WO2006106158A1 - Independent reverse osmosis desalination units which are connected in terms of energy flow - Google Patents

Independent reverse osmosis desalination units which are connected in terms of energy flow Download PDF

Info

Publication number
WO2006106158A1
WO2006106158A1 PCT/ES2005/000210 ES2005000210W WO2006106158A1 WO 2006106158 A1 WO2006106158 A1 WO 2006106158A1 ES 2005000210 W ES2005000210 W ES 2005000210W WO 2006106158 A1 WO2006106158 A1 WO 2006106158A1
Authority
WO
WIPO (PCT)
Prior art keywords
desalination
reverse osmosis
unit
feed
pump
Prior art date
Application number
PCT/ES2005/000210
Other languages
Spanish (es)
French (fr)
Inventor
Javier Alday Ansola
Juan José RODRIGUEZ GONZALEZ
Jacinto Curbelo Fernandez
Original Assignee
Empresa Mixta De Aguas De Las Palmas S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empresa Mixta De Aguas De Las Palmas S.A. filed Critical Empresa Mixta De Aguas De Las Palmas S.A.
Publication of WO2006106158A1 publication Critical patent/WO2006106158A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention falls within the field of water desalination by the reverse osmosis method.
  • Desalination of water by the reverse osmosis method is a process where, from a water with a certain content of salts, two flows of water are obtained, one with a low content of salts and the other with a high content of salts.
  • semi-permeable membranes are used, which allow the passage of water and do not allow the passage of salts or allow it in a small proportion.
  • membranes are used for desalination by reverse osmosis, the most common external physical form of which is cylindrical, centrally crossed by the permeate tube.
  • the membranes used in most commercial desalination facilities are manufactured with useful surfaces between 300 and 400 square feet of semi-permeable membrane, the cylinder having dimensions of 8 inches in diameter and 40 inches in length (1 meter) .
  • membranes are placed inside a cylindrical container, resistant to the high pressures at which the process is carried out, whose internal diameter adjusts to that of the membrane.
  • This container is called a pressure tube or box.
  • the pressure tube is provided at both ends with caps, also resistant to working pressure.
  • the caps have both the connections to the external pipes and to the membranes. Although sometimes, some external connections start from the ends of the pressure tube and not from the caps.
  • connections between the covers and the membranes are made by means of tubular pieces provided with O-rings that are coupled to the central tube of permeate of the membrane.
  • two and more membranes can be coupled, through their central permeate tubes, by means of watertight tubular pieces.
  • Pressure tubes are manufactured with the capacity to contain from 1 single membrane to 8 membranes coupled to each other.
  • the production capacity of a membrane is directly related to its useful surface (300 to 400 square feet). Putting more membranes in the same tube, it is possible to produce more permeate water, without increasing the feed flow.
  • the desalinated water production capacity of a membrane is a direct function of the difference between the hydraulic pressure of the fluid and its osmotic pressure.
  • the hydraulic pressure of the fluid is maximum at the entrance to the pressure tube and decreases due to friction and because part of the water is diverted to the permeate.
  • the osmotic pressure of this same fluid is minimal at the inlet and increases because it is concentrated in the salts left by the water that has permeated through the membrane. Consequently, the maximum productivity is achieved at the beginning of the pressure tube, to decrease as the fluid moves through it, that is, the first membrane always has a production per unit area greater than the rest.
  • This whole set of pressure pipes connected in parallel by collectors is called a stage.
  • the flow decreases on the feed-reject side, and it is necessary to design so that the concentrate flow never becomes so low that it passes turbulent to laminar type; unless the feedwater is free of suspended solids.
  • the lower limit of concentrate flow per pressure tube will depend on the suspended solids content of the feed water. This not only depends on the quality of the raw water but on the quality of the pre-treatment of the desalination plant.
  • the concentrated water is still capable of producing more desalinated water, due to its salt content, it is necessary to add another stage, consisting of other pressure tubes connected in parallel by collectors.
  • the number of pressure tubes of the second stage must be less than that of the first, so that also in this stage the concentrate flow is higher than the minimum allowed, without the flow rate per tube exceeding its maximum.
  • the multi-stage design aims to keep the reject flow high, for this, before it becomes dangerously low, the flow rates of various tubes are joined in a collector and reintroduced into a smaller number of tubes pressure, thus increasing the unit flow.
  • the stages can be connected directly from the concentrate collector of one to the supply of the following or pumps can be interposed that increase the pressure of the supply fluid to overcome both the pressure losses due to friction and the increase in osmotic pressure of the water at as it concentrates on salts.
  • the semipermeability of the membranes is not perfect, allowing not only the passage of water but a small passage of salts.
  • the desalinated water or product of the previous installation has a content not suitable for the use that will be given, because the salt content is higher than desired, it is necessary to subject this desalinated water to a second desalination process, which is called the second step. Therefore, it is called the first step to the previous process, consisting of one or more stages.
  • the second step in turn, can be made up of several stages.
  • the water from the previous step is used as feed water, using a pump to drive it to the process.
  • a desalination plant can be designed in another way, several hydraulically independent desalination units whose only connection is the use of the energy contained in the concentrate of one of them to drive the feed water from another of them, by an energy recovery system, either by means of a turbo-pump or by the use of any of the positive displacement energy recovery devices by the isobaric chamber system or the like.
  • the advantage occurs when positive displacement energy recovery devices are used by the isobaric chamber system or the like, since the efficiency of these devices exceeds 92%. In this way, the use of motorized pumps to drive fluids is minimized, whose combination, in the best of cases, can have a performance of 75%.
  • Another advantage, with respect to designing a single desalination unit with the total capacity of the whole, is the possibility of being able to modulate production, operating with part of the installation. There may be a need to produce less for various reasons: the demand, breakdowns in a part of the installation, etc.
  • One way to apply the present invention is to use two independent single-stage desalination units, in such a way that the salty feed water that enters the desalination system is directed in part to the high-pressure pump that sends said liquid to the first desalination system or unit, and part to two energy recovery systems through ducts.
  • the positive displacement energy recovery device may be an isobaric chamber system or the like, with associated valves, although other types of energy recovery systems may be used.
  • the desalinated water obtained from the first reverse osmosis unit is evacuated while the brine is sent through a conduit to the first energy recovery device.
  • This device will serve to:
  • the desalinated water obtained from the second reverse osmosis unit is evacuated through another conduit while the produced brine is sent through another conduit to the second energy recovery device.
  • the feed water will be sent from this device to the first desalination unit and the brine will be evacuated.
  • This brine is at a pressure lower than that of the feed salt water at the entrance to the first reverse osmosis unit, so the salt water pressure must be slightly increased feed that leaves the recovery device, using a pump to equalize the pressure of the fluids.
  • Figure 1 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the reverse osmosis method in a stage with recovery of the energy from the concentrate by means of a turbine.
  • Figure 2 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the two-stage reverse osmosis method with recovery of the energy from the concentrate by means of a turbine, without a pump between stages.
  • Figure 3 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the two-stage reverse osmosis method with recovery of energy from the concentrate by means of a turbine and with a pump between stages
  • Figure 4 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the reverse osmosis method in one stage with recovery of the energy from the concentrate by means of a positive displacement energy recovery device by the isobaric chambers or the like.
  • Figure 5 represents the object of the invention, where two desalination plants with a single stage have been represented, as an example, with two positive displacement energy recovery devices by the isobaric chamber system or the like, which take advantage of the energy contained in the concentrate of one of them to drive all or part of the feeding of the other.
  • Figure 6 again represents the object of the invention with the valves necessary to be able to modulate production, operating with part of the installation.
  • turbo-motor-pump group (3), (2) and (1) drives the salty feed water supplied by the inlet (26) towards a reverse osmosis unit (6).
  • Desalinated water is obtained from said unit (6), which is evacuated through a desalinated water circuit (30), and the brine, which is sent to the turbine (3) through the brine circuit (28 ) and subsequently evacuated to the drain (27).
  • the turbo-motor-pump group (3), (2) and (1) is composed of the high-pressure pump (1) for supplying salt water to the reverse osmosis unit (6), the electric motor (2 ) actuation of the pump (1) and the energy recovery turbine (3) of the brine and joint actuation of the aforementioned pump (1).
  • the water can pass through a regulating valve (4) to adjust the pressure and flow to the conditions suitable for the unit of Inverse osmosis
  • valve (5) which in the case of the presence of the turbine (3) would be the shutter of the fluid injection nozzle on the rotor thereof, is the main regulation element for adjusting the pressure and the feed flow to the reverse osmosis unit (6).
  • the system may lack a turbine (3), in which case this valve (5) would be a regulating valve, needle or male type.
  • Figure 2 represents a system similar to that of Figure 1, with the exception that the desalination plant has two stages of desalination by reverse osmosis, numbered with figures (6) and (7).
  • the desalinated water obtained from the first stage of reverse osmosis (6) is channeled by the circuit (30) while the brine is channeled through a conduit (28) to a second stage reverse osmosis (7) from which the desalinated water is again obtained, which is evacuated through the conduit (31), and a brine, which is directed through the circuit (29) to the motor pump group (3), (2) and (1) to take advantage of its energy in the turbine (3), before being evacuated through the drain (27).
  • figure 3 a system similar to that of figure 2 is represented, where an intermediate motor pump (9) and (8) is added to the second stage, to optimize the flows in the system, since the production of permeated water is a function of the difference between the hydraulic pressure of the fluid and its osmotic pressure.
  • this pump (8) must increase the hydraulic pressure of the fluid that enters the second stage in an amount similar to the increase in its osmotic pressure with respect to the supply to the first stage plus the loss of pressure supported in it. .
  • the brine produced by the reverse osmosis unit (6) is directed by the conduit (28) where a pump (8) increases the hydraulic pressure of this brine that enters the reverse osmosis unit (7) by an amount similar to the increase in its osmotic pressure with respect to the supply to the first stage plus the loss of load supported in it.
  • the brine resulting from the second desalination unit by reverse osmosis (7) is directed by the circuit (29) to the turbo motor pump group (3), (2) and (1) to take advantage of its energy in the turbine (3), before being evacuated down the drain (27).
  • an anti-return valve (10) is installed in by-pass, so that when the pump (1) starts and before the pump (8) starts, the fluid passes through the valve (10), not infringing the movement of the pump rotor (8), with the consequent risk that its motor (9) becomes a generator.
  • the valve (10) closes due to the increase in pressure downstream.
  • Figure number 4 shows how part of the feed salt water from the inlet (26) is directed to the high pressure pump (1), and part to an energy recovery system (11) through the duct (32) .
  • the electric motor (2) drives the pump (1) sending part of the water from the inlet (26) to the single stage reverse osmosis unit (6).
  • the other part Ia drives the energy recovery system (11).
  • the desalinated water obtained from the reverse osmosis unit (6) is evacuated by the circuit (30) while the brine (28) is sent to an energy recovery device (11).
  • the positive displacement energy recovery device may be an isobaric chamber system or the like (11), with associated valves (12, 13, 14, and 15).
  • booster pump (17) to aid the energy recovery device and its electric drive motor (18) are observed.
  • the operation of the energy recovery device (11) is as follows. In the valve (13) there is feed water at the available pressure after having passed the pre-treatment, close to 1.5 bar. Opening the valves (13) and (15) at the same time, the cylinder (11) will be filled with that water, moving the piston (16) to the right, that is, next to the valves (14) and (15) . Thereafter, said valves (13) and (15) are closed and valves (12) and (14) are opened.
  • a new cycle begins, closing the valves (12) and (14) and opening the valves (13) and (15), and the low-pressure feed water enters by displacing the piston (16) and pushing the concentrated water to exit to the drain (36) at low pressure through the valve (15).
  • Figure 4 shows the energy recovery device with a single cylinder (11).
  • commercial devices have at least two cylinders, so that when one of them is admitting low pressure feed water, the other is delivering high pressure feed water.
  • the object of the invention shows a case of two independent single stage desalination units (6) and (19).
  • This figure is similar to that represented in figure 4, with the exception that the concentrate from the reverse osmosis unit (6) enters the recovery device (20), which feeds the reverse osmosis unit (19), while that its concentrate is introduced into the recovery device (11), which feeds the reverse osmosis unit (6).
  • the electric motor (2) drives the pump (1) sending part of the water from the inlet (26) to the first reverse osmosis unit (6) and the other part is sent by the energy recovery system (11).
  • the desalinated water obtained from the first reverse osmosis unit (6) is channeled by the circuit (30) while the brine is sent through a conduit (28) to the energy recovery device (20). This brine reaches the valve (23).
  • valves (22) and (24) Opening the valves (22) and (24) at the same time, the cylinder (20) will be filled with the salty feed water coming from the inlet (26), moving the piston (25) to the right, that is, to the side of the valves (23) and (24), evacuating through the valve (24) the brine that was inside the cylinder (20). Thereafter said valves (22) and (24) are closed and valves (21) and (23) are opened.
  • the brine or concentrated fluid that leaves the reverse osmosis unit (6) is at a pressure slightly lower than that of the feed fluid at
  • the second reverse osmosis unit (19) is designed to work with a lower working pressure than the first reverse osmosis unit (6).
  • the desalinated water obtained from the second reverse osmosis unit (19) is evacuated through the conduit (31) while the produced brine is sent through the conduit (29) to the energy recovery device (11).
  • This brine is at a pressure lower than that of the feed fluid at the entrance to the unit (6).
  • valves (38) have been added, with positioner for regulation, and (39) to (43), necessary to be able to take out of service one of the reverse osmosis units (6) or (19) and one of the recovery devices energy (11) or (20), the device then remaining similar to that represented in figure 4.
  • Figure 6 will have the work system explained for Figure 5 with the valves (39) and (42) closed and with the valves (40), (41) and (43) open.
  • valves (39), (43) and (41) When you want to take the reverse osmosis unit (19) out of service, keeping unit (6) in service, the valves (39), (43) and (41) will be closed and the valves (40) and (42).
  • valves (40), (43) and (42) would be closed and Ia (39) and Ia (41) would be opened.
  • the feed flow to the reverse osmosis unit (19) must be regulated by means of the regulating valve with positioner (38) because this unit (19) works with a flow rate lower than the unit (6 ).
  • these desalination installations may include turbo-motor-pump groups (3), (2) and (1), as Io exposed in Figures 1 to 3 to take advantage of through The turbine (3) the energy of the brine and transmit it to the first high pressure pump (1) for feeding the salt water that drives the reverse osmosis unit (6), or the other pumps or booster (17).
  • these may include motor pump systems (8) and (9) with valves (10) as shown in Figure 3.

Abstract

The invention relates to independent reverse osmosis desalination units which are connected in terms of energy flow and which use the brine produced in each desalination unit in order to drive the feed flow to the following desalination unit through the use of energy recovery systems. The feed fluid is driven through a pump to the first desalination unit, such as to produce desalinated water and brine which is conveyed to the first energy recovery system, said system being equipped with a feed water inlet conduit and an outlet conduit for conveying the water that has been driven through the recovery system to the second desalination unit. Said second unit produces desalinated water and brine which is conveyed to the second energy recovery system in order to drive the feed water to a pump which raises the pressure to the same pressure as the first pump for feeding the first desalination unit.

Description

DESALADORAS DE OSMOSIS INVERSA INDEPENDIENTES CONECTADAS CONNECTED INDEPENDENT REVERSE OSMOSIS DESALINATORS
ENERGÉTICAMENTEENERGETICALLY
Indicación del sector de Ia TécnicaIndication of the Technical sector
La presente invención se encuadra dentro del campo de Ia desalación de agua por el método de osmosis inversa.The present invention falls within the field of water desalination by the reverse osmosis method.
Estado de Ia técnica anterior.State of the prior art.
La desalación de agua por el método de osmosis inversa es un proceso donde, a partir de un agua con un determinado contenido en sales, se obtienen dos flujos de agua, una con bajo contenido en sales y otra con alto contenido en sales.Desalination of water by the reverse osmosis method is a process where, from a water with a certain content of salts, two flows of water are obtained, one with a low content of salts and the other with a high content of salts.
Es este proceso se emplean membranas semipermeables, que permiten el paso del agua y no permiten el paso de las sales o Io permiten en pequeña proporción.In this process, semi-permeable membranes are used, which allow the passage of water and do not allow the passage of salts or allow it in a small proportion.
Para que se produzca el paso de agua a través de Ia membrana semipermeable es necesario que el agua a desalar, de alimentación, se encuentre a una presión superior a su presión osmótica, para Io que se emplean bombas de alta presión que impulsan esta agua hacia el proceso con membranas.In order for the water to pass through the semipermeable membrane, it is necessary for the feed water to be desalinated to be at a pressure higher than its osmotic pressure, for which reason high pressure pumps are used to drive this water towards the membrane process.
La solución con alto contenido en sales, de desecho, se encuentra a alta presión, por Io que las instalaciones de desalación suelen disponer de sistemas de recuperación de esta energía, que se traslada o se entrega al flujo de alimentación.The solution with a high salt content, waste, is at high pressure, for which reason desalination plants usually have systems for recovering this energy, which is transferred or delivered to the feed stream.
En un proceso de desalación de agua intervienen tres flujos de agua: uno de entrada o alimentación y dos de salida. De estos dos de salida, uno de ellos posee una concentración de sales inferior al que contenía Ia alimentación; a este se Ie denomina agua desalada o producto. El otro flujo de salida posee una concentración de sales superior al que contenía Ia alimentación, por Io que se denomina concentrado, salmuera o rechazo. En el caso de que Ia desalación se realicé'^b^él proceso de osmosis inversa, al producto también se Ie denomina permeado. Esta denominación proviene del hecho de que Ia desalación, en este caso, se produce mediante membranas semipermeables, en las que el agua que atraviesa o permea a través de Ia membrana es el producto, con un contenido bajo en sales, mientras que el flujo de alimentación, que no atraviesa Ia membrana, se va quedando con las sales que no pasan a través de aquella, aumentando su concentración, que saldrá del proceso como concentrado, salmuera o rechazo.Three water flows are involved in a water desalination process: one inlet or supply and two outlet. Of these two outlets, one of them has a lower salt concentration than that contained in the feed; this is called desalinated water or product. The other outflow has a concentration of salts higher than that contained in the feed, which is why it is called concentrate, brine or rejection. In the event that the desalination was carried out '^ b ^ the reverse osmosis process, the product is also called permeate. This name comes from the fact that the desalination, in this case, is produced by means of semi-permeable membranes, in which the water that passes through or permeates through the membrane is the product, with a low content of salts, while the flow of feed, which does not cross the membrane, is left with the salts that do not pass through it, increasing its concentration, which will come out of the process as concentrate, brine or rejection.
Para Ia desalación por osmosis inversa se utilizan membranas comerciales, cuya forma física exterior más común es cilindrica, atravesada centralmente por el tubo de permeado. Las membranas que se emplean en Ia mayor parte de las instalaciones desaladoras comerciales se fabrican con superficies útiles entre 300 y 400 pies cuadrados de membrana semipermeable, teniendo, el cilindro, unas dimensiones de 8 pulgadas de diámetro y 40 pulgadas de longitud (1 metro).Commercial membranes are used for desalination by reverse osmosis, the most common external physical form of which is cylindrical, centrally crossed by the permeate tube. The membranes used in most commercial desalination facilities are manufactured with useful surfaces between 300 and 400 square feet of semi-permeable membrane, the cylinder having dimensions of 8 inches in diameter and 40 inches in length (1 meter) .
Estas membranas se colocan dentro de un recipiente cilindrico, resistente a las altas presiones a las que se realiza el proceso, cuyo diámetro interior se ajusta al de Ia membrana. A este recipiente se Ie denomina tubo o caja de presión.These membranes are placed inside a cylindrical container, resistant to the high pressures at which the process is carried out, whose internal diameter adjusts to that of the membrane. This container is called a pressure tube or box.
El tubo de presión está provisto en ambos extremos de tapas, también, resistentes a Ia presión de trabajo.The pressure tube is provided at both ends with caps, also resistant to working pressure.
Las tapas poseen tanto las conexiones a las tuberías exteriores como a las membranas. Aunque a veces, algunas conexiones exteriores parten de los extremos del tubo de presión y no de las tapas.The caps have both the connections to the external pipes and to the membranes. Although sometimes, some external connections start from the ends of the pressure tube and not from the caps.
Las conexiones entre las tapas y las membranas se realizan mediante piezas tubulares provistas de juntas tóricas que se acoplan al tubo central de permeado de Ia membrana.The connections between the covers and the membranes are made by means of tubular pieces provided with O-rings that are coupled to the central tube of permeate of the membrane.
Asimismo, se pueden acoplar dos y más membranas, por sus tubos centrales de permeado, mediante piezas tubulares estancas. Los tubos de presión se fabrican con capacidad para contener desde 1 sola membrana hasta 8 membranas acopladas entre ellas.Likewise, two and more membranes can be coupled, through their central permeate tubes, by means of watertight tubular pieces. Pressure tubes are manufactured with the capacity to contain from 1 single membrane to 8 membranes coupled to each other.
La capacidad de producción de una membrana está directamente relacionada con su superficie útil (300 a 400 pies cuadrados). Poniendo más membranas en un mismo tubo se consigue producir más agua permeada, sin aumentar el caudal de alimentación.The production capacity of a membrane is directly related to its useful surface (300 to 400 square feet). Putting more membranes in the same tube, it is possible to produce more permeate water, without increasing the feed flow.
Se define como factor de conversión al cociente entre los caudales de agua desalada y de agua de alimentación. Por Io antes mencionado, se puede entender que utilizando tubos de presión con capacidad para más membranas se puede conseguir un mayor factor de conversión; se obtendría un mayor rendimiento del agua de alimentación.It is defined as a conversion factor to the quotient between the flow rates of desalinated water and feed water. By the aforementioned, it can be understood that using pressure tubes with capacity for more membranes, a higher conversion factor can be achieved; a higher yield of feed water would be obtained.
En resumen, a medida que aumenta el número de membranas dentro de un tubo de presión aumenta el factor de conversión, logrando una mayor producción a partir de una cierta cantidad de agua de alimentación.In summary, as the number of membranes within a pressure tube increases, the conversion factor increases, achieving greater production from a certain amount of feed water.
Aparte de Ia superficie disponible, Ia capacidad de producción de agua desalada de una membrana es función directa de Ia diferencia entre Ia presión hidráulica del fluido y su presión osmótica.Apart from the available surface, the desalinated water production capacity of a membrane is a direct function of the difference between the hydraulic pressure of the fluid and its osmotic pressure.
Por esto, en un tubo de presión con varias membranas, Ia presión hidráulica del fluido es máxima a Ia entrada al tubo de presión y va disminuyendo por rozamiento y porque se deriva parte del agua hacia el permeado. Sin embargo, Ia presión osmótica de este mismo fluido es mínima a Ia entrada y va aumentando debido a que se va concentrando en las sales que deja el agua que ha permeado a través de Ia membrana. Consecuentemente, Ia máxima productividad se logra al principio del tubo de presión, para ir disminuyendo a medida que el fluido se desplaza a través de él, o sea, Ia primera membrana siempre tiene una producción por unidad de superficie superior a las restantes.For this reason, in a pressure tube with several membranes, the hydraulic pressure of the fluid is maximum at the entrance to the pressure tube and decreases due to friction and because part of the water is diverted to the permeate. However, the osmotic pressure of this same fluid is minimal at the inlet and increases because it is concentrated in the salts left by the water that has permeated through the membrane. Consequently, the maximum productivity is achieved at the beginning of the pressure tube, to decrease as the fluid moves through it, that is, the first membrane always has a production per unit area greater than the rest.
Por razones hidráulicas, está limitada Ia cantidad de agua que se puede introducir en un tubo de presión, por Io que está limitada el agua de alimentación. Si se quiere tratar una cantidad superior a ese límite, se conectan varios tubos de presión iguales en paralelo mediante colectores tanto de alimentación como de concentrado y de producto.For hydraulic reasons, the amount of water that can be introduced into a pressure tube is limited, so the feed water is limited. If you want to treat a quantity greater than this limit, several equal pressure pipes are connected in parallel by means of both supply and concentrate and product collectors.
A todo este conjunto de tubos de presión conectados en paralelo mediante colectores se Ie llama una etapa.This whole set of pressure pipes connected in parallel by collectors is called a stage.
Al igual que el agua de alimentación que se puede introducir en un tubo de presión está limitado a un caudal máximo, el caudal de agua concentrada está limitado a un mínimo, debido a que éste, además de llevar un mayor contenido en sales, tiene que arrastrar y llevarse los sólidos en suspensión que entraron con el agua de alimentación.Just as the feed water that can be introduced into a pressure tube is limited to a maximum flow, the flow of concentrated water is limited to a minimum, because this, in addition to having a higher content of salts, has to drag and take the suspended solids that entered with the feed water.
Por Io tanto, a Io largo del tubo de presión, a medida que se va produciendo agua permeada, va disminuyendo el caudal en el lado de alimentación-rechazo, siendo necesario diseñar para que el flujo de concentrado nunca llegue a ser tan bajo que pase de tipo turbulento a tipo laminar; a no ser que el agua de alimentación carezca de sólidos en suspensión. El límite inferior de caudal de concentrado por tubo de presión estará en función del contenido en sólidos en suspensión del agua de alimentación. Esto no sólo depende de Ia calidad del agua bruta sino de Ia calidad del pretratamiento de Ia instalación desaladora.Therefore, along the pressure tube, as permeated water is produced, the flow decreases on the feed-reject side, and it is necessary to design so that the concentrate flow never becomes so low that it passes turbulent to laminar type; unless the feedwater is free of suspended solids. The lower limit of concentrate flow per pressure tube will depend on the suspended solids content of the feed water. This not only depends on the quality of the raw water but on the quality of the pre-treatment of the desalination plant.
Explicación de Ia invención.Explanation of the invention.
Debido a Io anteriormente expuesto es por Io que no existen tubos de presión con mayor capacidad que para 8 membranas.Due to the aforementioned, it is because of this that there are no pressure tubes with a greater capacity than for 8 membranes.
Sin embargo, cuando con una etapa, el agua concentrada aún es apta para producir más agua desalada, debido a su contenido en sales, es necesario añadir otra etapa, consistente en otros tubos de presión conectados en paralelo mediante colectores.However, when with one stage, the concentrated water is still capable of producing more desalinated water, due to its salt content, it is necessary to add another stage, consisting of other pressure tubes connected in parallel by collectors.
Dicho de otra forma, para aumentar el factor de conversión de una planta, aparte de Ia solución de insertar mayor número de membranas por tubo de presión, existe Ia solución de configurar Ia planta en varias etapas. Esto es, el rechazo de una etapa sería Ia alimentación de otra etapa, constituyendo Ia configuración de dos etapas.In other words, to increase the conversion factor of a plant, apart from the solution of inserting a greater number of membranes per pressure tube, there is a solution to configure the plant in several stages. That is, the rejection of one stage would be the feeding of another stage, constituting the configuration of two stages.
El número de tubos de presión de Ia segunda etapa debe ser inferior al de Ia primera, de forma que también en esta etapa el caudal de concentrado sea superior al mínimo permitido, sin que el caudal de alimentación por tubo supere su máximo.The number of pressure tubes of the second stage must be less than that of the first, so that also in this stage the concentrate flow is higher than the minimum allowed, without the flow rate per tube exceeding its maximum.
El diseño en varias etapas tiene el objetivo de mantener el caudal de rechazo alto, para ello, antes de que este llegue a ser peligrosamente bajo, se unen los caudales de diversos tubos en un colector y se vuelven a introducir en un número inferior de tubos de presión, aumentando así el caudal unitario.The multi-stage design aims to keep the reject flow high, for this, before it becomes dangerously low, the flow rates of various tubes are joined in a collector and reintroduced into a smaller number of tubes pressure, thus increasing the unit flow.
Así, se instalarán tantas etapas como sean necesarias hasta que el agua concentrada esté en el límite de saturación de algunas de las sales contenidas.Thus, as many stages as necessary will be installed until the concentrated water is at the saturation limit of some of the contained salts.
Las etapas se pueden conectar directamente desde el colector de concentrado de una al de alimentación de Ia siguiente o se pueden interponer bombas que aumenten Ia presión del fluido de alimentación para superar tanto las pérdidas de carga por rozamiento como el aumento de presión osmótica del agua a medida que se concentra en sales.The stages can be connected directly from the concentrate collector of one to the supply of the following or pumps can be interposed that increase the pressure of the supply fluid to overcome both the pressure losses due to friction and the increase in osmotic pressure of the water at as it concentrates on salts.
En el caso de que se inserten bombas entre las etapas, de forma que se incremente Ia presión hidráulica del fluido de alimentación por encima de su presión osmótica en una cantidad similar a Ia entrada de cada etapa, habrá una mejor distribución de los flujos y un mejor aprovechamiento de las membranas y de toda Ia inversión.In the event that pumps are inserted between the stages, so that the hydraulic pressure of the feed fluid is increased above its osmotic pressure in an amount similar to the input of each stage, there will be a better distribution of flows and a better use of membranes and all investment.
Así se logra una producción unitaria de agua desalada similar en todas las etapas, logrando que, por ejemplo, en una configuración de dos etapas, con unIn this way a similar unitary production of desalinated water is achieved in all stages, achieving that, for example, in a two-stage configuration, with a
37% de membranas en Ia segunda etapa, su contribución a Ia producción se acerque a dicho valor, 37%. En Ia práctica, para una desaladora de agua de mar, Io anterior significa que Ia bomba intermedia debe elevar Ia presión hidráulica del fluido en un valor alrededor de 17 bares por encima de Ia presión que tenía a Ia salida de Ia etapa anterior. De Io contrario, en el caso de dos etapas sin bomba intermedia, Ia segunda etapa tendría un rendimiento muy inferior a Ia primera, de forma que conteniendo, por ejemplo, alrededor del 37% de las membranas instaladas podría contribuir con sólo alrededor del 22% a Ia producción de agua desalada de Ia planta.37% of membranes in the second stage, their contribution to production approaching said value, 37%. In practice, for a seawater desalination plant, the above means that the intermediate pump must raise the hydraulic pressure of the fluid by a value of around 17 bar above the pressure it had at the outlet of the previous stage. Otherwise, in the case of two stages without an intermediate pump, the second stage would have a much lower performance than the first, so that containing, for example, about 37% of the installed membranes could contribute with only about 22% to the production of desalinated water from the plant.
Por otra parte, Ia semipermeabilidad de las membranas no es perfecta, permitiendo no solo el paso de agua sino un pequeño paso de sales. Cuando el agua desalada o producto de Ia instalación anterior tenga un contenido no apto para el empleo que se Ie va a dar, debido a que el contenido en sales es superior al deseado, es necesario someter esta agua desalada a un segundo proceso de desalación, al que se denomina segundo paso. Denominándose, por tanto, primer paso al proceso anterior, compuesto por una o varias etapas. El segundo paso, a su vez, puede estar compuesto por varias etapas.On the other hand, the semipermeability of the membranes is not perfect, allowing not only the passage of water but a small passage of salts. When the desalinated water or product of the previous installation has a content not suitable for the use that will be given, because the salt content is higher than desired, it is necessary to subject this desalinated water to a second desalination process, which is called the second step. Therefore, it is called the first step to the previous process, consisting of one or more stages. The second step, in turn, can be made up of several stages.
En este segundo paso, como se indicó, se emplea el agua producto del paso anterior como agua de alimentación, utilizándose una bomba para impulsarla al proceso.In this second step, as indicated, the water from the previous step is used as feed water, using a pump to drive it to the process.
Como novedad en esta solicitud, una desaladora se puede diseñar de otra forma, varias unidades de desalación hidráulicamente independientes cuya única conexión es el aprovechamiento de Ia energía contenida en el concentrado de una de ellas para impulsar el agua de alimentación de otra de ellas, mediante un sistema de recuperación de energía, ya sea mediante turbo-bomba o mediante el empleo de alguno de los dispositivos de recuperación de energía de desplazamiento positivo por el sistema de cámaras isobáricas o similar.As a novelty in this application, a desalination plant can be designed in another way, several hydraulically independent desalination units whose only connection is the use of the energy contained in the concentrate of one of them to drive the feed water from another of them, by an energy recovery system, either by means of a turbo-pump or by the use of any of the positive displacement energy recovery devices by the isobaric chamber system or the like.
Hasta Ia fecha los dispositivos de recuperación de energía se utilizan para Ia propia unidad de desalación. La novedad está en utilizar los dispositivos de recuperación de energía para otraunidad, en principio, independiente.Until now, energy recovery devices are used for the desalination unit itself. The novelty is in using the energy recovery devices for another unit, in principle, independent.
Realmente, Ia ventaja se produce cuando se emplean dispositivos de recuperación de energía de desplazamiento positivo por el sistema de cámaras isobáricas o similar, ya que el rendimiento de estos dispositivos supera el 92%. De esta forma se minimiza el empleo de motobombas para Ia impulsión de los fluidos, cuya combinación, en los mejores de los casos, puede tener un rendimiento del 75%.Actually, the advantage occurs when positive displacement energy recovery devices are used by the isobaric chamber system or the like, since the efficiency of these devices exceeds 92%. In this way, the use of motorized pumps to drive fluids is minimized, whose combination, in the best of cases, can have a performance of 75%.
Otra ventaja, con respecto a diseñar una sola unidad desaladora con Ia capacidad total del conjunto, es Ia posibilidad de poder modular Ia producción, funcionando con parte de Ia instalación. Se puede tener Ia necesidad de producir menos por diversos motivos: Ia demanda, averías en una parte de Ia instalación, etcétera.Another advantage, with respect to designing a single desalination unit with the total capacity of the whole, is the possibility of being able to modulate production, operating with part of the installation. There may be a need to produce less for various reasons: the demand, breakdowns in a part of the installation, etc.
Una forma de aplicar Ia presente invención consiste en utilizar dos unidades de desalación de una sola etapa independientes, de tal forma que el agua salada de alimentación que entra en el sistema de desalación es dirigida en parte a Ia bomba de alta presión que envía dicho líquido al primer sistema o unidad de desalación, y parte a dos sistemas de recuperación de energía a través unos conductos. El dispositivo de recuperación de energía de desplazamiento positivo puede ser un sistema de cámaras isobáricas o similar, con las válvulas asociadas, aunque se puede usar otros tipos de sistemas de recuperación de energía.One way to apply the present invention is to use two independent single-stage desalination units, in such a way that the salty feed water that enters the desalination system is directed in part to the high-pressure pump that sends said liquid to the first desalination system or unit, and part to two energy recovery systems through ducts. The positive displacement energy recovery device may be an isobaric chamber system or the like, with associated valves, although other types of energy recovery systems may be used.
El agua desalada obtenida de Ia primera unidad de osmosis inversa es evacuada mientras que Ia salmuera es enviada a través de un conducto al primer dispositivo de recuperación de energía. Este dispositivo servirá para:The desalinated water obtained from the first reverse osmosis unit is evacuated while the brine is sent through a conduit to the first energy recovery device. This device will serve to:
• Impulsar el agua salada de alimentación que llega directamente a este dispositivo a Ia segunda unidad de osmosis inversa con Ia suficiente presión para producir agua desalada, no siendo necesaria Ia utilización de bombas de alimentación suplementarias.• Boost the feed salty water that arrives directly at this device to the second reverse osmosis unit with sufficient pressure to produce desalinated water, the use of supplementary feed pumps not being necessary.
• Evacuar Ia salmuera procedente de Ia primera unidad de desalación.• Evacuate the brine from the first desalination unit.
El agua desalada obtenida de Ia segunda unidad de osmosis inversa es evacuada a través de otro conducto mientras que Ia salmuera producida es envida a través de otro conducto al segundo dispositivo de recuperación de energía. De este dispositivo se enviará el agua de alimentación a Ia primera unidad de desalación y se evacuará Ia salmuera. Esta salmuera se encuentra a una presión inferior a Ia del agua salada de alimentación a Ia entrada a Ia primera unidad de osmosis inversa por Io que hay que elevar ligeramente Ia presión del agua salada de alimentación que sale del dispositivo de recuperación, mediante una bomba hasta igualar Ia presión de los fluidos.The desalinated water obtained from the second reverse osmosis unit is evacuated through another conduit while the produced brine is sent through another conduit to the second energy recovery device. The feed water will be sent from this device to the first desalination unit and the brine will be evacuated. This brine is at a pressure lower than that of the feed salt water at the entrance to the first reverse osmosis unit, so the salt water pressure must be slightly increased feed that leaves the recovery device, using a pump to equalize the pressure of the fluids.
Breve descripción del contenido de los dibujosBrief description of the content of the drawings
Para Ia mejor comprensión de Io descrito en Ia presente memoria se acompañan las figuras.For a better understanding of what is described in the present specification, the figures are attached.
La figura 1 representa un diagrama de flujo convencional de Ia unidad de alta presión de una desaladora de agua por el método de osmosis inversa en una etapa con recuperación de Ia energía del concentrado mediante turbina.Figure 1 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the reverse osmosis method in a stage with recovery of the energy from the concentrate by means of a turbine.
La figura 2 representa un diagrama de flujo convencional de Ia unidad de alta presión de una desaladora de agua por el método de osmosis inversa en dos etapas con recuperación de Ia energía del concentrado mediante turbina, sin bomba entre etapas. <Figure 2 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the two-stage reverse osmosis method with recovery of the energy from the concentrate by means of a turbine, without a pump between stages. <
La figura 3 representa un diagrama de flujo convencional de Ia unidad de alta presión de una desaladora de agua por el método de osmosis inversa en dos etapas con recuperación de Ia energía del concentrado mediante turbina y con bomba entre etapasFigure 3 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the two-stage reverse osmosis method with recovery of energy from the concentrate by means of a turbine and with a pump between stages
La figura 4 representa un diagrama de flujo convencional de Ia unidad de alta presión de una desaladora de agua por el método de osmosis inversa en una etapa con recuperación de Ia energía del concentrado mediante un dispositivo de recuperación de energía de desplazamiento positivo por el sistema de cámaras isobáricas o similar.Figure 4 represents a conventional flow diagram of the high pressure unit of a water desalination plant by the reverse osmosis method in one stage with recovery of the energy from the concentrate by means of a positive displacement energy recovery device by the isobaric chambers or the like.
La figura 5 representa el objeto de Ia invención, en donde se han representado, como ejemplo, dos desaladoras con una sola etapa, con sendos dispositivos de recuperación de energía de desplazamiento positivo por el sistema de cámaras isobáricas o similar, que aprovechan Ia energía contenida en el concentrado de una de ellas para impulsar toda o parte de Ia alimentación de Ia otra. La figura 6 representa nuevamente el objeto de Ia invención con las válvulas necesarias para poder modular Ia producción, funcionando con parte de Ia instalación.Figure 5 represents the object of the invention, where two desalination plants with a single stage have been represented, as an example, with two positive displacement energy recovery devices by the isobaric chamber system or the like, which take advantage of the energy contained in the concentrate of one of them to drive all or part of the feeding of the other. Figure 6 again represents the object of the invention with the valves necessary to be able to modulate production, operating with part of the installation.
Exposición detallada de un modo de realización de Ia invención.Detailed exposition of an embodiment of the invention.
En Ia figura 1 se observa como el grupo turbo-moto-bomba (3), (2) y (1) impulsa el agua salada de alimentación suministrada por Ia entrada (26) hacia una unidad de osmosis inversa (6). De dicha unidad (6) se obtiene el agua desalada, Ia cual se evacúa a través de un circuito (30) de agua desalada, y Ia salmuera, Ia cual es enviada a Ia turbina (3) a través del circuito de salmuera (28) y, posteriormente, evacuada al drenaje (27). El grupo turbo-moto-bomba (3), (2) y (1), está compuesto por Ia bomba de alta presión (1) de alimentación de agua salada a Ia unidad de osmosis inversa (6), el motor eléctrico (2) de accionamiento de Ia bomba (1) y Ia turbina (3) de recuperación de energía de Ia salmuera y accionamiento conjunto de Ia mencionada bomba (1).In figure 1 it is observed how the turbo-motor-pump group (3), (2) and (1) drives the salty feed water supplied by the inlet (26) towards a reverse osmosis unit (6). Desalinated water is obtained from said unit (6), which is evacuated through a desalinated water circuit (30), and the brine, which is sent to the turbine (3) through the brine circuit (28 ) and subsequently evacuated to the drain (27). The turbo-motor-pump group (3), (2) and (1), is composed of the high-pressure pump (1) for supplying salt water to the reverse osmosis unit (6), the electric motor (2 ) actuation of the pump (1) and the energy recovery turbine (3) of the brine and joint actuation of the aforementioned pump (1).
A partir de Ia bomba de alta presión (1), en el caso de que ésta sea de tipo centrífuga, el agua puede pasar por una válvula de regulación (4) para ajustar Ia presión y el caudal a las condiciones adecuadas para Ia unidad de osmosis inversaFrom the high pressure pump (1), in the case that it is of the centrifugal type, the water can pass through a regulating valve (4) to adjust the pressure and flow to the conditions suitable for the unit of Inverse osmosis
(6). En caso de que Ia bomba de alta presión (1) sea del tipo de desplazamiento positivo (pistón) no existiría dicha válvula (4).(6). In case the high pressure pump (1) is of the positive displacement type (piston), said valve (4) would not exist.
Finalmente, Ia válvula (5), que en el caso de Ia presencia de Ia turbina (3) sería el obturador de Ia tobera de inyección del fluido sobre el rotor de Ia misma, es el elemento de regulación principal para el ajuste de Ia presión y el caudal de alimentación a Ia unidad de osmosis inversa (6). El sistema puede carecer de turbina (3), en cuyo caso esta válvula (5) sería una válvula de regulación, tipo aguja o de macho.Finally, the valve (5), which in the case of the presence of the turbine (3) would be the shutter of the fluid injection nozzle on the rotor thereof, is the main regulation element for adjusting the pressure and the feed flow to the reverse osmosis unit (6). The system may lack a turbine (3), in which case this valve (5) would be a regulating valve, needle or male type.
En Ia figura 2 se representa un sistema similar al de Ia figura 1 , con Ia salvedad de que Ia desaladora posee dos etapas de desalación por osmosis inversas, numeradas con las cifras (6) y (7). El agua desalada obtenida de Ia primera etapa de osmosis inversa (6) es encauzada por el circuito (30) mientras que Ia salmuera es encauzada a través de un conducto (28) a una segunda etapa de osmosis inversa (7) de Ia cual nuevamente se obtiene el agua desalada, que es evacuada a través del conducto (31), y una salmuera, Ia cual se dirige a través del circuito (29) al grupo moto bomba (3), (2) y (1) para aprovechar su energía en Ia turbina (3), antes de ser evacuada por el drenaje (27).Figure 2 represents a system similar to that of Figure 1, with the exception that the desalination plant has two stages of desalination by reverse osmosis, numbered with figures (6) and (7). The desalinated water obtained from the first stage of reverse osmosis (6) is channeled by the circuit (30) while the brine is channeled through a conduit (28) to a second stage reverse osmosis (7) from which the desalinated water is again obtained, which is evacuated through the conduit (31), and a brine, which is directed through the circuit (29) to the motor pump group (3), (2) and (1) to take advantage of its energy in the turbine (3), before being evacuated through the drain (27).
En Ia figura 3 se representa un sistema similar al de Ia figura 2, donde se añade una moto-bomba intermedia (9) y (8) de alimentación a Ia segunda etapa, para optimizar los flujos en el sistema, ya que Ia producción de agua permeada está en función de Ia diferencia entre Ia presión hidráulica del fluido y su presión osmótica. Para homogeneizar los flujos esta bomba (8) debe aumentar Ia presión hidráulica del fluido que entra en Ia segunda etapa en una cantidad similar al aumento de su presión osmótica con respecto a Ia alimentación a Ia primera etapa más Ia pérdida de carga soportada en Ia misma. Es decir, Ia salmuera producida por Ia unidad de osmosis inversa (6) es dirigida por el conducto (28) en donde una bomba (8) aumenta Ia presión hidráulica de esta salmuera que entra en Ia unidad de osmosis inversa (7) una cantidad similar al aumento de su presión osmótica con respecto a Ia alimentación a Ia primera etapa más Ia pérdida de carga soportada en Ia misma. La salmuera resultante de Ia segunda unidad de desalación por osmosis inversa (7) es dirigida por el circuito (29) al grupo turbo moto bomba (3), (2) y (1) para aprovechar su energía en Ia turbina (3), antes de ser evacuada por el drenaje (27).In figure 3 a system similar to that of figure 2 is represented, where an intermediate motor pump (9) and (8) is added to the second stage, to optimize the flows in the system, since the production of permeated water is a function of the difference between the hydraulic pressure of the fluid and its osmotic pressure. To homogenize the flows, this pump (8) must increase the hydraulic pressure of the fluid that enters the second stage in an amount similar to the increase in its osmotic pressure with respect to the supply to the first stage plus the loss of pressure supported in it. . That is, the brine produced by the reverse osmosis unit (6) is directed by the conduit (28) where a pump (8) increases the hydraulic pressure of this brine that enters the reverse osmosis unit (7) by an amount similar to the increase in its osmotic pressure with respect to the supply to the first stage plus the loss of load supported in it. The brine resulting from the second desalination unit by reverse osmosis (7) is directed by the circuit (29) to the turbo motor pump group (3), (2) and (1) to take advantage of its energy in the turbine (3), before being evacuated down the drain (27).
Para Ia puesta en marcha de Ia moto-bomba (9) y (8) se instala una válvula antirretomo (10) en by-pass, de forma que al arrancar Ia bomba (1) y antes de hacerlo Ia bomba (8), el fluido pase por Ia válvula (10), no infringiendo movimiento al rotor de Ia bomba (8), con el consiguiente riesgo de que su motor (9) se convierta en un generador. Al poner en marcha Ia bomba (8), Ia válvula (10) se cierra por el aumento de presión aguas abajo.For the start-up of the motor-pump (9) and (8), an anti-return valve (10) is installed in by-pass, so that when the pump (1) starts and before the pump (8) starts, the fluid passes through the valve (10), not infringing the movement of the pump rotor (8), with the consequent risk that its motor (9) becomes a generator. When starting the pump (8), the valve (10) closes due to the increase in pressure downstream.
La figura número 4 muestra como parte del agua salada de alimentación procedente de Ia entrada (26) es dirigida a Ia bomba de alta presión (1), y parte a un sistema de recuperación de energía (11) a través del conducto (32). El motor eléctrico (2) acciona Ia bomba (1) enviando parte del agua procedente de Ia entrada (26) a Ia unidad de osmosis inversa (6) de una sola etapa. La otra parte Ia impulsa el sistema de recuperación de energía (11). El agua desalada obtenida de Ia unidad de osmosis inversa (6) es evacuada por el circuito (30) mientras que Ia salmuera (28) se envía a un dispositivo de recuperación de energía (11). El dispositivo de recuperación de energía de desplazamiento positivo puede ser un sistema de cámaras isobáricas o similar (11), con las válvulas asociadas (12, 13, 14 y 15). En alguno de los dispositivos existentes han sido sustituidas todas Ia válvulas por una sola corredera con varias combinaciones y en otros dispositivos se han eliminado totalmente. Asimismo, el émbolo (16) representado dentro del dispositivo de recuperación de energía (11), existe en alguno de los dispositivos comerciales existentes, pero se ha eliminado en Ia mayor parte de ellos. Se ha hecho Ia representación más sencilla para entendimiento del método de funcionamiento.Figure number 4 shows how part of the feed salt water from the inlet (26) is directed to the high pressure pump (1), and part to an energy recovery system (11) through the duct (32) . The electric motor (2) drives the pump (1) sending part of the water from the inlet (26) to the single stage reverse osmosis unit (6). The other part Ia drives the energy recovery system (11). The desalinated water obtained from the reverse osmosis unit (6) is evacuated by the circuit (30) while the brine (28) is sent to an energy recovery device (11). The positive displacement energy recovery device may be an isobaric chamber system or the like (11), with associated valves (12, 13, 14, and 15). In some of the existing devices, all the valves have been replaced by a single slide with various combinations and in other devices they have been totally eliminated. Likewise, the piston (16) represented within the energy recovery device (11), exists in some of the existing commercial devices, but has been eliminated in most of them. The simplest representation has been made to understand the method of operation.
Finalmente, se observan Ia bomba booster (17) de ayuda al dispositivo de recuperación de energía y su motor eléctrico (18) de accionamiento.Finally, the booster pump (17) to aid the energy recovery device and its electric drive motor (18) are observed.
El funcionamiento del dispositivo de recuperación de energía (11) es como sigue. En Ia válvula (13) se encuentra agua de alimentación a Ia presión disponible después de haber pasado el pretratamiento, cercana a 1 ,5 bares. Abriendo las válvulas (13) y (15) al mismo tiempo, el cilindro (11) se llenará con aquella agua, desplazando el émbolo (16) hacia Ia derecha, es decir, al lado de las válvulas (14) y (15). A partir de entonces se cierran dichas válvulas (13) y (15) y se abren las válvulas (12) y (14).The operation of the energy recovery device (11) is as follows. In the valve (13) there is feed water at the available pressure after having passed the pre-treatment, close to 1.5 bar. Opening the valves (13) and (15) at the same time, the cylinder (11) will be filled with that water, moving the piston (16) to the right, that is, next to the valves (14) and (15) . Thereafter, said valves (13) and (15) are closed and valves (12) and (14) are opened.
La salmuera o fluido concentrado que sale de Ia unidad de osmosis inversaThe brine or concentrated fluid that leaves the reverse osmosis unit
(6) se encuentra a una presión ligeramente inferior a Ia del fluido de alimentación a Ia entrada a Ia unidad (6). Al abrir las válvulas (12) y (14), este fluido concentrado entra en el cilindro (11) y empuja el émbolo (16), comprimiendo el agua de alimentación que antes había entrado y obligándola a salir por Ia válvula (12) a Ia misma presión del agua concentrada. En este punto, ahora, se dispone de agua de alimentación a una presión ligeramente inferior a Ia del fluido de alimentación a Ia entrada a Ia unidad (6), por Io que solamente hay que elevar ligeramente Ia presión del fluido, mediante Ia bomba (17) para igualarla a Ia de alimentación a Ia unidad de osmosis inversa (6). Posteriormente se inicia un nuevo ciclo, cerrando las válvulas (12) y (14) y abriendo las válvulas (13) y (15), y el agua de alimentación a baja presión entra desplazando el émbolo (16) e impulsando al agua concentrada a salir al drenaje (36) a baja presión a través de Ia válvula (15).(6) is at a pressure slightly lower than that of the feed fluid at the entrance to the unit (6). When opening the valves (12) and (14), this concentrated fluid enters the cylinder (11) and pushes the piston (16), compressing the feed water that had previously entered and forcing it to leave through the valve (12) to The same pressure of the concentrated water. At this point, feed water is now available at a pressure slightly lower than that of the feed fluid at the entrance to the unit (6), so that only the pressure of the fluid needs to be slightly raised, by means of the pump ( 17) to match it to the power supply to the reverse osmosis unit (6). Subsequently, a new cycle begins, closing the valves (12) and (14) and opening the valves (13) and (15), and the low-pressure feed water enters by displacing the piston (16) and pushing the concentrated water to exit to the drain (36) at low pressure through the valve (15).
En Ia figura 4 se ha representado el dispositivo de recuperación de energía con un solo cilindro (11). En Ia realidad, los dispositivos comerciales disponen de al menos dos cilindros, de forma que cuando uno de ellos está admitiendo agua de alimentación a baja presión, el otro está entregando agua de alimentación a alta presión.Figure 4 shows the energy recovery device with a single cylinder (11). In reality, commercial devices have at least two cylinders, so that when one of them is admitting low pressure feed water, the other is delivering high pressure feed water.
El objeto de Ia invención, representado en Ia figura 5, muestra un caso de dos unidades independientes de desalación de una sola etapa (6) y (19). Esta figura es similar a Ia representada en Ia figura 4, con Ia salvedad de que el concentrado de Ia unidad de osmosis inversa (6) entra en el dispositivo recuperador (20), que alimenta a Ia unidad de osmosis inversa (19), mientras que el concentrado de ésta se introduce en el dispositivo recuperador (11), que alimenta a Ia unidad de osmosis inversa (6).The object of the invention, represented in Figure 5, shows a case of two independent single stage desalination units (6) and (19). This figure is similar to that represented in figure 4, with the exception that the concentrate from the reverse osmosis unit (6) enters the recovery device (20), which feeds the reverse osmosis unit (19), while that its concentrate is introduced into the recovery device (11), which feeds the reverse osmosis unit (6).
Es decir, parte del agua salada de alimentación procedente de Ia entradaThat is, part of the salty feed water from the inlet
(26) es dirigida a Ia bomba de alta presión (1), y parte a dos sistemas de recuperación de energía (11) y (20) a través de los conductos (32) y (34). El motor eléctrico (2) acciona Ia bomba (1) enviando parte del agua procedente de Ia entrada (26) a Ia primera unidad de osmosis inversa (6) y Ia otra parte Ia envía el sistema de recuperación de energía (11 ).(26) is directed to the high pressure pump (1), and part to two energy recovery systems (11) and (20) through the ducts (32) and (34). The electric motor (2) drives the pump (1) sending part of the water from the inlet (26) to the first reverse osmosis unit (6) and the other part is sent by the energy recovery system (11).
El agua desalada obtenida de Ia primera unidad de osmosis inversa (6) es encauzada por el circuito (30) mientras que Ia salmuera es enviada a través de un conducto (28) al dispositivo de recuperación de energía (20). Esta salmuera llega a Ia válvula (23).The desalinated water obtained from the first reverse osmosis unit (6) is channeled by the circuit (30) while the brine is sent through a conduit (28) to the energy recovery device (20). This brine reaches the valve (23).
Abriendo las válvulas (22) y (24) al mismo tiempo, el cilindro (20) se llenará con el agua salada de alimentación procedente de Ia entrada (26), desplazando el émbolo (25) hacia Ia derecha, es decir, al lado de las válvulas (23) y (24), evacuando a través de Ia válvula (24) Ia salmuera que se hallaba en el interior del cilindro (20). A partir de entonces se cierran dichas válvulas (22) y (24) y se abren las válvulas (21) y (23).Opening the valves (22) and (24) at the same time, the cylinder (20) will be filled with the salty feed water coming from the inlet (26), moving the piston (25) to the right, that is, to the side of the valves (23) and (24), evacuating through the valve (24) the brine that was inside the cylinder (20). Thereafter said valves (22) and (24) are closed and valves (21) and (23) are opened.
La salmuera o fluido concentrado que sale de Ia unidad de osmosis inversa (6) se encuentra a una presión ligeramente inferior a Ia del fluido de alimentación aThe brine or concentrated fluid that leaves the reverse osmosis unit (6) is at a pressure slightly lower than that of the feed fluid at
Ia entrada a Ia unidad (6). Al abrir las válvulas (21) y (23), este fluido concentrado entra en el cilindro (20) y empuja el émbolo (25), comprimiendo el agua de alimentación que antes había entrado y obligándola a salir por Ia válvula (21) a Ia misma presión del agua concentrada. Esta agua salada de alimentación es enviada a Ia segunda unidad de desalación por osmosis inversa (19) a través del conductoThe entrance to the unit (6). When opening the valves (21) and (23), this concentrated fluid enters the cylinder (20) and pushes the piston (25), compressing the feed water that had previously entered and forcing it to leave through the valve (21) to The same pressure of the concentrated water. This feed salt water is sent to the second desalination unit by reverse osmosis (19) through the conduit
(35) con Ia presión suministrada por el sistema de recuperación (20), siendo esta Ia suficiente para producir agua desalada en Ia segundad unidad de osmosis inversa(35) with the pressure supplied by the recovery system (20), this being sufficient to produce desalinated water in the second reverse osmosis unit
(19), no siendo necesaria Ia utilización de bombas de alimentación suplementarias.(19), the use of supplementary feeding pumps not being necessary.
Por tanto, Ia segundad unidad de osmosis inversa (19) está diseñada para trabajar con una presión de trabajo inferior a Ia primera unidad de osmosis inversa (6).Therefore, the second reverse osmosis unit (19) is designed to work with a lower working pressure than the first reverse osmosis unit (6).
El agua desalada obtenida de Ia segunda unidad de osmosis inversa (19) es evacuada a través del conducto (31) mientras que Ia salmuera producida es enviada a través del conducto (29) al dispositivo de recuperación de energía (11). Esta salmuera se encuentra a una presión inferior a Ia del fluido de alimentación a Ia entrada a Ia unidad (6). Al abrir las válvulas (12) y (14), este fluido concentrado entra en el cilindro (11) y empuja el émbolo (16), comprimiendo el agua de alimentación que antes había entrado y obligándola a salir por Ia válvula (12) a Ia misma presión del agua concentrada. Esta agua de alimentación que abandona el dispositivo (11) está a una presión inferior a Ia del fluido de alimentación a Ia entrada a Ia unidad (6), por Io que es conducida a través del conducto (33) a Ia bomba (17) para igualarla a Ia de alimentación a Ia unidad de osmosis inversa (6). Posteriormente, se cierran las válvulas (12) y (14) y se abren las válvulas (13) y (15), produciéndose Ia evacuación de Ia salmuera, a través de Ia válvula (15), iniciándose un nuevo ciclo, cerrando las válvulas (12) y (14) y abriendo las válvulas (13) y (15)The desalinated water obtained from the second reverse osmosis unit (19) is evacuated through the conduit (31) while the produced brine is sent through the conduit (29) to the energy recovery device (11). This brine is at a pressure lower than that of the feed fluid at the entrance to the unit (6). When opening the valves (12) and (14), this concentrated fluid enters the cylinder (11) and pushes the piston (16), compressing the feed water that had previously entered and forcing it to leave through the valve (12) to The same pressure of the concentrated water. This feed water that leaves the device (11) is at a pressure lower than that of the feed fluid at the entrance to the unit (6), for which reason it is led through the duct (33) to the pump (17) to match it to the power supply to the reverse osmosis unit (6). Subsequently, the valves (12) and (14) are closed and the valves (13) and (15) are opened, producing the evacuation of the brine, through the valve (15), starting a new cycle, closing the valves (12) and (14) and opening the valves (13) and (15)
En Ia figura 6 se han añadido las válvulas (38), con posicionador para regulación, y de (39) a (43), necesarias para poder sacar de servicio una de las unidades de osmosis inversa (6) o (19) y uno de los dispositivos recuperadores de energía (11) o (20), quedando entonces el dispositivo de forma similar al representado en Ia figura 4.In figure 6 the valves (38) have been added, with positioner for regulation, and (39) to (43), necessary to be able to take out of service one of the reverse osmosis units (6) or (19) and one of the recovery devices energy (11) or (20), the device then remaining similar to that represented in figure 4.
La figura 6 tendrá el sistema de trabajo explicado para Ia figura 5 con las válvulas (39) y (42) cerradas y con las válvulas (40), (41) y (43) abiertas.Figure 6 will have the work system explained for Figure 5 with the valves (39) and (42) closed and with the valves (40), (41) and (43) open.
Cuando se quiera sacar de servicio Ia unidad de osmosis inversa (19), manteniendo en servicio Ia unidad (6), se tendrán cerradas las válvulas (39), (43) y (41) y se tendrán abiertas las válvulas (40) y (42).When you want to take the reverse osmosis unit (19) out of service, keeping unit (6) in service, the valves (39), (43) and (41) will be closed and the valves (40) and (42).
En caso de parar Ia unidad de osmosis inversa (6), manteniendo en servicioIn case of stopping the reverse osmosis unit (6), keeping in service
Ia (19), se cerrarían las válvulas (40), (43) y (42) y se abren Ia (39) y Ia (41). En este caso, además, habrá que regular el caudal de alimentación a Ia unidad de osmosis inversa (19) mediante Ia válvula de regulación con posicionador (38) debido a que esta unidad (19) trabaja con un caudal inferior a Ia unidad (6).Ia (19), valves (40), (43) and (42) would be closed and Ia (39) and Ia (41) would be opened. In this case, in addition, the feed flow to the reverse osmosis unit (19) must be regulated by means of the regulating valve with positioner (38) because this unit (19) works with a flow rate lower than the unit (6 ).
Aunque no ha sido representado en las figuras 5 y 6, estas instalaciones de desalación puede incluir grupos turbo-moto-bomba (3), (2) y (1), como Io expuestos en las figuras 1 a 3 para aprovechar a través de Ia turbina (3) Ia energía de Ia salmuera y transmitirla a Ia primera bomba de alta presión (1) de alimentación de agua salada que impulsa a Ia unidad de osmosis inversa (6), o las otras bombas o booster (17). A su vez, en caso que las unidades de desalación independientes cuenten con varias etapas de desalación, éstas podrán incluir sistemas moto bombas (8) y (9) con válvulas (10) como Io expuesto en Ia figura 3. Although it has not been represented in Figures 5 and 6, these desalination installations may include turbo-motor-pump groups (3), (2) and (1), as Io exposed in Figures 1 to 3 to take advantage of through The turbine (3) the energy of the brine and transmit it to the first high pressure pump (1) for feeding the salt water that drives the reverse osmosis unit (6), or the other pumps or booster (17). In turn, in the event that the independent desalination units have several desalination stages, these may include motor pump systems (8) and (9) with valves (10) as shown in Figure 3.

Claims

REIVINDICACIONES
1. Instalación desaladora por el método de osmosis inversa, caracterizada por que consiste en varias unidades de desalación independientes (6 y 19) donde Ia energía contenida en el flujo de concentrado de una de ellas (6) es utilizada para impulsar el flujo de alimentación de Ia siguiente unidad (19), mediante el empleo de sistemas de recuperación de energía (20) y el flujo de concentrado de Ia última unidad (19) se utiliza para impulsar el flujo de alimentación de Ia primera unidad (6) mediante el empleo de un sistema de recuperación de energía (11).1. Desalination installation by the reverse osmosis method, characterized by consisting of several independent desalination units (6 and 19) where the energy contained in the concentrate flow of one of them (6) is used to drive the feed flow of the following unit (19), through the use of energy recovery systems (20) and the concentrate flow of the last unit (19) is used to drive the feed flow of the first unit (6) by using of an energy recovery system (11).
2. Instalación desaladora por el método de osmosis inversa según reivindicación 1 , caracterizada por Ia existencia de turbinas (3) para recuperación de energía a partir de Ia evacuación de salmuera para suministro energético a Ia bomba (1) de alta presión de alimentación de fluido entrante.2. Desalination installation by the reverse osmosis method according to claim 1, characterized by the existence of turbines (3) for energy recovery from the evacuation of brine for energy supply to the high pressure fluid supply pump (1) incoming.
3. Instalación desaladora por el método de osmosis inversa según reivindicación 1 , caracterizada por que los dispositivos de recuperación de energía (11 y 20) utilizados para impulsar el flujo de alimentación de Ia siguiente unidad son dispositivos de desplazamiento positivo basados en sistemas de cámaras isobáricas o similar.3. Desalination installation by the reverse osmosis method according to claim 1, characterized in that the energy recovery devices (11 and 20) used to drive the feed flow of the following unit are positive displacement devices based on isobaric chamber systems or similar.
4. Instalación desaladora por el método de osmosis inversa según reivindicación 1 , caracterizada por que las unidades de desalación están compuestas por una o varias etapas de desalación.Desalination installation by the reverse osmosis method according to claim 1, characterized in that the desalination units are made up of one or more desalination stages.
5. Instalación desaladora por el método de osmosis inversa según reivindicación 4, caracterizada por que las unidades de desalación que están compuestas varias etapas poseen dispositivos de moto bombas intermedias (8) y (9) con válvulas (10) anti-retorno en paralelo a Ia bomba.Desalination installation by the reverse osmosis method according to claim 4, characterized in that the desalination units that are composed of several stages have intermediate motorcycle pump devices (8) and (9) with anti-return valves (10) in parallel to The pump.
6. Instalación desaladora por el método de osmosis inversa según reivindicación 1 , 2, 3, 4 y 5 caracterizada por que consiste en una entrada (26) de fluido de alimentación, una bomba (1) de alta presión que impulsa parte del fluido de alimentación hasta Ia primera unidad de desalación por osmosis inversa (6), un conducto (30) que recoge el agua desalada producida por Ia unidad (6), un conducto (28) que recoge Ia salmuera producida por Ia primera unidad de~desalación (6) y Ia dirige al primer sistema de recuperación de energía (20) al cual llega un conducto (34) con parte del agua de alimentación, procedente de Ia entrada (26), y sale otro conducto (35) que conduce el agua de alimentación impulsada por sistema de recuperación de energía (20) a Ia segunda unidad de desalación (19), un conducto (31) que recoge el agua desalada producida por Ia unidad (19) y otro un conducto (29) que dirige Ia salmuera producida por Ia segunda unidad de desalación (19) al segundo sistema de recuperación de energía (11) al que llega un conducto (32) con parte del fluido de alimentación procedente de Ia entrada (26) y del que sale otro conducto (33) con el agua de alimentación impulsada por el sistema de recuperación (11) hasta una bomba (17) que eleva Ia presión de este fluido de alimentación a Ia misma presión que Io hace Ia bomba (1) de alta presión para enviar este fluido a Ia primera unidad de desalación (6), en conjunto con el que envía Ia bomba (1), y por que cada sistema de recuperación de energía (11) y (20) incluye un dispositivo o conducto de evacuación de Ia salmuera procedente de las unidades de osmosis inversa (36) y (37).6. Desalination installation by the reverse osmosis method according to claim 1, 2, 3, 4 and 5, characterized in that it consists of a feed fluid inlet (26), a high pressure pump (1) that drives part of the feed to the first desalination unit by reverse osmosis (6), a duct (30) that collects the desalinated water produced by the unit (6), a duct (28) that collects the brine produced by Ia first unit ~ desalting (6) and the addresses the first set of energy recovery (20) to which arrives a conduit (34) with part of the feed water from the inlet (26), and leaves other duct (35) that leads the feed water driven by the energy recovery system (20) to the second desalination unit (19), a duct (31) that collects the desalinated water produced by the unit (19) and another one conduit (29) that directs the brine produced by the second desalination unit (19) to the second energy recovery system (11) to which a conduit (32) arrives with part of the feed fluid from the inlet (26) and from which another duct (33) leaves with the feed water driven by the recovery system (11) to a pump (17) that raises the pressure of this feed fluid to the same pressure as that of the pump (1) high pressure to send this fluid to the first desalination unit (6), in conjunction with which the pump (1) sends, and why each energy recovery system (11) and (20) includes a device or conduit for evacuating the brine from the reverse osmosis units (36) and (37 ).
7. Instalación desaladora por el método de osmosis inversa según reivindicación 6 caracterizada por aplicarse el mismo principio de recuperación de energía expuesto en Ia reivindicación anterior a 3 o más unidades de desalación independientes.7. Desalination installation by the reverse osmosis method according to claim 6, characterized by applying the same principle of energy recovery set forth in the preceding claim to 3 or more independent desalination units.
8. Instalación desaladora por el método de osmosis inversa según reivindicación 6 y 7 caracterizada por que Ia instalación desaladora cuenta con un conjunto de válvulas (39 a 42) que permiten sacar de servicio a una o varias unidades de desalación mientras que las otras unidades de desalación continúan funcionando. 8. Desalination installation by the reverse osmosis method according to claims 6 and 7, characterized in that the desalination installation has a set of valves (39 to 42) that allow one or more desalination units to be taken out of service while the other desalination continue to operate.
PCT/ES2005/000210 2005-04-05 2005-04-21 Independent reverse osmosis desalination units which are connected in terms of energy flow WO2006106158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200500791A ES2277509B1 (en) 2005-04-05 2005-04-05 INDEPENDENT REVERSE OSMOSIS DESALATORS ENERGY CONNECTED.
ESP200500791 2005-04-05

Publications (1)

Publication Number Publication Date
WO2006106158A1 true WO2006106158A1 (en) 2006-10-12

Family

ID=37073103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000210 WO2006106158A1 (en) 2005-04-05 2005-04-21 Independent reverse osmosis desalination units which are connected in terms of energy flow

Country Status (2)

Country Link
ES (1) ES2277509B1 (en)
WO (1) WO2006106158A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100544A1 (en) * 2007-02-13 2008-08-21 Fluid Equipment Development Company, Llc Central pumping and energy recovery in a reverse osmosis system
WO2010004543A1 (en) * 2008-07-09 2010-01-14 I.D.E. Technologies Method of improving performance of a reverse osmosis system for seawater desalination, and modified reverse osmosis system obtained thereby
FR2933969A1 (en) * 2008-07-21 2010-01-22 Degremont INSTALLATION OF WATER DESALINATION BY REVERSE OSMOSIS
US7749386B2 (en) 2001-12-31 2010-07-06 Poseidon Resources Ip Llc Desalination system
US7892429B2 (en) 2008-01-28 2011-02-22 Fluid Equipment Development Company, Llc Batch-operated reverse osmosis system with manual energization
US8016545B2 (en) 2006-06-14 2011-09-13 Fluid Equipment Development Company, Llc Thrust balancing in a centrifugal pump
US8128821B2 (en) 2006-06-14 2012-03-06 Fluid Equipment Development Company, Llc Reverse osmosis system with control based on flow rates in the permeate and brine streams
US8147692B2 (en) 2008-01-04 2012-04-03 Fluid Equipment Development Company, Llc Batch-operated reverse osmosis system with multiple membranes in a pressure vessel
US8206589B2 (en) 2008-09-24 2012-06-26 Poseidon Resources Ip Llc Desalination system and method for integrated treatment of brackish concentrate and seawater
CN102734239A (en) * 2011-04-05 2012-10-17 张意立 Energy transfer actuator of suspension piston
US8529191B2 (en) 2009-02-06 2013-09-10 Fluid Equipment Development Company, Llc Method and apparatus for lubricating a thrust bearing for a rotating machine using pumpage
US8696908B2 (en) 2009-05-13 2014-04-15 Poseidon Resources Ip Llc Desalination system and method of wastewater treatment
CN106630359A (en) * 2017-02-10 2017-05-10 碧海舟(北京)节能环保装备有限公司 Clean energy seawater desalination and salt making system
US9695064B2 (en) 2012-04-20 2017-07-04 Fluid Equipment Development Company, Llc Reverse osmosis system with energy recovery devices
US9975089B2 (en) 2016-10-17 2018-05-22 Fluid Equipment Development Company, Llc Method and system for performing a batch reverse osmosis process using a tank with a movable partition
EP3317229B1 (en) 2015-07-02 2020-01-29 Mascara Nouvelles Technologies Method for controlling a desalination plant fed by a source of renewable energy and associated plant
US10801512B2 (en) 2017-05-23 2020-10-13 Vector Technologies Llc Thrust bearing system and method for operating the same
US11085457B2 (en) 2017-05-23 2021-08-10 Fluid Equipment Development Company, Llc Thrust bearing system and method for operating the same
WO2023070217A1 (en) * 2021-10-29 2023-05-04 H2O Innovation Inc. Permeate conduit segment for reverse osmosis process and flexible conduit segment for water treatment facility

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2424170B1 (en) * 2011-07-28 2014-07-25 Abengoa Water, S.L.U. Energy use system in desalination processes
ES2425449B1 (en) * 2011-07-28 2014-09-02 Abengoa Water, S.L.U. Water desalination procedure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8802291A1 (en) * 1986-06-24 1987-04-16 Dragados & Construcciones Energy recovery plant for reverse osmosis desalination installation
US6017200A (en) * 1997-08-12 2000-01-25 Science Applications International Corporation Integrated pumping and/or energy recovery system
GB2363741A (en) * 2000-06-20 2002-01-09 Finch Internat Ltd Energy recovery during desalination of seawater
ES2199654A1 (en) * 2001-10-18 2004-02-16 Mixta De Aguas De Las Palmas E Optimisation of reverse osmosis desalinators by intermediate pumps consists of pumped processing maintaining a uniform solution salinity on the osmosis membranes
WO2004065308A1 (en) * 2003-01-22 2004-08-05 DÜCHTING, Wolfgang Water desalination installation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8802291A1 (en) * 1986-06-24 1987-04-16 Dragados & Construcciones Energy recovery plant for reverse osmosis desalination installation
US6017200A (en) * 1997-08-12 2000-01-25 Science Applications International Corporation Integrated pumping and/or energy recovery system
GB2363741A (en) * 2000-06-20 2002-01-09 Finch Internat Ltd Energy recovery during desalination of seawater
ES2199654A1 (en) * 2001-10-18 2004-02-16 Mixta De Aguas De Las Palmas E Optimisation of reverse osmosis desalinators by intermediate pumps consists of pumped processing maintaining a uniform solution salinity on the osmosis membranes
WO2004065308A1 (en) * 2003-01-22 2004-08-05 DÜCHTING, Wolfgang Water desalination installation

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749386B2 (en) 2001-12-31 2010-07-06 Poseidon Resources Ip Llc Desalination system
US9808764B2 (en) 2006-06-14 2017-11-07 Fluid Equipment Development Company, Llc Reverse osmosis system with control based on flow rates in the permeate and brine streams
US10052589B2 (en) 2006-06-14 2018-08-21 Fluid Equipment Development Company, Llc Reverse osmosis system with control based on flow rates in the permeate and brine streams
US8016545B2 (en) 2006-06-14 2011-09-13 Fluid Equipment Development Company, Llc Thrust balancing in a centrifugal pump
US8128821B2 (en) 2006-06-14 2012-03-06 Fluid Equipment Development Company, Llc Reverse osmosis system with control based on flow rates in the permeate and brine streams
US9321010B2 (en) 2007-02-13 2016-04-26 Fluid Equipment Development Company, Llc Central pumping and energy recovery in a reverse osmosis system
WO2008100544A1 (en) * 2007-02-13 2008-08-21 Fluid Equipment Development Company, Llc Central pumping and energy recovery in a reverse osmosis system
US8529761B2 (en) 2007-02-13 2013-09-10 Fluid Equipment Development Company, Llc Central pumping and energy recovery in a reverse osmosis system
US8147692B2 (en) 2008-01-04 2012-04-03 Fluid Equipment Development Company, Llc Batch-operated reverse osmosis system with multiple membranes in a pressure vessel
US8808538B2 (en) 2008-01-04 2014-08-19 Fluid Equipment Development Company, Llc Batch-operated reverse osmosis system
US7892429B2 (en) 2008-01-28 2011-02-22 Fluid Equipment Development Company, Llc Batch-operated reverse osmosis system with manual energization
WO2010004543A1 (en) * 2008-07-09 2010-01-14 I.D.E. Technologies Method of improving performance of a reverse osmosis system for seawater desalination, and modified reverse osmosis system obtained thereby
WO2010010243A1 (en) * 2008-07-21 2010-01-28 Degremont Reverse-osmosis water desalination plant
FR2933969A1 (en) * 2008-07-21 2010-01-22 Degremont INSTALLATION OF WATER DESALINATION BY REVERSE OSMOSIS
US9360848B2 (en) 2008-07-21 2016-06-07 Degremont Reverse-osmosis water desalination plant
US8206589B2 (en) 2008-09-24 2012-06-26 Poseidon Resources Ip Llc Desalination system and method for integrated treatment of brackish concentrate and seawater
US8623214B2 (en) 2008-09-24 2014-01-07 Poseidon Resources Ip Llc Desalination system and method for integrated treatment of brackish concentrate and seawater
US8529191B2 (en) 2009-02-06 2013-09-10 Fluid Equipment Development Company, Llc Method and apparatus for lubricating a thrust bearing for a rotating machine using pumpage
US8696908B2 (en) 2009-05-13 2014-04-15 Poseidon Resources Ip Llc Desalination system and method of wastewater treatment
CN102734239A (en) * 2011-04-05 2012-10-17 张意立 Energy transfer actuator of suspension piston
US9695064B2 (en) 2012-04-20 2017-07-04 Fluid Equipment Development Company, Llc Reverse osmosis system with energy recovery devices
EP3317229B1 (en) 2015-07-02 2020-01-29 Mascara Nouvelles Technologies Method for controlling a desalination plant fed by a source of renewable energy and associated plant
US9975089B2 (en) 2016-10-17 2018-05-22 Fluid Equipment Development Company, Llc Method and system for performing a batch reverse osmosis process using a tank with a movable partition
US10293306B2 (en) 2016-10-17 2019-05-21 Fluid Equipment Development Company, Llc Method and system for performing a batch reverse osmosis process using a tank with a movable partition
US10710024B2 (en) 2016-10-17 2020-07-14 Fluid Equipment Development Company, Llc Method and system for performing a batch reverse osmosis process using a tank with a movable partition
CN106630359A (en) * 2017-02-10 2017-05-10 碧海舟(北京)节能环保装备有限公司 Clean energy seawater desalination and salt making system
US10801512B2 (en) 2017-05-23 2020-10-13 Vector Technologies Llc Thrust bearing system and method for operating the same
US11085457B2 (en) 2017-05-23 2021-08-10 Fluid Equipment Development Company, Llc Thrust bearing system and method for operating the same
WO2023070217A1 (en) * 2021-10-29 2023-05-04 H2O Innovation Inc. Permeate conduit segment for reverse osmosis process and flexible conduit segment for water treatment facility

Also Published As

Publication number Publication date
ES2277509B1 (en) 2008-06-01
ES2277509A1 (en) 2007-07-01

Similar Documents

Publication Publication Date Title
ES2277509B1 (en) INDEPENDENT REVERSE OSMOSIS DESALATORS ENERGY CONNECTED.
ES2963162T3 (en) Procedure and operating system of a high recovery separation process
US7214315B2 (en) Pressure exchange apparatus with integral pump
ES2619940T3 (en) WATER DESALINATION DEVICE AND WATER DESALINATION METHOD
US20170239620A1 (en) Batch Pressure-Driven Membrane Separation with Closed-Flow Loop and Reservoir
US11707715B2 (en) Reverse osmosis system
US20120067808A1 (en) Filtration apparatus and process with reduced flux imbalance
ES2949823T3 (en) Procedure for operating a water treatment facility and installation for implementing the procedure
ES2785572T5 (en) Piloting procedure for a desalination facility powered by a renewable energy source and associated facility
WO2013057328A1 (en) Reverse osmosis desalination plant having a system for recovering energy and method for same
ES2353782B1 (en) DESALINIZING PLANT WITH FLUCTUANT FLOW AND VARIABLE ELECTRICAL ENERGY RECOVERY.
US11395990B2 (en) Reverse osmosis treatment system for recovering energy generated both at brine and permeate sides during sea water desalination
ES2673945A2 (en) System and method for water treatment
WO2014013093A1 (en) Desalination plant co-generating electricity by hydrothermal means
Hauge The pressure exchanger—A key to substantial lower desalination cost
ES2277262T3 (en) PUMP SYSTEM WITH PRESSURE CONVERTER FOR REVERSE OSMOSIS.
ES2924308T3 (en) Volumetric pressure exchanger with boosting effect and integrated flow measurement for a seawater desalination plant
ES2199654B1 (en) OPTIMIZATION OF REVERSE OSMOSIS DESALATORS THROUGH INTERMEDIATE PUMPS.
US11046594B2 (en) Method and system for operating a high recovery separation process
ES2197766B1 (en) BY-PASS REGULATION SYSTEM FOR REVERSE OSMOSIS DESALATORS.
WO2018198579A1 (en) Reverse osmosis device and seawater desalination plant provided with same
ES2402628B1 (en) System and procedure for osmosis energy use natural between brine and seawater.
ITME20110001A1 (en) NEW OSMOSIS SYSTEM
IT201800005264A1 (en) Apparatus for filtering a fluid comprising a rotary valve pressure exchanger
GB2557610A (en) Membrane cleaning method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05740497

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5740497

Country of ref document: EP