WO2007063627A1 - Signal coupling device - Google Patents

Signal coupling device Download PDF

Info

Publication number
WO2007063627A1
WO2007063627A1 PCT/JP2006/315579 JP2006315579W WO2007063627A1 WO 2007063627 A1 WO2007063627 A1 WO 2007063627A1 JP 2006315579 W JP2006315579 W JP 2006315579W WO 2007063627 A1 WO2007063627 A1 WO 2007063627A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
inductor
signal
capacitor
coupling device
Prior art date
Application number
PCT/JP2006/315579
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichiro Murata
Junichi Abe
Takao Tsurimoto
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2007547858A priority Critical patent/JPWO2007063627A1/en
Publication of WO2007063627A1 publication Critical patent/WO2007063627A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Definitions

  • the present invention relates to a signal coupling device used in a power line carrier communication system that transmits and receives a high frequency signal using a power line as a carrier path.
  • a power line communication (PLC) system performs high-frequency signal communication such as data communication by superimposing transmission signals of 2 [MHZ] to 40 [MHZ] on a power line. is there.
  • a signal coupling device that injects and extracts a transmission signal from a power line is usually composed of a capacitive coupling unit (hereinafter referred to as CCU) using a high voltage capacitor. .
  • CCU capacitive coupling unit
  • a signal coupling device composed of this CCU includes a high voltage capacitor having one end connected to a first terminal connected to a power line, and one end connected to the other end of the capacitor and the other end connected to a ground terminal.
  • a high-frequency communication signal that is cut from the high voltage force of the power line is extracted or injected from the second terminal connected to the connection between the high voltage capacitor and the drain coil. is there. (For example, see Patent Document 1)
  • Patent Document 1 US2001 / 0038329A1 (See Fig.l, [0050]-[0051])
  • the present invention has been made to solve the above-described problems, and provides a signal coupling device capable of obtaining high coupling efficiency without increasing the capacitance of the high voltage capacitor and the inductance of the drain coil. It is intended to do.
  • a signal coupling device includes a first terminal connected to a power line, a capacitor connected to the first terminal, an inductor connected in series to the capacitor, the capacitor, and the And a second terminal connected to a communication device that transmits and receives the high-frequency signal.
  • the inductor is configured by winding a coil around a magnetic material, and the magnetic material is a complex thereof.
  • the frequency region in which the Q value of the permeability increases is configured to coincide at least partially with the lower limit region of the frequency band of the high-frequency signal.
  • the Q value of the complex permeability means a real part Z imaginary part which is a ratio of a real part and an imaginary part of the complex permeability.
  • the signal coupling device is configured such that a series resonance frequency of the capacitor and the inductor exists in a frequency region in which a Q value of the complex permeability of the magnetic material increases.
  • the signal coupling device is configured such that the Q value of the complex permeability of the magnetic body at a series resonance frequency by the capacitor and the inductor is 2 or more.
  • the signal coupling device is a signal coupling device used in a power line carrier communication device that transmits and receives a high-frequency signal using a power line as a carrier path, the first terminal connected to the power line, and A first capacitor having one end connected to the first terminal, an inductor connected in series to the first capacitor, a second capacitor and a matching transformer connected in parallel to the inductor, and a matching transformer, A second terminal for connecting a communication device connected to the output side for transmitting and receiving the high-frequency signal.
  • the ductor and the matching transformer are configured by winding a coil around a magnetic material, and the magnetic material is
  • the frequency region in which the Q value of the complex permeability increases is configured to at least partially match the lower limit region of the frequency band of the high-frequency signal.
  • the resonance frequency determined by the inductance of the inductor, the self-inductance of the winding on the power line side of the matching transformer, and the capacitance of the first capacitor is It is constructed so that it exists in the frequency region where the Q value of the complex permeability of the magnetic material increases.
  • the magnetic body constituting the inductor is configured to be magnetically saturated when a current of a predetermined value or more flows through the inductor.
  • the predetermined value means a value that can damage the signal coupling device or the communication device connected to the signal coupling device.
  • the first terminal connected to the power line, the capacitor connected to the first terminal, the inductor connected in series to the capacitor, and the capacitor And a second terminal connected to a communication device for transmitting and receiving the high-frequency signal.
  • the inductor is configured by winding a coil around a magnetic body, and the magnetic body is Since the frequency region where the Q value of the complex permeability increases is configured to coincide with the lower limit region of the frequency band of the high frequency signal at least partially, it is necessary to utilize the magnetic characteristics of the magnetic material. By increasing the low-band coupling efficiency in a certain frequency band, a high coupling efficiency can be obtained over a wide frequency range.
  • the series resonance frequency by the capacitor and the inductor is configured to exist in a frequency region where the Q value of the complex permeability of the magnetic body increases.
  • the frequency region where the coupling efficiency of the signal coupling device decreases and the frequency region where the Q value of the magnetic material increases can be matched. For this reason, coupling efficiency in the low frequency range
  • a signal coupling device with high coupling efficiency and excellent temperature characteristics can be obtained in a wide frequency range.
  • the Q value of the complex permeability of the magnetic body at the series resonance frequency of the capacitor and the inductor is 2 or more.
  • the first terminal connected to the power line, the first capacitor having one end connected to the first terminal, and the first capacitor A second terminal for connecting an inductor connected in series, a second capacitor and a matching transformer connected in parallel to the inductor, and a communication device connected to the output side of the matching transformer for transmitting and receiving the high-frequency signal
  • the inductor and the matching transformer are configured by winding a coil around a magnetic body, and the magnetic body has a frequency region in which a Q value of its complex permeability increases as a lower limit region of a frequency band of the high-frequency signal. Even if the characteristic impedance of the power line does not match the characteristic impedance of the communication modem, it is configured to match at least partially. High at the frequency range have! A signal coupling device having coupling efficiency can be obtained.
  • the resonance frequency determined by the inductance of the inductor, the self-inductance of the winding wire on the power line side of the matching transformer, and the capacitance of the first capacitor is Since the Q value of the complex magnetic permeability of the magnetic material is present in the frequency range where it increases, the characteristic impedance of the power line force Even if it does not match the characteristic impedance of the communication modem, it can be used in a wide frequency range. A signal coupling device having high coupling efficiency can be obtained.
  • the magnetic body constituting the inductor is configured to be magnetically saturated when a current of a predetermined value or more flows through the inductor. Since the coupling efficiency when an excessive current exceeding the value flows can be reduced, the accident voltage or surge voltage signal coupling device or this signal coupling device can be connected by appropriately setting the predetermined value. It is possible to protect the communication modem.
  • FIG. 1 is a configuration diagram showing a configuration of a signal coupling device according to Embodiment 1 of the present invention.
  • FIG. 2 is a characteristic diagram showing characteristics of the magnetic body according to the first embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing coupling efficiency according to the first embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing temperature characteristics of the capacity of a high voltage capacitor.
  • FIG. 5 is a characteristic diagram showing temperature characteristics of coupling efficiency according to the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing the relationship between the magnetic material and the coupling efficiency according to the first embodiment of the present invention.
  • FIG. 7 is a configuration diagram showing a configuration of a signal coupling device according to a second embodiment of the present invention.
  • FIG. 1 is a diagram showing a circuit configuration of a signal coupling device according to Embodiment 1 of the present invention.
  • a signal coupling device 100 constituted by a CCU includes a high voltage capacitor 1 as a first capacitor having one end connected to a first terminal 101 connected to a power line 8, and the high voltage capacitor And a drain coil 2 connected to a ground terminal 103 having one end connected to the other end of 1 and the other end grounded to the ground.
  • the drain coil 2 is wound around a magnetic core 21 made of an annular magnetic material.
  • the drain coil 2 and the magnetic core 21 Is configured.
  • the drain coil 2 is connected in parallel with a second capacitor 3, a protective element 4 having a surge arrester and the like, and a primary coil 501 of the matching transformer 5.
  • the primary coil 501 and the secondary coil 502 of the matching transformer 5 are wound around a magnetic core 51 made of an annular magnetic body.
  • a protective element 6 having a surge arrester and the like is connected to the secondary coil 502 of the matching transformer 5 in parallel.
  • a connector 7 as a second terminal is connected to the secondary coil 502 of the matching transformer 5.
  • a cable (not shown) is connected to the connector 7 and is connected to a communication modem (not shown).
  • the coupling efficiency G in the low-frequency region of the high-frequency signal is reduced as described in Equation (1). Decreases. Therefore, if the inductance L is increased in order to prevent a decrease in the coupling efficiency G, the stray capacitance of the drain coil 2 increases, and the coupling efficiency in a region where the frequency of the high frequency signal is high (hereinafter simply referred to as the high frequency region). G decreases. For this reason, the mere inductance L component of the drain coil 2 is increased! Just drain the coil 2 into the magnetic core 21 By using the characteristics of the magnetic core 21 as a magnetic material, the coupling efficiency G in the low frequency region of the high frequency signal is increased.
  • FIG. 2 shows the characteristics of the magnetic material of the magnetic core 21 that winds the drain coil 2 and the magnetic core 51 that winds the primary coil 501 and the secondary coil 502 of the matching transformer 5.
  • the real part R of the complex permeability of the magnetic material shows a substantially constant value in the low frequency region, and decreases when it becomes higher than a certain frequency.
  • the imaginary part I of the complex permeability shows a maximum at a specific frequency.
  • the Q value which is the ratio of the real part to the imaginary part of the complex permeability (real part RZ imaginary part I), is high and almost constant in the low frequency region, but then decreases rapidly as the frequency increases. In the high frequency region, the value is almost constant at a low value.
  • the frequency range where the real part R of the complex permeability shows a constant value and the Q value shows a high value is defined as a characteristic area A.
  • the frequency range where the real part R decreases and the value force with a high Q value also decreases rapidly is defined as the characteristic region B.
  • the real part R and imaginary part I of the complex permeability are reduced and the Q value is low!
  • the frequency range where the value is constant is the characteristic region C.
  • the Q value in the characteristic region B increases rapidly in the low value Q value force in the characteristic region C.
  • FIG. 3 shows the coupling efficiency of the CCU when the characteristics of the magnetic bodies constituting the magnetic cores 21 and 51 used in the drain coil 2 and the matching transformer 5 are changed.
  • (A) in Fig. 3 shows the case of the drain coil 2 and the matching transformer 5 using the magnetic core in which the characteristic of the magnetic material is the characteristic region C in the entire frequency band D of the high-frequency signal.
  • Coupling efficiency G shows an almost constant value in the high frequency range, but gradually attenuates with decreasing frequency.
  • FIG. 3 shows the drain coil 2 and the matching transformer 5 using the magnetic core in which the magnetic characteristic of the magnetic material is the characteristic region B in the lower limit region of the frequency band D of the high-frequency signal.
  • the CCU coupling efficiency G increases as the frequency decreases in the low frequency region, and exhibits a maximum value at a specific frequency as described later.
  • the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5 are configured.
  • the magnetic material is configured such that the characteristic region B where the Q value of the complex permeability increases coincides with the lower limit region of the frequency band of the high-frequency signal.
  • the temperature characteristic of the capacity of the high voltage capacitor 1 is a characteristic C1 in which the capacity decreases as the temperature rises when measured at a frequency of 100 [KHZ] or less. Therefore, the coupling efficiency of CCU at low temperature below 0 degree is expected to increase.
  • the characteristic C2 is obtained, and the capacitance at a low temperature is also reduced. It turned out to be.
  • FIG. 5 (a) shows the CCU coupling efficiency when the entire frequency band D of the high-frequency signal is defined as the characteristic region C of the magnetic material of the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5.
  • the coupling efficiency G shows the maximum coupling efficiency at room temperature, and the coupling efficiency decreases even if the temperature increases or decreases. In other words, even if the coupling efficiency spec S is satisfied at a temperature of 25 degrees, the specifications are not met at a temperature of 50 degrees, a temperature of 80 degrees, or a temperature of 25 degrees.
  • FIG. 5B shows the case of Embodiment 1, that is, the lower limit region of the frequency band D of the high-frequency signal is the characteristic region B of the magnetic material of the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5.
  • the region other than the lower limit region is designated as the characteristic region C.
  • the maximum value of the coupling efficiency in the low-frequency region of the high-frequency signal disappears as the temperature rises, as seen from the characteristics of the coupling efficiency at a temperature of 80 ° C and a temperature of 1.25 ° C. Even at a temperature of 80 ° C or a temperature of 1.25 ° C, it is possible to meet the coupling efficiency spec S in the low frequency range.
  • FIG. 6 shows three types The coupling efficiency is shown when a magnetic material prototyped using the same kind of flight material is used as the drain core 2 of the CCU and the magnetic cores 21 and 51 of the matching transformer 5.
  • the Q value characteristic and the coupling efficiency characteristic of the complex permeability are indicated by F, and the Q value force of 2 to 40 [MHZ] is less than 1, so the coupling efficiency is It is about 4 [dB]
  • NiZn ferrite A the Q value and coupling efficiency characteristics of the complex permeability are indicated by FA. Since the Q value in 2 to 40 [MHZ] is 1 or more, the frequency is 10 [MHZ] or more. The coupling efficiency is 3 [dB], and the coupling efficiency is low at frequencies below 10 [MHZ].
  • the complex permeability Q value characteristic and coupling efficiency characteristic are indicated by FB, and the Q value at a frequency of 10 [MHZ] or less is as large as 2 or more, so the coupling efficiency in the low band is low. It increases and shows a maximum value at about 5 [MHZ]. At this time, the resonant frequency of the high voltage capacitor 1 and the drain coil 2 is 5 [MHZ]. Therefore, it is preferable to use the above-mentioned ferrite B as the magnetic material constituting the magnetic core 21 of the drain coil 2 and the magnetic core 51 of the matching transformer 5! /.
  • the CCU circuit configuration includes a second capacitor 3, protective elements 4 and 6, and a matching transformer 5.
  • the second capacitor 3 is for improving the high frequency characteristics, and the protection elements 4 and 6 are for absorbing the surge voltage from the distribution system.
  • the matching transformer 5 is for impedance matching when the characteristic impedance of the power line 8 and the characteristic impedance of the communication modem connected to the connector 7 are different.
  • the characteristic impedance of power line 8 is 50 to 400 [ ⁇ ] and the characteristic impedance of communication modems is generally 50 [ ⁇ ]
  • the primary coil (power line side) and secondary coil of matching transformer 5 The ratio of power to the communication modem side is 2: 1 or 3: 1.
  • the resonance frequency fr is expressed by the following equation (2).
  • the resonance frequency fr represented by the equation (1) is set to be the characteristic region B of the magnetic body constituting the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5.
  • the maximum value of the coupling efficiency G shown in (b) of FIG. 3 can be set in the lower limit region of the high-frequency signal where the coupling efficiency G of the CCU decreases.
  • the coupling efficiency does not decrease even when an excessive current exceeding a predetermined value flows, so that the input portion of the communication modem connected to the connector 7 may be destroyed.
  • the coupling efficiency of the CCU is reduced when an excessive current exceeding a predetermined value flows, so that the communication modem can be protected.
  • the first embodiment is particularly effective when a pulse voltage such as a surge voltage is generated and the frequency band of the excessive current and the frequency band of the high-frequency signal are equal.
  • the predetermined value means a value that can damage the signal coupling device or a communication device such as a communication modem connected to the signal coupling device.
  • both magnetic cores or as one of them, cores in the shape of toroidal core, EI core, drum core, glasses core, etc. It can also be a rod-shaped magnetic core.
  • FIG. 7 shows a circuit configuration of a signal coupling device according to Embodiment 2 of the present invention.
  • the CCU 100 has a first terminal 101 connected to the power line 8, a high voltage capacitor 1 having one end connected to the first terminal, and one end connected to the other end of the high voltage capacitor 1.
  • a drain coil 2 having the other end connected to the ground terminal 103 and a connector 7 as a second terminal connected to the drain coil 2 are provided.
  • the drain coil 2 is wound around a magnetic core 21 made of a magnetic material, and the drain coil 2 and the magnetic core 21 constitute an inductor. As shown in FIG. 3, the characteristic region B of the magnetic material constituting the magnetic core 21 of the drain coil 2 is made to coincide with the frequency band D of the high-frequency signal as shown in FIG. A cable is connected to the connector 7 and is connected to a communication modem (not shown).
  • Embodiment 2 does not include a matching transformer, a protection element, and a second capacitor as in Embodiment 1, and the voltage of power line 8 is relatively low. It is preferable to use it when a protective element is not required.
  • a CCU having a high coupling efficiency G can be obtained at low cost without using a protection element or a matching circuit and in a low frequency region of a high frequency signal.
  • the series resonance frequency fr of the drain coil 2 and the high voltage capacitor 1 connected in series is expressed by the following (Equation 3).
  • This series resonance frequency fr is the lower limit region of the usable frequency band of the CCU.
  • the series resonance frequency fr of the high voltage capacitor 1 and the inductor constituted by the drain coil 2 is present in the characteristic region B of the magnetic core 21.
  • the maximum value of coupling efficiency G shown in Fig. 3 (b) can be set in the region.
  • the respective magnetic cores 21 are magnetically saturated.
  • the cross-sectional area and magnetic path length of the magnetic core are set. This can reduce the coupling efficiency of the CCU.
  • the coupling efficiency of the CCU is reduced when an excessive current of a predetermined value or more flows, so that the communication modem can be protected.
  • the second embodiment is particularly effective when a noisy voltage such as a surge voltage is generated and the frequency band of the excessive current is equal to the frequency band of the high-frequency signal.
  • the predetermined value means a value that can damage the signal coupling device or a communication device such as a communication modem connected to the signal coupling device.
  • the signal coupling device can be used in the field of a power line carrier communication system that transmits and receives a high frequency signal using a power line as a carrier path.

Abstract

In a capacitive coupler (CCU) 100 used in a power line communication system that performs communication by putting a high-frequency signal on a power line (8), increasing the capacitance of a high-voltage capacitor (1) in order to increase the coupling efficiency in the low-frequency region of the high-frequency signal has been problematic, for example, in that the cost of the capacitor is increased and the breakdown voltage is lowered. In a signal coupling device of this invention, a drain coil (2) used in the CCU (100) is wound around a magnetic core (21) to match a frequency in the characteristic region in which the Q value of the complex permeability of a magnetic material constituting the magnetic core (21) increases with a frequency in the low-frequency region of the high-frequency signal. This enables the coupling efficiency in the low-frequency region of the high-frequency signal to increase, so that a high coupling efficiency is obtained in a wider frequency range.

Description

明 細 書  Specification
信号結合装置  Signal coupling device
技術分野  Technical field
[0001] この発明は、電力線を搬送路として高周波信号の送受信を行う電力線搬送通信シ ステムに用いる信号結合装置に関するものである。  The present invention relates to a signal coupling device used in a power line carrier communication system that transmits and receives a high frequency signal using a power line as a carrier path.
背景技術  Background art
[0002] 電力線搬送通信(Power Line Communication;以下、 PLCと称する)システムは、 電力線に 2[MHZ]〜40[MHZ]の伝送信号を重畳させてデータ通信などの高周波 信号の通信を行うものである。その PLCシステムに於いて、電力線に対し伝送信号 の注入'抽出を行う信号結合装置は、通常、高耐圧コンデンサを用いたキャパシティ ブカップラ(Capacitive Coupling Unit;以下、 CCUと称する)で構成されている。  [0002] A power line communication (PLC) system performs high-frequency signal communication such as data communication by superimposing transmission signals of 2 [MHZ] to 40 [MHZ] on a power line. is there. In the PLC system, a signal coupling device that injects and extracts a transmission signal from a power line is usually composed of a capacitive coupling unit (hereinafter referred to as CCU) using a high voltage capacitor. .
[0003] この CCUで構成された信号結合装置は、電力線に接続される第 1の端子に一端が 接続された高耐圧コンデンサと、このコンデンサの他端に一端が接続され他端が接 地端子に接続されたドレインコイルとを備え、高耐圧コンデンサとドレインコイルとの 接続部に接続された第 2の端子から、電力線の高電圧力カットされた高周波通信信 号を抽出しまたは注入するものである。(例えば特許文献 1参照)  [0003] A signal coupling device composed of this CCU includes a high voltage capacitor having one end connected to a first terminal connected to a power line, and one end connected to the other end of the capacitor and the other end connected to a ground terminal. A high-frequency communication signal that is cut from the high voltage force of the power line is extracted or injected from the second terminal connected to the connection between the high voltage capacitor and the drain coil. is there. (For example, see Patent Document 1)
特許文献 1 : US2001/0038329A1 (Fig.l、 [0050]〜[0051]参照)  Patent Document 1: US2001 / 0038329A1 (See Fig.l, [0050]-[0051])
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記のように構成された信号結合装置に於!ヽて、電力線を流れる高周波信号電圧 VIは、高耐圧コンデンサとドレインコイルによって分圧されて第 2の端子カゝら電圧 V2 として取り出される。 VIと V2との比である V2ZV1を結合効率と称し、 CCUを用いて 電力線に対して高周波信号の注入'抽出を行う特性の一つとして用いられる。この結 合効率を大きくするには、高耐圧コンデンサの容量を大きくする力、ドレインコイルの インダクタンスを大きくする必要がある。  [0004] In the signal coupling device configured as described above, the high-frequency signal voltage VI flowing through the power line is divided by the high voltage capacitor and the drain coil and is taken out as the voltage V2 from the second terminal cover. It is. V2ZV1, which is the ratio of VI to V2, is called coupling efficiency, and is used as one of the characteristics of high-frequency signal injection and extraction for power lines using CCU. To increase this coupling efficiency, it is necessary to increase the capacity of the high voltage capacitor and the inductance of the drain coil.
[0005] しかし、高耐圧コンデンサの容量を大きくすると、コンデンサのコストが増大すると共 に、耐電圧性能が劣化するという問題点があった。また、ドレインコイルのインダクタン スを大きくすると、コイルのコストが増大すると共に、コイルの浮遊容量によって、高周 波特性が劣化し、高周波信号の周波数が 2[MHZ]である場合の結合効率は高くで きても、 30[MHZ]付近での結合効率が低下するという問題点があった。 [0005] However, when the capacity of the high voltage capacitor is increased, there is a problem in that the withstand voltage performance deteriorates as the cost of the capacitor increases. Also, the drain coil inductance Increasing the frequency of the coil increases the cost of the coil, and the stray capacitance of the coil degrades the high frequency characteristics. Even if the frequency of the high frequency signal is 2 [MHZ], the coupling efficiency can be increased. There was a problem that the coupling efficiency in the vicinity of 30 [MHZ] was lowered.
[0006] この発明は上記のような課題を解決するためになされたものであり、高耐圧コンデン サの容量やドレインコイルのインダクタンスを大きくすることなぐ高い結合効率が得ら れる信号結合装置を提供することを目的とするものである。 [0006] The present invention has been made to solve the above-described problems, and provides a signal coupling device capable of obtaining high coupling efficiency without increasing the capacitance of the high voltage capacitor and the inductance of the drain coil. It is intended to do.
課題を解決するための手段  Means for solving the problem
[0007] この発明に係る信号結合装置は、電力線に接続される第 1の端子と、該第 1の端子 に接続されたコンデンサと、該コンデンサに直列接続されたインダクタと、前記コンデ ンサと前記インダクタとの接続部に接続され前記高周波信号を送受信する通信装置 を接続する第 2の端子とを備え、前記インダクタは、磁性体にコイルを卷回して構成さ れ、前記磁性体は、その複素透磁率の Q値が増加する周波数領域が前記高周波信 号の周波数帯域の下限領域と少なくとも一部に於いて一致するよう構成されたもので ある。 [0007] A signal coupling device according to the present invention includes a first terminal connected to a power line, a capacitor connected to the first terminal, an inductor connected in series to the capacitor, the capacitor, and the And a second terminal connected to a communication device that transmits and receives the high-frequency signal. The inductor is configured by winding a coil around a magnetic material, and the magnetic material is a complex thereof. The frequency region in which the Q value of the permeability increases is configured to coincide at least partially with the lower limit region of the frequency band of the high-frequency signal.
[0008] この発明に於 、て、複素透磁率の Q値とは、複素透磁率の実数部と虚数部との比 である実数部 Z虚数部を意味する。  In the present invention, the Q value of the complex permeability means a real part Z imaginary part which is a ratio of a real part and an imaginary part of the complex permeability.
[0009] また、この発明による信号結合装置は、前記コンデンサと前記インダクタによる直列 共振周波数が、前記磁性体の複素透磁率の Q値が増加する周波数領域に存在する よう構成されたものである。  [0009] In addition, the signal coupling device according to the present invention is configured such that a series resonance frequency of the capacitor and the inductor exists in a frequency region in which a Q value of the complex permeability of the magnetic material increases.
[0010] また、この発明による信号結合装置は、前記コンデンサと前記インダクタによる直列 共振周波数における前記磁性体の複素透磁率の Q値が、 2以上であるよう構成した ものである。 [0010] Further, the signal coupling device according to the present invention is configured such that the Q value of the complex permeability of the magnetic body at a series resonance frequency by the capacitor and the inductor is 2 or more.
[0011] 更に、この発明による信号結合装置は、電力線を搬送路として高周波信号を送受 信する電力線搬送通信装置に用いる信号結合装置であって、前記電力線に接続さ れる第 1の端子と、前記第 1の端子に一端が接続された第 1のコンデンサと、前記第 1 のコンデンサに直列接続されたインダクタと、前記インダクタに夫々並列接続された 第 2のコンデンサ及びマッチングトランスと、前記マッチングトランスの出力側に接続さ れ前記高周波信号を送受信する通信装置を接続する第 2の端子とを備え、前記イン ダクタ及びマッチングトランスは、磁性体にコイルを卷回して構成され、前記磁性体は[0011] Further, the signal coupling device according to the present invention is a signal coupling device used in a power line carrier communication device that transmits and receives a high-frequency signal using a power line as a carrier path, the first terminal connected to the power line, and A first capacitor having one end connected to the first terminal, an inductor connected in series to the first capacitor, a second capacitor and a matching transformer connected in parallel to the inductor, and a matching transformer, A second terminal for connecting a communication device connected to the output side for transmitting and receiving the high-frequency signal. The ductor and the matching transformer are configured by winding a coil around a magnetic material, and the magnetic material is
、その複素透磁率の Q値が増加する周波数領域が前記高周波信号の周波数帯域の 下限領域と少なくとも一部において一致するよう構成したものである。 The frequency region in which the Q value of the complex permeability increases is configured to at least partially match the lower limit region of the frequency band of the high-frequency signal.
[0012] また、この発明による信号結合装置は、前記インダクタのインダクタンスと、前記マツ チングトランスの電力線側の卷線の自己インダクタンスと、前記第 1のコンデンサの容 量とによって定まる共振周波数が、前記磁性体の複素透磁率の Q値が増加する周波 数領域に存在するように構成したものである。  [0012] Further, in the signal coupling device according to the present invention, the resonance frequency determined by the inductance of the inductor, the self-inductance of the winding on the power line side of the matching transformer, and the capacitance of the first capacitor is It is constructed so that it exists in the frequency region where the Q value of the complex permeability of the magnetic material increases.
[0013] また、この発明による信号結合装置は、前記インダクタを構成する磁性体を、前記ィ ンダクタに所定値以上の電流が流れたときに磁気飽和するよう構成したものである。 この発明に於 、て所定値とは、信号結合装置または該信号結合装置に接続される 通信装置にダメージを与え得る値を意味する。  [0013] In the signal coupling device according to the present invention, the magnetic body constituting the inductor is configured to be magnetically saturated when a current of a predetermined value or more flows through the inductor. In the present invention, the predetermined value means a value that can damage the signal coupling device or the communication device connected to the signal coupling device.
発明の効果  The invention's effect
[0014] この発明に係る信号結合装置によれば、電力線に接続される第 1の端子と、該第 1 の端子に接続されたコンデンサと、該コンデンサに直列接続されたインダクタと、前記 コンデンサと前記インダクタとの接続部に接続され前記高周波信号を送受信する通 信装置を接続する第2の端子とを備え、前記インダクタは、磁性体にコイルを卷回し て構成され、前記磁性体は、その複素透磁率の Q値が増加する周波数領域が前記 高周波信号の周波数帯域の下限領域と少なくとも一部に於いて一致するよう構成さ れているので、磁性体の磁気特性を利用して、必要となる周波数帯域における低域 の結合効率を増カロさせることによって、広い周波数範囲にわたって、高い結合効率を 得ることができる。また、高耐圧コンデンサの容量を小さくしても高い結合効率を得る ことができるため、低コストで耐絶縁性能に優れた信号結合装置を得ることができる。 また、動作温度が上昇しても、結合効率がほとんど低下しないといった従来にない顕 著な効果を奏するものである。 [0014] According to the signal coupling device of the present invention, the first terminal connected to the power line, the capacitor connected to the first terminal, the inductor connected in series to the capacitor, and the capacitor And a second terminal connected to a communication device for transmitting and receiving the high-frequency signal. The inductor is configured by winding a coil around a magnetic body, and the magnetic body is Since the frequency region where the Q value of the complex permeability increases is configured to coincide with the lower limit region of the frequency band of the high frequency signal at least partially, it is necessary to utilize the magnetic characteristics of the magnetic material. By increasing the low-band coupling efficiency in a certain frequency band, a high coupling efficiency can be obtained over a wide frequency range. In addition, since a high coupling efficiency can be obtained even if the capacity of the high voltage capacitor is reduced, a signal coupling device having excellent insulation resistance can be obtained at low cost. In addition, even if the operating temperature rises, there is an unprecedented remarkable effect that the coupling efficiency hardly decreases.
[0015] また、この発明に係る信号結合装置によれば、コンデンサとインダクタによる直列共 振周波数が、前記磁性体の複素透磁率の Q値が増加する周波数領域に存在するよ う構成したので、信号結合装置の結合効率が低下する周波数領域と磁性体の Q値が 増加する周波数領域を一致させることができる。このため、低周波領域にて結合効率 が極大値を示す特性とすることができ、広い周波数範囲に於いて結合効率が高く温 度特性の優れた信号結合装置を得ることができる。 [0015] Further, according to the signal coupling device according to the present invention, the series resonance frequency by the capacitor and the inductor is configured to exist in a frequency region where the Q value of the complex permeability of the magnetic body increases. The frequency region where the coupling efficiency of the signal coupling device decreases and the frequency region where the Q value of the magnetic material increases can be matched. For this reason, coupling efficiency in the low frequency range Thus, a signal coupling device with high coupling efficiency and excellent temperature characteristics can be obtained in a wide frequency range.
[0016] また、この発明に係る信号結合装置によれば、コンデンサとインダクタによる直列共 振周波数における前記磁性体の複素透磁率の Q値が、 2以上であるようにしたので、 低周波領域に於 、て結合効率が極大値を示す特性とすることができ、広 、周波数範 囲に於いて結合効率が高く温度特性の優れた信号結合装置を得ることができる。  [0016] In addition, according to the signal coupling device of the present invention, the Q value of the complex permeability of the magnetic body at the series resonance frequency of the capacitor and the inductor is 2 or more. Thus, it is possible to obtain a characteristic in which the coupling efficiency has a maximum value, and it is possible to obtain a signal coupling device having a high coupling efficiency and excellent temperature characteristics in a wide frequency range.
[0017] また、この発明に係る信号結合装置によれば、電力線に接続される第 1の端子と、 前記第 1の端子に一端が接続された第 1のコンデンサと、前記第 1のコンデンサに直 列接続されたインダクタと、前記インダクタに夫々並列接続された第 2のコンデンサ及 びマッチングトランスと、前記マッチングトランスの出力側に接続され前記高周波信号 を送受信する通信装置を接続する第 2の端子とを備え、前記インダクタ及びマツチン グトランスは、磁性体にコイルを卷回して構成され、前記磁性体は、その複素透磁率 の Q値が増加する周波数領域が前記高周波信号の周波数帯域の下限領域と少なく とも一部において一致するよう構成されているので、電力線の特性インピーダンスが 、通信モデムの特性インピーダンスと一致しない場合でも、広い周波数範囲に於いて 高!、結合効率を有する信号結合装置を得ることができる。  [0017] According to the signal coupling device of the present invention, the first terminal connected to the power line, the first capacitor having one end connected to the first terminal, and the first capacitor A second terminal for connecting an inductor connected in series, a second capacitor and a matching transformer connected in parallel to the inductor, and a communication device connected to the output side of the matching transformer for transmitting and receiving the high-frequency signal The inductor and the matching transformer are configured by winding a coil around a magnetic body, and the magnetic body has a frequency region in which a Q value of its complex permeability increases as a lower limit region of a frequency band of the high-frequency signal. Even if the characteristic impedance of the power line does not match the characteristic impedance of the communication modem, it is configured to match at least partially. High at the frequency range have! A signal coupling device having coupling efficiency can be obtained.
[0018] また、この発明に係る信号結合装置によれば、インダクタのインダクタンスと、マッチ ングトランスの電力線側の卷線の自己インダクタンスと、第 1のコンデンサの容量とに よって定まる共振周波数が、前記磁性体の複素透磁率の Q値が増加する周波数領 域に存在するよう構成したので、電力線の特性インピーダンス力 通信モデムの特性 インピーダンスと一致しな ヽ場合でも、広 ヽ周波数範囲に於!ヽて高 ヽ結合効率を有 する信号結合装置を得ることができる。  [0018] Further, according to the signal coupling device according to the present invention, the resonance frequency determined by the inductance of the inductor, the self-inductance of the winding wire on the power line side of the matching transformer, and the capacitance of the first capacitor is Since the Q value of the complex magnetic permeability of the magnetic material is present in the frequency range where it increases, the characteristic impedance of the power line force Even if it does not match the characteristic impedance of the communication modem, it can be used in a wide frequency range. A signal coupling device having high coupling efficiency can be obtained.
[0019] また、この発明による信号結合装置によれば、インダクタを構成する磁性体を、前記 インダクタに所定値以上の電流が流れたときに磁気飽和するよう構成しているので、 少なくともインダクタに所定値以上の過大な電流が流れたときの結合効率を低下させ ることができるため、前記所定値を適切に設定することにより、事故電圧やサージ電 圧力 信号結合装置またはこの信号結合装置に接続される通信モデムを保護するこ とがでさる。 図面の簡単な説明 [0019] According to the signal coupling device of the present invention, the magnetic body constituting the inductor is configured to be magnetically saturated when a current of a predetermined value or more flows through the inductor. Since the coupling efficiency when an excessive current exceeding the value flows can be reduced, the accident voltage or surge voltage signal coupling device or this signal coupling device can be connected by appropriately setting the predetermined value. It is possible to protect the communication modem. Brief Description of Drawings
[0020] [図 1]本発明の実施の形態 1による信号結合装置の構成を示す構成図である。  FIG. 1 is a configuration diagram showing a configuration of a signal coupling device according to Embodiment 1 of the present invention.
[図 2]本発明の実施の形態 1による磁性体の特性を示す特性図である。  FIG. 2 is a characteristic diagram showing characteristics of the magnetic body according to the first embodiment of the present invention.
[図 3]本発明の実施の形態 1による結合効率を示す特性図である。  FIG. 3 is a characteristic diagram showing coupling efficiency according to the first embodiment of the present invention.
[図 4]高耐圧コンデンサの容量の温度特性を示す特性図である。  FIG. 4 is a characteristic diagram showing temperature characteristics of the capacity of a high voltage capacitor.
[図 5]本発明の実施の形態 1による結合効率の温度特性を示す特性図である。  FIG. 5 is a characteristic diagram showing temperature characteristics of coupling efficiency according to the first embodiment of the present invention.
[図 6]本発明の実施の形態 1による磁性体材料と結合効率の関係を示す特性図であ る。  FIG. 6 is a characteristic diagram showing the relationship between the magnetic material and the coupling efficiency according to the first embodiment of the present invention.
[図 7]本発明の実施の形態 2による信号結合装置の構成を示す構成図である。  FIG. 7 is a configuration diagram showing a configuration of a signal coupling device according to a second embodiment of the present invention.
符号の説明  Explanation of symbols
[0021] 1 高耐圧コンデンサ [0021] 1 High voltage capacitor
2 ドレインコィノレ  2 Drain coinore
21、 51 磁気コア  21, 51 Magnetic core
3 コンデンサ  3 Capacitor
4、 6 保護素子  4, 6 Protection element
5 マッチングトランス  5 Matching transformer
6 保護素子  6 Protection element
7 コネクタ  7 Connector
8 電力線  8 Power line
100 CCU  100 CCU
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 実施の形態 1 [0022] Embodiment 1
図 1は本発明の実施の形態 1による信号結合装置の回路構成を示す図である。図 1に於いて、 CCUにより構成された信号結合装置 100は、電力線 8に接続される第 1 の端子 101に一端が接続された第 1のコンデンサとしての高耐圧コンデンサ 1と、この 高耐圧コンデンサ 1の他端に一端が接続され他端が大地に接地される接地端子 10 3に接続されたドレインコイル 2とを備えている。ドレインコイル 2は、環状の磁性体か らなる磁気コア 21に卷回されている。ドレインコイル 2と磁気コア 21とにより、インダク タが構成される。 FIG. 1 is a diagram showing a circuit configuration of a signal coupling device according to Embodiment 1 of the present invention. In FIG. 1, a signal coupling device 100 constituted by a CCU includes a high voltage capacitor 1 as a first capacitor having one end connected to a first terminal 101 connected to a power line 8, and the high voltage capacitor And a drain coil 2 connected to a ground terminal 103 having one end connected to the other end of 1 and the other end grounded to the ground. The drain coil 2 is wound around a magnetic core 21 made of an annular magnetic material. The drain coil 2 and the magnetic core 21 Is configured.
[0023] また、ドレインコイル 2には、第 2のコンデンサ 3と、サージアレスタ等力 なる保護素 子 4と、マッチングトランス 5の一次コイル 501とが並列に接続されている。マッチング トランス 5の一次コイル 501及び二次コイル 502は、環状の磁性体からなる磁気コア 5 1に卷回されている。また、マッチングトランス 5の二次コイル 502には並列にサージ アレスタ等力 なる保護素子 6が接続されて 、る。  The drain coil 2 is connected in parallel with a second capacitor 3, a protective element 4 having a surge arrester and the like, and a primary coil 501 of the matching transformer 5. The primary coil 501 and the secondary coil 502 of the matching transformer 5 are wound around a magnetic core 51 made of an annular magnetic body. A protective element 6 having a surge arrester and the like is connected to the secondary coil 502 of the matching transformer 5 in parallel.
[0024] マッチングトランス 5の二次コイル 502には、第 2の端子としてのコネクタ 7が接続さ れている。コネクタ 7には、ケーブル(図示せず)が接続され、通信モデム(図示せず) と接続される。  A connector 7 as a second terminal is connected to the secondary coil 502 of the matching transformer 5. A cable (not shown) is connected to the connector 7 and is connected to a communication modem (not shown).
[0025] 以上のように構成された信号結合装置に於!ヽて、電力線 8を流れる高周波信号の 電圧 (以下、高周波信号電圧と称する)を VIとすると、この高周波信号電圧 VIは、 高耐圧コンデンサ 1とドレインコイル 2により分圧され、電圧 V2として取り出される。今 、高耐圧コンデンサ 1の容量を C、ドレインコイル 2のインダクタンスを Lとすると、結合 効率 G (=V2ZV1)は次の式(1)により求められる。  [0025] In the signal coupling device configured as described above! Assuming that the voltage of the high-frequency signal flowing through the power line 8 (hereinafter referred to as the high-frequency signal voltage) is VI, this high-frequency signal voltage VI is divided by the high voltage capacitor 1 and the drain coil 2 and taken out as voltage V2. . Now, assuming that the capacitance of the high voltage capacitor 1 is C and the inductance of the drain coil 2 is L, the coupling efficiency G (= V2ZV1) is obtained by the following equation (1).
[0026] [数 1]  [0026] [Equation 1]
G (式 1)
Figure imgf000008_0001
G (Formula 1)
Figure imgf000008_0001
[0027] 式(1)に於いて、高周波信号の周波数が低い領域 (以下、単に低周波領域と称す る)では、 1 > > co 2LCとなるため、 G= co 2LCとなる。そこで、この低周波領域での結 合効率 Gを増加させるためには、インダクタンスレ容量 Cのいずれかを増加させれば よ!/、ことになる。 In Equation (1), in the region where the frequency of the high-frequency signal is low (hereinafter simply referred to as the low-frequency region), 1 >> co 2 LC, so G = co 2 LC. Therefore, in order to increase the coupling efficiency G in this low frequency region, it is only necessary to increase one of the inductance capacitances C! /.
[0028] 高耐圧コンデンサ 1のコストを低減したり、耐電圧を増加させるためにその容量 Cを 減少させた場合、式(1)で説明したように高周波信号の低周波領域での結合効率 G が低下する。そこで、結合効率 Gの低下を防止するためにインダクタンス Lを増加させ ると、ドレインコイル 2の浮遊容量が増加し、高周波信号の周波数が高い領域 (以下、 単に高周波領域と称する)での結合効率 Gが低下する。このため、ドレインコイル 2の 単なるインダクタンス Lの成分を増力!]させるだけでなぐドレインコイル 2を磁気コア 21 に卷回し、磁気コア 21の磁性体としての特性を利用して、高周波信号の低周波領域 での結合効率 Gを増カロさせる。 [0028] When the cost of the high-voltage capacitor 1 is reduced or the capacitance C is reduced to increase the withstand voltage, the coupling efficiency G in the low-frequency region of the high-frequency signal is reduced as described in Equation (1). Decreases. Therefore, if the inductance L is increased in order to prevent a decrease in the coupling efficiency G, the stray capacitance of the drain coil 2 increases, and the coupling efficiency in a region where the frequency of the high frequency signal is high (hereinafter simply referred to as the high frequency region). G decreases. For this reason, the mere inductance L component of the drain coil 2 is increased! Just drain the coil 2 into the magnetic core 21 By using the characteristics of the magnetic core 21 as a magnetic material, the coupling efficiency G in the low frequency region of the high frequency signal is increased.
[0029] 図 2に、ドレインコイル 2を卷回する磁気コア 21、及びマッチングトランス 5の一次コ ィル 501及び二次コイル 502を卷回する磁気コア 51の磁性体の特性を示す。図 2か ら明らかなように、磁性体の複素透磁率の実部 Rは、周波数の低い領域ではほぼ一 定値を示し、ある周波数より高くなると減少していく。複素透磁率の虚部 Iは、ある特 定の周波数で極大値を示す。複素透磁率の実部と虚部の比(実部 RZ虚部 I)である Q値は、周波数の低い領域では高くほぼ一定値を示すが、その後、周波数の増大と 共に急激に減少し、高い周波数の領域では、低い値でほぼ一定値を示す。  FIG. 2 shows the characteristics of the magnetic material of the magnetic core 21 that winds the drain coil 2 and the magnetic core 51 that winds the primary coil 501 and the secondary coil 502 of the matching transformer 5. As is clear from Fig. 2, the real part R of the complex permeability of the magnetic material shows a substantially constant value in the low frequency region, and decreases when it becomes higher than a certain frequency. The imaginary part I of the complex permeability shows a maximum at a specific frequency. The Q value, which is the ratio of the real part to the imaginary part of the complex permeability (real part RZ imaginary part I), is high and almost constant in the low frequency region, but then decreases rapidly as the frequency increases. In the high frequency region, the value is almost constant at a low value.
[0030] 複素透磁率の実部 Rが一定値を示し、 Q値が高!ヽ値を示す周波数範囲を特性領 域 Aとする。また、実部 Rが減少し、 Q値が高い値力も急激に減少する周波数範囲を 特性領域 Bとし、複素透磁率の実部 Rと虚部 Iが減少し Q値が低!、値でほぼ一定値と なる周波数範囲を特性領域 Cとする。特性領域 Bに於ける Q値は、特性領域 Cに於け る低 、値の Q値力 急激に増加する。  [0030] The frequency range where the real part R of the complex permeability shows a constant value and the Q value shows a high value is defined as a characteristic area A. In addition, the frequency range where the real part R decreases and the value force with a high Q value also decreases rapidly is defined as the characteristic region B. The real part R and imaginary part I of the complex permeability are reduced and the Q value is low! The frequency range where the value is constant is the characteristic region C. The Q value in the characteristic region B increases rapidly in the low value Q value force in the characteristic region C.
[0031] 図 3に、ドレインコイル 2とマッチングトランス 5に用いる磁気コア 21、 51を構成する 磁性体の特性を変化させたときの、 CCUの結合効率を示す。図 3の (a)は、高周波 信号の周波数帯域 Dの全域に於 ヽて、磁性体の特性が特性領域 Cとなる磁気コアを 用いたドレインコイル 2及びマッチングトランス 5の場合を示し、 CCUの結合効率 Gは 、高い周波数領域でほぼ一定値を示すが、周波数が低くなると共に徐々に減衰する  FIG. 3 shows the coupling efficiency of the CCU when the characteristics of the magnetic bodies constituting the magnetic cores 21 and 51 used in the drain coil 2 and the matching transformer 5 are changed. (A) in Fig. 3 shows the case of the drain coil 2 and the matching transformer 5 using the magnetic core in which the characteristic of the magnetic material is the characteristic region C in the entire frequency band D of the high-frequency signal. Coupling efficiency G shows an almost constant value in the high frequency range, but gradually attenuates with decreasing frequency.
[0032] 一方、図 3の (b)は、高周波信号の周波数帯域 Dの下限領域に於いて磁性体の磁 気特性が特性領域 Bとなる磁気コアを用いたドレインコイル 2及びマッチングトランス 5 の場合を示し、 CCUの結合効率 Gは、低周波領域にて周波数が減少すると共に増 加し、後述するようにある特定の周波数に於いて極大値を示す特性となる。このよう に、高周波信号の周波数帯域 Dの下限領域を、磁性体の Q値が急激に減少する、 即ち急激に増加する、特性領域 Bと一致させることにより、高周波信号の低周波領域 での結合効率の高 ヽ CCUを得ることができる。 On the other hand, (b) of FIG. 3 shows the drain coil 2 and the matching transformer 5 using the magnetic core in which the magnetic characteristic of the magnetic material is the characteristic region B in the lower limit region of the frequency band D of the high-frequency signal. In this case, the CCU coupling efficiency G increases as the frequency decreases in the low frequency region, and exhibits a maximum value at a specific frequency as described later. Thus, by matching the lower limit region of the frequency band D of the high-frequency signal with the characteristic region B in which the Q value of the magnetic substance decreases rapidly, that is, increases rapidly, coupling of the high-frequency signal in the low-frequency region is achieved. Highly efficient CCU can be obtained.
[0033] 実施の形態 1は、ドレインコイル 2及びマッチングトランス 5の磁気コア 21、 51を構成 する磁性体を、その複素透磁率の Q値が増加する特性領域 Bが高周波信号の周波 数帯域の下限領域と一致するよう構成したものである。この構成により、前述のように 、高周波信号の低周波領域で結合効率 Gの高 、CCUを得ることができる。 [0033] In the first embodiment, the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5 are configured. The magnetic material is configured such that the characteristic region B where the Q value of the complex permeability increases coincides with the lower limit region of the frequency band of the high-frequency signal. With this configuration, as described above, a CCU with high coupling efficiency G can be obtained in the low frequency region of a high frequency signal.
[0034] 次に、実施の形態 1に於ける CCUの結合効率 Gの温度依存特性について述べる。 [0034] Next, the temperature dependence characteristics of the coupling efficiency G of the CCU in the first embodiment will be described.
一般に、温度上昇と共に、高耐圧コンデンサ 1の容量 Cやドレインコイル 2のインダク タンス Lは減少する。このため、温度上昇と共に CCUの結合効率 Gは低下する。また 、高耐圧コンデンサ 1の容量の温度特性は、図 4に示すように、 100[KHZ]以下の周 波数にて測定した場合、容量が温度上昇と共に減少する特性 C1となる。したがって 、 0度以下の低温での CCUの結合効率は増加すると予想される。し力しながら、 1[M HZ]以上の周波数にて容量を測定した結果、特性 C2となり、低温での容量も減少し 、したがって、この場合、 0度以下の低温でも CCUの結合効率は低下することが判明 した。  Generally, as the temperature rises, the capacitance C of the high voltage capacitor 1 and the inductance L of the drain coil 2 decrease. For this reason, the coupling efficiency G of the CCU decreases with increasing temperature. In addition, as shown in FIG. 4, the temperature characteristic of the capacity of the high voltage capacitor 1 is a characteristic C1 in which the capacity decreases as the temperature rises when measured at a frequency of 100 [KHZ] or less. Therefore, the coupling efficiency of CCU at low temperature below 0 degree is expected to increase. However, as a result of measuring the capacitance at a frequency of 1 [M HZ] or higher, the characteristic C2 is obtained, and the capacitance at a low temperature is also reduced. It turned out to be.
[0035] 図 5の(a)は、高周波信号の周波数帯域 Dの全域を、ドレインコイル 2及びマツチン グトランス 5の磁気コア 21、 51の磁性体の特性領域 Cとした場合の CCUの結合効率 の温度依存特性を示し、この場合の結合効率 Gは、室温にて最大の結合効率を示し 、温度が増加しても低下しても結合効率は低下する。即ち、温度 25度にて結合効率 のスペック Sを満足しても、温度 50度や温度 80度や温度一 25度ではスペックを満た さなくなることがわかる。  FIG. 5 (a) shows the CCU coupling efficiency when the entire frequency band D of the high-frequency signal is defined as the characteristic region C of the magnetic material of the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5. In this case, the coupling efficiency G shows the maximum coupling efficiency at room temperature, and the coupling efficiency decreases even if the temperature increases or decreases. In other words, even if the coupling efficiency spec S is satisfied at a temperature of 25 degrees, the specifications are not met at a temperature of 50 degrees, a temperature of 80 degrees, or a temperature of 25 degrees.
[0036] 図 5の (b)は、実施の形態 1の場合、即ち、高周波信号の周波数帯域 Dの下限領域 をドレインコイル 2及びマッチングトランス 5の磁気コア 21、 51の磁性体の特性領域 B と一致させ、下限領域以外の領域を特性領域 Cとした場合を示す。この場合、温度 8 0度や温度一 25度のときの結合効率の特性を見れば分力るように、温度の上昇によ つて、高周波信号の低周波領域における結合効率の極大値はなくなるものの、温度 80度や温度一 25度でも低周波領域に於いて結合効率のスペック Sを満たすことが ゎカゝる。  FIG. 5B shows the case of Embodiment 1, that is, the lower limit region of the frequency band D of the high-frequency signal is the characteristic region B of the magnetic material of the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5. The region other than the lower limit region is designated as the characteristic region C. In this case, the maximum value of the coupling efficiency in the low-frequency region of the high-frequency signal disappears as the temperature rises, as seen from the characteristics of the coupling efficiency at a temperature of 80 ° C and a temperature of 1.25 ° C. Even at a temperature of 80 ° C or a temperature of 1.25 ° C, it is possible to meet the coupling efficiency spec S in the low frequency range.
[0037] 次に、ドレインコイル 2の磁気コア 21、及びマッチングトランス 5の磁気コア 51を構成 する磁気材料について述べる。一般に、 2〜40[MHZ]の高周波信号に用いられる 磁性体として、フェライト材料、アモルファス磁性材料などが用いられる。図 6に、 3種 類のフ ライト材料を用いて試作した磁性体を、 CCUのドレインコイル 2、マッチングト ランス 5の磁気コア 21、 51として用いた場合の結合効率を示す。図 6から明らかなよう に、 MnZnフェライトでは、複素透磁率の Q値の特性及び結合効率の特性は Fで示さ れ、 2〜40[MHZ]における Q値力 1以下であるため、結合効率は 4[dB]程度である Next, magnetic materials constituting the magnetic core 21 of the drain coil 2 and the magnetic core 51 of the matching transformer 5 will be described. Generally, a ferrite material, an amorphous magnetic material, or the like is used as a magnetic material used for a high frequency signal of 2 to 40 [MHZ]. Figure 6 shows three types The coupling efficiency is shown when a magnetic material prototyped using the same kind of flight material is used as the drain core 2 of the CCU and the magnetic cores 21 and 51 of the matching transformer 5. As is clear from Fig. 6, in the MnZn ferrite, the Q value characteristic and the coupling efficiency characteristic of the complex permeability are indicated by F, and the Q value force of 2 to 40 [MHZ] is less than 1, so the coupling efficiency is It is about 4 [dB]
[0038] NiZnフェライト Aでは、複素透磁率の Q値の特性及び結合効率の特性は FAで示 され、 2〜40[MHZ]における Q値が 1以上であるため 10[MHZ]以上の周波数にお ける結合効率は 3[dB]である力 10[MHZ]以下の周波数での結合効率は低い。 NiZnフェライト Bでは、複素透磁率の Q値の特性及び結合効率の特性は FBで示さ れ、 10[MHZ]以下の周波数における Q値は、 2以上と大きいため、低域での結合効 率が増加し、ほぼ 5[MHZ]にて極大値を示す。このときの高耐圧コンデンサ 1とドレイ ンコイル 2の共振周波数は、 5[MHZ]である。従がつて、ドレインコイル 2の磁気コア 2 1、及びマッチングトランス 5の磁気コア 51を構成する磁性体の材料として、上記のフ エライト Bを用いるのが好まし!/、。 [0038] In NiZn ferrite A, the Q value and coupling efficiency characteristics of the complex permeability are indicated by FA. Since the Q value in 2 to 40 [MHZ] is 1 or more, the frequency is 10 [MHZ] or more. The coupling efficiency is 3 [dB], and the coupling efficiency is low at frequencies below 10 [MHZ]. In NiZn Ferrite B, the complex permeability Q value characteristic and coupling efficiency characteristic are indicated by FB, and the Q value at a frequency of 10 [MHZ] or less is as large as 2 or more, so the coupling efficiency in the low band is low. It increases and shows a maximum value at about 5 [MHZ]. At this time, the resonant frequency of the high voltage capacitor 1 and the drain coil 2 is 5 [MHZ]. Therefore, it is preferable to use the above-mentioned ferrite B as the magnetic material constituting the magnetic core 21 of the drain coil 2 and the magnetic core 51 of the matching transformer 5! /.
[0039] 実施の形態 1では、図 1に示すように CCUの回路構成として、第 2のコンデンサ 3と 、保護素子 4及び 6と、マッチングトランス 5を備えている。第 2のコンデンサ 3は、高周 波特性を改善するためのものであり、保護素子 4及び 6は、配電系統からのサージ電 圧を吸収するためのものである。マッチングトランス 5は、電力線 8の特性インピーダン スとコネクタ 7に接続される通信モデムの特性インピーダンスが異なる場合のインピー ダンスマッチングをとるためのものである。  In the first embodiment, as shown in FIG. 1, the CCU circuit configuration includes a second capacitor 3, protective elements 4 and 6, and a matching transformer 5. The second capacitor 3 is for improving the high frequency characteristics, and the protection elements 4 and 6 are for absorbing the surge voltage from the distribution system. The matching transformer 5 is for impedance matching when the characteristic impedance of the power line 8 and the characteristic impedance of the communication modem connected to the connector 7 are different.
[0040] 電力線 8の特性インピーダンスは、 50〜400[ Ω]、通信モデムの特性インピーダン スは一般的に 50[ Ω]であるため、マッチングトランス 5の一次コイル (電力線側)と二 次コイル (通信モデム側)との卷数比としては、 2 : 1、もしくは 3 : 1とする。今、並列回 路となるドレインコイル 2とマッチングトランス 5の一次コイル(電力線側)の、夫々のィ ンダクタンスを Ll、 L2とすると、その共振周波数 frは次の式(2)で示される。  [0040] Since the characteristic impedance of power line 8 is 50 to 400 [Ω] and the characteristic impedance of communication modems is generally 50 [Ω], the primary coil (power line side) and secondary coil of matching transformer 5 ( The ratio of power to the communication modem side is 2: 1 or 3: 1. Now, assuming that the inductances of the drain coil 2 and the primary coil (on the power line side) of the matching coil 5 as parallel circuits are Ll and L2, the resonance frequency fr is expressed by the following equation (2).
[0041] [数 2] fr = ~~ Tf (式2) [0041] [Equation 2] fr = ~~ Tf (Formula 2 )
 Ten
[0042] そこで、実施の形態 1では、式(1)で示される共振周波数 frを、ドレインコイル 2及び マッチングトランス 5の磁気コア 21、 51を構成する磁性体の特性領域 Bとするように 設定しており、これにより、 CCUの結合効率 Gが低下する高周波信号の下限領域に 、図 3の (b)で示した結合効率 Gの極大値を設定することができる。 [0042] Therefore, in the first embodiment, the resonance frequency fr represented by the equation (1) is set to be the characteristic region B of the magnetic body constituting the magnetic cores 21 and 51 of the drain coil 2 and the matching transformer 5. Thus, the maximum value of the coupling efficiency G shown in (b) of FIG. 3 can be set in the lower limit region of the high-frequency signal where the coupling efficiency G of the CCU decreases.
[0043] 電力線 8に実施の形態 1に示した信号結合装置を接続した場合、通常状態ではド レインコイル 2を流れる 60[HZ]もしくは 50[HZ]の電力周波数の電流の値はわずかで ある。しかし電力線 8にサージ電圧が加わったり短絡事故などが発生したりすると、一 時的に過大な電流が信号結合装置に加わる。このとき、ドレインコイル 2にも過大な 電流が流れる。  [0043] When the signal coupling device shown in the first embodiment is connected to the power line 8, the value of the current at the power frequency of 60 [HZ] or 50 [HZ] flowing through the drain coil 2 is small in the normal state. . However, if a surge voltage is applied to the power line 8 or a short-circuit accident occurs, an excessively large current is temporarily applied to the signal coupling device. At this time, an excessive current also flows through the drain coil 2.
[0044] そこで、実施の形態 1では、インダクタのドレインコイル 2及びマッチングトランス 5の 一次コイル 501に過大な電流が流れたとき、夫々の磁気コア 21、 51が磁気飽和する ように、その磁気コアの断面積や磁路長を設定している。これにより、過大な電流が 流れた場合の結合効率を低下させることができる。  [0044] Therefore, in the first embodiment, when an excessive current flows through the drain coil 2 of the inductor and the primary coil 501 of the matching transformer 5, the magnetic cores 21 and 51 are magnetically saturated. The cross-sectional area and magnetic path length are set. As a result, the coupling efficiency when an excessive current flows can be reduced.
[0045] 即ち、空心のドレインコイルやマッチングトランスでは、所定値以上の過大な電流が 流れても結合効率が低下しないため、コネクタ 7に接続された通信モデムの入力部を 破壊してしまうことがあるのに対し、実施の形態 1によれば、所定値以上の過大な電 流が流れた場合に CCUの結合効率が低下するので、通信モデムを保護することが できる。この実施の形態 1によれば、サージ電圧などパルス性の電圧が発生し、過大 電流の周波数帯域と高周波信号の周波数帯域が等しいときに特に有効である。所定 値とは、信号結合装置またはこの信号結合装置に接続される通信モデム等の通信 装置にダメージを与え得る値を意味する。  [0045] That is, in an air-core drain coil or a matching transformer, the coupling efficiency does not decrease even when an excessive current exceeding a predetermined value flows, so that the input portion of the communication modem connected to the connector 7 may be destroyed. On the other hand, according to the first embodiment, the coupling efficiency of the CCU is reduced when an excessive current exceeding a predetermined value flows, so that the communication modem can be protected. The first embodiment is particularly effective when a pulse voltage such as a surge voltage is generated and the frequency band of the excessive current and the frequency band of the high-frequency signal are equal. The predetermined value means a value that can damage the signal coupling device or a communication device such as a communication modem connected to the signal coupling device.
[0046] 尚、以上説明した実施の形態 1では、インダクタ及びマッチングトランス 5として、環 状の磁性体力もなる磁気コア 21、 51にコイルを卷回した場合について述べた力 ィ ンダクタ及びマッチングトランス 5の双方の磁気コアとして、またはそれらのうちいずれ かの磁気コアとして、トロイダルコア、 EIコア、ドラムコア、メガネコアなどの形状のコア としても良ぐまた棒状の磁気コアとしても良い。 In the first embodiment described above, the force inductor and the matching transformer 5 described in the case where the coil is wound around the magnetic cores 21 and 51 having an annular magnetic force as the inductor and the matching transformer 5. As both magnetic cores, or as one of them, cores in the shape of toroidal core, EI core, drum core, glasses core, etc. It can also be a rod-shaped magnetic core.
実施の形態 2  Embodiment 2
図 7は、この発明の実施の形態 2に係る信号結合装置の回路構成を示す。図 7に於 いて、 CCU100は、電力線 8に接続される第 1の端子 101、この第 1の端子に一端が 接続された高耐圧コンデンサ 1、この高耐圧コンデンサ 1の他端に一端が接続され、 他端が接地端子 103に接続されたドレインコイル 2、このドレインコイル 2に接続され た第 2の端子としてのコネクタ 7を備えて 、る。  FIG. 7 shows a circuit configuration of a signal coupling device according to Embodiment 2 of the present invention. In FIG. 7, the CCU 100 has a first terminal 101 connected to the power line 8, a high voltage capacitor 1 having one end connected to the first terminal, and one end connected to the other end of the high voltage capacitor 1. A drain coil 2 having the other end connected to the ground terminal 103 and a connector 7 as a second terminal connected to the drain coil 2 are provided.
[0047] ドレインコイル 2は、磁性体により構成された磁気コア 21に卷回され、このドレインコ ィル 2と磁気コア 21とによりインダクタを構成している。ドレインコイル 2の磁気コア 21 を構成する磁性体の特性領域 Bは、実施の形態 1と同様に、図 3に示すように高周波 信号の周波数帯域 Dと一致させている。コネクタ 7には、ケーブルが接続され通信モ デムと接続される(図示せず)。  The drain coil 2 is wound around a magnetic core 21 made of a magnetic material, and the drain coil 2 and the magnetic core 21 constitute an inductor. As shown in FIG. 3, the characteristic region B of the magnetic material constituting the magnetic core 21 of the drain coil 2 is made to coincide with the frequency band D of the high-frequency signal as shown in FIG. A cable is connected to the connector 7 and is connected to a communication modem (not shown).
[0048] このように、実施の形態 2では、実施の形態 1の場合のような、マッチングトランス、 保護素子、及び第 2のコンデンサを備えていないものであり、電力線 8の電圧が比較 的低く、保護素子等を必要としな 、場合に用いることが好ま 、。  Thus, Embodiment 2 does not include a matching transformer, a protection element, and a second capacitor as in Embodiment 1, and the voltage of power line 8 is relatively low. It is preferable to use it when a protective element is not required.
[0049] この実施の形態 2によれば、保護素子やマッチング回路を用いずに低コストで、且 つ高周波信号の低周波領域で結合効率 Gの高い CCUを得ることができる。  [0049] According to the second embodiment, a CCU having a high coupling efficiency G can be obtained at low cost without using a protection element or a matching circuit and in a low frequency region of a high frequency signal.
[0050] CCUの結合効率 Gは、高周波信号の高周波領域ではほぼ一定値を示し、周波数 が低下するとともに減少するが、高周波信号の下限領域である低周波領域での結合 効率 Gは、前述したように、 G= co 2LCで与えられる。一方、直列接続したドレインコィ ル 2と高耐圧コンデンサ 1の直列共振周波数 frは、次の(式 3)にて表される。 [0050] The coupling efficiency G of the CCU shows a substantially constant value in the high frequency region of the high frequency signal and decreases as the frequency decreases, but the coupling efficiency G in the low frequency region, which is the lower limit region of the high frequency signal, is as described above. Is given by G = co 2 LC. On the other hand, the series resonance frequency fr of the drain coil 2 and the high voltage capacitor 1 connected in series is expressed by the following (Equation 3).
[0051] [数 3] (式 3)
Figure imgf000013_0001
[0051] [Equation 3] (Equation 3)
Figure imgf000013_0001
[0052] この直列共振周波数 frが、 CCUの使用可能周波数帯域の下限領域となる。 [0052] This series resonance frequency fr is the lower limit region of the usable frequency band of the CCU.
[0053] 実施の形態 2では、高耐圧コンデンサ 1と、ドレインコイル 2により構成されるインダク タとの直列共振周波数 frを、磁気コア 21の特性領域 Bに存在させている。この実施 の形態 2によれば、 CCUの結合効率 Gが低下する高周波信号の周波数帯域の下限 領域に図 3 (b)で示した結合効率 Gの極大値を設定することができる。 In the second embodiment, the series resonance frequency fr of the high voltage capacitor 1 and the inductor constituted by the drain coil 2 is present in the characteristic region B of the magnetic core 21. According to the second embodiment, the lower limit of the frequency band of the high-frequency signal where the coupling efficiency G of the CCU decreases. The maximum value of coupling efficiency G shown in Fig. 3 (b) can be set in the region.
[0054] また、実施の形態 2では、実施の形態 1と同様に、インダクタのドレインコイル 2に所 定値以上の過大な電流が流れたとき、夫々の磁気コア 21が磁気飽和するように、そ の磁気コアの断面積や磁路長を設定している。これにより、 CCUの結合効率を低下 させることがでさる。 [0054] In the second embodiment, as in the first embodiment, when an excessive current exceeding a predetermined value flows in the drain coil 2 of the inductor, the respective magnetic cores 21 are magnetically saturated. The cross-sectional area and magnetic path length of the magnetic core are set. This can reduce the coupling efficiency of the CCU.
[0055] 即ち、実施の形態 2によれば、実施の形態 1と同様に、所定値以上の過大な電流が 流れた場合に CCUの結合効率が低下するので、通信モデムを保護することができる 。この実施の形態 2によれば、サージ電圧などノ ルス性の電圧が発生し、過大電流 の周波数帯域と高周波信号の周波数帯域が等しいときに特に有効である。所定値と は、信号結合装置またはこの信号結合装置に接続される通信モデム等の通信装置 にダメージを与え得る値を意味する。  [0055] That is, according to the second embodiment, as in the first embodiment, the coupling efficiency of the CCU is reduced when an excessive current of a predetermined value or more flows, so that the communication modem can be protected. . The second embodiment is particularly effective when a noisy voltage such as a surge voltage is generated and the frequency band of the excessive current is equal to the frequency band of the high-frequency signal. The predetermined value means a value that can damage the signal coupling device or a communication device such as a communication modem connected to the signal coupling device.
[0056] 尚、以上説明した実施の形態 2では、インダクタとして、環状の磁性体力もなる磁気 コア 21にコイルを卷回した場合について述べた力 その磁気コアとしてトロイダルコア 、 EIコア、ドラムコア、メガネコアなどの形状のコアとしても良ぐまた棒状の磁気コアと しても良い。  In the second embodiment described above, the force described in the case where the coil is wound around the magnetic core 21 that also has an annular magnetic force as the inductor, the toroidal core, the EI core, the drum core, and the eyeglass core as the magnetic core. It may be a core having a shape such as a rod-shaped magnetic core.
産業上の利用可能性  Industrial applicability
[0057] この発明に於ける信号結合装置は、電力線を搬送路として高周波信号の送受信を 行う電力線搬送通信システムの分野に用いることができる。 The signal coupling device according to the present invention can be used in the field of a power line carrier communication system that transmits and receives a high frequency signal using a power line as a carrier path.

Claims

請求の範囲 The scope of the claims
[1] 電力線を搬送路として高周波信号の送受信を行う電力線搬送通信システムに用い る信号結合装置であって、前記電力線に接続される第 1の端子と、前記第 1の端子 に接続されたコンデンサと、前記コンデンサに直列接続されたインダクタと、前記コン デンサと前記インダクタとの接続部に接続され前記高周波信号を送受信する通信装 置を接続する第 2の端子とを備え、前記インダクタは、磁性体にコイルを卷回して構 成され、前記磁性体は、その複素透磁率の Q値が増加する周波数領域が前記高周 波信号の周波数帯域の下限領域と少なくとも一部で一致するよう構成されたことを特 徴とする信号結合装置。  [1] A signal coupling device used in a power line carrier communication system that transmits and receives a high-frequency signal using a power line as a carrier path, the first terminal connected to the power line, and a capacitor connected to the first terminal And an inductor connected in series to the capacitor, and a second terminal connected to a communication device for transmitting and receiving the high-frequency signal connected to a connection portion between the capacitor and the inductor, the inductor being magnetic The magnetic body is configured such that the frequency region in which the Q value of the complex permeability increases at least partially matches the lower limit region of the frequency band of the high frequency signal. A signal combiner characterized by that.
[2] 前記コンデンサと前記インダクタによる直列共振周波数が、前記磁性体の複素透 磁率の Q値が増加する周波数領域に存在することを特徴とする請求項 1に記載の信 号結合装置。 [2] The signal coupling device according to claim 1, wherein a series resonance frequency of the capacitor and the inductor exists in a frequency region where a Q value of a complex permeability of the magnetic body increases.
[3] 前記コンデンサと前記インダクタによる直列共振周波数における前記磁性体の複 素透磁率の Q値が、 2以上であることを特徴とする請求項 1に記載の信号結合装置。  [3] The signal coupling device according to claim 1, wherein a Q value of a complex magnetic permeability of the magnetic body at a series resonance frequency by the capacitor and the inductor is 2 or more.
[4] 前記インダクタを構成する磁性体は、前記インダクタに所定値以上の電流が流れた ときに磁気飽和するよう構成されたことを特徴とする請求項 1に記載の信号結合装置  4. The signal coupling device according to claim 1, wherein the magnetic body constituting the inductor is configured to be magnetically saturated when a current of a predetermined value or more flows through the inductor.
[5] 電力線を搬送路として高周波信号を送受信する電力線搬送通信装置に用いる信 号結合装置であって、前記電力線に接続される第 1の端子と、前記第 1の端子に一 端が接続された第 1のコンデンサと、前記第 1のコンデンサに直列接続されたインダク タと、前記インダクタに夫々並列接続された第 2のコンデンサ及びマッチングトランス と、前記マッチングトランスの出力側に接続され前記高周波信号を送受信する通信 装置を接続する第 2の端子とを備え、前記インダクタ及びマッチングトランスは、磁性 体にコイルを卷回して構成され、前記磁性体は、その複素透磁率の Q値が増加する 周波数領域が前記高周波信号の周波数帯域の下限領域と少なくとも一部において 一致するよう構成されたことを特徴とする信号結合装置。 [5] A signal coupling device used in a power line carrier communication device that transmits and receives a high-frequency signal using a power line as a carrier path, the first terminal connected to the power line, and one end connected to the first terminal. A first capacitor, an inductor connected in series to the first capacitor, a second capacitor and a matching transformer connected in parallel to the inductor, and the high-frequency signal connected to the output side of the matching transformer. The inductor and the matching transformer are configured by winding a coil around a magnetic material, and the magnetic material has a Q value of its complex permeability increasing. A signal coupling device characterized in that a region coincides at least partially with a lower limit region of a frequency band of the high-frequency signal.
[6] 前記インダクタのインダクタンスと、前記マッチングトランスの電力線側の卷線の自 己インダクタンスと、前記第 1のコンデンサの容量とによって定まる共振周波数力 前 記磁性体の複素透磁率の Q値が増加する周波数領域に存在することを特徴とする 請求項 5に記載の信号結合装置。 [6] Resonance frequency force determined by the inductance of the inductor, the self-inductance of the matching wire on the power line side of the matching transformer, and the capacitance of the first capacitor 6. The signal coupling device according to claim 5, wherein the signal coupling device exists in a frequency region in which a Q value of a complex permeability of the magnetic material increases.
前記インダクタを構成する磁性体は、前記インダクタに所定値以上の電流が流れた ときに磁気飽和するよう構成されたことを特徴とする請求項 5に記載の信号結合装置  6. The signal coupling device according to claim 5, wherein the magnetic body constituting the inductor is configured to be magnetically saturated when a current of a predetermined value or more flows through the inductor.
PCT/JP2006/315579 2005-11-29 2006-08-07 Signal coupling device WO2007063627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007547858A JPWO2007063627A1 (en) 2005-11-29 2006-08-07 Signal coupling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-343784 2005-11-29
JP2005343784 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063627A1 true WO2007063627A1 (en) 2007-06-07

Family

ID=38091967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315579 WO2007063627A1 (en) 2005-11-29 2006-08-07 Signal coupling device

Country Status (2)

Country Link
JP (1) JPWO2007063627A1 (en)
WO (1) WO2007063627A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605416A1 (en) * 2011-12-16 2013-06-19 Arteche Lantegi Elkartea, S.A. High-voltage coupling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038329A1 (en) * 2000-05-04 2001-11-08 Paolo Diamanti Coupling device for providing a communciations link for RF broadband data signals to a power line and method of installing same
JP2003023362A (en) * 2001-07-10 2003-01-24 Ntt Docomo Inc High sensitivity wireless receiver
JP2005073208A (en) * 2003-08-28 2005-03-17 Tdk Corp Power line communication unit and coupler circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038329A1 (en) * 2000-05-04 2001-11-08 Paolo Diamanti Coupling device for providing a communciations link for RF broadband data signals to a power line and method of installing same
JP2003023362A (en) * 2001-07-10 2003-01-24 Ntt Docomo Inc High sensitivity wireless receiver
JP2005073208A (en) * 2003-08-28 2005-03-17 Tdk Corp Power line communication unit and coupler circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605416A1 (en) * 2011-12-16 2013-06-19 Arteche Lantegi Elkartea, S.A. High-voltage coupling device

Also Published As

Publication number Publication date
JPWO2007063627A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US7005943B2 (en) Filter for segmenting power lines for communications
TWI232037B (en) Noise suppressing circuit
KR100578624B1 (en) Noise filter and electronic apparatus having the same
US20210359551A1 (en) Parallel tuned amplifiers
CN101202150B (en) EMC filter inductance
WO2007063627A1 (en) Signal coupling device
JP4668279B2 (en) Signal coupling device for power line carrier communication
CA3166991A1 (en) Electromagnetic wave shielding filter
JP2012065276A (en) Antenna electrostatic protection circuit
KR101470815B1 (en) Magnetic resonance type wireless power transmission apparatus for low voltage
CN212659967U (en) Radio frequency surge protector
Van Rensburg et al. Step-by-step design of a coupling circuit with bi-directional transmission capabilities
KR100996198B1 (en) Surge protective device and method for manufaturing the surge protective device
CN210724814U (en) Communication anti-interference equipment and alternating current locomotive communication line
KR100353395B1 (en) A distuributing board installed a removal device of noise and surge voltage
JPS63194527A (en) Safety device
JP3637675B2 (en) Grounded power tool
JP2001024462A (en) Noise filter
JP2004063550A (en) Choke coil
KR101219500B1 (en) Surge protective device and method for manufaturing the surge protective device
JP2019176304A (en) Bypass circuit
JPS6042538Y2 (en) Power separation coupling filter
JP2005027074A (en) Antenna protective device and radio communication apparatus using it
JP2000151326A (en) Noise filter
CN2067470U (en) Protective device for tv set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007547858

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782421

Country of ref document: EP

Kind code of ref document: A1