WO2007050686A2 - Electrophoretic media with improved binder - Google Patents

Electrophoretic media with improved binder Download PDF

Info

Publication number
WO2007050686A2
WO2007050686A2 PCT/US2006/041634 US2006041634W WO2007050686A2 WO 2007050686 A2 WO2007050686 A2 WO 2007050686A2 US 2006041634 W US2006041634 W US 2006041634W WO 2007050686 A2 WO2007050686 A2 WO 2007050686A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoretic
electrophoretic medium
medium according
binder
diisocyanate
Prior art date
Application number
PCT/US2006/041634
Other languages
French (fr)
Other versions
WO2007050686A3 (en
Inventor
Lan Cao
Elizabeth M. Gates
David D. Miller
Guy M. Danner
Jr. Richard J. Paolini
Original Assignee
E Ink Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corporation filed Critical E Ink Corporation
Publication of WO2007050686A2 publication Critical patent/WO2007050686A2/en
Publication of WO2007050686A3 publication Critical patent/WO2007050686A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/026Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An electrophoretic medium comprises discrete droplets of an electrophoretic internal phase comprising a fluid and carbon black particles in the fluid. The droplets are surrounded by a polyurethane binder formed by a diisocyanate and a polyether diol, at least 20 mole per cent of the diisocyanate being an aromatic diisocyanate.

Description

ELECTROPHORETIC MEDIA WITH IMPROVED BINDER
[Para 1 ] The present invention relates to electrophoretic media with an improved binder, and to displays containing such media. More specifically, this invention relates to electrophoretic media and displays with a binder which reduces dwell time dependence. [Para 2] The terms "bistable" and "bistability" are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in published U.S. Patent Application No. 2002/0180687 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called "multi-stable" rather than bistable, although for convenience the term "bistable" may be used herein to cover both bistable and multi-stable displays.
[Para 3] Particle-based electrophoretic displays have been the subject of intense research and development for a number of years. In this type of display, a plurality of charged particles move through a fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.
[Para 4] As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1 ,536,271 ; 1 ,542,067; 1 ,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.
[Para 5] Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291 ; 6,580,545; 6,639,578; 6,652,075; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,704,133; 6,710,540; 6,721,083; 6,724,519; 6,727,881; 6,738,050; 6,750,473; 6,753,999; 6,816,147; 6,819,471; 6,822,782; 6,825,068; 6,825,829; 6,825,970; 6,831,769; 6,839,158; 6,842,167; 6,842,279; 6,842,657; 6,864,875; 6,865,010; 6,866,760; 6,870,661; 6,900,851 ; 6,922,276; 6,950,200; 6,958,848; 6,967,640; 6,982,178; 6,987,603; 6,995,550; 7,002,728; 7,012,600; 7,012,735; 7,023,430; 7,030,412; 7,030,854; 7,034,783; 7,038,655; 7,061,663; 7,071,913; 7,075,502; 7,075,703; 7,079,305; 7,106,296; 7,109,968; 7,110,163; 7,110,164; 7,116,318; 7,116,466; 7,119,759; and 7,119,772; and U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2002/0180687; 2003/001 1560; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0014265; 2004/0075634; 2004/0094422; 2004/0105036; 2004/0112750; 2004/0119681; 2004/0136048; 2004/0155857; 2004/0180476; 2004/0190114; 2004/0196215; 2004/0226820; 2004/0239614; 2004/0257635; 2004/0263947; 2005/0000813; 2005/0007336; 2005/0012980; 2005/0017944; 2005/0018273; 2005/0024353; 2005/0062714; 2005/0067656; 2005/0078099; 2005/0099672; 2005/0122284; 2005/0122306; 2005/0122563; 2005/0122565; 2005/0134554; 2005/0146774; 2005/0151709; 2005/0152018; 2005/0152022; 2005/0156340; 2005/0168799; 2005/0179642; 2005/0190137; 2005/0212747; 2005/0213191; 2005/0219184; 2005/0253777; 2005/0270261 ; 2005/0280626; 2006/0007527; 2006/0024437; 2006/0038772; 2006/0139308; 2006/0139310; 2006/0139311; 2006/0176267; 2006/0181492; 2006/0181504; 2006/0194619; 2006/0197736; 2006/0197737; 2006/0197738; 2006/0198014; 2006/0202949; and 2006/0209388; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 Bl ; and 1,145,072 Bl .
[Para 6] Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Patent No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media. [Para 7] A related type of electrophoretic display is a so-called "microcell electrophoretic display". In a microcell electrophoretic display, the charged particles and the suspending fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, International Application Publication No. WO 02/01281, and published US Application No. 2002/0075556, both assigned to Sipix Imaging, Inc.
[Para 8] Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346.
[Para 9] An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word "printing" is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.
[Para 1 0] As already noted, an encapsulated electrophoretic medium typically comprises electrophoretic capsules disposed in a polymeric binder, which serves to form the discrete capsules into a coherent layer. The continuous phase in a polymer-dispersed electrophoretic medium, and the cell walls of a microcell medium serve similar functions. It has been found by E Ink researchers that the specific material used as the binder in an electrophoretic medium can affect the electro-optic properties of the medium. Among the electro-optic properties of an electrophoretic medium affected by the choice of binder is the so-called "dwell time dependence". As discussed in the aforementioned U.S. Patent No. 7,119,772 (see especially Figure 34 and the related description). It has been found that, at least in some cases, the impulse necessary for a transition between two specific optical states of a bistable electrophoretic display varies with the residence time of a pixel in its initial optical state, and this phenomenon is referred to as "dwell time dependence" or "DTD". Obviously, it is desirable to keep DTD as small as possible since DTD affects the difficulty of driving the display and may affect the quality of the image produced; for example, DTD may cause pixels which are supposed to form an area of uniform gray color to differ slightly from one another in gray level, and the human eye is very sensitive to such variations. Although it has been known that the choice of binder affects DTD, choosing an appropriate binder for any specific electrophoretic medium has hitherto been based on trial-and-error, with essentially no understanding of the relationship between DTD and the chemical nature of the binder. [Para 1 1 ] It is known, (see for example, copending Application Serial No. 11/428,584, filed July 5, 2006) that various physico-chemical properties, especially the electrical properties, of the binder used in electrophoretic displays can have a significant effect on the electro-optic performance of such displays. Choosing a binder which satisfies all the relevant requirements for use in such displays is not easy, and in practice only a limited number of commercial materials are suitable. Typically, in practice a polyurethane resin, normally supplied as an aqueous latex, is used to form the binder. It has now been discovered that, for certain types of electrophoretic media, DTD is strongly influenced by the aromatic content of a polyurethane binder, and this invention provides electrophoretic media with polyurethane binders and low DTD.
[Para 1 2] This invention provides an electrophoretic medium comprising a plurality of discrete droplets of an electrophoretic internal phase, the internal phase comprising a fluid and carbon black particles in the fluid, the droplets being surrounded by a polyurethane binder formed by a diisocyanate and a polyether diol, wherein at least 20 mole per cent of the diisocyanate is an aromatic diisocyanate. Desirably at least 50 mole per cent, and preferably at least 75 mole per cent, of the diisocyanate is an aromatic diisocyanate. The internal phase used in the electrophoretic medium of the invention may comprise only carbon black particles in a colored fluid, but preferably the electrophoretic medium is of the dual particle type having a second type of electrophoretic particle (in addition to carbon black) in the fluid, the second type of electrophoretic particles differing from the carbon black particles in at least one optical characteristic, and in electrophoretic mobility. For example, in one preferred form of the present invention the electrophoretic medium contains carbon black particles and white titania particles bearing a charge of opposite polarity to the carbon black particles. [Para 1 3] The polyurethane binder used in the display of the present invention may comprise a single polyurethane formed from an aromatic diisocyanate and a polyether diol. Alternatively, the binder used may comprise a blend of two or more polyurethanes, at least one of which is formed from an aromatic diisocyanate and a polyether diol. For example, the binder may comprise a first polyurethane formed from an aromatic diisocyanate and a polyether diol, and a second polyurethane formed from an aliphatic diisocyanate and a polyester diol. A preferred polyether diol for use in the polyurethane binder is poly(propylene glycol), desirably one having a molecular weight of about 1500 to about 5000. [Para 1 4] The electrophoretic medium of the present invention may be an encapsulated electrophoretic medium having a capsule wall interposed between each droplet and the binder. The electrophoretic medium may also be of the polymer-dispersed type with the droplets of internal phase dispersed directly (without any intervening capsule wall) in a continuous phase of the binder. Finally, the electrophoretic medium of the present invention may be of the microcell type, with the binder forming the walls of a plurality of closed cavities within which the internal phase is retained.
[Para 1 5] This invention also provides an electrophoretic medium comprising a plurality of discrete droplets of an electrophoretic internal phase, the internal phase comprising a fluid and carbon black particles in the fluid, the droplets being surrounded by a polyurethane binder formed by a diisocyanate and a polyether diol, wherein at least 20 mole per cent of the diisocyanate comprises TMXDI (see below for the formal name of this diisocyanate. In such a medium, at least 50 mole per cent of the diisocyanate may comprises TMXDI; indeed, the diisocyanate may consist essentially of TMXDI.
[Para 1 6] This invention extends to an electrophoretic display comprising an electrophoretic medium of the invention in combination with at least one electrode disposed adjacent the electrophoretic medium and arranged to apply an electric field thereto. [Para 1 7] Figure 1 of the accompanying drawings is a graph showing the variation of dwell time dependence of the white state of a prior art electrophoretic binder against pulse length and rest period, as obtained in certain experiments described below.
[Para 1 8] Figure 2 is a graph similar to Figure 1 but showing the results obtained with a binder of the present invention, as described in Example 3 below.
[Para 1 9] Figures 3 to 5 are graphs similar to those of Figures 1 and 2 but showing the results obtained with a prior art binder, a simple binder of the present invention and a mixed binder of the present invention respectively.
[Para 20] Figures 6 to 8 are graphs similar to those of Figures 3 to 5 respectively but showing the corresponding dark state dwell time dependencies.
[Para 21 ] As already mentioned, the present invention relates to an electrophoretic medium comprising carbon black electrophoretic particles and a polyurethane binder. At least part of the binder is formed from an aromatic diisocyanate and a polyether diol. It should be noted that the present invention appears to be specific to electrophoretic media containing carbon black (although similar results may be obtained from electrophoretic media containing other electrically-conductive electrophoretic particles, for example metals); similar results are not obtained from electrophoretic media in which the carbon black is replaced by a non- conductive particle, for example copper chromite. [Para 22] As discussed in several of the aforementioned E Ink and MIT patents and published applications (see especially U.S. Patent No. 7,012,600) in order to achieve accurate gray levels in an electrophoretic display, it is necessary that the correct impulse (the integral of voltage with respect to time) be delivered to a pixel to place the electrophoretic particles in the correct positions to generate the desired optical state. In electrophoretic displays where the internal phase (electrophoretic particles and surrounding fluid) is in direct contact with the electrodes, this is simple. However, in encapsulated media (whether of the capsule-based, polymer-dispersed or microcell types), there is an ionic conducting polymeric external phase (capsule wall and/or binder) in between the internal phase and the electrodes, and hence a complex charge screening layer is formed that can affect the field actually experienced by the electrophoretic particles. Moreover, the charge screening layer will decay over time after the applied voltage has been removed. This residual charge screening layer adds a real voltage to subsequent addressing pulses that will vary the electric field experienced by the electrophoretic particles, hence delivering an incorrect impulse to the electrophoretic particles. The macroscopic effect of this inadvertent "distortion" of the applied electric field is that a spatially correlated afterimage can appear in a subsequent image updates, and the severity of this afterimage correlates to the time since the last image update. [Para 23] It has been discovered that the major factor affecting the amount of DTD seen in an electrophoretic display is the type of binder used. It is known (see for example the aforementioned U.S. Patent No. 6,831,769) that a blend of two latex polyurethanes can be used as a binder in an encapsulated electrophoretic medium. The DTD of such a medium can be measured by observing a reference optical state (for a given pulse length) when the sample is switched after resting for a long period (say 30 seconds) with in its previous optical state. This reference state is compared to the optical state obtained when a shorter rest period (typically 0.4 to 10 seconds) is used. In order to allow for the effects of electrophoretic medium switching speed and medium thickness, this DTD measurement is repeated for multiple pulse lengths and the results are plotted as a three dimensional graph of optical difference against pulse length and rest period. Figure 1 of the accompanying drawing shows such a graph of the white state DTD for a laboratory scale sample using a conventional mixed polyurethane latex binder. It will be appreciated that DTD can be different for white-to-black and black-to-white transitions; "white state DTD" refers to the effect of a final white state of varying rest periods in a previous black or gray state.) [Para 24] The absolute values in the graph depend on the reference state, and thus are less important than the full range of optical states resulting from changes in rest period and pulse length. Accordingly, the most convenient parameter to characterize DTD is Maximum- Minimum range of these measurements, which in Figure 1 is 2.4 L* units. Another important characteristic is the shape of the curve: in Figure 1, the maximum DTD occurs at short pulse lengths and short rest periods, and the effect of DTD is to increase the optical state for the white state. This implies that the electrophoretic particles are experiencing a larger voltage when switched under these conditions.
[Para 25] The effects of changes in the binder composition are illustrated in the Examples below.
[Para 26] It is now necessary to consider the effect of polyurethane chemistry in the present invention. As is well known to those skilled in polyurethane technology, a diisocyanate is a compound containing two -N=C=O (NCO) groups. A urethane linkage is formed when an isocyanate group reacts with a hydroxyl group. The polyaddition reaction between a diisocyanate and a diol (a compound containing two hydroxyl groups) is the basic reaction to produce a polyurethane. Because some isocyanates react with water, only less reactive aliphatic diisocyanates are commonly used in the synthesis of water-borne polyurethane dispersions (latices); however, tetramethylxylene diisocyanate (TMXDI - IUPAC name 1,3- bis(l-isocyanato-l-methylethyl)benzene) can be used for this purpose. Although TMXDI contains an aromatic ring, its two isocyanate groups are not directly attached to the aromatic ring, making it less reactive than other aromatic diisocyanates, such as toluene diisocyanate (TDI) or methylene diphenyldiisocyanate (MDI - IUPAC name bis(4- isocyanatophenyl)methane). The experiments below illustrate properties of water-borne polyurethane binders made from an aliphatic diisocyanate and aromatic TMXDI with either poly(caprolactone) (PCL) or poly(propylene oxide) (PPO) as the other reactant. The experimental results demonstrate that the presence of both an aromatic diisocyanate and a polyether is necessary to achieve good DTD performance in an electrophoretic medium containing carbon black electrophoretic particles. [Para 27] Example 1 : Synthesis of polyurethanes [Para 28] The reactants used in the experiments were as follows:
Figure imgf000011_0001
Hi2MDI (IUPAC name bis(4-isocyanatocyclohexyl)methane) O
-C- -CH, -CH? CHo CHp -CHo-
PCL
Figure imgf000011_0002
PPO
[Para 29] Five different polyurethanes were used in these experiments, as set out In Table 1 below: [Para 30] Table 1
Figure imgf000011_0003
[Para 31 ] Polyurethanes A, B and C were formulated to have the same molar ratios of diol to diisocyanate; Polyurethane D is a custom polyurethane prepared by a third party in accordance with U.S. Patent Publication No. 2005/0124751, while Binder E was also a commercial polyurethane.
[Para 32] The synthesis of Polyurethane A was carried out under nitrogen as follows. A jacketed 500 mL glass reactor was equipped with a mechanical stirrer, a thermometer, and a nitrogen inlet. Hi2MDI (20.99 g of Bayer Desmodur W, 0.08 mole), poly(propylene glycol) diol (50 g, supplied by Aldrich Chemical Company, Mn about 2000), and dibutyltin dilaurate (0.04 g, from Aldrich) were charged into the reactor and the mixture was heated at 900C for 2 hours. (Unless otherwise stated, in all the reactions below the reagents used are the same as those used in the synthesis of Polyurethane A.) A solution of 2,2-bis(hydroxymethyl)- propionic acid (3.35 g, from Aldrich) in l-methyl-2-pyrrolidinone (10 g, from Aldrich) was then added and the reaction allowed to proceed at 9O0C for another hour to produce an NCO- terminated prepolymer. The reactor temperature was then lowered to 700C, and triethylamine (2.4 g, from Aldrich) was added; the resultant mixture was allowed to stand at this temperature for 30 minutes to neutralize carboxylic acid. The reactor temperature was then further lowered to 350C and de-ionized water (105 g) was added to convert the prepolymer to a water-borne polyurethane dispersion. Chain extension reaction was carried out immediately after the dispersion step with hexamethylenediamine (3.3 g, from Aldrich) dissolved in a small amount of de-ionized water over a period of 1 hour at 35°C. Finally, the dispersion was heated to 700C for 1 hour to ensure that all residual isocyanate groups had reacted. [Para 33] The synthesis of Polyurethane B was carried out under nitrogen as follows. A prepolymer was prepared in a three-necked round-bottomed flask equipped with a magnetic stirrer, a condenser, and a nitrogen inlet. TMXDI (19.54 g, from Aldrich, 0.08 mole), poly(propylene glycol) diol (50 g), and dibutyltin dilaurate (0.04 g) were charged into the flask and the mixture was heated in a silicon oil bath on a hotplate at 9O0C for 2 hours. A solution of 2,2-bis(hydroxymethyl)propionic acid (3.35 g) in l-methyl-2-pyrrolidinone (10 g) was then added and the reaction allowed to proceed at 9O0C for another hour to produce an NCO-terminated prepolymer. The reactor temperature was then lowered to 700C, and triethylamine (2.4 g) was added; the resultant mixture was allowed to stand at this temperature for 30 minutes to neutralize carboxylic acid. At this point, dibutylamine (0.388 g, from Aldrich, 5 mole per cent relative to the residual NCO groups) was added as a chain stopper. The resultant reaction mixture was slowly added to de-ionized water (105 g) at 35°C in a jacketed 500 mL glass reactor under mechanical stirring and a nitrogen atmosphere. Chain extension reaction was carried out immediately after the dispersion step with hexamethylenediamine (3.3 g) dissolved in a small amount of de-ionized water over a period of 1 hour at 35°C. Finally, the dispersion was heated to 7O0C for 1 hour to ensure that all residual isocyanate groups had reacted.
[Para 34] The synthesis of Polyurethane C was carried out under nitrogen as follows. A prepolymer was prepared in a three-necked round-bottomed flask equipped with a magnetic stirrer, a condenser, and a nitrogen inlet. TMXDI (19.54 g, 0.08 mole), polycaprolactone diol (31.25 g, from Aldrich, Mn about 1250), and dibutyltin dilaurate (0.04 g) were charged into the flask and the mixture was heated in a silicon oil bath on a hotplate at 8O0C for 2 hours. A solution of 2,2-bis(hydroxymethyl)propionic acid (3.35 g) in l-methyl-2-pyrrolidinone (10 g) was then added and the reaction allowed to proceed at 8O0C for another hour to produce an NCO-terminated prepolymer. The reactor temperature was then lowered to 6O0C, and triethylamine (2.4 g) was added; the resultant mixture was allowed to stand at this temperature for 30 minutes to neutralize carboxylic acid. The resultant reaction mixture was slowly added to de-ionized water (105 g) at 300C in a jacketed 500 mL glass reactor under mechanical stirring and a nitrogen atmosphere. Chain extension reaction was carried out immediately after the dispersion step with hexamethylenediamine (3.3 g) dissolved in a small amount of de-ionized water over a period of 1 hour at 300C. Finally, the dispersion was heated to 7O0C for 1 hour to ensure that all residual isocyanate groups had reacted. [Para 35] When water was added to TMXDI-based prepolymers, the formation of some large particles was observed. It was found that formation of such large particles could be avoided by adding the prepolymer to water, as described in the preparation of Polyurethanes B and C above. This problem did not occur with Hi2MDI-based prepolymers. [Para 36] Example 2 : Electro-optic properties
[Para 37] In order to evaluate the effect of the various polyurethane binders on the electro- optic properties of electrophoretic displays, electrophoretic capsules comprising an internal phase containing carbon black and titania electrophoretic particles in a hydrocarbon fluid, surrounded by a capsule wall formed from a gelatin/acacia coacervate, were prepared substantially as described in U.S. Patent Publication No. 2002/0180687, Paragraphs [0067] to [0072]. The resultant capsules were mixed with the binders and binder blends specified below and formed into experimental single pixel displays substantially as described in Paragraphs [0073] and [0074] of this Publication, except that a backplane comprising a carbon black electrode on a polymer film was used. The lamination adhesive used was Binder D doped with 180 parts per million of tetrabutylammonium hexafluorophosphate (cf. the aforementioned U.S. Patent No. 7,012,735).
[Para 38] The resultant experimental displays were then tested for their dwell time dependence in both their black and white extreme optical states. The experimental displays could be driven between these two extreme optical states by 15 V, 500 millisecond pulses of appropriate polarity. Each display was first rapidly driven multiple times between its two extreme optical states to erase the effects of previous switching. To evaluate white state DTD, each display was then driven to its black extreme optical state, allowed to remain in this state for a period varying from zero to several minutes, and then switched to its white extreme optical state, and its reflectivity measured, and the measured reflectivity converted to standard L* units ((where L* has the usual CIE definition:
L* = 116(R/Ro)1/3 - 16, where R is the reflectance and Ro is a standard reflectance value). The white state DTD ("WS DTD") given in Table 2 below is the maximum difference between the L* values of white extreme optical states caused by variation of the period for which the display had been allowed to remain in its black extreme optical state. Dark state DTD ("DS DTD") was measured in a corresponding manner. The results obtained are shown in Table 2 below: [Para 39] Table 2
Figure imgf000014_0001
[Para 40] From Table 2, it will be seen that Binder A, which is formed from PPO as its polyether, does not give good DTD performance when used alone as a binder; hence, the presence of PPO alone in a binder is not sufficient to achieve good DTD performance. However, when 25 weight per cent of Binder D was blended with Binder A, the DTD performance significantly improved. From a material point of view, this blending only introduces aromatic TMXDI moiety into the binder since the rest of the components in these two materials are exactly the same. This suggests that the use of an aromatic diisocyanate in the synthesis of the binder may be important in achieving good DTD characteristics. This view if reinforced by the fact that Binder E alone did not show good DTD performance. However, from Table 2 it will be seen that the DTD performance of Binder E improved when it is blended with either Binder B or D, both of which were produced from the aromatic diisocyanate TMXDI and the polyether diol PPO. Thus, the results in Table 2 strongly suggest that to achieve good DTD performance with the carbon black/titania electrophoretic medium used, it is necessary to use a polyurethane binder containing an aromatic diisocyanate.
[Para 41 ] It is still necessary to decide whether the presence of an aromatic diisocyanate alone is sufficient for good DTD performance or whether such good performance requires both an aromatic diisocyanate and a polyether diol, and Binder C, which combines an aromatic diisocyanate with polycaprolactone, was synthesized to aid in resolving this question. From Table 2, it will be seen that Binder C alone did not give good DTD performance, whereas a blend of Binder C with Binder D did give good DTD performance. This strongly suggests that the presence of both an aromatic diisocyanate and a polyether diol is required for good DTD performance. The correctness of this deduction is confirmed by the fact that a blend of Binders C and E (both of which use a polyester diol) does not give good DTD performance. It should be noted that the improved DTD performance exhibited by a polyurethane formed from an aromatic diisocyanate and a polyether diol cannot be attributed simply to a change in the volume resistivity of the polyurethane, since all the binders used in the experiments described above had volume resistivities of the same order of magnitude. [Para 42] Example 3 : Effect of binder composition on DTD
[Para 43] The experiments used to generate the graph shown in Figure 1 were repeated with the same capsules but using as the binder Polyurethane D from Table 1 above. The results are shown in Figure 2.
[Para 44] Figure 2 shows substantial reduction in DTD compared with Figure 1 ; the overall Max-Min range is reduced from 2.4 L* to 1.2 L*, and the sign of the DTD is generally opposite to that in Figure 1, thus implying that the electrophoretic particles were experiencing a smaller voltage than that actually applied between the electrodes. [Para 45] The experiments which produced the graphs of Figures 1 and 2 were repeated several times using the same binders but different types of capsules. Although the values of the DTD range varied considerably with the specific type of capsules used (varying from 3.4 to 7.2 L* units for the Figure 1 binder and from 0.6 to 4.7 L* for Polyurethane D), in every case the Polyurethane D binder showed a lower DTD range than the Figure 1 binder. [Para 46] Example 4 : Effect of mixed binders on DTD
[Para 47] As noted above, the Figure 1 binder and the Polyurethane D binder typically result in DTD values of opposite sign for a given capsule, rest period and pulse length. Accordingly experiments were conducted to determine whether use of a blend of the two binders would give better results than either binder alone. Accordingly, the experiments of Example 3 were repeated using the same capsules as in Example 3 for the two binders and for a 1:3 w/w mixture of the Polyurethane D binder and the prior art binder. It should be noted that both the Polyurethane D binder and the 1 :3 mixture are binders of the present invention. The results, taken at 25°C and 30 per cent relative humidity, are shown in Figures 3 to 8 of the accompanying drawings, where these Figures are as follows:
Figure 3: White state DTD, Polyurethane D binder;
Figure 4: White state DTD, Figure 1 binder;
Figure 5: White state DTD, Mixture;
Figure 6: Dark state DTD, Polyurethane D binder;
Figure 7: Dark state DTD, Figure 1 binder; and
Figure 8: Dark state DTD, Mixture;
[Para 48] From Figures 3 to 8 it will be seen that the blend showed reduced DTD in the white state and substantially the same DTD as Polyurethane D in the dark state; in both states, the blend was much superior to the Figure 1 binder. The actual values were as follows:
Figure 3: Range 3.3 L*;
Figure 4: Range 4.4 L*, standard deviation 0.4 L*;
Figure 5: Range 0.6 L*, standard deviation 0.0 L*;
Figure 6: Range 1.1 L*, standard deviation 0.3 L*;
Figure 7: Range 6.3 L*, standard deviation 0.3 L*; and
Figure 8: Range 1.3 L*, standard deviation 0.1 L*.
[Para 49] The foregoing experiments show that the presence of aromatic diisocyanate residues (such as TMXDI residues) along with polyether diol residues (for example PPO residues) in a polyurethane binder offers a beneficial reduction in dwell time dependency in encapsulated electrophoretic displays containing carbon black electrophoretic particles. A low DTD is highly desirable in electrophoretic displays to permit accurate and consistent rendition of gray scale images despite arbitrary differences in the times between changes in displayed images.

Claims

1. An electrophoretic medium comprising a plurality of discrete droplets of an electrophoretic internal phase, the internal phase comprising a fluid and carbon black particles in the fluid, the droplets being surrounded by a polyurethane binder formed by a diisocyanate and a polyether diol, wherein at least about 20 mole per cent of the diisocyanate is an aromatic diisocyanate.
2. An electrophoretic medium according to claim 1 wherein at least 50 mole per cent of the diisocyanate is an aromatic diisocyanate.
3. An electrophoretic medium according to claim 2 wherein at least 75 mole per cent of the diisocyanate is an aromatic diisocyanate.
4. An electrophoretic medium according to claim 1 wherein the internal phase comprises carbon black particles in a colored fluid.
5. An electrophoretic medium according to claim 1 wherein the internal phase comprises carbon black particles and a second type of electrophoretic particles differing from the carbon black particles in at least one optical characteristic and in electrophoretic mobility.
6. An electrophoretic medium according to claim 5 wherein the second type of electrophoretic particles comprise titania particles bearing a charge of opposite polarity to that on the carbon black particles.
7. An electrophoretic medium according to claim 1 wherein the polyurethane binder consists of a single polyurethane formed from an aromatic diisocyanate and a polyether diol.
8. An electrophoretic medium according to claim 1 wherein the polyurethane binder comprises a blend of at least two polyurethanes, at least one of which is formed from an aromatic diisocyanate and a polyether diol.
9. An electrophoretic medium according to claim 8 wherein the polyurethane binder comprises a first polyurethane formed from an aromatic diisocyanate and a polyether diol, and a second polyurethane formed from an aliphatic diisocyanate and a polyester diol.
10. An electrophoretic medium according to claim 9 wherein the polyether diol comprises poly(propylene glycol).
11. An electrophoretic medium according to claim 10 wherein the poly(propylene glycol) has a molecular weight of 1500 to 5000.
12. An electrophoretic medium according to claim 1 which is an encapsulated electrophoretic medium having a capsule wall interposed between each droplet and the binder.
13. An electrophoretic medium according to claim 1 which is of the polymer-dispersed type with the droplets of internal phase dispersed directly in a continuous phase of the binder.
14. An electrophoretic medium according to claim 1 which is of the microcell type, with the binder forming the walls of a plurality of closed cavities within which the internal phase is retained.
15. An electrophoretic medium according to claim 1 wherein the aromatic diisocyanate comprises TMXDI.
16. An electrophoretic display comprising an electrophoretic medium according to claim 1 in combination with at least one electrode disposed adjacent the electrophoretic medium and arranged to apply an electric field thereto.
17. An electrophoretic medium comprising a plurality of discrete droplets of an electrophoretic internal phase, the internal phase comprising a fluid and carbon black particles in the fluid, the droplets being surrounded by a polyurethane binder formed by a diisocyanate and a polyether diol, wherein at least 20 mole per cent of the diisocyanate comprises TMXDI.
18. An electrophoretic display comprising an electrophoretic medium according to claim 17 in combination with at least one electrode disposed adjacent the electrophoretic medium and arranged to apply an electric field thereto.
PCT/US2006/041634 2005-10-25 2006-10-25 Electrophoretic media with improved binder WO2007050686A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59683605P 2005-10-25 2005-10-25
US60/596,836 2005-10-25

Publications (2)

Publication Number Publication Date
WO2007050686A2 true WO2007050686A2 (en) 2007-05-03
WO2007050686A3 WO2007050686A3 (en) 2007-07-12

Family

ID=37968525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/041634 WO2007050686A2 (en) 2005-10-25 2006-10-25 Electrophoretic media with improved binder

Country Status (2)

Country Link
US (1) US20070091417A1 (en)
WO (1) WO2007050686A2 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
AU5094699A (en) 1998-07-08 2000-02-01 E-Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US7030854B2 (en) 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US8049947B2 (en) 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US7910175B2 (en) * 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US7551346B2 (en) * 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) * 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US8289250B2 (en) * 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7843624B2 (en) * 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
TWI350793B (en) * 2006-03-08 2011-10-21 E Ink Corp Methods for production of electro-optic displays
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7903319B2 (en) * 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7649666B2 (en) * 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US7688497B2 (en) * 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7667886B2 (en) 2007-01-22 2010-02-23 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7826129B2 (en) * 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US10319313B2 (en) * 2007-05-21 2019-06-11 E Ink Corporation Methods for driving video electro-optic displays
US9199441B2 (en) * 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
WO2009006248A1 (en) 2007-06-29 2009-01-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
WO2009117730A1 (en) 2008-03-21 2009-09-24 E Ink Corporation Electro-optic displays and color filters
JP5904791B2 (en) 2008-04-11 2016-04-20 イー インク コーポレイション Method for driving an electro-optic display
TWI484273B (en) * 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) * 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
EP2553522B1 (en) 2010-04-02 2016-03-23 E-Ink Corporation Electrophoretic media
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
ES2893766T3 (en) 2013-10-22 2022-02-10 E Ink Corp An electrophoretic device with a wide operating temperature range
KR102023860B1 (en) 2014-01-17 2019-09-20 이 잉크 코포레이션 Electro-optic display with a two-phase electrode layer
US9506243B1 (en) 2014-03-20 2016-11-29 E Ink Corporation Thermally-responsive film
CA2963561A1 (en) 2014-11-07 2016-05-12 E Ink Corporation Applications of electro-optic displays
CN110603484B (en) 2017-06-16 2023-05-02 伊英克公司 Electro-optic medium comprising encapsulated pigments in a gelatin binder
US10809590B2 (en) 2017-06-16 2020-10-20 E Ink Corporation Variable transmission electrophoretic devices
US11079651B2 (en) 2017-12-15 2021-08-03 E Ink Corporation Multi-color electro-optic media
US11175561B1 (en) 2018-04-12 2021-11-16 E Ink Corporation Electrophoretic display media with network electrodes and methods of making and using the same
US11378824B2 (en) 2018-08-07 2022-07-05 E Ink Corporation Flexible encapsulated electro-optic media
US11754903B1 (en) 2018-11-16 2023-09-12 E Ink Corporation Electro-optic assemblies and materials for use therein
JP7299990B2 (en) 2019-02-25 2023-06-28 イー インク コーポレイション Composite electrophoretic particles and variable permeability film containing the same
US11761123B2 (en) 2019-08-07 2023-09-19 E Ink Corporation Switching ribbons for textiles
GB201914105D0 (en) 2019-09-30 2019-11-13 Vlyte Innovations Ltd A see-through electrophoretic device having a visible grid
CN114868078A (en) 2019-12-23 2022-08-05 伊英克公司 Color electrophoretic layer comprising microcapsules with non-ionic polymer walls

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759369A (en) * 1992-09-24 1998-06-02 The Perkin-Elmer Corporation Viscous electrophoresis polymer medium and method
US20040201567A1 (en) * 2002-07-30 2004-10-14 Wenxin Yu Novel microencapsulation processes and compositions for electrophoretic displays
US6831769B2 (en) * 2001-07-09 2004-12-14 E Ink Corporation Electro-optic display and lamination adhesive
US20050122565A1 (en) * 2003-11-05 2005-06-09 E Ink Corporation Electro-optic displays, and materials for use therein
US6906851B2 (en) * 2002-05-31 2005-06-14 Canon Kabushiki Kaisha Electrophoretic display device and method of producing the same
US20050176836A1 (en) * 2003-05-13 2005-08-11 Narasimharao Dontula Manufacturing process for open celled microcellular foam
US20050231795A1 (en) * 2004-03-09 2005-10-20 Canon Kabushiki Kaisha Method for manufacturing display device

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870517A (en) * 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US3668106A (en) * 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3792308A (en) * 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
US5745094A (en) * 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6866760B2 (en) * 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US7167155B1 (en) * 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US7411719B2 (en) * 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7193625B2 (en) * 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US6710540B1 (en) * 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US7999787B2 (en) * 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US6515649B1 (en) * 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US7106296B1 (en) * 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6727881B1 (en) * 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US5760761A (en) * 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US6055091A (en) * 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US6721083B2 (en) * 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US6538801B2 (en) * 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6232950B1 (en) * 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6252564B1 (en) * 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
US6177921B1 (en) * 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US7002728B2 (en) * 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6825829B1 (en) * 1997-08-28 2004-11-30 E Ink Corporation Adhesive backed displays
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6054071A (en) * 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
US6704133B2 (en) * 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US7075502B1 (en) * 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
JP4664501B2 (en) * 1998-04-10 2011-04-06 イー インク コーポレイション Electronic display using organic field effect transistors
AU3767899A (en) * 1998-04-27 1999-11-16 E-Ink Corporation Shutter mode microencapsulated electrophoretic display
WO1999059101A2 (en) * 1998-05-12 1999-11-18 E-Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) * 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
WO2000003349A1 (en) * 1998-07-08 2000-01-20 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
US20030102858A1 (en) * 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
USD485294S1 (en) * 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US7256766B2 (en) * 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US6184856B1 (en) * 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6225971B1 (en) * 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
CA2346167C (en) * 1998-10-07 2007-05-22 E Ink Corporation Illumination system for nonemissive electronic displays
CA2347866A1 (en) * 1998-11-02 2000-05-11 Russell J. Wilcox Broadcast system for display devices made of electronic ink
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6724519B1 (en) * 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
AU4202100A (en) * 1999-04-06 2000-10-23 E-Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6842657B1 (en) * 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6531997B1 (en) * 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US7012600B2 (en) * 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6693620B1 (en) * 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US7038655B2 (en) * 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US7030412B1 (en) * 1999-05-05 2006-04-18 E Ink Corporation Minimally-patterned semiconductor devices for display applications
DE60045738D1 (en) * 1999-07-01 2011-04-28 E Ink Corp ELECTROPHORETIC MEDIA PROVIDE SPACING ELEMENTS
AU6365900A (en) * 1999-07-21 2001-02-13 E-Ink Corporation Use of a storage capacitor to enhance the performance of an active matrix drivenelectronic display
WO2001008242A1 (en) * 1999-07-21 2001-02-01 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
EP1208603A1 (en) * 1999-08-31 2002-05-29 E Ink Corporation Transistor for an electronically driven display
JP3934420B2 (en) * 1999-10-11 2007-06-20 ユニバーシティ・カレッジ・ダブリン Electrochromic element
US6672921B1 (en) * 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
AU2001253575A1 (en) * 2000-04-18 2001-10-30 E-Ink Corporation Process for fabricating thin film transistors
US6683333B2 (en) * 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US6816147B2 (en) * 2000-08-17 2004-11-09 E Ink Corporation Bistable electro-optic display, and method for addressing same
AU2002230520A1 (en) * 2000-11-29 2002-06-11 E-Ink Corporation Addressing circuitry for large electronic displays
US7030854B2 (en) * 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
ATE324615T1 (en) * 2001-04-02 2006-05-15 E Ink Corp ELECTROPHOREASE MEDIUM WITH IMPROVED IMAGE STABILITY
US6580545B2 (en) * 2001-04-19 2003-06-17 E Ink Corporation Electrochromic-nanoparticle displays
EP1393122B1 (en) * 2001-05-15 2018-03-28 E Ink Corporation Electrophoretic particles
US6870661B2 (en) * 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
US7535624B2 (en) * 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
WO2003027764A1 (en) * 2001-09-19 2003-04-03 Bridgestone Corporation Particles and device for displaying image
US7528822B2 (en) * 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
US7202847B2 (en) * 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US6865010B2 (en) * 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
US6900851B2 (en) * 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US7190008B2 (en) * 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
KR100896167B1 (en) * 2002-04-24 2009-05-11 이 잉크 코포레이션 Electronic displays
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US6958848B2 (en) * 2002-05-23 2005-10-25 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US20060087479A1 (en) * 2002-06-21 2006-04-27 Bridgestone Corporation Image display and method for manufacturing image display
US6842279B2 (en) * 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
US20040105036A1 (en) * 2002-08-06 2004-06-03 E Ink Corporation Protection of electro-optic displays against thermal effects
US7312916B2 (en) * 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
US7839564B2 (en) * 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US8129655B2 (en) * 2002-09-03 2012-03-06 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
US6987603B2 (en) * 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
WO2004088395A2 (en) * 2003-03-27 2004-10-14 E Ink Corporation Electro-optic assemblies
WO2004099862A2 (en) * 2003-05-02 2004-11-18 E Ink Corporation Electrophoretic displays
EP2698784B1 (en) * 2003-08-19 2017-11-01 E Ink Corporation Electro-optic display
WO2005029458A1 (en) * 2003-09-19 2005-03-31 E Ink Corporation Methods for reducing edge effects in electro-optic displays
US7206119B2 (en) * 2003-12-31 2007-04-17 E Ink Corporation Electro-optic displays, and method for driving same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759369A (en) * 1992-09-24 1998-06-02 The Perkin-Elmer Corporation Viscous electrophoresis polymer medium and method
US6831769B2 (en) * 2001-07-09 2004-12-14 E Ink Corporation Electro-optic display and lamination adhesive
US6906851B2 (en) * 2002-05-31 2005-06-14 Canon Kabushiki Kaisha Electrophoretic display device and method of producing the same
US20040201567A1 (en) * 2002-07-30 2004-10-14 Wenxin Yu Novel microencapsulation processes and compositions for electrophoretic displays
US20050176836A1 (en) * 2003-05-13 2005-08-11 Narasimharao Dontula Manufacturing process for open celled microcellular foam
US20050122565A1 (en) * 2003-11-05 2005-06-09 E Ink Corporation Electro-optic displays, and materials for use therein
US20050231795A1 (en) * 2004-03-09 2005-10-20 Canon Kabushiki Kaisha Method for manufacturing display device

Also Published As

Publication number Publication date
WO2007050686A3 (en) 2007-07-12
US20070091417A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
US20070091417A1 (en) Electrophoretic media and displays with improved binder
EP2385958B1 (en) Adhesives and binders for electro-optic displays
US7477444B2 (en) Electro-optic display and materials for use therein
US11286408B2 (en) Polyurethane adhesive layers for electro-optic assemblies
EP1415193B1 (en) Electro-optical display having a lamination adhesive layer
US7173752B2 (en) Electro-optic displays, and materials for use therein
EP2217440B1 (en) Adhesives and binders for use in electro-optic assemblies
US7672040B2 (en) Electro-optic displays, and materials for use therein
US8706011B2 (en) Developing member, process cartridge, and electrophotographic apparatus
US7551346B2 (en) Electro-optic displays, and materials for use therein
EP1616217B1 (en) Electro-optic assemblies
EP2005242A2 (en) Electro-optic displays, and materials for use therein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06826642

Country of ref document: EP

Kind code of ref document: A2