WO2007010074A2 - Optical demultiplexer - Google Patents

Optical demultiplexer Download PDF

Info

Publication number
WO2007010074A2
WO2007010074A2 PCT/ES2006/000431 ES2006000431W WO2007010074A2 WO 2007010074 A2 WO2007010074 A2 WO 2007010074A2 ES 2006000431 W ES2006000431 W ES 2006000431W WO 2007010074 A2 WO2007010074 A2 WO 2007010074A2
Authority
WO
WIPO (PCT)
Prior art keywords
wavelengths
bars
optical
beams
demultiplexer
Prior art date
Application number
PCT/ES2006/000431
Other languages
Spanish (es)
French (fr)
Other versions
WO2007010074A3 (en
Inventor
José SÁNCHEZ DEHESA
Andreas Hakansson
Original Assignee
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Valencia filed Critical Universidad Politecnica De Valencia
Publication of WO2007010074A2 publication Critical patent/WO2007010074A2/en
Publication of WO2007010074A3 publication Critical patent/WO2007010074A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2846Investigating the spectrum using modulation grid; Grid spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission

Definitions

  • the present invention applies to the field of telecommunications, particularly in optical communication networks, extending its application to industrial sectors that use them for high-speed data transmission, such as mobile telephony, telemedicine, communications in space systems, etc.
  • the object of the invention is to provide an ultra-compact device, whose structure is based on multiple layers that form a network composed of bars of suitable dielectric material and conveniently configured to separate, with a predetermined angle, a beam of light incident in several of the wavelengths that constitute it, allowing a dispersion of the beams corresponding to said wavelengths or demultiplexing of optical channels, with minimal interference between channels, or what is the same, a maximum attenuation of the distortion for all channels.
  • optical systems to transmit large amounts of information, representing voice, video and / or data, at a very high speed is increasing.
  • the demand for bandwidth for optical communications is increasing, as they are used to support a high load of channels; for example, in high definition television, in UMTS third generation telephone services, etc.
  • each wavelength can be a carrier for signals corresponding to analog or digital systems.
  • Wavelength Division Multiplexing WDIVI
  • WDIVI Wavelength Division Multiplexing
  • the bandwidth is increased thanks to the number of independent channels due to the diversity of wavelengths used within the same optical transmission path, such as a fiber or a waveguide.
  • a problem associated with the wavelength division is that if the physical dispersion between each wavelength that crosses the optical fiber is too narrow, several wavelengths can be joined in the same channel, instead of a single carrier, which would cause noise and distortion about the information contained in that channel. Therefore, a demultiplexer capable of performing a physical separation of wavelengths in a sufficiently wide area, so that the multiple information channels are divided with the least possible interference.
  • a solution to said problem Ia constitutes the diffractive optical elements, described by the authors J. L. Homer and P.D. Gianino in the Applied Optics publication, volume 23, of the year 1984, which can model the beam from an optical source, such as a laser, according to virtually any pattern, by controlling the phases of the different dispersed waves.
  • This property is basically achieved by mounting in a layer small optical elements that each manipulate a part of the incident beam.
  • the implementation of these elements is carried out by varying their index of refraction and their dimensions in thickness, parameters that are generated by computer, looking for the optimum with which a beam is obtained by propagating through the layer of such elements in the desired pattern.
  • diffractive optical elements do not allow to control the reflection of a ray of light from total opacity to complete transparency.
  • the optical demultiplexer described in EP 0938205 is of a plurality of dichroic filters, interconnected sequentially and optically coupled to each other, which separate each of the channels in the order of the sequence of their respective central wavelengths, beginning with the channel of Shorter wavelength until reaching the one with the largest central wavelength, eliminating one channel from the remaining ones, finally obtaining all the channels separately at the output of said filters.
  • a holographic demultiplexer uses the spectroscopy technique to reflect the different wavelengths that composes a light signal, according to different spatial positions on a detection device of one or more of the reflected wavelengths.
  • This device comprises the detector, a light scattering element, such as a prism or a diffraction grating, plus several holograms, each hologram in turn constituting a scattering element that redirects a specific range of wavelengths or a concrete wavelength, of those contained in the ray of light.
  • the invention described herein consists of a photonic device that performs the spatial separation between at least a couple of wavelengths, acting as an optical element of dispersion of light in multiple beams corresponding to the different central wavelengths, which they are divided with a certain width for each beam and forming a specific angle to each other.
  • the present invention is conceived for its integration into flat waveguides or optical fibers in order to effect the demultiplexing of the signal that travels through said waveguide or fiber.
  • the proposed demultiplexer is composed of a grid or grid of dielectric bars, arranged in at least one pair of photonic sheets, implemented in two dimensions by a processing procedure on a single integrated circuit and followed by a micromanipulation for assembly, of according to a reverse design technique, which solves Maxwell's equations for a two-dimensional system using the Multiple Dispersion Theory (MST).
  • MST Multiple Dispersion Theory
  • This optical demultiplexer provides substantial novelty characteristics and notable advantages in terms of its dimensions, since in its implementation is achieved an ultra-compact device, of the order of about 2 ⁇ m thick, while representing a significant improvement in the way of separating the beams in space, since it achieves greater efficiency with respect to known light dispersers, assuming an efficiency measured in terms of crosstalk with a value below -25 dB for each optical channel.
  • Each of the sheets or layers of dielectric bars, manufactured with a semiconductor such as Gallium Arsenide (AsGa), can preferably be grown by usual lithographic techniques.
  • the method of manufacturing the structure of the photonic device in three dimensions consists essentially in dividing the structure prepared by a semiconductor nanofabrication technique into several, at least two, sheets in two dimensions.
  • these photonic sheets are mounted in a three-dimensional structure by means of micromanipulation, preferably applying the procedures defined in the document "Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation" of volume 81 of Applied Physics Letters, year 2002, as well as in the article "Micro assembly of semiconductor three-dimensional photonic crystals" of volume 2 of the publication Nature Materials of 2003, both of the authors K. Aoki, HT. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya and Y. Aoyagi.
  • design parameters are selected, which are the thickness of the laminar structure, the section of the dielectric bars and their construction material, chosen after applying an optimization process in a computer, for example, the Genetic Algorithm (GA), which assumes that all the elements of dispersion have a fixed position, in combination with the MST Theory.
  • GA Genetic Algorithm
  • the optimization method could be combined with other alternative calculation algorithms that define a procedure capable of simulating the dispersion of light through networks of dispersing centers.
  • the proposed optical demultiplexer shapes the light flow, allowing control of the parameters that determine the form of dispersion of the beams with a greater degree of freedom, according to the arrangement of the dielectric bars that make up the structure of the device and that differs from the implementations of the demultiplexers existing in the state of the art.
  • the photonic dispersion device object of the invention is based on a plurality of layers formed by a network of individual optical dispersers, instead of a single layer of components that control the phase of the dispersed beams as is the case of the diffractive optical elements that are known and mentioned above.
  • the grid or porous structure of the device of the invention makes it possible to control the reflection of the light from absolute opacity, similar to what occurs in a Bragg reflector, to almost total transparency.
  • this possibility of controlling the light field in such a wide way cannot be carried out using conventional diffractive optical elements.
  • This photonic dispersion device thus described thus constitutes an ultra-compact demultiplexer applicable in WDM systems, where the bandwidth of the optical communications in local area networks (LAN) is increased, working in collaboration with the routing optical multiplexers. Simultaneously different information channels through a fiber optic network. The effect of crossing lines through the expected coupling between fiber optic cabling signals can be reduced below -25 dB in each channel, thanks to the incorporation of the optical demultiplexer in the communication network with WDM multiplexing.
  • LAN local area networks
  • the demultiplexer described is that, in addition to being a passive optical device, it has a smaller size, a characteristic that makes it a practical solution for various applications of optical communications, where other devices, active or passive, they would not take place or imply greater dimensions of the system to which they were integrated.
  • Figure 1 shows a schematic representation of the structure of the device object of the invention and its functionality, indicating the parameters involved in the reverse design process for its implementation:
  • Xf defines the distance between the light scattering device and the plane where the divided beams are collected, with wavelengths ⁇ i and K 2 respectively, adopting predetermined values over a beam width ⁇ and an angle ⁇ between beams.
  • Figure 2 - Shows a cut in the plane orthogonal to the axes of the dielectric bars that make up the device, according to a preferred embodiment of the invention, representing in its two coordinate axes its spatial arrangement and the dimensions of the bars in ⁇ m.
  • Figure 3. Shows a graphical representation of the operation of the optical disperser / demultiplexer device, in the form of a two-dimensional map generated by the simulation of the inverse design algorithm that implements the device and gives the value of the 20log function (
  • an optical device composed of a plurality of layers, in the preferred example are five layers, of dielectric bars (1) constructed with the semiconductor AsGa.
  • dielectric bars (1) constructed with the semiconductor AsGa.
  • only five layers of dielectric bars (1) are used to ensure their perfect alignment by the micromanipulation technique.
  • the light beam (4) is the photon beam that contains a certain frequency range and perpendicularly affects the surface of the device, represented by two gratings (2) of bars (1).
  • the disperser / demultiplexer device divides the incident beam (4) into two beams (5, 6) with two wavelengths ( ⁇ -i, A 2 ), centered at 1.50 ⁇ m and 1.55 ⁇ m respectively, following different paths so that they form an angle ( ⁇ ) approximately 28 ° apart.
  • the photon beams (5, 6 ) dispersed have a width ( ⁇ ) of about 1 ⁇ m in said plane (3).
  • the light beam (4) can be generated by a polarized laser so that its electric field oscillates in a direction parallel to the transverse axis of the bars (1), represented as an ordinate axis (and) in the Figure 2.
  • Figure 2 shows a cut in the plane perpendicular to the axes of the dielectric bars that make up the device, representing two dimensions its spatial arrangement.
  • the material of manufacture of the bars (1), their number, measurements of the section and the spatial arrangement in layers can vary, according to the lithographic technique that is used in the implementation of the device, at the same time it depends on the parameters of distance (X f ), width ( ⁇ ) and angle ( ⁇ ), relative to the dispersion of the beams (5, 6), as set as optimal operating values of the demultiplexer.
  • Such bars (1) in this embodiment using AsGa as a dielectric material, have a dielectric constant equal to approximately 11, 36, for the wavelengths ( ⁇ -i, ⁇ 2 ) of interest, that is, in this case , of the order of 1.50 ⁇ m.
  • each of the dielectric bars (1) has a square section with dimensions of 0.4 ⁇ m x 0.4 ⁇ m. Since there are five layers, represented on the abscissa axis of Figure 2, the total thickness of the device is 2 ⁇ m, which makes it an ultra-compact demultiplexer.
  • the separation (d) between the axis of incidence of the light beam (4) and each of the beams' (5, 6) in which it is divided by the demultiplexer, as shown in Figure 1 is set at 5 ⁇ m, said separation (d) being defined from the axis of the incident beam (4), transverse to the device, with respect to The position where said beams (5, 6) are captured within the plane (3). Therefore, the spatial separation (2d) between the two beams (5, 6) is worth 10 ⁇ m, in the plane (3) located at a distance (X f ) of 20 ⁇ m.
  • Figure 3 illustrates the two-dimensional mapping of the 20log function (
  • the dielectric bars (1) of the device are drawn, in the aforementioned Figure 3, as squares of 0.4 ⁇ m x 0.4 ⁇ m, according to a possible spatial arrangement in five layers, between 0 ⁇ m and 2 ⁇ m total thickness of the demultiplexer

Abstract

The invention relates to a demultiplexer comprising an ultra-compact device which spatially separates an incident beam (4) into at least two beams (5, 6) having wavelengths (λ-1, λ2), forming a pre-fixed angle (α) therebetween. The device, which is represented by two grilles (2) comprising bars (1), consists of a plurality of layers of bars (1) which are made from a dielectric material. The invention also comprises a plane (3) which defines the area at which such wavelengths (λ1, K2) are collected for analysis and which is located at a distance (Xf) from the device. The dispersed beams (5, 6) have a determined width (δ) and are separated from the axis of the incident beam (4) by a separation distance (d). According to the invention, the thickness of the device, the cross-section of the bars and the material used are determined by the required separation angle (α) and are optimised in order to minimise crosstalk between optical channels at said wavelengths (λ1, K2).

Description

DEMULTIPLEXADOR ÓPTICO OPTICAL DEMULTIPLEXER
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se aplica al campo de las telecomunicaciones, particularmente en las redes de comunicación óptica, extendiéndose su aplicación a los sectores industriales que hacen uso de ellas para Ia transmisión de datos a gran velocidad, tales como en telefonía móvil, telemedicina, comunicaciones en sistemas espaciales, etc.The present invention applies to the field of telecommunications, particularly in optical communication networks, extending its application to industrial sectors that use them for high-speed data transmission, such as mobile telephony, telemedicine, communications in space systems, etc.
El objeto de Ia invención es proveer un dispositivo ultracompacto, cuya estructura está basada en múltiples capas que forman una red compuesta por unas barras de material dieléctrico adecuado y configuradas convenientemente para separar, con un ángulo predeterminado, un haz de luz incidente en varias de las longitudes de onda que Io constituyen, permitiendo una dispersión de los haces correspondientes a dichas longitudes de onda o demultiplexación de canales ópticos, con una mínima interferencia entre canales, o Io que es Io mismo, una atenuación máxima de Ia distorsión para todos los canales.The object of the invention is to provide an ultra-compact device, whose structure is based on multiple layers that form a network composed of bars of suitable dielectric material and conveniently configured to separate, with a predetermined angle, a beam of light incident in several of the wavelengths that constitute it, allowing a dispersion of the beams corresponding to said wavelengths or demultiplexing of optical channels, with minimal interference between channels, or what is the same, a maximum attenuation of the distortion for all channels.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
En Ia actualidad, es cada vez mayor el empleo que se hace de sistemas ópticos para transmitir grandes cantidades de información, representando voz, vídeo y/o datos, a una muy alta velocidad. La demanda de ancho de banda para las comunicaciones ópticas es creciente, en Ia medida que se utilizan para soportar una elevada carga de canales; por ejemplo, en televisión de alta definición, en servicios de telefonía de tercera generación UMTS, etc.At present, the use of optical systems to transmit large amounts of information, representing voice, video and / or data, at a very high speed is increasing. The demand for bandwidth for optical communications is increasing, as they are used to support a high load of channels; for example, in high definition television, in UMTS third generation telephone services, etc.
Dentro de las tecnologías de comunicación ópticas, se sabe que puede utilizarse más de una longitud de onda para transmitir Ia información por diferentes canales. En particular, cada longitud de onda puede ser una portadora para señales correspondientes a sistemas analógicos o digitales.Within optical communication technologies, it is known that more than one wavelength can be used to transmit the information through different channels. In particular, each wavelength can be a carrier for signals corresponding to analog or digital systems.
Una de las técnicas ampliamente usadas para multiplexar un número de señales distintas en un sistema de transmisión óptica es Ia Multiplexación por División de Longitud de Onda (WDIVI), mediante Ia cual Ia información, transportada con señalización digital, es transmitida modulando cada grupo de señales digitales con una longitud de onda diferente, viajando todas las longitudes de onda simultáneamente por Ia fibra óptica.One of the techniques widely used to multiplex a number of different signals in an optical transmission system is the Wavelength Division Multiplexing (WDIVI), whereby the information, transported with digital signaling, is transmitted by modulating each group of signals digital with a different wavelength, traveling all wavelengths simultaneously through the optical fiber.
Con Ia multiplexación WDM, el ancho de banda se ve incrementado gracias al número de canales independientes por Ia diversidad de longitudes de onda usadas dentro de un mismo camino de transmisión óptica, como puede ser una fibra o una guía de ondas.With the WDM multiplexing, the bandwidth is increased thanks to the number of independent channels due to the diversity of wavelengths used within the same optical transmission path, such as a fiber or a waveguide.
En obvia consecuencia, cuando un número de longitudes de onda es multiplexado y transmitido a través de una única guía o fibra óptica, se hace necesario posteriormente que los múltiples canales sean demultiplexados en longitudes de onda separadas. Evidentemente, es deseable que este proceso de demultiplexación se lleve a cabo a bajo coste y con una pérdida mínima de señal. Las pérdidas que pueden existir por interferencias entre las distintas longitudes de onda deberían ser similares en magnitud para todos los canales que se demultiplexan.Obviously, when a number of wavelengths is multiplexed and transmitted through a single guide or optical fiber, it is subsequently necessary for the multiple channels to be demultiplexed into separate wavelengths. Obviously, it is desirable that this demultiplexing process be carried out at low cost and with minimal signal loss. The losses that may exist due to interference between the different wavelengths should be similar in magnitude for all channels that are demultiplexed.
Un problema asociado con Ia división por longitud de onda es que si Ia dispersión física entre cada longitud de onda que atraviesa Ia fibra óptica es demasiado estrecha, se pueden juntar varias longitudes de onda en un mismo canal, en vez de una sola portadora, Io cual provocaría ruido y distorsión sobre Ia información contenida en ese canal. Por consiguiente, se requiere un demultiplexor capaz de realizar una separación física de las longitudes de onda en un área suficientemente amplia, para que los múltiples canales de información sean divididos con Ia menor interferencia posible.A problem associated with the wavelength division is that if the physical dispersion between each wavelength that crosses the optical fiber is too narrow, several wavelengths can be joined in the same channel, instead of a single carrier, which would cause noise and distortion about the information contained in that channel. Therefore, a demultiplexer capable of performing a physical separation of wavelengths in a sufficiently wide area, so that the multiple information channels are divided with the least possible interference.
Una solución a dicha problemática Ia constituyen los elementos ópticos difractivos, descritos por los autores J. L. Homer y P.D. Gianino en Ia publicación Applied Optics, volumen 23, del año 1984, que pueden modelar el haz procedente de una fuente óptica, como es un láser, según prácticamente cualquier patrón, mediante el control de las fases de las diferentes ondas dispersadas. Esta propiedad se consigue básicamente montando en una capa pequeños elementos ópticos que manipulan cada uno una parte del haz incidente. La implementación de estos elementos se realiza variando su índice de refracción y sus dimensiones en espesor, parámetros que se generan por ordenador, buscando los óptimos con los que se obtiene un haz propagándose por Ia capa de tales elementos en el patrón deseado.A solution to said problem Ia constitutes the diffractive optical elements, described by the authors J. L. Homer and P.D. Gianino in the Applied Optics publication, volume 23, of the year 1984, which can model the beam from an optical source, such as a laser, according to virtually any pattern, by controlling the phases of the different dispersed waves. This property is basically achieved by mounting in a layer small optical elements that each manipulate a part of the incident beam. The implementation of these elements is carried out by varying their index of refraction and their dimensions in thickness, parameters that are generated by computer, looking for the optimum with which a beam is obtained by propagating through the layer of such elements in the desired pattern.
No obstante, los elementos ópticos difractivos no permiten controlar la reflexión de un rayo de luz desde Ia opacidad total hasta Ia transparencia completa.However, diffractive optical elements do not allow to control the reflection of a ray of light from total opacity to complete transparency.
Otros dispositivos que vienen a resolver Ia separación de canales por longitudes de onda son los recogidos, citando unos ejemplos, en los documentos EP 0938205 y US 2004/0051868.Other devices that come to solve the separation of channels by wavelengths are those collected, citing some examples, in EP 0938205 and US 2004/0051868.
El demultiplexor óptico descrito en EP 0938205 se de una pluralidad de filtros dicroicos, ¡nterconectados secuencialmente y ópticamente acoplados entre sí, que separan cada uno de los canales en el orden de Ia secuencia de sus respectivas longitudes de onda centrales, comenzando por el canal de menor longitud de onda hasta llegar al de mayor longitud de onda central, eliminando cada vez un canal de los restantes, obteniendo finalmente a Ia salida de dichos filtros todos los canales por separado.The optical demultiplexer described in EP 0938205 is of a plurality of dichroic filters, interconnected sequentially and optically coupled to each other, which separate each of the channels in the order of the sequence of their respective central wavelengths, beginning with the channel of Shorter wavelength until reaching the one with the largest central wavelength, eliminating one channel from the remaining ones, finally obtaining all the channels separately at the output of said filters.
En US 2004/0051868, se describe un demultiplexor holográfico que utiliza Ia técnica de espectroscopia para reflejar las distintas longitudes de onda que compone una señal luminosa, conforme a diferentes posiciones espaciales sobre un dispositivo de detección de una o más de las longitudes de onda reflejadas. Este dispositivo comprende el detector, un elemento de dispersión de Ia luz, tal como un prisma o una rejilla de difracción, más varios hologramas, constituyendo a su vez cada holograma un elemento de dispersión que redirecciona un rango específico de longitudes de onda o bien una longitud de onda concreta, de las contenidas en el rayo de luz.In US 2004/0051868, a holographic demultiplexer is described that uses the spectroscopy technique to reflect the different wavelengths that composes a light signal, according to different spatial positions on a detection device of one or more of the reflected wavelengths. This device comprises the detector, a light scattering element, such as a prism or a diffraction grating, plus several holograms, each hologram in turn constituting a scattering element that redirects a specific range of wavelengths or a concrete wavelength, of those contained in the ray of light.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La invención que aquí se describe consiste en un dispositivo fotónico que realiza Ia separación espacial entre al menos un par de longitudes de onda, actuando como un elemento óptico de dispersión de Ia luz en múltiples haces que corresponden a las distintas longitudes de onda centrales, que se dividen con una anchura determinada para cada haz y formando un ángulo específico entre sí.The invention described herein consists of a photonic device that performs the spatial separation between at least a couple of wavelengths, acting as an optical element of dispersion of light in multiple beams corresponding to the different central wavelengths, which they are divided with a certain width for each beam and forming a specific angle to each other.
Más concretamente, Ia presente invención se concibe para su integración a guías de onda planas o a fibras ópticas a fin de efectuar el demultiplexado de Ia señal que viaja por dicha guía-onda o fibra.More specifically, the present invention is conceived for its integration into flat waveguides or optical fibers in order to effect the demultiplexing of the signal that travels through said waveguide or fiber.
El demultiplexador que se propone está compuesto por una red o rejilla de barras dieléctricas, dispuestas en al menos una pareja de láminas fotónicas, implementadas en dos dimensiones por un procedimiento de procesamiento sobre un solo circuito integrado y seguido de una micromanipulación para su montaje, de acuerdo a una técnica de diseño inverso, Ia cual resuelve las ecuaciones de Maxwell para un sistema de dos dimensiones empleando Ia Teoría de la Dispersión Múltiple (MST).The proposed demultiplexer is composed of a grid or grid of dielectric bars, arranged in at least one pair of photonic sheets, implemented in two dimensions by a processing procedure on a single integrated circuit and followed by a micromanipulation for assembly, of according to a reverse design technique, which solves Maxwell's equations for a two-dimensional system using the Multiple Dispersion Theory (MST).
Este demultiplexador óptico aporta características sustanciales de novedad y notables ventajas en cuanto a sus dimensiones, puesto que en su implementación se consigue un dispositivo ultracompacto, del orden de unos 2 μm de grosor, al mismo tiempo que representa una importante mejora en el modo de separar los haces en el espacio, ya que logra una mayor eficiencia respecto a los dispersores de luz conocidos, suponiendo una eficiencia medida en términos de diafonía (crosstalk) con un valor inferior a -25 dB para cada canal óptico.This optical demultiplexer provides substantial novelty characteristics and notable advantages in terms of its dimensions, since in its implementation is achieved an ultra-compact device, of the order of about 2 μm thick, while representing a significant improvement in the way of separating the beams in space, since it achieves greater efficiency with respect to known light dispersers, assuming an efficiency measured in terms of crosstalk with a value below -25 dB for each optical channel.
Cada una de las láminas o capas de barras dieléctricas, fabricadas con un semiconductor como el Arseniuro de Galio (AsGa) preferentemente, puede ser crecida mediante técnicas litográficas usuales.Each of the sheets or layers of dielectric bars, manufactured with a semiconductor such as Gallium Arsenide (AsGa), can preferably be grown by usual lithographic techniques.
El método de fabricación de Ia estructura del dispositivo fotónico en tres dimensiones consiste esencialmente en dividir Ia estructura preparada por una técnica de nanofabricación de semiconductores en varias, al menos dos, láminas en dos dimensiones. Seguidamente, estas láminas fotónicas son montadas en una estructura tridimensional por medio de micromanipulación, aplicando preferiblemente los procedimientos que se definen en el documento "Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation" del volumen 81 de Applied Physics Letters, año 2002, así como en el artículo "Micro assembly of semiconductor three-dimensional photonic crystals" del volumen 2 de Ia publicación Nature Materials del 2003, ambos de los autores K. Aoki, HT. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya y Y. Aoyagi.The method of manufacturing the structure of the photonic device in three dimensions consists essentially in dividing the structure prepared by a semiconductor nanofabrication technique into several, at least two, sheets in two dimensions. Next, these photonic sheets are mounted in a three-dimensional structure by means of micromanipulation, preferably applying the procedures defined in the document "Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation" of volume 81 of Applied Physics Letters, year 2002, as well as in the article "Micro assembly of semiconductor three-dimensional photonic crystals" of volume 2 of the publication Nature Materials of 2003, both of the authors K. Aoki, HT. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya and Y. Aoyagi.
En función de Ia separación espacial que se quiere conseguir de los canales ópticos, es decir, dependiendo de las longitudes de onda que interesa dispersar y del ángulo deseado de separación entre haces, en Ia realización física del dispositivo fotónico se seleccionan ciertos parámetros de diseño, los cuales son el grosor de Ia estructura laminar, Ia sección de las barras dieléctricas y su material de construcción, elegidos tras aplicar en un ordenador un proceso de optimización, por ejemplo, el Algoritmo Genético (GA), que asume que todos los elementos de dispersión poseen una posición fija, en combinación con Ia Teoría MST. En general, el método de optimización podría combinarse con otros algoritmos de cálculo alternativos que definan un procedimiento capaz de simular Ia dispersión de luz por redes de centros dispersores. Si se desea entrar en más detalle sobre Ia técnica de implementación combinada MST-GA para dispositivos fotónicos, puede referirse al artículo escrito por A. Hákansson, J. Sánchez-Dehesa y L. Sanchis, en Ia publicación del 2005 en el IEEE Journal on selected áreas In Communications, o bien, al firmada por los mismos autores junto a D. López-Zanón y J. Bravo-Abad, en Applied Physics Letters, volumen 84, año 2004.Depending on the spatial separation that you want to achieve from the optical channels, that is, depending on the wavelengths that you want to disperse and the desired angle of separation between beams, in the physical realization of the photonic device certain design parameters are selected, which are the thickness of the laminar structure, the section of the dielectric bars and their construction material, chosen after applying an optimization process in a computer, for example, the Genetic Algorithm (GA), which assumes that all the elements of dispersion have a fixed position, in combination with the MST Theory. In general, the optimization method could be combined with other alternative calculation algorithms that define a procedure capable of simulating the dispersion of light through networks of dispersing centers. If you want to go into more detail about the combined implementation technique MST-GA for photonic devices, you can refer to the article written by A. Hákansson, J. Sánchez-Dehesa and L. Sanchis, in the 2005 publication in the IEEE Journal on selected In Communications areas, or, signed by the same authors together with D. López-Zanón and J. Bravo-Abad, in Applied Physics Letters, volume 84, year 2004.
Con respecto a los antecedentes, el demultiplexador óptico propuesto moldea el flujo de luz, permitiendo un control de los parámetros que determinan Ia forma de dispersión de los haces con un mayor grado de libertad, según Ia disposición de las barras dieléctricas que conforman Ia estructura del dispositivo y que se diferencia de las implementaciones de los demultiplexadores existentes en el estado de Ia técnica.With respect to the background, the proposed optical demultiplexer shapes the light flow, allowing control of the parameters that determine the form of dispersion of the beams with a greater degree of freedom, according to the arrangement of the dielectric bars that make up the structure of the device and that differs from the implementations of the demultiplexers existing in the state of the art.
El dispositivo de dispersión fotónica objeto de Ia invención está basado en una pluralidad de capas formadas por una red de dispersores ópticos individuales, en vez de una única capa de componentes que controlan Ia fase de los haces dispersados como es el caso de los elementos ópticos difractivos que se conocen y mencionados anteriormente. Además, Ia estructura de rejilla o porosa del dispositivo de Ia invención hace posible el control de Ia reflexión de Ia luz desde la opacidad absoluta, similarmente a como ocurre en un reflector Bragg, hasta casi Ia transparencia total. Sin embargo, esta posibilidad de controlar el campo de luz de esa manera tan amplia no puede llevarse a Ia práctica usando los elementos ópticos difractivos convencionales.The photonic dispersion device object of the invention is based on a plurality of layers formed by a network of individual optical dispersers, instead of a single layer of components that control the phase of the dispersed beams as is the case of the diffractive optical elements that are known and mentioned above. In addition, the grid or porous structure of the device of the invention makes it possible to control the reflection of the light from absolute opacity, similar to what occurs in a Bragg reflector, to almost total transparency. However, this possibility of controlling the light field in such a wide way cannot be carried out using conventional diffractive optical elements.
Este dispositivo de dispersión fotónica así descrito constituye pues un demultiplexador ultracompacto aplicable en los sistemas WDM, donde se incrementa el ancho de banda de las comunicaciones ópticas en redes de área local (LAN), funcionando en colaboración con los multiplexadores ópticos que enrutan. simultáneamente diferentes canales de información a través de una red de fibra óptica. El efecto de cruce de líneas por el acoplamiento esperado entre señales del cableado de fibra óptica se puede reducir por debajo de los -25 dB en cada canal, gracias a Ia incorporación del demultiplexador óptico en Ia red de comunicación con multiplexación WDM. En definitiva, la ventaja principal del demultiplexador descrito es que, además de ser un dispositivo óptico pasivo, presenta un tamaño más reducido, característica que Io convierte en una práctica solución para diversas aplicaciones de las comunicaciones ópticas, donde otros dispositivos, activos o pasivos, no tendrían lugar o implicarían unas mayores dimensiones del sistema al que se integraran.This photonic dispersion device thus described thus constitutes an ultra-compact demultiplexer applicable in WDM systems, where the bandwidth of the optical communications in local area networks (LAN) is increased, working in collaboration with the routing optical multiplexers. Simultaneously different information channels through a fiber optic network. The effect of crossing lines through the expected coupling between fiber optic cabling signals can be reduced below -25 dB in each channel, thanks to the incorporation of the optical demultiplexer in the communication network with WDM multiplexing. In short, the main advantage of the demultiplexer described is that, in addition to being a passive optical device, it has a smaller size, a characteristic that makes it a practical solution for various applications of optical communications, where other devices, active or passive, they would not take place or imply greater dimensions of the system to which they were integrated.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de figuras en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of figures is attached as an integral part of said description. Illustrative and not limiting, the following has been represented:
La figura 1.- Muestra una representación esquemática de Ia estructura del dispositivo objeto de Ia invención y su funcionalidad, indicando los parámetros involucrados en el proceso de diseño inverso para su implementación: Xf define Ia distancia entre el dispositivo de dispersión de Ia luz y el plano donde se recogen los haces divididos, con longitudes de onda λi y K2 respectivamente, adoptando unos valores prefijados sobre una anchura δ de haz y un ángulo α entre haces.Figure 1 shows a schematic representation of the structure of the device object of the invention and its functionality, indicating the parameters involved in the reverse design process for its implementation: Xf defines the distance between the light scattering device and the plane where the divided beams are collected, with wavelengths λi and K 2 respectively, adopting predetermined values over a beam width δ and an angle α between beams.
La figura 2 - Muestra un corte en el plano ortogonal a los ejes de las barras dieléctricas que conforman el dispositivo, según una realización preferente de Ia invención, representando en los dos ejes de coordenadas su disposición espacial y las dimensiones de las barras en μm.Figure 2 - Shows a cut in the plane orthogonal to the axes of the dielectric bars that make up the device, according to a preferred embodiment of the invention, representing in its two coordinate axes its spatial arrangement and the dimensions of the bars in μm.
La figura 3.- Muestra una representación gráfica del funcionamiento del dispositivo dispersor/demultiplexador óptico, en forma de mapa bidimensional generado por Ia simulación del algoritmo de diseño inverso que implementa el dispositivo y da el valor de Ia función 20log ( |E (x, y) λi | / |E (x, y) λ2 | ) en el área espacial del dispositivo y sus alrededores, según una posible realización de Ia invención, que predice la diafonía entre los canales o las longitudes de onda λi y λ2.Figure 3.- Shows a graphical representation of the operation of the optical disperser / demultiplexer device, in the form of a two-dimensional map generated by the simulation of the inverse design algorithm that implements the device and gives the value of the 20log function (| E (x, y) λi | / | E (x, y) λ 2 |) in the spatial area of the device and its surroundings, according to a possible embodiment of Ia invention, which predicts crosstalk between channels or wavelengths λi and λ 2 .
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
Puede describirse como una de las posibles realizaciones de Ia invención, un dispositivo óptico compuesto por una pluralidad de capas, en el ejemplo preferente son cinco capas, de barras dieléctricas (1 ) construidas con el semiconductor AsGa. Preferiblemente, se utilizan sólo cinco capas de barras dieléctricas (1) para garantizar su perfecta alineación mediante la técnica de micromanipulación.It can be described as one of the possible embodiments of the invention, an optical device composed of a plurality of layers, in the preferred example are five layers, of dielectric bars (1) constructed with the semiconductor AsGa. Preferably, only five layers of dielectric bars (1) are used to ensure their perfect alignment by the micromanipulation technique.
A Ia vista de Ia Figura 1 , Ia función del dispositivo como dispersor de luz o demultiplexador de canales puede describirse como sigue: EI haz de luz (4) es el haz de fotones que contiene una gama de frecuencias determinada e incide perpendicularmente sobre Ia superficie del dispositivo, representado por dos rejillas (2) de barras (1). El dispositivo dispersor /demultiplexador divide el haz incidente (4) en dos haces (5, 6) con sendas longitudes de onda (λ-i, A2), centradas en 1,50 μm y 1,55 μm respectivamente, siguiendo diferentes trayectorias de manera que forman entre sí un ángulo (α) que vale 28° aproximadamente. Disponiendo de un plano (3), que determina Ia región donde tales longitudes de onda (λi, λ2) son recogidas para su análisis, situado a una distancia (Xf) de unos 20 μm, los haces de fotones (5, 6) dispersados presentan una anchura (δ) de alrededor de 1 μm en dicho plano (3).In view of Figure 1, the function of the device as a light scattering or channel demultiplexer can be described as follows: The light beam (4) is the photon beam that contains a certain frequency range and perpendicularly affects the surface of the device, represented by two gratings (2) of bars (1). The disperser / demultiplexer device divides the incident beam (4) into two beams (5, 6) with two wavelengths (λ-i, A 2 ), centered at 1.50 μm and 1.55 μm respectively, following different paths so that they form an angle (α) approximately 28 ° apart. Having a plane (3), which determines the region where such wavelengths (λi, λ 2 ) are collected for analysis, located at a distance (X f ) of about 20 μm, the photon beams (5, 6 ) dispersed have a width (δ) of about 1 μm in said plane (3).
En un ejemplo práctico, el haz de luz (4) puede estar generado por un láser polarizado de forma que su campo eléctrico oscila en dirección paralela al eje transversal de las barras (1), representado como eje de ordenadas (y) en Ia Figura 2.In a practical example, the light beam (4) can be generated by a polarized laser so that its electric field oscillates in a direction parallel to the transverse axis of the bars (1), represented as an ordinate axis (and) in the Figure 2.
En Ia Figura 2 se muestra un corte en el plano perpendicular a los ejes de las barras dieléctricas que conforman el dispositivo, representando en dos dimensiones su disposición espacial. El material de fabricación de las barras (1), su número, medidas de Ia sección y Ia disposición espacial en capas puede variar, atendiendo a Ia técnica litográfica que se use en Ia implementación del dispositivo, a Ia vez que depende de los parámetros de distancia (Xf), anchura (δ) y ángulo (α), relativos a Ia dispersión de los haces (5, 6), según se fijen como valores óptimos de funcionamiento del demultiplexador. Tales barras (1 ), en esta realización usando como material dieléctrico el AsGa, disponen de una constante dieléctrica igual a 11 ,36 aproximadamente, para las longitudes de onda (λ-i, λ2) de interés, esto es, en este caso, del orden de 1 ,50 μm.Figure 2 shows a cut in the plane perpendicular to the axes of the dielectric bars that make up the device, representing two dimensions its spatial arrangement. The material of manufacture of the bars (1), their number, measurements of the section and the spatial arrangement in layers can vary, according to the lithographic technique that is used in the implementation of the device, at the same time it depends on the parameters of distance (X f ), width (δ) and angle (α), relative to the dispersion of the beams (5, 6), as set as optimal operating values of the demultiplexer. Such bars (1), in this embodiment using AsGa as a dielectric material, have a dielectric constant equal to approximately 11, 36, for the wavelengths (λ-i, λ 2 ) of interest, that is, in this case , of the order of 1.50 μm.
Como se observa en el ejemplo de Ia Figura 2, cada una de las barras dieléctricas (1 ) presenta una sección cuadrada con unas dimensiones de 0,4 μm x 0,4 μm. Puesto que se disponen cinco capas, representadas en el eje de abscisas de Ia Figura 2, el grosor total del dispositivo es de 2 μm, Io cual Io convierte en un demultiplexador ultracompacto.As seen in the example of Figure 2, each of the dielectric bars (1) has a square section with dimensions of 0.4 μm x 0.4 μm. Since there are five layers, represented on the abscissa axis of Figure 2, the total thickness of the device is 2 μm, which makes it an ultra-compact demultiplexer.
Para evitar Ia diafonía entre los dos canales ópticos constituidos por el par de longitudes de onda (λ-ι, λ2), Ia separación (d) entre el eje de incidencia del haz de luz (4) y cada uno de los haces '(5, 6) en que es dividido por el demultiplexador, según se representa en Ia Figura 1 , se establece en 5 μm, estando definida dicha separación (d) del eje del haz incidente (4), transversal al dispositivo, con respecto a Ia posición donde dichos haces (5, 6) son capturados dentro del plano (3). Por consiguiente, Ia separación espacial (2d) entre los dos haces (5, 6) vale 10 μm, en el plano (3) situado a una distancia (Xf) de 20 μm.To avoid the crosstalk between the two optical channels constituted by the pair of wavelengths (λ-ι, λ 2 ), the separation (d) between the axis of incidence of the light beam (4) and each of the beams' (5, 6) in which it is divided by the demultiplexer, as shown in Figure 1, is set at 5 μm, said separation (d) being defined from the axis of the incident beam (4), transverse to the device, with respect to The position where said beams (5, 6) are captured within the plane (3). Therefore, the spatial separation (2d) between the two beams (5, 6) is worth 10 μm, in the plane (3) located at a distance (X f ) of 20 μm.
Además, al capturar los haces (5, 6) sobre dicho plano (3) se prevé un área mínima o anchura (δ) de 1 μm, como se ha dicho anteriormente. Todos estos parámetros (δ, d, xf) introducidos en el procedimiento de diseño inverso dan lugar a una separación entre haces (5, 6) con un ángulo igual a 28° y una diafonía en ambos canales reducida a menos de -25 dB, como puede apreciarse en Ia Figura 3.Furthermore, when capturing the beams (5, 6) on said plane (3), a minimum area or width (δ) of 1 μm is provided, as stated above. All these parameters (δ, d, x f ) introduced in the reverse design procedure result in a separation between beams (5, 6) with an angle equal to 28 ° and a crosstalk in both channels reduced to less than -25 dB , as can be seen in Figure 3.
La Figura 3 ilustra el mapeo bidimensional de Ia función 20log ( |E (x, y) λi | / 1 E (x, y) λ2 | ), expresando en el eje de abscisas (X) Ia distancia entre Ia primera capa del dispositivo y el plano (3) a Ia distancia (Xf) de hasta 20 μm aproximadamente, mientras que el eje de ordenadas (Y) toma valores de Ia sección transversal de los haces (5, 6) en dicho plano (3); es decir, entre el intervalo (d+ δ 12, d- δ/2) para el haz (5) medido en los valores de ordenadas (Y) positivos y el intervalo (-d+ δ 12, -d- δ/2) para el haz (6) considerado en el cuadrante del espacio de ordenadas (Y) negativas.Figure 3 illustrates the two-dimensional mapping of the 20log function (| E (x, y) λi | / 1 E (x, y) λ 2 |), expressing on the abscissa axis (X) the distance between Ia first layer of the device and the plane (3) at the distance (X f ) of up to approximately 20 μm, while the ordinate axis (Y) takes values of the cross section of the beams (5, 6) in said plane ( 3); that is, between the interval (d + δ 12, d- δ / 2) for the beam (5) measured in the positive ordinate (Y) values and the interval (-d + δ 12, -d- δ / 2) for the beam (6) considered in the quadrant of the negative (Y) ordinate space.
Se trata de maximizar Ia atenuación de Ia suma de diafonía en los dos canales ópticos establecidos, es decir, garantizar una diafonía mínima entre las dos longitudes de onda (λ-ι, K2) para las coordenadas (Xf, d) y (Xf, -d), con una resolución igual a Ia anchura (δ) de los respectivos haces (5, 6). En Ia Figura 3, se señala con un par de rectángulos (7) Ia atenuación de unos 25 dB conseguida en las coordenadas deseadas, a 20 μm de distancia (xf) al plano (3) de análisis y a una separación (d) de 5 μm ±1 μm, que es el valor de Ia anchura (δ) de los haces (5, 6). Las barras dieléctricas (1) del dispositivo se dibujan, en Ia citada Figura 3, como cuadrados de 0,4 μm x 0,4 μm, según una posible disposición espacial en cinco capas, entre 0 μm y los 2 μm de grosor total del demultiplexador. El haz de luz (1) se supone incidiendo sobre Ia primera capa del dispositivo, en X= 0, según Ia dirección de abscisas (X) positivas.It is about maximizing the attenuation of the sum of crosstalk in the two established optical channels, that is, guaranteeing a minimum crosstalk between the two wavelengths (λ-ι, K 2 ) for the coordinates (X f , d) and ( X f , -d), with a resolution equal to the width (δ) of the respective beams (5, 6). In Figure 3, the attenuation of about 25 dB achieved at the desired coordinates is indicated with a pair of rectangles (7), at 20 μm distance (x f ) to the analysis plane (3) and a separation (d) of 5 μm ± 1 μm, which is the value of the width (δ) of the beams (5, 6). The dielectric bars (1) of the device are drawn, in the aforementioned Figure 3, as squares of 0.4 μm x 0.4 μm, according to a possible spatial arrangement in five layers, between 0 μm and 2 μm total thickness of the demultiplexer The light beam (1) is assumed to affect the first layer of the device, at X = 0, according to the direction of positive abscissa (X).
Los términos con que se ha redactado esta memoria deberán ser tomados siempre en sentido amplio y no limitativo.The terms with which this report has been written must always be taken in a broad and non-limiting sense.
La invención ha sido descrita según este texto y juego de figuras para algunas realizaciones preferentes de Ia misma, pero el experto en Ia materia podrá entender que múltiples variaciones pueden ser introducidas en dichas realizaciones y combinarse de diversas maneras dando lugar a más variantes posibles, sin salir del ámbito definido por las reivindicaciones que se incluyen seguidamente. The invention has been described according to this text and set of figures for some preferred embodiments thereof, but the person skilled in the art will be able to understand that multiple variations can be introduced in said embodiments and combined in various ways giving rise to more possible variants, without leave the scope defined by the claims included below.

Claims

R E I V I N D I C A C I O N E S
1.- Demultiplexador óptico, susceptible de ser integrado a una guía de onda plana o a una fibra óptica, que separa espacialmente las longitudes de onda (λ-ι, λ2) contenidas en un haz de luz (4) incidente sobre el demultiplexador, para dar a su salida una pluralidad de haces (5, 6) correspondientes a las diferentes longitudes de onda (λi, λ2) separados mediante un ángulo (α), caracterizado porque consta de una pluralidad de capas de barras (1 ), fabricadas en un material dieléctrico, configuradas con una sección óptima para obtener un determinado ángulo (α) de separación entre los haces (5, 6) de salida, las cuales dispersan el haz de luz (4) en sus múltiples longitudes de onda (λ-ι, λ2).1.- Optical demultiplexer, which can be integrated into a flat waveguide or an optical fiber, which spatially separates the wavelengths (λ-ι, λ 2 ) contained in a beam of light (4) incident on the demultiplexer, to give its output a plurality of beams (5, 6) corresponding to the different wavelengths (λi, λ 2 ) separated by an angle (α), characterized in that it consists of a plurality of layers of bars (1), manufactured in a dielectric material, configured with an optimum section to obtain a certain angle (α) of separation between the output beams (5, 6), which disperse the light beam (4) into its multiple wavelengths (λ- ι, λ 2 ).
2.- Demultiplexador óptico según reivindicación 1 , caracterizado porque el material dieléctrico con el cual se fabrican las barras (1) es AsGa.2. Optical demultiplexer according to claim 1, characterized in that the dielectric material with which the bars (1) are manufactured is AsGa.
3.- Demultiplexador óptico según reivindicación 1 , caracterizado porque Ia sección de las barras (1) es cuadrada y de lado igual a 0,4 μm.3. Optical demultiplexer according to claim 1, characterized in that the section of the bars (1) is square and with a side equal to 0.4 μm.
4.- Demultiplexador óptico según reivindicación 1 , caracterizado porque el número de capas de barras (1) dieléctricas que componen el demultiplexador es cinco.4. Optical demultiplexer according to claim 1, characterized in that the number of layers of dielectric bars (1) that make up the demultiplexer is five.
5.- Demultiplexador óptico según reivindicación 1 , caracterizado porque el ángulo (α) de separación entre los haces (5, 6) es de 28°.5. Optical demultiplexer according to claim 1, characterized in that the angle (α) of separation between the beams (5, 6) is 28 °.
6.- Demultiplexador óptico según reivindicación 1 , caracterizado porque los haces (5, 6) de salida corresponden a las longitudes de onda (λi, A2) de 1 ,50 μm y 1 ,55 μm respectivamente. 6. Optical demultiplexer according to claim 1, characterized in that the output beams (5, 6) correspond to the wavelengths (λi, A 2 ) of 1.50 μm and 1.55 μm respectively.
PCT/ES2006/000431 2005-07-22 2006-07-21 Optical demultiplexer WO2007010074A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200501891A ES2297981B2 (en) 2005-07-22 2005-07-22 OPTICAL DEMULTIPLEXER.
ESP200501891 2005-07-22

Publications (2)

Publication Number Publication Date
WO2007010074A2 true WO2007010074A2 (en) 2007-01-25
WO2007010074A3 WO2007010074A3 (en) 2007-05-03

Family

ID=37669175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000431 WO2007010074A2 (en) 2005-07-22 2006-07-21 Optical demultiplexer

Country Status (2)

Country Link
ES (1) ES2297981B2 (en)
WO (1) WO2007010074A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773063A (en) * 1984-11-13 1988-09-20 University Of Delaware Optical wavelength division multiplexing/demultiplexing system
US6721476B2 (en) * 2001-12-03 2004-04-13 Honeywell International Inc. Optical demultiplexer based on three-dimensionally periodic photonic crystals
WO2005017570A2 (en) * 2003-08-06 2005-02-24 University Of Pittsburgh Surface plasmon-enhanced nano-optic devices and methods of making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773063A (en) * 1984-11-13 1988-09-20 University Of Delaware Optical wavelength division multiplexing/demultiplexing system
US6721476B2 (en) * 2001-12-03 2004-04-13 Honeywell International Inc. Optical demultiplexer based on three-dimensionally periodic photonic crystals
WO2005017570A2 (en) * 2003-08-06 2005-02-24 University Of Pittsburgh Surface plasmon-enhanced nano-optic devices and methods of making same

Also Published As

Publication number Publication date
WO2007010074A3 (en) 2007-05-03
ES2297981B2 (en) 2008-12-01
ES2297981A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US9823418B2 (en) Waveguide-type optical diffraction grating and optical wavelength filter
EP2976846B1 (en) Wavelength selective switch having integrated channel monitor
JP6093444B2 (en) Optical signal processor
JP5692865B2 (en) Wavelength cross-connect equipment
JP6068478B2 (en) Optical signal processor
US9680570B2 (en) Optical channel monitor for a wavelength selective switch employing a single photodiode
CN106405731B (en) Micro-structure class array waveguide grating and its implementation based on metal material
CN103827714A (en) Wavelength switch system using angle multiplexing optics
US9188831B2 (en) Compact wavelength-selective cross-connect device having multiple input ports and multiple output ports
JP2005502080A (en) Free-space wavelength routing system with interleaved channel
JP2009258438A (en) Wavelength selection switch
JP5373291B2 (en) Wavelength selective switch
US20070258679A1 (en) Wavelength routing optical switch
US20040028316A1 (en) Multi-layer thin film optical waveguide switch
ES2297981B2 (en) OPTICAL DEMULTIPLEXER.
JP4505313B2 (en) Optical device and optical control method
Khan et al. Demonstration of the MEMS Digital Micromirror Device-Based Broadband Reconfigurable Optical Add–Drop Filter for Dense Wavelength-Division-Multiplexing Systems
JP2018141948A (en) Optical signal processor
JPH04264506A (en) Optical multiplexer/demultiplexer
JP6431461B2 (en) Optical input / output device
Dai Multi-functional silicon photonic integrated circuits with ultra-compact arrayed-waveguide gratings
WO2022117902A1 (en) Single-beam side deflector, multiplexer/demultiplexer and optical antenna feeder incorporating the deflector, and methods that use same
JP2013217965A (en) Optical device
Stavdas Optical Multiplexing and Demultiplexing
Shen et al. Opto-VLSI-based integrated reconfigurable optical add-drop multiplexer with enhanced performance

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06807879

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 06807879

Country of ref document: EP

Kind code of ref document: A2