WO2007025050A3 - Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements - Google Patents

Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements Download PDF

Info

Publication number
WO2007025050A3
WO2007025050A3 PCT/US2006/033093 US2006033093W WO2007025050A3 WO 2007025050 A3 WO2007025050 A3 WO 2007025050A3 US 2006033093 W US2006033093 W US 2006033093W WO 2007025050 A3 WO2007025050 A3 WO 2007025050A3
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
magnetic elements
spin
providing
Prior art date
Application number
PCT/US2006/033093
Other languages
French (fr)
Other versions
WO2007025050A2 (en
Inventor
Mahendra Pakala
Eugene Youjun Chen
Yiming Huai
Original Assignee
Grandis Inc
Mahendra Pakala
Eugene Youjun Chen
Yiming Huai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grandis Inc, Mahendra Pakala, Eugene Youjun Chen, Yiming Huai filed Critical Grandis Inc
Priority to EP06813719A priority Critical patent/EP1917684A2/en
Priority to JP2008528153A priority patent/JP2009514193A/en
Publication of WO2007025050A2 publication Critical patent/WO2007025050A2/en
Publication of WO2007025050A3 publication Critical patent/WO2007025050A3/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01F10/3259Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3263Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets

Abstract

A method and system for providing a magnetic element are disclosed. The method and system include providing a pinned layer, providing a spacer layer, and providing a free layer. The free layer is ferrimagnetic and includes at least one of a conductive ferrite, a garnet, a ferrimagnetic alloy excluding a rare earth, a heavy rare- earth-transition metal alloy, a half-metallic ferrimagnetic, and a bilayer. The bilayer includes a rare earth-transition metal alloy layer and a spin current enhancement layer. The magnetic element is configured to allow the free layer to be switched due to spin transfer when a write current is passed through the magnetic element.
PCT/US2006/033093 2005-08-23 2006-08-23 Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements WO2007025050A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06813719A EP1917684A2 (en) 2005-08-23 2006-08-23 Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
JP2008528153A JP2009514193A (en) 2005-08-23 2006-08-23 Spin transition switching magnetic element using ferrimagnetic material and magnetic memory using this magnetic element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/210,452 US7489541B2 (en) 2005-08-23 2005-08-23 Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
US11/210,452 2005-08-23

Publications (2)

Publication Number Publication Date
WO2007025050A2 WO2007025050A2 (en) 2007-03-01
WO2007025050A3 true WO2007025050A3 (en) 2009-04-16

Family

ID=37772391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/033093 WO2007025050A2 (en) 2005-08-23 2006-08-23 Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements

Country Status (5)

Country Link
US (1) US7489541B2 (en)
EP (1) EP1917684A2 (en)
JP (1) JP2009514193A (en)
KR (1) KR100963724B1 (en)
WO (1) WO2007025050A2 (en)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992359B2 (en) * 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US20110140217A1 (en) * 2004-02-26 2011-06-16 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
JP2007150265A (en) * 2005-10-28 2007-06-14 Toshiba Corp Magnetoresistive element and magnetic storage
US7466583B2 (en) * 2006-01-13 2008-12-16 Magic Technologies, Inc. MRAM with split read-write cell structures
US7695761B1 (en) 2006-12-21 2010-04-13 Western Digital (Fremont), Llc Method and system for providing a spin tunneling magnetic element having a crystalline barrier layer
US8559141B1 (en) 2007-05-07 2013-10-15 Western Digital (Fremont), Llc Spin tunneling magnetic element promoting free layer crystal growth from a barrier layer interface
US7771115B2 (en) * 2007-08-16 2010-08-10 Micron Technology, Inc. Temperature sensor circuit, device, system, and method
US20090048414A1 (en) * 2007-08-16 2009-02-19 Uchicago Argonne, Llc Magnetic coupling through strong hydrogen bonds
US8100228B2 (en) * 2007-10-12 2012-01-24 D B Industries, Inc. Portable anchorage assembly
US8545999B1 (en) 2008-02-21 2013-10-01 Western Digital (Fremont), Llc Method and system for providing a magnetoresistive structure
FR2929041B1 (en) * 2008-03-18 2012-11-30 Crocus Technology MAGNETIC ELEMENT WITH THERMALLY ASSISTED WRITING
US8659852B2 (en) 2008-04-21 2014-02-25 Seagate Technology Llc Write-once magentic junction memory array
US7760542B2 (en) 2008-04-21 2010-07-20 Seagate Technology Llc Spin-torque memory with unidirectional write scheme
US7999336B2 (en) 2008-04-24 2011-08-16 Seagate Technology Llc ST-RAM magnetic element configurations to reduce switching current
US7852663B2 (en) * 2008-05-23 2010-12-14 Seagate Technology Llc Nonvolatile programmable logic gates and adders
US7855911B2 (en) * 2008-05-23 2010-12-21 Seagate Technology Llc Reconfigurable magnetic logic device using spin torque
US7804709B2 (en) 2008-07-18 2010-09-28 Seagate Technology Llc Diode assisted switching spin-transfer torque memory unit
US8233319B2 (en) 2008-07-18 2012-07-31 Seagate Technology Llc Unipolar spin-transfer switching memory unit
US8223532B2 (en) * 2008-08-07 2012-07-17 Seagate Technology Llc Magnetic field assisted STRAM cells
US8054677B2 (en) 2008-08-07 2011-11-08 Seagate Technology Llc Magnetic memory with strain-assisted exchange coupling switch
US7935435B2 (en) * 2008-08-08 2011-05-03 Seagate Technology Llc Magnetic memory cell construction
US7881098B2 (en) 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
JP4764466B2 (en) * 2008-09-25 2011-09-07 株式会社東芝 Laminated body having Heusler alloy, magnetoresistive element using this laminated body, and spin transistor
US7826256B2 (en) * 2008-09-29 2010-11-02 Seagate Technology Llc STRAM with compensation element
US7985994B2 (en) 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
US7940551B2 (en) * 2008-09-29 2011-05-10 Seagate Technology, Llc STRAM with electronically reflective insulative spacer
US7746687B2 (en) 2008-09-30 2010-06-29 Seagate Technology, Llc Thermally assisted multi-bit MRAM
US7933146B2 (en) * 2008-10-08 2011-04-26 Seagate Technology Llc Electronic devices utilizing spin torque transfer to flip magnetic orientation
US7933137B2 (en) * 2008-10-08 2011-04-26 Seagate Teachnology Llc Magnetic random access memory (MRAM) utilizing magnetic flip-flop structures
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US8487390B2 (en) * 2008-10-08 2013-07-16 Seagate Technology Llc Memory cell with stress-induced anisotropy
US8039913B2 (en) * 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8089132B2 (en) 2008-10-09 2012-01-03 Seagate Technology Llc Magnetic memory with phonon glass electron crystal material
US20100091564A1 (en) * 2008-10-10 2010-04-15 Seagate Technology Llc Magnetic stack having reduced switching current
US8217478B2 (en) * 2008-10-10 2012-07-10 Seagate Technology Llc Magnetic stack with oxide to reduce switching current
US7852667B2 (en) * 2008-10-27 2010-12-14 Seagate Technology Llc ST-RAM employing a magnetic resonant tunneling diode as a spacer layer
US20100102405A1 (en) * 2008-10-27 2010-04-29 Seagate Technology Llc St-ram employing a spin filter
US20100103565A1 (en) * 2008-10-27 2010-04-29 Seagate Technology Llc St-ram employing heusler alloys
US9165625B2 (en) * 2008-10-30 2015-10-20 Seagate Technology Llc ST-RAM cells with perpendicular anisotropy
US8045366B2 (en) * 2008-11-05 2011-10-25 Seagate Technology Llc STRAM with composite free magnetic element
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7826181B2 (en) * 2008-11-12 2010-11-02 Seagate Technology Llc Magnetic memory with porous non-conductive current confinement layer
US8289756B2 (en) 2008-11-25 2012-10-16 Seagate Technology Llc Non volatile memory including stabilizing structures
US7940600B2 (en) 2008-12-02 2011-05-10 Seagate Technology Llc Non-volatile memory with stray magnetic field compensation
US7859892B2 (en) * 2008-12-03 2010-12-28 Seagate Technology Llc Magnetic random access memory with dual spin torque reference layers
US7826259B2 (en) 2009-01-29 2010-11-02 Seagate Technology Llc Staggered STRAM cell
US8053255B2 (en) 2009-03-03 2011-11-08 Seagate Technology Llc STRAM with compensation element and method of making the same
US20100254174A1 (en) * 2009-04-02 2010-10-07 Seagate Technology Llc Resistive Sense Memory with Complementary Programmable Recording Layers
TWI443656B (en) * 2009-04-16 2014-07-01 Univ Nat Yunlin Sci & Tech Magnetic-stack structure and manufacturing method thereof
US7936598B2 (en) 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer
US8363459B2 (en) * 2009-06-11 2013-01-29 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US8183653B2 (en) 2009-07-13 2012-05-22 Seagate Technology Llc Magnetic tunnel junction having coherent tunneling structure
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
US8498084B1 (en) 2009-07-21 2013-07-30 Western Digital (Fremont), Llc Magnetoresistive sensors having an improved free layer
US8913350B2 (en) * 2009-08-10 2014-12-16 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US10446209B2 (en) 2009-08-10 2019-10-15 Samsung Semiconductor Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US20110031569A1 (en) * 2009-08-10 2011-02-10 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US8194365B1 (en) 2009-09-03 2012-06-05 Western Digital (Fremont), Llc Method and system for providing a read sensor having a low magnetostriction free layer
KR20110071710A (en) * 2009-12-21 2011-06-29 삼성전자주식회사 Perpendicular magnetic tunnel junction, magnetic device comprising the same and method of manufacturing the same
US8283741B2 (en) * 2010-01-08 2012-10-09 International Business Machines Corporation Optimized free layer for spin torque magnetic random access memory
US8324697B2 (en) 2010-06-15 2012-12-04 International Business Machines Corporation Seed layer and free magnetic layer for perpendicular anisotropy in a spin-torque magnetic random access memory
US9024398B2 (en) * 2010-12-10 2015-05-05 Avalanche Technology, Inc. Perpendicular STTMRAM device with balanced reference layer
US8399941B2 (en) 2010-11-05 2013-03-19 Grandis, Inc. Magnetic junction elements having an easy cone anisotropy and a magnetic memory using such magnetic junction elements
US8405171B2 (en) 2010-11-16 2013-03-26 Seagate Technology Llc Memory cell with phonon-blocking insulating layer
US8508973B2 (en) 2010-11-16 2013-08-13 Seagate Technology Llc Method of switching out-of-plane magnetic tunnel junction cells
US8427791B2 (en) * 2010-11-23 2013-04-23 HGST Netherlands B.V. Magnetic tunnel junction having a magnetic insertion layer and methods of producing the same
US9478730B2 (en) 2010-12-31 2016-10-25 Samsung Electronics Co., Ltd. Method and system for providing magnetic layers having insertion layers for use in spin transfer torque memories
US8432009B2 (en) 2010-12-31 2013-04-30 Grandis, Inc. Method and system for providing magnetic layers having insertion layers for use in spin transfer torque memories
US8766383B2 (en) 2011-07-07 2014-07-01 Samsung Electronics Co., Ltd. Method and system for providing a magnetic junction using half metallic ferromagnets
WO2013095336A1 (en) * 2011-12-19 2013-06-27 Intel Corporation Spin transfer torque memory (sttm) device with half-metal and method to write and read the device
US9070381B1 (en) 2013-04-12 2015-06-30 Western Digital (Fremont), Llc Magnetic recording read transducer having a laminated free layer
EP3127125B1 (en) 2014-04-02 2022-03-30 Granville, Simon Edward Magnetic materials and devices comprising rare earth nitrides
EP3127146A4 (en) 2014-04-02 2017-11-08 Natali, Franck Doped rare earth nitride materials and devices comprising same
US9792971B2 (en) * 2014-07-02 2017-10-17 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions with rare earth-transition metal layers
US9406365B1 (en) 2015-01-26 2016-08-02 International Business Machines Corporation Underlayers for textured films of Heusler compounds
WO2017018391A1 (en) * 2015-07-24 2017-02-02 国立大学法人東京大学 Memory element
US9831422B2 (en) 2015-10-21 2017-11-28 Samsung Electronics Co., Ltd. Magnetic memory devices having perpendicular magnetic tunnel junction
US10475988B2 (en) * 2016-07-27 2019-11-12 National University Of Singapore High efficiency spin torque switching using a ferrimagnet
US10263178B2 (en) * 2016-09-15 2019-04-16 Toshiba Memory Corporation Magnetic memory device
US10121960B2 (en) * 2016-10-17 2018-11-06 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions usable in spin transfer torque applications utilizing interstitial glass-forming agent(s)
CN110412081B (en) * 2019-07-16 2022-03-08 三峡大学 Method for measuring included angle between magnetic moments of non-collinear antiferromagnetic coupling atoms in Rare Earth (RE) -transition group metal (TM) alloy
CN116889116A (en) * 2021-01-20 2023-10-13 国立大学法人东京大学 Photon spin register, information writing method and information reading method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207070A1 (en) * 2004-03-16 2005-09-22 Carey Matthew J Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695864A (en) 1995-09-28 1997-12-09 International Business Machines Corporation Electronic device using magnetic components
US6724674B2 (en) 2000-11-08 2004-04-20 International Business Machines Corporation Memory storage device with heating element
FR2829868A1 (en) * 2001-09-20 2003-03-21 Centre Nat Rech Scient Magnetic memory with spin-polarized current writing for storage and reading of data in electronic systems includes a free magnetic layer made from an amorphous or nanocrystalline alloy of a rare earth and a transition metal
JP3583102B2 (en) * 2001-12-27 2004-10-27 株式会社東芝 Magnetic switching element and magnetic memory
JP3866641B2 (en) * 2002-09-24 2007-01-10 株式会社東芝 Magnetic storage device and manufacturing method thereof
JP3824600B2 (en) * 2003-07-30 2006-09-20 株式会社東芝 Magnetoresistive element and magnetic memory
US20050110004A1 (en) * 2003-11-24 2005-05-26 International Business Machines Corporation Magnetic tunnel junction with improved tunneling magneto-resistance
US7242045B2 (en) * 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US7149105B2 (en) * 2004-02-24 2006-12-12 Infineon Technologies Ag Magnetic tunnel junctions for MRAM devices
US6967863B2 (en) * 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) * 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
WO2005101378A1 (en) * 2004-04-02 2005-10-27 Tdk Corporation Composite free layer for stabilizing magnetoresistive head
US7230265B2 (en) * 2005-05-16 2007-06-12 International Business Machines Corporation Spin-polarization devices using rare earth-transition metal alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207070A1 (en) * 2004-03-16 2005-09-22 Carey Matthew J Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling

Also Published As

Publication number Publication date
WO2007025050A2 (en) 2007-03-01
JP2009514193A (en) 2009-04-02
KR20080037098A (en) 2008-04-29
US20070074317A1 (en) 2007-03-29
KR100963724B1 (en) 2010-06-14
EP1917684A2 (en) 2008-05-07
US7489541B2 (en) 2009-02-10

Similar Documents

Publication Publication Date Title
WO2007025050A3 (en) Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
WO2005079528A3 (en) Spin transfer magnetic element having low saturation magnetization free layers
WO2005029497A3 (en) Current confined pass layer for magnetic elements utilizing spin-transfer and an mram device using such magnetic elements
WO2005082061A3 (en) Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
WO2007011881A3 (en) Magnetic elements having improved switching characteristics
WO2007075889A3 (en) Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US7605437B2 (en) Spin-transfer MRAM structure and methods
WO2005112034A3 (en) Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same
US9087633B2 (en) Magnetic device having a magnetic material in a contact structure coupled to a magnetic element and method of manufacture thereof
WO2004063760A3 (en) Magnetostatically coupled magnetic elements utilizing spin transfer and an mram device using the magnetic element
WO2006071724A3 (en) Mtj elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements
WO2003025942A3 (en) Magnetic memory with spin-polarized current writing, using amorphous ferromagnetic alloys, writing method for same
WO2004029973A3 (en) Thermally stable magnetic element utilizing spin transfer and an mram device using the magnetic element
WO2005079348A3 (en) Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
WO2005020242A3 (en) Magnetic memory element utilizing spin transfer switching and storing multiple bits
WO2003034437A3 (en) Writing to a mram element comprising a synthetic antiferromagnetic layer
WO2012103384A3 (en) Josephson magnetic switch
WO2007117392A3 (en) On-plug magnetic tunnel junction devices based on spin torque transfer switching
TW200746137A (en) Magnetic memory device
WO2004079743A3 (en) Magnetostatically coupled magnetic elements utilizing spin transfer and an mram device using the magnetic element
KR20150016162A (en) Method and system for providing magnetic junctions including a package structure usable in spin transfer torque memories
WO2004013861A3 (en) Magnetic element utilizing spin transfer and an mram device using the magnetic element
JP2012525710A5 (en)
TW200632923A (en) Reduced power magnetoresistive random access memory elements
WO2011156031A3 (en) Method and system for providing inverted dual magnetic tunneling junction elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006813719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008528153

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087006642

Country of ref document: KR