WO2007063618A1 - Signal coupler for power line carrier communication - Google Patents

Signal coupler for power line carrier communication Download PDF

Info

Publication number
WO2007063618A1
WO2007063618A1 PCT/JP2006/312039 JP2006312039W WO2007063618A1 WO 2007063618 A1 WO2007063618 A1 WO 2007063618A1 JP 2006312039 W JP2006312039 W JP 2006312039W WO 2007063618 A1 WO2007063618 A1 WO 2007063618A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
capacitor
parallel
voltage
carrier communication
Prior art date
Application number
PCT/JP2006/312039
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichiro Murata
Junichi Abe
Takao Tsurimoto
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2007547852A priority Critical patent/JP4668279B2/en
Publication of WO2007063618A1 publication Critical patent/WO2007063618A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Definitions

  • the present invention relates to a signal coupling device for use in power line carrier communication that performs high-frequency signal communication using a power line as a transmission line.
  • CCU Capacitive Coupling Unit
  • the CCU 100 cuts off the high voltage of the power line by the high voltage capacitor 110 and the drain coil 114, which are mounted between the terminal 102 to which the power line is attached and the terminal 106 for grounding, and the matching transformer 202
  • the high-frequency signal is taken out to the communication modem through the matching circuit 201 configured by the capacitor 204 provided in the secondary circuit.
  • Patent Literature l US2001 / 0038329 (paragraphs 0050, 0051,0055 and FIG.1, 2)
  • the characteristic impedance of the power line is 50 ⁇ to 400 ⁇ , whereas the characteristic impedance of the communication modem input / output section is 50 ⁇ .
  • a circuit that performs impedance matching is provided inside the CCU.
  • a matching transformer with different number ratios on the primary and secondary sides is used for the impedance matching circuit.
  • the output voltage drops in the high frequency region above 10 MHz.
  • the ratio of the input voltage from the overhead line to the signal coupling device and the output voltage from the signal coupling device to the communication modem is called coupling efficiency.
  • the present invention has been made to solve the above-described problems, and it is possible to increase the coupling efficiency in the high-frequency region and sufficiently reduce the surge voltage. Is to provide.
  • the present invention is used in power line carrier communication that performs high-frequency signal communication using a power line as a transmission line.
  • a power line carrier communication signal coupling device that injects and extracts a high-frequency signal from a power line
  • the power line is connected to a power line.
  • the capacitor provided in parallel with the drain coil can increase the coupling efficiency in the high frequency region and sufficiently reduce the surge voltage.
  • FIG. 1 is a circuit configuration diagram of a signal coupling device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the relationship between the capacitance of a parallel capacitor and the coupling efficiency according to Embodiment 1 of the present invention.
  • FIG. 3 is a characteristic diagram showing characteristics of the arrester according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a winding line of a matching transformer according to Embodiment 2 of the present invention. Explanation of symbols
  • FIG. 1 shows a circuit of a signal coupling device 100 for power line carrier communication according to Embodiment 1 of the present invention. It is a figure which shows a structure.
  • 1 is a high voltage capacitor connected to the power line 8
  • 2 is a drain coil connected in series with the high voltage capacitor 1
  • the magnetic core 21 is coiled and configured.
  • the magnetic core 51 is configured with a primary winding W 1 and a secondary winding W 2.
  • Protection elements 4 and 6 such as surge arresters are provided on the primary and secondary sides of the matching transformer 5.
  • Reference numeral 7 denotes a connector as an input / output terminal, which is connected to a communication modem (not shown) via a cape nore.
  • the high voltage capacitor 1 and the drain coil 2 shown in Fig. 1 form a series resonance circuit
  • the drain coil 2 and the parallel capacitor 3 form a parallel resonance circuit.
  • the series resonance frequency fl is determined by the capacitance C1 of the high voltage capacitor 1 and the inductance L of the drain coil 2
  • the parallel resonance frequency ⁇ 2 is determined by the capacitance C2 of the parallel capacitor 3 and the inductance L of the drain coil 2.
  • Each resonance frequency is given by the following equation.
  • Figure 2 shows the calculation results of the coupling efficiency when the capacitance of the parallel capacitor 3 is changed to 0, 100, 200, 500, and 1000 Pf.
  • the coupling efficiency shows a maximum at only one location (in the example shown in Fig. 2, 6MHz ).
  • maximum values are shown at two locations, the direct resonance frequency and the parallel resonance frequency.
  • the high frequency characteristics of the coupling efficiency can be increased. That is, by setting the parallel resonance frequency f2 higher than the series resonance frequency ⁇ , the high frequency characteristics of the signal coupling device can be increased.
  • FIG. 3 shows the characteristics of the gas arrester used as the protective elements 4 and 6. It is a figure which shows an applied voltage waveform when arresting a pulse voltage in an arrester, and an arrester both-ends voltage waveform.
  • Fig. 3 (a) when a pulse voltage with a rise time of several s is obtained, if the voltage applied to the arrester exceeds the arrester operating voltage, the arrester operates, the voltage across the arrester becomes 0 V, and the power line Protects other elements against surge voltage from.
  • Fig. 3 shows the characteristics of the gas arrester used as the protective elements 4 and 6. It is a figure which shows an applied voltage waveform when arresting a pulse voltage in an arrester, and an arrester both-ends voltage waveform.
  • a capacitor 3 is provided in parallel with the drain coil 2, and this parallel capacitor 3 can absorb high-speed surge voltage and protect other elements.
  • a parallel capacitor 3 with a capacitance of 10pF to 500pF the pulse voltage with a rise time of several ns can be sufficiently reduced.
  • non-linear elements are used in which the protective element operates when a certain voltage is reached and the voltage at both ends is 0V.
  • a protective element a surge arrester, a gas gap arrester, a gas arrester, a noristor, a diode, or the like is used. Any one element can be used, and V, G, and G can be combined.
  • the power line carrier is used for power line carrier communication that performs high-frequency signal communication using the power line 8 as a transmission line, and injects and extracts high-frequency signals from the power line 8.
  • a signal coupling device for communication a high voltage capacitor 1 connected to a power line, a drain coil 2 connected in series to the high voltage capacitor 1 and forming a series resonance circuit, and a parallel connection to the drain coil 2 and parallel resonance
  • the parallel capacitor 3 By providing the parallel capacitor 3 forming the circuit, the coupling efficiency in the high frequency region can be increased and the surge voltage can be sufficiently reduced.
  • the coupling efficiency shows maximum values at two frequencies. And adjust the capacitance of the capacitor Thus, a signal coupling device having high coupling efficiency in a wide frequency range can be obtained.
  • the series resonance frequency can be set lower than the parallel resonance frequency, and by adjusting the capacitance of the parallel capacitor 3, a wide range can be obtained. It is possible to obtain a signal coupling device having high coupling efficiency in the frequency range.
  • a capacitor element such as a ceramic capacitor or an electric field capacitor may be used, or a stray capacitance between a substrate pattern or a coiled wire may be used. Further, a capacitance component may be built in the substrate.
  • the high-speed surge voltage with a rise time of several ns can be sufficiently reduced by the capacitor 3 provided in parallel with the drain coil 2.
  • the insulation withstand voltage between the primary side and the secondary side of the matching transformer 5 be sufficiently high.
  • the insulation withstand voltage of matching transformer 5 In order to evaluate the insulation withstand voltage of matching transformer 5, a high voltage is applied to primary side wire W1, and the voltage at which the insulation on the secondary side and the primary side breaks (breakdown voltage) is measured. To do. If the breakdown voltage is sufficiently high, the insulation withstand voltage of the matching transformer 5 is guaranteed. If the breakdown voltage is 5kV or more, the connector 7 has 5kV or more. It does not generate voltage. In addition, the input terminal of the communication modem is designed to withstand pulse noise of 5kV for ESD (Electro Static Discharge) protection. Therefore, the insulation withstand voltage of the matching transformer 5 must be 5kV (breakdown voltage) on the secondary and primary sides.
  • ESD Electro Static Discharge
  • a material having a high specific resistance such as NiZn ferrite is used as the magnetic core 51 used in the matching transformer 5 as shown in FIG. 4 (a). Force S is needed.
  • the predetermined insulation withstand voltage is achieved by making the primary winding W1 and the secondary winding W2 face each other or using a coated copper wire. Also, connect the primary and secondary ground terminals of the matching transformer 5 to each other, or connect them through high resistance or inductance 52 as shown in Fig. 4 (b). Can be achieved.
  • the magnetic saturation of the magnetic core 51 can be utilized to reduce the high voltage magnetic saturation.
  • the matching transformer is connected in parallel with the parallel capacitor 3.
  • the high-frequency surge voltage can be used regardless of the type and condition of the cable connecting the signal coupling device and the communication modem. Can be sufficiently attenuated.

Abstract

[PROBLEMS] To provide a signal coupler for power line carrier communication in which coupling efficiency can be increased in high frequency region and surge voltage can be reduced sufficiently. [MEANS FOR SOLVING PROBLEMS] A signal coupler for power line carrier communication employed in power line carrier communication for communicating a high frequency signal using a power line (8) as a transmission line and injecting a high frequency signal into the power line (8) or taking out a high frequency signal from the power line (8) comprises a capacitor (1) of high breakdown voltage connected with the power line, a drain coil (2) connected in series with the capacitor (1) of high breakdown voltage to form a series resonance circuit, and a parallel capacitor (3) connected in parallel with the drain coil (2) to form a parallel resonance circuit.

Description

明 細 書  Specification
電力線搬送通信用信号結合装置  Signal coupling device for power line carrier communication
技術分野  Technical field
[0001] この発明は、電力線を伝送線路として高周波信号の通信を行う電力線搬送通信に 用レ、る信号結合装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a signal coupling device for use in power line carrier communication that performs high-frequency signal communication using a power line as a transmission line.
背景技術  Background art
[0002] 電力線搬送(以下 PLCという。 PLC=Power Line Communication)システムは、電力 線に 2MHz〜40MHzの伝送信号を重畳させてデータ通信などの高周波信号の通信 を行うものである。その PLCシステムにおいて、電力線に伝送信号を注入'取出しす る信号結合装置は、高耐圧コンデンサを用いたキャパシティブカップラ(以下 CCUと いう。 CCU=Capacitive Coupling Unit)で構成されている。特許文献 1に、 CCUの構 成が示されている。同特許文献 1では、 CCU100は、電力線を取り付ける端子 102と大 地接地を行う端子 106の間に取り付けられた高耐圧コンデンサ 110とドレインコイル 11 4によって、電力線の高電圧をカットし、マッチングトランス 202と 2次回路に設けたコン デンサ 204にて構成されたマッチング回路 201を経て通信モデムへ高周波信号を取り 出す。  [0002] A power line communication (hereinafter referred to as PLC: PLC = Power Line Communication) system performs high-frequency signal communication such as data communication by superimposing a transmission signal of 2MHz to 40MHz on a power line. In the PLC system, the signal coupling device that injects and extracts the transmission signal from the power line is composed of a capacitive coupler (hereinafter referred to as CCU: CCU = Capacitive Coupling Unit) using a high voltage capacitor. Patent Document 1 shows the configuration of a CCU. In Patent Document 1, the CCU 100 cuts off the high voltage of the power line by the high voltage capacitor 110 and the drain coil 114, which are mounted between the terminal 102 to which the power line is attached and the terminal 106 for grounding, and the matching transformer 202 The high-frequency signal is taken out to the communication modem through the matching circuit 201 configured by the capacitor 204 provided in the secondary circuit.
特許文献 l : US2001/0038329(段落 0050, 0051,0055及び FIG.1,2)  Patent Literature l: US2001 / 0038329 (paragraphs 0050, 0051,0055 and FIG.1, 2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 電力線の特性インピーダンスは 50 Ωから 400 Ωであるのに対し、通信モデム入出力 部の特性インピーダンスは 50 Ωである。このため、 CCU内部には、インピーダンスマツ チングを行う回路が設けられている。インピーダンスマッチング回路には、 1次側と 2 次側の卷き数比が異なったマッチングトランスが用いられる。し力、しながら、マツチン グトランスだけでは、 10MHz以上の高周波領域において、出力電圧が低下するという 問題点があった。以降、架空線から信号結合装置への入力電圧と信号結合装置か ら通信モデムへの出力電圧の比を結合効率と呼ぶ。  [0003] The characteristic impedance of the power line is 50 Ω to 400 Ω, whereas the characteristic impedance of the communication modem input / output section is 50 Ω. For this reason, a circuit that performs impedance matching is provided inside the CCU. For the impedance matching circuit, a matching transformer with different number ratios on the primary and secondary sides is used. However, with the matching transformer alone, the output voltage drops in the high frequency region above 10 MHz. Hereinafter, the ratio of the input voltage from the overhead line to the signal coupling device and the output voltage from the signal coupling device to the communication modem is called coupling efficiency.
[0004] また、サージ電圧の保護素子として用いられるアレスタでは、十分に電力線からの サージ電圧を吸収できないという問題点があった。 [0004] In addition, in an arrester used as a surge voltage protection element, the power line is There was a problem that surge voltage could not be absorbed.
[0005] この発明は上記のような課題を解決するためになされたものであり、高周波領域で の結合効率を増加させると共に、十分にサージ電圧を低減することのできる電力線 搬送通信用信号結合装置を提供するものである。  [0005] The present invention has been made to solve the above-described problems, and it is possible to increase the coupling efficiency in the high-frequency region and sufficiently reduce the surge voltage. Is to provide.
課題を解決するための手段  Means for solving the problem
[0006] この発明は、電力線を伝送線路として高周波信号の通信を行う電力線搬送通信に 用いられ、電力線に高周波信号を注入'取出しする電力線搬送通信用信号結合装 置において、電力線に接続された高耐圧コンデンサと、この高耐圧コンデンサに直 列接続され、直列共振回路を形成するドレインコイルと、このドレインコイルに並列接 続され、並列共振回路を形成する並歹 1Jコンデンサとを備えたものである。 [0006] The present invention is used in power line carrier communication that performs high-frequency signal communication using a power line as a transmission line. In a power line carrier communication signal coupling device that injects and extracts a high-frequency signal from a power line, the power line is connected to a power line. A withstand voltage capacitor, a drain coil connected in series to the high withstand voltage capacitor and forming a series resonance circuit, and a parallel 1J capacitor connected in parallel to the drain coil and forming a parallel resonance circuit .
発明の効果  The invention's effect
[0007] この発明の電力線搬送通信用信号結合装置によれば、ドレインコイルと並列に設 けたコンデンサによって、高周波領域の結合効率を増加させると共にサージ電圧を 十分低減させることができる効果がある。  According to the signal coupling device for power line carrier communication of the present invention, there is an effect that the capacitor provided in parallel with the drain coil can increase the coupling efficiency in the high frequency region and sufficiently reduce the surge voltage.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]この発明の実施の形態 1による信号結合装置の回路構成図である。  FIG. 1 is a circuit configuration diagram of a signal coupling device according to Embodiment 1 of the present invention.
[図 2]この発明の実施の形態 1による並列コンデンサの容量と結合効率の関係を示す 図である。  FIG. 2 is a diagram showing the relationship between the capacitance of a parallel capacitor and the coupling efficiency according to Embodiment 1 of the present invention.
[図 3]この発明の実施の形態 1によるアレスタの特性を示す特性図である。  FIG. 3 is a characteristic diagram showing characteristics of the arrester according to the first embodiment of the present invention.
[図 4]この発明の実施の形態 2によるマッチングトランスの卷線を示す図である。 符号の説明  FIG. 4 is a diagram showing a winding line of a matching transformer according to Embodiment 2 of the present invention. Explanation of symbols
[0009] 1 高耐圧コンデンサ、 2 ドレインコイル、 3 並列コンデンサ、 4 保護素子、 5 マッチングトランス、 6 保護素子、 7 コネクタ、 21 磁気コア、 51 磁気コア  [0009] 1 high voltage capacitor, 2 drain coil, 3 parallel capacitor, 4 protection element, 5 matching transformer, 6 protection element, 7 connector, 21 magnetic core, 51 magnetic core
52 高抵抗もしくはインダクタンス  52 High resistance or inductance
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 実施の形態 1. [0010] Embodiment 1.
図 1はこの発明の実施の形態 1による電力線搬送通信用信号結合装置 100の回路 構成を示す図である。図 1において、 1は電力線 8に接続された高耐圧コンデンサ、 2 はこの高耐圧コンデンサ 1に直列接続されたドレインコイルで、磁気コア 21にコイルが 卷かれて構成されてレヽる。 FIG. 1 shows a circuit of a signal coupling device 100 for power line carrier communication according to Embodiment 1 of the present invention. It is a figure which shows a structure. In FIG. 1, 1 is a high voltage capacitor connected to the power line 8, 2 is a drain coil connected in series with the high voltage capacitor 1, and the magnetic core 21 is coiled and configured.
3はこのドレインコイル 2に並列接続された並列コンデンサ、 5はこの並列コンデンサ 3 と並列に接続されたマッチングトランスで、磁気コア 51に 1次卷線 W1と 2次卷線 W2が 卷かれて構成されている。このマッチングトランス 5の 1次側と 2次側にサージアレスタ などの保護素子 4, 6が設けられている。 7は入出力端子となるコネクタで、ケープノレ を介して通信モデム(図示せず)と接続される。  3 is a parallel capacitor connected in parallel to the drain coil 2, and 5 is a matching transformer connected in parallel to the parallel capacitor 3. The magnetic core 51 is configured with a primary winding W 1 and a secondary winding W 2. Has been. Protection elements 4 and 6 such as surge arresters are provided on the primary and secondary sides of the matching transformer 5. Reference numeral 7 denotes a connector as an input / output terminal, which is connected to a communication modem (not shown) via a cape nore.
[0011] 次に動作について説明する。図 1に示した高耐圧コンデンサ 1とドレインコイル 2は 直列共振回路を形成し、ドレインコイル 2と並列コンデンサ 3は並列共振回路を形成 する。直列共振周波数 flは高耐圧コンデンサ 1の容量 C1とドレインコイル 2のインダク タンス Lによってきまり、並列共振周波数 ί2は並列コンデンサ 3の容量 C2とドレインコィ ノレ 2のインダクタンス Lによって決まる。それぞれの共振周波数は、次式にて与えられ る。 Next, the operation will be described. The high voltage capacitor 1 and the drain coil 2 shown in Fig. 1 form a series resonance circuit, and the drain coil 2 and the parallel capacitor 3 form a parallel resonance circuit. The series resonance frequency fl is determined by the capacitance C1 of the high voltage capacitor 1 and the inductance L of the drain coil 2, and the parallel resonance frequency ί2 is determined by the capacitance C2 of the parallel capacitor 3 and the inductance L of the drain coil 2. Each resonance frequency is given by the following equation.
[0012] [数 1]  [0012] [Equation 1]
2TTJLC1
Figure imgf000005_0001
2TTJLC1
Figure imgf000005_0001
[0013] 図 2に並列コンデンサ 3の容量を 0,100, 200, 500,1000Pfに変化させたときの結合効 率の計算結果を示す。並列コンデンサ 3が無い(OpF)ときは、直列共振回路のみとな るため、共振周波数が 1つだけとなり、結合効率は 1箇所のみにて極大値を示す(図 2に示した例では、 6MHz)。並列コンデンサ 3を設けることにより、直接共振周波数と 並列共振周波数の 2箇所にて極大値を示す。 2つの共振周波数を調整することによ り、結合効率の高周波特性を増加させることができる。すなわち、並列共振周波数 f2 を直列共振周波数 ηよりも高く設定することにより、信号結合装置の高周波特性を増 カロさせることができる。すなわち、 C1〉C2の条件を満たせばよい。 [0014] 図 3に保護素子 4, 6として用いるガスアレスタの特性を示す。アレスタにパルス電圧 をカ卩えたときの印加電圧波形とアレスタ両端電圧波形を示す図である。図 3(a)に示す ように、立ち上がり時間が数 Sのパルス電圧をカ卩えた場合、アレスタ印加電圧がァレ スタ動作電圧を超えると、アレスタが動作し、アレスタ両端電圧は 0Vとなり、電力線か らのサージ電圧に対して他の素子を保護する。図 3(b)に示すように、立ち上がり時間 が数 nsのパルス電圧を加えた場合、アレスタ印加電圧がアレスタ動作電圧を超えても 、アレスタの動作遅れ時間 T1に達するまで、アレスタは動作しなレ、。この場合、アレス タ動作電圧以上の電圧が他の素子に加わることになり、他の素子を保護することがで きない。 [0013] Figure 2 shows the calculation results of the coupling efficiency when the capacitance of the parallel capacitor 3 is changed to 0, 100, 200, 500, and 1000 Pf. When there is no parallel capacitor 3 (OpF), there is only a series resonant circuit, so there is only one resonant frequency, and the coupling efficiency shows a maximum at only one location (in the example shown in Fig. 2, 6MHz ). By providing parallel capacitor 3, maximum values are shown at two locations, the direct resonance frequency and the parallel resonance frequency. By adjusting the two resonance frequencies, the high frequency characteristics of the coupling efficiency can be increased. That is, by setting the parallel resonance frequency f2 higher than the series resonance frequency η, the high frequency characteristics of the signal coupling device can be increased. That is, the condition of C1> C2 should be satisfied. FIG. 3 shows the characteristics of the gas arrester used as the protective elements 4 and 6. It is a figure which shows an applied voltage waveform when arresting a pulse voltage in an arrester, and an arrester both-ends voltage waveform. As shown in Fig. 3 (a), when a pulse voltage with a rise time of several s is obtained, if the voltage applied to the arrester exceeds the arrester operating voltage, the arrester operates, the voltage across the arrester becomes 0 V, and the power line Protects other elements against surge voltage from. As shown in Fig. 3 (b), when a pulse voltage with a rise time of several ns is applied, the arrester will not operate until the arrester operating delay time T1 is reached even if the arrester applied voltage exceeds the arrester operating voltage. Les. In this case, a voltage higher than the arrester operating voltage is applied to the other elements, and the other elements cannot be protected.
[0015] このように非線形素子のみを用いて電力線からの立ち上がり時間の短い高速サー ジ電圧を保護することは不可能である。この場合、ドレインコイル 2に並列にコンデン サ 3を設け、この並列コンデンサ 3に高速サージ電圧を吸収させ、他の素子を保護す ること力 S可能となる。 10pFから 500pFの容量の並列コンデンサ 3を用いることにより、立 ち上がり時間が数 nsのパルス電圧を十分減少させることが可能である。  [0015] Thus, it is impossible to protect a high-speed surge voltage having a short rise time from the power line using only a nonlinear element. In this case, a capacitor 3 is provided in parallel with the drain coil 2, and this parallel capacitor 3 can absorb high-speed surge voltage and protect other elements. By using a parallel capacitor 3 with a capacitance of 10pF to 500pF, the pulse voltage with a rise time of several ns can be sufficiently reduced.
[0016] なお、保護素子 4, 6として、一定の電圧に達したときに保護素子が動作し両端の電 圧が 0Vになる非線形素子が用いられる。このような保護素子としては、サージアレス タ、ガスギャップアレスタ、ガスアレスタ、ノくリスタ、ダイオードなどが用いられる。どれ かひとつの素子でも良レ、し、 V、ろレ、ろな素子を組み合わせても良レ、。  [0016] As the protective elements 4 and 6, non-linear elements are used in which the protective element operates when a certain voltage is reached and the voltage at both ends is 0V. As such a protective element, a surge arrester, a gas gap arrester, a gas arrester, a noristor, a diode, or the like is used. Any one element can be used, and V, G, and G can be combined.
[0017] 以上のように、実施の形態 1によれば、電力線 8を伝送線路として高周波信号の通 信を行う電力線搬送通信に用いられ、電力線 8に高周波信号を注入'取出しする電 力線搬送通信用信号結合装置において、電力線に接続された高耐圧コンデンサ 1と 、この高耐圧コンデンサ 1に直列接続され、直列共振回路を形成するドレインコイル 2 と、このドレインコイル 2に並列接続され、並列共振回路を形成する並列コンデンサ 3 とを備えることにより、高周波領域の結合効率を増加させると共にサージ電圧を十分 低減させることができる。  As described above, according to the first embodiment, the power line carrier is used for power line carrier communication that performs high-frequency signal communication using the power line 8 as a transmission line, and injects and extracts high-frequency signals from the power line 8. In a signal coupling device for communication, a high voltage capacitor 1 connected to a power line, a drain coil 2 connected in series to the high voltage capacitor 1 and forming a series resonance circuit, and a parallel connection to the drain coil 2 and parallel resonance By providing the parallel capacitor 3 forming the circuit, the coupling efficiency in the high frequency region can be increased and the surge voltage can be sufficiently reduced.
[0018] また、高耐圧コンデンサ 1とドレインコイル 2によって決まる直列共振周波数をドレイ ンコイル 2と並列コンデンサ 3とによって決まる並列共振周波数より低くすることにより 、結合効率が 2つの周波数で極大値を示すことになり、コンデンサの容量を調整する ことにより、広い周波数範囲にて高い結合効率を有する信号結合装置を得ることがで きる。 [0018] In addition, by making the series resonance frequency determined by the high voltage capacitor 1 and the drain coil 2 lower than the parallel resonance frequency determined by the drain coil 2 and the parallel capacitor 3, the coupling efficiency shows maximum values at two frequencies. And adjust the capacitance of the capacitor Thus, a signal coupling device having high coupling efficiency in a wide frequency range can be obtained.
[0019] 更に、高耐圧コンデンサ 1の容量を並列コンデンサ 3の容量より大きくすることにより 、直列共振周波数を並列共振周波数より低く設定することができ、並列コンデンサ 3 の容量を調整することにより、広い周波数範囲にて高い結合効率を有する信号結合 装置を得ること力 Sできる。  Furthermore, by making the capacitance of the high voltage capacitor 1 larger than the capacitance of the parallel capacitor 3, the series resonance frequency can be set lower than the parallel resonance frequency, and by adjusting the capacitance of the parallel capacitor 3, a wide range can be obtained. It is possible to obtain a signal coupling device having high coupling efficiency in the frequency range.
[0020] 並列コンデンサ 3としては、セラミックコンデンサや電界コンデンサなどコンデンサ素 子を用いても良いし、基板パターンやコイル卷き線間の浮遊容量を用いてもよい。ま た、基板内に容量成分を内蔵しても良い。  [0020] As the parallel capacitor 3, a capacitor element such as a ceramic capacitor or an electric field capacitor may be used, or a stray capacitance between a substrate pattern or a coiled wire may be used. Further, a capacitance component may be built in the substrate.
[0021] 通信速度を向上させるためには、信号の周波数帯域をあげる必要性がある。このた め、結合効率の周波数特性が高い周波数にてフラットな信号結合装置が必要となる In order to improve the communication speed, it is necessary to increase the frequency band of the signal. For this reason, a flat signal coupling device is required at a frequency with high frequency characteristics of coupling efficiency.
。し力、しながら、電力線には、雷や断路機の開閉サージのようなパルス性のノイズが 発生する。このノイズが信号結合装置を介して通信装置に伝わると通信装置の入力 部を損傷してしまう。このため、高い周波数の結合効率を意識的にカットする必要が ある。例えば、 40MHz以上の周波数において急速に結合効率を低下させる必要があ る。このような場合にも、実施の形態 1は有効である。 . However, pulsating noise such as lightning and open / close surge of disconnecting device is generated on the power line. If this noise is transmitted to the communication device via the signal coupling device, the input portion of the communication device is damaged. For this reason, it is necessary to consciously cut high-frequency coupling efficiency. For example, it is necessary to rapidly reduce the coupling efficiency at a frequency of 40 MHz or higher. Even in such a case, the first embodiment is effective.
実施の形態 2.  Embodiment 2.
実施の形態 1では、ドレインコイル 2に並列に設けたコンデンサ 3により、立ち上がり 時間が数 nsの高速サージ電圧を十分減少させることができることを示した。減少した サージ電圧が、通信モデムに伝わらないようにするには、マッチングトランス 5の 1次 側と 2次側の間の絶縁耐電圧が十分高レ、ことが必要である。所定の絶縁耐電圧を満 足することにより、信号結合装置と通信モデムを接続するケーブルの種類や設置状 態によらず電力線と通信モデムの間の絶縁が保証され、安全な信号結合装置を提 供すること力 Sできる。  In the first embodiment, it has been shown that the high-speed surge voltage with a rise time of several ns can be sufficiently reduced by the capacitor 3 provided in parallel with the drain coil 2. In order to prevent the reduced surge voltage from being transmitted to the communication modem, it is necessary that the insulation withstand voltage between the primary side and the secondary side of the matching transformer 5 be sufficiently high. By satisfying the specified dielectric strength voltage, the insulation between the power line and the communication modem is guaranteed regardless of the type and installation state of the cable connecting the signal coupling device and the communication modem, and a safe signal coupling device is provided. Deliver power S.
[0022] マッチングトランス 5の絶縁耐電圧の評価方法には、 1次側卷線 W1に高電圧を印 加し、 2次側と 1次側の絶縁が破壊する電圧(ブレークダウン電圧)を測定する。ブレ ークダウン電圧が十分高ければ、マッチングトランス 5の絶縁耐電圧は保障される。ブ レークダウン電圧として、 5kV以上の絶縁耐電圧を有すれば、コネクタ 7に 5kV以上の 電圧を発生することはない。また、通信モデムの入力端子は、 ESD (Electro Static Discharge)保護のため、通常 5kVのパルスノイズに耐える設計になっている。このた め、マッチングトランス 5の絶縁耐電圧として、 2次側と 1次側の絶縁耐電圧(ブレーク ダウン電圧) 5kVを達成すればょレ、。 [0022] In order to evaluate the insulation withstand voltage of matching transformer 5, a high voltage is applied to primary side wire W1, and the voltage at which the insulation on the secondary side and the primary side breaks (breakdown voltage) is measured. To do. If the breakdown voltage is sufficiently high, the insulation withstand voltage of the matching transformer 5 is guaranteed. If the breakdown voltage is 5kV or more, the connector 7 has 5kV or more. It does not generate voltage. In addition, the input terminal of the communication modem is designed to withstand pulse noise of 5kV for ESD (Electro Static Discharge) protection. Therefore, the insulation withstand voltage of the matching transformer 5 must be 5kV (breakdown voltage) on the secondary and primary sides.
[0023] この様な絶縁耐電圧を達成するための方法として、図 4(a)に示すようにマッチングト ランス 5に用いる磁気コア 51として NiZnフェライトのように固有抵抗の高い材料を用い ること力 S必要である。また、 1次卷線 W1と 2次卷線 W2を対向卷きにしたり、被覆銅線 を用いたりすることによって所定の絶縁耐電圧を達成させる。また、マッチングトランス 5の 1次側と 2次側のグランド端子を接続しなレ、か、図 4(b)に示すように高抵抗もしくは インダクタンス 52を介して接続することによって所定の絶縁耐電圧を達成できる。  [0023] As a method for achieving such an insulation withstand voltage, a material having a high specific resistance such as NiZn ferrite is used as the magnetic core 51 used in the matching transformer 5 as shown in FIG. 4 (a). Force S is needed. In addition, the predetermined insulation withstand voltage is achieved by making the primary winding W1 and the secondary winding W2 face each other or using a coated copper wire. Also, connect the primary and secondary ground terminals of the matching transformer 5 to each other, or connect them through high resistance or inductance 52 as shown in Fig. 4 (b). Can be achieved.
[0024] また、磁気コア 51の磁気飽和を利用して、高電圧の磁気飽和を低減させることがで きる。  [0024] Further, the magnetic saturation of the magnetic core 51 can be utilized to reduce the high voltage magnetic saturation.
[0025] 以上のように、実施の形態 2によれば、並列コンデンサ 3と並列にマッチングトランス  As described above, according to the second embodiment, the matching transformer is connected in parallel with the parallel capacitor 3.
5を接続すると共に、マッチングトランス 5の 1次側と 2次側の絶縁耐電圧を 5kV以上に 設定することにより、信号結合装置と通信モデムを接続するケーブルの種類や状態 によらず高周波サージ電圧を十分減衰することができる。  In addition to connecting 5 and setting the insulation withstand voltage on the primary and secondary sides of the matching transformer 5 to 5 kV or higher, the high-frequency surge voltage can be used regardless of the type and condition of the cable connecting the signal coupling device and the communication modem. Can be sufficiently attenuated.

Claims

請求の範囲 The scope of the claims
[1] 電力線を伝送線路として高周波信号の通信を行う電力線搬送通信に用いられ、前 記電力線に前記高周波信号を注入 ·取出しする電力線搬送通信用信号結合装置に おいて、  [1] In a power line carrier communication signal coupling device that is used for power line carrier communication that performs high frequency signal communication using a power line as a transmission line, and that injects and extracts the high frequency signal from the power line.
前記電力線に接続された高耐圧コンデンサと、この高耐圧コンデンサに直列接続さ れ、直列共振回路を形成するドレインコイルと、このドレインコイルに並列接続され、 並列共振回路を形成する並列コンデンサとを備えたことを特徴とする電力線搬送通 信用信号結合装置。  A high-voltage capacitor connected to the power line; a drain coil connected in series to the high-voltage capacitor to form a series resonance circuit; and a parallel capacitor connected in parallel to the drain coil to form a parallel resonance circuit. A power line carrier communication signal coupling device characterized by that.
[2] 前記高耐圧コンデンサと前記ドレインコイルによって決まる直列共振周波数が、前 記ドレインコイルと前記並列コンデンサによって決まる並列共振周波数より低いことを 特徴とする請求項 1記載の電力線搬送通信用信号結合装置。  2. The signal coupling device for power line carrier communication according to claim 1, wherein a series resonance frequency determined by the high voltage capacitor and the drain coil is lower than a parallel resonance frequency determined by the drain coil and the parallel capacitor. .
[3] 前記高耐圧コンデンサの容量が前記並列コンデンサの容量より大きいことを特徴と する請求項 1記載の電力線搬送通信用信号結合装置。  [3] The signal coupling device for power line carrier communication according to [1], wherein a capacity of the high voltage capacitor is larger than a capacity of the parallel capacitor.
[4] 前記並列コンデンサと並列にマッチングトランスを接続すると共に、前記マッチング トランスの 1次側と 2次側の絶縁耐電圧を 5kV以上に設定したことを特徴とする請求項 1記載の電力線搬送通信用信号結合装置。  [4] The power line carrier communication according to claim 1, wherein a matching transformer is connected in parallel with the parallel capacitor, and a dielectric strength voltage of the primary side and the secondary side of the matching transformer is set to 5 kV or more. Signal coupling device.
PCT/JP2006/312039 2005-11-29 2006-06-15 Signal coupler for power line carrier communication WO2007063618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007547852A JP4668279B2 (en) 2005-11-29 2006-06-15 Signal coupling device for power line carrier communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-343792 2005-11-29
JP2005343792 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063618A1 true WO2007063618A1 (en) 2007-06-07

Family

ID=38091958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312039 WO2007063618A1 (en) 2005-11-29 2006-06-15 Signal coupler for power line carrier communication

Country Status (2)

Country Link
JP (1) JP4668279B2 (en)
WO (1) WO2007063618A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136662A1 (en) * 2012-03-12 2013-09-19 パナソニック株式会社 Power meter
JP2019153970A (en) * 2018-03-05 2019-09-12 九州電力株式会社 Communication system
JP2019176304A (en) * 2018-03-28 2019-10-10 株式会社ダイヘン Bypass circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225035A (en) * 1998-02-06 1999-08-17 Nikko Co Lc filter
JP2001509335A (en) * 1997-01-28 2001-07-10 ノーテル・ネットワークス・コーポレーション Power line transmission
US20010038329A1 (en) * 2000-05-04 2001-11-08 Paolo Diamanti Coupling device for providing a communciations link for RF broadband data signals to a power line and method of installing same
JP2005159921A (en) * 2003-11-28 2005-06-16 Yaskawa Electric Corp Communication processing control circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9222205D0 (en) * 1992-10-22 1992-12-02 Norweb Plc Low voltage filter
JPH08288893A (en) * 1995-04-10 1996-11-01 Takaoka Electric Mfg Co Ltd Coupling device for communication
DE19907095C5 (en) * 1999-02-19 2004-01-15 Siemens Ag Circuit for capacitive coupling of a data transmission device to an energy transmission network, and coupling unit with coupling circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509335A (en) * 1997-01-28 2001-07-10 ノーテル・ネットワークス・コーポレーション Power line transmission
JPH11225035A (en) * 1998-02-06 1999-08-17 Nikko Co Lc filter
US20010038329A1 (en) * 2000-05-04 2001-11-08 Paolo Diamanti Coupling device for providing a communciations link for RF broadband data signals to a power line and method of installing same
JP2005159921A (en) * 2003-11-28 2005-06-16 Yaskawa Electric Corp Communication processing control circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136662A1 (en) * 2012-03-12 2013-09-19 パナソニック株式会社 Power meter
JP2013190208A (en) * 2012-03-12 2013-09-26 Panasonic Corp Power measuring apparatus
CN104160282A (en) * 2012-03-12 2014-11-19 松下电器产业株式会社 Power meter
TWI493197B (en) * 2012-03-12 2015-07-21 Panasonic Corp Power meter
JP2019153970A (en) * 2018-03-05 2019-09-12 九州電力株式会社 Communication system
JP2019176304A (en) * 2018-03-28 2019-10-10 株式会社ダイヘン Bypass circuit

Also Published As

Publication number Publication date
JPWO2007063618A1 (en) 2009-05-07
JP4668279B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
RU2251191C2 (en) Pulse surge protective gear
US7082022B2 (en) Circuit for diverting surges and transient impulses
CN101836341B (en) Surge protection circuit for passing DC and RF signals
JP4041068B2 (en) How to protect medium voltage inductive coupling devices from electrical transients
KR20050065603A (en) Filter for segmenting power lines for communications
US5896265A (en) Surge suppressor for radio frequency transmission lines
US20150077889A1 (en) Protective device
WO2007063618A1 (en) Signal coupler for power line carrier communication
JPH09232145A (en) Surge preventing transformer for signal cable and signal cable connection structure using the same
CN105790797A (en) Integrated capacitive coupler for medium voltage power carrier communication
KR102372134B1 (en) Filter for Shielding Electro-Magnetic Wave
EP2808959B1 (en) High voltage discharge protection device and radio frequency transmission apparatus using the same
KR102462454B1 (en) Band antenna emp filter apparatus having hemp protection capability
EP2249564B1 (en) Electrical isolating device
KR100353395B1 (en) A distuributing board installed a removal device of noise and surge voltage
KR101196339B1 (en) The sensing moudule of high-altitude electromagnetic pulse
KR100996198B1 (en) Surge protective device and method for manufaturing the surge protective device
RU2260910C2 (en) Device for data transfer over phase conductors of power transmission lines
JP2857677B2 (en) Protector for CATV
RU2273955C1 (en) Device for connecting high frequency communication channels and electric transmission line
WO2007063627A1 (en) Signal coupling device
MXPA04008884A (en) Steel product and method for manufacturing.
JP3149639B2 (en) Lightning surge absorption circuit
KR101219500B1 (en) Surge protective device and method for manufaturing the surge protective device
JPH0550210B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007547852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766773

Country of ref document: EP

Kind code of ref document: A1