WO2006108974A1 - Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal - Google Patents

Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal Download PDF

Info

Publication number
WO2006108974A1
WO2006108974A1 PCT/FR2006/050218 FR2006050218W WO2006108974A1 WO 2006108974 A1 WO2006108974 A1 WO 2006108974A1 FR 2006050218 W FR2006050218 W FR 2006050218W WO 2006108974 A1 WO2006108974 A1 WO 2006108974A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
distal portion
tube according
sheath
proximal
Prior art date
Application number
PCT/FR2006/050218
Other languages
English (en)
Inventor
Henri Mehier
Original Assignee
Centre D'etude Et De Recherche Medicale D'archamps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre D'etude Et De Recherche Medicale D'archamps filed Critical Centre D'etude Et De Recherche Medicale D'archamps
Priority to US11/910,986 priority Critical patent/US7736334B2/en
Priority to EP06726242A priority patent/EP1885418B1/fr
Priority to JP2008505932A priority patent/JP4819876B2/ja
Priority to ES06726242T priority patent/ES2376784T3/es
Priority to AT06726242T priority patent/ATE531413T1/de
Publication of WO2006108974A1 publication Critical patent/WO2006108974A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14216Reciprocating piston type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/04General characteristics of the apparatus implanted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/051General characteristics of the apparatus combined with other kinds of therapy with radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/057General characteristics of the apparatus combined with other kinds of therapy with magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3633General characteristics of the apparatus related to heating or cooling thermally insulated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16809Flow controllers by repeated filling and emptying of an intermediate volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/329Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles characterised by features of the needle shaft
    • A61M5/3291Shafts with additional lateral openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/34Constructions for connecting the needle, e.g. to syringe nozzle or needle hub
    • A61M5/347Constructions for connecting the needle, e.g. to syringe nozzle or needle hub rotatable, e.g. bayonet or screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/44Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for cooling or heating the devices or media

Definitions

  • the subject of the invention is an implantable tube intended for injecting fluid into all or part of a human or animal tissue.
  • the invention is more particularly described in connection with the injection of heat transfer fluid.
  • the tube can also be used for the injection of cold substances such as, for example, suspensions of magnetic nanoparticles or nanocapsules containing one or more active substances.
  • One of the methods of treating cancerous tumors consists in destroying all or part of the cancerous tissue by the targeted administration of heat or cold. This principle is known under the name “thermoablation” and is currently used in particular for the treatment of liver metastases.
  • thermoablation by heat such as laser, radio frequency with needle, cryotherapy falls under the cold thermoablation.
  • these techniques have a number of disadvantages.
  • the volume of the treated tumor remains limited (in practice 4 to 5 cm in diameter) and the relatively long intervention time, from 20 to 30 minutes for radio frequency and cryotherapy, even more so for treatment with laser.
  • WO 00/29055 of the Applicant discloses a thermoablation by heat technique of injecting directly into the body water or hydrogen peroxide at a pressure of up to 3000 bar, at a temperature of 200. at 400 ° C.
  • the oxygenated water or the water is heated in a metal coil incorporating an electrical resistance or a heat exchanger around which is surrounded a platinum-irridium tube.
  • the alloy tube is connected to the diffusion means, which is under the form of a tube implanted directly into the tissue to be treated.
  • This tube hereinafter referred to as a "microtube” has an external diameter of between 100 and 250 ⁇ m and an internal diameter of between 50 and 150 ⁇ m.
  • It is made of a material capable of withstanding the pressure of 3000 bar, such as for example a platinum / irridium alloy, and therefore, when it is connected to the heating coil, to inject water or water. hydrogen peroxide in vaporized form. The temperature of the vaporized liquid, in contact with the tissue to be treated, decreases and the water becomes liquid again within the tumor itself.
  • the Applicant proposes an improved thermoablation method in that it provides for injecting the heat transfer liquid no longer continuously, but in pulsed form.
  • the volume of liquid injected is very small, for example between 0.2 and 1 ml, which makes it possible to prevent the diffusion of heat outside the tumor.
  • these volumes are injected at regular intervals between 0.5 and 1 second, which reduces the amount of heat outside the area to be treated, thus facilitating the handling of the tube by the surgeon.
  • the heating system remains unchanged and consists essentially of a metal coil incorporating an electrical resistance and around which is surrounded a stainless steel tube in which circulates the heat transfer fluid.
  • This heating system has a number of disadvantages.
  • US-A-5,542,928 discloses a catheter for use in thermoablation in which a fluid exiting outwardly at the distal end of said tube is passed through perforations.
  • the heating of the liquid flowing in the tube is obtained by means of a helical resistor arranged on the distal portion of the catheter and connected to an electrical source.
  • the catheter described in this document is intended to be introduced into cavities for which it is not necessary to have a small diameter tube, the diameter being indeed between 2 and 10 mm.
  • the presence of the resistance further increases the final diameter of the device to be introduced into the body. If this document describes the idea of heating only the distal portion of the tube, the size of the proposed system remains incompatible with implantation directly into the tissues.
  • US-6,328,735 B1 describes a thermoablation technique combining injection of hot liquid and radiofrequency. More specifically, as previously, the described installation comprises a tube whose distal end is provided with a resistor for heating the liquid arriving at the end of the tube. Again, the diameter of the tube is preferably 2 mm and surrounded by a coil of resistance equal to 50 ⁇ .
  • US-5,964,752 discloses an apparatus of the same type as previously, for the treatment of cartilage. Again, the distal end of the tube is provided with a resistor, this time positioned inside the tube.
  • the proposed heating systems require a coil resistance generating a high inductance incompatible with current draws such as those implemented by the Applicant, because this would cause an impedance too high.
  • WO 02/069821 discloses a tube in which steam circulates, intended to be implanted in the body. Steam is generated directly in the tube in which the fluid circulates by radiofrequency. More specifically, the tube has two electrodes connected to a radio frequency generator, the liquid ensuring the flow of current between the two electrodes. In the proposed system, there is no differential heating and the tube is heated along its entire length. In addition, the choice of the liquid to be injected is limited to conductive liquids. Finally, the passage of the current in the liquid is likely to affect the properties thereof.
  • the problem to be solved by the invention is to develop an installation of the type described for example in WO 03/070302, in which the coolant is heated to the vaporization temperature, exclusively at the distal portion of the implantable microtube, the diameter of the tube being 10 to 20 times smaller than that of a catheter traditionally used for thermoablation.
  • a second problem that the invention proposes to solve is to develop a system in which the inductance is zero, so that it can be used in current draws.
  • a third problem to be solved by the invention is to provide a single installation that allows the injection of heat transfer fluid or cold fluid carrying nanocapsules or nanoparticles, depending on the nature of the treatment.
  • the Applicant has developed a microtube connected to an electrical source having a structure such that it has a resistance of between 0.2 and 2 ⁇ in its distal part and a resistance of less than 0.01 ⁇ in the remaining part.
  • the new system developed consists of a microtube intended to be implanted directly in tissues, the microtube being devoid of additional electrical resistance and having a distal end capable of reaching high heating temperatures, the tube itself acting as a heating resistor.
  • This tube is connected by means of an extension in which the cold liquid circulates, to the liquid storage and injection unit.
  • the subject of the invention is an implantable tube capable of heating by conduction, in particular a heat-transfer fluid intended to be injected into all or part of a human or animal tissue, the tube being provided with a wall having of the distal, medial and proximal parts and comprising means for direct or indirect joining of the proximal portion to a fluid reservoir, the tube being characterized in that it is provided with two connection means at the terminals of an electrical source ensuring the arrival and the return of the current in the wall, and in that it has a resistance lower than 0.01 ⁇ in its median and proximal parts and a resistance between 0.2 and 2 ⁇ in its distal part, the medial and proximal parts being electrically connected in series to the distal portion, the tube being devoid of additional electrical resistance and having a substantially zero inductance.
  • the objective is therefore to have a microtube that can be implanted in the body, and in which the heat transfer liquid is heated electrically and by conduction, only at the distal portion of the microtube, that is to say in the area to be treated and not in the proximal and medial portions, thereby avoiding the heating of the related tissue areas and facilitating the manipulation of the free proximal end of the tube by the surgeon.
  • the wall of the implantable tube has in an advantageous embodiment, from the center to its periphery, in section:
  • a metal tube in which the fluid to be injected circulates with the exception of the distal portion, a sheath ensuring the arrival of the current made of a conductive material secured to a connection means at one of the terminals of the electrical source; , with the exception of the free end of the distal portion, an electrically insulating sheath, a sheath ensuring the return of the current made of a conductive material secured to a connection means to the other terminal of the electrical source.
  • the wall of the tube is provided with a biocompatible outer sheath allowing its implantation in the tissues.
  • the metal tube has a resistivity of between 20 and 100 ⁇ .cm and advantageously has a length of less than 50 cm.
  • the outer diameter of the tube is between 200 microns and 800 microns, preferably equal to 250 microns, as the inner diameter is between 100 microns and 250 microns, preferably equal to 150 microns.
  • the metal tube is made of a material of platinum / irridium alloy, titanium, stainless steel, nickel-titanium alloy and more generally, any electrically conductive material capable of withstanding a pressure up to 3000 bar and a temperature of 400. 0 C.
  • the sheath consists of a copper electrolytic coating with a thickness of between 20 microns and 50 microns.
  • the electrically insulating sheath it is advantageously constituted by a vacuum coating of titanium oxide or alumina and more generally any electrical insulating material and resistant to a temperature of at least 400 ° C.
  • the thickness of the sheath is between 200 nm and 400 nm.
  • the outer sheath is preferably made of an electrolytic coating of gold approximately 1 ⁇ m thick.
  • the microtube of the invention can be used in two different ways.
  • the implantable tube is provided with perforations of size between 50 microns and 150 microns, advantageously equal to 70 microns, while its free end is closed.
  • the microtube is implanted by means of a slotted needle, said needle being then removed to leave in the tissue, only the tube.
  • the treatment can also be done on an ad hoc basis.
  • the microtube is removed immediately after use. It has no lateral perforations in its distal portion and has a single opening opening formed at its free distal end.
  • the microtube is used in combination with a needle whose walls are provided with perforations, the microtube being introduced into the body of the needle and all implanted in the tissue to be treated.
  • the invention also relates to an installation intended in particular for the injection of coolant in a pulsed regime in all or part of a human or animal tissue, implementing the microtube previously described.
  • an installation contains: • a fluid storage unit; "an injection unit of said fluid;” the implantable tube previously described; an extension connecting the proximal end of the implantable tube to the injection unit.
  • the injection unit is in practice in the form of a chamber containing the substance to be injected and in which a hydraulic jack of small diameter, of the order of 3 to 5 mm, is controlled by an electric, pneumatic cylinder, piezoelectric or mechanical, larger diameter, of the order of 50 to 80 mm, whose tripping and / or stroke and / or the force and / or the speed of displacement are determined according to the rhythm, volume and the desired injection pressure of the substance in the extension by the hydraulic cylinder.
  • the injection unit contains two check valves.
  • the pressure at which the substance is injected depends on the speed of movement and the force of the cylinders, for example pneumatic, which are also programmed.
  • the injection unit is fed with the active ingredient by a storage unit.
  • the liquid supply of the injection unit is carried out with predetermined volumes corresponding to the volume injected into the tumor.
  • the tank is separated from the chamber by a non-return valve, preventing the return of the liquid in the pressure storage tank of the piston.
  • the extension has a resistivity of between 20 and 100 ⁇ .cm. It has a length of between 2 and 3 m. Its external diameter is between 200 ⁇ m and 800 ⁇ m, advantageously equal to 250 ⁇ m, just as the internal diameter is between 100 ⁇ m and 250 ⁇ m, advantageously equal to 150 ⁇ m. In general, the larger the diameter, the greater will be the dead volume, which is not satisfactory.
  • the metal tube is made of a platinum / irridium alloy material, titanium, stainless steel, nickel-titanium alloy and more generally, any electrically conductive material able to withstand a pressure up to 3000 bar and a temperature of 400 0 C.
  • the extension is connected by any known means to the injection unit on one side, and the proximal end of the microtube, on the other.
  • one of the problems of the invention is to provide an installation by which one can inject hot or cold depending on the nature of the treatment. This objective is fulfilled since it is sufficient to disconnect the electrical source at the time of injection of the cold substance.
  • the pulsation regime combined with the fact that only the distal portion of the implantable tube is heated allows to sequence hot and cold injection without waiting, since the extension and implantable tube assembly, with the exception of the part distal, stay cold.
  • the active cold substance can take different forms, for example in the form of a suspension of nanocapsules, nanoparticles or microparticles.
  • the active substance may be associated with ferrite magnetic nanoparticles of size between 100 and 1000 nanometers.
  • the energy imparted to the magnetic nanoparticles causes them to behave independently of each other, their magnetic mutual attraction becoming negligible compared with to their kinetic energy.
  • the magnetic attraction favors the grouping of the nanoparticles in the form of clusters of sizes of about 50 microns, in the area of the tissue to be treated.
  • radioactive active ingredient in the case of a radioactive active ingredient, can take two different forms: • either, it consists of radioactive isotopes and grafted onto the magnetic particles;
  • the radioactive product may emit ⁇ , ⁇ and ⁇ radiation for therapeutic purposes, preferably of low energy, to obtain the most local irradiation possible. It may also be useful to associate a transmitter energy ⁇ between 100 and 150 kiloelectronvolts (Kev) or emitter ⁇ -1 to visualize the location of the nanoparticles using a ⁇ -camera. This also makes it easier to calculate the irradiation dose.
  • magnetic nanoparticles can be used as magnetic particles.
  • the stable product giving the radioactive product by irradiation with neutrons or charged particles is incorporated during the manufacture of ferrite nanoparticles, the ferrite components giving after irradiation, radioactive products of very short period, thus disappearing very quickly. In this way, only the radioactivity of the chosen therapeutic radioactive element persists.
  • an active substance can be associated with liquid mercury (Hg) or amalgam in the form of nanoparticles.
  • Hg liquid mercury
  • amalgam in the form of nanoparticles.
  • the liquid mercury takes the form of micro-drops whose kinetic energy is high because of its high density.
  • the significant surface tension of mercury favors the grouping of microdrops into larger beads thus fixing the active substance in the organ to be treated.
  • mercury has a radioactive isotope (Hg 197) well suited for therapy.
  • Hg 197 the active ingredient Hg 197 is included in the mercury nanoparticle.
  • mercury makes amalgam with most metals, which allows to fix other trace metal radioactive products, mercury remaining liquid.
  • Figure 1 is a schematic representation of the installation incorporating the implantable tube of the invention.
  • Figure 2 is a representation of the implantable tube of the invention according to a first embodiment.
  • Figure 3 is an enlargement of the distal portion of the tube of Figure 2.
  • Figure 4 is a second embodiment of the implantable tube of the invention.
  • FIG. 1 diagrammatically shows an installation intended for the treatment by thermoablation of tissues, and in particular of tumors. More specifically, this installation is intended to deliver in pulsed mode, directly to the tumor, water in vaporized form at a temperature of about 400 ° C.
  • the installation comprises five main elements, respectively a vaporization liquid storage unit (1), an injection unit (2), an extension (3), the implantable tube of the invention (4) and a generator of current (5) integrating a system for programming pulses, managing pressure sensors and temperature and movement.
  • the injection unit (2) comprises a pneumatic cylinder of large size (6) integral with a small hydraulic cylinder moving in a chamber (7) where the liquid is pressurized, opening itself into a tube (8) fed by the storage unit (1).
  • the stroke, the force and the speed of movement of the pneumatic cylinder are programmed according to the rate, the volume and the desired injection pressure of the coolant in the tube (8).
  • the extension (3) is in practice in the form of a tube of a size of the order of 2.5 m, the outer diameter is equal to 250 microns and the internal diameter to 150 microns. It is made of platinum / irridium, with a resistivity equal to 25 ⁇ .cm. As will be seen next, it is the extension of the metal tube of the implantable tube. The extension is connected, at its proximal end, to the tube (8) and at its distal end to the implantable tube (4) by a luer lock system, or HPLC.
  • the microtube (4) is more particularly shown in FIG. 2. It is divided into three parts, respectively:
  • proximal part (9) corresponding in practice to the non-implanted portion of the tube at the time of treatment
  • 1 a median portion (10) corresponding in practice to the portion of the tube when implanted, located between the skin plane (11) and the area to be treated (12), and 1 a distal portion (13) located at the time of treatment in the area to be treated.
  • the implantable microtube also has at its proximal end connection means (14, 15) at the terminals of the electrical source (5), as well as connection means (16) at the distal end of the extension (3). .
  • the medial and proximal portions of the tube have a resistance of less than 0.01 ⁇ , while the proximal portion has a resistance of between 0.2 and 2 ⁇ , the medial and proximal portions being electrically connected in series to the distal part.
  • the difference in resistance of these zones makes it possible to heat the liquid exclusively at the level of the distal zone of the microtube, and not between the zone to be treated and the cutaneous plane, thus avoiding heating the tissues not affected by the treatment.
  • This tube consists of the center to the periphery of a tube itself (17) made of platinum / irridium, having a variable length depending on the depth of the area to be treated. In practice, the size of the tube is less than 50 cm.
  • the constituent material of the tube has a resistivity equal to 25 ⁇ .cm and has an internal diameter equal to 150 microns and an outer diameter equal to 250 microns.
  • the tube (17) is covered with a copper electrolyte coating (18) of thickness equal to 30 ⁇ m in contact at the proximal end with the connection (15) to the source of the electricity (5) ensuring the arrival of the current.
  • the distal portion of the tube (17), with the exception of its distal end (19), is covered with an electrically insulating sheath (20) made of a vacuum coating of titanium oxide, this sheath covering the coating of copper ensuring the arrival of the current on the central and proximal parts of the tube.
  • the implantable tube of the invention On the insulating sheath (20), and in contact with the distal end (19) of the tube (17), the implantable tube of the invention has a copper electrolytic coating (21) ensuring the return of the current, which is in contact with the second connector (14) connected to the power source (5).
  • the outermost sheath is a biocompatible sheath (22) in the form of an electrolytic coating of gold.
  • the cold liquid arrives at the proximal end of the tube in the form of a well and is slightly warmed under the effect of the synchronous pulses of current. This heating remains low because of the choice of resistance, less than 0.01 ⁇ .
  • the current flows directly into the wall of the tube (17) to start again at the distal end (19) by the sheath (20).
  • the implantable tube of the invention may have two distinct conformations.
  • microtube is used for long-term treatments, requiring the maintenance of the microtube in the body until the end of said treatment.
  • the tube is placed by means of a laterally split puncture needle serving as a guide. Once the assembly is introduced into the tissue to be treated, the needle is released from the tube and removed.
  • the implantable tube of the invention is used for spot treatments.
  • the tube is removed systematically after each intervention.
  • the system shown in FIG. 4 is implemented.
  • the microtube is identical to that shown in Figure 2, except that it has an open distal free end, and it is devoid of perforations.
  • the perforations (23) are instead provided in the puncture needle (24) introduced into the tissue to be treated.
  • the operator determines the volume of substance to be injected according to the size of the tumor. From its experience, in the case of thermoablation, the Applicant has found that it was generally necessary to inject a volume of liquid representing 5 to 10% of the volume of the tumor to be treated to obtain a satisfactory necrosis ( at 400 0 C). The operator then determines the volume of each injection and deduces the number of pulses needed to deliver the total volume of liquid. The triggering, the stroke, the force and the speed of the pneumatic jack are then programmed to allow the injection of N times the volume of liquid at regular intervals, in practice between 0.05 and 1 ml, for a time between 1 and 2 seconds at a pressure of 2200 bar.
  • the manipulation then starts by injecting the first volume of cold water into the extension.
  • a voltage of 6 to 20 volts is applied to the terminals (14) and (15) of the tube.
  • the very low resistance of the proximal and median parts of the tube makes it possible to limit the heating of the fluid, the temperature being in practice of the order of 45 ° C.
  • the temperature At the level of the distal zone which has a resistance equal to 2 ⁇ , the temperature reaches in 4 to 5 seconds, 400 0 C for a pressure of 2200 bars.
  • the water then vaporized escapes through the perforations of the tube or by its distal end. and the vapor condenses in hot water close to the boiling point by releasing calories in the tumor.

Abstract

Tube implantable (4) apte à chauffer par conduction notamment un fluide caloporteur destiné à être injecté dans tout ou partie d'un tissu humain ou animal, le tube étant muni d'une paroi présentant des parties distale (13), médiane (10) et proximale (9) et comprenant des moyens de solidarisation directs ou indirects (16) de la partie distale à un réservoir de fluide, caractérisé en ce qu'il est muni de deux moyens de connexion (14, 15) aux bornes d'une source électrique (15) assurant l'arrivée et le retour du courant dans la paroi, et en ce qu'il présente une résistance inférieure à 0.01 Ω dans ses parties médiane (10) et proximale (9) et une résistance comprise entre 0.2 et 2 Ω dans sa partie distale (13), les parties médiane (10) et proximale (9) étant reliées électriquement en série à la partie distale (13), le tube étant dépourvu de résistance électrique additionnelle.

Description

TUBE IMPLANTABLE DESTINE A L'INJECTION NOTAMMENT DE FLUIDE CALOPORTEUR DANS TOUT OU PARTIE D'UN TISSU HUMAIN OU ANIMAL
L'invention a pour objet un tube implantable destiné à l'injection de fluide dans tout ou partie d'un tissu humain ou animal. Dans la suite de la description, l'invention est plus particulièrement décrite en relation avec l'injection de fluide caloporteur. Néanmoins, le tube peut être également utilisé pour l'injection de substances froides telles que par exemple des suspensions de nanoparticules magnétiques ou de nanocapsules contenant une ou plusieurs matières actives.
Une des méthodes de traitement des tumeurs cancéreuses consiste à détruire en tout ou partie le tissu cancéreux par l'administration ciblée de chaleur ou de froid. Ce principe est connu sous la dénomination « thermoablation » et est actuellement mis en œuvre notamment pour le traitement des métastases hépatiques.
Plusieurs techniques s'appuyant sur le principe de la thermoablation par la chaleur sont aujourd'hui proposées, telles que laser, radio fréquence avec aiguille, la cryothérapie relevant quant à elle de la thermoablation par le froid. Toutefois, ces techniques présentent un certain nombre d'inconvénients. En particulier, le volume de la tumeur traitée reste limité (en pratique de 4 à 5 cm de diamètre) et le temps d'intervention relativement long, de 20 à 30 minutes pour la radio fréquence et la cryothérapie, davantage encore pour le traitement au laser.
Le document WO 00/29055 du Demandeur décrit une technique de thermoablation par la chaleur consistant à injecter directement dans l'organisme de l'eau ou de l'eau oxygénée à une pression pouvant aller jusqu'à 3000 bars, à une température de 200 à 4000C. Pour ce faire, l'eau oxygénée ou l'eau est chauffée dans une bobine métallique incorporant une résistance électrique ou un échangeur de température autour de laquelle est entouré un tube platine-irridium. Le tube en alliage est raccordé au moyen de diffusion, lequel se présente sous la forme d'un tube implanté directement dans le tissu à traiter. Ce tube, désigné par la suite « microtube », a un diamètre externe compris entre 100 et 250 μm, et un diamètre interne compris entre 50 et 150 μm. Il est réalisé en un matériau apte à supporter la pression de 3000 bars tel que par exemple un alliage platine/irridium, et permet donc, lorsqu'il est connecté à la bobine de chauffage, d'injecter de l'eau ou de l'eau oxygénée sous forme vaporisée. La température du liquide vaporisé, au contact du tissu à traiter, diminue et l'eau redevient liquide au sein même de la tumeur.
Dans le document WO 03/070302, le Demandeur propose une méthode de thermoablation perfectionnée en ce qu'elle prévoit d'injecter le liquide caloporteur non plus en continu, mais sous forme puisée. En pratique, le volume de liquide injecté est très faible, par exemple compris entre 0,2 et 1 ml ce qui permet d'éviter la diffusion de chaleur en dehors de la tumeur. En outre, ces volumes sont injectés à intervalles réguliers compris entre 0,5 et 1 seconde, ce qui permet de réduire la quantité de chaleur en dehors de la zone à traiter, facilitant ainsi la manipulation du tube par le chirurgien.
Dans les deux procédés proposés, le système de chauffage reste inchangé et consiste pour l'essentiel en une bobine métallique incorporant une résistance électrique et autour de laquelle est entouré un tube inox dans lequel circule le fluide caloporteur.
Ce système de chauffage présente un certain nombre d'inconvénients.
Tout d'abord, sa localisation en amont de l'installation nécessite une puissance de chauffage d'autant plus importante que la rallonge séparant le microtube en tant que tel du système de chauffage, est longue. En outre, ce système ne permet pas d'enchaîner, sans aucun temps mort, l'injection par puises, de produits chauds et de produits froids, car le temps de refroidissement de la bobine est trop long. Le document US-A-5,542,928 décrit un cathéter destiné à être mis en œuvre pour la thermoablation dans lequel circule un fluide débouchant à l'extérieur au niveau de l'extrémité distale dudit tube par le biais de perforations. En pratique, le chauffage du liquide circulant dans le tube est obtenu au moyen d'une résistance hélicoïdale agencée sur la portion distale du cathéter et connectée à une source électrique. Le cathéter décrit dans ce document est destiné à être introduit dans des cavités pour lesquelles il n'est pas nécessaire d'avoir un tube de faible diamètre, le diamètre étant en effet compris entre 2 et 10 mm. La présence de la résistance augmente davantage encore le diamètre final du dispositif destiné à être introduit dans l'organisme. Si ce document décrit l'idée de chauffer uniquement la partie distale du tube, la taille du système proposé reste incompatible avec une implantation directement dans les tissus.
Le document US-6,328,735 Bl décrit une technique de thermoablation combinant injection de liquide chaud et radiofréquence. Plus précisément, de même que précédemment, l'installation décrite comprend un tube dont l'extrémité distale est munie d'une résistance destinée à chauffer le liquide arrivant à l'extrémité du tube. Là encore, le diamètre du tube est avantageusement de 2 mm et entouré d'une bobine de résistance égale à 50 Ω.
Le document US-5, 964,752 décrit un appareil du même type que précédemment, destiné au traitement des cartilages. Là encore, l'extrémité distale du tube est munie d'une résistance, cette fois positionnée à l'intérieur du tube.
Dans tous les cas, les systèmes de chauffage proposés requièrent une résistance sous forme de bobine engendrant une inductance élevée incompatible avec les puises de courant tels que ceux mis en œuvre par le Demandeur, car cela occasionnerait une impédance trop élevée.
Le document WO 02/069821 décrit un tube dans lequel circule de la vapeur, destiné à être implanté dans l'organisme. La vapeur est générée directement dans le tube dans lequel circule le fluide par radiofréquence. Plus précisément, le tube présente deux électrodes connectées à un générateur de radiofréquences, le liquide assurant le passage du courant entre les deux électrodes. Dans le système proposé, il n'y a pas de chauffage différentiel et le tube est chauffé sur toute sa longueur. En outre, le choix du liquide à injecter est limité aux liquides conducteurs. Enfin, le passage du courant dans le liquide est susceptible d'affecter les propriétés de celui-ci.
En d'autres termes, le problème que se propose de résoudre l'invention est de développer une installation du type de celle décrite par exemple dans le document WO 03/070302, dans laquelle le fluide caloporteur est chauffé à la température de vaporisation, exclusivement au niveau de la partie distale du microtube implantable, le diamètre du tube étant de 10 à 20 fois plus petit que celui d'un cathéter utilisé traditionnellement pour la thermoablation.
Un second problème que se propose de résoudre l'invention est de développer un système dans lequel l'inductance soit nulle, de sorte à pouvoir être utilisé en puises de courant.
Un troisième problème que se propose de résoudre l'invention est de fournir une installation unique qui permette l'injection de fluide caloporteur ou de fluide froid véhiculant des nanocapsules ou des nanoparticules, en fonction de la nature du traitement.
Le Demandeur a développé un microtube connecté à une source électrique présentant une structure telle qu'il a une résistance comprise entre 0,2 et 2 Ω dans sa partie distale et une résistance inférieure à 0,01 Ω dans la partie restante.
En d'autres termes, la puissance électrique est concentrée dans la partie distale du tube, permettant ainsi d'atteindre des températures de l'ordre de 4000C. Le nouveau système développé consiste en un microtube destiné à être implanté directement dans des tissus, le microtube étant dépourvu de résistance électrique additionnelle et présentant une extrémité distale apte à atteindre des températures de chauffage élevées, le tube lui-même faisant office de résistance chauffante. Ce tube est relié par le biais d'une rallonge dans laquelle circule le liquide froid, à l'unité de stockage et d'injection de liquide.
En d'autres termes, l'invention a pour objet un tube implantable apte à chauffer par conduction, notamment un fluide caloporteur destiné à être injecté dans tout ou partie d'un tissu humain ou animal, le tube étant muni d'une paroi présentant des parties distale, médiane et proximale et comprenant des moyens de solidarisation directs ou indirects de la partie proximale à un réservoir de fluide, le tube se caractérisant en ce qu'il est muni de deux moyens de connexion aux bornes d'une source électrique assurant l'arrivée et le retour du courant dans la paroi, et en ce qu'il présente une résistance inférieure à 0.01 Ω dans ses parties médiane et proximale et une résistance comprise entre 0.2 et 2 Ω dans sa partie distale, les parties médiane et proximale étant reliées électriquement en série à la partie distale, le tube étant dépourvu de résistance électrique additionnelle et présentant une inductance pratiquement nulle.
L'objectif poursuivi est donc de disposer d'un microtube qui puisse être implanté dans l'organisme, et dans lequel le liquide caloporteur soit chauffé électriquement et par conduction, uniquement au niveau de la partie distale du microtube, c'est-à- dire dans la zone à traiter et non dans les parties proximale et médiane, permettant ainsi d'éviter de chauffer les zones de tissu connexes et de faciliter la manipulation de l'extrémité proximale libre du tube par le chirurgien. Pour disposer d'un microtube présentant les résistances précitées, la paroi du tube implantable présente dans un mode de réalisation avantageux, du centre vers sa périphérie, en section :
- un tube métallique dans lequel circule le fluide à injecter, - à l'exception de la partie distale, une gaine assurant l'arrivée du courant réalisée en un matériau conducteur solidaire d'un moyen de connexion à une des bornes de la source électrique, à l'exception de l'extrémité libre de la partie distale, une gaine isolante électriquement, - une gaine assurant le retour du courant réalisée en un matériau conducteur solidaire d'un moyen de connexion à l'autre borne de la source électrique.
Avantageusement, la paroi du tube est munie d'une gaine extérieure biocompatible permettant son implantation dans les tissus.
Selon une première caractéristique, le tube métallique a une résistivité comprise entre 20 et 100 μΩ.cm et présente avantageusement une longueur inférieure à 50 cm. En pratique, le diamètre externe du tube est compris entre 200 μm et 800 μm, avantageusement égal à 250 μm, de même que le diamètre interne est compris entre 100 μm et 250 μm, avantageusement égal à 150 μm.
En pratique, le tube métallique est réalisé en un matériau du type alliage platine/irridium, titane, acier inoxydable, alliage nickel-titane et plus généralement, tout matériau conducteur électrique apte à supporter une pression jusqu'à 3000 bars et une température de 4000C.
Pour assurer l'arrivée et le retour du courant, la gaine est constituée d'un revêtement électrolytique de cuivre d'épaisseur comprise entre 20 μm et 50 μm. En ce qui concerne la gaine isolante électriquement, celle-ci est avantageusement constituée d'un revêtement sous vide d'oxyde de titane ou d'alumine et plus généralement tout matériau isolant électrique et résistant à une température d'au moins 4000C. L'épaisseur de la gaine est comprise entre 200 nm et 400 nm.
De même, la gaine extérieure est de préférence réalisée en un revêtement électrolytique d'or d'épaisseur d'environ 1 μm.
Le microtube de l'invention peut être utilisé de deux manières différentes.
Tout d'abord, il peut être implanté durablement dans les tissus pour un traitement au long cours. Dans cette hypothèse, la partie distale du tube implantable est munie de perforations de taille comprise entre 50 μm et 150 μm, avantageusement égale à 70 μm, tandis que son extrémité libre est obturée. En pratique, le microtube est implanté au moyen d'une aiguille fendue, ladite aiguille étant ensuite retirée pour ne laisser dans le tissu, que le tube.
Le traitement peut être aussi réalisé de manière ponctuelle. Dans une telle hypothèse, le microtube est retiré immédiatement après utilisation. Il est dépourvu de perforations latérales dans sa partie distale et présente un simple orifice débouchant, ménagé à son extrémité distale libre. Dans ce cas, le microtube est utilisé en combinaison avec une aiguille dont les parois sont munies de perforations, le microtube étant introduit dans le corps de l'aiguille et le tout implanté dans le tissu à traiter.
L'invention concerne également une installation destinée notamment à l'injection de fluide caloporteur en régime puisé dans tout ou partie d'un tissu humain ou animal, mettant en œuvre le microtube précédemment décrit. Plus précisément, une telle installation contient : • une unité de stockage du fluide ; " une unité d'injection dudit fluide ; " le tube implantable précédemment décrit ; " une rallonge reliant l'extrémité proximale du tube implantable à l'unité d'injection.
L'unité d'injection se présente en pratique sous forme d'une chambre contenant la substance à injecter et dans laquelle un vérin hydraulique de faible diamètre, de l'ordre de 3 à 5 mm, est piloté par un vérin électrique, pneumatique, piézoélectrique ou mécanique, de diamètre plus important, de l'ordre de 50 à 80 mm, dont le déclenchement et/ou la course et/ou la force et/ou la vitesse de déplacement sont déterminés en fonction du rythme, du volume et de la pression d'injection souhaitée de la substance dans la rallonge par le vérin hydraulique.
Pour éviter le retour de la substance dans la rallonge après injection de ladite substance, l'unité d'injection contient deux clapets anti-retour. Comme déjà dit, la pression à laquelle la substance est injectée dépend de la vitesse de déplacement et de la force des vérins, par exemple pneumatiques, qui sont également programmés.
L'unité d'injection est alimentée en principe actif par une unité de stockage. En pratique, l'alimentation en liquide de l'unité d'injection est effectuée avec des volumes prédéterminés correspondant au volume injecté dans la tumeur. Le réservoir est séparé de la chambre par un clapet anti-retour, interdisant le retour du liquide dans le réservoir de stockage sous pression du piston. Une fois le liquide froid sous pression propulsé jusqu'au microtube, le microtube connecté à une source électrique, est soumis à un puise de courant basse tension concomitant au puise d'eau froide, permettant de chauffer le liquide jusqu'à une température de 4000C. Plus précisément, la source électrique est commandée de manière synchrone avec l'unité d'injection. La rallonge constitue en réalité, sous forme d'un élément indépendant, le prolongement du tube métallique, partie du tube implantable. Cela signifie donc que la rallonge a une résistivité comprise entre 20 et 100 μΩ.cm. Elle a une longueur comprise entre 2 et 3 m. Son diamètre externe est compris entre 200 μm et 800 μm, avantageusement égal à 250 μm, de même que le diamètre interne est compris entre 100 μm et 250 μm, avantageusement égal à 150 μm. De manière générale, plus le diamètre sera élevé et plus grand sera le volume mort, ce qui n'est pas satisfaisant. Comme déjà dit, le tube métallique est réalisé en un matériau du type alliage platine/irridium, titane, acier inoxydable, alliage nickel- titane et plus généralement, tout matériau conducteur électrique apte à supporter une pression jusqu'à 3000 bars et une température de 4000C. La rallonge est connectée par tout moyen connu à l'unité d'injection d'un côté, et l'extrémité proximale du microtube, de l'autre.
Comme déjà dit, l'un des problèmes de l'invention est de fournir une installation grâce à laquelle on puisse injecter du chaud ou du froid en fonction de la nature du traitement. Cet objectif est rempli puisqu'il suffit de déconnecter la source électrique au moment de l'injection de la substance froide. En outre, le régime de puise, combiné au fait que seule la partie distale du tube implantable est chauffée permet d'enchaîner injection de chaud et de froid sans attente, puisque l'ensemble rallonge et tube implantable, à l'exception de la partie distale, reste froid.
La substance active froide peut revêtir différentes formes, par exemple sous forme d'une suspension de nanocapsules, nanoparticules ou microparticules. On peut ainsi envisager tous types de substances actives, que ce soient celles utilisées en chimiothérapie ou encore en antibiothérapie, de même que les anti-inflammatoires et les produits radioactifs à visée thérapeutique, et ce de façon non limitative. Dans une forme de réalisation avantageuse, la substance active peut être associée à des nanoparticules magnétiques de ferrite de taille comprise entre 100 et 1000 nanomètres.
II s'ensuit que lors de l'injection de la substance active à travers le tube, l'énergie communiquée aux nanoparticules magnétiques fait qu'elles se comportent de façon indépendante les unes des autres, leur attraction mutuelle magnétique devenant en effet négligeable par rapport à leur énergie cinétique. En revanche, après injection, c'est-à-dire in situ, l'attraction magnétique favorise le regroupement des nanoparticules sous forme d'amas de tailles d'environ 50 micromètres, dans la zone du tissu à traiter.
Dans le cas d'un principe actif radioactif, ledit principe actif radioactif peut revêtir deux formes différentes : • soit, il est constitué d'isotopes radioactifs et greffé sur les particules magnétiques ;
• soit, il est inclus dans la particule magnétique et est constitué d'isotopes radioactifs des éléments magnétiques formant les particules magnétiques.
Avantageusement, le produit radioactif peut être émetteur de rayonnement α, β et γ à visée thérapeutique, de préférence de faible énergie, pour obtenir une irradiation la plus locale possible. Il peut être également utile d'associer un émetteur γ d'énergie comprise entre 100 et 150 kiloélectronvolts (Kev) ou émetteur β-l- pour visualiser la localisation des nanoparticules à l'aide d'une γ-caméra. Ceci permet en outre de faciliter le calcul de la dose d'irradiation.
Comme déjà dit, on peut utiliser en tant que particules magnétiques des nanoparticules de ferrite.
Dans ce cas, le produit stable donnant le produit radioactif par irradiation par neutrons ou particules chargées est incorporé lors de la fabrication de nanoparticules de ferrite, les composants de la ferrite donnant après irradiation, des produits radioactifs parasites de très courte période, disparaissant donc très vite. De la sorte, seule persiste la radioactivité de l'élément radioactif thérapeutique choisi.
Dans une autre forme de réalisation, on peut associer une substance active à du mercure (Hg) liquide ou en amalgame sous forme de nanoparticules. En effet, lors de l'injection, le mercure liquide prend la forme de micro-gouttes dont l'énergie cinétique est élevée en raison de sa forte densité. In situ, c'est-à-dire au niveau de l'organe, la tension superficielle importante du mercure favorise le regroupement des micro-gouttes en billes plus grosses fixant ainsi la substance active dans l'organe à traiter.
De plus, le mercure possède un isotope radioactif (Hg 197) bien adapté à la thérapie. De la sorte, le principe actif Hg 197 est inclu dans la nanoparticule de mercure. En outre et comme déjà dit, le mercure réalise des amalgames avec la plupart des métaux, ce qui permet donc de fixer d'autres produits radioactifs métalliques sous forme de traces, le mercure restant liquide.
L'invention et les avantages qui en découlent ressortiront bien de l'exemple de réalisation ci-après, à l'appui des figures annexées.
La figure 1 est une représentation schématique de l'installation intégrant le tube implantable de l'invention.
La figure 2 est une représentation du tube implantable de l'invention selon un premier mode de réalisation. La figure 3 est un agrandissement de la partie distale du tube de la figure 2.
La figure 4 est un second mode de réalisation du tube implantable de l'invention.
Sur la figure 1, on a représenté schématiquement une installation destinée au traitement par thermoablation de tissus, et en particulier de tumeurs. Plus précisément, cette installation est destinée à délivrer en régime puisé, directement au niveau de la tumeur, de l'eau sous forme vaporisée à une température d'environ 4000C. L'installation comprend cinq éléments principaux, respectivement une unité de stockage de liquide à vaporiser (1), une unité d'injection (2), une rallonge (3), le tube implantable de l'invention (4) et un générateur de courant (5) intégrant un système de programmation des puises, de gestion de capteurs de pression et de température et de mouvement.
L'unité d'injection (2) comprend un vérin pneumatique de grande dimension (6) solidaire d'un vérin hydraulique de petite dimension se déplaçant dans une chambre (7) où le liquide est mis sous pression, débouchant elle-même dans un tube (8) alimenté par l'unité de stockage (1).
La course, la force et la vitesse de déplacement du vérin pneumatique sont programmées en fonction du rythme, du volume et de la pression d'injection souhaitée du liquide caloporteur dans le tube (8).
La rallonge (3) se présente en pratique sous la forme d'un tube d'une taille de l'ordre de 2.5 m, dont le diamètre externe est égal à 250 μm et le diamètre interne à 150 μm. Elle est réalisée en platine/irridium, de résistivité égale à 25 μΩ.cm. Comme il sera vu ensuite, elle constitue le prolongement du tube métallique du tube implantable. La rallonge est connectée, à son extrémité proximale, au tube (8) et à son extrémité distale, au tube implantable (4) par un système type luer-lock, ou HPLC.
Le microtube (4) est plus particulièrement représenté sur la figure 2. Il est divisé en trois parties, respectivement :
1 une partie proximale (9) correspondant en pratique à la partie non implantée du tube au moment du traitement ;
1 une partie médiane (10) correspondant en pratique à la portion du tube lorsqu'il est implanté, située entre le plan cutané (11) et la zone à traiter (12), et 1 une portion distale (13) située, au moment du traitement, dans la zone à traiter.
Le microtube implantable présente en outre à son extrémité proximale des moyens de connexion (14, 15) aux bornes de la source électrique (5), ainsi qu'un moyen de connexion (16) à l'extrémité distale de la rallonge (3).
Selon une caractéristique essentielle, les parties médiane et proximale du tube présentent une résistance inférieure à 0,01 Ω, tandis que la partie proximale a une résistance comprise entre 0,2 et 2 Ω, les parties médiane et proximale étant reliées électriquement en série à la partie distale. La différence de résistance de ces zones permet de chauffer le liquide exclusivement au niveau de la zone distale du microtube, et non entre la zone à traiter et le plan cutané, évitant ainsi d'échauffer les tissus non concernés par le traitement.
On a représenté sur la figure 3 un agrandissement de la structure du microtube.
Ce tube est constitué du centre vers la périphérie d'un tube proprement dit (17) réalisé en platine/irridium, présentant une longueur variable en fonction de la profondeur de la zone à traiter. En pratique, la taille du tube est inférieure à 50 cm. Le matériau constitutif du tube a une résistivité égale à 25 μΩ.cm et présente un diamètre interne égal à 150 μm et un diamètre externe égal à 250 μm.
Dans ces parties médiane et proximale, le tube (17) est recouvert d'un revêtement électrolytique de cuivre (18) d'épaisseur égale à 30 μm en contact au niveau de l'extrémité proximale avec la connexion (15) à la source d'électricité (5) assurant l'arrivée du courant. La partie distale du tube (17), à l'exception de son extrémité distale (19), est recouverte d'une gaine isolante électriquement (20) réalisée en un revêtement sous vide d'oxyde de titane, cette gaine recouvrant le revêtement de cuivre assurant l'arrivée du courant sur les parties médiane et proximale du tube. Sur la gaine isolante (20), et en contact avec l'extrémité distale (19) du tube (17), le tube implantable de l'invention présente un revêtement électrolytique de cuivre (21) assurant le retour du courant, lequel est en contact avec le second connecteur (14) relié à la source de courant (5). La gaine la plus extérieure est une gaine biocompatible (22) se présentant sous la forme d'un revêtement électrolytique d'or.
En pratique, le liquide froid arrive à l'extrémité proximale du tube sous forme de puise et est légèrement réchauffé sous l'effet des puises synchrones de courant. Ce réchauffement reste faible du fait du choix de la résistance, inférieure à 0,01 Ω. Au niveau de la partie distale, le courant circule directement dans la paroi du tube (17) pour repartir au niveau de l'extrémité distale (19) par la gaine (20).
Le tube implantable de l'invention peut présenter deux conformations distinctes.
Dans la première conformation représentée sur la figure 2, celui-ci est obturé à son extrémité libre distale (19) et présente, dans la partie distale, des perforations (23) de taille égale à 70 micromètres.
Ce type de microtube est utilisé pour les traitements au long cours, nécessitant le maintien du microtube dans l'organisme jusqu'à la fin dudit traitement. La mise en place du tube s'effectue au moyen d'une aiguille de ponction latéralement fendue et servant de guide. Une fois que l'ensemble est introduit dans le tissu à traiter, l'aiguille est dégagée du tube, puis retirée.
Dans une seconde forme de réalisation, le tube implantable de l'invention est utilisé pour des traitements ponctuels. Dans cette hypothèse, le tube est retiré systématiquement après chaque intervention. Dans ce cas, on met en œuvre le système représenté sur la figure 4. En pratique, le microtube est identique à celui représenté sur la figure 2, si ce n'est qu'il présente une extrémité libre distale ouverte, et qu'il est dépourvu de perforations. Les perforations (23) sont en revanche prévues dans l'aiguille de ponction (24) introduite dans le tissu à traiter.
Bien entendu, ces aiguilles de ponction perforées peuvent être également utilisées avec des microtubes eux-mêmes perforés, tels que représentés sur la figure 3.
L'utilisation du système va maintenant être décrite plus en détail.
L'opérateur détermine le volume de substance à injecter en fonction de la taille de la tumeur. De par son expérience, dans le cas de la thermoablation, le Demandeur a constaté qu'il était nécessaire, en général, d'injecter un volume de liquide représentant 5 à 10% du volume de la tumeur à traiter pour obtenir une nécrose satisfaisante (à 4000C). L'opérateur détermine ensuite le volume de chaque injection et en déduit le nombre d'impulsions nécessaires pour parvenir à délivrer le volume total de liquide. Le déclenchement, la course, la force et la vitesse du vérin pneumatique sont alors programmés pour permettre l'injection de N fois le volume de liquide à intervalles réguliers, en pratique compris entre 0,05 et 1 ml, par puise de durée comprise entre 1 et 2 secondes à une pression de 2 200 bars.
La manipulation débute alors en injectant le premier volume d'eau froide dans la rallonge. En même temps que l'injection, une tension de 6 à 20 Volts est appliquée aux bornes (14) et (15) du tube. La résistance très faible des parties proximale et médiane du tube permet de limiter réchauffement du fluide, la température étant en pratique de l'ordre de 450C. Au niveau de la zone distale qui présente une résistance égale à 2 Ω, la température atteint en 4 à 5 secondes, 4000C pour une pression de 2 200 bars. A l'impulsion d'eau froide suivante, l'eau alors vaporisée s'échappe par les perforations du tube ou par son extrémité distale et la vapeur se condense en eau chaude voisine de la température d'ébullition par libération de calories dans la tumeur.
L'invention et les avantages qui en découlent ressortent bien de la description qui précède. On note en particulier l'absence d'unité de chauffage indépendante et l'avantage de pouvoir chauffer un certain volume d'eau directement au niveau de la zone à traiter.

Claims

REVENDICATIONS
1/ Tube implantable (4) apte à chauffer par conduction notamment un fluide caloporteur destiné à être injecté dans tout ou partie d'un tissu humain ou animal, le tube étant muni d'une paroi présentant des parties distale (13), médiane (10) et proximale (9) et comprenant des moyens de solidarisation directs ou indirects (16) de la partie distale à un réservoir de fluide, caractérisé en ce qu'il est muni de deux moyens de connexion (14, 15) aux bornes d'une source électrique (15) assurant l'arrivée et le retour du courant dans la paroi, et en ce qu'il présente une résistance inférieure à 0.01 Ω dans ses parties médiane (10) et proximale (9) et une résistance comprise entre 0.2 et 2 Ω dans sa partie distale (13), les parties médiane (10) et proximale (9) étant reliées électriquement en série à la partie distale (13), le tube étant dépourvu de résistance électrique additionnelle.
2/ Tube selon la revendication 1, caractérisé en ce que la paroi présente en section, du centre vers la périphérie : un tube métallique (17) dans lequel circule le fluide à injecter, à l'exception de la partie distale (13), une gaine (18) assurant l'arrivée du courant, réalisée en un matériau conducteur solidaire d'un moyen de connexion (15) à une des bornes de la source électrique (5), à l'exception de l'extrémité libre (19) de la partie distale (13), une gaine (20) isolante électriquement,
- une gaine (21) assurant le retour du courant, réalisée en un matériau conducteur solidaire d'un moyen de connexion (14) à l'autre borne de la source électrique (5).
3/ Tube selon l'une des revendications précédentes, caractérisé en ce que la paroi est munie d'une gaine extérieure biocompatible (22).
4/ Tube selon l'une des revendications 2 ou 3, caractérisé en ce que le tube métallique (17) a une résistivité comprise entre 20 et 100 μΩ.cm. 5/ Tube selon l'une des revendications 2 à 4, caractérisé en ce que le tube métallique (17) présente les caractéristiques suivantes :
- longueur inférieure à 50 cm, - diamètre externe compris entre 200 μm et 800 μm, avantageusement égal à 250 μm, diamètre interne compris entre 100 μm et 250 μm, avantageusement égal à 150 μm.
6/ Tube selon la revendication 4, caractérisé en ce que le tube métallique (17) est réalisé en un alliage platine/irridium, ou nickel-titane, ou titane ou acier inoxydable.
Il Tube selon la revendication 2, caractérisé en ce que la gaine (18, 21) assurant l'arrivée et le retour du courant est constituée d'un revêtement électrolytique de cuivre d'épaisseur comprise entre 20 μm et 50 μm.
8/ Tube selon la revendication 2, caractérisé en ce que la gaine (20) isolante électriquement est constituée d'un revêtement sous vide d'oxyde de titane d'épaisseur comprise entre 200 nm et 400 nm.
9/ Tube selon la revendication 3, caractérisé en ce que la gaine (22) extérieure est réalisée en un revêtement électrolytique d'or d'épaisseur d'environ 1 μm.
10/ Tube selon l'une des revendications 1 à 9, caractérisé en ce que la partie distale (13) est munie de perforations (23) et en ce que son extrémité libre est obturée.
11/ Tube selon la revendication 10, caractérisé en ce que les perforations (23) ont une taille comprise entre 50 μm et 150 μm. 12/ Tube selon l'une des revendications 1 à 9, caractérisé en ce que l'extrémité libre (19) de la partie distale (13) est munie d'un orifice débouchant.
13/ Installation destinée à l'injection notamment de fluide caloporteur en régime puisé, dans tout ou partie d'un tissu humain ou animal, caractérisée en ce qu'elle contient : une unité de stockage (1) du fluide ; une unité d'injection (2) dudit fluide ; - le tube implantable (4) objet de l'une des revendications 1 à 12 ;
- une rallonge (3) reliant l'extrémité proximale du tube implantable (4) à l'unité d'injection (2).
14/ Installation selon la revendication 13, caractérisée en ce que l'unité d'injection (2) se présente sous forme d'une chambre (7) contenant la substance à injecter et dans laquelle un vérin hydraulique est piloté par un vérin (6) électrique, pneumatique, piézo-électrique ou mécanique, dont le déclenchement et/ou la course et/ou la force et/ou la vitesse de déplacement sont déterminés en fonction du rythme, du volume et de la pression d'injection souhaitée de la substance dans la rallonge (3) par le vérin hydraulique.
PCT/FR2006/050218 2005-04-12 2006-03-13 Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal WO2006108974A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/910,986 US7736334B2 (en) 2005-04-12 2006-03-13 Implantable tube for injection particularly of heat transfer fluid into all or part of a human or animal tissue
EP06726242A EP1885418B1 (fr) 2005-04-12 2006-03-13 Tube implantable destiné à l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal
JP2008505932A JP4819876B2 (ja) 2005-04-12 2006-03-13 ヒトまたは動物組織の全部または一部に特に伝熱流体を注入するための埋め込み可能な管
ES06726242T ES2376784T3 (es) 2005-04-12 2006-03-13 Tubo implantable destinado a la inyección de un fluido, especialmente de un fluido portador de calor, en todo o en parte de un tejido humano o animal
AT06726242T ATE531413T1 (de) 2005-04-12 2006-03-13 Implantierbares röhrchen zum injizieren einer wärmeübertragungsflüssigkeit im gesammten oder in teilen des menschlichen oder tierischen gewebes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550936A FR2884149B1 (fr) 2005-04-12 2005-04-12 Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal
FR0550936 2005-04-12

Publications (1)

Publication Number Publication Date
WO2006108974A1 true WO2006108974A1 (fr) 2006-10-19

Family

ID=34955120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050218 WO2006108974A1 (fr) 2005-04-12 2006-03-13 Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal

Country Status (7)

Country Link
US (1) US7736334B2 (fr)
EP (1) EP1885418B1 (fr)
JP (1) JP4819876B2 (fr)
AT (1) ATE531413T1 (fr)
ES (1) ES2376784T3 (fr)
FR (1) FR2884149B1 (fr)
WO (1) WO2006108974A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915872A1 (fr) 2007-05-10 2008-11-14 Ct D Etude Et De Rech Medicale Installation destinee a l'injection de vapeur d'eau dans un vaisseau sanguin humain ou animal
FR2925837A1 (fr) * 2007-12-28 2009-07-03 Henri Mehier Dispositif destine a l'administration de vapeur d'eau dans un tissu, vaisseau ou cavite humaine ou animale
US8197470B2 (en) 2007-08-23 2012-06-12 Aegea Medical, Inc. Uterine therapy device and method
WO2012107456A1 (fr) 2011-02-07 2012-08-16 Cermavein Dispositif et procédé pour injecter un flux pulsé dans un vaisseau d'être humain ou d'animal, par exemple une veine
US9561067B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9662060B2 (en) 2011-10-07 2017-05-30 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US9743974B2 (en) 2010-11-09 2017-08-29 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US9993290B2 (en) 2014-05-22 2018-06-12 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US11207118B2 (en) 2007-07-06 2021-12-28 Tsunami Medtech, Llc Medical system and method of use
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US11413086B2 (en) 2013-03-15 2022-08-16 Tsunami Medtech, Llc Medical system and method of use
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796568A1 (fr) * 2004-09-09 2007-06-20 Vnus Medical Technologies, Inc. Procedes et dispositif pour traiter des structures anatomiques creuses
EP1931418B1 (fr) * 2005-10-03 2012-11-21 Washington University Electrode pour la stimulation de croissance osseuse, la cicatrisation tissulaire et/ou la maitrise de la douleur
US9844662B2 (en) * 2005-10-03 2017-12-19 Washington University System for stimulating bone growth, tissue healing and/or pain control, and method of use
CA2679405C (fr) 2007-02-27 2015-12-22 Erik N. K. Cressman Ablation thermochimique de tissu corporel
CN102112063A (zh) * 2008-06-06 2011-06-29 瓦里克斯医疗公司 静脉治疗装置和方法
AU2009276661B2 (en) * 2008-07-31 2015-01-22 Regents Of The University Of Minnesota Thermochemical ablation system using heat from delivery of electrophiles
US20100198209A1 (en) * 2009-01-30 2010-08-05 Tartaglia Joseph M Hemorrhoid Therapy and Method
WO2011066278A2 (fr) 2009-11-24 2011-06-03 Regents Of The University Of Minnesota Procédés et systèmes d'ablation chimique
US10098952B2 (en) 2013-01-25 2018-10-16 Nanobiotix Inorganic nanoparticles compositions in combination with ionizing radiations for treating cancer
PL3040101T3 (pl) 2014-12-29 2017-08-31 Erbe Elektromedizin Gmbh Urządzenie zasilające do wytwarzania impulsowego strumienia płynu, system aplikacyjny z urządzeniem zasilającym i pamięć czytelna dla komputera
CA2987331A1 (fr) 2015-05-28 2016-12-01 Nanobiotix Nanoparticules a utiliser en tant que vaccin therapeutique
US11076916B2 (en) 2015-12-23 2021-08-03 Rhode Island Hospital Thermal accelerant compositions and methods of use
WO2021119173A1 (fr) * 2019-12-09 2021-06-17 Rhode Island Hospital Compositions d'accélérant thermique et procédés d'utilisation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790965A1 (fr) * 1999-03-19 2000-09-22 Henri Mehier Dispositif destine a assurer la delivrance de vapeur directement au sein de tout ou partie d'un organe cible humain ou animal, installation destinee a l'injection de vapeur dans ledit dispositif
US6328735B1 (en) * 1998-10-30 2001-12-11 E.P., Limited Thermal ablation system
WO2002069821A1 (fr) * 2001-03-06 2002-09-12 Thermemed Corp. Apport de l'energie thermique aux sites de tissus au moyen de la vapeur
WO2003070302A1 (fr) * 2002-02-21 2003-08-28 Henri Mehier Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1995302A (en) * 1933-11-24 1935-03-26 Goldstein Harold Adjustable heating infusion apparatus
NL7414546A (nl) * 1973-11-15 1975-05-20 Rhone Poulenc Sa Soepele verwarmingsbuis en werkwijze voor het vervaardigen ervan.
US5542928A (en) 1991-05-17 1996-08-06 Innerdyne, Inc. Method and device for thermal ablation having improved heat transfer
US5492529A (en) * 1991-12-18 1996-02-20 Gynelab Products Tissue necrosing apparatus and method for using same including treatment of benign prostrate hypertrophy
US5609151A (en) * 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
US5964752A (en) 1998-02-02 1999-10-12 Stone; Kevin R. Articular cartilage surface shaping apparatus and method
DE69929528T2 (de) * 1998-11-17 2006-09-14 Henri Mehier Vorrichtung zum einführen eines medikaments in einer gewebsmembran, implantationsvorrichtung und injektionsvorrichtung
GB9920112D0 (en) * 1999-08-26 1999-10-27 Aortech Int Plc Improvements relating to catheters (I)
US7070596B1 (en) * 2000-08-09 2006-07-04 Arthrocare Corporation Electrosurgical apparatus having a curved distal section

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328735B1 (en) * 1998-10-30 2001-12-11 E.P., Limited Thermal ablation system
FR2790965A1 (fr) * 1999-03-19 2000-09-22 Henri Mehier Dispositif destine a assurer la delivrance de vapeur directement au sein de tout ou partie d'un organe cible humain ou animal, installation destinee a l'injection de vapeur dans ledit dispositif
WO2002069821A1 (fr) * 2001-03-06 2002-09-12 Thermemed Corp. Apport de l'energie thermique aux sites de tissus au moyen de la vapeur
WO2003070302A1 (fr) * 2002-02-21 2003-08-28 Henri Mehier Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E-MÉMOIRES DE L'ACADÉMIE NATIONALE DE CHIRURGIE, 26 May 2004 (2004-05-26), 2004, XP002335290, Retrieved from the Internet <URL:http://www.bium.univ-paris5.fr/acad-chirurgie/ememoires/005_2004_3_2_43x50.pdf> *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148996A1 (fr) * 2007-05-10 2008-12-11 Centre D'etude Et De Recherche Medicale D'archamps - Cerma Installation destinee a l'injection de vapeur d'eau dans un vaisseau sanguin humain ou animal
FR2915872A1 (fr) 2007-05-10 2008-11-14 Ct D Etude Et De Rech Medicale Installation destinee a l'injection de vapeur d'eau dans un vaisseau sanguin humain ou animal
US11207118B2 (en) 2007-07-06 2021-12-28 Tsunami Medtech, Llc Medical system and method of use
US11213338B2 (en) 2007-08-23 2022-01-04 Aegea Medical Inc. Uterine therapy device and method
US8197470B2 (en) 2007-08-23 2012-06-12 Aegea Medical, Inc. Uterine therapy device and method
US8216217B2 (en) 2007-08-23 2012-07-10 Aegea Medical, Inc. Uterine therapy device and method
US8221401B2 (en) 2007-08-23 2012-07-17 Aegea Medical, Inc. Uterine therapy device and method
US8221403B2 (en) 2007-08-23 2012-07-17 Aegea Medical, Inc. Uterine therapy device and method
US10154871B2 (en) 2007-08-23 2018-12-18 Aegea Medical Inc. Uterine therapy device and method
US10758292B2 (en) 2007-08-23 2020-09-01 Aegea Medical Inc. Uterine therapy device and method
WO2009083688A3 (fr) * 2007-12-28 2009-09-11 Henri Mehier Dispositif destine a l'administration de calories dans un tissu, vaisseau ou cavite humaine ou animale
WO2009083688A2 (fr) * 2007-12-28 2009-07-09 Henri Mehier Dispositif destine a l'administration de calories dans un tissu, vaisseau ou cavite humaine ou animale
FR2925837A1 (fr) * 2007-12-28 2009-07-03 Henri Mehier Dispositif destine a l'administration de vapeur d'eau dans un tissu, vaisseau ou cavite humaine ou animale
US9561067B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US11020175B2 (en) 2008-10-06 2021-06-01 Santa Anna Tech Llc Methods of ablating tissue using time-limited treatment periods
US10842557B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat duodenal tissue
US11813014B2 (en) 2008-10-06 2023-11-14 Santa Anna Tech Llc Methods and systems for directed tissue ablation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US11779430B2 (en) 2008-10-06 2023-10-10 Santa Anna Tech Llc Vapor based ablation system for treating uterine bleeding
US10842549B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat pulmonary tissue
US11589920B2 (en) 2008-10-06 2023-02-28 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply an ablative zone to tissue
US10842548B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US11457969B2 (en) 2010-08-13 2022-10-04 Tsunami Medtech, Llc Medical system and method of use
US10238446B2 (en) 2010-11-09 2019-03-26 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US9743974B2 (en) 2010-11-09 2017-08-29 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US11160597B2 (en) 2010-11-09 2021-11-02 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
WO2012107076A1 (fr) 2011-02-07 2012-08-16 Cermavein Dispositif et procédé d'injection d'un flux pulsé dans un vaisseau d'être humain ou d'animal, par exemple une veine
WO2012107456A1 (fr) 2011-02-07 2012-08-16 Cermavein Dispositif et procédé pour injecter un flux pulsé dans un vaisseau d'être humain ou d'animal, par exemple une veine
CN107242901A (zh) * 2011-06-03 2017-10-13 维兰德·K·沙马 用于组织消融的方法和器械
US10881442B2 (en) 2011-10-07 2021-01-05 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US9662060B2 (en) 2011-10-07 2017-05-30 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US11413086B2 (en) 2013-03-15 2022-08-16 Tsunami Medtech, Llc Medical system and method of use
US11672584B2 (en) 2013-03-15 2023-06-13 Tsunami Medtech, Llc Medical system and method of use
US11219479B2 (en) 2014-05-22 2022-01-11 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10575898B2 (en) 2014-05-22 2020-03-03 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10299856B2 (en) 2014-05-22 2019-05-28 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US9993290B2 (en) 2014-05-22 2018-06-12 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US11864809B2 (en) 2018-06-01 2024-01-09 Santa Anna Tech Llc Vapor-based ablation treatment methods with improved treatment volume vapor management

Also Published As

Publication number Publication date
US7736334B2 (en) 2010-06-15
ATE531413T1 (de) 2011-11-15
ES2376784T3 (es) 2012-03-16
FR2884149B1 (fr) 2007-06-08
JP4819876B2 (ja) 2011-11-24
EP1885418A1 (fr) 2008-02-13
FR2884149A1 (fr) 2006-10-13
JP2008535605A (ja) 2008-09-04
EP1885418B1 (fr) 2011-11-02
US20080171982A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
EP1885418B1 (fr) Tube implantable destiné à l&#39;injection notamment de fluide caloporteur dans tout ou partie d&#39;un tissu humain ou animal
EP1131124B1 (fr) Dispositif destine a assurer la delivrance d&#39;une substance active directement au sein d&#39;un tissu cellulaire, moyen d&#39;implantation du dispositif et appareils destines a l&#39;injection de substance active dans ledit dispositif
EP1476212B1 (fr) Installation destinee a la delivrance de calories dans tout ou partie d&#39;un tissu cellulaire humain ou animal
EP2144570B1 (fr) Installation destinee a l&#39;injection de vapeur d&#39;eau dans un vaisseau sanguin humain ou animal
Huang et al. Plasmonic photo-thermal therapy (PPTT)
EP0988092B1 (fr) Applicateur intratissulaire ultrasonore pour l&#39;hyperthermie
FR2869525A1 (fr) Electrode bipolaire virtuelle pour l&#39;ablation transuretrale par aiguille
BE1018521A5 (fr) Catheter d&#39;injection pour la delivrance d&#39;un agent therapeutique dans un substrat.
EP1434623B1 (fr) Dispositif de delivrance de medicaments par iontophorese ou electroporation intraoculaire
CH695136A5 (fr) Cathéter pour une administration ciblée d&#39;un médicament en un site spécifique.
JP4332427B2 (ja) 無針型注入装置
EP1681040B1 (fr) Endoprothèse pour canal anatomique
EP2545958B1 (fr) Sonde pour prothèse cardiaque implantable, comprenant des moyens de protection contre les effets thermiques des champs IRM
EP2528501B1 (fr) Electrode intracerebrale
CA2752444A1 (fr) Appareil de distribution et procede associe
EP2549942A1 (fr) Dispositif destiné à l&#39;administration de calories dans un tissu, vaisseau ou cavité humaine ou animale
FR2785815A1 (fr) Dispositif destine a assurer la delivrance d&#39;une substance active directement au sein d&#39;un organe cible, moyen d&#39;implantation du dispositif et appareil destine a l&#39;injection de substance active dans ledit dispositif
FR2925837A1 (fr) Dispositif destine a l&#39;administration de vapeur d&#39;eau dans un tissu, vaisseau ou cavite humaine ou animale
FR2854052A1 (fr) Distribution de fluide au cours du traitement transuretral de la prostate
FR2790965A1 (fr) Dispositif destine a assurer la delivrance de vapeur directement au sein de tout ou partie d&#39;un organe cible humain ou animal, installation destinee a l&#39;injection de vapeur dans ledit dispositif
FR2834442A1 (fr) Appareil d&#39;injection microdosee d&#39;un produit actif par des jets de liquide de travail sous pression et procede de generation d&#39;une sequence de jets liquides au moyen de cet appareil
FR2693115A1 (fr) Conducteur électrique implantable et ensemble de stimulation notamment cardiaque.

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11910986

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008505932

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006726242

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006726242

Country of ref document: EP