WO2007003954A1 - Carbon dioxide extraction process - Google Patents

Carbon dioxide extraction process Download PDF

Info

Publication number
WO2007003954A1
WO2007003954A1 PCT/GB2006/002511 GB2006002511W WO2007003954A1 WO 2007003954 A1 WO2007003954 A1 WO 2007003954A1 GB 2006002511 W GB2006002511 W GB 2006002511W WO 2007003954 A1 WO2007003954 A1 WO 2007003954A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
ceramic
conduit
reactor
Prior art date
Application number
PCT/GB2006/002511
Other languages
French (fr)
Inventor
Børge Rygh SIVERTSEN
Håkon RUESLÅTTEN
Original Assignee
Statoil Asa
Cockbain, Julian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Statoil Asa, Cockbain, Julian filed Critical Statoil Asa
Publication of WO2007003954A1 publication Critical patent/WO2007003954A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • This invention relates to a process for the extraction of carbon dioxide from the gaseous product of methane reformation (generally using natural gas or a natural gas derived material as the starting material for the process) or combustion (e.g. from flue or exhaust gases) , to apparatus therefor and to ceramics and ceramic-containing elements suitable for use therein.
  • Methane reformation involves the reaction of methane and water at elevated temperature to produce hydrogen and carbon dioxide.
  • the resultant hydrogen may be used for many purposes but it is of particular interest for use in fuel cells, in chemical processes or as a fuel gas.
  • reformation effectively centralizes the environmental problems of generating energy from methane since the carbon dioxide generated can be captured at the site of the reactor used for the methane reformation.
  • the gaseous output of a methane reformation reactor is generally referred to as synthesis gas (or syngas) and comprises hydrogen, water, carbon dioxide, some carbon monoxide and some methane.
  • the carbon monoxide may be converted by reaction with water in a shift reactor to produce hydrogen and carbon dioxide and thus the output from the combination of reformer and shift reactors is hydrogen, water, carbon dioxide and some methane and/or carbon monoxide .
  • Gas essentially comprising wet hydrogen is drawn out of the top of this reactor while the particulate material from the base of this reactor is fed into a fluidized bed in a third reactor.
  • the bed in this third reactor is fluidized with oxygen and steam which serves to oxidize the ferrous oxide back to ferric oxide and to regenerate calcium oxide from the calcium carbonate as a result of the heat emitted by the oxidation reaction.
  • the gas drawn off from the top of the third reactor is essentially a mixture of water, carbon dioxide, oxygen and some methane. The regenerated particulate mass is drawn off the base of this reactor and recycled into the base of the first reactor.
  • carbon dioxide removal may be effected particularly advantageously using a static ceramic calcium carbonate/oxide bed which is cycled between conditions which cause carbon dioxide absorption and conditions which cause carbon dioxide release.
  • the bed may be particulate, in which case it will be retained in place along a length of a gas transmitting conduit by a porous retainer, e.g. a porous metal or ceramic inner wall, or it may be a self-supporting ceramic in which case it may be placed within or form some or all of the inner wall of that length of conduit.
  • the invention provides a process for the extraction of carbon dioxide from a carbon dioxide-containing gas (preferably a gas which contains hydrogen and/or methane and optionally which contains water, especially a gas produced in a methane reformation process, in particular syngas) by calcium oxide by formation of calcium carbonate (and preferably for the release of carbon dioxide from calcium carbonate to regenerate calcium oxide) , said process comprising flowing said carbon dioxide-containing gas past or through a gas-porous, ceramic calcium oxide-containing member disposed in a reactor vessel whereby said carbon dioxide-containing gas may permeate said member, and preferably subsequently heating said member and/or exposing said member to a gas having a lower carbon dioxide partial pressure than said carbon dioxide- containing gas whereby to cause calcium carbonate therein to release carbon dioxide, said member defining at least part of the inner wall of a gas flow conduit within said reactor vessel .
  • a carbon dioxide-containing gas preferably a gas which contains hydrogen and/or methane and optionally which contains water, especially a gas produced in a methan
  • the invention also provides a carbon dioxide separation apparatus comprising a vessel having a gas inlet and a gas outlet and a gas flow conduit linking said inlet and outlet, at least part of an inner wall of said conduit being provided by a gas porous ceramic member containing calcium oxide and/or carbonate, wherein carbon dioxide-containing gas flowing through said conduit permeates said member permitting carbon dioxide in said gas to react with calcium oxide in said member to form calcium carbonate, said apparatus being arranged such that said member may be heated and/or exposed to a gas having a lower carbon dioxide partial pressure than said carbon dioxide- containing gas whereby to cause calcium carbonate therein to release carbon dioxide into said conduit.
  • the apparatus comprises a first such member and a second such member in thermal contact with each other via a gas-impermeable, thermally conducting barrier (e.g. a metal barrier) whereby the first member may in one stage of operation serve to absorb carbon dioxide from a conduit while the second member is functioning to release carbon dioxide into a conduit and in a further stage of operation the second member may serve to absorb carbon dioxide from a conduit while the first member is functioning to release carbon dioxide into a conduit.
  • the apparatus is preferably provided with a valve which may be operated to direct the carbon dioxide-containing gas alternatively past the first or second member and also desirably a further valve which may be operated to direct an essentially hydrogen-free gas past the other member .
  • the members may be arranged concentrically between inner and outer concentric conduits with an intervening concentric gas impermeable barrier, and preferably within an outer concentric gas-impermeable shell.
  • two or more parallel conduits are separated by one or more gas impermeable barriers, with the members either forming the walls of the conduits or being disposed on either side of the barrier (s) between adjacent conduits.
  • an array of two or more conduits e.g. 1x2, 1x4, 2x2, 2x3, 2x4 or 4x4 conduits may simultaneously operate to absorb or release carbon dioxide from or into the gas passing through them.
  • the members are enclosed by a gas-impermeable, thermally conducting barrier and have extending therethrough a gas flow conduit.
  • the members have extending therethrough a first gas flow conduit from which gas may permeate the member and a second conduit having a gas-impermeable, thermally conducting wall whereby gas therein may not permeate the member .
  • the conduit through the members may be a single conduit or a plurality of conduits from which gas may permeate the same volumes of the member, i.e. it may provide multiple flow paths so as to increase the efficiency of carbon dioxide uptake or release.
  • conduit devices comprising an outer gas-impermeable wall containing therein a conduit and a gas permeable ceramic member containing calcium oxide or calcium carbonate, whereby gas from said conduit may permeate said member, said conduit device having a gas- impermeable thermally conductive portion (preferably a barrier) wherefrom heat may be transferred to or from said member.
  • the barrier may be provided by the said outer wall .
  • the ceramic may also if desired contain a material which may function as a catalyst in one or more stages of methane reformation or water-shift reactions, for example an iron oxide.
  • a material which may function as a catalyst in one or more stages of methane reformation or water-shift reactions for example an iron oxide.
  • the calcium oxide / carbonate present in the ceramic some or all of the remaining material making up the ceramic is preferably a clay.
  • any clay from which a ceramic can be prepared may be used.
  • the preferred clays and preferred means of manufacturing the ceramic are discussed further below.
  • the calcium oxide / carbonate content (expressed in terms of the content of the calcium oxide / carbonate when in calcium carbonate form) of the dry ceramic will preferably be from 30 to 90% wt, more preferably 50 to 85%, especially 60 to 85%, particularly 75 to 80% wt.
  • gas porosity is substantially similar at 50 to 80% wt. calcium carbonate content.
  • the apparatus of the invention can desirably be provided with an expansion tank or tanks arranged to receive the gas flow to or from the conduit during changeover from CO 2 absorption to CO 2 release in specific lengths of the conduit or alternatively it may be provided with extra lengths of conduit so that each such length is either in CO 2 uptake, CO 2 release or changeover mode.
  • the gas content of any such length may be driven out by a gas which does not cause any significant CO 2 release or uptake as desired.
  • the apparatus be provided with sensors to monitor CO 2 uptake by the members (e.g. weight sensors or CO 2 sensors) in order that cycling between CO 2 uptake and CO 2 release may be achieved most efficiently.
  • sensors e.g. weight sensors or CO 2 sensors
  • Such sensors will be functionally connected to a controller, e.g. a computer, which will switch from CO 2 uptake once a predetermined amount of CO 2 has been taken up, e.g. at least 50%, more preferably at least 75%, for example less than 80% of the theoretical maximum determinable in laboratory conditions for the material used.
  • the use of such a sensor is particularly desirable when the members are fresh or are reaching the end of their operating lives .
  • the apparatus of the invention has four particularly preferred formats.
  • first it comprises a methane reformation reactor, a shift reactor and a carbon dioxide absorber in series; in the second it comprises a carbon dioxide absorber, optionally fed by a combustion apparatus (e.g. an engine or a heat and power generator) ; in the third it comprises a combined methane reformation reactor, shift reactor and carbon dioxide absorber (i.e. a fully integrated reactor); and in the fourth it comprises a methane reformation reactor and a combined shift reactor and carbon dioxide absorber (i.e. a partially integrated reactor) .
  • a combustion apparatus e.g. an engine or a heat and power generator
  • the apparatus comprises a methane reformation reactor
  • this may for example be a steam reformer or a thermal reformer.
  • the reactor may comprise a gas porous ceramic calcium oxide/carbonate member as described herein which will operate to remove some of the carbon dioxide that is generated.
  • these members be arranged so that they can be switched between absorption and desorption modes so allowing continuous operation of the reactor.
  • this may for example be a "low" temperature shift reactor or a "high" temperature shift reactor, or both may be present.
  • the shift reactor may comprise a gas porous ceramic calcium oxide/carbonate member as described herein which will operate to remove some of the carbon dioxide that is generated and that is present in the gas fed into the shift reactor.
  • these members be arranged so that they can be switched between absorption and desorption modes so allowing continuous operation of the reactor .
  • the apparatus comprises a separate carbon dioxide absorber
  • this will preferably comprise a gas porous ceramic calcium oxide/carbonate member as described herein which will operate to remove some of the carbon dioxide that is present in the gas fed into the absorber.
  • these members be arranged so that they can be switched between absorption and desorption modes so allowing continuous operation of the absorber.
  • the reactor temperature in a steam reformer for methane is in the range 500 to HOO 0 C, more preferably 700 to 1020 0 C.
  • the inlet gas is a steam/methane mixture and the outlet gas a steam/hydrogen/carbon dioxide/carbon monoxide/methane mixture.
  • the operating temperature is preferably kept below 1000 0 C, especially below 950 0 C to avoid undue inactivation of the carbon dioxide absorber.
  • the outlet gas from the reformer is preferably passed through a heat exchanger before passing into a shift reactor in which the carbon monoxide is transformed to carbon dioxide by reaction with steam and optionally also with a reducable inorganic agent, e.g. Fe 2 O 3 .
  • a shift reactor in which the carbon monoxide is transformed to carbon dioxide by reaction with steam and optionally also with a reducable inorganic agent, e.g. Fe 2 O 3 .
  • a reducable inorganic agent e.g. Fe 2 O 3
  • a reducable inorganic agent e.g. Fe 2 O 3
  • Low temperature shift reactors typically operate at 200 to 35O 0 C
  • high temperature shift reactors typically operate at 350 to 750 0 C.
  • the preferred operational temperature range is generally 400 to 700 0 C.
  • the outlet gas from the shift reactor is essentially wet hydrogen, possibly with some relatively low content of CO and CO 2 .
  • Any remaining carbon oxide content may be removed by passing the outlet gas through a methanation or PROX (preferential oxygenation) reactor whereafter heat is removed (and water is condensed out of the hydrogen flow) by passage through a heat exchanger.
  • the hydrogen may then be fed to a fuel cell and subsequently to an afterburner.
  • the exhaust gas from the afterburner may then be fed to a further carbon dioxide absorber, optionally using a calcium oxide containing material according to the invention. Heat from the afterburner and the heat exchangers may be used to bring the inlet gases for the steam reformer to the desired temperature.
  • two shift reactors in series, may be used, the first being a high temperature shift reactor and the second a low temperature shift reactor.
  • a pressure swing absorber may be used to produce a high pressure pure hydrogen stream.
  • the purge gas from the PSA may then be used to produce a second fuel stream.
  • the output gas from the steam reformer may be passed to a PSA to produce a high pressure hydrogen stream which may be fed to a fuel cell.
  • the purge gas from the PSA may then be fed into a shift reactor and CO 2 absorber lined with a calcium oxide containing material according to the invention. The output from the shift reactor thus provides a second fuel stream.
  • the shift reactors may not function as carbon dioxide absorbers but instead may be followed by carbon dioxide absorbers in which the gas flow conduit is lined with a calcium oxide containing material according to the invention.
  • the gas temperatures in the absorber will typically be in the range 350 to 975 0 C, preferably 400 to 860 0 C.
  • the absorber may if desired be preceded or followed by a PSA.
  • the calcium oxide containing material readily serves to absorb carbon dioxide from the gases flowing through the reactor while it undergoes the reformation and shift reactions .
  • the now calcium carbonate containing material By diverting gas flow to alternative conduits through the reactors (or carbon dioxide absorbers), the now calcium carbonate containing material, which will remain at similar temperatures, will then release carbon dioxide into the conduits from which it may be drawn off.
  • Carbon dioxide release may be triggered by increasing temperature, reducing pressure or reducing carbon dioxide partial pressure, or a combination of these.
  • Reference to Figure 12 of the accompanying drawings will show how, at a given temperature (or carbon dioxide partial pressure) , a change in carbon dioxide partial pressure (or temperature) can move the calcium oxide/ carbonate system from carbon dioxide absorbing to carbon dioxide desorbing or vice versa.
  • any temperature increase to promote carbon dioxide desorption will not be to a temperature above HOO 0 C, especially not to one above 1000 0 C.
  • a temperature increase to a temperature above 860 0 C may be appropriate.
  • the calcium oxide/carbonate system may be contacted with an inert gas (e.g. nitrogen) so as to reduce the carbon dioxide partial pressure.
  • an inert gas e.g. nitrogen
  • a condensable gas e.g. steam or less preferably an organic solvent
  • carbon dioxide e.g. carbon dioxide
  • desorption may be effected without gas flow, with the desorbed carbon dioxide subsequently being flushed from the apparatus .
  • there are four main options for the desorption phase flush with steam; reduce pressure, e.g. with a vacuum pump; increase temperature; or flush with carbon dioxide at an elevated temperature.
  • the retrieved carbon dioxide is preferably compressed or liquefied for transport and disposal e.g. by injection into subterranean formations .
  • the operating temperature in any portion of the apparatus according to the invention which contains a calcium oxide/carbonate ceramic carbon dioxide absorbing member according to the invention will preferably be below 1100 0 C, more preferably below 1000 0 C so as to avoid inactivation.
  • the calcium oxide / carbonate containing ceramic material may for example be prepared as follows : clay and water are mixed and allowed to stand so that coarse particles (e.g. mode particle sizes above 60 :m) settle out; the upper layer of water and clay is separated off; coarser calcium carbonate particles (e.g. mode particle size of less than 100 ⁇ m, e.g. 2 to 50 :m) are mixed in with the separated clay and water to the desired content) ; the mixture is poured into a mould and dried; the dried material is sintered (e.g. in air, vacuum or CO 2 ) ; and, optionally, the sintered material is exposed to carbon dioxide (e.g. to facilitate transport and storage) .
  • coarse particles e.g. mode particle sizes above 60 :m
  • coarser calcium carbonate particles e.g. mode particle size of less than 100 ⁇ m, e.g. 2 to 50 :m
  • the mixture is poured into a mould and dried
  • the dried material is sintered (e.g. in air, vacuum
  • the invention provides a process for the production of a ceramic product, said process comprising: mixing clay and water,- adding calcium carbonate particles to the desired content; extruding or moulding the resulting mixture; drying and sintering the extruded or moulded product; and, optionally, exposing the sintered material to carbon dioxide.
  • the carbon dioxide released on sintering is preferably captured for disposal.
  • the calcium carbonate used is preferably calcite or dolomite.
  • the mould used in this process is preferably a water- absorbent material, e.g. gypsum, so as to prevent deformation during drying.
  • a water- absorbent material e.g. gypsum
  • Sintering is preferably effected at 800 to 1000 0 C, especially preferably 850 to 925°C.
  • Exposure to carbon dioxide is preferably effected at a temperature above 520 0 C, e.g. above 550 0 C, to avoid formation of calcium hydroxide and to expedite the reaction.
  • the material may be extruded or moulded into blocks which can be cut and/or built up so as to form structures of the desired shape for use according to the invention; alternatively they can be extruded or moulded in the desired shape, e.g. with channels or voids which will function as the gas flow conduits . In this latter case, the mixture may be added to the mould stepwise so as to build up the desired shape gradually.
  • the ceramic material may also be produced in particulate or pelletized form, for example for use in an embodiment of the invention in which the ceramic is contained within a porous-walled container.
  • the invention provides a ceramic containing at least 60% wt. of calcium carbonate or oxide (calculated as the carbonate) .
  • the clay used may be any clay suitable for ceramic formation.
  • Examples of preferred clays are set out in WO 02/081409, the content of which is incorporated herein by reference.
  • WO 02/081409 describes preparation via a calcium hydroxide stage of building blocks which have a relatively low calcium carbonate content in order to have the strength necessary for the desired end use.
  • the ceramic of the invention when in the calcium oxide containing state, may also be used as a carbon dioxide absorber in other circumstances than in methane reformation, e.g. to absorb carbon dioxide from the exhaust gas of a hydrocarbon burner, for example a heat and/or power generator.
  • the ceramic is preferably preconditioned by being subjected to at least one, preferably at least two, e.g. 3 to 10, carbon dioxide absorption and release cycles, as in this way performance is improved.
  • the carbon dioxide loaded ceramic may be collected from the fuel burning site for centralized regeneration and subsequent re-use or it may simply be disposed of as landfill or on fields .
  • the carbon dioxide loaded ceramic material may also be used as a building material or as a fertilizer. Ceramic used in methane reformation may similarly be disposed of. Such disposal represents an environmentally friendly means of carbon dioxide disposal .
  • FIGS 1 to 7 are schematic drawings of integrated apparatus for methane reformation
  • Figures 8 to 11 are schematic drawings of ceramic-walled gas flow conduits for use in methane reformation apparatus ;
  • Figure 12 is a plot of temperature versus carbon dioxide partial pressure showing the thermodynamic equilibrium between calcium oxide and calcium carbonate.
  • Blue clay from Tr ⁇ ndelag was mixed with water. In order to remove the largest fractions of the clay, and any impurities such as stones and sand, sedimentation in water was used to separate out the clay fraction finer than 25 :m. (The mixture of clay and water is allowed to stand so that coarse particles settle out and the upper layer of water and clay is separated off) .
  • calcite e.g. 75% wt
  • the calcite was bought from Franzefoss KaIk AS (Franzit Micro with specification (average) (6 :m) 98% CaCO 3 , 0.8% MgCO 3 , 0.4% SiO 2 , 0.2% Al 2 O 3 and 0.15% Fe 2 O 3 , ⁇ 0.1% Na 2 O).
  • the samples were sintered in an atmosphere of air, vacuum, or CO 2 in an oven.
  • the sintering temperature was typically 850-1000 0 C, preferably below 950 0 C (lower sintering temperatures gave better ability to absorb CO 2 ) . Calcination takes place in the temperature range 600-1100 0 C depending on the partial pressure of CO 2 .
  • the sintering time was e.g. 2-6 hours (dependent on the temperature, e.g. 2 hours at 1050 0 C) .
  • the oven was heated relatively slowly up and cooled slowly down, e.g. 300°C/h, in order not to break the ceramics.
  • the sintering temperature is preferably 850-925 0 C.
  • the ceramics are ready to absorb CO 2 after the sintering. However, if the material is to be transported, or stored it might be beneficial to expose the ceramic to CO 2 , e.g. at 700 0 C for 10-20 hours. The ceramic is stronger when it has absorbed CO 2 and CaO is transformed into CaCO 3 . However, then the material needs to be treated to desorb the CO 2 before it can be used to capture CO 2 . This can be done either by changing the partial pressure of CO 2 in the ceramics atmosphere or elevating the temperature (as described before) .
  • FIG. 1 to 7 there are shown schematically apparatus arrangements for methane reformation according to the invention.
  • the boxes represent different reactors or vessels for different process steps.
  • a dotted walled box indicates that the reactor or vessel is optional .
  • Dashed lines indicate that the gas flow indicated is optional .
  • HT and LT represent high and low temperature.
  • Q represents energy removal, e.g. by heat exchange.
  • FC represents fuel cell.
  • SOFC represents solid oxide fuel cell.
  • Alt. Fuel indicates that the gas may be used as a combustible fuel.
  • a reactor element 1 having concentric gas flow conduits 2 and 3 separated by two concentric ceramic tubes 4 and 5 which are separated by a gas impermeable, thermally conducting metal barrier 6. While the inner ceramic tube is absorbing CO 2 , the outer ceramic tube is desorbing CO 2 . When the inner tube has reached its absorption limit, gas flow is switched and the outer ceramic tube is used for CO 2 absorption. Operating at similar temperatures, CO 2 desorption may be triggered for example by lowering the partial pressure of CO 2 in the conduit into which CO 2 is to be released.
  • Figure 9 shows a reactor element 7 operating on the same principle as that of Figure 8 but with a plurality of parallel gas flow conduits 8, 9, 10, 11, 12, 13 in two ceramic blocks 14 and 15 separated by a barrier 16.
  • FIG 10 shows two reactor elements 17 and 18 provided with gas flow conduits 19 and 20, "closed" conduits 20 being separated from the ceramic blocks 21 by gas impermeable barriers 22.
  • gas flow from the reformer may be passed through the closed conduits of element 18 before entering the CO 2 absorber section in which it flows through the "open" conduits 19 of element
  • element 17 the closed conduits are used for coolant flow. When element 17 has reached its CO 2 absorption limit, gas flow may be switched. In element 17
  • the closed conduits are used to carry a heated gas so as to raise the temperature of the element and cause CO 2 desorption into the open conduits .
  • FIG 11 shows reactor element arrays 23 and 24 each comprising four ceramic blocks 25, surrounded by a gas impermeable barrier 26 which serves as a heat exchange surface, and having running through their centres a gas flow conduit 27.
  • Array 23 may be used for CO 2 absorption while array 24 is used for CO 2 desorption and vice versa.

Abstract

The invention relates to a process for the extraction of carbon dioxide from a carbon dioxide-containing gas by calcium oxide by formation of calcium carbonate, said process comprising flowing said carbon dioxide- containing gas past or through a gas-porous, calcium oxide-containing ceramic member disposed in a reactor vessel whereby said carbon dioxide-containing gas may permeate said member, and preferably subsequently heating said member and/or exposing said member to a gas having a lower carbon dioxide partial pressure than said carbon dioxide-containing gas whereby to cause calcium carbonate therein to release carbon dioxide, said member defining at least part of the inner wall of a gas flow conduit within said reactor vessel.

Description

Carbon Dioxide Extraction Process
This invention relates to a process for the extraction of carbon dioxide from the gaseous product of methane reformation (generally using natural gas or a natural gas derived material as the starting material for the process) or combustion (e.g. from flue or exhaust gases) , to apparatus therefor and to ceramics and ceramic-containing elements suitable for use therein.
Methane reformation involves the reaction of methane and water at elevated temperature to produce hydrogen and carbon dioxide. The resultant hydrogen may be used for many purposes but it is of particular interest for use in fuel cells, in chemical processes or as a fuel gas. Where the hydrogen produced is used in fuel cells, reformation effectively centralizes the environmental problems of generating energy from methane since the carbon dioxide generated can be captured at the site of the reactor used for the methane reformation.
The gaseous output of a methane reformation reactor is generally referred to as synthesis gas (or syngas) and comprises hydrogen, water, carbon dioxide, some carbon monoxide and some methane. The carbon monoxide may be converted by reaction with water in a shift reactor to produce hydrogen and carbon dioxide and thus the output from the combination of reformer and shift reactors is hydrogen, water, carbon dioxide and some methane and/or carbon monoxide .
It has been proposed in US-B-6667022 to pass steam and the syngas from a reformer through a fluidized bed in a first reactor comprising a fluidized bed of particulate calcium oxide and ferric oxide whereby the calcium oxide reacts with the carbon dioxide to produce calcium carbonate and the carbon monoxide is transformed to carbon dioxide by a combination of a shift reaction and reduction of the ferric oxide. The upper part of the particulate bed is fed, together with the gas output (essentially wet hydrogen) into a second fluidized bed in a second reactor which functions to separate the gas from the solid and perhaps also to some extent as a shift reactor to transform any remaining carbon monoxide to carbon dioxide which can react with remaining calcium oxide. Gas essentially comprising wet hydrogen is drawn out of the top of this reactor while the particulate material from the base of this reactor is fed into a fluidized bed in a third reactor. The bed in this third reactor is fluidized with oxygen and steam which serves to oxidize the ferrous oxide back to ferric oxide and to regenerate calcium oxide from the calcium carbonate as a result of the heat emitted by the oxidation reaction. The gas drawn off from the top of the third reactor is essentially a mixture of water, carbon dioxide, oxygen and some methane. The regenerated particulate mass is drawn off the base of this reactor and recycled into the base of the first reactor.
This procedure, while attractive as a means of separating the hydrogen in syngas from carbon monoxide and carbon dioxide, is undesirably complicated as it requires a particulate mass to be circulated between three separate reactors in which the particulate components undergo cyclical chemical changes which will of course result in their structural integrity, and hence their ability to withstand the physical cycling procedure, being reduced.
We have now found that carbon dioxide removal may be effected particularly advantageously using a static ceramic calcium carbonate/oxide bed which is cycled between conditions which cause carbon dioxide absorption and conditions which cause carbon dioxide release. The bed may be particulate, in which case it will be retained in place along a length of a gas transmitting conduit by a porous retainer, e.g. a porous metal or ceramic inner wall, or it may be a self-supporting ceramic in which case it may be placed within or form some or all of the inner wall of that length of conduit.
Thus viewed from one aspect the invention provides a process for the extraction of carbon dioxide from a carbon dioxide-containing gas (preferably a gas which contains hydrogen and/or methane and optionally which contains water, especially a gas produced in a methane reformation process, in particular syngas) by calcium oxide by formation of calcium carbonate (and preferably for the release of carbon dioxide from calcium carbonate to regenerate calcium oxide) , said process comprising flowing said carbon dioxide-containing gas past or through a gas-porous, ceramic calcium oxide-containing member disposed in a reactor vessel whereby said carbon dioxide-containing gas may permeate said member, and preferably subsequently heating said member and/or exposing said member to a gas having a lower carbon dioxide partial pressure than said carbon dioxide- containing gas whereby to cause calcium carbonate therein to release carbon dioxide, said member defining at least part of the inner wall of a gas flow conduit within said reactor vessel .
Viewed from a further aspect the invention also provides a carbon dioxide separation apparatus comprising a vessel having a gas inlet and a gas outlet and a gas flow conduit linking said inlet and outlet, at least part of an inner wall of said conduit being provided by a gas porous ceramic member containing calcium oxide and/or carbonate, wherein carbon dioxide-containing gas flowing through said conduit permeates said member permitting carbon dioxide in said gas to react with calcium oxide in said member to form calcium carbonate, said apparatus being arranged such that said member may be heated and/or exposed to a gas having a lower carbon dioxide partial pressure than said carbon dioxide- containing gas whereby to cause calcium carbonate therein to release carbon dioxide into said conduit.
Particularly desirably, the apparatus comprises a first such member and a second such member in thermal contact with each other via a gas-impermeable, thermally conducting barrier (e.g. a metal barrier) whereby the first member may in one stage of operation serve to absorb carbon dioxide from a conduit while the second member is functioning to release carbon dioxide into a conduit and in a further stage of operation the second member may serve to absorb carbon dioxide from a conduit while the first member is functioning to release carbon dioxide into a conduit. In this embodiment, the apparatus is preferably provided with a valve which may be operated to direct the carbon dioxide-containing gas alternatively past the first or second member and also desirably a further valve which may be operated to direct an essentially hydrogen-free gas past the other member .
Thus, for example, in one preferred embodiment, the members may be arranged concentrically between inner and outer concentric conduits with an intervening concentric gas impermeable barrier, and preferably within an outer concentric gas-impermeable shell. In an alternative preferred embodiment, two or more parallel conduits are separated by one or more gas impermeable barriers, with the members either forming the walls of the conduits or being disposed on either side of the barrier (s) between adjacent conduits. In this way an array of two or more conduits, e.g. 1x2, 1x4, 2x2, 2x3, 2x4 or 4x4 conduits may simultaneously operate to absorb or release carbon dioxide from or into the gas passing through them.
In a further preferred embodiment, the members are enclosed by a gas-impermeable, thermally conducting barrier and have extending therethrough a gas flow conduit.
In a yet further preferred embodiment the members have extending therethrough a first gas flow conduit from which gas may permeate the member and a second conduit having a gas-impermeable, thermally conducting wall whereby gas therein may not permeate the member .
The conduit through the members may be a single conduit or a plurality of conduits from which gas may permeate the same volumes of the member, i.e. it may provide multiple flow paths so as to increase the efficiency of carbon dioxide uptake or release.
Such conduit arrangements are novel and form a further aspect of the invention. Viewed from this aspect the invention provides a conduit device comprising an outer gas-impermeable wall containing therein a conduit and a gas permeable ceramic member containing calcium oxide or calcium carbonate, whereby gas from said conduit may permeate said member, said conduit device having a gas- impermeable thermally conductive portion (preferably a barrier) wherefrom heat may be transferred to or from said member. If desired, the barrier may be provided by the said outer wall .
The ceramic may also if desired contain a material which may function as a catalyst in one or more stages of methane reformation or water-shift reactions, for example an iron oxide. With the calcium oxide / carbonate present in the ceramic, some or all of the remaining material making up the ceramic is preferably a clay. For this purpose, any clay from which a ceramic can be prepared may be used. The preferred clays and preferred means of manufacturing the ceramic are discussed further below. Generally however the calcium oxide / carbonate content (expressed in terms of the content of the calcium oxide / carbonate when in calcium carbonate form) of the dry ceramic will preferably be from 30 to 90% wt, more preferably 50 to 85%, especially 60 to 85%, particularly 75 to 80% wt. At too high a metal carbonate content, the ceramic becomes friable and difficult to handle; at too low a calcium carbonate content, the amount of carbon dioxide absorbable per unit volume is undesirably low. In general, gas porosity is substantially similar at 50 to 80% wt. calcium carbonate content.
Where the apparatus of the invention is to be used on a continuous basis, it can desirably be provided with an expansion tank or tanks arranged to receive the gas flow to or from the conduit during changeover from CO2 absorption to CO2 release in specific lengths of the conduit or alternatively it may be provided with extra lengths of conduit so that each such length is either in CO2 uptake, CO2 release or changeover mode. During changeover mode, the gas content of any such length may be driven out by a gas which does not cause any significant CO2 release or uptake as desired.
It is also preferred that the apparatus be provided with sensors to monitor CO2 uptake by the members (e.g. weight sensors or CO2 sensors) in order that cycling between CO2 uptake and CO2 release may be achieved most efficiently. Typically such sensors will be functionally connected to a controller, e.g. a computer, which will switch from CO2 uptake once a predetermined amount of CO2 has been taken up, e.g. at least 50%, more preferably at least 75%, for example less than 80% of the theoretical maximum determinable in laboratory conditions for the material used. The use of such a sensor is particularly desirable when the members are fresh or are reaching the end of their operating lives . It is not necessary to monitor CO2 uptake along the whole length of the CO2 uptake conduit; desirably this is done at a small number of points, e.g. 1 to 6 points, along the length, preferably including at least one between 20 and 80% of the distance along this length.
The apparatus of the invention has four particularly preferred formats. In the first it comprises a methane reformation reactor, a shift reactor and a carbon dioxide absorber in series; in the second it comprises a carbon dioxide absorber, optionally fed by a combustion apparatus (e.g. an engine or a heat and power generator) ; in the third it comprises a combined methane reformation reactor, shift reactor and carbon dioxide absorber (i.e. a fully integrated reactor); and in the fourth it comprises a methane reformation reactor and a combined shift reactor and carbon dioxide absorber (i.e. a partially integrated reactor) .
Where the apparatus comprises a methane reformation reactor, this may for example be a steam reformer or a thermal reformer. Since the process performed within the reformation reactor generates carbon dioxide, the reactor may comprise a gas porous ceramic calcium oxide/carbonate member as described herein which will operate to remove some of the carbon dioxide that is generated. As described, it is preferred that these members be arranged so that they can be switched between absorption and desorption modes so allowing continuous operation of the reactor. Where the apparatus comprises a shift reactor, this may for example be a "low" temperature shift reactor or a "high" temperature shift reactor, or both may be present. As described above, the shift reactor may comprise a gas porous ceramic calcium oxide/carbonate member as described herein which will operate to remove some of the carbon dioxide that is generated and that is present in the gas fed into the shift reactor. Once again, it is preferred that these members be arranged so that they can be switched between absorption and desorption modes so allowing continuous operation of the reactor .
Where the apparatus comprises a separate carbon dioxide absorber, this will preferably comprise a gas porous ceramic calcium oxide/carbonate member as described herein which will operate to remove some of the carbon dioxide that is present in the gas fed into the absorber. Once again, it is preferred that these members be arranged so that they can be switched between absorption and desorption modes so allowing continuous operation of the absorber.
Typically the reactor temperature in a steam reformer for methane (normally natural gas, optionally desulphurized by conventional techniques) is in the range 500 to HOO0C, more preferably 700 to 10200C. The inlet gas is a steam/methane mixture and the outlet gas a steam/hydrogen/carbon dioxide/carbon monoxide/methane mixture. However, when this is done, the operating temperature is preferably kept below 10000C, especially below 9500C to avoid undue inactivation of the carbon dioxide absorber.
Where the reformation is by thermal reformation (i.e. also involving addition of oxygen) , the operation temperatures are similar, although operation towards the higher ends of the ranges specified may be preferred.
The outlet gas from the reformer is preferably passed through a heat exchanger before passing into a shift reactor in which the carbon monoxide is transformed to carbon dioxide by reaction with steam and optionally also with a reducable inorganic agent, e.g. Fe2O3. Typically either co-called low or high temperature shift reactors (or a combination of both) may be used. Low temperature shift reactors typically operate at 200 to 35O0C, while high temperature shift reactors typically operate at 350 to 7500C. The preferred operational temperature range is generally 400 to 7000C. The outlet gas from the shift reactor is essentially wet hydrogen, possibly with some relatively low content of CO and CO2. Any remaining carbon oxide content may be removed by passing the outlet gas through a methanation or PROX (preferential oxygenation) reactor whereafter heat is removed (and water is condensed out of the hydrogen flow) by passage through a heat exchanger. The hydrogen may then be fed to a fuel cell and subsequently to an afterburner. The exhaust gas from the afterburner may then be fed to a further carbon dioxide absorber, optionally using a calcium oxide containing material according to the invention. Heat from the afterburner and the heat exchangers may be used to bring the inlet gases for the steam reformer to the desired temperature.
If desired, two shift reactors, in series, may be used, the first being a high temperature shift reactor and the second a low temperature shift reactor.
As an alternative to a methanation or PROX reactor, a pressure swing absorber (PSA) may be used to produce a high pressure pure hydrogen stream. The purge gas from the PSA may then be used to produce a second fuel stream. In a further alternative, the output gas from the steam reformer may be passed to a PSA to produce a high pressure hydrogen stream which may be fed to a fuel cell. The purge gas from the PSA may then be fed into a shift reactor and CO2 absorber lined with a calcium oxide containing material according to the invention. The output from the shift reactor thus provides a second fuel stream.
If desired the shift reactors may not function as carbon dioxide absorbers but instead may be followed by carbon dioxide absorbers in which the gas flow conduit is lined with a calcium oxide containing material according to the invention. The gas temperatures in the absorber will typically be in the range 350 to 9750C, preferably 400 to 8600C. The absorber may if desired be preceded or followed by a PSA.
At these operating temperatures, the calcium oxide containing material readily serves to absorb carbon dioxide from the gases flowing through the reactor while it undergoes the reformation and shift reactions . By diverting gas flow to alternative conduits through the reactors (or carbon dioxide absorbers), the now calcium carbonate containing material, which will remain at similar temperatures, will then release carbon dioxide into the conduits from which it may be drawn off.
Carbon dioxide release may be triggered by increasing temperature, reducing pressure or reducing carbon dioxide partial pressure, or a combination of these. Reference to Figure 12 of the accompanying drawings will show how, at a given temperature (or carbon dioxide partial pressure) , a change in carbon dioxide partial pressure (or temperature) can move the calcium oxide/ carbonate system from carbon dioxide absorbing to carbon dioxide desorbing or vice versa. Preferably however, any temperature increase to promote carbon dioxide desorption will not be to a temperature above HOO0C, especially not to one above 10000C. In general however a temperature increase to a temperature above 8600C may be appropriate.
For the carbon dioxide desorption phase, the calcium oxide/carbonate system may be contacted with an inert gas (e.g. nitrogen) so as to reduce the carbon dioxide partial pressure. However this results in an effluent gas which is not essentially only carbon dioxide. It is therefore preferred to use a condensable gas (e.g. steam or less preferably an organic solvent) or carbon dioxide. However, during the desorption phase there is no requirement for a gas flow through the desorbing part of the apparatus: desorption may be effected without gas flow, with the desorbed carbon dioxide subsequently being flushed from the apparatus . In general therefore there are four main options for the desorption phase: flush with steam; reduce pressure, e.g. with a vacuum pump; increase temperature; or flush with carbon dioxide at an elevated temperature.
The retrieved carbon dioxide is preferably compressed or liquefied for transport and disposal e.g. by injection into subterranean formations .
The operating temperature in any portion of the apparatus according to the invention which contains a calcium oxide/carbonate ceramic carbon dioxide absorbing member according to the invention will preferably be below 11000C, more preferably below 10000C so as to avoid inactivation.
The calcium oxide / carbonate containing ceramic material may for example be prepared as follows : clay and water are mixed and allowed to stand so that coarse particles (e.g. mode particle sizes above 60 :m) settle out; the upper layer of water and clay is separated off; coarser calcium carbonate particles (e.g. mode particle size of less than 100 μm, e.g. 2 to 50 :m) are mixed in with the separated clay and water to the desired content) ; the mixture is poured into a mould and dried; the dried material is sintered (e.g. in air, vacuum or CO2) ; and, optionally, the sintered material is exposed to carbon dioxide (e.g. to facilitate transport and storage) .
Thus viewed from a further aspect the invention provides a process for the production of a ceramic product, said process comprising: mixing clay and water,- adding calcium carbonate particles to the desired content; extruding or moulding the resulting mixture; drying and sintering the extruded or moulded product; and, optionally, exposing the sintered material to carbon dioxide.
The carbon dioxide released on sintering is preferably captured for disposal.
The calcium carbonate used is preferably calcite or dolomite.
The mould used in this process, a process which forms a further aspect of the invention, is preferably a water- absorbent material, e.g. gypsum, so as to prevent deformation during drying.
Sintering is preferably effected at 800 to 10000C, especially preferably 850 to 925°C. Exposure to carbon dioxide is preferably effected at a temperature above 5200C, e.g. above 5500C, to avoid formation of calcium hydroxide and to expedite the reaction.
The material may be extruded or moulded into blocks which can be cut and/or built up so as to form structures of the desired shape for use according to the invention; alternatively they can be extruded or moulded in the desired shape, e.g. with channels or voids which will function as the gas flow conduits . In this latter case, the mixture may be added to the mould stepwise so as to build up the desired shape gradually.
The ceramic material may also be produced in particulate or pelletized form, for example for use in an embodiment of the invention in which the ceramic is contained within a porous-walled container.
Viewed from a further aspect the invention provides a ceramic containing at least 60% wt. of calcium carbonate or oxide (calculated as the carbonate) .
The clay used may be any clay suitable for ceramic formation. Examples of preferred clays are set out in WO 02/081409, the content of which is incorporated herein by reference. WO 02/081409 describes preparation via a calcium hydroxide stage of building blocks which have a relatively low calcium carbonate content in order to have the strength necessary for the desired end use.
The ceramic of the invention, when in the calcium oxide containing state, may also be used as a carbon dioxide absorber in other circumstances than in methane reformation, e.g. to absorb carbon dioxide from the exhaust gas of a hydrocarbon burner, for example a heat and/or power generator. For such uses, the ceramic is preferably preconditioned by being subjected to at least one, preferably at least two, e.g. 3 to 10, carbon dioxide absorption and release cycles, as in this way performance is improved. The carbon dioxide loaded ceramic may be collected from the fuel burning site for centralized regeneration and subsequent re-use or it may simply be disposed of as landfill or on fields . The carbon dioxide loaded ceramic material may also be used as a building material or as a fertilizer. Ceramic used in methane reformation may similarly be disposed of. Such disposal represents an environmentally friendly means of carbon dioxide disposal .
Such use of the ceramic of the invention forms a further aspect of the present invention.
The reader will appreciate that using calcium oxide/ carbonate ceramics according to the invention allows processes such as methane reformation and shift processes to be effected at higher pressures than is feasible otherwise and that this also allows facile incorporation into the ceramic of catalysts desirable for use in such processes .
Preferred embodiments of the process, apparatus and ceramics of the invention will now be described further with reference to the following non-limiting Examples and the accompanying drawings in which:
Figures 1 to 7 are schematic drawings of integrated apparatus for methane reformation;
Figures 8 to 11 are schematic drawings of ceramic-walled gas flow conduits for use in methane reformation apparatus ; and
Figure 12 is a plot of temperature versus carbon dioxide partial pressure showing the thermodynamic equilibrium between calcium oxide and calcium carbonate.
Example 1
Ceramic Production
Blue clay from Trøndelag was mixed with water. In order to remove the largest fractions of the clay, and any impurities such as stones and sand, sedimentation in water was used to separate out the clay fraction finer than 25 :m. (The mixture of clay and water is allowed to stand so that coarse particles settle out and the upper layer of water and clay is separated off) .
A sample of the mixture of water and clay (<25 :m) was dried in order to find the dry weight of the mixture
(the weight content of the clay) . Calcite was then added to produce samples containing 20 to 50% wt clay
(e.g. 25% wt) and 80 to 50% wt calcite (e.g. 75% wt) on a dry solids basis using the clay/water mixture (which had a 25% wt clay content) . These samples were stirred and dried in a plaster mould. The calcite was bought from Franzefoss KaIk AS (Franzit Micro with specification (average) (6 :m) 98% CaCO3, 0.8% MgCO3, 0.4% SiO2, 0.2% Al2O3 and 0.15% Fe2O3, <0.1% Na2O). The samples were sintered in an atmosphere of air, vacuum, or CO2 in an oven. The sintering temperature was typically 850-10000C, preferably below 9500C (lower sintering temperatures gave better ability to absorb CO2) . Calcination takes place in the temperature range 600-11000C depending on the partial pressure of CO2. The sintering time was e.g. 2-6 hours (dependent on the temperature, e.g. 2 hours at 10500C) . The oven was heated relatively slowly up and cooled slowly down, e.g. 300°C/h, in order not to break the ceramics. The sintering temperature is preferably 850-9250C.
The ceramics are ready to absorb CO2 after the sintering. However, if the material is to be transported, or stored it might be beneficial to expose the ceramic to CO2, e.g. at 7000C for 10-20 hours. The ceramic is stronger when it has absorbed CO2 and CaO is transformed into CaCO3. However, then the material needs to be treated to desorb the CO2 before it can be used to capture CO2. This can be done either by changing the partial pressure of CO2 in the ceramics atmosphere or elevating the temperature (as described before) .
Referring to Figures 1 to 7 , there are shown schematically apparatus arrangements for methane reformation according to the invention. The boxes represent different reactors or vessels for different process steps. A dotted walled box indicates that the reactor or vessel is optional . Dashed lines indicate that the gas flow indicated is optional . HT and LT represent high and low temperature. Q represents energy removal, e.g. by heat exchange. FC represents fuel cell. SOFC represents solid oxide fuel cell. Alt. Fuel indicates that the gas may be used as a combustible fuel.
Referring to Figure 8, there is shown a reactor element 1 having concentric gas flow conduits 2 and 3 separated by two concentric ceramic tubes 4 and 5 which are separated by a gas impermeable, thermally conducting metal barrier 6. While the inner ceramic tube is absorbing CO2, the outer ceramic tube is desorbing CO2. When the inner tube has reached its absorption limit, gas flow is switched and the outer ceramic tube is used for CO2 absorption. Operating at similar temperatures, CO2 desorption may be triggered for example by lowering the partial pressure of CO2 in the conduit into which CO2 is to be released.
Figure 9 shows a reactor element 7 operating on the same principle as that of Figure 8 but with a plurality of parallel gas flow conduits 8, 9, 10, 11, 12, 13 in two ceramic blocks 14 and 15 separated by a barrier 16.
Figure 10 shows two reactor elements 17 and 18 provided with gas flow conduits 19 and 20, "closed" conduits 20 being separated from the ceramic blocks 21 by gas impermeable barriers 22. In this way the gas flow from the reformer may be passed through the closed conduits of element 18 before entering the CO2 absorber section in which it flows through the "open" conduits 19 of element
17. In element 17 the closed conduits are used for coolant flow. When element 17 has reached its CO2 absorption limit, gas flow may be switched. In element
18, the closed conduits are used to carry a heated gas so as to raise the temperature of the element and cause CO2 desorption into the open conduits .
Figure 11 shows reactor element arrays 23 and 24 each comprising four ceramic blocks 25, surrounded by a gas impermeable barrier 26 which serves as a heat exchange surface, and having running through their centres a gas flow conduit 27. Array 23 may be used for CO2 absorption while array 24 is used for CO2 desorption and vice versa.

Claims

Claims :
1. A process for the extraction of carbon dioxide from a carbon dioxide-containing gas by calcium oxide by formation of calcium carbonate, said process comprising flowing said carbon dioxide-containing gas past or through a gas-porous, calcium oxide-containing ceramic member disposed in a reactor vessel whereby said carbon dioxide-containing gas may permeate said member, and preferably subsequently heating said member and/or exposing said member to a gas having a lower carbon dioxide partial pressure than said carbon dioxide- containing gas whereby to cause calcium carbonate therein to release carbon dioxide, said member defining at least part of the inner wall of a gas flow conduit within said reactor vessel.
2. A process as claimed in claim 1 wherein said carbon-dioxide-containing gas is synthesis gas.
3. A carbon dioxide separation apparatus comprising a vessel having a gas inlet and a gas outlet and a gas flow conduit linking said inlet and outlet, at least part of an inner wall of said conduit being provided by a gas porous ceramic member containing calcium oxide and/or carbonate, wherein carbon dioxide-containing gas flowing through said conduit permeates said member permitting carbon dioxide in said gas to react with calcium oxide in said member to form calcium carbonate, said apparatus being arranged such that said member may be heated and/or exposed to a gas having a lower carbon dioxide partial pressure than said carbon dioxide- containing gas whereby to cause calcium carbonate therein to release carbon dioxide into said conduit.
4. Apparatus as claimed in claim 3 comprising a first said gas porous ceramic member and a second said gas porous ceramic member, said first and second members being in thermal contact via a gas-impermeable thermally conducting barrier.
5. Apparatus as claimed in claim 4 having a valve operable to direct said carbon dioxide containing gas alternatively past the first and the second said member.
6. Apparatus as claimed in any one of claims 3 to 5 comprising a methane reformation reactor, a shift reactor and a carbon dioxide absorber in series .
7. Apparatus as claimed in any one of claims 3 to 5 comprising a carbon dioxide absorber fed by a combustion apparatus .
8. Apparatus as claimed in any one of claims 3 to 5 comprising a combined methane reformation reactor, shift reactor and carbon dioxide absorber.
9. Apparatus as claimed in any one of claims 3 to 5 comprising a methane reformation reactor and a combined shift reactor and carbon dioxide absorber.
10. A conduit device comprising an outer gas- impermeable wall containing therein a conduit and a gas permeable ceramic member containing calcium oxide or calcium carbonate, whereby gas from said conduit may permeate said member, said conduit device having a gas- impermeable thermally conductive portion wherefrom heat may be transferred to or from said member.
11. A device as claimed in claim 10 having a plurality of said conduits arranged in parallel .
12. A device as claimed in claim 11 wherein at least one said conduit is present on each side of said gas- impermeable thermally conductive portion.
13. A process for the production of a ceramic product, said process comprising: mixing clay and water; adding calcium carbonate particles to the desired content; extruding or moulding the resulting mixture; drying and sintering the extruded or moulded product; and, optionally, exposing the sintered material to carbon dioxide .
14. A ceramic containing at least 60% wt. of calcium carbonate or oxide (calculated as the carbonate) .
15. A ceramic as claimed in claim 14 further containing a catalyst.
16. The use of a ceramic as claimed in claim 14 as a carbon dioxide absorber.
17. The use of a ceramic as claimed in claim 14 for repeated cycles of carbon dioxide absorption and release.
18. Use as claimed in either of claims 16 and 17 as a recyclable carbon dioxide absorber.
19. The use of a ceramic as claimed in claim 14 as a fertilizer or building material following its use as a carbon dioxide absorber.
PCT/GB2006/002511 2005-07-06 2006-07-06 Carbon dioxide extraction process WO2007003954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0513866A GB2428038B (en) 2005-07-06 2005-07-06 Carbon dioxide extraction process
GB0513866.4 2005-07-06

Publications (1)

Publication Number Publication Date
WO2007003954A1 true WO2007003954A1 (en) 2007-01-11

Family

ID=34856768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2006/002511 WO2007003954A1 (en) 2005-07-06 2006-07-06 Carbon dioxide extraction process

Country Status (2)

Country Link
GB (1) GB2428038B (en)
WO (1) WO2007003954A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896953B1 (en) 2007-12-14 2011-03-01 University Of South Florida Practical method of CO2 sequestration
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
EP3061724A1 (en) * 2015-02-26 2016-08-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hydrogen production apparatus and hydrogen production method
EP3007802A4 (en) * 2013-06-14 2017-03-08 ZEG Power AS Method for sustainable energy production in a power plant comprising a solid oxide fuel cell
CN106693880A (en) * 2015-11-17 2017-05-24 华中科技大学 Calcium-based CO2 adsorbent and preparation method for same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100008525A1 (en) * 2021-04-06 2022-10-06 Sites S R L Soc Impianti Termici Elettrici E Strumentali PLANT AND PROCESS FOR THE PRODUCTION OF HYDROGEN BY REFORMING A RAW MATERIAL CONTAINING METHANE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0085809A1 (en) * 1982-01-15 1983-08-17 Christopher Huk-Shi Cheh A method of removing carbon dioxide from a gas stream
JPS60194507A (en) * 1984-03-16 1985-10-03 Tdk Corp Ceramic substrate material for magnetic head
JPH10152302A (en) * 1996-09-26 1998-06-09 Toshiba Corp Chemical reaction apparatus and recovery of main formed gas
JPH10231181A (en) * 1997-02-18 1998-09-02 Shinichiro Odanaka Castable refractory using refractory raw material obtained by hot sticking scaly graphite to surface of raw material particle with phenol resin
JPH11114412A (en) * 1997-10-14 1999-04-27 Mitsubishi Heavy Ind Ltd Oil cleaning material and oil cleaning device
JP2001232148A (en) * 2000-02-25 2001-08-28 Toshiba Corp Carbon dioxide absorbent and its manufacturing method
US20030035770A1 (en) * 2001-08-14 2003-02-20 Cole Jerald A. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide
JP2004195328A (en) * 2002-12-17 2004-07-15 Toshiba Ceramics Co Ltd Carbon dioxide absorbing body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710267B2 (en) * 1994-07-12 1998-02-10 工業技術院長 Apparatus for separating carbon dioxide from carbon dioxide-containing gas and combustion apparatus having carbon dioxide separation function
US5964221A (en) * 1994-11-15 1999-10-12 Gore Enterprise Holdings, Inc. Rebreather adsorbent system
JP2838097B2 (en) * 1995-03-27 1998-12-16 工業技術院長 A water-resistant carbon dioxide-friendly material
JP3053362B2 (en) * 1995-08-01 2000-06-19 株式会社東芝 Separation method of carbon dioxide gas Foam carbon dioxide gas absorbent and carbon dioxide gas separation device
US6007699A (en) * 1996-08-21 1999-12-28 Energy And Environmental Research Corporation Autothermal methods and systems for fuels conversion
US6024774A (en) * 1996-09-26 2000-02-15 Kabushiki Kaisha Toshiba Chemical reaction apparatus and method of collecting main product gas
US6280503B1 (en) * 1999-08-06 2001-08-28 Air Products And Chemicals, Inc. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures
FR2798304B1 (en) * 1999-09-13 2001-11-09 Air Liquide USE OF AN ACTIVATED ALUMINA TO REMOVE CO2 FROM A GAS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0085809A1 (en) * 1982-01-15 1983-08-17 Christopher Huk-Shi Cheh A method of removing carbon dioxide from a gas stream
JPS60194507A (en) * 1984-03-16 1985-10-03 Tdk Corp Ceramic substrate material for magnetic head
JPH10152302A (en) * 1996-09-26 1998-06-09 Toshiba Corp Chemical reaction apparatus and recovery of main formed gas
JPH10231181A (en) * 1997-02-18 1998-09-02 Shinichiro Odanaka Castable refractory using refractory raw material obtained by hot sticking scaly graphite to surface of raw material particle with phenol resin
JPH11114412A (en) * 1997-10-14 1999-04-27 Mitsubishi Heavy Ind Ltd Oil cleaning material and oil cleaning device
JP2001232148A (en) * 2000-02-25 2001-08-28 Toshiba Corp Carbon dioxide absorbent and its manufacturing method
US20030035770A1 (en) * 2001-08-14 2003-02-20 Cole Jerald A. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide
JP2004195328A (en) * 2002-12-17 2004-07-15 Toshiba Ceramics Co Ltd Carbon dioxide absorbing body

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198546, Derwent World Patents Index; Class L03, AN 1985-285750, XP002395729 *
LACKNER K S ET AL: "Progress on binding CO2 in mineral substrates", ENERGY CONVERSION AND MANAGEMENT, ELSEVIER SCIENCE PUBLISHERS, OXFORD, GB, vol. 38, no. 1001, 1997, pages S259 - S264, XP004061608, ISSN: 0196-8904 *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 11 30 September 1998 (1998-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14 31 December 1998 (1998-12-31) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 09 30 July 1999 (1999-07-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 25 12 April 2001 (2001-04-12) *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896953B1 (en) 2007-12-14 2011-03-01 University Of South Florida Practical method of CO2 sequestration
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
EP3007802A4 (en) * 2013-06-14 2017-03-08 ZEG Power AS Method for sustainable energy production in a power plant comprising a solid oxide fuel cell
EP3061724A1 (en) * 2015-02-26 2016-08-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hydrogen production apparatus and hydrogen production method
CN106693880A (en) * 2015-11-17 2017-05-24 华中科技大学 Calcium-based CO2 adsorbent and preparation method for same
CN106693880B (en) * 2015-11-17 2018-08-03 华中科技大学 A kind of calcium base CO2Adsorbent and preparation method thereof

Also Published As

Publication number Publication date
GB2428038A (en) 2007-01-17
GB0513866D0 (en) 2005-08-10
GB2428038B (en) 2011-04-06
GB2428038A8 (en) 2007-09-21

Similar Documents

Publication Publication Date Title
WO2007003954A1 (en) Carbon dioxide extraction process
CA2691897C (en) Co2-sorptive pellets and uses thereof
Manovic et al. CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture
CN103079671B (en) Trapping and the system and method for sequestration of carbon dioxide
Candamano et al. Preparation of foamed and unfoamed geopolymer/NaX zeolite/activated carbon composites for CO2 adsorption
WO2004091774A1 (en) Material and apparatus for adsorbing and desorbing carbon dioxide
US8038981B2 (en) Hydrogen production using complex metal oxide pellets
CN102655928A (en) Method for recovering CO2 by means of CaO and the exothermic reduction of a solid
JP2003212510A (en) Fuel reforming method and system thereof
US20070072769A1 (en) Carbon dioxide absorbent and carbon dioxide separation apparatus
WO2011005114A1 (en) Particulate, heterogeneous solid co2 absorbent composition, method for its preparation and use thereof
Bandi et al. In situ gas conditioning in fuel reforming for hydrogen generation
WO2019073867A1 (en) Methane producing system
US20080072760A1 (en) Carbon dioxide absorbent, carbon dioxide separating apparatus, and reformer
Sun et al. Sorption enhanced coal gasification for hydrogen production using a synthesized CaOMgO-molecular sieve sorbent
US20060039847A1 (en) Low pressure ammonia synthesis utilizing adsorptive enhancement
US20080227626A1 (en) Method of regenerating absorbent
Zhang et al. Simultaneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca (OH) 2 cycles
US20070053811A1 (en) Hybrid adsorptive membrane reactor
JP3396642B2 (en) Carbon dioxide absorber, carbon dioxide separation method, and carbon dioxide separator
JP2007254238A (en) Method for producing hydrogen
JP3631376B2 (en) Method and apparatus for separating oxygen from air and thermal power generation system
US11465903B2 (en) Oxycombustion with CO2 capture in reverse flow reactors
JP5044973B2 (en) Carbon dioxide absorbing material, method for producing the same, and carbon dioxide absorbing method
JP2023541942A (en) Ammonia and urea production in reverse flow reactors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06755728

Country of ref document: EP

Kind code of ref document: A1