WO2006117980A1 - Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method - Google Patents

Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method Download PDF

Info

Publication number
WO2006117980A1
WO2006117980A1 PCT/JP2006/307595 JP2006307595W WO2006117980A1 WO 2006117980 A1 WO2006117980 A1 WO 2006117980A1 JP 2006307595 W JP2006307595 W JP 2006307595W WO 2006117980 A1 WO2006117980 A1 WO 2006117980A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating agent
solar cell
dopant
diffusion layer
diffusion
Prior art date
Application number
PCT/JP2006/307595
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ohtsuka
Masatoshi Takahashi
Naoki Ishikawa
Shigenori Saisu
Toyohiro Ueguri
Satoyuki Ojima
Takenori Watabe
Takeshi Akatsuka
Tsutomu Onishi
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Naoetsu Electronics Co., Ltd.
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd., Naoetsu Electronics Co., Ltd., Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to AU2006242030A priority Critical patent/AU2006242030B2/en
Priority to ES06731542T priority patent/ES2764073T3/en
Priority to US11/918,719 priority patent/US20090020158A1/en
Priority to CN2006800139982A priority patent/CN101167191B/en
Priority to EP06731542.4A priority patent/EP1876651B1/en
Publication of WO2006117980A1 publication Critical patent/WO2006117980A1/en
Priority to NO20076104A priority patent/NO20076104L/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar cell, a solar cell, and a method for manufacturing a semiconductor device, and particularly relates to a low-cost method for manufacturing a solar cell, a solar cell, and a method for manufacturing a semiconductor device.
  • a P-type silicon substrate prepared by slicing a single-crystal silicon ingot pulled up by the Chiyoklarsky (CZ) method or a polycrystalline silicon ingot produced by the cast method by the multi-wire method is prepared. To do.
  • fine irregularities (texture) with a maximum height of about 10 m are formed on the surface, and an n-type diffusion layer is formed by the thermal diffusion method.
  • An antireflection film is formed by depositing with a film thickness of about nm.
  • a back electrode is formed by printing and baking a material mainly composed of aluminum over the entire back surface of the light receiving surface.
  • the light-receiving surface electrode is formed by printing and baking a material mainly composed of silver in a comb shape having a width of about 100 to 200 / ⁇ ⁇ .
  • the advantage of this method is that various effects for improving the characteristics are accompanied in spite of the fact that the number of processes is the minimum necessary for configuring the device.
  • thermal diffusion works to improve the diffusion length of minority carriers in Balta by gettering action.
  • firing of aluminum printed on the back surface forms an electrode and at the same time forms a p + high-concentration layer that forms an electric field layer (BSF: Back Surface Field) on the back surface.
  • BSF Back Surface Field
  • the anti-reflective coating reduces the recombination rate of carriers generated near the silicon surface as well as optical effects (reduction in reflectivity). Due to the minimum number of steps and several useful effects, consumer solar cells are more cost effective than before.
  • the conversion efficiency reaches a peak at about 16%.
  • the surface concentration of a dopant such as phosphorus in the diffusion layer needs to be about 2.0 to 3.0 X 10 2 G cm — 2 in order to sufficiently reduce the contact resistance of the light receiving surface electrode. If the surface has such a high concentration, the surface level becomes so high that carrier recombination near the light-receiving surface is promoted, short-circuit current and open-circuit voltage are limited, and conversion efficiency reaches its peak.
  • the method of adding a compound containing a dopant around the silver filler contained in the electrode paste in this way cannot stably form a contact, so that the fill factor is low and the reliability is low. There is.
  • a high-concentration diffusion layer (emitter layer) containing a dopant at a high concentration is formed only directly under the electrode, and the surface concentration of the diffusion layer in the other part of the light-receiving surface is lowered, that is, a two-stage emitter is formed.
  • “photoelectric conversion device and method for manufacturing the same” is disclosed in Japanese Patent Application Laid-Open No. 2004-273826.
  • the electrode forming method of the embedded electrode solar cell which is known in Japanese Patent Laid-Open Nos. 8-37318 and 8-191152 is changed from electrolytic plating to screen printing. As a result, manufacturing management can be facilitated and manufacturing costs can be reduced.
  • Another method for improving the conversion efficiency by forming a high-concentration diffusion layer only directly below the electrode and lowering the surface concentration of the diffusion layer in the other part of the light-receiving surface is, for example, “solar cell Is known in the art (Japanese Patent Application Laid-Open No. 2004-281569).
  • the present invention has been made in view of the above problems, and by suppressing the surface recombination at a portion other than the electrode of the light receiving surface and the recombination in the emitter while obtaining an ohmic contact, It is an object of the present invention to provide a solar cell manufacturing method, a solar cell, and a semiconductor device manufacturing method capable of inexpensively manufacturing a solar cell with improved photoelectric conversion efficiency by a simple and easy method.
  • the present invention provides a method for manufacturing a solar cell by forming a pn junction on a first conductivity type semiconductor substrate, and at least the first conductivity type semiconductor substrate is formed on the first conductivity type semiconductor substrate.
  • a first coating agent containing a pant and a dopant scattering inhibitor and at least in contact with the first coating agent In this way, after applying the second coating agent containing the dopant, the first diffusion layer formed by applying the first coating agent and the second coating agent are formed by diffusion heat treatment, and the first diffusion layer is formed.
  • a method for manufacturing a solar cell is provided, wherein a second diffusion layer having a low conductivity is formed simultaneously.
  • the first coating agent containing the dopant and the dopant scattering inhibitor and the second coating agent containing the dopant so as to be in contact with at least the first coating agent were applied on the first conductivity type semiconductor substrate. Thereafter, the first diffusion layer and the second diffusion layer having lower conductivity than the first diffusion layer are formed simultaneously by diffusion heat treatment. This makes it very easy to form a two-stage emitter consisting of a high-concentration diffusion layer and a low-concentration diffusion layer, which has been complicated until now, such as formation of a diffusion mask, resulting in a reduction in manufacturing cost.
  • the sufficient surface concentration is maintained in the first diffusion layer, which is a high concentration layer region, a low ohmic contact can be easily formed, and the dopant from the first coating agent can be formed by a dopant scattering inhibitor. Therefore, the surface concentration difference between the high-concentration diffusion layer and the low-concentration diffusion layer of the two-stage emitter is surely formed, and a high-performance solar cell can be manufactured while maintaining the manufacturing yield at a high level. .
  • the auto-doping to the second diffusion layer is further prevented in combination with the dopant scattering preventing agent of the first coating agent.
  • the difference in surface concentration between the high concentration diffusion layer and the low concentration diffusion layer is surely formed.
  • the present invention is a method of manufacturing a solar cell by forming a pn junction on a first conductivity type semiconductor substrate, wherein at least a groove is formed on the first conductivity type semiconductor substrate, and a dopant is formed. And a first coating agent containing a dopant scattering inhibitor is applied to the entire surface, and then formed by diffusion heat treatment on the first diffusion layer formed in the lower portion of the groove on the semiconductor substrate and in a portion other than the lower portion of the groove, Provided is a method for manufacturing a solar cell, wherein a second diffusion layer having a conductivity lower than that of the first diffusion layer is formed simultaneously.
  • the diffusion heat treatment is performed in a gas phase diffusion source atmosphere.
  • the diffusion heat treatment is performed in a gas phase diffusion source atmosphere, the concentration distribution in the surface of the dopant in the low concentration diffusion layer becomes uniform, and a solar cell with no performance fluctuation can be manufactured.
  • a dopant containing silicon compound as a dopant scattering inhibitor or an autodope inhibitor.
  • a dopant containing a silicon compound is used as a dopant scattering inhibitor or an auto-doping inhibitor, dopant out-diffusion and auto-doping can be effectively prevented.
  • a difference in surface concentration with the low concentration diffusion layer can be formed extremely reliably.
  • it is a silicon compound, it will not become an impurity.
  • the first coating agent and the second coating agent are different in at least one of dopant content, viscosity, content of dopant scattering inhibitor and auto-dope inhibitor, and one or more kinds of dopants. It is preferable to use different coating film thicknesses when Z is applied or when the first coating agent and the second coating agent are applied.
  • the first coating agent and the second coating agent differ in at least the dopant content, viscosity, dopant scattering inhibitor and auto-dope inhibitor content, dopant type! Or by combining the first coating agent and the second coating agent with different coating film thicknesses, or in combination, the high-concentration diffusion layer and the low-concentration diffusion layer in the two-stage emitter. And the surface concentration difference can be formed very reliably. [0019] In addition, it is preferable that the content of the dopant in the first coating agent is four times or more than the content of the dopant in the second coating agent.
  • the dopant content of the first coating agent is the content of the dopant of the second coating agent.
  • the difference in surface concentration between the high-concentration diffusion layer and the low-concentration diffusion layer in the two-stage emitter can be formed more reliably.
  • the silicon compound contained in the dopant scattering inhibitor is SiO
  • the silicon compound contained in the anti-ropping agent is made of SiO, particularly silica gel.
  • the viscosity of the coating agent can be effectively controlled according to each application, and out-diffusion and auto-doping of the dopant can be controlled. This can prevent the difference in surface concentration between the high-concentration diffusion layer and the low-concentration diffusion layer in the two-stage emitter.
  • a third coating agent containing a silicon compound so as to cover the first coating agent and the upper part of Z or the second coating agent, and then perform the diffusion heat treatment.
  • the third coating agent containing a silicon compound is applied so as to cover the tops of the first coating agent and Z or the second coating agent, and then the diffusion heat treatment is performed, further out-diffusion or auto-doping is performed.
  • the difference in surface concentration between the high-concentration diffusion layer and the low-concentration diffusion layer of the two-stage emitter can be formed very reliably by a single heat treatment.
  • the surface of the diffusion layer formed by the diffusion heat treatment is oxidized.
  • the region having a lot of surface states is removed in the subsequent glass etching step, so that the performance of the solar cell can be improved.
  • first diffusion layer and the second diffusion layer are arranged on the light receiving surface of the semiconductor substrate and the back surface of the light receiving surface. It can be formed on at least one of the surfaces.
  • a solar cell having a conventional structure can be easily manufactured, and the back surface A BSF layer can be easily formed in whole or in part, and a back contact solar cell in which positive and negative electrodes, which have been produced through complicated processes so far, are concentrated on one side can be easily manufactured.
  • the present invention provides a solar cell manufactured by any one of the above manufacturing methods, wherein the semiconductor substrate has a first diffusion layer having a conductivity type opposite to the first conductivity type, and the opposite conductivity type.
  • a solar cell is characterized in that a second diffusion layer having a lower conductivity than the first diffusion layer is formed on the light receiving surface of the semiconductor substrate.
  • the first diffusion layer having the conductivity type opposite to the first conductivity type of the semiconductor substrate and the second diffusion layer having lower conductivity than the first diffusion layer having the opposite conductivity type are received by the semiconductor substrate. If it is formed on the surface, it will be a high-performance solar cell having the same structure as the conventional one, low cost, high production yield, and having a two-stage emitter.
  • a diffusion layer of at least the same conductivity type as the first conductivity type is formed on the back surface of the light receiving surface.
  • a diffusion layer of at least the same conductivity type as that of the first conductivity type is formed on the back surface of the light receiving surface, a solar cell having a BSF layer formed entirely or partially on the back surface is obtained.
  • the present invention is a solar cell manufactured by any one of the above-described manufacturing methods, wherein the first diffusion layer having a conductivity type opposite to the first conductivity type included in the semiconductor substrate and the opposite conductivity type are provided.
  • a second diffusion layer of the opposite conductivity type having a lower conductivity than the first diffusion layer and a diffusion layer of the same conductivity type as the first conductivity type are formed on the back surface of the light receiving surface of the semiconductor substrate.
  • a solar cell is provided.
  • the present invention is a method for manufacturing a semiconductor device, comprising at least a first coating agent containing a dopant and a dopant scattering inhibitor on the first conductivity type semiconductor substrate, and a dopant.
  • the first diffusion layer formed by the application of the first coating agent by diffusion heat treatment and the second diffusion agent formed by the application of the second coating agent are different in conductivity from the first diffusion layer.
  • a method for manufacturing a semiconductor device wherein a diffusion layer is formed simultaneously.
  • the first heat treatment is performed by diffusion heat treatment. If the first diffusion layer formed by applying the coating agent and the second diffusion layer formed by applying the second coating agent and having a conductivity different from that of the first diffusion layer are formed at the same time, outdiffusion of the dopant Thus, a semiconductor device having in-plane diffusion layers with different dopant surface concentrations can be manufactured at a low cost and with a high manufacturing yield.
  • the present invention is a coating agent for coating on a semiconductor substrate and doping the semiconductor substrate with a dopant by thermal diffusion, characterized in that it contains at least a dopant and a dopant scattering inhibitor.
  • a coating agent is provided.
  • the coating agent when the coating agent includes at least a dopant and a dopant scattering prevention agent, the coating agent can prevent outdiffusion of the dopant when this is applied to a semiconductor substrate and thermal diffusion of the dopant is performed. Become.
  • the dopant scattering preventing agent contains a silicon compound.
  • the dopant scattering inhibitor contains a silicon compound, the dopant can be effectively prevented from being diffused out, and the coating agent does not become an impurity with respect to the silicon wafer.
  • the silicon compound is preferably SiO.
  • the viscosity of the coating agent is effective.
  • the coating agent can effectively prevent dopant out-diffusion.
  • the coating agent preferably further contains a thickener.
  • the coating agent further contains a thickener, the viscosity is effectively controlled. It becomes a coating agent.
  • a thickening agent for example, polyvinyl alcohol, polyvinyl pyrrolidone, polybutymethyl ether, polybutybutyral, polyacetate bur and copolymers thereof, cellulose derivatives, or polyacrylate are preferable.
  • the coating agent is preferably a screen printing coating agent.
  • the coating agent is a coating agent for screen printing, it can be easily applied by a screen printing machine, and can be a coating agent that can easily diffuse the dopant.
  • the solar cell of the present invention is a high-performance solar cell having a back contact type or two-stage emitter with low cost and high production yield.
  • a semiconductor device having in-plane diffusion layers having different dopant surface concentrations can be manufactured at a low cost and with a high manufacturing yield.
  • the coating agent of the present invention is a coating agent capable of preventing dopant out-diffusion when it is applied to a semiconductor substrate and the dopant is thermally diffused.
  • FIG. 1 shows a cross-sectional structure of an example of an embodiment of a solar cell according to the present invention.
  • FIG. 2 (a) is a flowchart showing an example of an embodiment of a method for manufacturing a solar cell according to the present invention, and (b) is a diagram of a conventional method for manufacturing a solar cell in which a two-stage emitter is formed using a mask. It is a flowchart which shows an example.
  • FIG. 3 is an explanatory diagram for explaining a method of manufacturing the solar cell shown in FIG. 2 (a).
  • FIG. 4 is a diagram showing an antireflection structure (random texture) of a single crystal solar cell.
  • FIG. 5 is an explanatory diagram for explaining another embodiment of a method for manufacturing a solar cell according to the present invention. Show.
  • FIG. 6 is an explanatory diagram for explaining a diffusion layer forming method during the diffusion heat treatment step according to still another embodiment of the method for manufacturing a solar cell according to the present invention.
  • FIG. 7 shows a cross-sectional structure of a back contact solar cell that is another example of an embodiment of the solar cell of the present invention.
  • FIG. 8 (a) is a diagram showing the state of the electrodes and connections as viewed from the back surface of the back contact solar cell module, and (b) is the state of connections as viewed from the side of the back contact solar cell module. (C) is a diagram showing a connection state in which a side force of a general solar cell module is also seen.
  • FIG. 9 shows a cross-sectional structure of still another example of the embodiment of the solar cell of the present invention.
  • FIG. 10 is a diagram showing external quantum efficiencies in Example 1 and Example 3.
  • FIG. 11 is an explanatory diagram for explaining still another embodiment of the method for manufacturing a solar cell according to the present invention.
  • FIG. 1 shows a cross-sectional structure of an example of an embodiment of a solar cell according to the present invention.
  • the solar cell 100 is a high-concentration emitter layer 2 that is a first diffusion layer having a conductivity type opposite to the first conductivity type of the semiconductor substrate 1, and a second diffusion layer having a lower conductivity than the high-concentration emitter layer 2.
  • the low-concentration emitter layer 3 is formed on the light receiving surface la of the semiconductor substrate, and preferably the BSF layer 5 which is a diffusion layer of at least the same conductivity type as the first conductivity type is formed on the back surface lb of the light receiving surface. Is a thing
  • FIG. 2 (a) is a flowchart showing an example of an embodiment of a method for manufacturing a solar cell according to the present invention
  • (b) is an example of a conventional method for manufacturing a solar cell in which a two-stage emitter is formed using a mask.
  • FIG. 3 is an explanatory diagram for explaining a method of manufacturing the solar cell shown in FIG. 2 (a).
  • the first conductivity type semiconductor substrate 1 is prepared.
  • the characteristics of the semiconductor substrate 1 are not particularly limited. For example, the crystal plane orientation (100), 15 cm square, 250 m thickness, specific resistance 2 at a slice. ⁇ 'cm (dopant concentration 7.2 X 10 15 cm_, gallium-doped, p-type single-crystal silicon substrate can be used. For example, this can be applied to a 40 weight percent aqueous sodium hydroxide solution.
  • Substrate 1 may be made by a shift method such as CZ method and float zone (FZ) method.
  • the substrate resistivity is 0.1 to 200 ', for example «11 is preferred, especially 0.5 to 2 ⁇ ⁇ 'cm is suitable for making a high-performance solar cell.
  • a sodium aqueous solution was used, a strong alkaline aqueous solution such as potassium hydroxide may be used, and the same purpose can be achieved with an acid aqueous solution such as hydrofluoric acid.
  • a solar cell preferably has an uneven shape on its surface. This is because it is necessary to cause the light-receiving surface to perform reflection at least twice as much as possible in order to reduce the reflectance in the visible light region. Therefore, the substrate subjected to the damage etching is immersed in an aqueous solution containing, for example, 3 weight percent sodium hydroxide and isopropyl alcohol, and wet etched to form a random texture as shown in FIG. Each of these mountains is about 1-20 m in size.
  • Other typical surface relief structures include V-grooves and U-grooves. These can be formed using a grinding machine.
  • a diffusion paste 8 containing a dopant such as phosphoric acid as a first coating agent and an anti-scattering agent for this dopant was printed on the light receiving surface la of the substrate by a screen printing device, Apply.
  • the diffusion paste 8 is for screen printing, it can be easily applied with a screen printing apparatus.
  • the diffusion paste includes the dopant and the dopant scattering inhibitor as described above, the dopant can be prevented from out-diffusion when it is applied to the semiconductor substrate and the dopant is thermally diffused.
  • the printing at this time can be a striped line pattern or a dot pattern.
  • the printing pattern in the case of a line pattern can be a 2 mm pitch, 150 m wide line.
  • the dopant scattering inhibitor may contain a silicon compound, and particularly preferably, if the silicon compound is SiO, for example, silica gel, the viscosity of the diffusion paste is diffused at a high concentration. It can be effectively controlled for the formation of the layer. That is, since the viscosity is high, the dopant can be maintained at a high concentration, and out-diffusion can be reliably prevented.
  • the substrate on which the diffusion paste 8 is printed in this way is beta-treated at 700 ° C for 30 minutes, and thereafter, as a second coating agent, it is preferable as a dopant such as nitric acid pentalin and an autodoping inhibitor.
  • the coating agent 9 containing a silicon compound such as a silicon compound precursor such as alkoxysilane is applied on the same surface so as to be in contact with the diffusion paste 8.
  • Such coating may be performed by force screen printing, which can be performed by, for example, spin coating under conditions of 3000 rpm and 15 seconds.
  • the sample substrate thus prepared is put in a heat treatment furnace, held at 880 ° C. for 30 minutes, subjected to diffusion heat treatment, and taken out.
  • the first diffusion layer 2 also referred to as a high concentration diffusion layer or a high concentration emitter layer
  • the second diffusion layer 3 also referred to as a low concentration diffusion layer or a low concentration emitter layer
  • the sheet resistance of the portion other than the diffusion paste printing portion which is the low-concentration emitter layer, that is, the portion where only the coating agent 9 is applied can be 80 to 110 ⁇ / mouth.
  • the surface concentration of the dopant in the portion where the diffusion paste 8 is printed can be about 2 ⁇ 10 2 G cm — 2.
  • the first coating agent is a high-viscosity paste applied by screen printing, can contain a high concentration of dopant, and can increase the coating thickness, thus forming a high concentration diffusion layer. it can.
  • the second coating agent is a low-viscosity coating applied by spin coating, and the coating thickness is reduced. Therefore, a low concentration diffusion layer can be formed.
  • an auto-dope inhibitor is blended, a film is formed on the surface and auto-dope is prevented.
  • junction separation is performed using a plasma etcher.
  • plasma plasma does not penetrate the light-receiving surface 1a or back surface lb, but a plurality of sample substrates are stacked, and in this state, the substrate end surface is cut by a few meters.
  • the surface protective film (passivation film) and antireflection film was formed on the emitter layer using a direct plasma CVD apparatus having a frequency of 13.56 MHz.
  • a nitride film is deposited as 4. This passive Since the Yon film and antireflection film 4 also serves as an antireflection film, a film thickness of 70 nm to lOOnm is suitable.
  • Other antireflection films include oxide films, titanium dioxide films, zinc oxide films, and oxide films, which can be substituted.
  • the formation method includes a remote plasma CVD method, a coating method, a vacuum deposition method, and the like.
  • the nitride film by the plasma CVD method as described above. Furthermore, the reflectance is further reduced by forming a film having a refractive index between 1 and 2 in combination with the magnesium difluoride film on the antireflection film so that the total reflectance is minimized. The generated current density is increased.
  • a paste having aluminum strength is applied to the back surface lb and dried.
  • a screen printing device or the like on the light receiving surface la side for example, an Ag electrode having a width of 80 / zm is printed using a comb electrode pattern printing plate and dried.
  • the alignment mechanism printing is performed so that the comb-shaped electrode is placed on the portion where the diffusion paste is printed in stripes.
  • alignment methods there are a method of directly determining the electrode position from the color of the high-concentration diffusion layer, and a method of marking the substrate in advance and printing the diffusion base and the electrode using the marking as a mark.
  • the back electrode 6 and the surface comb electrode 7 are formed.
  • These electrodes can be formed not only by the above-described printing method, such as vacuum vapor deposition and sputtering. In this way, the solar cell shown in FIG. 1 is manufactured.
  • FIG. 2 shows a manufacturing flow of a conventional solar cell in which a two-stage emitter is formed using a mask.
  • a semiconductor substrate such as a 15-cm square as-sliced gallium-doped p-type single crystal silicon substrate is prepared, and damage etching and random texture formation are performed.
  • an oxide film serving as a diffusion mask is formed on the surface by oxidation.
  • the thickness of the oxide film must be at least lOOnm as a diffusion mask.
  • a two-stage emitter is formed as described above.
  • the next step, the bonding separation and the subsequent steps, can be performed in the same manner as in the first embodiment as shown in FIG. 2 (a).
  • the method of manufacturing a solar cell having a two-stage emitter according to the above-mentioned conventional example is an extremely orthodox method, but the number of process steps is overwhelmingly small when comparing Fig. 2 (a) and (b). It can be said that the production method of the present invention as shown in FIG. Therefore, the manufacturing method of the present invention can produce a product that is highly competitive in the solar cell market.
  • the present invention is not limited to the solar cell, and has diffusion layers having different surface concentrations in a plane. Needless to say, the present invention can be applied to other semiconductor devices.
  • the first coating agent is subjected to diffusion heat treatment.
  • a method of manufacturing a semiconductor device that simultaneously forms a first diffusion layer formed by coating a second diffusion layer formed by coating a second coating agent and having a conductivity different from that of the first diffusion layer.
  • a semiconductor device that can prevent out-diffusion of dopants and has in-plane diffusion layers with different dopant surface concentrations can be manufactured at low cost and with high manufacturing yield.
  • a groove 16 is formed on the semiconductor substrate, a first coating agent containing a dopant and a dopant scattering inhibitor is applied to the entire surface, and then the groove on the semiconductor substrate is subjected to diffusion heat treatment.
  • the diffusion concentration can be changed by a method using a coating agent having a different concentration or viscosity and a method of changing the coating film thickness of the coating agent or forming a groove. This will be specifically described below.
  • the dopant content of the first coating agent is preferably at least four times the dopant content of the second coating agent.
  • the coating film thickness can be changed by changing the mesh roughness of the screen plate making.
  • the viscosity for example, the content of methyl cellosolve in the coating agent may be changed.
  • the method of forming the groove structurally changes the film thickness.
  • a method of greatly changing the coating film thickness there is a method of changing the viscosity of the coating agent, and as a method of greatly changing the viscosity of the coating agent, there is a method of changing the content of the coating agent.
  • a thickener as a coating agent binder to methyl cellosolve because the viscosity increases.
  • the thickener include polybulal alcohol and polyvinyl pyrrole. Don, polybutymethyl ether, polybutybutyral, polyacetate butyle and copolymers thereof, cellulose derivatives, or polyacrylate are preferred, but not particularly limited.
  • SiO grains such as silica gel, in order to control the viscosity of the coating agent and to control the out-diffusion of the dopant.
  • the coating film thickness can be increased, and it is suitable as a coating agent for forming a high concentration diffusion layer. Since this binder is unnecessary during diffusion heat treatment, it is necessary to beta at 400 ° C or higher and blow it into the atmosphere.
  • the dopant in order to significantly reduce the viscosity and control the dopant autodoping, it is preferable to add the dopant to the alkoxides. It is preferable to add a dopant to alkoxides containing silicon as a precursor. This makes it suitable as a coating agent for forming a low concentration diffusion layer. In this case, when the heat of about 150 ° C is increased, the alkoxide is hydrolyzed and partially condensed, so that SiO, ie glass, is formed, preventing autodoping of the dopant.
  • Such a coating agent cannot be formed thick and easily bleeds, so it is not suitable as the first coating agent.
  • the concentration difference can be reliably ensured even by heat treatment at the same temperature. Can be produced.
  • the diffusion coefficient of phosphorus near 900 ° C is two orders of magnitude higher than that of antimony. Since both are n-type dopants and serve as donors to the p-type substrate, a two-stage emitter can be easily prepared by preparing a coating agent whose dopant is phosphorus and a coating agent whose antimony is used.
  • a third coating agent containing a silicon compound such as silica gel is applied so as to cover the upper part of the first coating agent and Z or the second coating agent, and then the diffusion heat treatment is performed, further out diffusion or Auto-doping can be prevented, which makes it a two-stage emitter.
  • the difference in surface concentration between the high concentration diffusion layer and the low concentration diffusion layer can be formed very reliably.
  • FIG. 5 shows an explanatory diagram for explaining another embodiment of the method for manufacturing a solar cell according to the present invention.
  • FIG. 6 is an explanatory diagram for explaining a diffusion layer forming method at the time of the diffusion heat treatment step according to still another embodiment of the method for manufacturing a solar cell according to the present invention.
  • the diffusion heat treatment is performed in a gas phase diffusion source atmosphere.
  • FIG. 7 shows a cross-sectional structure of a back contact solar cell that is another example of the embodiment of the solar cell of the present invention.
  • This back contact solar cell 101 is composed of a high-concentration emitter layer 2 which is a first diffusion layer of a conductivity type opposite to the first conductivity type of the semiconductor substrate 1, and an opposite conductivity type having a lower conductivity than the high-concentration emitter layer 2.
  • the low-concentration emitter layer 3 as the second diffusion layer and the local BSF layer 10 as the diffusion layer of the same conductivity type as the first conductivity type are formed on the back surface of the light receiving surface of the semiconductor substrate.
  • the back contact solar cell does not have an electrode on the light receiving surface, it has a feature that the appearance is very beautiful.
  • the light receiving surface and the back electrode of adjacent solar cells are connected by a tab wire 13 having a thickness of 100 to 200 ⁇ m.
  • a drawback that induces cracking of solar cells.
  • the back contact solar cell since the back contact solar cell only needs to be connected as shown in Figs. 8 (a) and 8 (b), it is possible to extremely reduce cracks!
  • a diffusion mask is not required at all, and three or more types of diffusion of the same conductivity type as the substrate conductivity type or the opposite conductivity type in the same plane. Layers can be formed. As mentioned above, the basic process steps are almost the same as the conventional method, so it can be easily manufactured.
  • the semiconductor substrate for example crystal plane orientation (100), 15cm square 200 mu mj ?, Azusu rice in the resistivity 0. 5 ⁇ 'cm (dopant concentration 1. 01 X 10 16 cm_ 3) , phosphorus-doped Prepare a n-type single crystal silicon substrate, perform damage etching for a total of about 30 m on both sides, using the same method as in Fig. 2 (a), and then form a texture with antireflection structure on the surface I do.
  • crystal plane orientation 100
  • 15cm square 200 mu mj ? Azusu rice in the resistivity 0. 5 ⁇ 'cm (dopant concentration 1. 01 X 10 16 cm_ 3)
  • phosphorus-doped Prepare a n-type single crystal silicon substrate, perform damage etching for a total of about 30 m on both sides, using the same method as in Fig. 2 (a), and then form a texture with antireflection structure on the surface I do.
  • a high-concentration emitter layer 2 having a conductivity type opposite to that of the substrate 1 after cleaning the substrate for example, 15 g of 100% boron oxide is used to prevent dopant scattering as described above.
  • a diffusion paste containing a stopper (silica gel) is printed by a screen printer. The printed pattern at this time can be 2 mm pitch and 200 m wide lines.
  • 4 g of boron oxide in 100 ml and an auto-dope preventive agent (silicon oxide precursor) as described above were included.
  • Print diffusion base for the purpose of making a low-concentration emitter layer 3 having the opposite conductivity type to that of the substrate.
  • This print pattern can be 2mm pitch, 1600m wide line, and printed so that the center overlaps the first print pattern. Further, for the purpose of forming a normal BSF layer 10 having the same conductivity type as that of the substrate 1, for example, the boron diffusion paste is printed with a diffusion paste containing phosphoric acid similar to that used in the description of FIG. Print on unprinted areas.
  • This printed pattern can be 2 mm pitch and 200 ⁇ m wide lines.
  • beta is performed at 700 ° C for 30 minutes, and then, for example, a coating agent containing silica gel is spin-coated on the same surface at 3000 rpm for 15 seconds, and this sample substrate is placed in a heat treatment furnace in that state. And diffusion heat treatment. This diffusion heat treatment can be performed at 1000 ° C for 20 minutes.
  • junction separation is performed using a plasma etcher, phosphorus and boron glass formed on the surface are etched with hydrofluoric acid.
  • a passivation film / antireflection film 4 such as a nitride film is deposited on the light receiving surface with a thickness of, for example, 85 nm.
  • a back surface passivation film 11 such as a nitride film is deposited with a thickness of 55 nm, for example, for the purpose of surface protection. If the thickness of the nitride film on the back surface is deposited from 70 nm to 110 ⁇ m, it can be used as a double-sided light receiving cell.
  • a comb-shaped electrode pattern as shown in FIG. 8 (a) is printed using an electrode paste having an Ag force in accordance with boron and phosphorus high-concentration diffusion layers. .
  • the back contact solar cell manufactured in this way has the same structure as that manufactured by the conventional method, and there is no difference in performance. Therefore, if a solar cell is manufactured using this manufacturing method, a back-contour outer solar cell with a very beautiful appearance and extremely few cracks can be expanded. It is possible to enjoy the merit that it can be easily manufactured without requiring any diffusion mask.
  • FIG. 9 shows a cross-sectional structure of still another example of the embodiment of the solar cell of the present invention.
  • a solar cell based on a general screen printing technology has a structure in which the entire back surface is covered with a BSF layer 5 made of A1. It is known that when the area of this BSF layer is reduced and the remaining area on the back side is covered with a high-quality passivation film, the open-circuit voltage increases and, as a result, the output increases.
  • the solar cell shown in FIG. 9 is such that the area of the BSF layer is reduced, and the embodiment shown in FIG. 9 (a) (hereinafter referred to as sample (A)) has the same conductivity type as the substrate 1.
  • the local BSF layer 10 is formed only in the vicinity immediately below the contact with the back comb electrode 12, and the embodiment shown in FIG. 9B (hereinafter referred to as sample (B)) is a high-concentration BSF layer having the same conductivity type as the substrate 1.
  • 14 is formed only in the vicinity immediately below the contact with the back-side comb electrode 12, and a low-concentration BSF layer 15 of the same conductivity type as the substrate 1 is formed on the entire back surface.
  • a diffusion mask is required to form a diffusion layer in a certain part of the surface.
  • this is not necessary and simple. It is possible to make a desired structure.
  • the semiconductor substrate for example, the crystal plane orientation (100), 15cm square 250 m thickness, resistivity 0. 5 Omega in Azusu Rice 'cm (dopant concentration 3. 26 X 10 16 cm_ 3) , gallium
  • a single crystal silicon substrate with p-type conductivity is prepared by doping, and damage etching is performed for about 30 m in total on both sides using the same method as the process shown in Fig. 2 (a).
  • texture formation as an antireflection structure is performed on the surface.
  • the diffusion paste is printed on the area where the high-concentration diffusion layer is formed under the same conditions as described in (a), and the coating agent is applied on the other areas.
  • a paste containing acid boron which is a dopant of the same conductivity type as that of the substrate 1, and a dopant scattering inhibitor such as silica gel at a rate of 0.1 lg / ml on the back side, for example, at a pitch of 2 mm
  • a dopant scattering inhibitor such as silica gel at a rate of 0.1 lg / ml on the back side, for example, at a pitch of 2 mm
  • Print with a 200 ⁇ m wide line pattern Of the samples that have gone through this process, This is beta for 30 minutes at 700 ° C, and then the sample (A) is spin coated with a coating containing alkoxysilane on the back surface at 3000 rpm for 15 seconds.
  • a sample (B) is obtained by continuously printing a paste containing acid boron and an autodope inhibitor such as silica and beta-treating at 700 ° C for 30 minutes.
  • a passivation film / antireflection film 4 such as a nitride film is deposited on both surfaces, for example, with a thickness of 85 nm.
  • a comb-shaped electrode pattern is printed using an electrode paste made of Ag in accordance with the high-concentration diffusion layers on both sides. After the electrode paste is dried, it is fired with a predetermined thermal profile, and a solar cell as shown in Fig. 9 is produced.
  • the open circuit voltage is significantly improved as compared with the solar cell shown in FIG.
  • the short-circuit current increases because light absorption near the back surface decreases.
  • the use of grid electrodes on the back surface reduces substrate warpage. This means that it is easy to reduce the thickness.
  • the low-concentration BSF layer of sample (B) was formed by adjusting the dopant amount of the diffusion paste, but by reducing the content of silica gel or the like without adding the dopant, the high-concentration BSF layer It is possible to form a structure similar to that of the sample by re-diffusing the out-diffused dopant from the diffusion paste for layer formation.
  • Example 1 As Example 1, according to the process of FIG. 2 (a), the crystal plane orientation (100) produced by the CZ method, 15 «11 angle 250 111 thickness, specific resistance at az slice 2 ⁇ 'cm (dopant concentration 7.2 X 10 15 cm — 3 ), a gallium-doped, first-conductivity-type single-crystal silicon substrate was prepared, immersed in a 40 weight percent sodium hydroxide / sodium hydroxide aqueous solution, and the damaged layer was removed by etching. Next, this substrate was immersed in an aqueous solution of 3% by weight sodium hydroxide in isopropyl alcohol and wet etched to form a random texture on the surface.
  • a diffusion paste containing phosphoric acid and silica gel was printed on the light receiving surface of the substrate by a screen printer and applied.
  • the printed pattern at this time was a line pattern with a pitch of 2 mm and a width of 150 m.
  • the printed substrate was beta-treated at 700 ° C. for 30 minutes, and then a coating agent containing nitric acid pentalin and alkoxysilane was applied on the same surface so as to be in contact with the diffusion paste. This coating was performed by spin coating under conditions of 3000 rpm and 15 seconds. Thereafter, the sample substrate thus prepared was put in a heat treatment furnace, held at 880 ° C.
  • junction separation was performed using a plasma etcher, the phosphor glass formed on the surface was subsequently etched with hydrofluoric acid, and then a 13.56 MHz direct plasma CVD apparatus was used to form on the emitter layer.
  • a nitride film with a thickness of 70 nm was deposited.
  • Comparative Example 1 a 15 cm square as-sliced gallium-doped p-type single crystal silicon substrate as in Example 1 was prepared, and a solar cell was fabricated according to the process of FIG. 2 (b).
  • the solar cell of Example 1 is superior in performance to the conventional solar cell of Comparative Example 1 in comparison with the conventional manufacturing method although the number of process steps is overwhelmingly low and the manufacturing cost is low. There is no difference. Therefore, by using the manufacturing method according to the present invention, it is possible to produce a highly competitive product in the solar cell market.
  • Example 2 solar cells were fabricated by various two-stage emitter fabrication methods of the present invention.
  • Table 2 shows the sheet resistance of the high concentration layer and the low concentration layer formed at this time.
  • Table 3 shows the characteristics of these solar cells.
  • the dopant content contained in the coating agent, the coating film thickness, and the glass content (silicon) are formed in order to form two types of diffusion layers in the same plane by the coating diffusion method. Changes in compound content), elements, etc. were utilized. In particular, for changing the coating film thickness, a force or groove utilizing the change in viscosity was used.
  • a concentration layer and a low concentration layer were formed.
  • two types of coating agents having different dopant contents were prepared.
  • a diffusion paste containing 10 g of phosphoric acid in 100 ml was used.
  • sample C the viscosity was changed by changing the content of methyl cellosolve in the coating agent.
  • sample D the silicon compound contained was changed to silica gel and alkoxysilane, and in sample E, the glass content was changed. I let you. In this process, the high-concentration layer was 200 / zm wide and 2.
  • Example 1 Omm pitch lines, and the coating agent was printed by screen printing, while the low-concentration layer was formed by applying the coating agent by spin.
  • the coating agent was printed using screen printing for both the high and low density layers.
  • polybutyl alcohol was added to the coating agent forming the high-concentration layer
  • sample F the dopant contained in each coating agent was phosphorus and antimony having different diffusion coefficients.
  • the high-concentration layer was 200 m wide and 2. Omm pitch line.
  • only one type of coating agent used in Example 1 was spin-coated on sample G. Half of these samples from A to G were heat treated at 880 ° C for 30 minutes to complete the diffusion.
  • a solar cell was fabricated by a process according to treatments A and B shown in FIG.
  • the manufacturing conditions were the same as in Example 1 except for the etch back and surface oxidation of the diffusion layer surface.
  • the etch back was performed by immersing the substrate in a mixed solution of ammonia and hydrogen peroxide after heat treatment and etching the surface by several nanometers.
  • the surface oxidation was performed by flowing only dry oxygen without lowering the temperature following the heat treatment, and holding the substrate in the heat treatment furnace for 10 minutes.
  • Table 4 shows the characteristics of the solar cell obtained in this example.
  • Fig. 10 shows the spectral sensitivity characteristics (external quantum efficiency).
  • the short-circuit current increased because the quantum efficiency in the short wavelength region increased after the emitter back and surface oxidation, as shown in Fig. 10.
  • the interface state density was lowered, and the performance of the solar cell could be further improved.
  • diffusion heat treatment is performed at 900 ° C in a POC1 vapor phase diffusion source atmosphere.
  • Example 1 For other conditions, the same diffusion paste and coating agent as in Example 1 were used.
  • Table 5 shows the standard deviations indicating the average and degree of variation of the characteristics of solar cells fabricated by the above method.
  • a back contact solar cell as shown in FIG. 7 was fabricated.
  • crystal plane orientation (100), 15cm square 200 / zm thickness, specific resistance at az slice 0.5 ⁇ 'cm (dopant concentration 1.01 X 10 16 cm_ 3 ), phosphorus doped, conductivity type n-type Single crystal A silicon substrate was prepared, and the same method as in Fig. 2 (a) was used. Damage etching was performed for a total of about 30 m on both sides, and a texture was formed on the surface as an antireflection structure.
  • a diffusion paste containing 15 g of acid boron in 100 ml and silica gel was printed by a screen printer for the purpose of forming a high-concentration emitter layer.
  • the printed pattern at this time was a 2 mm pitch, 200 m wide line.
  • a diffusion paste containing 4 g of boron oxide and alkoxysilane in 100 ml was printed for the purpose of forming a low-concentration emitter layer.
  • This printed pattern was a line of 2mm pitch and 1600m width, and was printed so that the center overlapped with the first printed pattern.
  • the same diffusion paste containing phosphoric acid as that used in the description of FIG. 2 (a) was printed on the region where the boron diffusion paste was printed. .
  • the printed pattern was 2 mm pitch and 200 ⁇ m wide line.
  • beta is applied at 700 ° C for 30 minutes, and then a silica gel-containing coating agent is spin-coated on the same surface at 3000 rpm for 15 seconds, and in this state, this sample substrate is subjected to a heat treatment furnace. Put in. This heat treatment was performed at 1000 ° C for 20 minutes.
  • FIG. 2 (a) after using a plasma etcher to perform junction separation, phosphorus and boron glass formed on the surface were etched with hydrofluoric acid.
  • a direct plasma CVD apparatus was used to deposit a nitride film with a thickness of 85 nm on the light receiving surface.
  • the same direct plasma CVD apparatus was used for the back surface, and a nitride film was deposited with a thickness of 55 nm.
  • a comb-shaped electrode pattern as shown in Fig. 8 (a) was printed using an electrode paste having an Ag force in accordance with boron and phosphorus high-concentration diffusion layers, and the electrode paste After drying, baking was performed with a predetermined thermal profile to form a back comb-shaped electrode, and a back contact solar cell was fabricated.
  • a solar cell as shown in Fig. 9 (a) and (b) was fabricated.
  • the crystal plane orientation (100), 15cm square 250 / zm thick, the specific resistance of at Azusuraisu 0. 5 ⁇ 'cm (dopant concentration 3. 26 X 10 16 cm_ 3) , conductivity type power 3 ⁇ 4 gallium-doped Type single crystal silicon substrate was prepared, and the same method as in Fig. 2 (a) was used, and both sides were subjected to a damage etching of about 30 / zm in total, and then the same method as in Fig. 2 (a) was used. Then, texture formation, which is an antireflection structure, was performed.
  • a diffusion paste is printed on the region where the high-concentration diffusion layer is formed under the same conditions as in Example 12 for the purpose of creating a two-stage emitter on the light-receiving surface side.
  • the coating agent was applied to other areas.
  • a paste containing acid boron and silica gel at a rate of 0.1 lgZml was printed on the back side in a line pattern of 2 mm pitch and 200 ⁇ m width.
  • Half of the samples that have undergone the process so far were beta-treated at 700 ° C for 30 minutes, followed by spin coating of a coating containing alkoxysilane on the back surface at 3000 rpm for 15 seconds (Sample (A) ).
  • the remaining sample was printed on the entire surface with a paste containing boron oxide and silica, and beta-treated at 700 ° C for 30 minutes (Sample (B)).
  • a nitride film was deposited on the both surfaces with a thickness of 85 nm, and then using a screen printing apparatus having an alignment mechanism, a comb-shaped electrode pattern was formed in accordance with the high-concentration diffusion layers on both sides. This was printed using an electrode paste having an Ag force. Electrode pace The solar cells were dried and then fired according to a predetermined thermal profile to produce solar cells as shown in Figs. 9 (a) and 9 (b).
  • the high-concentration BSF layer was restricted to the vicinity of the entire surface force contact, so that the open-circuit voltage was significantly improved compared to the result of Example 1.
  • the short-circuit current increased because light absorption near the back surface decreased.
  • the use of grid electrodes on the back surface reduced the warpage of the substrate. This means that it is easy to reduce the thickness.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is merely an example, and has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical idea of the present invention.

Abstract

A solar cell manufacturing method forms pn junction on a first conductive type semiconductor substrate. The first conductive type semiconductor substrate is coated by a first coating agent containing a dopant and a dopant scattering preventing agent and a second coating agent containing a dopant in contact with the first coating agent. After this, diffusion thermal treatment is performed so as to simultaneously form a first diffusion layer formed by coating of the first coating agent and a second diffusion agent formed by the coating of the second coating agent and having a lower conductivity than the first diffusion layer. A solar cell and a semiconductor device manufacturing method are also provided. This suppresses surface recombination at the portion other than the electrode on the light reception surface and recombination in a emitter while obtaining ohmic contact, thereby manufacturing a solar cell having improved photoelectric conversion efficiency by a simple and easy method at a low cost. A solar cell and semiconductor device manufacturing method are also provided.

Description

明 細 書  Specification
太陽電池の製造方法及び太陽電池並びに半導体装置の製造方法 技術分野  Technical field of solar cell manufacturing method, solar cell and semiconductor device manufacturing method
[0001] 本発明は、太陽電池の製造方法及び太陽電池並びに半導体装置の製造方法に 関するものであり、特に低コストな太陽電池の製造方法及び太陽電池並びに半導体 装置の製造方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a solar cell, a solar cell, and a method for manufacturing a semiconductor device, and particularly relates to a low-cost method for manufacturing a solar cell, a solar cell, and a method for manufacturing a semiconductor device. Background art
[0002] 現在、民生用の太陽電池を製造するのに用いられている方法ではコスト低減が重 要課題であり、そのため熱拡散法とスクリーン印刷法を組み合わせた方法が一般的 である。その詳細は例えば次の通りである。  [0002] At present, cost reduction is an important issue in the methods used to manufacture consumer solar cells. Therefore, a method combining a thermal diffusion method and a screen printing method is common. The details are as follows, for example.
[0003] まず、チヨクラルスキー(CZ)法で引き上げられた単結晶シリコンインゴットやキャスト 法により作製した多結晶シリコンインゴットをマルチワイヤー法でスライスすることによ り得られた P型シリコン基板を用意する。次に、アルカリ溶液で表面のスライスダメージ を取り除いた後、最大高さ 10 m程度の微細凹凸 (テクスチャ)を表面に形成し、熱 拡散法で n型の拡散層を形成する。さらに受光面には TiO又は SiNを、例えば、 70  [0003] First, a P-type silicon substrate prepared by slicing a single-crystal silicon ingot pulled up by the Chiyoklarsky (CZ) method or a polycrystalline silicon ingot produced by the cast method by the multi-wire method is prepared. To do. Next, after removing slice damage on the surface with an alkaline solution, fine irregularities (texture) with a maximum height of about 10 m are formed on the surface, and an n-type diffusion layer is formed by the thermal diffusion method. Furthermore, TiO or SiN, for example 70
2  2
nm程度の膜厚で堆積し、反射防止膜を形成する。次にアルミニウムを主成分とする 材料を受光面の裏面全面にわたり印刷、焼成することにより裏面電極を形成する。一 方、受光面電極は、銀を主成分とする材料を例えば幅 100〜200 /ζ πι程度の櫛形状 に印刷、焼成することにより形成する。  An antireflection film is formed by depositing with a film thickness of about nm. Next, a back electrode is formed by printing and baking a material mainly composed of aluminum over the entire back surface of the light receiving surface. On the other hand, the light-receiving surface electrode is formed by printing and baking a material mainly composed of silver in a comb shape having a width of about 100 to 200 / ζ πι.
[0004] この手法の優れている点は、デバイスを構成する上で必要最小限の工程数となつ ているにもかかわらず、特性を高める様々な効果が付随していることである。例えば、 熱拡散はゲッタリング作用によりバルタ内の少数キヤリャの拡散長を改善する働きが ある。また、裏面に印刷したアルミニウムの焼成は電極を形成すると同時に裏面に電 界層(BSF: Back Surface Field)となる p+高濃度層を形成する。さらに、反射防 止膜は、光学的効果 (反射率低減)とともにシリコン表面近傍で発生するキヤリャの再 結合速度を低減する。 このような必要最小限工程数といくつかの有用な効果により、民生用太陽電池は以 前より低コストィ匕が図られている。 [0004] The advantage of this method is that various effects for improving the characteristics are accompanied in spite of the fact that the number of processes is the minimum necessary for configuring the device. For example, thermal diffusion works to improve the diffusion length of minority carriers in Balta by gettering action. In addition, firing of aluminum printed on the back surface forms an electrode and at the same time forms a p + high-concentration layer that forms an electric field layer (BSF: Back Surface Field) on the back surface. In addition, the anti-reflective coating reduces the recombination rate of carriers generated near the silicon surface as well as optical effects (reduction in reflectivity). Due to the minimum number of steps and several useful effects, consumer solar cells are more cost effective than before.
[0005] ところが、この手法では変換効率の大きな改善がこれ以上見込めない。例えばシリ コン単結晶基板を利用した太陽電池セルでは変換効率は 16%程度で頭打ちとなる 。というのも、受光面電極のコンタクト抵抗を充分に低くするためには拡散層のリン等 のドーパントの表面濃度を 2. 0〜3. 0 X 102Gcm_2程度にする必要があることによる 。表面がこれ程の高濃度となると、表面準位が非常に高くなるため、受光面近傍での キヤリャ再結合が促進され、短絡電流、開放電圧が制限され、変換効率が頭打ちと なる。 [0005] However, this method cannot expect any further improvement in conversion efficiency. For example, in a solar cell using a silicon single crystal substrate, the conversion efficiency reaches a peak at about 16%. This is because the surface concentration of a dopant such as phosphorus in the diffusion layer needs to be about 2.0 to 3.0 X 10 2 G cm — 2 in order to sufficiently reduce the contact resistance of the light receiving surface electrode. If the surface has such a high concentration, the surface level becomes so high that carrier recombination near the light-receiving surface is promoted, short-circuit current and open-circuit voltage are limited, and conversion efficiency reaches its peak.
[0006] そこで、上記熱拡散法とスクリーン印刷法を組み合わせた方法を活かし、受光面の 拡散層の表面濃度を低減することにより変換効率を改善する方法が発案されている 。例えば、この方法に関わる発明は米国特許第 6180869号明細書で公知となって いる。この文献によると拡散層の表面濃度が 1. 0 X 102 cm_2程度若しくはそれ以下 でも、低ォーミックコンタクトを形成可能である。これは、電極ペーストに含まれる銀フ イラ一の周りにドーパントを含む化合物を添加しておくことによる。これにより、電極焼 成時、ドーパントが電極直下に高濃度層を形成する。 [0006] Therefore, a method for improving the conversion efficiency by reducing the surface concentration of the diffusion layer on the light receiving surface has been devised by utilizing the method combining the thermal diffusion method and the screen printing method. For example, an invention related to this method is known from US Pat. No. 6,180,869. According to this document, a low ohmic contact can be formed even if the surface concentration of the diffusion layer is about 1.0 X 10 2 cm _2 or less. This is because a compound containing a dopant is added around the silver filler contained in the electrode paste. Thereby, at the time of electrode baking, a dopant forms a high concentration layer directly under an electrode.
ところ力 このように電極ペーストに含まれる銀フイラ一の周りにドーパントを含む化 合物を添加する方法では、安定的にコンタクトを形成できないため、フィルファクタが 低ぐかつ、信頼性が低いといった問題がある。  However, the method of adding a compound containing a dopant around the silver filler contained in the electrode paste in this way cannot stably form a contact, so that the fill factor is low and the reliability is low. There is.
[0007] また、電極直下のみにドーパントを高濃度に含む高濃度拡散層(ェミッタ層)を形成 し、受光面の他の部分の拡散層の表面濃度を下げること、つまりニ段ェミッタを形成 することにより変換効率を向上させる方法として、例えば「光電変換装置及びその製 造方法」が、特開 2004— 273826号公報で公知となっている。この方法は特開平 8 — 37318号公報及び特開平 8— 191152号公報で公知となっている埋め込み型電 極太陽電池の電極形成方法を電解メツキからスクリーン印刷法へ変更したものである 。これにより、製造管理を容易とし、併せて製造コストも低減することが可能とされてい る。  [0007] Further, a high-concentration diffusion layer (emitter layer) containing a dopant at a high concentration is formed only directly under the electrode, and the surface concentration of the diffusion layer in the other part of the light-receiving surface is lowered, that is, a two-stage emitter is formed. As a method for improving the conversion efficiency by this, for example, “photoelectric conversion device and method for manufacturing the same” is disclosed in Japanese Patent Application Laid-Open No. 2004-273826. In this method, the electrode forming method of the embedded electrode solar cell, which is known in Japanese Patent Laid-Open Nos. 8-37318 and 8-191152, is changed from electrolytic plating to screen printing. As a result, manufacturing management can be facilitated and manufacturing costs can be reduced.
しかし、このような埋め込み型電極太陽電池の製造方法では、拡散工程を最低 2回 行う必要があり、煩雑でコスト増加を招く。 However, in such a method of manufacturing an embedded electrode solar cell, the diffusion process is performed at least twice. It is necessary to do this, which is complicated and increases costs.
[0008] また別のニ段ェミッタを形成することにより変換効率を向上させる方法としては、例 えば「太陽電池の製造方法」(特開 2004— 221149号公報)が公知となっている。こ の文献では、インクジェット方式により複数の種類の塗布剤の塗り分けを同時に行い 、ドーパント濃度やドーパント種類が異なる領域を簡単な工程で作り出すことを提案 している。  [0008] As a method for improving the conversion efficiency by forming another two-stage emitter, for example, "a method for manufacturing a solar cell" (Japanese Patent Laid-Open No. 2004-221149) is known. This document proposes that a plurality of types of coating agents are separately applied by an ink jet method to create regions with different dopant concentrations and dopant types in a simple process.
しかし、このようなインクジェット方式によるドーパント塗布を用いた太陽電池セルの 作製においては、ドーパントとしてリン酸などを用いる場合、腐食対策が必要であり、 装置が複雑となる上、メンテナンスも煩雑となる。また、ドーパント濃度や種類が異な る塗布剤をインクジェットで塗り分けても、 1回の熱処理で拡散させると、オートドープ により所望の濃度差が得られなくなってしまう。  However, in the production of solar cells using such an ink-jet dopant coating, when phosphoric acid or the like is used as a dopant, a countermeasure against corrosion is required, which complicates the apparatus and makes maintenance complicated. Moreover, even if coating agents with different dopant concentrations and types are applied separately by inkjet, if they are diffused by a single heat treatment, a desired concentration difference cannot be obtained by autodoping.
[0009] また、電極直下のみに高濃度拡散層を形成し、受光面の他の部分の拡散層の表 面濃度を下げることにより変換効率を向上させる別の方法としては、例えば「太陽電 池の製造方法」(特開 2004— 281569号公報)が公知となっている。 [0009] Another method for improving the conversion efficiency by forming a high-concentration diffusion layer only directly below the electrode and lowering the surface concentration of the diffusion layer in the other part of the light-receiving surface is, for example, “solar cell Is known in the art (Japanese Patent Application Laid-Open No. 2004-281569).
し力し、この方法では、特開 2004— 281569号公報の明細書によると 2回熱処理 を施す必要があり、簡便でない。だからといって熱処理を 1回にすると、オートドーピ ングにより受光面の電極直下以外の部分もドーパントが高濃度となり、高変換効率を 示さなくなる。 発明の開示  However, according to the specification of Japanese Patent Application Laid-Open No. 2004-281569, this method requires two heat treatments and is not simple. However, if the heat treatment is performed only once, the dopant concentration is high in portions other than the region immediately below the electrode on the light receiving surface due to autodoping, and high conversion efficiency is not exhibited. Disclosure of the invention
[0010] 本発明は上記課題を鑑みなされたものであり、ォーミックコンタクトを得ながら、受光 面の電極以外の部分での表面再結合およびェミッタ内の再結合を抑制することによ り、光電変換効率を向上させた太陽電池を、簡便かつ容易な方法により安価に製造 することができる太陽電池の製造方法及び太陽電池、並びに半導体装置の製造方 法を提供することを目的とする。  [0010] The present invention has been made in view of the above problems, and by suppressing the surface recombination at a portion other than the electrode of the light receiving surface and the recombination in the emitter while obtaining an ohmic contact, It is an object of the present invention to provide a solar cell manufacturing method, a solar cell, and a semiconductor device manufacturing method capable of inexpensively manufacturing a solar cell with improved photoelectric conversion efficiency by a simple and easy method.
[0011] 上記目的達成のため、本発明は、第 1導電型の半導体基板に pn接合を形成して 太陽電池を製造する方法であって、少なくとも、前記第 1導電型の半導体基板上にド 一パントとドーパント飛散防止剤とを含む第 1塗布剤と少なくとも第 1塗布剤に接する ようにドーパントを含む第 2塗布剤とを塗布した後、拡散熱処理により、第 1塗布剤の 塗布により形成される第 1拡散層と、第 2塗布剤の塗布により形成され、第 1拡散層よ り導電率が低い第 2拡散層とを同時に形成することを特徴とする太陽電池の製造方 法を提供する。 In order to achieve the above object, the present invention provides a method for manufacturing a solar cell by forming a pn junction on a first conductivity type semiconductor substrate, and at least the first conductivity type semiconductor substrate is formed on the first conductivity type semiconductor substrate. A first coating agent containing a pant and a dopant scattering inhibitor and at least in contact with the first coating agent In this way, after applying the second coating agent containing the dopant, the first diffusion layer formed by applying the first coating agent and the second coating agent are formed by diffusion heat treatment, and the first diffusion layer is formed. A method for manufacturing a solar cell is provided, wherein a second diffusion layer having a low conductivity is formed simultaneously.
[0012] このように、第 1導電型の半導体基板上にドーパントとドーパント飛散防止剤を含む 第 1塗布剤と少なくとも第 1塗布剤に接するようにドーパントを含む第 2塗布剤とを塗 布した後、拡散熱処理により、第 1拡散層と第 1拡散層より導電率が低い第 2拡散層 とを同時に形成する。これにより、これまで拡散マスク形成等、煩雑であった高濃度 拡散層と低濃度拡散層からなるニ段ェミッタの形成が非常に簡便となり、結果的に製 造コストが低減する。また、高濃度層領域となる第 1拡散層においては充分な表面濃 度が保たれるため、容易に低ォーミックコンタクトが形成でき、かつドーパント飛散防 止剤により第 1塗布剤からのドーパントのアウトディフュージョンが防止されるため、二 段ェミッタの高濃度拡散層及び低濃度拡散層の表面濃度差が確実に形成され、製 造歩留まりを高レベルで維持しながら高性能の太陽電池を製造できる。  As described above, the first coating agent containing the dopant and the dopant scattering inhibitor and the second coating agent containing the dopant so as to be in contact with at least the first coating agent were applied on the first conductivity type semiconductor substrate. Thereafter, the first diffusion layer and the second diffusion layer having lower conductivity than the first diffusion layer are formed simultaneously by diffusion heat treatment. This makes it very easy to form a two-stage emitter consisting of a high-concentration diffusion layer and a low-concentration diffusion layer, which has been complicated until now, such as formation of a diffusion mask, resulting in a reduction in manufacturing cost. In addition, since the sufficient surface concentration is maintained in the first diffusion layer, which is a high concentration layer region, a low ohmic contact can be easily formed, and the dopant from the first coating agent can be formed by a dopant scattering inhibitor. Therefore, the surface concentration difference between the high-concentration diffusion layer and the low-concentration diffusion layer of the two-stage emitter is surely formed, and a high-performance solar cell can be manufactured while maintaining the manufacturing yield at a high level. .
[0013] この場合、前記第 2塗布剤としてオートドープ防止剤を含むものを用いることが好ま しい。 [0013] In this case, it is preferable to use a material containing an autodope inhibitor as the second coating agent.
このように、第 2塗布剤としてオートドープ防止剤を含むものを用いれば、第 1塗布 剤のドーパント飛散防止剤と相まって、第 2拡散層へのオートドープがより防止される ため、ニ段ェミッタの高濃度拡散層及び低濃度拡散層の表面濃度差が確実に形成 される。  As described above, when the second coating agent containing an anti-doping agent is used, the auto-doping to the second diffusion layer is further prevented in combination with the dopant scattering preventing agent of the first coating agent. The difference in surface concentration between the high concentration diffusion layer and the low concentration diffusion layer is surely formed.
[0014] また本発明は、第 1導電型の半導体基板に pn接合を形成して太陽電池を製造する 方法であって、少なくとも、前記第 1導電型の半導体基板上に溝を形成し、ドーパント とドーパント飛散防止剤とを含む第 1塗布剤を全面に塗布した後、拡散熱処理により 、前記半導体基板上の溝下部に形成される第 1拡散層と、前記溝下部以外の部分 に形成され、第 1拡散層より導電率が低い第 2拡散層とを同時に形成することを特徴 とする太陽電池の製造方法を提供する。  [0014] Further, the present invention is a method of manufacturing a solar cell by forming a pn junction on a first conductivity type semiconductor substrate, wherein at least a groove is formed on the first conductivity type semiconductor substrate, and a dopant is formed. And a first coating agent containing a dopant scattering inhibitor is applied to the entire surface, and then formed by diffusion heat treatment on the first diffusion layer formed in the lower portion of the groove on the semiconductor substrate and in a portion other than the lower portion of the groove, Provided is a method for manufacturing a solar cell, wherein a second diffusion layer having a conductivity lower than that of the first diffusion layer is formed simultaneously.
[0015] このように、第 1導電型の半導体基板上に溝を形成し、ドーパントとドーパント飛散 防止剤とを含む第 1塗布剤を全面に塗布した後、拡散熱処理により、半導体基板上 の溝下部に形成される第 1拡散層と、前記溝下部以外の部分に形成され、第 1拡散 層より導電率が低い第 2拡散層とを同時に形成する。これにより、一回の塗布剤の塗 布で高濃度拡散層と低濃度拡散層からなるニ段ェミッタの形成が非常に簡便となり、 結果的に製造コストが低減する。また、溝下部に形成され、高濃度層領域となる第 1 拡散層にお 、ては充分な表面濃度が保たれるため、容易に低ォーミックコンタクトが 形成でき、かつドーパント飛散防止剤によりドーパントのアウトディフュージョンゃォー トドープが防止されるため、ニ段ェミッタの高濃度拡散層及び低濃度拡散層の表面 濃度差が確実に形成され、製造歩留まりを高レベルで維持しながら高性能の太陽電 池を製造できる。 [0015] As described above, after forming a groove on the first conductivity type semiconductor substrate and applying the first coating agent including the dopant and the dopant scattering inhibitor on the entire surface, diffusion heat treatment is performed on the semiconductor substrate. The first diffusion layer formed in the lower portion of the groove and the second diffusion layer formed in a portion other than the lower portion of the groove and having a lower conductivity than the first diffusion layer are formed simultaneously. This makes it very easy to form a two-stage emitter consisting of a high-concentration diffusion layer and a low-concentration diffusion layer with a single coating of the coating agent, resulting in a reduction in manufacturing cost. In addition, since a sufficient surface concentration is maintained in the first diffusion layer formed in the lower portion of the groove and serving as a high concentration layer region, a low ohmic contact can be easily formed and a dopant scattering inhibitor can be used. Since outdiffusion of dopants is prevented, the surface concentration difference between the high-concentration diffusion layer and the low-concentration diffusion layer of the two-stage emitter is reliably formed, and a high-performance solar cell is maintained while maintaining a high manufacturing yield. Can produce batteries.
[0016] この場合、前記拡散熱処理を気相拡散ソース雰囲気下で行うことが好ま 、。  [0016] In this case, it is preferable that the diffusion heat treatment is performed in a gas phase diffusion source atmosphere.
このように、拡散熱処理を気相拡散ソース雰囲気下で行なえば、低濃度拡散層に おけるドーパントの濃度面内分布が均一となり、性能のノ ツキのない太陽電池を製 造できる。  In this way, if the diffusion heat treatment is performed in a gas phase diffusion source atmosphere, the concentration distribution in the surface of the dopant in the low concentration diffusion layer becomes uniform, and a solar cell with no performance fluctuation can be manufactured.
[0017] また、ドーパント飛散防止剤又はオートドープ防止剤として珪素化合物を含むもの を用いることが好ましい。  [0017] In addition, it is preferable to use a dopant containing silicon compound as a dopant scattering inhibitor or an autodope inhibitor.
このように、ドーパント飛散防止剤又はオートドープ防止剤として珪素化合物を含む ものを用いれば、ドーパントのアウトディフュージョンやオートドープを効果的に防止 でき、これによつてニ段ェミッタにおいて高濃度拡散層と低濃度拡散層との表面濃度 差を極めて確実に形成できる。また、珪素化合物であれば、不純物ともならない。  In this way, if a dopant containing a silicon compound is used as a dopant scattering inhibitor or an auto-doping inhibitor, dopant out-diffusion and auto-doping can be effectively prevented. A difference in surface concentration with the low concentration diffusion layer can be formed extremely reliably. Moreover, if it is a silicon compound, it will not become an impurity.
[0018] また、第 1塗布剤及び第 2塗布剤として少なくともドーパントの含有率、粘度、ドーパ ント飛散防止剤及びオートドープ防止剤の含有量、ドーパントの種類のいずれか 1つ 以上が異なるものを用いる、及び Z又は第 1塗布剤と第 2塗布剤との塗布の際に塗 布膜厚を異なるものとすることが好まし 、。  [0018] Further, the first coating agent and the second coating agent are different in at least one of dopant content, viscosity, content of dopant scattering inhibitor and auto-dope inhibitor, and one or more kinds of dopants. It is preferable to use different coating film thicknesses when Z is applied or when the first coating agent and the second coating agent are applied.
このように、第 1塗布剤及び第 2塗布剤として少なくともドーパントの含有率、粘度、 ドーパント飛散防止剤及びオートドープ防止剤の含有量、ドーパントの種類の!/、ずれ 力 1つ以上が異なるものを用いる、又は第 1塗布剤と第 2塗布剤との塗布の際に塗布 膜厚を異なるものとする、あるいはこれらを組み合わせて行うことにより、ニ段ェミッタ における高濃度拡散層と低濃度拡散層との表面濃度差を極めて確実に形成できる。 [0019] また、第 1塗布剤のドーパントの含有率を第 2塗布剤のドーパントの含有率の 4倍以 上とすることが好ましい。 In this way, the first coating agent and the second coating agent differ in at least the dopant content, viscosity, dopant scattering inhibitor and auto-dope inhibitor content, dopant type! Or by combining the first coating agent and the second coating agent with different coating film thicknesses, or in combination, the high-concentration diffusion layer and the low-concentration diffusion layer in the two-stage emitter. And the surface concentration difference can be formed very reliably. [0019] In addition, it is preferable that the content of the dopant in the first coating agent is four times or more than the content of the dopant in the second coating agent.
このように、第 1塗布剤のドーパントの含有率を第 2塗布剤のドーパントの含有率の Thus, the dopant content of the first coating agent is the content of the dopant of the second coating agent.
4倍以上とすれば、ニ段ェミッタにおける高濃度拡散層と低濃度拡散層との表面濃 度差をさらに確実に形成できる。 If it is 4 times or more, the difference in surface concentration between the high-concentration diffusion layer and the low-concentration diffusion layer in the two-stage emitter can be formed more reliably.
[0020] また、前記ドーパント飛散防止剤に含まれる珪素化合物を SiOとし、前記オートド [0020] Further, the silicon compound contained in the dopant scattering inhibitor is SiO,
2  2
ープ防止剤に含まれる珪素化合物を珪素酸ィ匕物前駆体とすることが好ましい。 このように、ドーパント飛散防止剤に含まれる珪素化合物を SiO、特にはシリカゲ  It is preferable to use the silicon compound contained in the anti-ropping agent as a silicon oxide precursor. As described above, the silicon compound contained in the dopant scattering inhibitor is made of SiO, particularly silica gel.
2  2
ルとし、オートドープ防止剤に含まれる珪素化合物を珪素酸ィ匕物前駆体とすれば、 塗布剤の粘度をそれぞれの用途に応じて効果的に制御できるとともに、ドーパントの アウトディフュージョンやオートドープを防止でき、これによつてニ段ェミッタにおける 高濃度拡散層と低濃度拡散層との表面濃度差を極めて確実に形成できる。  If the silicon compound contained in the anti-doping agent is a silicon oxide precursor, the viscosity of the coating agent can be effectively controlled according to each application, and out-diffusion and auto-doping of the dopant can be controlled. This can prevent the difference in surface concentration between the high-concentration diffusion layer and the low-concentration diffusion layer in the two-stage emitter.
[0021] また、珪素化合物を含む第 3塗布剤を、第 1塗布剤及び Z又は第 2塗布剤の上部 を覆うように塗布し、その後前記拡散熱処理を行うことが好まし ヽ。  [0021] In addition, it is preferable to apply a third coating agent containing a silicon compound so as to cover the first coating agent and the upper part of Z or the second coating agent, and then perform the diffusion heat treatment.
このように、珪素化合物を含む第 3塗布剤を、第 1塗布剤及び Z又は第 2塗布剤の 上部を覆うように塗布し、その後前記拡散熱処理を行えば、さらにアウトディフュージ ヨンやオートドープを防止でき、これによつてニ段ェミッタの高濃度拡散層及び低濃 度拡散層の表面濃度差を 1回の熱処理で極めて確実に形成できる。  In this way, if the third coating agent containing a silicon compound is applied so as to cover the tops of the first coating agent and Z or the second coating agent, and then the diffusion heat treatment is performed, further out-diffusion or auto-doping is performed. Thus, the difference in surface concentration between the high-concentration diffusion layer and the low-concentration diffusion layer of the two-stage emitter can be formed very reliably by a single heat treatment.
[0022] また、前記拡散熱処理により形成した拡散層の表面をエッチバックすることが好まし い。  [0022] Further, it is preferable to etch back the surface of the diffusion layer formed by the diffusion heat treatment.
このように、拡散熱処理により形成した拡散層の表面をエッチバックすれば、特に低 濃度拡散層の表面準位の多い領域を削るため、太陽電池の性能を向上させることが できる。  In this way, if the surface of the diffusion layer formed by the diffusion heat treatment is etched back, the region having a large surface level of the low-concentration diffusion layer is removed, so that the performance of the solar cell can be improved.
[0023] また、前記拡散熱処理により形成した拡散層の表面を酸ィ匕することが好ましい。  [0023] It is preferable that the surface of the diffusion layer formed by the diffusion heat treatment is oxidized.
このように、拡散熱処理により形成した拡散層の表面を酸化しても、後のガラスエツ チング工程時に表面準位の多い領域を削るため、太陽電池の性能を向上させること ができる。  As described above, even if the surface of the diffusion layer formed by the diffusion heat treatment is oxidized, the region having a lot of surface states is removed in the subsequent glass etching step, so that the performance of the solar cell can be improved.
[0024] また、第 1拡散層及び第 2拡散層を前記半導体基板の受光面及び該受光面の裏 面の少なくとも一方に形成することができる。 [0024] Further, the first diffusion layer and the second diffusion layer are arranged on the light receiving surface of the semiconductor substrate and the back surface of the light receiving surface. It can be formed on at least one of the surfaces.
このように、第 1拡散層及び第 2拡散層を前記半導体基板の受光面及び該受光面 の裏面の少なくとも一方に形成することにより、従来の構造の太陽電池を容易に製造 できるし、また裏面全体又は部分的に BSF層を容易に形成することや、これまで煩雑 な工程を経て作られていた正負電極を片面に集約した裏面コンタクト型太陽電池を 容易に製造することができる。  Thus, by forming the first diffusion layer and the second diffusion layer on at least one of the light receiving surface of the semiconductor substrate and the back surface of the light receiving surface, a solar cell having a conventional structure can be easily manufactured, and the back surface A BSF layer can be easily formed in whole or in part, and a back contact solar cell in which positive and negative electrodes, which have been produced through complicated processes so far, are concentrated on one side can be easily manufactured.
[0025] また、本発明は、上記のいずれかの製造方法により製造した太陽電池であって、前 記半導体基板が有する第 1導電型とは反対導電型の第 1拡散層及び該反対導電型 の第 1拡散層より導電率の低い第 2拡散層とが前記半導体基板の受光面に形成され たものであることを特徴とする太陽電池を提供する。  [0025] Further, the present invention provides a solar cell manufactured by any one of the above manufacturing methods, wherein the semiconductor substrate has a first diffusion layer having a conductivity type opposite to the first conductivity type, and the opposite conductivity type. A solar cell is characterized in that a second diffusion layer having a lower conductivity than the first diffusion layer is formed on the light receiving surface of the semiconductor substrate.
[0026] このように、半導体基板が有する第 1導電型とは反対導電型の第 1拡散層及び該 反対導電型の第 1拡散層より導電率の低い第 2拡散層とが半導体基板の受光面に 形成されたものであれば、従来と同様の構造を有し、低コストで、製造歩留まりが高い 、ニ段ェミッタを有する高性能の太陽電池となる。  As described above, the first diffusion layer having the conductivity type opposite to the first conductivity type of the semiconductor substrate and the second diffusion layer having lower conductivity than the first diffusion layer having the opposite conductivity type are received by the semiconductor substrate. If it is formed on the surface, it will be a high-performance solar cell having the same structure as the conventional one, low cost, high production yield, and having a two-stage emitter.
[0027] この場合、さらに、少なくとも第 1導電型と同一導電型の拡散層が前記受光面の裏 面に形成されたものであることが好ましい。  In this case, it is further preferable that a diffusion layer of at least the same conductivity type as the first conductivity type is formed on the back surface of the light receiving surface.
このように、少なくとも第 1導電型と同一導電型の拡散層が前記受光面の裏面に形 成されたものであれば、裏面全体又は部分的に BSF層が形成された太陽電池となる  Thus, if a diffusion layer of at least the same conductivity type as that of the first conductivity type is formed on the back surface of the light receiving surface, a solar cell having a BSF layer formed entirely or partially on the back surface is obtained.
[0028] また、本発明は、前記のいずれかの製造方法により製造した太陽電池であって、前 記半導体基板が有する第 1導電型とは反対導電型の第 1拡散層及び該反対導電型 の第 1拡散層より導電率の低い反対導電型の第 2拡散層と、第 1導電型と同一導電 型の拡散層とが前記半導体基板の受光面の裏面に形成されたものであることを特徴 とする太陽電池を提供する。 [0028] Further, the present invention is a solar cell manufactured by any one of the above-described manufacturing methods, wherein the first diffusion layer having a conductivity type opposite to the first conductivity type included in the semiconductor substrate and the opposite conductivity type are provided. A second diffusion layer of the opposite conductivity type having a lower conductivity than the first diffusion layer and a diffusion layer of the same conductivity type as the first conductivity type are formed on the back surface of the light receiving surface of the semiconductor substrate. A solar cell is provided.
[0029] このように、半導体基板が有する第 1導電型とは反対導電型の第 1拡散層及び該 反対導電型の第 1拡散層より導電率の低い反対導電型の第 2拡散層と、第 1導電型 と同一導電型の拡散層とが前記半導体基板の受光面の裏面に形成されたものであ れば、低コストで、製造歩留まりが高い、高性能の裏面コンタクト型太陽電池となる。 [0030] また、本発明は、半導体装置の製造方法であって、少なくとも、第 1導電型の半導 体基板上にドーパントとドーパント飛散防止剤とを含む第 1塗布剤とドーパントを含む 第 2塗布剤とを塗布した後、拡散熱処理により、第 1塗布剤の塗布により形成される 第 1拡散層と、第 2塗布剤の塗布により形成され、第 1拡散層とは導電率が異なる第 2 拡散層とを同時に形成することを特徴とする半導体装置の製造方法を提供する。 [0029] Thus, a first diffusion layer having a conductivity type opposite to the first conductivity type of the semiconductor substrate and a second diffusion layer having a conductivity type lower than that of the first diffusion layer having the opposite conductivity type, If a diffusion layer of the same conductivity type as that of the first conductivity type is formed on the back surface of the light receiving surface of the semiconductor substrate, a high-performance back contact solar cell with low cost and high manufacturing yield can be obtained. . [0030] Further, the present invention is a method for manufacturing a semiconductor device, comprising at least a first coating agent containing a dopant and a dopant scattering inhibitor on the first conductivity type semiconductor substrate, and a dopant. After the coating agent is applied, the first diffusion layer formed by the application of the first coating agent by diffusion heat treatment and the second diffusion agent formed by the application of the second coating agent are different in conductivity from the first diffusion layer. Provided is a method for manufacturing a semiconductor device, wherein a diffusion layer is formed simultaneously.
[0031] このように、第 1導電型の半導体基板上にドーパントとドーパント飛散防止剤とを含 む第 1塗布剤とドーパントを含む第 2塗布剤とを塗布した後、拡散熱処理により、第 1 塗布剤の塗布により形成される第 1拡散層と、第 2塗布剤の塗布により形成され、第 1 拡散層とは導電率が異なる第 2拡散層とを同時に形成すれば、ドーパントのアウトデ ィフュージョンが防止でき、ドーパントの表面濃度が異なる拡散層を面内に有する半 導体装置を、低コストで、製造歩留まり高く製造できる。  [0031] Thus, after applying the first coating agent containing the dopant and the dopant scattering inhibitor and the second coating agent containing the dopant on the first conductive type semiconductor substrate, the first heat treatment is performed by diffusion heat treatment. If the first diffusion layer formed by applying the coating agent and the second diffusion layer formed by applying the second coating agent and having a conductivity different from that of the first diffusion layer are formed at the same time, outdiffusion of the dopant Thus, a semiconductor device having in-plane diffusion layers with different dopant surface concentrations can be manufactured at a low cost and with a high manufacturing yield.
[0032] また、本発明は、半導体基板上に塗布して該半導体基板に熱拡散によりドーパント をドープするための塗布剤であって、少なくともドーパントとドーパント飛散防止剤とを 含むものであることを特徴とする塗布剤を提供する。  [0032] Further, the present invention is a coating agent for coating on a semiconductor substrate and doping the semiconductor substrate with a dopant by thermal diffusion, characterized in that it contains at least a dopant and a dopant scattering inhibitor. A coating agent is provided.
[0033] このように、少なくともドーパントとドーパント飛散防止剤とを含む塗布剤であれば、 これを半導体基板に塗布してドーパントの熱拡散を行う際に、ドーパントのアウトディ フュージョンを防止できる塗布剤となる。  [0033] As described above, when the coating agent includes at least a dopant and a dopant scattering prevention agent, the coating agent can prevent outdiffusion of the dopant when this is applied to a semiconductor substrate and thermal diffusion of the dopant is performed. Become.
[0034] この場合、前記ドーパント飛散防止剤は珪素化合物を含むものであることが好まし い。  [0034] In this case, it is preferable that the dopant scattering preventing agent contains a silicon compound.
このように、ドーパント飛散防止剤が珪素化合物を含むものであれば、ドーパントの アウトディフュージョンを効果的に防止でき、シリコンゥエーハに対して不純物とならな い塗布剤となる。  Thus, if the dopant scattering inhibitor contains a silicon compound, the dopant can be effectively prevented from being diffused out, and the coating agent does not become an impurity with respect to the silicon wafer.
[0035] また、前記珪素化合物は SiOであることが好ましい。 [0035] The silicon compound is preferably SiO.
2  2
このように、珪素化合物が SiO、特にはシリカゲルであれば、塗布剤の粘度が効果  Thus, if the silicon compound is SiO, especially silica gel, the viscosity of the coating agent is effective.
2  2
的に制御されたものであるとともに、ドーパントのアウトディフュージョンを効果的に防 止できる塗布剤となる。  In addition to being controlled, the coating agent can effectively prevent dopant out-diffusion.
[0036] また、前記塗布剤はさらに増粘剤を含むものであることが好ましい。  [0036] The coating agent preferably further contains a thickener.
このように、塗布剤がさらに増粘剤を含むものであれば、粘度が効果的に制御され た塗布剤となる。この増粘剤としては、例えばポリビニルアルコール、ポリビニルピロリ ドン、ポリビュルメチルエーテル、ポリビュルブチラール、ポリ酢酸ビュル及びこれらの 共重合体、もしくはセルロース誘導体、もしくはポリアタリレートが好ましい。 Thus, if the coating agent further contains a thickener, the viscosity is effectively controlled. It becomes a coating agent. As this thickening agent, for example, polyvinyl alcohol, polyvinyl pyrrolidone, polybutymethyl ether, polybutybutyral, polyacetate bur and copolymers thereof, cellulose derivatives, or polyacrylate are preferable.
[0037] また、前記塗布剤はスクリーン印刷用塗布剤であることが好ましい。  [0037] The coating agent is preferably a screen printing coating agent.
このように、塗布剤がスクリーン印刷用塗布剤であれば、スクリーン印刷機で容易に 塗布でき、ドーパントの熱拡散を容易に行うことができる塗布剤となる。  Thus, if the coating agent is a coating agent for screen printing, it can be easily applied by a screen printing machine, and can be a coating agent that can easily diffuse the dopant.
[0038] 本発明の太陽電池の製造方法によれば、これまで拡散マスク形成等、煩雑であつ た高濃度拡散層と低濃度拡散層からなるニ段ェミッタの形成が非常に簡便となり、結 果的に製造コストが低減する。また、高濃度層領域となる第 1拡散層においては充分 な表面濃度が保たれるため、容易に低ォーミックコンタクトが形成でき、かつドーパン ト飛散防止剤によりドーパントのアウトディフュージョンが防止されるため、ニ段ェミツ タの高濃度拡散層及び低濃度拡散層の表面濃度差が確実に形成され、製造歩留ま りを高レベルで維持しながら高性能の太陽電池を製造できる。  [0038] According to the method for manufacturing a solar cell of the present invention, the formation of a two-stage emitter consisting of a high-concentration diffusion layer and a low-concentration diffusion layer, which has conventionally been complicated, such as formation of a diffusion mask, becomes very simple and results. Manufacturing cost is reduced. In addition, a sufficient surface concentration is maintained in the first diffusion layer, which is a high-concentration layer region, so that low ohmic contact can be easily formed, and dopant out-diffusion is prevented by the dopant anti-scattering agent. Therefore, the difference in surface concentration between the high-concentration diffusion layer and the low-concentration diffusion layer of the two-stage emitter is surely formed, and a high-performance solar cell can be manufactured while maintaining the manufacturing yield at a high level.
[0039] また、本発明の太陽電池は、低コストで、製造歩留まりが高い、裏面コンタクト型の 又はニ段ェミッタを有する高性能の太陽電池となる。  [0039] Further, the solar cell of the present invention is a high-performance solar cell having a back contact type or two-stage emitter with low cost and high production yield.
[0040] さらに、本発明の半導体装置の製造方法によれば、ドーパントの表面濃度が異なる 拡散層を面内に有する半導体装置を、低コストで、製造歩留まり高く製造できる。  Furthermore, according to the method for manufacturing a semiconductor device of the present invention, a semiconductor device having in-plane diffusion layers having different dopant surface concentrations can be manufactured at a low cost and with a high manufacturing yield.
[0041] さらに、本発明の塗布剤であれば、これを半導体基板に塗布してドーパントの熱拡 散を行う際に、ドーパントのアウトディフュージョンを防止できる塗布剤となる。 図面の簡単な説明  [0041] Further, the coating agent of the present invention is a coating agent capable of preventing dopant out-diffusion when it is applied to a semiconductor substrate and the dopant is thermally diffused. Brief Description of Drawings
[0042] [図 1]本発明に従う太陽電池の実施形態の一例の断面構造を示す。 FIG. 1 shows a cross-sectional structure of an example of an embodiment of a solar cell according to the present invention.
[図 2] (a)は本発明に従う太陽電池の製造方法の実施形態の一例を示すフロー図で あり、 (b)はマスクを用いてニ段ェミッタを形成する従来の太陽電池の製造方法の一 例を示すフロー図である。  [FIG. 2] (a) is a flowchart showing an example of an embodiment of a method for manufacturing a solar cell according to the present invention, and (b) is a diagram of a conventional method for manufacturing a solar cell in which a two-stage emitter is formed using a mask. It is a flowchart which shows an example.
[図 3]図 2 (a)に示す太陽電池の製造方法を説明するための説明図を示す。  FIG. 3 is an explanatory diagram for explaining a method of manufacturing the solar cell shown in FIG. 2 (a).
[図 4]単結晶太陽電池の反射防止構造 (ランダムテクスチャ)を示す図である。  FIG. 4 is a diagram showing an antireflection structure (random texture) of a single crystal solar cell.
[図 5]本発明に従う太陽電池の製造方法の別の実施形態を説明するための説明図を 示す。 FIG. 5 is an explanatory diagram for explaining another embodiment of a method for manufacturing a solar cell according to the present invention. Show.
[図 6]本発明に従う太陽電池の製造方法のさらに別の実施形態に係る拡散熱処理ェ 程時の拡散層形成方法について説明するための説明図を示す。  FIG. 6 is an explanatory diagram for explaining a diffusion layer forming method during the diffusion heat treatment step according to still another embodiment of the method for manufacturing a solar cell according to the present invention.
[図 7]本発明の太陽電池の実施形態の別の一例である裏面コンタクト型太陽電池の 断面構造を示す。  FIG. 7 shows a cross-sectional structure of a back contact solar cell that is another example of an embodiment of the solar cell of the present invention.
[図 8] (a)は裏面コンタクト型太陽電池モジュールの裏面力 見た電極および結線の 状態を示した図であり、 (b)は裏面コンタクト型太陽電池モジュールの側面から見た 結線の状態を示した図であり、(c)は一般的な太陽電池モジュールの側面力も見た 結線の状態を示した図である。  [Fig. 8] (a) is a diagram showing the state of the electrodes and connections as viewed from the back surface of the back contact solar cell module, and (b) is the state of connections as viewed from the side of the back contact solar cell module. (C) is a diagram showing a connection state in which a side force of a general solar cell module is also seen.
[図 9]本発明の太陽電池の実施形態のさらに別の一例の断面構造を示す。  FIG. 9 shows a cross-sectional structure of still another example of the embodiment of the solar cell of the present invention.
[図 10]実施例 1と実施例 3における外部量子効率を示す図である。  FIG. 10 is a diagram showing external quantum efficiencies in Example 1 and Example 3.
[図 11]本発明に従う太陽電池の製造方法のさらに別の実施形態を説明するための 説明図を示す。  FIG. 11 is an explanatory diagram for explaining still another embodiment of the method for manufacturing a solar cell according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、本発明の実施の形態について具体的に説明する力 本発明はこれらに限定 されるものではない。 [0043] Hereinafter, the power to specifically describe the embodiments of the present invention The present invention is not limited to these.
図 1は本発明に従う太陽電池の実施形態の一例の断面構造を示す。  FIG. 1 shows a cross-sectional structure of an example of an embodiment of a solar cell according to the present invention.
この太陽電池 100は、半導体基板 1が有する第 1導電型とは反対導電型の第 1拡 散層である高濃度ェミッタ層 2及び高濃度ェミッタ層 2より導電率の低い第 2拡散層で ある低濃度ェミッタ層 3とが半導体基板の受光面 laに形成されたものであり、好ましく は少なくとも第 1導電型と同一導電型の拡散層である BSF層 5が受光面の裏面 lbに 形成されたものである  The solar cell 100 is a high-concentration emitter layer 2 that is a first diffusion layer having a conductivity type opposite to the first conductivity type of the semiconductor substrate 1, and a second diffusion layer having a lower conductivity than the high-concentration emitter layer 2. The low-concentration emitter layer 3 is formed on the light receiving surface la of the semiconductor substrate, and preferably the BSF layer 5 which is a diffusion layer of at least the same conductivity type as the first conductivity type is formed on the back surface lb of the light receiving surface. Is a thing
[0044] 以下、図 1に示す太陽電池の製造フローを説明する。図 2 (a)は本発明に従う太陽 電池の製造方法の実施形態の一例を示すフロー図であり、 (b)はマスクを用いて二 段ェミッタを形成する従来の太陽電池の製造方法の一例を示すフロー図である。さら に、図 3は図 2 (a)に示す太陽電池の製造方法を説明するための説明図を示す。  Hereinafter, a manufacturing flow of the solar cell shown in FIG. 1 will be described. FIG. 2 (a) is a flowchart showing an example of an embodiment of a method for manufacturing a solar cell according to the present invention, and (b) is an example of a conventional method for manufacturing a solar cell in which a two-stage emitter is formed using a mask. FIG. Further, FIG. 3 is an explanatory diagram for explaining a method of manufacturing the solar cell shown in FIG. 2 (a).
[0045] まず、第 1導電型の半導体基板 1を用意する。半導体基板 1の特性は特に限定され ないが、例えば結晶面方位(100)、 15cm角 250 m厚、ァズスライスでの比抵抗 2 Ω 'cm (ドーパント濃度 7. 2 X 1015cm_ 、ガリウムドープ、第 1導電型が p型の単結 晶シリコン基板を用いることができる。これを例えば 40重量パーセント水酸ィ匕ナトリウ ム水溶液に浸し、ダメージ層をエッチングで取り除く。基板 1は CZ法およびフロートゾ ーン (FZ)法の 、ずれの方法によって作製されて 、ても構わな 、。基板比抵抗は例 えば 0. 1〜200 ' «11が好ましぐ特に0. 5〜2. Ο Ω 'cmであることが高い性能の太 陽電池を作る上で好適である。また、上記では基板 1のダメージ除去のために水酸 化ナトリウム水溶液を用いたが、水酸ィ匕カリウム等の強アルカリ水溶液を用いても構 わない。また、フッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。 First, the first conductivity type semiconductor substrate 1 is prepared. The characteristics of the semiconductor substrate 1 are not particularly limited. For example, the crystal plane orientation (100), 15 cm square, 250 m thickness, specific resistance 2 at a slice. Ω'cm (dopant concentration 7.2 X 10 15 cm_, gallium-doped, p-type single-crystal silicon substrate can be used. For example, this can be applied to a 40 weight percent aqueous sodium hydroxide solution. Immerse and remove the damaged layer by etching.Substrate 1 may be made by a shift method such as CZ method and float zone (FZ) method.The substrate resistivity is 0.1 to 200 ', for example «11 is preferred, especially 0.5 to 2 Ω Ω 'cm is suitable for making a high-performance solar cell. Although a sodium aqueous solution was used, a strong alkaline aqueous solution such as potassium hydroxide may be used, and the same purpose can be achieved with an acid aqueous solution such as hydrofluoric acid.
[0046] 太陽電池は通常、表面に凹凸形状を形成するのが好ましい。その理由は、可視光 域の反射率を低減させるために、できる限り 2回以上の反射を受光面で行わせる必 要があるためである。そこで、ダメージエッチングを行った基板を例えば 3重量パーセ ント水酸化ナトリウムにイソプロピルアルコールをカ卩えた水溶液に浸し、ウエットエッチ ングすることにより、両面に図 4に示すようなランダムテクスチャを形成する。これら一 つ一つの山のサイズは 1〜20 m程度である。他の代表的な表面凹凸構造としては V溝、 U溝が挙げられる。これらは研削機を利用して形成可能である。また、ランダム な凹凸構造を作るには酸エッチングゃリアクティブ'イオン'エッチング等が代替法と して用いることが可能である。なお、図 1では基板の両面 (受光面 la、裏面 lb)に形 成したテクスチャ構造は微細なため図中での記載を省略して 、る。  [0046] In general, a solar cell preferably has an uneven shape on its surface. This is because it is necessary to cause the light-receiving surface to perform reflection at least twice as much as possible in order to reduce the reflectance in the visible light region. Therefore, the substrate subjected to the damage etching is immersed in an aqueous solution containing, for example, 3 weight percent sodium hydroxide and isopropyl alcohol, and wet etched to form a random texture as shown in FIG. Each of these mountains is about 1-20 m in size. Other typical surface relief structures include V-grooves and U-grooves. These can be formed using a grinding machine. In order to create a random concavo-convex structure, acid etching or reactive 'ion' etching can be used as an alternative method. In FIG. 1, the texture structure formed on both surfaces of the substrate (light-receiving surface la, back surface lb) is fine, so the description in the figure is omitted.
[0047] 引き続き、基板を洗浄した後、基板の受光面 laに第 1塗布剤としてリン酸等のドー パント及びこのドーパントの飛散防止剤を含有した拡散ペースト 8をスクリーン印刷装 置によって印刷し、塗布する。このとき拡散ペースト 8がスクリーン印刷用であれば、ス クリーン印刷装置で容易に塗布できる。またこのようにドーパントとドーパント飛散防 止剤とを含む拡散ペーストであれば、これを半導体基板に塗布してドーパントの熱拡 散を行う際に、ドーパントのアウトディフュージョンを防止できるものとなる。このときの 印刷はストライプ状のラインパターンやドットパターンとすることができ、例えばライン パターンの場合の印刷パターンは 2mmピッチ、 150 m幅ラインとできる。ドーパント 飛散防止剤は、珪素化合物を含むものとすることができ、特に好ましくは珪素化合物 を SiOとし、例えばシリカゲルとして配合すれば、拡散ペーストの粘度を高濃度拡散 層の形成のために効果的に制御できる。すなわち、高粘度であるため、ドーパントを 高濃度に保持でき、アウトディフュージョンを確実に防止できる。 [0047] Subsequently, after cleaning the substrate, a diffusion paste 8 containing a dopant such as phosphoric acid as a first coating agent and an anti-scattering agent for this dopant was printed on the light receiving surface la of the substrate by a screen printing device, Apply. At this time, if the diffusion paste 8 is for screen printing, it can be easily applied with a screen printing apparatus. In addition, if the diffusion paste includes the dopant and the dopant scattering inhibitor as described above, the dopant can be prevented from out-diffusion when it is applied to the semiconductor substrate and the dopant is thermally diffused. The printing at this time can be a striped line pattern or a dot pattern. For example, the printing pattern in the case of a line pattern can be a 2 mm pitch, 150 m wide line. The dopant scattering inhibitor may contain a silicon compound, and particularly preferably, if the silicon compound is SiO, for example, silica gel, the viscosity of the diffusion paste is diffused at a high concentration. It can be effectively controlled for the formation of the layer. That is, since the viscosity is high, the dopant can be maintained at a high concentration, and out-diffusion can be reliably prevented.
[0048] そして、このように拡散ペースト 8を印刷した基板を 700°Cで 30分間ベータし、その 後、第 2塗布剤として五酸ィ匕ニリン等のドーパントおよびオートドープ防止剤として好 ましくはアルコキシシラン等の珪素化合物前駆体をはじめとする珪素化合物を含有し た塗布剤 9を、拡散ペースト 8と接するように同一面上に塗布する。このような塗布は 、例えば 3000rpm、 15秒の条件でスピン塗布することで行うことができる力 スクリー ン印刷により行なってもよい。その後、このように作製したサンプル基板を熱処理炉に 入れ、 880°Cで 30分間保持して拡散熱処理を行ない、取り出す。これにより第 1拡散 層 2 (高濃度拡散層又は高濃度ェミッタ層ともいう)と、第 1拡散層より導電率が低い 第 2拡散層 3 (低濃度拡散層又は低濃度ェミッタ層ともいう)とを同時に形成すること ができ、 pn接合が形成される。低濃度ェミッタ層である拡散ペースト印刷部以外の箇 所、すなわち塗布剤 9のみが塗布された箇所のシート抵抗は、 80から 110 Ω /口と できる。また、拡散ペースト 8を印刷した部分のドーパントの表面濃度は 2 X 102Gcm_ 2程度とできる。 [0048] Then, the substrate on which the diffusion paste 8 is printed in this way is beta-treated at 700 ° C for 30 minutes, and thereafter, as a second coating agent, it is preferable as a dopant such as nitric acid pentalin and an autodoping inhibitor. The coating agent 9 containing a silicon compound such as a silicon compound precursor such as alkoxysilane is applied on the same surface so as to be in contact with the diffusion paste 8. Such coating may be performed by force screen printing, which can be performed by, for example, spin coating under conditions of 3000 rpm and 15 seconds. Thereafter, the sample substrate thus prepared is put in a heat treatment furnace, held at 880 ° C. for 30 minutes, subjected to diffusion heat treatment, and taken out. As a result, the first diffusion layer 2 (also referred to as a high concentration diffusion layer or a high concentration emitter layer) and the second diffusion layer 3 (also referred to as a low concentration diffusion layer or a low concentration emitter layer) having a lower conductivity than the first diffusion layer are provided. Can be formed simultaneously, and a pn junction is formed. The sheet resistance of the portion other than the diffusion paste printing portion which is the low-concentration emitter layer, that is, the portion where only the coating agent 9 is applied can be 80 to 110 Ω / mouth. Further, the surface concentration of the dopant in the portion where the diffusion paste 8 is printed can be about 2 × 10 2 G cm — 2.
[0049] 上記においては、第 1塗布剤はスクリーン印刷により塗布される高粘度のペーストで あり、高濃度のドーパントを含むことができるし、塗布厚を厚くできるので、高濃度拡 散層を形成できる。し力も、このときドーパント飛散防止剤が配合されているので、より 高粘度とできるし、アウトディフュージョンも防止される。一方、第 2塗布剤は、スピンコ ートで塗布される低粘度のものであり、塗布厚は薄くなる。従って、低濃度拡散層を 形成できる。このとき、オートドープ防止剤が配合されていれば、表面に膜が形成さ れ、オートドープが防止される。  [0049] In the above, the first coating agent is a high-viscosity paste applied by screen printing, can contain a high concentration of dopant, and can increase the coating thickness, thus forming a high concentration diffusion layer. it can. At this time, since a dopant scattering inhibitor is blended at this time, the viscosity can be made higher and out-diffusion is also prevented. On the other hand, the second coating agent is a low-viscosity coating applied by spin coating, and the coating thickness is reduced. Therefore, a low concentration diffusion layer can be formed. At this time, if an auto-dope inhibitor is blended, a film is formed on the surface and auto-dope is prevented.
[0050] 次に、プラズマエッチヤーを用い、接合分離を行う。このプロセスではプラズマゃラ ジカルが受光面 1 aや裏面 lbに侵入しな ヽょう、複数枚のサンプル基板をスタックし、 その状態で、基板端面を数 mだけ削る。  Next, junction separation is performed using a plasma etcher. In this process, plasma plasma does not penetrate the light-receiving surface 1a or back surface lb, but a plurality of sample substrates are stacked, and in this state, the substrate end surface is cut by a few meters.
[0051] 引き続き、表面に形成されたリンガラスをフッ酸でエッチングした後、 13. 56MHz の周波数を持つダイレクトプラズマ CVD装置を用い、ェミッタ層上に表面保護膜 (パ ッシベーシヨン膜)兼反射防止膜 4として例えば窒化膜を堆積する。このパッシベーシ ヨン膜兼反射防止膜 4は、反射防止膜も兼ねるため、膜厚としては 70nmから lOOnm が適している。他の反射防止膜として酸化膜、二酸化チタン膜、酸化亜鉛膜、酸化ス ズ膜等があり、代替が可能である。また、形成法も上記以外にリモートプラズマ CVD 法、コーティング法、真空蒸着法等があるが、経済的な観点から、上記のように窒化 膜をプラズマ CVD法によって形成するのが好適である。さらに、上記反射防止膜上 にトータルの反射率が最も小さくなるような条件、例えば二フッ化マグネシウム膜と ヽ つた屈折率が 1から 2の間の膜を形成すれば、反射率がさらに低減し、生成電流密度 が高くなる。 [0051] Subsequently, after the phosphor glass formed on the surface was etched with hydrofluoric acid, the surface protective film (passivation film) and antireflection film was formed on the emitter layer using a direct plasma CVD apparatus having a frequency of 13.56 MHz. For example, a nitride film is deposited as 4. This passive Since the Yon film and antireflection film 4 also serves as an antireflection film, a film thickness of 70 nm to lOOnm is suitable. Other antireflection films include oxide films, titanium dioxide films, zinc oxide films, and oxide films, which can be substituted. In addition to the above, the formation method includes a remote plasma CVD method, a coating method, a vacuum deposition method, and the like. From an economical viewpoint, it is preferable to form the nitride film by the plasma CVD method as described above. Furthermore, the reflectance is further reduced by forming a film having a refractive index between 1 and 2 in combination with the magnesium difluoride film on the antireflection film so that the total reflectance is minimized. The generated current density is increased.
[0052] 次に、スクリーン印刷装置等を用い、裏面 lbに例えばアルミニウム力もなるペースト を塗布し、乾燥させる。さらに受光面 la側にもスクリーン印刷装置等を用い、櫛形電 極パターン印刷版を用いて例えば幅 80 /z mの Ag電極を印刷し、乾燥させる。この際 、ァライメント機構を利用し、拡散ペーストをストライプ状に印刷した箇所に櫛形電極 が乗るよう印刷する。ァライメント方法としては、高濃度拡散層の色から直接、電極位 置を決定する方法や予め基板にマーキングをしておき、それを目印にして拡散べ一 スト、電極を印刷する方法がある。  [0052] Next, using a screen printing device or the like, for example, a paste having aluminum strength is applied to the back surface lb and dried. Further, using a screen printing device or the like on the light receiving surface la side, for example, an Ag electrode having a width of 80 / zm is printed using a comb electrode pattern printing plate and dried. At this time, using the alignment mechanism, printing is performed so that the comb-shaped electrode is placed on the portion where the diffusion paste is printed in stripes. As alignment methods, there are a method of directly determining the electrode position from the color of the high-concentration diffusion layer, and a method of marking the substrate in advance and printing the diffusion base and the electrode using the marking as a mark.
[0053] その後、所定の熱プロファイルにより焼成を行い、裏面電極 6および表面櫛形電極 7を形成する。これらの電極形成は真空蒸着法、スパッタリング法等、上記印刷法だ けによらなくとも可能である。このようにして、図 1に示す太陽電池が製造される。  Thereafter, baking is performed with a predetermined thermal profile, and the back electrode 6 and the surface comb electrode 7 are formed. These electrodes can be formed not only by the above-described printing method, such as vacuum vapor deposition and sputtering. In this way, the solar cell shown in FIG. 1 is manufactured.
[0054] 一方、マスクを用いてニ段ェミッタを形成する従来の太陽電池の製造フローを、図 2  On the other hand, FIG. 2 shows a manufacturing flow of a conventional solar cell in which a two-stage emitter is formed using a mask.
(b)を用いて説明する。  This will be described using (b).
まず、本発明の第一の実施形態と同様に例えば 15cm角のァズスライスのガリウム ドープ p型単結晶シリコン基板等の半導体基板を用意し、ダメージエッチング、ランダ ムテクスチャ形成を行う。  First, similarly to the first embodiment of the present invention, for example, a semiconductor substrate such as a 15-cm square as-sliced gallium-doped p-type single crystal silicon substrate is prepared, and damage etching and random texture formation are performed.
[0055] 基板を洗浄した後、酸化により表面に拡散マスクとなる酸化膜を形成する。この酸 化膜の厚さは、拡散マスクとしては少なくとも lOOnmは必要である。  [0055] After cleaning the substrate, an oxide film serving as a diffusion mask is formed on the surface by oxidation. The thickness of the oxide film must be at least lOOnm as a diffusion mask.
[0056] 続、て、高濃度拡散層をライン状に 2mmピッチで形成するために、拡散マスクをラ イン状に開口する必要がある。方法としてはレジスト印刷により、開口したくない箇所 を覆い、開口したい箇所をフッ酸でエッチングする方法がある。本例では、ダイシング ソーを利用し、酸ィ匕膜をライン状に削り取ることにより開口を行う。この際、一部半導 体基板を酸ィ匕膜と共に削り取るが、コンタクト近傍であるため、特性に影響はない。 [0056] Subsequently, in order to form the high-concentration diffusion layer in a line shape at a pitch of 2 mm, it is necessary to open the diffusion mask in a line shape. As a method, there is a method of covering a portion where the opening is not desired by resist printing and etching the portion where the opening is desired with hydrofluoric acid. In this example, dicing Opening is performed by scraping the oxide film into a line using a saw. At this time, a part of the semiconductor substrate is scraped off together with the oxide film, but since it is in the vicinity of the contact, the characteristics are not affected.
[0057] マスクの部分開口の後、洗浄を行い、拡散部分のシート抵抗が例えば 40 ΩΖロ以 下となるよう POC1気相拡散を行い、高濃度拡散層(例えば n+ +層)を形成する。続 [0057] After partial opening of the mask, cleaning is performed, POC1 vapor phase diffusion is performed so that the sheet resistance of the diffusion portion is, for example, 40 ΩΖ or less, and a high concentration diffusion layer (for example, n + + layer) is formed . Continued
3  Three
いて、マスクエッチングを行い、次に受光面全体に拡散部分のシート抵抗が 100 Ω Z口となるよう POC1気相拡散を行い、低濃度拡散層(例えば n+層)を形成する。こ  Then, mask etching is performed, and then POC1 vapor phase diffusion is performed so that the sheet resistance of the diffusion portion becomes 100 ΩZ opening over the entire light receiving surface, thereby forming a low concentration diffusion layer (for example, n + layer). This
3  Three
のようにしてニ段ェミッタを形成する。  A two-stage emitter is formed as described above.
次の工程である接合分離およびその後の工程は、図 2 (a)に示すように上記第一の 実施形態の工程と同様に行うことができる。  The next step, the bonding separation and the subsequent steps, can be performed in the same manner as in the first embodiment as shown in FIG. 2 (a).
[0058] 上記の従来例によるニ段ェミッタを有する太陽電池の製法は極めてオーソドックス な方法であるが、図 2の(a)、 (b)を比較すれば、プロセスステップ数が圧倒的に少な い図 2 (a)のような本発明の製造方法の方が製造コストは大幅に少なく、優れて 、ると いえる。よって、本発明の製造方法により、太陽電池市場において競争力の強い製 品を生み出すことが可能である。  [0058] The method of manufacturing a solar cell having a two-stage emitter according to the above-mentioned conventional example is an extremely orthodox method, but the number of process steps is overwhelmingly small when comparing Fig. 2 (a) and (b). It can be said that the production method of the present invention as shown in FIG. Therefore, the manufacturing method of the present invention can produce a product that is highly competitive in the solar cell market.
[0059] なお、上記実施形態においては、半導体装置の一つである太陽電池について詳述 したが、本発明は太陽電池だけに限定されるものでなぐ面内に表面濃度の異なる 拡散層を有する他の半導体装置についても、本発明が適用できることは言うまでもな い。  [0059] Although the solar cell as one of the semiconductor devices has been described in detail in the above embodiment, the present invention is not limited to the solar cell, and has diffusion layers having different surface concentrations in a plane. Needless to say, the present invention can be applied to other semiconductor devices.
[0060] すなわち、第 1導電型の半導体基板上にドーパントとドーパント飛散防止剤とを含 む第 1塗布剤とドーパントを含む第 2塗布剤とを塗布した後、拡散熱処理により、第 1 塗布剤の塗布により形成される第 1拡散層と、第 2塗布剤の塗布により形成され、第 1 拡散層とは導電率が異なる第 2拡散層とを同時に形成する半導体装置の製造方法 であれば、ドーパントのアウトディフュージョンが防止でき、ドーパントの表面濃度が異 なる拡散層を面内に有する半導体装置を、低コストで、製造歩留まり高く製造できる。  [0060] That is, after applying a first coating agent containing a dopant and a dopant scattering inhibitor and a second coating agent containing a dopant on a semiconductor substrate of the first conductivity type, the first coating agent is subjected to diffusion heat treatment. A method of manufacturing a semiconductor device that simultaneously forms a first diffusion layer formed by coating a second diffusion layer formed by coating a second coating agent and having a conductivity different from that of the first diffusion layer. A semiconductor device that can prevent out-diffusion of dopants and has in-plane diffusion layers with different dopant surface concentrations can be manufactured at low cost and with high manufacturing yield.
[0061] 次に本発明の製造方法における高濃度拡散層と低濃度拡散層を形成させる方法 の詳細についてさらに説明する。すなわち、塗布拡散法で同一面内に二種類の濃度 の拡散層を形成するために、第 1塗布剤及び第 2塗布剤として少なくともドーパントの 含有率、粘度、ドーパント飛散防止剤及びオートドープ防止剤の含有量、ドーパント の種類のいずれか 1つ以上が異なるものを用いる、及び Z又は第 1塗布剤と第 2塗布 剤との塗布の際に塗布膜厚を異なるものとする方法である。さらには、図 11に示すよ うに、半導体基板上に溝 16を形成し、ドーパントとドーパント飛散防止剤とを含む第 1 塗布剤を全面に塗布した後、拡散熱処理により、前記半導体基板上の溝下部に形 成される第 1拡散層と、前記溝下部以外の部分に形成され、第 1拡散層より導電率が 低い第 2拡散層とを同時に形成する方法もある。このように、濃度や粘度が異なる塗 布剤を用いる方法及び塗布剤の塗布膜厚を変えたり溝を形成する方法により、拡散 濃度を変更できる。以下、具体的に説明する。 Next, details of the method for forming the high concentration diffusion layer and the low concentration diffusion layer in the production method of the present invention will be further described. That is, in order to form two types of diffusion layers in the same plane by the coating diffusion method, at least the dopant content, viscosity, dopant scattering inhibitor and auto-doping inhibitor as the first coating agent and the second coating agent Content, dopant In this method, one having at least one of these types is used, and the coating film thickness is different when Z or the first coating agent and the second coating agent are applied. Furthermore, as shown in FIG. 11, a groove 16 is formed on the semiconductor substrate, a first coating agent containing a dopant and a dopant scattering inhibitor is applied to the entire surface, and then the groove on the semiconductor substrate is subjected to diffusion heat treatment. There is also a method of simultaneously forming a first diffusion layer formed in a lower portion and a second diffusion layer formed in a portion other than the lower portion of the groove and having lower conductivity than the first diffusion layer. Thus, the diffusion concentration can be changed by a method using a coating agent having a different concentration or viscosity and a method of changing the coating film thickness of the coating agent or forming a groove. This will be specifically described below.
[0062] 同じ種類のドーパントを含んだ塗布剤を用い、一回の拡散熱処理で図 1に示すよう な同一面内に高濃度および低濃度拡散層を同時に形成するには工夫が必要である 。というのは、同一の拡散係数を有するドーパントに対し、同一の温度で同時に熱処 理をしてしまえば、ドーパントのアウトディフュージョンやオートドープが起こるため、表 面濃度に濃淡差ができないことによる。これに対して本発明では、前記のように少なく ともドーパントとドーパント飛散防止剤とを含む第 1塗布剤を用いることにより、一回の 拡散熱処理で高濃度および低濃度拡散層の同時形成を実現している。  [0062] It is necessary to devise in order to simultaneously form the high-concentration and low-concentration diffusion layers in the same plane as shown in Fig. 1 by one diffusion heat treatment using a coating agent containing the same type of dopant. This is because if dopants having the same diffusion coefficient are subjected to thermal treatment at the same temperature at the same time, dopant out-diffusion and auto-doping will occur, so there will be no difference in surface density. On the other hand, in the present invention, by using the first coating agent containing at least the dopant and the dopant scattering inhibitor as described above, the high concentration and the low concentration diffusion layer can be simultaneously formed by one diffusion heat treatment. is doing.
[0063] また、この本発明の方法をより効果的に実現するため、基板表面上に塗布する各 塗布剤のドーパント量を変える方法がある。塗布剤中のドーパント量を変化させるに は、単純に塗布剤に含まれるドーパント含有率を直接変えるか、さもなくば、塗布膜 厚を変化させればよい。ドーパントの含有率を変える場合は、第 1塗布剤のドーパント の含有率を第 2塗布剤のドーパントの含有率の 4倍以上とすることが好ましい。  [0063] In order to more effectively realize the method of the present invention, there is a method of changing the amount of dopant of each coating agent applied on the substrate surface. To change the amount of dopant in the coating agent, simply change the dopant content contained in the coating agent directly or else change the coating film thickness. When changing the dopant content, the dopant content of the first coating agent is preferably at least four times the dopant content of the second coating agent.
[0064] 粘度の高い塗布剤を使用するのであれば、スクリーン製版のメッシュ粗さを変えれ ば、塗布膜厚を変化させることが可能である。この場合、粘度を調整するには、例え ば塗布剤のメチルセルソルブの含有量を変化させればよい。一方、溝を形成する方 法は構造的に膜厚を変化させることになる。  [0064] If a coating agent having a high viscosity is used, the coating film thickness can be changed by changing the mesh roughness of the screen plate making. In this case, in order to adjust the viscosity, for example, the content of methyl cellosolve in the coating agent may be changed. On the other hand, the method of forming the groove structurally changes the film thickness.
[0065] 塗布膜厚を大きく変化させる方法として、塗布剤の粘度を変える方法があるが、塗 布剤の粘度を大きく変化させる方法として、塗布剤の含有物を変更する方法がある。 例えば、メチルセルソルブに塗布剤のバインダとして増粘剤を添加すると粘度が高ま るので好ましい。この増粘剤としては、例えばポリビュルアルコール、ポリビニルピロリ ドン、ポリビュルメチルエーテル、ポリビュルブチラール、ポリ酢酸ビュル及びこれらの 共重合体、もしくはセルロース誘導体、もしくはポリアタリレートが好ましいが、特に限 定されない。この場合、塗布剤の粘度を制御し、かつドーパントのアウトディフュージ ヨンを制御するために SiOの粒、例えばシリカゲルを添加することが特に好ましい。こ [0065] As a method of greatly changing the coating film thickness, there is a method of changing the viscosity of the coating agent, and as a method of greatly changing the viscosity of the coating agent, there is a method of changing the content of the coating agent. For example, it is preferable to add a thickener as a coating agent binder to methyl cellosolve because the viscosity increases. Examples of the thickener include polybulal alcohol and polyvinyl pyrrole. Don, polybutymethyl ether, polybutybutyral, polyacetate butyle and copolymers thereof, cellulose derivatives, or polyacrylate are preferred, but not particularly limited. In this case, it is particularly preferable to add SiO grains, such as silica gel, in order to control the viscosity of the coating agent and to control the out-diffusion of the dopant. This
2  2
のようにすれば塗布膜厚を厚くでき、高濃度拡散層を形成する塗布剤として適するも のとなる。なお、拡散熱処理時はこのバインダは不必要なため、 400°C以上でベータ し、大気中に飛ばす必要がある。  In this way, the coating film thickness can be increased, and it is suitable as a coating agent for forming a high concentration diffusion layer. Since this binder is unnecessary during diffusion heat treatment, it is necessary to beta at 400 ° C or higher and blow it into the atmosphere.
[0066] 一方、極端に粘度を下げ、ドーパントのオートドープをコントロールするためにはァ ルコキシド類にドーパントを混入させるのが好ましぐライフタイムキラーの混入を避け るためには珪素酸ィ匕物前駆体である珪素を含むアルコキシド類にドーパントを混入さ せるのが好ま ヽ。このようにすれば低濃度拡散層を形成する塗布剤として適するも のとなる。この場合、 150°C程度の熱をカ卩えると、アルコキシドが加水分解し、部分縮 合するので SiOすなわちガラスが生成し、ドーパントのオートドープを阻止する役割 [0066] On the other hand, in order to significantly reduce the viscosity and control the dopant autodoping, it is preferable to add the dopant to the alkoxides. It is preferable to add a dopant to alkoxides containing silicon as a precursor. This makes it suitable as a coating agent for forming a low concentration diffusion layer. In this case, when the heat of about 150 ° C is increased, the alkoxide is hydrolyzed and partially condensed, so that SiO, ie glass, is formed, preventing autodoping of the dopant.
2  2
を果たす。このような塗布剤は、厚く形成することができず、またにじみ易いので、第 1 塗布剤としては適当でな ヽ。  Fulfill. Such a coating agent cannot be formed thick and easily bleeds, so it is not suitable as the first coating agent.
[0067] その他、塗布剤からのドーパントのアウトディフュージョンおよびオートドープを抑制 するドーパント飛散防止剤、オートドープ防止剤の含有量を変化させても、粘度等が 変わるので拡散層の濃度差を同一面内、同一熱処理下で生み出すことが可能であ る。  [0067] In addition, even if the content of the dopant anti-diffusion agent and the anti-doping agent for suppressing the dopant out-diffusion and auto-doping from the coating agent is changed, the viscosity and the like change, so that the concentration difference of the diffusion layer is the same. Among them, it can be produced under the same heat treatment.
[0068] これまで同種類のドーパントを用い濃度差を発現させる方法を述べてきたが、他の 方法としては拡散係数の異なる元素をドーパントとして利用すれば、同一温度の熱 処理でも確実に濃度差を生み出すことが可能である。例えば、 900°C近傍のリンの 拡散係数はアンチモンの拡散係数力 2桁高い。どちらも n型ドーパントであり、 p型 基板に対しドナーとなるため、ドーパントがリンである塗布剤とアンチモンである塗布 剤を用意することでニ段ェミッタを容易に作製することが可能である。  [0068] So far, a method of expressing a concentration difference using the same type of dopant has been described. However, as another method, if an element having a different diffusion coefficient is used as a dopant, the concentration difference can be reliably ensured even by heat treatment at the same temperature. Can be produced. For example, the diffusion coefficient of phosphorus near 900 ° C is two orders of magnitude higher than that of antimony. Since both are n-type dopants and serve as donors to the p-type substrate, a two-stage emitter can be easily prepared by preparing a coating agent whose dopant is phosphorus and a coating agent whose antimony is used.
なお、上記において、シリカゲル等の珪素化合物を含む第 3塗布剤を、第 1塗布剤 及び Z又は第 2塗布剤の上部を覆うように塗布し、その後前記拡散熱処理を行えば 、さらにアウトディフュージョンやオートドープを防止でき、これによつてニ段ェミッタに おける高濃度拡散層と低濃度拡散層との表面濃度差を極めて確実に形成できる。 In the above, if a third coating agent containing a silicon compound such as silica gel is applied so as to cover the upper part of the first coating agent and Z or the second coating agent, and then the diffusion heat treatment is performed, further out diffusion or Auto-doping can be prevented, which makes it a two-stage emitter. The difference in surface concentration between the high concentration diffusion layer and the low concentration diffusion layer can be formed very reliably.
[0069] 図 5は本発明に従う太陽電池の製造方法の別の実施形態を説明するための説明 図を示す。  FIG. 5 shows an explanatory diagram for explaining another embodiment of the method for manufacturing a solar cell according to the present invention.
図 5 (a)に示す処理 Aでは、図 2 (a)の製造フローにおける拡散熱処理に加え、拡 散熱処理後、アンモニア '過酸ィ匕水素水混合液に浸け、表層のェミッタ層の界面準 位密度が高いと思われる部分、すなわち厚みにして数 nm程度の部分をエッチング( エッチバック)する。その後の反射防止膜形成工程以降は、図 2 (a)と同一の処理を 行うことで、特に低濃度拡散層の表面準位を減らし、太陽電池の性能を向上させるこ とがでさる。  In the treatment A shown in Fig. 5 (a), in addition to the diffusion heat treatment in the production flow of Fig. 2 (a), after the diffusion heat treatment, it is immersed in a mixed solution of ammonia 'peroxide-hydrogen water and the interface state of the surface emitter layer. Etch (etch back) the part where the density is high, that is, about several nm in thickness. After the subsequent anti-reflection film formation process, the same process as in Fig. 2 (a) can be performed to reduce the surface level of the low-concentration diffusion layer and improve the performance of the solar cell.
なお、アンモニア ·過酸ィ匕水素水混合液を用いる場合に限らず、フッ硝酸や弱アル カリにより表層をエッチングしても同様の効果が得られる。  It should be noted that the same effect can be obtained by etching the surface layer with fluorinated nitric acid or weak alkali, not limited to the case of using a mixed solution of ammonia / peroxy acid / hydrogen water.
[0070] また、図 5 (b)に示す処理 Bでは、図 2 (a)の製造フローにおける拡散熱処理に引き 続き、降温せずに、ドライ酸素だけを流し、炉内で 10分間保持する。これにより、最表 面の界面準位密度が高 ヽ領域が酸化され、接合分離後の希弗酸によるガラスエッチ ングで容易にエッチングすることが可能となる。この場合も、その後の反射防止膜形 成工程以降は、図 2 (a)と同一の処理を行うことで、特に低濃度拡散層の表面準位を 減らし、太陽電池の性能を向上させることができる。  [0070] In addition, in the process B shown in Fig. 5 (b), following the diffusion heat treatment in the production flow of Fig. 2 (a), only the dry oxygen is allowed to flow and the temperature is kept for 10 minutes in the furnace. As a result, the region having a high interface state density on the outermost surface is oxidized and can be easily etched by glass etching with diluted hydrofluoric acid after junction separation. In this case as well, after the subsequent antireflection film forming step, the same treatment as in FIG. 2 (a) can be performed to reduce the surface level of the low-concentration diffusion layer and improve the performance of the solar cell. it can.
[0071] 図 6に本発明に従う太陽電池の製造方法のさらに別の実施形態に係る拡散熱処理 工程時の拡散層形成方法について説明するための説明図を示す。  FIG. 6 is an explanatory diagram for explaining a diffusion layer forming method at the time of the diffusion heat treatment step according to still another embodiment of the method for manufacturing a solar cell according to the present invention.
[0072] 図 6の実施形態においては、拡散熱処理を気相拡散ソース雰囲気下で行う。  In the embodiment of FIG. 6, the diffusion heat treatment is performed in a gas phase diffusion source atmosphere.
前述のように、例えば拡散ペーストにシリカゲル等を含有させると、ドーパントのァゥ トディフュージョンを抑制できる力 実際には、 100%抑制することは不可能である。 その結果、アウトディフュージョンしたドーパントは再拡散するため、面内で拡散層の 濃度分布が生じる。これは、個体差すなわち性能のバラツキを作るため、極力減らす 必要がある。そこで、ある程度、再拡散をさせる中で太陽電池を作製することを前提と するならば、拡散熱処理時にドーパントが充分に充満する気相拡散ソース雰囲気下 にサンプルを配置すれば、拡散層の濃度面内分布を均一にすることが可能である。 こうすることにより、性能のバラツキの少ない太陽電池を製造することが可能である。 [0073] 図 7に本発明の太陽電池の実施形態の別の一例である裏面コンタクト型太陽電池 の断面構造を示す。 As described above, for example, when silica gel or the like is included in the diffusion paste, it is impossible to actually suppress 100% of the dopant's auto-diffusion. As a result, the out-diffusion dopant re-diffuses, resulting in a concentration distribution of the diffusion layer in the plane. This needs to be reduced as much as possible in order to create individual differences or performance variations. Therefore, if it is assumed that a solar cell is manufactured while re-diffusion is performed to some extent, if the sample is placed in a gas phase diffusion source atmosphere in which the dopant is sufficiently filled during the diffusion heat treatment, the concentration surface of the diffusion layer can be obtained. It is possible to make the internal distribution uniform. By doing so, it is possible to manufacture a solar cell with little variation in performance. FIG. 7 shows a cross-sectional structure of a back contact solar cell that is another example of the embodiment of the solar cell of the present invention.
この裏面コンタクト型太陽電池 101は、半導体基板 1が有する第 1導電型とは反対 導電型の第 1拡散層である高濃度ェミッタ層 2及び高濃度ェミッタ層 2より導電率の低 い反対導電型の第 2拡散層である低濃度ェミッタ層 3と、第 1導電型と同一導電型の 拡散層であるローカル BSF層 10とが前記半導体基板の受光面の裏面に形成された ものであることを特徴とする。  This back contact solar cell 101 is composed of a high-concentration emitter layer 2 which is a first diffusion layer of a conductivity type opposite to the first conductivity type of the semiconductor substrate 1, and an opposite conductivity type having a lower conductivity than the high-concentration emitter layer 2. The low-concentration emitter layer 3 as the second diffusion layer and the local BSF layer 10 as the diffusion layer of the same conductivity type as the first conductivity type are formed on the back surface of the light receiving surface of the semiconductor substrate. Features.
[0074] 裏面コンタクト型太陽電池は受光面に電極を有さないため、外観がとても美しいと いう特徴がある。また、太陽電池をモジュールにする場合通常であるならば図 8 (c)に 示すように隣同士の太陽電池の受光面と裏面の電極を厚み 100〜200 μ mのタブ 線 13で結線するため、太陽電池の割れを誘発する欠点がある。しかし、裏面コンタク ト型太陽電池では図 8 (a)、 (b)に示すように結線すればよいため、割れを極端に減 らすことが可能と!/ヽぅ特徴も有する。  [0074] Since the back contact solar cell does not have an electrode on the light receiving surface, it has a feature that the appearance is very beautiful. In addition, when a solar cell is used as a module, as shown in Fig. 8 (c), the light receiving surface and the back electrode of adjacent solar cells are connected by a tab wire 13 having a thickness of 100 to 200 μm. There is a drawback that induces cracking of solar cells. However, since the back contact solar cell only needs to be connected as shown in Figs. 8 (a) and 8 (b), it is possible to extremely reduce cracks!
このように利点の多い太陽電池構造である力 同一面内に高濃度の p型拡散層お よび高濃度の n型拡散層という反対導電型の高濃度拡散層を形成しなくてはならな いため、プロセスが非常に複雑となっていた。  As a result of this advantageous solar cell structure, it is necessary to form a high-concentration diffusion layer of opposite conductivity type: a high-concentration p-type diffusion layer and a high-concentration n-type diffusion layer in the same plane. The process was very complex.
[0075] し力しながら、以下で説明する方法によれば、拡散マスクを一切必要とせず、同一 面内に 3種類あるいはそれ以上の、基板の導電型と同一導電型又は反対導電型の 拡散層を形成することが可能である。基本プロセスステップも前述のように従来の製 法とほぼ同一であるため、簡単に作製可能である。  [0075] However, according to the method described below, a diffusion mask is not required at all, and three or more types of diffusion of the same conductivity type as the substrate conductivity type or the opposite conductivity type in the same plane. Layers can be formed. As mentioned above, the basic process steps are almost the same as the conventional method, so it can be easily manufactured.
以下、本発明に係る太陽電池の製造方法の別の実施形態について説明する。  Hereinafter, another embodiment of the method for manufacturing a solar cell according to the present invention will be described.
[0076] まず、半導体基板 1として例えば結晶面方位(100)、 15cm角 200 μ mj?,ァズス ライスでの比抵抗 0. 5 Ω 'cm (ドーパント濃度 1. 01 X 1016cm_3)、リンドープで導電 型が n型の単結晶シリコン基板を用意し、図 2 (a)と同様の方法を用い、両面合計で 3 0 m程度ダメージエッチングを行い、さらに、表面に反射防止構造であるテクスチャ 形成を行う。 [0076] First, the semiconductor substrate 1, for example crystal plane orientation (100), 15cm square 200 mu mj ?, Azusu rice in the resistivity 0. 5 Ω 'cm (dopant concentration 1. 01 X 10 16 cm_ 3) , phosphorus-doped Prepare a n-type single crystal silicon substrate, perform damage etching for a total of about 30 m on both sides, using the same method as in Fig. 2 (a), and then form a texture with antireflection structure on the surface I do.
[0077] 引き続き、基板を洗浄した後、基板 1とは反対導電型の高濃度ェミッタ層 2を作るこ とを目的として、例えば酸ィ匕ボロンを 100ml中 15gと前記したようなドーパント飛散防 止剤(シリカゲル)とを含んだ拡散ペーストをスクリーン印刷装置によって印刷する。こ のときの印刷パターンは 2mmピッチ、 200 m幅のラインとできる。さらに、基板 1と は反対導電型の低濃度ェミッタ層 3を作ることを目的として、例えば 100ml中 4gの酸 化ボロンと前記したようなオートドープ防止剤 (珪素酸化物前駆体)とを含んだ拡散べ 一ストを印刷する。この印刷パターンは同 2mmピッチ、 1600 m幅のラインとでき、 最初の印刷パターンと中心が重なるように印刷する。さらに、基板 1と同一導電型の口 一カル BSF層 10を作ることを目的として例えば図 2 (a)の説明で用いたものと同様の リン酸を含んだ拡散ペーストを上記ボロン拡散ペーストが印刷されていない領域に印 刷する。この印刷パターンは 2mmピッチ、 200 μ m幅ラインとできる。 [0077] Subsequently, for the purpose of forming a high-concentration emitter layer 2 having a conductivity type opposite to that of the substrate 1 after cleaning the substrate, for example, 15 g of 100% boron oxide is used to prevent dopant scattering as described above. A diffusion paste containing a stopper (silica gel) is printed by a screen printer. The printed pattern at this time can be 2 mm pitch and 200 m wide lines. Furthermore, for the purpose of making a low-concentration emitter layer 3 having the opposite conductivity type to that of the substrate 1, for example, 4 g of boron oxide in 100 ml and an auto-dope preventive agent (silicon oxide precursor) as described above were included. Print diffusion base. This print pattern can be 2mm pitch, 1600m wide line, and printed so that the center overlaps the first print pattern. Further, for the purpose of forming a normal BSF layer 10 having the same conductivity type as that of the substrate 1, for example, the boron diffusion paste is printed with a diffusion paste containing phosphoric acid similar to that used in the description of FIG. Print on unprinted areas. This printed pattern can be 2 mm pitch and 200 μm wide lines.
[0078] 印刷後、 700°Cで 30分間ベータし、その後、例えばシリカゲルを含有した塗布剤を 同一面上に 3000rpm、 15秒の条件でスピン塗布し、その状態でこのサンプル基板 を熱処理炉に入れ、拡散熱処理を行なう。この拡散熱処理は 1000°Cで 20分間保持 の条件で行うことができる。次に、図 2 (a)に示す工程と同様、プラズマエッチヤーを 用い接合分離を行った後、表面に形成されたリンおよびボロンガラスをフッ酸でエツ チングする。 [0078] After printing, beta is performed at 700 ° C for 30 minutes, and then, for example, a coating agent containing silica gel is spin-coated on the same surface at 3000 rpm for 15 seconds, and this sample substrate is placed in a heat treatment furnace in that state. And diffusion heat treatment. This diffusion heat treatment can be performed at 1000 ° C for 20 minutes. Next, as in the step shown in FIG. 2 (a), after junction separation is performed using a plasma etcher, phosphorus and boron glass formed on the surface are etched with hydrofluoric acid.
[0079] その後、例えばダイレクトプラズマ CVD装置を用い、受光面に窒化膜等のパッシベ ーシヨン膜兼反射防止膜 4を例えば厚さ 85nmで堆積する。また、裏面には同じダイ レクトプラズマ CVD装置を用い、表面保護を目的として窒化膜等の裏面パッシベー シヨン膜 11を例えば厚さ 55nmで堆積する。裏面の窒化膜の厚みを 70nmから 110η mで堆積すれば、両面受光セルとして利用可能である。  [0079] Then, using a direct plasma CVD apparatus, for example, a passivation film / antireflection film 4 such as a nitride film is deposited on the light receiving surface with a thickness of, for example, 85 nm. On the back surface, the same direct plasma CVD apparatus is used, and a back surface passivation film 11 such as a nitride film is deposited with a thickness of 55 nm, for example, for the purpose of surface protection. If the thickness of the nitride film on the back surface is deposited from 70 nm to 110 ηm, it can be used as a double-sided light receiving cell.
[0080] 次に、ァライメント機構をもったスクリーン印刷装置を用い、ボロンおよびリン高濃度 拡散層にあわせて図 8 (a)に示すような櫛形電極パターンを Ag力もなる電極ペースト を用い、印刷する。  Next, using a screen printing apparatus having an alignment mechanism, a comb-shaped electrode pattern as shown in FIG. 8 (a) is printed using an electrode paste having an Ag force in accordance with boron and phosphorus high-concentration diffusion layers. .
[0081] そして、電極ペーストを乾燥後、所定の熱プロファイルにより焼成を行い、裏面櫛形 電極 12を形成し、裏面コンタクト型太陽電池 101を完成させる。  [0081] Then, after drying the electrode paste, baking is performed with a predetermined thermal profile to form the back comb-shaped electrode 12, and the back contact solar cell 101 is completed.
[0082] このように作製された裏面コンタクト型太陽電池は従来法により作製されたものと構 造が変わらず、性能に関しても差がない。よって、本製法を利用して太陽電池を作製 すれば、外観がとても美しぐ割れが極端に少ない裏面コンタ外型太陽電池を、拡 散マスクを一切必要とせず、簡単に作製可能であるというメリットを享受できる。 [0082] The back contact solar cell manufactured in this way has the same structure as that manufactured by the conventional method, and there is no difference in performance. Therefore, if a solar cell is manufactured using this manufacturing method, a back-contour outer solar cell with a very beautiful appearance and extremely few cracks can be expanded. It is possible to enjoy the merit that it can be easily manufactured without requiring any diffusion mask.
[0083] 図 9に本発明の太陽電池の実施形態のさらに別の一例の断面構造を示す。  FIG. 9 shows a cross-sectional structure of still another example of the embodiment of the solar cell of the present invention.
一般的なスクリーン印刷技術による太陽電池は、図 1に示すように、 A1による BSF 層 5に裏面全面が覆われた構造となっている。この BSF層の面積を小さくし、裏面の 残りの領域を高品質なパッシベーシヨン膜で覆うと開放電圧が高まり、その結果、出 力が増大することが知られている。  As shown in Fig. 1, a solar cell based on a general screen printing technology has a structure in which the entire back surface is covered with a BSF layer 5 made of A1. It is known that when the area of this BSF layer is reduced and the remaining area on the back side is covered with a high-quality passivation film, the open-circuit voltage increases and, as a result, the output increases.
[0084] 図 9に示す太陽電池はこのように BSF層の面積を小さくしたものであり、図 9 (a)に 示す実施形態 (以下サンプル (A)とする)は基板 1と同一導電型のローカル BSF層 1 0を裏面櫛形電極 12とのコンタクト直下近傍のみに形成し、図 9 (b)に示す実施形態 (以下サンプル (B)とする)は基板 1と同一導電型の高濃度 BSF層 14を裏面櫛形電 極 12とのコンタクト直下近傍のみに形成し、さらに基板 1と同一導電型の低濃度 BSF 層 15を裏面全面に形成するものである。  The solar cell shown in FIG. 9 is such that the area of the BSF layer is reduced, and the embodiment shown in FIG. 9 (a) (hereinafter referred to as sample (A)) has the same conductivity type as the substrate 1. The local BSF layer 10 is formed only in the vicinity immediately below the contact with the back comb electrode 12, and the embodiment shown in FIG. 9B (hereinafter referred to as sample (B)) is a high-concentration BSF layer having the same conductivity type as the substrate 1. 14 is formed only in the vicinity immediately below the contact with the back-side comb electrode 12, and a low-concentration BSF layer 15 of the same conductivity type as the substrate 1 is formed on the entire back surface.
[0085] 従来の製法では、前述のように、面内のある部分に拡散層を形成するには拡散マ スクを必要としていたが、本発明の製造方法であればこれを必要とせず、簡単に所望 の構造を作ることが可能である。  [0085] In the conventional manufacturing method, as described above, a diffusion mask is required to form a diffusion layer in a certain part of the surface. However, in the manufacturing method of the present invention, this is not necessary and simple. It is possible to make a desired structure.
以下、図 9に示す太陽電池を製造する場合における、本発明に係る太陽電池の製 造方法の実施形態について説明する。  Hereinafter, an embodiment of a method for manufacturing a solar cell according to the present invention in the case of manufacturing the solar cell shown in FIG. 9 will be described.
[0086] まず、半導体基板 1として、例えば結晶面方位(100)、 15cm角 250 m厚、ァズス ライスでの比抵抗 0. 5 Ω 'cm (ドーパント濃度 3. 26 X 1016cm_3)、ガリウムドープで 導電型が p型の単結晶シリコン基板を用意し、図 2 (a)に示す工程と同様の方法を用 い、両面合計で 30 m程度ダメージエッチングを行い、さらに、図 2 (a)に示す工程と 同様の方法を用い、表面に反射防止構造であるテクスチャ形成を行う。 [0086] First, as the semiconductor substrate 1, for example, the crystal plane orientation (100), 15cm square 250 m thickness, resistivity 0. 5 Omega in Azusu Rice 'cm (dopant concentration 3. 26 X 10 16 cm_ 3) , gallium A single crystal silicon substrate with p-type conductivity is prepared by doping, and damage etching is performed for about 30 m in total on both sides using the same method as the process shown in Fig. 2 (a). Using a method similar to that shown in Fig. 5, texture formation as an antireflection structure is performed on the surface.
[0087] 引き続き、基板を洗浄した後、受光面側にニ段ェミッタを作ることを目的として、図 2  [0087] Subsequently, for the purpose of making a two-stage emitter on the light receiving surface side after cleaning the substrate, FIG.
(a)で説明したのと同様の条件で高濃度拡散層を作る領域には拡散ペーストを印刷 し、その他の領域には塗布剤を塗布する。  The diffusion paste is printed on the area where the high-concentration diffusion layer is formed under the same conditions as described in (a), and the coating agent is applied on the other areas.
[0088] 次に、裏面側に 0. lg/mlの割合で基板 1と同一導電型のドーパントである酸ィ匕ボ ロンとシリカゲル等のドーパント飛散防止剤とを含んだペーストを例えば 2mmピッチ、 200 μ m幅のラインパターンで印刷する。ここまでのプロセスを経たサンプルのうち、 このまま 700°Cで 30分間ベータし、続、て裏面上にアルコキシシランを含む塗布剤 を 3000rpm、 15秒の条件でスピン塗布したものをサンプル (A)とする。一方、前記 プロセスを経たサンプルのうち、続けて酸ィ匕ボロンとシリカ等のオートドープ防止剤と を含むペーストを全面印刷し、 700°Cで 30分間ベータしたものを、サンプル (B)とす る。 [0088] Next, for example, a paste containing acid boron, which is a dopant of the same conductivity type as that of the substrate 1, and a dopant scattering inhibitor such as silica gel at a rate of 0.1 lg / ml on the back side, for example, at a pitch of 2 mm, Print with a 200 μm wide line pattern. Of the samples that have gone through this process, This is beta for 30 minutes at 700 ° C, and then the sample (A) is spin coated with a coating containing alkoxysilane on the back surface at 3000 rpm for 15 seconds. On the other hand, among the samples that have undergone the above-mentioned process, a sample (B) is obtained by continuously printing a paste containing acid boron and an autodope inhibitor such as silica and beta-treating at 700 ° C for 30 minutes. The
[0089] 引き続き、これらのサンプルを熱処理炉に入れ、 980°Cで 10分間保持し、その後取 り出す。  [0089] Subsequently, these samples are placed in a heat treatment furnace, held at 980 ° C for 10 minutes, and then removed.
次に図 2 (a)に示す工程と同様、プラズマエッチヤーを用いて接合分離を行った後 、表面に形成されたリンおよびボロンガラスをフッ酸でエッチングする。  Next, as in the step shown in FIG. 2 (a), after junction separation is performed using a plasma etcher, phosphorus and boron glass formed on the surface are etched with hydrofluoric acid.
[0090] その後、ダイレクトプラズマ CVD装置を用い、両面に窒化膜等のパッシベーシヨン 膜兼反射防止膜 4を例えば厚さ 85nmで堆積する。  [0090] Thereafter, using a direct plasma CVD apparatus, a passivation film / antireflection film 4 such as a nitride film is deposited on both surfaces, for example, with a thickness of 85 nm.
[0091] 次に、ァライメント機構をもったスクリーン印刷装置を用い、両面の高濃度拡散層に あわせ、櫛形電極パターンを Agからなる電極ペーストを用い、印刷する。電極ペース トを乾燥後、所定の熱プロファイルにより焼成を行い、図 9に示すような太陽電池が作 製される。  Next, using a screen printing apparatus having an alignment mechanism, a comb-shaped electrode pattern is printed using an electrode paste made of Ag in accordance with the high-concentration diffusion layers on both sides. After the electrode paste is dried, it is fired with a predetermined thermal profile, and a solar cell as shown in Fig. 9 is produced.
[0092] 本実施形態では BSF領域を全面力 コンタクト直下近傍だけに制限したことにより 、図 1に示す太陽電池と比較して、開放電圧が大幅に向上する。また、短絡電流は 裏面近傍での光吸収が減るため増大する。また、裏面にグリッド電極を用いたことに より基板のソリが減少する。これは、薄型化が容易となることを意味する。  In the present embodiment, the open circuit voltage is significantly improved as compared with the solar cell shown in FIG. Also, the short-circuit current increases because light absorption near the back surface decreases. In addition, the use of grid electrodes on the back surface reduces substrate warpage. This means that it is easy to reduce the thickness.
[0093] 上記実施形態では、サンプル (B)の低濃度 BSF層を拡散ペーストのドーパント量を 調節することで形成したが、ドーパントを入れずにシリカゲル等の含有量を減らすこと により、高濃度 BSF層形成のための拡散ペーストからアウトディフュージョンしたドー パントが再拡散することにより、サンプル )と同様の構造を形成することも可能であ る。  [0093] In the above embodiment, the low-concentration BSF layer of sample (B) was formed by adjusting the dopant amount of the diffusion paste, but by reducing the content of silica gel or the like without adding the dopant, the high-concentration BSF layer It is possible to form a structure similar to that of the sample by re-diffusing the out-diffused dopant from the diffusion paste for layer formation.
また、窒化膜等の反射防止膜兼パッシベーシヨン膜を堆積する前に、酸化により 5 〜30nmの膜厚の酸ィ匕膜をつければ、さらに開放電圧が向上し、発電効率が高まる [0094] 以下に本発明の実施例および比較例をあげてさらに具体的に説明する力 本発明 はこれらに限定されるものではない。 Moreover, if an oxide film with a thickness of 5 to 30 nm is formed by oxidation before depositing an antireflection film and a passivation film such as a nitride film, the open-circuit voltage is further improved and the power generation efficiency is increased. [0094] The following provides a more detailed explanation of the examples and comparative examples of the present invention. The present invention is not limited to these.
(実施例 比較例 1)  (Example Comparative Example 1)
実施例 1として、図 2 (a)の工程に従い、 CZ法により作製された結晶面方位(100)、 15«11角250 111厚、ァズスライスでの比抵抗 2 Ω 'cm (ドーパント濃度 7. 2 X 1015c m_3)、ガリウムドープ、第 1導電型力 ¾型の単結晶シリコン基板を用意し、これを 40重 量パーセント水酸ィ匕ナトリウム水溶液に浸し、ダメージ層をエッチングで取り除いた。 次に、この基板を 3重量パーセント水酸化ナトリウムにイソプロピルアルコールをカロえ た水溶液に浸し、ウエットエッチングすること〖こより、表面にランダムテクスチャを形成 した。 As Example 1, according to the process of FIG. 2 (a), the crystal plane orientation (100) produced by the CZ method, 15 «11 angle 250 111 thickness, specific resistance at az slice 2 Ω'cm (dopant concentration 7.2 X 10 15 cm — 3 ), a gallium-doped, first-conductivity-type single-crystal silicon substrate was prepared, immersed in a 40 weight percent sodium hydroxide / sodium hydroxide aqueous solution, and the damaged layer was removed by etching. Next, this substrate was immersed in an aqueous solution of 3% by weight sodium hydroxide in isopropyl alcohol and wet etched to form a random texture on the surface.
[0095] 引き続き、基板を洗浄した後、基板の受光面にリン酸およびシリカゲルを含有した 拡散ペーストをスクリーン印刷機によって印刷し、塗布した。このときの印刷パターン は 2mmピッチ、 150 m幅ラインのラインパターンとした。印刷した基板を 700°Cで 3 0分間ベータし、その後、五酸ィ匕ニリンおよびアルコキシシランを含有した塗布剤を、 拡散ペーストと接するように同一面上に塗布した。この塗布は、 3000rpm、 15秒の 条件でスピン塗布することで行った。その後、このように作製したサンプル基板を熱処 理炉に入れ、 880°Cで 30分間保持して拡散熱処理を行ない、取り出した。塗布剤の みが塗布された箇所 (拡散ペーストを印刷して 、な 、部分)のシート抵抗を測定した ところ、 80力ら 110 Ω ロであった。また、スプレディングレジスタンス(SR)法で拡散 プロファイルを確認したところ、ストライプ状に拡散ペーストを印刷した部分では、ドー パントの表面濃度として 2 X 102°cm_2を得た。 [0095] Subsequently, after the substrate was washed, a diffusion paste containing phosphoric acid and silica gel was printed on the light receiving surface of the substrate by a screen printer and applied. The printed pattern at this time was a line pattern with a pitch of 2 mm and a width of 150 m. The printed substrate was beta-treated at 700 ° C. for 30 minutes, and then a coating agent containing nitric acid pentalin and alkoxysilane was applied on the same surface so as to be in contact with the diffusion paste. This coating was performed by spin coating under conditions of 3000 rpm and 15 seconds. Thereafter, the sample substrate thus prepared was put in a heat treatment furnace, held at 880 ° C. for 30 minutes, subjected to diffusion heat treatment, and taken out. When the sheet resistance of the portion where only the coating agent was applied (the portion where the diffusion paste was printed) was measured, it was 110 Ω / 80 force. As a result of observation of the diffusion profile in spreading resistance (SR) method, in the portion where the printed diffusion paste in stripes, to obtain a 2 X 10 2 ° cm_ 2 as the surface concentration of the dough dopant.
[0096] 次に、プラズマエッチヤーを用い接合分離を行い、引き続き表面に形成されたリン ガラスをフッ酸でエッチングした後、 13. 56MHzの周波数を持つダイレクトプラズマ CVD装置を用い、ェミッタ層上に膜厚 70nmの窒化膜を堆積した。  [0096] Next, junction separation was performed using a plasma etcher, the phosphor glass formed on the surface was subsequently etched with hydrofluoric acid, and then a 13.56 MHz direct plasma CVD apparatus was used to form on the emitter layer. A nitride film with a thickness of 70 nm was deposited.
[0097] 次に、スクリーン印刷装置等を用い、裏面にアルミニウム力もなるペーストを塗布し、 乾燥させた。さらに受光面側にもスクリーン印刷装置等を用い、櫛形電極パターン印 刷版を用いて幅 80 /z mの Ag電極を印刷し、乾燥させた。この際、ァライメント機構を 利用し、拡散ペーストをストライプ状に印刷した箇所に櫛形電極が乗るよう印刷した。 その後、所定の熱プロファイルにより焼成を行い、裏面電極および表面櫛形電極を 形成し、太陽電池を作製した。 [0097] Next, using a screen printing apparatus or the like, a paste having aluminum strength was applied to the back surface and dried. Furthermore, an Ag electrode having a width of 80 / zm was printed using a comb-type electrode pattern printing plate on the light receiving surface side and dried. At this time, the alignment mechanism was used, and printing was performed so that the comb-shaped electrode was placed on the portion where the diffusion paste was printed in stripes. Then, it baked with the predetermined | prescribed thermal profile, the back surface electrode and the surface comb electrode were formed, and the solar cell was produced.
[0098] 一方、比較例 1として、実施例 1と同様の 15cm角のァズスライスのガリウムドープ p 型単結晶シリコン基板を用意し、図 2 (b)の工程に従い太陽電池を作製した。  On the other hand, as Comparative Example 1, a 15 cm square as-sliced gallium-doped p-type single crystal silicon substrate as in Example 1 was prepared, and a solar cell was fabricated according to the process of FIG. 2 (b).
[0099] それぞれ作製した 15cm角太陽電池を 25°Cの雰囲気の中、ソーラーシミュレータ( 光強度: lkWZm2、スペクトル: AMI. 5グローバル)の下で電流電圧特性を測定し た。表 1にその結果を示す。 [0099] The current-voltage characteristics of each of the fabricated 15 cm square solar cells were measured in a 25 ° C atmosphere under a solar simulator (light intensity: lkWZm 2 , spectrum: AMI. 5 global). Table 1 shows the results.
[0100] [表 1]  [0100] [Table 1]
Figure imgf000025_0001
Figure imgf000025_0001
[0101] 表 1に示すように、実施例 1の太陽電池は従来の製法による比較例 1の太陽電池と 比較し、プロセスステップ数が圧倒的に少なぐ製造コストが低いにもかかわらず性能 に差が見られない。よって、本発明に係る製法を利用することにより、太陽電池市場 において競争力の強い製品を生み出すことが可能である。 [0101] As shown in Table 1, the solar cell of Example 1 is superior in performance to the conventional solar cell of Comparative Example 1 in comparison with the conventional manufacturing method although the number of process steps is overwhelmingly low and the manufacturing cost is low. There is no difference. Therefore, by using the manufacturing method according to the present invention, it is possible to produce a highly competitive product in the solar cell market.
[0102] (実施例 2) [0102] (Example 2)
実施例 2として、本発明の種々のニ段ェミッタ作製方法によって太陽電池を作製し た。このとき形成された高濃度層、低濃度層のシート抵抗を表 2に示す。併せてそれ らの太陽電池特性を表 3に示す。  As Example 2, solar cells were fabricated by various two-stage emitter fabrication methods of the present invention. Table 2 shows the sheet resistance of the high concentration layer and the low concentration layer formed at this time. In addition, Table 3 shows the characteristics of these solar cells.
本実施例では、表 2に示すように、塗布拡散法で同一面内に二種類の濃度の拡散 層を形成するために塗布剤に含まれるドーパント含有量、塗布膜厚、ガラス含有量( 珪素化合物含有量)、元素等の変更を利用した。特に、塗布膜厚の変更に関しては 粘度の変更を利用する力 もしくは溝を利用した。  In this example, as shown in Table 2, the dopant content contained in the coating agent, the coating film thickness, and the glass content (silicon) are formed in order to form two types of diffusion layers in the same plane by the coating diffusion method. Changes in compound content), elements, etc. were utilized. In particular, for changing the coating film thickness, a force or groove utilizing the change in viscosity was used.
以下に簡単にニ段ェミッタの製法を説明する。なお、テクスチャ形成や拡散後から 電極形成までの一連のプロセスにつ 、ては実施例 1と同様である。  A method of manufacturing the two-stage emitter will be briefly described below. The series of processes from texture formation and diffusion to electrode formation is the same as in Example 1.
[0103] まず、サンプル A、 C、 D、 Eに対しては、表 2に示した項目を変更することにより、高 濃度層と低濃度層を形成した。例えばサンプル Aではドーパント含有量を変化させた 2種類の塗布剤を用意し、例えば高濃度層を形成する際には、リン酸を 100ml中 10 g含んだ拡散ペーストを用いた。またサンプル Cでは、塗布剤中のメチルセルソルブ の含有量を変化させて粘度を変更し、サンプル Dでは、含有する珪素化合物をシリカ ゲルとアルコキシシランとし、サンプル Eでは、ガラスの含有量を変化させた。また本 プロセスでは、高濃度層は 200 /z m幅、 2. Ommピッチのラインとし、スクリーン印刷 により塗布剤を印刷し、一方で低濃度層はスピンで塗布剤を塗布することにより形成 した。また、サンプル B、 Fに対しては高濃度層および低濃度層ともにスクリーン印刷 を利用し、塗布剤を印刷した。また、サンプル Bでは高濃度層を形成する塗布剤にポ リビュルアルコールを添加し、サンプル Fでは各塗布剤に含有するドーパントを拡散 係数の異なるリンとアンチモンとした。このとき、高濃度層は 200 m幅、 2. Ommピッ チのラインとした。一方、サンプル Gに対しては実施例 1で用いた一種類の塗布剤の みをスピン塗布した。これら A〜Gにわたるサンプルのうち半数は 880°Cで 30分間熱 処理を施し、拡散を済ませた。残りの半数は熱処理をする前にシリカゲルを含有させ た塗布剤を同一面上に 3000rpm、 15秒の条件で塗布し、上記と同様の条件で拡散 熱処理を済ませた。表 2内、「カバー」はこの膜のことを示す。なお、シート抵抗の測 定はガラスエッチング後に四探針法によって実施した。なお、表 3に示した太陽電池 の諸特性は、この「カバー」を形成したものである。 [0103] First, for samples A, C, D, and E, by changing the items shown in Table 2, A concentration layer and a low concentration layer were formed. For example, in sample A, two types of coating agents having different dopant contents were prepared. For example, when forming a high concentration layer, a diffusion paste containing 10 g of phosphoric acid in 100 ml was used. In sample C, the viscosity was changed by changing the content of methyl cellosolve in the coating agent.In sample D, the silicon compound contained was changed to silica gel and alkoxysilane, and in sample E, the glass content was changed. I let you. In this process, the high-concentration layer was 200 / zm wide and 2. Omm pitch lines, and the coating agent was printed by screen printing, while the low-concentration layer was formed by applying the coating agent by spin. For Samples B and F, the coating agent was printed using screen printing for both the high and low density layers. In sample B, polybutyl alcohol was added to the coating agent forming the high-concentration layer, and in sample F, the dopant contained in each coating agent was phosphorus and antimony having different diffusion coefficients. At this time, the high-concentration layer was 200 m wide and 2. Omm pitch line. On the other hand, only one type of coating agent used in Example 1 was spin-coated on sample G. Half of these samples from A to G were heat treated at 880 ° C for 30 minutes to complete the diffusion. The other half was coated with a coating agent containing silica gel on the same surface at 3000 rpm for 15 seconds before heat treatment, and diffusion heat treatment was completed under the same conditions as above. In Table 2, “Cover” refers to this membrane. Sheet resistance was measured by the four-probe method after glass etching. The characteristics of the solar cell shown in Table 3 are the ones that form this “cover”.
[表 2] [Table 2]
セ シー ト抵抗 Sheet resistance
変更項目 カバ一 変更内容 — サンプル  Change Item Coverage Change — Sample
( Ω /□ ) ド 'ン ト 1 0 g / 1 0 0 m l 1 5  (Ω / □) Don't 1 0 g / 1 0 0 m l 1 5
なし  None
含有量変更 2 . 0 g / 1 0 0 m 1 8 0  Content change 2.0 g / 1 0 0 m 1 8 0
A 高濃度 : リ ン酸 1 0 g / 1 0 0 m l 1 5  A High concentration: Phosphoric acid 10 g / 100 ml 1 5
低濃度 : 五酸化 あり 1 0 0 A 1  Low concentration: pentoxide present 1 0 0 A 1
2 . 0 g / 1 O O m l  2.0 g / 1 O O m l
二リ ン  Bilin
2 0 μ m 2 5  2 0 μm 2 5
なし  None
0 . 2 μ m 6 0  0.2 μm 6 0
B 塗布膜厚変更  B Change coating thickness
2 0 μ 2 5  2 0 μ 2 5
あり B 1  Yes B 1
0 . 2 μ m 8 0  0.2 μm 8 0
3 0 0 C P 2 5  3 0 0 C P 2 5
なし  None
1 . 1 C P 7 0 ,  1. 1 C P 7 0,
C 粘度変更  C Viscosity change
3 0 0 C P 2 5  3 0 0 C P 2 5
あり C 1  Yes C 1
1 . 1 C P 9 0  1. 1 C P 9 0
シリ カゲル 2 0  Siri Kagel 2 0
なし  None
ァ コキシシラ ン 7 0  Coxicilan 7 0
D 含有物変更  D Content change
シリ カゲル 2 0  Siri Kagel 2 0
あり D 1 キシシラ ン 9 0  Yes D 1 Xysilan 9 0
1 0 w t % 2 0  1 0 w t% 2 0
なし  None
ガラス含有量 6 w t % 6 0  Glass content 6 w t% 6 0
E  E
変更 1 0 w t % 2 0  Change 1 0 w t% 2 0
あり E 1  Yes E 1
6 w t % 8 0  6 w t% 8 0
リ ン 1 0  Lin 1 0
なし  None
アンチモン 9 0  Antimony 9 0
F 元素変更  F element change
リ ン 1 0  Lin 1 0
あ り F 1 アンチモン 1 1 0  Yes F 1 Antimony 1 1 0
溝内 4 0  Groove 4 0
なし  None
溝形成 構外 7 0  Groove formation Off-site 7 0
G  G
塗布は 1 回のみ 溝内 4 0  Apply only once in groove 4 0
あり G 1 溝外 8 0 3] サンプル 開放電圧 短絡電流密度 変換効率 Yes G 1 Outside groove 8 0 3] Sample Open-circuit voltage Short-circuit current density Conversion efficiency
フィノレファクタ # ( V ) ( m A / c m 2 ) (%) Fino Les factor # (V) (m A / cm 2) (%)
A 1 0 . 6 3 3 3 6 . 6 1 8 . 3 0 . 7 9 2 A 1 0. 6 3 3 3 6. 6 1 8. 3 0. 7 9 2
Bl、 Cl、 Bl, Cl,
0 . 6 3 0 3 6 . 3 1 8 . 1 0 . 7 9 0 Dl  0. 6 3 0 3 6. 3 1 8. 1 0. 7 9 0 Dl
E 1 0 . 6 3 5 3 6 . 8 1 8 . 4 0 . 7 8 7 E 1 0. 6 3 5 3 6. 8 1 8. 4 0. 7 8 7
F 1 0 . 6 2 7 3 6 . 0 1 7 . 7 0 . 7 8 5F 1 0. 6 2 7 3 6. 0 1 7. 7 0. 7 8 5
G 1 0 . 6 2 9 3 6 . 2 1 7 . 8 0 . 7 8 1 表 3に示すとおり、いずれも、多少の差は見られるもののニ段ェミッタ構造が影響し 、変換効率が 12〜16%程度の一般的なスクリーン印刷型太陽電池と比較して、プロ セスステップ数が圧倒的に少なぐ製造コストが低いにもかかわらず、変換効率が高 い太陽電池が得られた。 G 1 0 .6 2 9 3 6 .2 1 7 .8 0 .7 8 1 As shown in Table 3, although there are some differences, the two-stage emitter structure has an effect, and the conversion efficiency is 12 to 16 Compared with a typical screen-printed solar cell of about%, a solar cell with a high conversion efficiency was obtained despite the fact that the number of process steps was overwhelmingly low and the manufacturing cost was low.
[0107] (実施例 3) [Example 3]
図 5に示す処理 A、 Bに従う工程により、太陽電池を作製した。製造条件は、拡散層 表面のエッチバック、表面酸ィ匕以外は実施例 1と同様のものとした。この際、エッチバ ックは熱処理後に基板をアンモニア '過酸化水素水混合液に浸漬し、表面を数ナノメ 一トルエッチングすることにより行った。一方、表面酸化は熱処理に引き続き降温せ ずにドライ酸素だけを流し、基板を熱処理炉内に 10分間保持することにより行った。 本実施例で得られた太陽電池の諸特性を表 4に示す。なお、比較のため、実施例 1 の太陽電池の諸特性も示す。また、分光感度特性 (外部量子効率)を図 10に示す。  A solar cell was fabricated by a process according to treatments A and B shown in FIG. The manufacturing conditions were the same as in Example 1 except for the etch back and surface oxidation of the diffusion layer surface. At this time, the etch back was performed by immersing the substrate in a mixed solution of ammonia and hydrogen peroxide after heat treatment and etching the surface by several nanometers. On the other hand, the surface oxidation was performed by flowing only dry oxygen without lowering the temperature following the heat treatment, and holding the substrate in the heat treatment furnace for 10 minutes. Table 4 shows the characteristics of the solar cell obtained in this example. For comparison, various characteristics of the solar cell of Example 1 are also shown. Fig. 10 shows the spectral sensitivity characteristics (external quantum efficiency).
[0108] [表 4] [0108] [Table 4]
Figure imgf000028_0001
[0109] 本実施例の処理 A、処理 Bを施した両サンプルともに熱処理後、ェミッタエッチバッ ク、表面酸ィ匕を行わなかった実施例 1と比較して、短絡電流、開放電圧両方とも、高 い値を示した。ただし、コンタクト部の表面濃度も若干低下するため、フィルファクタが 減少した。
Figure imgf000028_0001
[0109] Both the samples subjected to the treatment A and the treatment B of this example were both subjected to the heat treatment, and both the short-circuit current and the open-circuit voltage were compared with those of Example 1 in which the emitter etching back and the surface oxidation were not performed. It showed a high value. However, the fill factor decreased because the surface concentration of the contact part also decreased slightly.
短絡電流が増加したのは、図 10に示すように短波長域の量子効率がェミッタエツ チバックおよび表面酸ィ匕後、増加したことによる。本実施例のように、拡散層表層部 を改質してやることで、界面準位密度が低下し、太陽電池の性能をさらに改善するこ とができた。  The short-circuit current increased because the quantum efficiency in the short wavelength region increased after the emitter back and surface oxidation, as shown in Fig. 10. As in this example, by modifying the surface layer of the diffusion layer, the interface state density was lowered, and the performance of the solar cell could be further improved.
[0110] (実施例 4) [0110] (Example 4)
図 6に示す方法に従い、 POC1気相拡散ソース雰囲気下 900°Cで拡散熱処理を行  In accordance with the method shown in Fig. 6, diffusion heat treatment is performed at 900 ° C in a POC1 vapor phase diffusion source atmosphere.
3  Three
なった。その他の条件は、実施例 1と同様の拡散ペースト、塗布剤を用いた。  became. For other conditions, the same diffusion paste and coating agent as in Example 1 were used.
上記方法によって作製した太陽電池の諸特性の平均およびバラツキの度合いを示 す標準偏差を表 5に示す。  Table 5 shows the standard deviations indicating the average and degree of variation of the characteristics of solar cells fabricated by the above method.
括弧内の標準偏差を見れば、実施例 1の場合と比較して、本実施例の製法により 標準偏差が軽減したことが分かる。すなわち、性能バラツキは本実施例の製法により 改善したといえる。  By looking at the standard deviation in parentheses, it can be seen that the standard deviation was reduced by the manufacturing method of this example compared to the case of Example 1. That is, it can be said that the performance variation was improved by the manufacturing method of this example.
[0111] [表 5] [0111] [Table 5]
Figure imgf000029_0001
Figure imgf000029_0001
表内 ( ) 内は標準偏差を示す。  In the table () indicates the standard deviation.
[0112] (実施例 5) [0112] (Example 5)
図 7に示すような裏面コンタクト型太陽電池を作製した。  A back contact solar cell as shown in FIG. 7 was fabricated.
具体的には、結晶面方位(100)、 15cm角 200 /z m厚、ァズスライスでの比抵抗 0 . 5 Ω ' cm (ドーパント濃度 1. 01 X 1016cm_3)、リンドープで導電型が n型の単結晶 シリコン基板を用意し、図 2 (a)と同様の方法を用い、両面合計で 30 m程度ダメー ジエッチングを行い、さらに、表面に反射防止構造であるテクスチャ形成を行った。 Specifically, crystal plane orientation (100), 15cm square 200 / zm thickness, specific resistance at az slice 0.5 Ω 'cm (dopant concentration 1.01 X 10 16 cm_ 3 ), phosphorus doped, conductivity type n-type Single crystal A silicon substrate was prepared, and the same method as in Fig. 2 (a) was used. Damage etching was performed for a total of about 30 m on both sides, and a texture was formed on the surface as an antireflection structure.
[0113] 引き続き、基板を洗浄した後、高濃度ェミッタ層を作ることを目的として酸ィ匕ボロンを 100ml中 15gとシリカゲルとを含んだ拡散ペーストをスクリーン印刷機によって印刷し た。このときの印刷パターンは 2mmピッチ、 200 m幅のラインとした。さらに、低濃 度ェミッタ層を作ることを目的として、 100ml中 4gの酸化ボロンとアルコキシシランと を含んだ拡散ペーストを印刷した。この印刷パターンは同 2mmピッチ、 1600 m幅 のラインとし、最初の印刷パターンと中心が重なるように印刷した。さらに、ローカル B SF層を作ることを目的として図 2 (a)の説明で用いたものと同様のリン酸を含んだ拡 散ペーストを上記ボロン拡散ペーストが印刷されて 、な 、領域に印刷した。この印刷 パターンは 2mmピッチ、 200 μ m幅ラインとした。  [0113] Subsequently, after the substrate was washed, a diffusion paste containing 15 g of acid boron in 100 ml and silica gel was printed by a screen printer for the purpose of forming a high-concentration emitter layer. The printed pattern at this time was a 2 mm pitch, 200 m wide line. In addition, a diffusion paste containing 4 g of boron oxide and alkoxysilane in 100 ml was printed for the purpose of forming a low-concentration emitter layer. This printed pattern was a line of 2mm pitch and 1600m width, and was printed so that the center overlapped with the first printed pattern. Furthermore, for the purpose of forming a local BSF layer, the same diffusion paste containing phosphoric acid as that used in the description of FIG. 2 (a) was printed on the region where the boron diffusion paste was printed. . The printed pattern was 2 mm pitch and 200 μm wide line.
[0114] 印刷後、 700°Cで 30分間ベータし、その後、シリカゲルを含有した塗布剤を同一面 上に 3000rpm、 15秒の条件でスピン塗布し、その状態でこのサンプル基板を熱処 理炉に入れた。この熱処理は 1000°Cで 20分間保持の条件で行った。次に、図 2 (a) と同様、プラズマエッチヤーを用い、接合分離を行った後、表面に形成されたリンおよ びボロンガラスをフッ酸でエッチングした。  [0114] After printing, beta is applied at 700 ° C for 30 minutes, and then a silica gel-containing coating agent is spin-coated on the same surface at 3000 rpm for 15 seconds, and in this state, this sample substrate is subjected to a heat treatment furnace. Put in. This heat treatment was performed at 1000 ° C for 20 minutes. Next, as in FIG. 2 (a), after using a plasma etcher to perform junction separation, phosphorus and boron glass formed on the surface were etched with hydrofluoric acid.
[0115] その後、ダイレクトプラズマ CVD装置を用い、受光面に窒化膜を厚さ 85nmで堆積 した。また、裏面には同じダイレクトプラズマ CVD装置を用い、窒化膜を厚さ 55nmで 堆積した。  [0115] Thereafter, a direct plasma CVD apparatus was used to deposit a nitride film with a thickness of 85 nm on the light receiving surface. The same direct plasma CVD apparatus was used for the back surface, and a nitride film was deposited with a thickness of 55 nm.
次に、ァライメント機構をもったスクリーン印刷装置を用い、ボロンおよびリン高濃度 拡散層にあわせて図 8 (a)に示すような櫛形電極パターンを Ag力もなる電極ペースト を用い、印刷し、電極ペーストを乾燥後、所定の熱プロファイルにより焼成を行い、裏 面櫛形電極を形成し、裏面コンタクト型太陽電池を作製した。  Next, using a screen printing device with an alignment mechanism, a comb-shaped electrode pattern as shown in Fig. 8 (a) was printed using an electrode paste having an Ag force in accordance with boron and phosphorus high-concentration diffusion layers, and the electrode paste After drying, baking was performed with a predetermined thermal profile to form a back comb-shaped electrode, and a back contact solar cell was fabricated.
[0116] 作製した 15cm角太陽電池を 25°Cの雰囲気の中、ソーラーシミュレータ (光強度: 1 kWZm2、スペクトル: AMI. 5グローバル)の下で電流電圧特性を測定した。表 6に 実施例 5と実施例 1の太陽電池諸特性を示す。 [0116] The current-voltage characteristics of the fabricated 15 cm square solar cell were measured in a 25 ° C atmosphere under a solar simulator (light intensity: 1 kWZm 2 , spectrum: AMI. 5 global). Table 6 shows the solar cell characteristics of Example 5 and Example 1.
その結果、実施例 5の裏面コンタクト型太陽電池においても、実施例 1の一般的な 構造を有する太陽電池と比較して、短絡電流が減少するが、開放電圧、フィルファタ タが増加するため、ほぼ同様の変換効率を得た。 As a result, in the back contact solar cell of Example 5, the short-circuit current is reduced as compared with the solar cell having the general structure of Example 1, but the open circuit voltage and fill factor are reduced. Almost the same conversion efficiency was obtained.
[0117] [表 6]  [0117] [Table 6]
Figure imgf000031_0001
Figure imgf000031_0001
[0118] (実施例 6) [0118] (Example 6)
図 9 (a) (b)に示すような太陽電池を作製した。  A solar cell as shown in Fig. 9 (a) and (b) was fabricated.
具体的には、結晶面方位(100)、 15cm角 250 /z m厚、ァズスライスでの比抵抗 0 . 5 Ω 'cm (ドーパント濃度 3. 26 X 1016cm_3)、ガリウムドープで導電型力 ¾型の単 結晶シリコン基板を用意し、図 2 (a)と同様の方法を用い、両面合計で 30 /z m程度ダ メージエッチングを行い、さらに、図 2 (a)と同様の方法を用い、表面に反射防止構造 であるテクスチャ形成を行った。 Specifically, the crystal plane orientation (100), 15cm square 250 / zm thick, the specific resistance of at Azusuraisu 0. 5 Ω 'cm (dopant concentration 3. 26 X 10 16 cm_ 3) , conductivity type power ¾ gallium-doped Type single crystal silicon substrate was prepared, and the same method as in Fig. 2 (a) was used, and both sides were subjected to a damage etching of about 30 / zm in total, and then the same method as in Fig. 2 (a) was used. Then, texture formation, which is an antireflection structure, was performed.
[0119] 引き続き、基板を洗浄した後、受光面側にニ段ェミッタを作ることを目的として、実 施例 1 2と同様の条件で高濃度拡散層を作る領域には拡散ペーストを印刷し、その 他の領域には塗布剤を塗布した。  [0119] Subsequently, after the substrate is cleaned, a diffusion paste is printed on the region where the high-concentration diffusion layer is formed under the same conditions as in Example 12 for the purpose of creating a two-stage emitter on the light-receiving surface side. The coating agent was applied to other areas.
[0120] 次に、裏面側に 0. lgZmlの割合で酸ィ匕ボロンとシリカゲルとを含んだペーストを 2 mmピッチ、 200 μ m幅のラインパターンで印刷した。ここまでのプロセスを経たサン プルのうち、半分はこのまま 700°Cで 30分間ベータし、続いて裏面上にアルコキシシ ランを含む塗布剤を 3000rpm 15秒の条件でスピン塗布した (サンプル (A) )。一方 、残りのサンプルは酸化ボロンとシリカを含むペーストを全面印刷し、 700°Cで 30分 間ベータした(サンプル (B) )  [0120] Next, a paste containing acid boron and silica gel at a rate of 0.1 lgZml was printed on the back side in a line pattern of 2 mm pitch and 200 μm width. Half of the samples that have undergone the process so far were beta-treated at 700 ° C for 30 minutes, followed by spin coating of a coating containing alkoxysilane on the back surface at 3000 rpm for 15 seconds (Sample (A) ). On the other hand, the remaining sample was printed on the entire surface with a paste containing boron oxide and silica, and beta-treated at 700 ° C for 30 minutes (Sample (B)).
[0121] 引き続き、これらのサンプルを熱処理炉に入れ、 980°Cで 10分間保持し、その後取 り出し、次に図 2 (a)と同様、プラズマエッチヤーを用い、接合分離を行った後、表面 に形成されたリンおよびボロンガラスをフッ酸でエッチングした。  [0121] Subsequently, these samples were placed in a heat treatment furnace, held at 980 ° C for 10 minutes, then taken out, and then subjected to junction separation using a plasma etcher as in Fig. 2 (a). The phosphorous and boron glass formed on the surface was etched with hydrofluoric acid.
[0122] その後、ダイレクトプラズマ CVD装置を用い、両面に窒化膜を厚さ 85nmで堆積し 、次に、ァライメント機構をもったスクリーン印刷装置を用い、両面の高濃度拡散層に あわせ、櫛形電極パターンを Ag力もなる電極ペーストを用い、印刷した。電極ペース トを乾燥後、所定の熱プロファイルにより焼成を行い、図 9 (a)、(b)に示すような太陽 電池を作製した。 [0122] After that, using a direct plasma CVD apparatus, a nitride film was deposited on the both surfaces with a thickness of 85 nm, and then using a screen printing apparatus having an alignment mechanism, a comb-shaped electrode pattern was formed in accordance with the high-concentration diffusion layers on both sides. This was printed using an electrode paste having an Ag force. Electrode pace The solar cells were dried and then fired according to a predetermined thermal profile to produce solar cells as shown in Figs. 9 (a) and 9 (b).
[0123] 作製した 15cm角太陽電池を 25°Cの雰囲気の中、ソーラーシミュレータ (光強度: 1 kWZm2、スペクトル: AMI. 5グローバル)の下で電流電圧特性を測定した。表 7に 実施例 6と実施例 1の太陽電池諸特性を示す。 [0123] The current-voltage characteristics of the fabricated 15 cm square solar cell were measured in a 25 ° C atmosphere under a solar simulator (light intensity: 1 kWZm 2 , spectrum: AMI. 5 global). Table 7 shows the solar cell characteristics of Example 6 and Example 1.
[0124] [表 7]  [0124] [Table 7]
Figure imgf000032_0001
Figure imgf000032_0001
[0125] 本実施例では高濃度の BSF層を全面力 コンタクト直下近傍だけに制限したことに より、実施例 1の結果と比較して、開放電圧が大幅に向上した。また、短絡電流は裏 面近傍での光吸収が減るため増大した。また、裏面にグリッド電極を用いたことにより 基板のソリが減少した。これは、薄型化が容易となることを意味する。 [0125] In this example, the high-concentration BSF layer was restricted to the vicinity of the entire surface force contact, so that the open-circuit voltage was significantly improved compared to the result of Example 1. In addition, the short-circuit current increased because light absorption near the back surface decreased. In addition, the use of grid electrodes on the back surface reduced the warpage of the substrate. This means that it is easy to reduce the thickness.
[0126] 尚、本発明は上記実施形態に限定されるものではない。上記実施形態は単なる例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的 思想に包含される。 [0126] The present invention is not limited to the above embodiment. The above-described embodiment is merely an example, and has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical idea of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 第 1導電型の半導体基板に pn接合を形成して太陽電池を製造する方法であって、 少なくとも、前記第 1導電型の半導体基板上にドーパントとドーパント飛散防止剤とを 含む第 1塗布剤と少なくとも第 1塗布剤に接するようにドーパントを含む第 2塗布剤と を塗布した後、拡散熱処理により、第 1塗布剤の塗布により形成される第 1拡散層と、 第 2塗布剤の塗布により形成され、第 1拡散層より導電率が低い第 2拡散層とを同時 に形成することを特徴とする太陽電池の製造方法。  [1] A method of manufacturing a solar cell by forming a pn junction on a first conductivity type semiconductor substrate, wherein the first conductivity type includes at least a dopant and a dopant scattering inhibitor on the first conductivity type semiconductor substrate. After applying the coating agent and at least the second coating agent containing the dopant so as to be in contact with the first coating agent, the first diffusion layer formed by applying the first coating agent by diffusion heat treatment, and the second coating agent A method for producing a solar cell, comprising forming a second diffusion layer formed by coating and having a lower conductivity than the first diffusion layer at the same time.
[2] 前記第 2塗布剤としてオートドープ防止剤を含むものを用いることを特徴とする請求 項 1に記載の太陽電池の製造方法。 [2] The method for manufacturing a solar cell according to [1], wherein the second coating agent includes an anti-dope inhibitor.
[3] 第 1導電型の半導体基板に pn接合を形成して太陽電池を製造する方法であって、 少なくとも、前記第 1導電型の半導体基板上に溝を形成し、ドーパントとドーパント飛 散防止剤とを含む第 1塗布剤を全面に塗布した後、拡散熱処理により、前記半導体 基板上の溝下部に形成される第 1拡散層と、前記溝下部以外の部分に形成され、第 1拡散層より導電率が低い第 2拡散層とを同時に形成することを特徴とする太陽電池 の製造方法。 [3] A method of manufacturing a solar cell by forming a pn junction on a first conductivity type semiconductor substrate, wherein at least grooves are formed on the first conductivity type semiconductor substrate to prevent dopants and dopant scattering And a first diffusion layer formed on a lower portion of the groove on the semiconductor substrate and a first diffusion layer formed on a portion other than the lower portion of the groove by diffusion heat treatment. A method for producing a solar cell, comprising simultaneously forming a second diffusion layer having lower conductivity.
[4] 前記拡散熱処理を気相拡散ソース雰囲気下で行うことを特徴とする請求項 1乃至 請求項 3のいずれか一項に記載の太陽電池の製造方法。 4. The method for manufacturing a solar cell according to any one of claims 1 to 3, wherein the diffusion heat treatment is performed in a gas phase diffusion source atmosphere.
[5] 前記ドーパント飛散防止剤又はオートドープ防止剤として珪素化合物を含むものを 用いることを特徴とする請求項 1乃至請求項 4のいずれか一項に記載の太陽電池の 製造方法。 [5] The method for producing a solar cell according to any one of claims 1 to 4, wherein the dopant scattering inhibitor or the autodope inhibitor includes a silicon compound.
[6] 第 1塗布剤及び第 2塗布剤として少なくともドーパントの含有率、粘度、ドーパント飛 散防止剤及びオートドープ防止剤の含有量、ドーパントの種類のいずれか 1つ以上 が異なるものを用いる、及び/又は第 1塗布剤と第 2塗布剤との塗布の際に塗布膜 厚を異なるものとすることを特徴とする請求項 1、請求項 2、請求項 4、請求項 5のいず れか一項に記載の太陽電池の製造方法。 [6] As the first coating agent and the second coating agent, at least one of the dopant content, the viscosity, the content of the dopant scattering inhibitor and the auto-doping inhibitor, and one of the different dopant types is used. And / or coating film when applying the first coating agent and the second coating agent 6. The method for manufacturing a solar cell according to claim 1, wherein the thicknesses are different from each other.
[7] 第 1塗布剤のドーパントの含有率を第 2塗布剤のドーパントの含有率の 4倍以上と することを特徴とする請求項 6に記載の太陽電池の製造方法。 [7] The method for producing a solar cell according to [6], wherein the content of the dopant in the first coating agent is at least four times the content of the dopant in the second coating agent.
[8] 前記ドーパント飛散防止剤に含まれる珪素化合物を SiOとし、前記オートドープ防 [8] The silicon compound contained in the dopant scattering inhibitor is SiO, and the autodope prevention agent
2  2
止剤に含まれる珪素化合物を珪素酸化物前駆体とすることを特徴とする請求項 5乃 至請求 7のいずれか一項に記載の太陽電池の製造方法。  The method for producing a solar cell according to any one of claims 5 to 7, wherein a silicon compound contained in the stopper is used as a silicon oxide precursor.
[9] 珪素化合物を含む第 3塗布剤を、第 1塗布剤及び Z又は第 2塗布剤の上部を覆う ように塗布し、その後前記拡散熱処理を行うことを特徴とする請求項 1乃至請求項 8 の!、ずれか一項に記載の太陽電池の製造方法。 [9] The third coating agent containing a silicon compound is applied so as to cover the top of the first coating agent and Z or the second coating agent, and then the diffusion heat treatment is performed. 8! The manufacturing method of the solar cell as described in any one of deviation.
[10] 前記拡散熱処理により形成した拡散層の表面をエッチバックすることを特徴とする 請求項 1乃至請求項 9のいずれか一項に記載の太陽電池の製造方法。 10. The method for manufacturing a solar cell according to any one of claims 1 to 9, wherein a surface of the diffusion layer formed by the diffusion heat treatment is etched back.
[11] 前記拡散熱処理により形成した拡散層の表面を酸化することを特徴とする請求項 1 乃至請求項 9のいずれか一項に記載の太陽電池の製造方法。 [11] The method for manufacturing a solar cell according to any one of [1] to [9], wherein the surface of the diffusion layer formed by the diffusion heat treatment is oxidized.
[12] 第 1拡散層及び第 2拡散層を前記半導体基板の受光面及び該受光面の裏面の少 なくとも一方に形成することを特徴とする請求項 1乃至請求項 11のいずれか一項に 記載の太陽電池の製造方法。 [12] The first diffusion layer and the second diffusion layer are formed on at least one of the light receiving surface of the semiconductor substrate and the back surface of the light receiving surface, respectively. The manufacturing method of the solar cell of description.
[13] 請求項 1乃至請求項 12のいずれか一項の製造方法により製造した太陽電池であ つて、前記半導体基板が有する第 1導電型とは反対導電型の第 1拡散層及び該反 対導電型の第 1拡散層より導電率の低い第 2拡散層とが前記半導体基板の受光面 に形成されたものであることを特徴とする太陽電池。 [13] A solar cell manufactured by the manufacturing method according to any one of claims 1 to 12, wherein the semiconductor substrate has a first diffusion layer having a conductivity type opposite to the first conductivity type, and the counter electrode. A solar cell, wherein a second diffusion layer having a conductivity lower than that of a conductive first diffusion layer is formed on a light receiving surface of the semiconductor substrate.
[14] 請求項 13に記載の太陽電池において、さらに、少なくとも第 1導電型と同一導電型 の拡散層が前記受光面の裏面に形成されたものであることを特徴とする太陽電池。 14. The solar cell according to claim 13, further comprising a diffusion layer of at least the same conductivity type as the first conductivity type formed on the back surface of the light receiving surface.
[15] 請求項 1乃至請求項 12のいずれか一項の製造方法により製造した太陽電池であ つて、前記半導体基板が有する第 1導電型とは反対導電型の第 1拡散層及び該反 対導電型の第 1拡散層より導電率の低い反対導電型の第 2拡散層と、第 1導電型と 同一導電型の拡散層とが前記半導体基板の受光面の裏面に形成されたものである ことを特徴とする太陽電池。 [15] A solar cell manufactured by the manufacturing method according to any one of claims 1 to 12, wherein the semiconductor substrate has a first diffusion layer having a conductivity type opposite to the first conductivity type and the counter A second diffusion layer of the opposite conductivity type having a lower conductivity than the first diffusion layer of the conductivity type and a diffusion layer of the same conductivity type as the first conductivity type are formed on the back surface of the light receiving surface of the semiconductor substrate. A solar cell characterized by that.
[16] 半導体装置の製造方法であって、少なくとも、第 1導電型の半導体基板上にドーパ ントとドーパント飛散防止剤とを含む第 1塗布剤とドーパントを含む第 2塗布剤とを塗 布した後、拡散熱処理により、第 1塗布剤の塗布により形成される第 1拡散層と、第 2 塗布剤の塗布により形成され、第 1拡散層とは導電率が異なる第 2拡散層とを同時に 形成することを特徴とする半導体装置の製造方法。 [16] A method for manufacturing a semiconductor device, wherein at least a first coating agent containing a dopant and a dopant scattering inhibitor and a second coating agent containing a dopant are applied on a first conductivity type semiconductor substrate. Later, by diffusion heat treatment, the first diffusion layer formed by applying the first coating agent and the second diffusion layer formed by applying the second coating agent and having different conductivity from the first diffusion layer are formed simultaneously. A method of manufacturing a semiconductor device.
[17] 半導体基板上に塗布して該半導体基板に熱拡散によりドーパントをドープするため の塗布剤であって、少なくともドーパントとドーパント飛散防止剤とを含むものであるこ とを特徴とする塗布剤。 [17] A coating agent for coating on a semiconductor substrate and doping the semiconductor substrate with a dopant by thermal diffusion, which comprises at least a dopant and a dopant scattering inhibitor.
[18] 前記ドーパント飛散防止剤は珪素化合物を含むものであることを特徴とする請求項 17に記載の塗布剤。 [18] The coating agent according to [17], wherein the dopant scattering inhibitor contains a silicon compound.
[19] 前記珪素化合物は SiOであることを特徴とする請求項 18に記載の塗布剤。 19. The coating agent according to claim 18, wherein the silicon compound is SiO.
[20] 前記塗布剤はさらに増粘剤を含むものであることを特徴とする請求項 17乃至請求 項 19のいずれか一項に記載の塗布剤。 前記塗布剤はスクリーン印刷用塗布剤であることを特徴とする請求項 17乃至 20の 、ずれか一項に記載の塗布剤。 [20] The coating agent according to any one of claims 17 to 19, wherein the coating agent further contains a thickener. 21. The coating agent according to claim 17, wherein the coating agent is a screen printing coating agent.
PCT/JP2006/307595 2005-04-26 2006-04-11 Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method WO2006117980A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2006242030A AU2006242030B2 (en) 2005-04-26 2006-04-11 Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method
ES06731542T ES2764073T3 (en) 2005-04-26 2006-04-11 Solar cell manufacturing method
US11/918,719 US20090020158A1 (en) 2005-04-26 2006-04-11 Method for manufacturing solar cell and solar cell, and method for manufacturing semiconductor device
CN2006800139982A CN101167191B (en) 2005-04-26 2006-04-11 Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method
EP06731542.4A EP1876651B1 (en) 2005-04-26 2006-04-11 Solar cell manufacturing method
NO20076104A NO20076104L (en) 2005-04-26 2007-11-26 Process for producing solar cell and solar cell, and method for producing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-127950 2005-04-26
JP2005127950A JP4481869B2 (en) 2005-04-26 2005-04-26 SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
WO2006117980A1 true WO2006117980A1 (en) 2006-11-09

Family

ID=37307783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307595 WO2006117980A1 (en) 2005-04-26 2006-04-11 Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method

Country Status (11)

Country Link
US (1) US20090020158A1 (en)
EP (1) EP1876651B1 (en)
JP (1) JP4481869B2 (en)
KR (1) KR101216996B1 (en)
CN (1) CN101167191B (en)
AU (1) AU2006242030B2 (en)
ES (1) ES2764073T3 (en)
NO (1) NO20076104L (en)
RU (1) RU2007139437A (en)
TW (1) TWI408816B (en)
WO (1) WO2006117980A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116569A1 (en) * 2008-03-21 2009-09-24 信越化学工業株式会社 Phosphorus paste for diffusion and process for producing solar battery utilizing the phosphorus paste
JP2010056465A (en) * 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd Boron paste for diffusion, and method of manufacturing solar cell using the same
JP2011134999A (en) * 2009-12-25 2011-07-07 Kyocera Corp Solar cell module
US20110248370A1 (en) * 2008-05-20 2011-10-13 Bronya Tsoi Electromagnetic radiation converter with a battery
WO2012043508A1 (en) * 2010-09-27 2012-04-05 三洋電機株式会社 Solar cell and manufacturing method therefor
WO2012132758A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Photoelectric conversion device and method for producing photoelectric conversion device
WO2014098016A1 (en) * 2012-12-18 2014-06-26 PVG Solutions株式会社 Solar cell and method for producing same
JP2016026394A (en) * 2011-01-13 2016-02-12 日立化成株式会社 Composition for forming p-type diffusion layer, method of producing p-type diffusion layer, method of manufacturing solar cell element, and solar cell
JP2017017364A (en) * 2011-12-16 2017-01-19 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
JP2017204625A (en) * 2016-05-13 2017-11-16 ▲ゆ▼晶能源科技股▲分▼有限公司Gintech Energy Corporation Solar battery and manufacturing method therefor

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262229A (en) * 1985-09-13 1987-03-18 Minolta Camera Co Ltd Camera with multi-split photometer
US7820475B2 (en) * 2005-12-21 2010-10-26 Sunpower Corporation Back side contact solar cell structures and fabrication processes
KR101223018B1 (en) * 2006-12-28 2013-01-17 엘지전자 주식회사 Method and system of preparing selective emitter of solar cell
KR101173625B1 (en) 2006-12-29 2012-08-13 엘지전자 주식회사 Method and system of preparing selective emitter of solar cell
JP2008186927A (en) * 2007-01-29 2008-08-14 Sharp Corp Back face junction solar battery and manufacturing method therefor
KR101382098B1 (en) * 2007-05-02 2014-04-04 엘지전자 주식회사 Method of preparing selective emitter of solar cell and method of preparing solar cell
RU2369941C2 (en) 2007-08-01 2009-10-10 Броня Цой Converter of electromagnet radiation (versions)
JP5236914B2 (en) * 2007-09-19 2013-07-17 シャープ株式会社 Manufacturing method of solar cell
JP4650842B2 (en) * 2007-12-18 2011-03-16 三菱電機株式会社 Manufacturing method of solar cell
JP5329107B2 (en) * 2008-02-28 2013-10-30 三洋電機株式会社 Solar cell and manufacturing method thereof
US8461032B2 (en) 2008-03-05 2013-06-11 Varian Semiconductor Equipment Associates, Inc. Use of dopants with different diffusivities for solar cell manufacture
CN101552295A (en) 2008-04-03 2009-10-07 清华大学 Solar cell
CN101562204B (en) 2008-04-18 2011-03-23 鸿富锦精密工业(深圳)有限公司 Solar energy battery
CN101527327B (en) 2008-03-07 2012-09-19 清华大学 Solar cell
US8361834B2 (en) * 2008-03-18 2013-01-29 Innovalight, Inc. Methods of forming a low resistance silicon-metal contact
TWI459568B (en) * 2008-03-21 2014-11-01 Hon Hai Prec Ind Co Ltd Solar cell
DE102008019402A1 (en) * 2008-04-14 2009-10-15 Gebr. Schmid Gmbh & Co. Process for the selective doping of silicon and silicon substrate treated therewith
KR101503861B1 (en) * 2008-04-18 2015-03-18 1366 테크놀로지 인코포레이티드 Methods to pattern diffusion layers in solar cells and solar cells made by such methods
JP4712073B2 (en) * 2008-07-11 2011-06-29 三菱電機株式会社 Method for producing diffusion layer for solar cell and method for producing solar cell
US8053867B2 (en) 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
US7951696B2 (en) 2008-09-30 2011-05-31 Honeywell International Inc. Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes
CN102246275B (en) * 2008-10-29 2014-04-30 英诺瓦莱特公司 Methods of forming multi-doped junctions on a substrate
JP2010118473A (en) * 2008-11-12 2010-05-27 PVG Solutions株式会社 Solar cell and method of manufacturing same
GB0820684D0 (en) * 2008-11-12 2008-12-17 Silicon Cpv Plc Photovoltaic solar cells
US7820532B2 (en) 2008-12-29 2010-10-26 Honeywell International Inc. Methods for simultaneously forming doped regions having different conductivity-determining type element profiles
US8518170B2 (en) 2008-12-29 2013-08-27 Honeywell International Inc. Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks
JP2010157654A (en) * 2009-01-05 2010-07-15 Sharp Corp Method of manufacturing semiconductor device
JP2010161317A (en) * 2009-01-09 2010-07-22 Tokyo Ohka Kogyo Co Ltd Diffusing agent composition, method for forming impurity diffusion layer, and solar cell
KR101145928B1 (en) * 2009-03-11 2012-05-15 엘지전자 주식회사 Solar Cell and Manufacturing Method of the same
JP2010251667A (en) * 2009-04-20 2010-11-04 Sanyo Electric Co Ltd Solar cell
CN102405534A (en) * 2009-04-23 2012-04-04 夏普株式会社 Wiring sheet, solar cell provided with wiring sheet, and solar cell module
US8749053B2 (en) 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
US20110003466A1 (en) * 2009-07-02 2011-01-06 Innovalight, Inc. Methods of forming a multi-doped junction with porous silicon
US8138070B2 (en) * 2009-07-02 2012-03-20 Innovalight, Inc. Methods of using a set of silicon nanoparticle fluids to control in situ a set of dopant diffusion profiles
US8420517B2 (en) * 2009-07-02 2013-04-16 Innovalight, Inc. Methods of forming a multi-doped junction with silicon-containing particles
US20110183504A1 (en) * 2010-01-25 2011-07-28 Innovalight, Inc. Methods of forming a dual-doped emitter on a substrate with an inline diffusion apparatus
US8163587B2 (en) 2009-07-02 2012-04-24 Innovalight, Inc. Methods of using a silicon nanoparticle fluid to control in situ a set of dopant diffusion profiles
TW201104822A (en) * 2009-07-20 2011-02-01 E Ton Solar Tech Co Ltd Aligning method of patterned electrode in a selective emitter structure
US8324089B2 (en) 2009-07-23 2012-12-04 Honeywell International Inc. Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions
NL2003324C2 (en) * 2009-07-31 2011-02-02 Otb Solar Bv Photovoltaic cell with a selective emitter and method for making the same.
JP5815215B2 (en) * 2009-08-27 2015-11-17 東京応化工業株式会社 Diffusion agent composition and method for forming impurity diffusion layer
NL2003511C2 (en) * 2009-09-18 2011-03-22 Solar Cell Company Holding B V Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method.
KR20140129375A (en) * 2010-04-23 2014-11-06 히타치가세이가부시끼가이샤 n-TYPE DIFFUSION LAYER-FORMING COMPOSITION, n-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
FR2959870B1 (en) * 2010-05-06 2012-05-18 Commissariat Energie Atomique PHOTOVOLTAIC CELL COMPRISING A ZONE SUSPENDED BY A CONDUCTIVE PATTERN AND METHOD OF MAKING THE SAME.
JP5434792B2 (en) * 2010-05-21 2014-03-05 信越化学工業株式会社 Solar cell manufacturing method and solar cell
JP4831709B2 (en) * 2010-05-21 2011-12-07 シャープ株式会社 Semiconductor device and manufacturing method of semiconductor device
DE102010024308A1 (en) * 2010-06-18 2011-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a selective doping structure in a semiconductor substrate for producing a photovoltaic solar cell
DE102010024309A1 (en) 2010-06-18 2011-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing a photovoltaic solar cell
WO2011160272A1 (en) * 2010-06-21 2011-12-29 常州天合光能有限公司 Method for manufacturing solar cell with high sheet resistance
WO2012012167A1 (en) 2010-06-30 2012-01-26 Innovalight, Inc Methods of forming a floating junction on a solar cell with a particle masking layer
JP2012049424A (en) * 2010-08-30 2012-03-08 Shin Etsu Chem Co Ltd Solar cell and method of manufacturing the same
JP5379767B2 (en) * 2010-09-02 2013-12-25 PVG Solutions株式会社 Solar cell and manufacturing method thereof
CN102185005A (en) * 2010-10-18 2011-09-14 江阴浚鑫科技有限公司 Method for manufacturing selective emitter battery
JP5666254B2 (en) 2010-11-11 2015-02-12 東京応化工業株式会社 Diffusion agent composition and method for forming impurity diffusion layer
CN103155164B (en) * 2010-11-17 2016-08-10 日立化成株式会社 The manufacture method of solaode
JP5139502B2 (en) * 2010-11-17 2013-02-06 シャープ株式会社 Back electrode type solar cell
CN103201849B (en) * 2010-11-17 2016-08-03 日立化成株式会社 The manufacture method of solaode
CN103155166B (en) * 2010-11-17 2017-05-03 日立化成株式会社 Method for producing solar cell
KR101114198B1 (en) 2010-12-31 2012-03-13 현대중공업 주식회사 Localized emitter solar cell and method for manufacturing thereof
KR101199213B1 (en) 2010-12-31 2012-11-07 현대중공업 주식회사 Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR101198430B1 (en) * 2010-12-31 2012-11-06 현대중공업 주식회사 Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
US11251318B2 (en) * 2011-03-08 2022-02-15 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
JP5978564B2 (en) * 2011-05-26 2016-08-24 日立化成株式会社 Passivation film forming material for semiconductor substrate, passivation film for semiconductor substrate and manufacturing method thereof, solar cell element and manufacturing method thereof
WO2012161135A1 (en) 2011-05-26 2012-11-29 日立化成工業株式会社 Material for forming passivation film for semiconductor substrates, passivation film for semiconductor substrates, method for producing passivation film for semiconductor substrates, solar cell element, and method for manufacturing solar cell element
US20150099352A1 (en) * 2011-07-19 2015-04-09 Hitachi Chemical Company, Ltd. COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD OF PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD OF PRODUCING PHOTOVOLTAIC CELL ELEMENT
JPWO2013015173A1 (en) * 2011-07-25 2015-02-23 日立化成株式会社 Solar cell substrate, method for manufacturing solar cell substrate, solar cell element, and solar cell
JPWO2013015284A1 (en) * 2011-07-25 2015-02-23 日立化成株式会社 Semiconductor substrate and method for manufacturing the same, solar cell element, and solar cell
US8629294B2 (en) 2011-08-25 2014-01-14 Honeywell International Inc. Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants
KR101969032B1 (en) * 2011-09-07 2019-04-15 엘지전자 주식회사 Solar cell and manufacturing method thereof
US8975170B2 (en) 2011-10-24 2015-03-10 Honeywell International Inc. Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions
US9324598B2 (en) 2011-11-08 2016-04-26 Intevac, Inc. Substrate processing system and method
TWI424584B (en) 2011-11-30 2014-01-21 Au Optronics Corp Method of forming solar cell
TW201331991A (en) * 2012-01-10 2013-08-01 Hitachi Chemical Co Ltd N-type diffusion layer forming composition, n-type diffusion layer forming composition set, method for producing semiconductor substrate having n-type diffusion layer, and method for producing photovoltaic cell element
KR101894585B1 (en) 2012-02-13 2018-09-04 엘지전자 주식회사 Solar cell
TWI584486B (en) * 2012-02-24 2017-05-21 Pvg Solutions Inc Solar cell and manufacturing method thereof
KR102039611B1 (en) * 2012-05-22 2019-11-01 주성엔지니어링(주) Wafer type solar cell and method for manufacturing thereof, method and apparatus for doping of wafer type solar cell
US9812590B2 (en) 2012-10-25 2017-11-07 Sunpower Corporation Bifacial solar cell module with backside reflector
MY178951A (en) 2012-12-19 2020-10-23 Intevac Inc Grid for plasma ion implant
CN105144404B (en) * 2013-03-15 2019-03-29 Mtpv动力公司 For being not necessarily to the method and structure of physically-isolated more battery unit devices
KR20140126819A (en) * 2013-04-22 2014-11-03 엘지전자 주식회사 Solar cell
CN103489934B (en) * 2013-09-25 2016-03-02 晶澳(扬州)太阳能科技有限公司 Local aluminum back surface field solar cell of a kind of transparent two sides and preparation method thereof
CN104638058A (en) * 2013-11-15 2015-05-20 江苏天宇光伏科技有限公司 High-square-resistance diffusion process capable of lowering cost and increasing conversion efficiency
WO2015087472A1 (en) * 2013-12-13 2015-06-18 信越化学工業株式会社 Production method for solar cells and solar cell obtained by said production method
KR101861172B1 (en) * 2014-07-09 2018-05-28 엘지전자 주식회사 Solar cell
JP5830143B1 (en) * 2014-08-25 2015-12-09 信越化学工業株式会社 Method for manufacturing solar battery cell
JP2016066771A (en) * 2014-09-17 2016-04-28 日立化成株式会社 Method for manufacturing solar battery element
JP6502651B2 (en) * 2014-11-13 2019-04-17 信越化学工業株式会社 Method of manufacturing solar cell and method of manufacturing solar cell module
JP5938113B1 (en) 2015-01-05 2016-06-22 信越化学工業株式会社 Manufacturing method of substrate for solar cell
MY186316A (en) * 2015-01-26 2021-07-08 1366 Tech Inc Methods for creating a semiconductor wafer having profiled doping and wafers and solar cell components having a profiled field, such as drift and back surface
JP6360250B2 (en) * 2015-03-09 2018-07-18 東芝三菱電機産業システム株式会社 Manufacturing method of solar cell
JP6401094B2 (en) * 2015-03-27 2018-10-03 信越化学工業株式会社 Manufacturing method of solar cell
JP2015213177A (en) * 2015-06-15 2015-11-26 日立化成株式会社 N-type diffusion layer forming composition, manufacturing method of n-type diffusion layer, manufacturing method of solar cell element, and solar cell
JP1546719S (en) * 2015-08-19 2019-03-18
WO2017037803A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Solar cell and solar cell manufacturing method
EP3333901B1 (en) 2016-10-05 2020-12-30 Shin-Etsu Chemical Co., Ltd. Method for manufacturing a high photoelectric conversion efficiency solar cell
US20190348548A1 (en) 2018-05-09 2019-11-14 International Business Machines Corporation Solar cell with reduced surface recombination
JPWO2021060182A1 (en) * 2019-09-26 2021-04-01
CN111952417A (en) * 2020-08-24 2020-11-17 晶科绿能(上海)管理有限公司 Solar cell and preparation method thereof
CN113644152A (en) * 2021-07-23 2021-11-12 杭州电子科技大学 Thinned crystalline silicon battery pack

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152824A (en) 1977-12-30 1979-05-08 Mobil Tyco Solar Energy Corporation Manufacture of solar cells
JPS5963741A (en) * 1982-10-04 1984-04-11 Matsushita Electronics Corp Manufacture of semiconductor device
JPS6366929A (en) * 1986-09-08 1988-03-25 Tokyo Ohka Kogyo Co Ltd Silica group film forming composition for diffusing antimony
JPS63260126A (en) * 1987-04-17 1988-10-27 Sony Corp Manufacture of semiconductor device
JPS647518A (en) * 1987-06-30 1989-01-11 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH01205417A (en) * 1988-02-12 1989-08-17 Hitachi Ltd Manufacture of semiconductor device
JPH06252428A (en) * 1993-02-23 1994-09-09 Sharp Corp Manufacture of photoelectric conversion element
WO1996028851A1 (en) 1995-03-10 1996-09-19 Siemens Solar Gmbh Solar cell with back surface field and process for producing it
JPH1070296A (en) * 1996-08-27 1998-03-10 Sharp Corp Solar cell and fabrication thereof
JP2000183379A (en) * 1998-12-11 2000-06-30 Sanyo Electric Co Ltd Method for manufacturing solar cell
WO2000054341A1 (en) 1999-03-11 2000-09-14 Merck Patent Gmbh Doting pastes for producing p, p+ and n, n+ zones in semiconductors
JP2002124692A (en) * 2000-10-13 2002-04-26 Hitachi Ltd Solar cell and manufacturing method thereof
US6552414B1 (en) 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
JP2003224285A (en) * 2002-01-31 2003-08-08 Sharp Corp Method and apparatus for manufacturing solar cell
JP2004221149A (en) 2003-01-10 2004-08-05 Hitachi Ltd Manufacturing method of solar cell
US6777729B1 (en) 2002-09-25 2004-08-17 International Radiation Detectors, Inc. Semiconductor photodiode with back contacts
JP2004273826A (en) * 2003-03-10 2004-09-30 Sharp Corp Photoelectric converter and its fabricating process
JP2004281569A (en) 2003-03-13 2004-10-07 Kyocera Corp Method for producing solar cell element

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US616258A (en) * 1898-12-20 Door-hinge
US4131488A (en) * 1975-12-31 1978-12-26 Motorola, Inc. Method of semiconductor solar energy device fabrication
US4104091A (en) * 1977-05-20 1978-08-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Application of semiconductor diffusants to solar cells by screen printing
JPS6417425A (en) * 1987-07-13 1989-01-20 Matsushita Electronics Corp Manufacture of semiconductor device
JPH06105694B2 (en) * 1987-08-13 1994-12-21 富士電機株式会社 Boron solid phase diffusion method
JPH05283352A (en) * 1992-04-03 1993-10-29 Rohm Co Ltd Manufacture of semiconductor device
JP2647304B2 (en) * 1992-05-22 1997-08-27 東京応化工業株式会社 Coating solution for forming dopant diffusion film
JP3032422B2 (en) * 1994-04-28 2000-04-17 シャープ株式会社 Solar cell and method of manufacturing the same
JPH08283100A (en) * 1995-04-07 1996-10-29 Mitsubishi Materials Corp Composition for diffusing phosphorus
US5641362A (en) * 1995-11-22 1997-06-24 Ebara Solar, Inc. Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
JPH09283458A (en) * 1996-04-12 1997-10-31 Toshiba Corp Coating diffusing agent for semiconductor
US6162658A (en) * 1996-10-14 2000-12-19 Unisearch Limited Metallization of buried contact solar cells
JP3326343B2 (en) * 1996-12-10 2002-09-24 シャープ株式会社 Method and jig for manufacturing solar cell
JPH11220153A (en) * 1998-01-29 1999-08-10 Nippon Telegr & Teleph Corp <Ntt> Manufacture of solar cell
JP2000091254A (en) * 1998-09-11 2000-03-31 Oki Electric Ind Co Ltd METHOD FOR DIFFUSING SOLID PHASE OF Zn AND LIGHT EMITTING ELEMENT USING THE SAME
DE10150040A1 (en) * 2001-10-10 2003-04-17 Merck Patent Gmbh Etching passivating and antireflection layers made from silicon nitride on solar cells comprises applying a phosphoric acid and/or etching medium containing a salt of phosphoric acid the surface regions to be etched
US7141644B2 (en) * 2002-01-11 2006-11-28 Xerox Corporation Polthiophenes and devices thereof
JP2004193350A (en) * 2002-12-11 2004-07-08 Sharp Corp Solar battery cell and its manufacturing method
JP2005072120A (en) * 2003-08-21 2005-03-17 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152824A (en) 1977-12-30 1979-05-08 Mobil Tyco Solar Energy Corporation Manufacture of solar cells
JPS5963741A (en) * 1982-10-04 1984-04-11 Matsushita Electronics Corp Manufacture of semiconductor device
JPS6366929A (en) * 1986-09-08 1988-03-25 Tokyo Ohka Kogyo Co Ltd Silica group film forming composition for diffusing antimony
JPS63260126A (en) * 1987-04-17 1988-10-27 Sony Corp Manufacture of semiconductor device
JPS647518A (en) * 1987-06-30 1989-01-11 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH01205417A (en) * 1988-02-12 1989-08-17 Hitachi Ltd Manufacture of semiconductor device
JPH06252428A (en) * 1993-02-23 1994-09-09 Sharp Corp Manufacture of photoelectric conversion element
WO1996028851A1 (en) 1995-03-10 1996-09-19 Siemens Solar Gmbh Solar cell with back surface field and process for producing it
JPH1070296A (en) * 1996-08-27 1998-03-10 Sharp Corp Solar cell and fabrication thereof
US6552414B1 (en) 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
JP2000183379A (en) * 1998-12-11 2000-06-30 Sanyo Electric Co Ltd Method for manufacturing solar cell
WO2000054341A1 (en) 1999-03-11 2000-09-14 Merck Patent Gmbh Doting pastes for producing p, p+ and n, n+ zones in semiconductors
JP2002539615A (en) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dopant paste for forming p, p + and n, n + regions in a semiconductor
JP2002124692A (en) * 2000-10-13 2002-04-26 Hitachi Ltd Solar cell and manufacturing method thereof
JP2003224285A (en) * 2002-01-31 2003-08-08 Sharp Corp Method and apparatus for manufacturing solar cell
US6777729B1 (en) 2002-09-25 2004-08-17 International Radiation Detectors, Inc. Semiconductor photodiode with back contacts
JP2004221149A (en) 2003-01-10 2004-08-05 Hitachi Ltd Manufacturing method of solar cell
JP2004273826A (en) * 2003-03-10 2004-09-30 Sharp Corp Photoelectric converter and its fabricating process
JP2004281569A (en) 2003-03-13 2004-10-07 Kyocera Corp Method for producing solar cell element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116569A1 (en) * 2008-03-21 2009-09-24 信越化学工業株式会社 Phosphorus paste for diffusion and process for producing solar battery utilizing the phosphorus paste
JP5375821B2 (en) * 2008-03-21 2013-12-25 信越化学工業株式会社 Phosphorous paste for diffusion and method for manufacturing solar cell using the same
US8405176B2 (en) 2008-03-21 2013-03-26 Shin-Etsu Chemical Co., Ltd. Phosphorus paste for diffusion and process for producing solar battery utilizing the phosphorus paste
US20110248370A1 (en) * 2008-05-20 2011-10-13 Bronya Tsoi Electromagnetic radiation converter with a battery
JP2010056465A (en) * 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd Boron paste for diffusion, and method of manufacturing solar cell using the same
JP2011134999A (en) * 2009-12-25 2011-07-07 Kyocera Corp Solar cell module
WO2012043508A1 (en) * 2010-09-27 2012-04-05 三洋電機株式会社 Solar cell and manufacturing method therefor
JP2016026394A (en) * 2011-01-13 2016-02-12 日立化成株式会社 Composition for forming p-type diffusion layer, method of producing p-type diffusion layer, method of manufacturing solar cell element, and solar cell
WO2012132758A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Photoelectric conversion device and method for producing photoelectric conversion device
JPWO2012132758A1 (en) * 2011-03-28 2014-07-28 三洋電機株式会社 Photoelectric conversion device and method of manufacturing photoelectric conversion device
JP2017017364A (en) * 2011-12-16 2017-01-19 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
WO2014098016A1 (en) * 2012-12-18 2014-06-26 PVG Solutions株式会社 Solar cell and method for producing same
JP2017204625A (en) * 2016-05-13 2017-11-16 ▲ゆ▼晶能源科技股▲分▼有限公司Gintech Energy Corporation Solar battery and manufacturing method therefor

Also Published As

Publication number Publication date
CN101167191A (en) 2008-04-23
JP2006310373A (en) 2006-11-09
CN101167191B (en) 2010-12-08
JP4481869B2 (en) 2010-06-16
AU2006242030B2 (en) 2011-06-23
TW200703698A (en) 2007-01-16
KR101216996B1 (en) 2013-01-02
ES2764073T3 (en) 2020-06-02
AU2006242030A1 (en) 2006-11-09
US20090020158A1 (en) 2009-01-22
TWI408816B (en) 2013-09-11
EP1876651B1 (en) 2019-11-13
RU2007139437A (en) 2009-06-10
EP1876651A4 (en) 2013-09-11
NO20076104L (en) 2008-01-25
EP1876651A1 (en) 2008-01-09
KR20080003840A (en) 2008-01-08

Similar Documents

Publication Publication Date Title
JP4481869B2 (en) SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
WO2006117975A1 (en) Solar cell manufacturing method and solar cell
JP5414298B2 (en) Manufacturing method of solar cell
JP7331232B2 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF, SOLAR CELL MODULE
CN110838536A (en) Back contact solar cell with various tunnel junction structures and preparation method thereof
WO2008065918A1 (en) Solar cell and method for manufacturing the same
JP2004006565A (en) Solar cell and its manufacturing method
JP5737204B2 (en) Solar cell and manufacturing method thereof
TWI673883B (en) Solar cell element and method for manufacturing solar cell element
WO2014014117A1 (en) Passivation film, coating material, solar-cell element, and silicon substrate with passivation film attached thereto
JP7368653B2 (en) Solar cells and photovoltaic modules
JP5991945B2 (en) Solar cell and solar cell module
KR20130023219A (en) Solar cell
US10276732B2 (en) Solar cell element and method of manufacturing solar cell element
KR101849400B1 (en) Method for manufacturing solar cell element and solar cell element
WO2013100085A1 (en) Solar cell element, method for manufacturing solar cell element, and solar cell module
TWI656655B (en) Solar cell manufacturing method and solar cell obtained by the manufacturing method
US8338275B2 (en) Methods of forming a metal contact on a silicon substrate
JP6114171B2 (en) Manufacturing method of solar cell
CN103904168B (en) The manufacture method of solar battery cell
WO2012176838A1 (en) Solar cell and method for manufacturing solar cell
JP5994895B2 (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013998.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11918719

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006731542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006242030

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 4785/CHENP/2007

Country of ref document: IN

Ref document number: 1020077024719

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006242030

Country of ref document: AU

Date of ref document: 20060411

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006242030

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007139437

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006731542

Country of ref document: EP