5を経由した光 はビームスプリッタ B S 1に入射される。 なお、 レーザ 1の後光路には光は系の反射戻り 光を防止するためにアイソレータ 2を設けることが好まし 、。  In addition, a prism pair 3 is provided between the half mirror HM 1 and the mirror M l in the optical path of the laser light. Dispersion of the laser beam can be compensated by reciprocating the prism pair 3. Further, the optical path of the laser light that has been dispersion-compensated by the prism pair 3 is converted by 90 degrees to provide mirrors M 1 to M 5 that constitute a predetermined optical system, and light that passes through the mirrors M 1 to M 5 Is incident on the beam splitter BS1. In addition, it is preferable to provide an isolator 2 in the optical path after the laser 1 in order to prevent reflected light from returning from the system.
次に、 ビームスプリッタ B S 1への入射光は、 2分割され、 一方の光はミラ一 M 6、 対 物レンズ 6— 1を介して光ファイノく (ρ h o t o n i c c r y a t a 1 f i b e r , 以下、 「P C F」 と称する) 7に入射される。 この P C F 7に超短パルスのレーザ光が入 射されると P C Fの内部で非線形光学効果が生じ、 広帯域パルス光を発生させる。 その後、 フィルター 8により広帯域パルス光から所望する波長光を抽出してプローブ光力形成され、 ミラー 7を介してビームスプリッタ B S 2に入射される。 なお、 プローブ光を抽出するフ ィルター 8は、 例えば抽出する中心波長と 直全幅が Πの干渉フイノレターと遮断波長が 口の口ングパスフィルター (又はショートパスフィルタ一) とを組み合わせて構成され る。 なお、 伝送光は P C Fを透過すると広帯域波長光を生成するが同時にパルス幅を拡大 させるので P C F 7後の光路上で分散補償する光学系を付与する必要がある (以下述べる 実施形態においても、 + P C Fを透過させた には該分散補償が必要とな 'るが、 これ については既知の技術であるため説明を省略する) 。 Next, the light incident on the beam splitter BS 1 is divided into two parts, and one of the lights passes through a mirror M 6 and an object lens 6-1 (ρ hotoniccryata 1 fiber, hereinafter “PCF”). It is incident on 7. When an ultrashort pulse laser beam is incident on this PCF 7, a nonlinear optical effect is generated inside the PCF, generating broadband pulsed light. Thereafter, a desired wavelength light is extracted from the broadband pulse light by the filter 8 to form a probe light force, and is incident on the beam splitter BS 2 via the mirror 7. Note that the filter 8 that extracts the probe light is configured by combining, for example, an extraction filter having a center wavelength to be extracted, an interference filter with a direct width of Π, and a mouth-pass filter (or one short-pass filter) having a cutoff wavelength. Note that transmission light generates broadband wavelength light when it passes through the PCF, but at the same time the pulse width is expanded, so it is necessary to add an optical system that compensates for dispersion on the optical path after the PCF 7 (also in the embodiments described below + Dispersion compensation is necessary to allow PCF to pass through. Is omitted since it is a known technology).
また、 ビ一ムスプリッタ B S 1で 2分割 (分流) された、 他方の光は、 ポンプ光を生成 する。 詳細には、 リトロリフレタター (3枚のミラーにより入射光を逆方向に反射させる 光素子) 4に入射'反射され、 ビームスプリッタ B S 2まで到達し、 前述のポンプ光と空 間的に重畳される。 また、 リトロリフレクタ一 4は図示しない時間遅延ステージ上に配置 され、 該ステージの往復動に応じてビームスプリッタ B S 2までの光路長が変化する。 そ の結果、 時間遅延ステージ (ディレイライン) を調整すればポンプ光とプローブ光を時間 的に重畳することができる。 その後、重畳された光はミラー M 8により反射されて対物レ ンズ対 9 a , 9 bに照射される。  The other light split (divided) by the beam splitter B S 1 generates pump light. Specifically, a retroreflector (an optical element that reflects incident light in the reverse direction by three mirrors) 4 is incident and reflected, reaches the beam splitter BS 2, and is spatially superimposed on the pump light described above. The The retro-reflector 14 is disposed on a time delay stage (not shown), and the optical path length to the beam splitter B S 2 changes according to the reciprocation of the stage. As a result, if the time delay stage (delay line) is adjusted, the pump light and the probe light can be superimposed in time. Thereafter, the superposed light is reflected by the mirror M8 and applied to the objective lens pair 9a, 9b.
また、 対物レンズ対 9 a、 9 bの間に試料が介揷され、 この試料に対物レンズ 9 aによ り収束されたレーザ光が照射されると焦点近傍の物質が電子励起され、 前述する誘導パラ メトリック発光が生じる。 そして、 対物レンズ 9 bから出射した光のうち誘導パラメトリ ック光の波長成分のみを抽出する。 この誘導パラメトリック光は前述するようにポンプ光 ω 1とプローブ光 ω 3とから決定される周波数 ω 4 (= 2 ω 1 ~ ω 3 ) を有するため既 知の波長 λ 4 (= ΐ /ω 4 ) であり、 フィスレター 1 1を該波長のみ透過するように設定 することとで抽出することができる (このフイノレター 1 1の構成例は前述するフィルター 8を参照) 。 そして、 抽出された誘導パラメトリック光をイメージインテンシァファイア 付き C C D等の検出器 1 2に入射し、受光された誘導パラメトリック光は検出器 1 2で電 気信号に変換された後、 コンピュータ (図示せず) に送られ、 所定の演算処理を受ける。 その結果、 前記誘導パラメトリック光が 3 7火元的に角晰され、 この角军析結果としての目的 試料物質の状態が 3次元的に所定の画面上に映し出される。  In addition, when a sample is interposed between the objective lens pair 9a and 9b and the sample is irradiated with the laser beam converged by the objective lens 9a, the substance in the vicinity of the focal point is excited electronically, as described above. Stimulated parametric emission occurs. Then, only the wavelength component of the guide parametric light is extracted from the light emitted from the objective lens 9b. Since this guided parametric light has a frequency ω 4 (= 2 ω 1 to ω 3) determined from the pump light ω 1 and the probe light ω 3 as described above, the known wavelength λ 4 (= ΐ / ω 4 It can be extracted by setting the fistlet 11 to transmit only the wavelength (see the filter 8 described above for an example of the configuration of the finoletter 11). The extracted guided parametric light is incident on a detector 12 such as a CCD with an image intensifier, and the received guided parametric light is converted into an electric signal by the detector 12 and then a computer (not shown). And receive the prescribed calculation processing. As a result, the guided parametric light is angled in 37 degrees, and the state of the target sample material as a result of this angle analysis is displayed three-dimensionally on a predetermined screen.
なお、 図 1には試料が対物レンズ対 9 a , 9 b間で往復動可能なようにステージ 1 0に より位置決めされている様子が示されているが、 これは誘導パラメトリック過程が対物レ ンズ 9 aにより収束されたレーザ光の焦点近傍で生じるため (非線形光学過程であるた め) 目 1¾¾料物質に焦点を一致させるように試料の深さ方向及び平面方向に走査可能 (3 次元走査可能) であることを示したものである。 従って、 観測しょうとする試料内の目的 物質の電子励起、靴と共鳴する 2光子のポンプ光 ω 1を設定し、 ステージ 1 0を往復動 させるとレーザ光の焦点近傍に目的物質が すれば増強された誘導パラメトリック光が 観測され、 フィルター 1 1を介して検出器 1 2で検出されることとなる。 また、 図 1の実施形態は多種の試料内物質を観測することも可能である。 前述するよう に誘導パラメトリック過程ではポンプ光により集光点近傍の電子励起 を励起すること で出力強度を増強するため観測光である誘導パラメトリック光の出力強度がポンプ光に依 存し、 プローブ光にはあまり依存しなレ、性質を有している。 この点を図 1の顕 に照ら してみると、 レーザ 1からの照射光の周波数を変化させてもプローブ光は P C F 7により 一旦、 広帯域パルスに生成された後、 フィルター 8で所望波長のみ抽出されるため固定で ある。 すなわち、 図 1の実施形態ではポンプ光を変化させてもプローブ光は固定させるこ とができる。 従って、 ポンプ光 ω ΐを生成してもプローブ光 ω 3が共通であるため放出 される誘導パラメトリック光の周波数 ω 4は 2 ω 1— ω 3であり、 ポンプ光の周波数 (又は波長) に対応して一対一に誘導パラメトリック光が決定されるものであるため、 異 なる複数のポンプ光を設定すれば電子共鳴 立の異なる複数の試料内物質を容易に観測す ることができる。 Fig. 1 shows that the sample is positioned by the stage 10 so that it can reciprocate between the objective lens pair 9a, 9b. This is because the induction parametric process is performed by the objective lens. 9 Since it occurs near the focal point of the laser beam focused by a (because it is a nonlinear optical process), it can be scanned in the depth and plane directions of the sample so that the focal point matches the material (three-dimensional scanning is possible) ). Therefore, if the target substance in the sample to be observed is electronically excited and the two-photon pump light ω 1 that resonates with the shoe is set, and the stage 10 is reciprocated, it will be enhanced if the target substance is near the focal point of the laser beam. The guided parametric light is observed and detected by the detector 1 2 through the filter 1 1. Further, the embodiment of FIG. 1 can also observe various kinds of substances in the sample. As mentioned above, in the induced parametric process, the output intensity of the induced parametric light, which is the observation light, depends on the pump light because the output intensity is enhanced by exciting the electron excitation near the condensing point with the pump light. Is not very dependent on the nature. In light of this point in FIG. 1, even if the frequency of the light emitted from laser 1 is changed, the probe light is once generated into a broadband pulse by PCF 7, and then only the desired wavelength is extracted by filter 8. Is fixed. That is, in the embodiment of FIG. 1, the probe light can be fixed even if the pump light is changed. Therefore, even if the pump light ω ΐ is generated, the probe light ω 3 is common and the emitted parametric light frequency ω 4 is 2 ω 1— ω 3, which corresponds to the frequency (or wavelength) of the pump light. Since guided parametric light is determined on a one-to-one basis, it is possible to easily observe a plurality of substances in a sample having different electron resonance characteristics by setting different pump lights.
以上の光学系における試料までの主構成と光路を伝送される光の周波数とを略示したも のが図 2に示されている (後述の他の光学系で比較参照するための理解を助ける図であり、 参照番号は図 1と重複する) 。  A schematic diagram of the main configuration up to the sample in the above optical system and the frequency of the light transmitted through the optical path is shown in FIG. 2 (helping understanding for comparison and reference in other optical systems described later) It is a figure and the reference numbers overlap with those in figure 1).
また、 図 1及び図 2の実施形態では試料は 3次元移動可能なステージ 1 0に位置決めさ れており、 該ステージを移動させることで試料内の任意 3次元位置にぉ 、て目的物質が存 在するかを検出して検出器でィメ一ジングする所謂 37火元走査検出の構成が示されてレ、る 1S 本発明の実施形態はこれに限定されるものではない。 例えば、 対物レンズ対 9 a, 9 b間にセルソータのごとき管状の運搬器を設け、 この中に複数の試料を流すことも可能で ある。 この場合、 流される複数試料のそれぞれにレーザ光の焦点力 S位置するように位置決 めすれば焦点通過した時点で目的物質が すれば誘導パラメトリック蛍光を発すること となり試料内に目的物質 (複数でも良い) 力含まれている力否かを迅速に検出することが 谷易で &>る。  In the embodiment shown in FIGS. 1 and 2, the sample is positioned on a stage 10 that can be moved three-dimensionally. By moving the stage, the target substance exists at an arbitrary three-dimensional position in the sample. The configuration of the so-called 37 fire source scanning detection in which the presence is detected and imaged by the detector is shown. The embodiment of the present invention is not limited to this. For example, a tubular transporter such as a cell sorter can be provided between the objective lens pair 9a and 9b, and a plurality of samples can be allowed to flow therethrough. In this case, if each target sample is positioned so that the focal point S of the laser beam is positioned at each of the plurality of samples to be flown, induced parametric fluorescence will be emitted if the target substance is present at the point of passage of the focal point. Good) Quickly detect whether or not a force is contained in Tani.
上記説明で目的試料物質に対応して異なる周波数のポンプ光を設定することを言及した 力 この複数のポンプ光をさらに多数のポンプ光に拡大設定することも可能である。 具体 的に説明すれば、 図 2の光学系では入射光として 2光子のポンプ光 ω 1とプローブ光 ω 3とを重叠することで放出光 ω 3と誘導パラメトリック光 ω 4を得る過程を活用してい るが、 他の実施形態では 2光子のポンプ光のレヽずれか 1つを P C Fにより広帯域パルス光 (例えば波長が 3 9 0 n ir!〜 1 6 0 0 n mに広がった白色パルス光) にし 該広帯域パル スから所望波長 (周波数 ω 2 ) を抽出することで、 誘導パラメトリック光 ω 4を放出さ せることも考えられる。 In the above description, it is mentioned that the pump light having different frequencies is set in accordance with the target sample substance. It is also possible to enlarge the plurality of pump lights to a larger number of pump lights. More specifically, the optical system in FIG. 2 utilizes the process of obtaining the emitted light ω 3 and the induced parametric light ω 4 by superimposing the two-photon pump light ω 1 and the probe light ω 3 as incident light. However, in another embodiment, one of the two photon pump light shifts is converted into broadband pulse light (for example, white pulse light with a wavelength extending from 39 to 90 nm) by PCF. Broadband pulse It may be possible to emit guided parametric light ω 4 by extracting the desired wavelength (frequency ω 2) from the sensor.
ここで、 図 3の光学系を参照すればレーザ 1からの照射光の周波数をプローブ光 ω 3 とし、 を入射光 ω 1のうち一つの周波数を ω 2とし、 放出光 ω 3と観測対象となる誘導 パラメトリック光 ω 4を放出させる光学系が示されている。 この過程の場合、 レーザ 1 の照射光が分流され、 一方の光路でそのままプローブ光 ω 3として伝送される。 また、 他方の光路では Ο Ρ Ο 2 0で周波数が ω 1に変換された後にビームスプリッタ B S 3に より分流され、 一の光路ではそのまま伝送されポンプ光 ω 1を生成し、 他の光路では Ρ C F 2 2により広帯域波長光 ω 2のポンプ光が生成されている。 従って、 ポンプ光 ω 1 と複数の所望波長 (周波数 ω 2 = ω 2 1、 ω 2 2、 ω 2 3、 ω 2 4、 '·') を含んだ広帯 域パルス光としてのポンプ光 ω 2と力 S試料に同時照射され、 前述の図 1及び図 2に示す ように共通周波数 ω 3のプローブ光を同期させて試料照 るので、 放出される誘導パ ラメトリック光の周波数はそれぞれの目的物質ごとに固定の ω 4 = ω 1 + ω 2— ω 3と なる。 従って、観測試料内で空間情報を取得したい物質ごとにそれぞれ電子励起準位の周 波数 ω 1 + ω 2を仮定し、誘導パラメトリック光 ω 4 = ω 1 + ω 2— ω 3設定しておけ '、 集光点近傍で放出される光のうち設定された周波数 ω 4 (対応する波長) が検出さ れるとこれに対応する物質情報力 S集光点近傍に位置することを検出することが可能となる。 換言すれば、 図 3の実施形態によればポンプ光として広帯域ノ、。ルスを使用することにより —度に試料内の複数物質の空間情報を同時に検出することが可能となる。 なお、 複数の目 的物質にそれぞれ対応する誘導パラメトリック光は設定された周波数に基づく波長を抽出 すべく、 ファルタ一 1 1の代替として分光器を設ける又は P C Fの後にフィルター (図 2 のフィルター 8のごとき) を設けることが好ましい。  Here, referring to the optical system in FIG. 3, the frequency of the irradiation light from the laser 1 is the probe light ω 3, the frequency of the incident light ω 1 is ω 2, the emitted light ω 3 and the observation object An optical system that emits induced parametric light ω 4 is shown. In this process, the irradiation light of the laser 1 is shunted and transmitted as it is as the probe light ω 3 in one optical path. In the other optical path, the frequency is converted to ω 1 by Ο Ρ Ο 20 and then shunted by the beam splitter BS 3 and transmitted as it is in one optical path to generate pump light ω 1. In the other optical path, Ρ CF 2 2 generates pump light of broadband wavelength light ω 2. Therefore, the pump light ω 2 as a broadband pulse light including the pump light ω 1 and a plurality of desired wavelengths (frequency ω 2 = ω 2 1, ω 2 2, ω 2 3, ω 2 4, '·') As shown in Fig. 1 and Fig. 2, the probe light with the common frequency ω 3 is synchronized to illuminate the sample, so that the frequency of the emitted parametric light is set for each purpose. For each substance, fixed ω 4 = ω 1 + ω 2− ω 3. Therefore, assuming the frequency ω 1 + ω 2 of the electronic excitation level for each substance for which spatial information is to be acquired in the observation sample, set the induced parametric light ω 4 = ω 1 + ω 2 — ω 3 When the set frequency ω 4 (corresponding wavelength) is detected among the light emitted in the vicinity of the condensing point, it is possible to detect that the corresponding substance information force S is located near the condensing point It becomes. In other words, according to the embodiment of FIG. By using the Luss — spatial information of multiple substances in the sample can be detected simultaneously each time. In addition, in order to extract the wavelength based on the set frequency, the guided parametric light corresponding to each target substance is provided with a spectroscope as an alternative to the filter 1 or a filter after the PCF (filter 8 in Fig. 2). It is preferable to provide
また、 図 4の光学系を参照すれば図 3の光学系の変形例が示されている。 具体的には、 レーザ 1からの照射光を分流し一方の光路ではプローブ光 ω 3を生成し、他の光路をさ らに分流してポンプ光 ω 1、 ω 2を生成する点では上記図 3と同様であるが、 図 4の光 学系の場合、 図 3においてビームスプリッタ B S 3より前の光路上に〇 Ρ Ο 2 0を配設す る変わりにビームスプリッタ B S 3で分流された後に P C F 2 4が配設される光路以外の 光路上に Ο Ρ Ο 2 6を配設する構成を採用している。 また、 図 5の光学系も図 3の光学系 の変形例であり、 レーザ 1からの照射光を分流し、 ポンプ光 ω 1、 ω 2、 プローブ光 ω 3を生成する点では _έ記図 3と同様である力 図 5の光学系の^ β\ レー 1からの放出 光が分流される前に P C F 2 8で広帯域波長光に変換している。 この!^、 P C F 2 8の 放出光 ω 1が分流されて、 プローブ光生成側の光路ではフイノレター 8により波長抽出さ れてプローブ光 ω 3が放出され、 ポンプ光生成側では、 ブームスプリッタ B S 3で分流 した後、 一方の光路はレーザ光そのまま周波数 ω 1を伝送し、 もう一方の光路では Ο Ρ Ο 3 0を配設しポンプ光 ω 2を生成している。 また、 図 6ではレーザ 1の放出光から Ρ C F 2 8で広帯域波長光を生成する構成が示されている力 原始的に広帯域波長光を放出 しているレーザ 1の場合は Ο Ρ Ο 2 8による周波数変換は不要である。 Further, referring to the optical system in FIG. 4, a modification of the optical system in FIG. 3 is shown. Specifically, the irradiation light from laser 1 is shunted to generate probe light ω3 in one optical path, and the other light path is further shunted to generate pump lights ω1 and ω2. 3, but in the case of the optical system shown in Fig. 4, instead of placing 〇 Ο Ο 20 on the optical path before beam splitter BS 3 in Fig. 3, the beam is split by beam splitter BS 3. A configuration is adopted in which 6 Ρ Ο 26 is placed on the optical path other than the optical path where PCF 24 is installed. The optical system in FIG. 5 is also a modification of the optical system in FIG. 3, and the pump light ω 1 and ω 2 and the probe light ω 3 are generated by diverting the irradiation light from the laser 1 _έ Fig. 3 Forces that are similar to the emission from ^ β \ ray 1 of the optical system in Figure 5 Before the light is diverted, it is converted into broadband wavelength light by PCF 28. this! ^, Emission light ω 1 emitted from PCF 2 8 is diverted, wavelength is extracted by phi-inletter 8 in the optical path on the probe light generation side, and probe light ω 3 is emitted. On the pump light generation side, it is diverged by boom splitter BS 3 After that, one optical path transmits the frequency ω 1 as it is, and the other optical path is provided with を Ρ Ο 30 to generate pump light ω 2. In addition, Fig. 6 shows a configuration that generates broadband wavelength light from the emitted light of laser 1 with 2 CF 28. In the case of laser 1 that originally emits broadband wavelength light, Ο Ρ Ο 2 8 No frequency conversion is required.
さらに、 上記説明では試料内物質自体の放出蛍光 (誘導パラメトリック光) を検出し、 試料内物質の空間情報を取得する方法が樹共されたが、 既知の 2光子蛍光観察と併用する ことも可能である。 既知の 2光子蛍光観察とは観測練物質 (分子) を蛍光試料で染色し、 長波長の短パルス光を蛍光試料に励起光として照射することで放出される蛍光を検出する 観察方法である。 これを本発明と併用するには、 ま ·Τϋ導パラメトリック光が増強される ポンプ光を選択し、 プローブ光と共に蛍光試料へ入射し、 蛍光試料から発生する蛍光を検 出する。 このようにすれば蛍光試料の電子共鳴特性が |¾ ^のものであるためポンプ光が電 子共鳴を起こす適切な波長である力否かを判 l f ることができ、 顕微鏡としての精度を向 上させることができる。  Furthermore, in the above explanation, the method of detecting the emission fluorescence (stimulated parametric light) of the substance in the sample and obtaining the spatial information of the substance in the sample was shared, but it can also be used in combination with the known two-photon fluorescence observation It is. The known two-photon fluorescence observation is an observation method in which the observation substance (molecule) is stained with a fluorescent sample and the emitted fluorescence is detected by irradiating the fluorescent sample with excitation light. In order to use this together with the present invention, the pump light that enhances the guided parametric light is selected, enters the fluorescent sample together with the probe light, and the fluorescence generated from the fluorescent sample is detected. In this way, since the electron resonance characteristics of the fluorescent sample are those || ^^, it is possible to determine whether or not the pump light has an appropriate wavelength that causes electron resonance, thereby improving the accuracy of the microscope. Can be raised.
その他、 特に図示しないが図 1及び図 2の変形例 (図 7の光学過程を利用する態様) と してレーザ光の周波数を ω 3としてプローブ光生成側の光路にそのまま伝送し、 ポンプ 光生成側の光路において P C Fにより広帯域波長光 (周波数 ω 1 ) を生成する光学系も 考えられる。 また、 これも図示しないが図 3 (及び図 4〜 5の変形例 (図 8の光学過程を 利用する態様) としてレーザ光の周波数をプローブ光生成側の光路にそのまま伝送しプロ ープ光 ω 3を生成し又はプローブ光生成側の光路で Ο Ρ Οにより特定周波数 ω 3に変換 してプローブ光 ω 3を生成し、 ポンプ光生成側の光路において P C Fにより広帯域波長 光 (周波数 ω ΐ , ω 2 ) を生成する光学系も考えられる。 In addition, although not shown in particular, as a modification of FIGS. 1 and 2 (an embodiment using the optical process of FIG. 7), the laser light frequency is transmitted as it is to the optical path on the probe light generation side as ω 3 to generate pump light. An optical system that generates broadband wavelength light (frequency ω 1) by PCF in the optical path on the side is also conceivable. Also, although not shown, as shown in FIG. 3 (and a modification of FIGS. 4 to 5 (a mode using the optical process of FIG. 8), the frequency of the laser light is directly transmitted to the optical path on the probe light generation side, and the prop 3 or converted to a specific frequency ω 3 by Ο Ρ で in the optical path on the probe light generation side to generate probe light ω 3, and broadband wavelength light (frequency ω ΐ, ω by PCF in the optical path on the pump light generation side An optical system that generates 2) is also conceivable.
なお、 上述する図 1の光学系の説明 (段落 ( 0 0 2 3 )参照) にお!/、てポンプ光とプロ一 ブ光とを時間的に重畳する方法が示されたが、 図 3〜 5の光学系のように 3つの光路上の ポンプ光及びプローブ光を時間的に重畳させる場合の光学系例を図 9に参照しておく。 こ の場合、 2本の光路を一方の時間調整ステージで時間調整し、 調整された 2光と残りの光 を他の時間ステージにより時間調整することとしている。 次に第二の本発明の実施形態について説明する。 上述する第一の本発明では、 図 2〜図 5を参照しても されるように、 レーザ 1からの超短パルス光を一旦、 2つの光学系に 分流し、 少なくとも一方の光学系で周波数変調させることでポンプ光とプローブ光とを生 成し、 試料照 l "Tることで誘導パラメトリック光を発生させるように構成している。 これ に対して、 レーザからの照射光を分流しないで誘導パラメトリック光を発生し得るポンプ 光とプローブ光とを生成する。 In the description of the optical system in FIG. 1 described above (see paragraph (0 0 2 3)), the method for superimposing the pump light and the probe light in time is shown. See Fig. 9 for an example of an optical system in which pump light and probe light on three optical paths are temporally superimposed as in the optical system of ~ 5. In this case, the two optical paths are time-adjusted on one time adjustment stage, and the adjusted two lights and the remaining light are time-adjusted on the other time stage. Next, a second embodiment of the present invention will be described. In the first aspect of the present invention described above, as also described with reference to FIGS. 2 to 5, the ultrashort pulse light from the laser 1 is once shunted to the two optical systems, and the frequency is generated by at least one of the optical systems. The pump light and the probe light are generated by modulation, and the guided parametric light is generated by illuminating the sample. In contrast, the irradiation light from the laser is not shunted. Pump light and probe light that can generate guided parametric light are generated.
まず、 図 1 0は第二の本発明における第一実施形態の光学系を簡略化して示している。 この図からも明らかなようにこの光学系によれば図 2〜図 5に示す第一の本発明の光学系 と異なりポンプ光とプローブ光とを生成するために光照射手段 (レーザを含む) 1 0 0か らの照射光を分流する光学系が存在せず、 光照射手段からの照射光は位相変調手段 1 0 2 を経て試料を照射している。  First, FIG. 10 shows a simplified optical system according to the first embodiment of the second invention. As is apparent from this figure, according to this optical system, unlike the optical system of the first invention shown in FIGS. 2 to 5, light irradiation means (including a laser) is used to generate pump light and probe light. There is no optical system for diverting the irradiation light from 1 0 0, and the irradiation light from the light irradiation means irradiates the sample through the phase modulation means 1 0 2.
ここで、 光照射手段 1 0 0からの照射光、 およびポンプ光、 プローブ光の生成について 言及する。 まず、 光照射手段 1 0 0で生成される 1つの照射光として、 図 1 1に示すよう な所定帯域スぺクトルを有する単一の超短パルス光、 すなわち連続スぺクトルを形成する シングルパルス光力 S挙げられる。 通常、 2光子レーザの照射光それ自体がこのような所定 帯域スぺクトルで形成されている。 従って、 図 1 1のような連続スぺクトルを有する照射 光を用いる の光照射手段 1 0 0は、 レーザ 1そのものでも良い。  Here, the generation of the irradiation light from the light irradiation means 100, the pump light, and the probe light will be mentioned. First, as one irradiation light generated by the light irradiation means 100, a single ultra-short pulse light having a predetermined band spectrum as shown in Fig. 11, that is, a single pulse forming a continuous spectrum. Light power S is mentioned. Usually, the irradiation light itself of the two-photon laser is formed in such a predetermined band spectrum. Accordingly, the light irradiation means 100 using the irradiation light having a continuous spectrum as shown in FIG. 11 may be the laser 1 itself.
この照射光のスぺクトルは周波数成分に応じてその強度が増大し、 所定の周波数成分 The intensity of the spectrum of the irradiated light increases according to the frequency component.
( 「中心周波数成分」 と!^ Tる:図 1 1中の一点 έ難参照) を境界に周波数成分に応じて その強度が減少するように形成されるものであり、 所定強度以上の周波数帯域が広がつて いる。 また、 この帯域の幅は光学系を経ていくにつれて増大していく性質があり、 分散と 称される。 第二の本発明の第一実施形態では所定強度以上の帯域の両端の周波数成分をそ れぞれポンプ光 ω ρ、 プローブ光 o dとして用いることとしている。 なお、 プローブ光は ダンプ (dump) 光とも称するため ω dと標記する。 ("Center frequency component" and! ^ T: Refer to one point in Fig. 1 1) The frequency band is formed so that the intensity decreases according to the frequency component. Is wide. The width of this band has the property of increasing as it goes through the optical system, and is called dispersion. In the first embodiment of the second aspect of the present invention, frequency components at both ends of a band of a predetermined intensity or higher are used as pump light ω ρ and probe light od, respectively. Note that the probe light is also called dump light and is denoted as ω d.
しかしながら、 照射光である超短光パルスは分散が生じているものであり、 分散してい ない^^には含まれる周波数 (波長) 成分が中心となる基準時間で概ね揃っている (時間 的に重畳) 力 分散している場合、 各周波数成分が基準時間からずれ、 ある周波数成分で は基準時間よりも前に、 ある周波数成分は基準時間よりも後ろに するという状態にな る。 従って、 上記のように連続スぺクトルを有するシングルパルス光の所定周波数成分を ポンプ光 ω ρ、 プロ丄ブ ω dとして設定しようとしても、 両者は時間的に れて伝 STTる こととなり、 これをそのまま試料に照射しても略同時照射を条件とする誘導パラメトリツ ク発光は生じない。 However, the ultrashort light pulse that is the irradiating light is dispersed, and the undispersed ^^ is roughly aligned with the reference time centered on the frequency (wavelength) component included (in terms of time). Superposition) When force is distributed, each frequency component deviates from the reference time, and some frequency components are before the reference time, and some frequency components are after the reference time. Therefore, even if the predetermined frequency component of the single pulse light having a continuous spectrum as described above is set as the pump light ω ρ and the probe ω d, both transmit STT over time. In other words, even if the sample is irradiated as it is, no induced parametric emission occurs under the condition of substantially simultaneous irradiation.
そこで、 第二の本発明では位相変調手段 (時間差補償手段) 1 0 2によりポンプ光、 プ ローブ光として設定する周波数光 ω ρと ω dとの位相を変調し、 互いに位相共鳴させるこ ととで両者を時間的に重畳させる時間補償を行うようにしている。 具体的には、 位相変調 手段 1 0 2として一般的に分散補償素子として用いるプリズム対や回折格子、 空間光変調 器 (S LM) を使用する。 これにより、 ω ρの周波数成分と co dの周波数成分とが時間的 に重畳する。 また、 ω の周波数成分と ω dの周波数成分とを位相共鳴させるため他の周 波数成分は位相干渉を生ぜしめ結果、 ω ρの周波数成分と ω dの周波数成分の強度が他の 周波数成分に比して格段に大きくなる。  Therefore, in the second aspect of the present invention, the phase of the frequency light ω ρ and ω d set as the pump light and the probe light is modulated by the phase modulation means (time difference compensation means) 102 and phase-resonated with each other. Thus, time compensation is performed by superimposing the two in time. Specifically, a prism pair, a diffraction grating, and a spatial light modulator (SLM) that are generally used as dispersion compensation elements are used as the phase modulation means 102. As a result, the frequency component of ωρ and the frequency component of cod are temporally superimposed. In addition, since the frequency component of ω and the frequency component of ω d are phase-resonated, the other frequency components cause phase interference, and as a result, the intensity of the frequency component of ω ρ and the frequency component of ω d becomes the other frequency component. It becomes much larger than that.
以上により、 ポンプ光として ω pの周波数成分、 プローブ光として ω dの周波数成分を 抽出でき且つ時間的に重畳させて試料に照射できるため、 誘導パラメトリック光 co SPE = 2 ω p ― 2 ω d を発生させることが可能となる。  As described above, the frequency component of ω p can be extracted as the pump light and the frequency component of ω d can be extracted as the probe light, and the sample can be superimposed and temporally irradiated. Therefore, the guided parametric light co SPE = 2 ω p − 2 ω d Can be generated.
次に、 第二の本発明における第二実施形態の光学系、 および原理について説明する。 こ の実施形態も前述の第一実施形態と同様に、 レーザからの照射光を分流しなレヽで誘導パラ メトリック光を発生し得るポンプ光とプローブ光とを生成する。  Next, the optical system and principle of the second embodiment of the second invention will be described. In this embodiment, similarly to the first embodiment described above, pump light and probe light that can generate guided parametric light are generated at a level that does not divert irradiation light from the laser.
図 1 0に示 匕された光学系は、 ここで説明する第二実施形態にも適用され、 上述 ■ するようにポンプ光とプローブ光とを生成するために光照射手段 1 0 0からの照射光を分 流する光学系力 S存在せず、 光照射手段 1 0 0からの照射光は位相変調手段 1 0 2を経て試 料を照射している。  The optical system shown in FIG. 10 is also applied to the second embodiment described here, and irradiation from the light irradiating means 100 is used to generate pump light and probe light as described above. There is no optical system force S for diverting light, and the light irradiated from the light irradiation means 100 is irradiated through the phase modulation means 1002 and the sample.
ここでの光照射手段 1 0 0で生成される 1つの照射光は、 図 1 2に示すように 2つの周 波数域 co p、 ω dで強度ピークを有するスペクトル (ダブルスペクトル) が形成される単 一のパルス光 (シングルパルス光) である。 照射光としてこのようなダブルスぺクトルを 有するシングルパルス光を用いた第二の本発明の第二実施形態では 2つのピーク強度を有 する周波数成分をそれぞれポンプ光 ω p、 プローブ光 dとして用いることとしている。 そして、 この:^にも上述するようにポンプ光 ω ρとプローブ dとは、 時間的にずれて 伝播することとなり、 誘導パラメトリック光を発生させるために両者を時間的に重畳させ る必要がある。 従って、 この第二実施形態においても位相変調手段 1 0 2によりポンプ光、 プローブ光として設定する周波数光 ω ρと ω dとの位相を変調し、 互いに位相共鳴させる こととで両者を時間 に重畳させる時間補償を行うようにしており、 ここ も位相変調手 段 1 02としてプリズム対や回折格子、 空間光変調器 (S LM) 、 デフォーマブルミラー 等の一般的に分散補償素子を使用する。 これにより、 ω ρの周波数成分と の周波数成 分とが時間的に重畳し、 誘導パラメトリック光 SPE = 2 ω ρ 一 2 ω ά を発生 させることが可畫 gとなる。 A single irradiation light generated by the light irradiation means 100 in this case forms a spectrum (double spectrum) having intensity peaks in two frequency ranges co p and ω d as shown in FIG. Single pulsed light (single pulsed light). In the second embodiment of the second aspect of the present invention using single pulse light having such a double spectrum as irradiation light, frequency components having two peak intensities are used as pump light ω p and probe light d, respectively. It is said. And, as mentioned above, the pump light ω ρ and the probe d propagate with a time shift, and it is necessary to superimpose both in order to generate the guided parametric light. . Therefore, also in this second embodiment, the phases of the frequency lights ω ρ and ω d set as the pump light and the probe light are modulated by the phase modulation means 102 and superposed on each other by phase resonance with each other. Time compensation, and this is also phase modulation As the stage 102, a dispersion compensation element such as a prism pair, a diffraction grating, a spatial light modulator (SLM), or a deformable mirror is generally used. As a result, the frequency component of ω ρ and the frequency component of ω ρ are temporally superimposed, and it is possible to generate the induced parametric light SPE = 2 ω ρ -1 2 ω ά.
次に、 第二の本発明における第三実施形態の場合も第一実施形態、 第二実施形態と同様 に、 レーザからの照射光を分流しな 、で誘導パラメトリック光を発生し得るポンプ光とプ ローブ光とを生成し、 図 1 0に示す光学系で略示されるように光照射手段 100からの照 射光を分流せず、 光照射手段 1 00からの照射光は位相変調手段 1 02を経て試料を照射 している。 ここでの光照射手段 1 00で生成される 1つの照射光は、 図 1 3に示すように 複数の周波数域 ω 1、 ω 2、 ω 3、 ω 4、 ···、 ω ηの強度ピークを有するスペクトル (マ ルチスペクトル) 力 S形成されるシングルパルス光である。 照射光としてこのようなマルチ スペクトルを有する照射光を用いた場合、 複数のピーク強度を有する周波数成分 ω 1、 ω 2、 ω 3、 ω 4、 ···、 ω ηのうち任意選択された 2つをそれぞれポンプ光 ω ρ、 プローブ 光 ω dとして用いることとしている。 そして、 この場合にも上述するようにポンプ光 ω p とプローブ ω dとを時間的に重畳させる必要があり、 上記同様に位相変調手段 102によ り時間補償を行い、 誘導パラメトリック光 coSPE = 2ω ρ - 2 ω ά を発生させ る。  Next, in the case of the third embodiment of the second aspect of the present invention, similarly to the first embodiment and the second embodiment, the pump light that can generate the induced parametric light without diverting the irradiation light from the laser, As shown schematically in the optical system shown in FIG. 10, the irradiation light from the light irradiation means 100 is not shunted, and the irradiation light from the light irradiation means 100 passes through the phase modulation means 102. After that, the sample is irradiated. Here, one irradiation light generated by the light irradiation means 100 has an intensity peak in a plurality of frequency regions ω 1, ω 2, ω 3, ω 4,..., Ω η as shown in FIG. Spectrum (multispectrum) force S is a single-pulse light that is formed. When irradiation light having such a multi-spectrum is used as irradiation light, any frequency component ω 1, ω 2, ω 3, ω 4,. Are used as pump light ω ρ and probe light ω d, respectively. Also in this case, as described above, it is necessary to superimpose the pump light ω p and the probe ω d in terms of time. Similarly to the above, time compensation is performed by the phase modulation means 102, and the guided parametric light coSPE = 2ω ρ-2 ω ά is generated.
図 14を参照すれば、 この第三実施形態として使用される光照射手段 100の一例が略 示されている。 具体的には、 照射光はレーザ (オシレータ) 1 1 2からの照射光を光ファ ィバ (PCF) 1 14を経ることで広帯域スペクトルを有するように生成される。 このと き光ファイバ (PCF) 1 14で生成される実際のスぺクトノレは、 通常、 図 1 5に示すよ うに複数のピーク強度を有するマルチスぺクトル光である。 従って、 各ピークの周波数成 分のうち 2つを任意選択したそれぞれをポンプ光、 プローブ光として設定し、 両者を分散 補償素子で時間的に重畳すれば誘導パラメトリック光を発生させ得ることとなる。  Referring to FIG. 14, an example of the light irradiation means 100 used as the third embodiment is schematically shown. Specifically, the irradiation light is generated so as to have a broadband spectrum by passing the irradiation light from the laser (oscillator) 1 1 2 through the optical fiber (PCF) 1 14. At this time, the actual spectrum generated by the optical fiber (PCF) 114 is usually multispectral light having a plurality of peak intensities as shown in FIG. Therefore, by arbitrarily setting two of the frequency components of each peak as pump light and probe light, and superimposing both of them in time with a dispersion compensation element, guided parametric light can be generated.
さらに、 図 1 6では第三実施形態の光照射手段 1 00の他の例を示して 、る。 この場合、 照射光はレーザ (オシレータ) 1 1 2からの照射光をビームスプリッタ B Sにより分流し、 それぞれを Ο Ρ Ο 1 1 6で所望の周波数成分に変換する。 これにより、 Ο Ρ Ο 1 1 6の数 に応じて複数の周波数成分を生成することが可能となり、 生成された各周波数成分のうち 2つを任意選択してそれぞれをポンプ光、 プローブ光として設定すれば、 両者を分散補償 素子で時間的に重畳 I1ることで誘導パラメトリック光を発生させ得ることとなる。 なお、 ここでは広帯域スペク トル光を生成するために P C F (フォトニック結晶フアイ ノ ) を使用する例を示したが、 他のもの、 例えばテーパーファイバ、 高非線形分散シフト ファイバ、 水晶、 等でも代替できる。 Further, FIG. 16 shows another example of the light irradiation means 100 of the third embodiment. In this case, the irradiated light from the laser (oscillator) 1 1 2 is shunted by the beam splitter BS, and each is converted into a desired frequency component by Ο Ρ Ο 1 1 6. This makes it possible to generate multiple frequency components according to the number of Ο Ρ Ο 1 1 6, and arbitrarily select two of the generated frequency components and set them as pump light and probe light, respectively. if, so that the both can generate induced parametric light temporally overlapped I 1 Rukoto in the dispersion compensation element. In this example, PCF (photonic crystal fiber) is used to generate broadband spectrum light, but other types such as tapered fiber, highly nonlinear dispersion-shifted fiber, crystal, etc. can be substituted. .
また、 図 1 7に示すように、 広帯域の誘導パラメトリック光 ω 4に局所発振器 2 0 0で 発生された同じ周波数 (波長) 帯域の広帯域局所発信光を空間的に重畳させて分光器 2 0 2で目的波長光を抽出して測定することも好ましレヽ。 この場合、 分光器 2 0 2上で、 誘導 ノ、"ラメトリック光と局所発信光との間に適当な遅延時間を付与することにより (遅延手段 としては図 1の符号 4、 図 9参照) スぺクトノ 渉させることができ、 取得される誘導パ ラメトリック光信号を増強可能となる。  In addition, as shown in Fig. 17, the broadband local transmitted light of the same frequency (wavelength) band generated by the local oscillator 20 0 0 is spatially superimposed on the broadband guided parametric light ω 4 and the spectrometer 2 0 2 It is also preferable to extract and measure the target wavelength light. In this case, on the spectroscope 2 0 2, by introducing an appropriate delay time between the rametric light and the local light (refer to reference numeral 4 in FIG. 1 and FIG. 9 as a delay means) It is possible to interfere with the spectrum and to enhance the obtained guided parametric optical signal.
また、 図 1 7では、 局所発振光を生成するには光照射手段 (レーザ 1等) からの超短光 パルス光 (ポンプ光, プローブ光) を分流した後に局所発振器 2 0 0を別途配設して生成 する手段が示されているが、 誘導パラメトリック光の増強のための局所発振光の生成はこ れに限定されるものではなく、 分流せずに同じ光路上で局戸 jf発振光発^ ¾置を設けること で発生させても良い。 例えば、 試^の集光点と異なる位置 (但し、 同一光路) に設けら れたレンズに集光させる方法でも良く、 レンズの代わりに試料を被覆するカバーガラスに 集光させても良く、 外乱にも強いため有利である。 また、 局所発振光発^ ¾置は試料の前 後どちらかにおいて発生させても良い。 さらに、 スペクトル干渉を行えば足りるため、 広 帯域スぺクトル光の一部を局所発振光として用いることも可能である。  Also, in Fig. 17, in order to generate local oscillation light, local oscillator 200 is separately provided after shunting ultrashort pulse light (pump light, probe light) from the light irradiation means (laser 1 etc.) However, the generation of the local oscillation light for enhancing the induced parametric light is not limited to this, and the local jf oscillation light is generated on the same optical path without diversion. ^ It may be generated by providing a ¾ position. For example, a method of focusing on a lens provided at a position different from the focusing point of the test (however, the same optical path) may be used, or it may be focused on a cover glass covering the sample instead of the lens. It is advantageous because it is strong. Further, the local oscillation light emission position may be generated either before or after the sample. Furthermore, since it is sufficient to perform spectral interference, it is possible to use a part of the broad-band spectrum light as the local oscillation light.

Claims

請 求 の 範 囲 The scope of the claims
1. 試料内の目的物質が放出する光を検出することにより試料内物質の空間情報を取得す る空間情報検出装置であって、 1. A spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted by the target substance in the sample,
超短パルス光を照射する光源と、  A light source that emits ultra-short pulse light;
該光源からの照射光を 2つの光路に分流する第 1分流手段と、 First shunting means for shunting the irradiation light from the light source into two optical paths;
前記第 1分流手段により分けられた 2つの光路のうち一方の光路上で予め設定されたポ ンプ光を生成するポンプ光生成手段と、  Pump light generating means for generating a preset pump light on one of the two optical paths divided by the first diversion means;
前記分流手段により分けられた 2つの光路のうち他方の光路上で予め設定されたプロ一 ブ光を生成するプローブ光生成手段と、  Probe light generation means for generating a preset probe light on the other of the two optical paths divided by the diversion means;
前記 2つの光路を合流させて Sift己ポンプ光と Sift己プローブ光とを空間的に重畳させる合 流手段と、  Means for joining the two optical paths to spatially superimpose the Sift self-pump light and the Sift self-probe light;
tin己合流手段で重畳された前記ポンプ光と tin己プローブ光とを収束させて試料を照射す る試料照射手段と、  a sample irradiating means for irradiating the sample by converging the pump light and the tin self-probe light superimposed by the tin self-merging means;
前記試料照射手段により tiff己ポンプ光と l己プローブ光とを照射された試料から放出さ れる光から予め設定された波長の放出光を抽出する目的放出光抽出手段と、  Target emission light extraction means for extracting emitted light of a preset wavelength from light emitted from a sample irradiated with tiff self-pump light and l self probe light by the sample irradiation means;
前記目的光抽出手段により抽出された波長光を検出する検出器とを備え、  A detector for detecting the wavelength light extracted by the target light extraction means,
前記予め設定されたポンプ光は、 試料内物質が多光子で電子共鳴が起こるような周波数 ω 1, ω 2, ·'·ω ηで設定され、 l己目的放出光抽出手段により抽出される予め設定され た波長の放出光は、 前記ポンプ光の周波数 ω 1, ω 2, … ω ηの和と編己予め設定され たプローブ光の周波数 ω η+ lとの^!波数 ωη+ 2= (ω 1 + ω 2+ ω η) _ω η + 1に近づくように設定される、 ことを特徴とする空間情報検出装置。 .  The preset pump light is set at a frequency ω 1, ω 2, ··· ω η at which electron resonance occurs when the substance in the sample is a multiphoton, and is previously extracted by the self-target emission light extraction means. The emission light of the set wavelength is the wave number ωη + 2 = (the sum of the pump light frequencies ω 1, ω 2,… ω η and the preset probe light frequency ω η + l Spatial information detection device, characterized in that it is set to approach ω 1 + ω 2 + ω η) _ω η +1. .
2. fjfBポンプ光生成手段及び Ζ又は前記プローブ光生成手段は觸己第 1分流手段から前 記合流手段までの光路の光路長を変化させる光路長伸縮手段を有することを特徴とする請 求項 1に記載の空間情報検出装置。 2. The fjfB pump light generating means and Ζ or the probe light generating means have optical path length expansion / contraction means for changing the optical path length of the optical path from the first diversion means to the confluence means. The spatial information detection device according to 1.
3. 前記予め設定されたポンプ光は 2光子で電子共鳴が起こるような周波数 ω 1, ω 2 で設定されることを^徴とする請求項 1又は 2に記載の空間情報検出装置。' 3. The spatial information detecting device according to claim 1, wherein the preset pump light is set at frequencies ω 1 and ω 2 at which electron resonance occurs in two photons. '
4. 前記予め設定されたポンプ光の周波数 ω 1 , ω 2は、 同一の周波数 ω 1であること を特徴とする請求項 3に記載の空間情報検出装置。 4. The spatial information detection device according to claim 3, wherein the preset frequencies ω 1 and ω 2 of the pump light are the same frequency ω 1.
5 . tiff己プローブ光生成手段は、 伝送される光から広帯域波長光を生成する光ファイバと 該光ファイバから放出された広帯域波長光から予め設定された波長域の光を抽出するプロ ーブ光抽出手段とを有することを特徴とする請求項 1〜 4の ヽずれか 1項に記載の空間情 報検出装置。 5. The tiff self-probe light generating means includes an optical fiber that generates broadband wavelength light from the transmitted light and a probe light that extracts light in a preset wavelength range from the broadband wavelength light emitted from the optical fiber. 5. The spatial information detection device according to claim 1, further comprising an extraction unit.
6 . 前記ポンプ光生成手段は、 伝送される光の周波数変換を行う発振器を有することを特 徴とする請求項 1 ~ 5のいずれか 1項に記載の空間情報検出装置。 6. The spatial information detection device according to claim 1, wherein the pump light generation means includes an oscillator that performs frequency conversion of transmitted light.
7 . l己ポンプ光生成手段は、 伝送される光から広帯域波長光を生成する光ファイバを有 することを特徴とする請求項 1〜 4のいずれか 1項に記載の空間情報検出装置。 7. The spatial information detection device according to claim 1, wherein the self-pump light generation means includes an optical fiber that generates broadband wavelength light from the transmitted light.
8 . 前記ポンプ光生成手段は、 さらに前記光ファイバから放出された広帯域波長光から予 め設定された波長域の光を抽出するポンプ光抽出手段を有することを特徴とする請求項 7 に記載の空間情報検出装置。 8. The pump light generation means further comprises pump light extraction means for extracting light in a preset wavelength region from broadband wavelength light emitted from the optical fiber. Spatial information detection device.
9 . 藤己ポンプ光生成手段は、 伝送される光の周波数変換を行う発振器と、 前記発振器で 変換された光を 2つ以上の光路に分流する第 2分流手段と、 該第 2分流手段により分流さ れた光路のうち一つの光路を伝送する光から広帯域の波長光を生成する光ファイバと、 を 有し、 9. The Fujimi pump light generation means includes an oscillator that performs frequency conversion of transmitted light, a second diversion means that diverts the light converted by the oscillator into two or more optical paths, and the second diversion means. An optical fiber that generates broadband wavelength light from light transmitted through one of the split optical paths, and
前記合流手段は、 前記第 2分流手段により分流された光路を伝送するそれぞれのポンプ 光を合流させて編己プローブ光に重畳させる、 ことを特徴とした請求項 1〜 3のいずれか 1項に記載の空間情報検出装置。  4. The method according to claim 1, wherein the merging unit merges the respective pump lights transmitted through the optical paths divided by the second diversion unit and superimposes them on the knitting probe light. 5. The described spatial information detection device.
1 0 . 前記ポンプ光生成手段は、 伝送される光を 2つ以上の光路に分流する第 2分流手段 と、 該第 2分流手段により分流された光路のうち一つの光路を伝送する光から広帯域の波長光 を生成する光フアイバと、 前記第 2分流手段により分流された光路のうち他の一つの光路 を伝送する光の周波数変換を行う発振器と、 を有し、 1 0. The pump light generating means includes second shunting means for shunting transmitted light into two or more optical paths; An optical fiber that generates broadband wavelength light from light transmitted through one of the optical paths divided by the second diversion means, and another optical path of the optical paths divided by the second diversion means are transmitted. An oscillator that performs frequency conversion of light to be transmitted, and
tin己合流手段は、 編 s第 2分流手段により分流された光路を伝送するそれぞれのポンプ光 を合流させて前記プローブ光に重畳させる、 ことを特徴とした請求項 1〜 3のいずれか 1 項に記載の空間情報検出装置。 The tin self-merging means merges the respective pump lights transmitted through the optical paths branched by the knitting s second diverting means and superimposes them on the probe light. The spatial information detection device described in 1.
1 1 . ΙίίΙΒ光源が広帯域の波長光を生成し、 又は前記光源から編己第 1分流手段までの光 路に光帯域の波長光を生成する光ファィバを配設し、 1 1. ΙίίΙΒ The light source generates a broadband wavelength light, or an optical fiber that generates a wavelength band of light in the optical path from the light source to the first shunting means is arranged.
さらに、 前記プローブ光生成手段は、 前記第 1分流手段から伝送される広帯域波長光か ら予め設定された波長域の光を抽出するプローブ光抽出手段を有し、 l己ポンプ光生成手 段は、 伝送される光を 2つ以上の光路に分流する第 2分流手段と、 該第 2分流手段により 分流された光路のうち一つの光路を伝送する光の周波数変換を行う発振器とを有し、 前記合流手段は、 前記第 2分流手段により分流された光路を伝送するそれぞれのポンプ 光を合流させて ftff己プローブ光に重畳させる、 ことを特徴とした請求項 1〜 3のいずれか 1項に記載の空間情報検出装置。  Further, the probe light generation means has probe light extraction means for extracting light in a preset wavelength range from the broadband wavelength light transmitted from the first diversion means. A second diversion unit for diverting the transmitted light to two or more optical paths, and an oscillator for performing frequency conversion of light transmitted through one optical path among the optical paths diverted by the second diversion unit, 4. The method according to claim 1, wherein the merging unit merges the respective pump lights transmitted through the optical paths diverted by the second diverting unit and superimposes them on the ftff self-probe light. 5. The described spatial information detection device.
1 2 . 肅己試料照射手段は、 少なくとも試料を載置するステージと該ステージを 3次元移 動させる «手段とを備えた試料移動手段を有することを特徴とする請求項 1〜 1 1のい ずれか 1項に記載の空間情報検出手段。 1 2. The self-sample irradiating means includes a sample moving means including at least a stage on which the sample is placed and a moving means for moving the stage in a three-dimensional manner. The spatial information detecting means according to item 1.
1 3 . 藤己試料照射手段は、 1つ以上の試料を順次一方向に搬送する搬送手段を有するこ とを特徴とする請求項 1〜 1 1のいずれか 1項に記載の空間情報検出手段。 1 3. The spatial information detecting means according to any one of claims 1 to 11, wherein the Fujimi sample irradiating means includes conveying means for sequentially conveying one or more samples in one direction. .
1 4 . 試料内の目的物質が放出する光を検出することにより試料内物質の空間情報を取得 する空間情報検出装置であって、 1 4. A spatial information detection device that acquires spatial information of a substance in a sample by detecting light emitted by the target substance in the sample,
複数の所定強度以上の周波数光 ω 1, ω 2 , - ω ηを含む一の超短パルス光を照射する 光照射手段と、  A light irradiation means for irradiating one ultrashort pulse light including a plurality of frequency lights ω 1, ω 2, and −ω η having a predetermined intensity or more;
前記光照射手段からの照射光に含まれる周波数光 ω 1、 ω 2、 〜ω ηのうちから設定さ れる 2つのポンプ光 ρとプローブ光 ω dとを時間的に重畳させる時間差補償手段と、 前記時間差補償手段で重畳された編己ポンプ光 ω とプローブ光 ω dとを集光させて試 料に照 る試料照射手段と、 Time difference compensation means for temporally superimposing two pump lights ρ and probe light ω d set from frequency lights ω 1, ω 2, to ω η included in the light emitted from the light irradiation means; A sample irradiating means for condensing the braided pump light ω and the probe light ω d superimposed by the time difference compensating means and irradiating the sample;
前記試料照射手段により S tSポンプ光 ω ρとプローブ光 ω dとを照射された試料から放 出される光から予め設定された波長の放出光を抽出する目的放出光抽出手段と、  Target emission light extraction means for extracting emission light having a preset wavelength from light emitted from the sample irradiated with StS pump light ωρ and probe light ωd by the sample irradiation means;
前記目的光抽出手段により抽出された波長光を検出する検出器とを備え、  A detector for detecting the wavelength light extracted by the target light extraction means,
前記ポンプ光 ω は、 試料内物質が多光子で電子共鳴が起こるような周波数成分を有し、 SiriB目的放出光抽出手段により抽出される波長の放出光は、 前記ポンプ光 ω dの和と前記 プローブ光 ω dとの差周波数 coSPE = 2 ω d— co dに近づくように設定される、 ことを 特徴とする空間情報検出装置。  The pump light ω has a frequency component that causes electron resonance when the substance in the sample is multiphoton, and the emission light having a wavelength extracted by the SiriB target emission light extraction means is the sum of the pump light ω d and the pump light ω d. Spatial information detection device, characterized in that it is set so as to approach the difference frequency coSPE = 2 ω d-co d with the probe light ω d.
1 5 . tins光照射手段は、 単一の広帯域スぺクトルを有するパルス光を照射し、 1 5. Tins light irradiation means irradiates pulsed light having a single broadband spectrum,
前記ポンプ光 co pと前記プローブ光 ω dとは、 照射されるノ、。ルス光の中心周波数から前 後に離間した 2つの周波数成分でそれぞれ設定され、  The pump light co p and the probe light ω d are irradiated. It is set with two frequency components that are separated from the center frequency of the laser light.
前記時間差補償手段は、 編己ポンプ光 ω dと藤己プローブ光 ω dとの両者を時間的に重 畳させる、 ことを特徴とする請求項 1 4に記載の空間情報検出装置。  15. The spatial information detecting device according to claim 14, wherein the time difference compensation means temporally overlaps both the braided pump light ωd and the Fujimi probe light ωd.
1 6 . 嫌己光照射手段は、 複数の頂部強度を含むスぺクトルを有する単一のノ ルス光を照 射し、 1 6. The selfish light irradiating means irradiates a single light having a spectrum including a plurality of peak intensities,
前記ポンプ光 ω ρと Ιίίϊ己プローブ光 ω dとは、 前記複数の頂部のうちの 2つの頂部にお ける周波数成分でそれぞれ設定され、  The pump light ω ρ and the probe light ω d are set by frequency components at two of the tops, respectively.
前記時間差補償手段は、 編己ポンプ光 ω dと Ml己プローブ光 ω dとの両者を時間的に重 畳させる、 ことを特徴とする請求項 1 4に記載の空間情報検出装置。  15. The spatial information detection device according to claim 14, wherein the time difference compensation means superimposes both the braided pump light ωd and the Ml self probe light ωd in terms of time.
1 7 . tin己光照射手段は少なくとも、 光源からの照射光を光ファイバにより広帯域波長光 に変換する、 ことを特徴とする請求項 1 6に記載の空間情報検出装置。 17. The spatial information detection device according to claim 16, wherein the tin self-light irradiation means converts at least irradiation light from the light source into broadband wavelength light using an optical fiber.
1 8 . 髓己光照射手段は少なくとも、 光源と、 編己光源からの照射光を分流する分流手段 と、 tiff己分流された各照射光をそれぞれ所望の周波数変換する発振器と、 を備える、 こと を特徴とする請求項 1 6に記載の空間情報検出装置。 1 8. The self-light irradiation means includes at least a light source, a diversion means for diverting the irradiation light from the braid light source, and an oscillator for converting each of the irradiation light divided by tiff into a desired frequency. The spatial information detecting device according to claim 16, wherein:
1 9 . 前記目的光抽出手段は、 試料の前後いずれかの光路上に配設され試料から放出され る信号光と同じ帯域の局所発振光を生成する局所発振光発振動装置と、 l己局所発振光発 振動装置からの信号光と試料から放出される信号光とを空間的に重畳させる光学系と、 重 畳させた信号光の相互間に所定の «時間を付与する光学系と、 を備えることを特徴とす る請求項 1〜: 1 8のレ、ずれか 1項に記載の空間情報検出装置。 1 9. The target light extraction means includes a local oscillation light oscillator that generates a local oscillation light in the same band as the signal light that is disposed on either the optical path before or after the sample, and is emitted from the sample. An optical system that spatially superimposes the signal light from the oscillation light generator and the signal light emitted from the sample, and an optical system that gives a predetermined time between the superimposed signal lights, The spatial information detection device according to claim 1, wherein the spatial information detection device is provided with one or more of the following.
PCT/JP2006/307004 2005-03-29 2006-03-28 Spatial information detection device WO2006104237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510580A JPWO2006104237A1 (en) 2005-03-29 2006-03-28 Spatial information detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005095096A JP2009150649A (en) 2005-03-29 2005-03-29 Spatial information detection device
JP2005-095096 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104237A1 true WO2006104237A1 (en) 2006-10-05

Family

ID=37053488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307004 WO2006104237A1 (en) 2005-03-29 2006-03-28 Spatial information detection device

Country Status (2)

Country Link
JP (2) JP2009150649A (en)
WO (1) WO2006104237A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056702A1 (en) * 2006-11-07 2008-05-15 Osaka University Refraction index measuring method, refraction index measuring apparatus and method for manufacturing optical member
EP2124040A1 (en) * 2008-05-23 2009-11-25 Olympus Corporation Laser microscope apparatus
GB2460502A (en) * 2008-06-02 2009-12-09 Ian Petar Mercer Wave mixing apparatus for sample analysis
JP2010096666A (en) * 2008-10-17 2010-04-30 Olympus Corp Laser microscope device
EP2369394A1 (en) * 2010-03-15 2011-09-28 Leica Microsystems CMS GmbH Device and method for simultaneous fluorescence excitation (2-wavelength IR)
WO2011140257A1 (en) * 2010-05-06 2011-11-10 Leica Microsystems Cms Gmbh Tunable multiple laser pulse scanning microscope and method of operating the same
JP4860705B2 (en) * 2005-10-26 2012-01-25 プレジデント アンド フェローズ オブ ハーバード カレッジ System and method for highly sensitive vibrational imaging by frequency modulation coherent anti-Stokes Raman scattering analysis

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551477B2 (en) * 2010-03-15 2014-07-16 オリンパス株式会社 Light source device and laser scanning microscope device
JP5489804B2 (en) * 2010-03-23 2014-05-14 オリンパス株式会社 CARS light unit and microscope system
EP2761248B8 (en) * 2011-09-26 2017-07-12 WaveLight GmbH Optical coherence tomography technique
FR2986668B1 (en) * 2012-02-02 2014-02-21 Ecole Polytech MULTI-COLOR EXCITATION MODULE FOR A MULTI-PHOTONIC IMAGING SYSTEM, SYSTEM AND METHOD THEREOF
WO2015030202A1 (en) * 2013-08-30 2015-03-05 国立大学法人電気通信大学 Optical measurement device, optical measurement method, and microscopic imaging system
JP6555363B2 (en) * 2016-01-26 2019-08-07 株式会社リコー Droplet forming apparatus, dispensing apparatus, and method
EP3796068B1 (en) 2018-05-14 2022-11-23 National University Corporation Tokyo University of Agriculture and Technology Optical pulse pair generation device, light detection device, and light detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405237A (en) * 1981-02-04 1983-09-20 The United States Of America As Represented By The Secretary Of The Navy Coherent anti-Stokes Raman device
JPH1048677A (en) * 1996-08-01 1998-02-20 Agency Of Ind Science & Technol Cubic nonlinear optical material
JP2002520612A (en) * 1998-07-20 2002-07-09 バッテル・メモリアル・インスティチュート Nonlinear vibration microscopy
JP2003279412A (en) * 2002-03-22 2003-10-02 Nippon Spectral Kenkyusho:Kk Spectrometry device using white electromagnetic wave emitted from photonic crystal member generated by single pulse photoexcitation as light source
JP2004061411A (en) * 2002-07-31 2004-02-26 Japan Science & Technology Corp Method and apparatus for nonlinear raman spectroscopy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405237A (en) * 1981-02-04 1983-09-20 The United States Of America As Represented By The Secretary Of The Navy Coherent anti-Stokes Raman device
JPH1048677A (en) * 1996-08-01 1998-02-20 Agency Of Ind Science & Technol Cubic nonlinear optical material
JP2002520612A (en) * 1998-07-20 2002-07-09 バッテル・メモリアル・インスティチュート Nonlinear vibration microscopy
JP2003279412A (en) * 2002-03-22 2003-10-02 Nippon Spectral Kenkyusho:Kk Spectrometry device using white electromagnetic wave emitted from photonic crystal member generated by single pulse photoexcitation as light source
JP2004061411A (en) * 2002-07-31 2004-02-26 Japan Science & Technology Corp Method and apparatus for nonlinear raman spectroscopy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860705B2 (en) * 2005-10-26 2012-01-25 プレジデント アンド フェローズ オブ ハーバード カレッジ System and method for highly sensitive vibrational imaging by frequency modulation coherent anti-Stokes Raman scattering analysis
WO2008056702A1 (en) * 2006-11-07 2008-05-15 Osaka University Refraction index measuring method, refraction index measuring apparatus and method for manufacturing optical member
JP2008116409A (en) * 2006-11-07 2008-05-22 Osaka Univ Method and apparatus for measuring refractive index and optical member manufacturing method
EP2124040A1 (en) * 2008-05-23 2009-11-25 Olympus Corporation Laser microscope apparatus
JP2009281923A (en) * 2008-05-23 2009-12-03 Olympus Corp Laser microscope apparatus
US8159663B2 (en) 2008-05-23 2012-04-17 Olympus Corporation Laser microscope apparatus having a frequency dispersion adjuster
GB2460502A (en) * 2008-06-02 2009-12-09 Ian Petar Mercer Wave mixing apparatus for sample analysis
GB2460502B (en) * 2008-06-02 2011-02-16 Ian Petar Mercer Apparatus for sample analysis
JP2010096666A (en) * 2008-10-17 2010-04-30 Olympus Corp Laser microscope device
EP2369394A1 (en) * 2010-03-15 2011-09-28 Leica Microsystems CMS GmbH Device and method for simultaneous fluorescence excitation (2-wavelength IR)
WO2011140257A1 (en) * 2010-05-06 2011-11-10 Leica Microsystems Cms Gmbh Tunable multiple laser pulse scanning microscope and method of operating the same

Also Published As

Publication number Publication date
JP2009150649A (en) 2009-07-09
JPWO2006104237A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2006104237A1 (en) Spatial information detection device
KR100860947B1 (en) Imaging apparatus for infrared rays nonlinear molecular vibratial microscopy
JP4954452B2 (en) microscope
JP5329449B2 (en) How to perform microscopic imaging
EP1835323B1 (en) Fluorescence microscope and observation method
JP5208825B2 (en) Optical microscope
JP5996665B2 (en) CARS microscope
US8064053B2 (en) 3-color multiplex CARS spectrometer
JP5687201B2 (en) Combined microscopy
US9618445B2 (en) Optical microscopy systems based on photoacoustic imaging
JP5100461B2 (en) LIGHT SOURCE DEVICE FOR NONLINEAR SPECTROSCOPY MEASUREMENT SYSTEM
JP5649828B2 (en) Laser microscope equipment
US8432546B2 (en) Method and system for stimulated Raman microscopy beyond the diffraction limit
CN104359892B (en) A kind of different modalities molecular vibration spectrum detection and imaging device
US20120050733A1 (en) Laser microscope
JP6365662B2 (en) Super-resolution observation apparatus and super-resolution observation method
JP2013171154A (en) Optical device
JP6340474B2 (en) Optical measuring device and optical measuring method
JP5065668B2 (en) Microscopy and microscopy
US9709786B2 (en) Non-linear microscopy and non-linear observation method
JP2009047435A (en) Laser microscope
US9097674B2 (en) Method for detecting a resonant nonlinear optical signal and device for implementing said method
JP6255257B2 (en) Measuring device and measuring method
JP6923161B2 (en) Sample analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510580

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730952

Country of ref document: EP

Kind code of ref document: A1