WO2007069615A1 - Thermally shrinkable void-containing laminate film and thermally shrinkable void-containing film - Google Patents

Thermally shrinkable void-containing laminate film and thermally shrinkable void-containing film Download PDF

Info

Publication number
WO2007069615A1
WO2007069615A1 PCT/JP2006/324781 JP2006324781W WO2007069615A1 WO 2007069615 A1 WO2007069615 A1 WO 2007069615A1 JP 2006324781 W JP2006324781 W JP 2006324781W WO 2007069615 A1 WO2007069615 A1 WO 2007069615A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
heat
film
less
layer
Prior art date
Application number
PCT/JP2006/324781
Other languages
French (fr)
Japanese (ja)
Inventor
You Miyashita
Takeyoshi Yamada
Takashi Hiruma
Jun Matsui
Kanako Hayashi
Kazuhisa Miyashita
Jun Takagi
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005358102A external-priority patent/JP5033326B2/en
Priority claimed from JP2005358095A external-priority patent/JP4772491B2/en
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Publication of WO2007069615A1 publication Critical patent/WO2007069615A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/04Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to a heat-shrinkable pore-containing laminated film, a heat-shrinkable pore-containing film, and a molded product, a heat-shrinkable label, and a container using the same.
  • the heat shrinkable film which has reduced environmental impact by reducing the use of petroleum resources, has high rigidity and has pores to reduce bulk specific gravity, making it lightweight, heat insulating, and light-shielding.
  • the present invention relates to a heat-shrinkable pore-containing film, a heat-shrinkable label, a molded product, and a container that exhibit high performance and concealability, and are excellent in printability, rigidity, rupture resistance, and shrinkage properties, and have small natural shrinkage.
  • heat-shrinkable films have been used for packaging applications such as containers and for bundling applications.
  • raw materials for the heat-shrinkable film polyvinyl chloride, polystyrene, polyester and the like are mainly used. All of these use petroleum resources as raw materials, so if they are used continuously in the future, there is a possibility that they will cause a problem of oil resource depletion.
  • These raw materials also have problems such as generation of harmful gases during combustion after use, combustion calories are too high, damage the combustion furnace, and shorten the life of the furnace.
  • polylactic acid which is derived from plants and can be industrially produced, has recently attracted attention.
  • polylactic acid uses corn and other biomass as a raw material, so it is suitable for aiming for a sustainable society. Furthermore, it does not generate harmful gases during combustion, and its combustion calories are low, which can damage the combustion furnace. What! /
  • PET bottle force As a method of separating heat-shrinkable labels, liquid specific gravity separation method in which flakes of PET bottles pulverized with heat-shrinkable labels are put into water, and only the PET flakes are submerged in water and recovered. Is used. However, since the bulk specific gravity of the heat-shrinkable label described in Patent Document 1 is greater than 1, the label also sunk in water together with the PET bottle flakes, making it difficult to separate.
  • thermoplastic resin reduces the bulk specific gravity of the molded product, thereby reducing the amount of resin used. It is known that environmental loads can be reduced and functions such as light shielding, heat insulation and cushioning can be added. Various methods can be used to form this pore. In the case of a stretched film using thermoplastic resin, it is stretched in at least one direction after adding incompatible components to the thermoplastic resin. Techniques are known.
  • thermoplastic resin For the purpose of reducing the bulk specific gravity of this thermoplastic resin, a method is known in which after adding an incompatible component, the thermoplastic resin is stretched in one direction or more to form voids. Even in a film using polylactic acid-based resin, a film having a reduced bulk specific gravity by stretching after adding an incompatible resin has been reported (for example, see Patent Document 2). However, this film cannot be used as a heat-shrinkable label because it has been biaxially stretched and then heat-treated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-119367
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-146071
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-321562
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-011214
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2003-236930
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-114498
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2006-045296
  • the present invention has been made in view of the above-mentioned problems, and the problem of the present invention is that it is used as a label for PET bottles having a low bulk specific gravity using a polylactic acid-based resin derived from plants.
  • Another object is to provide a heat-shrinkable film that can be easily separated by liquid specific gravity, has high rigidity, rupture resistance, and shrinkage characteristics, has small natural shrinkage, and can be easily separated by liquid specific gravity.
  • Another object of the present invention is to provide a heat-shrinkable label, a molded product and a container using the film suitable for applications such as shrink wrapping, shrink-bound wrapping and shrinkage labels.
  • the present invention includes the following component (A) and component (B), and the content of component (B) is the above (
  • the component (I) is composed of a mixed resin composition that is 5 parts by weight or more and 90 parts by weight or less with respect to 100 parts by weight of the component (A) and the component (A) as a main component.
  • the (I) layer has at least two layers and is stretched in at least one axial direction, and in the (I) layer, dispersed in a matrix having (A) component force, Including a laminated film having an aspect ratio of 5 to 50 in the direction perpendicular to the main shrinkage direction of the dispersion domain, or the following (A) component, (B) component and (C) component, and (A) component 100 mass
  • the content of component (B) is not less than 5 parts by mass and not more than 90 parts by mass
  • the content of component (C) is not less than 10 parts by mass and not more than 80 parts by mass
  • An unstretched film made of a synthetic resin composition or having at least one mixed resin layer and stretched at least uniaxially. When immersed in warm water at 80 ° C for 10 seconds, The invention
  • Component (B) Polyolefin with a storage modulus at 80 ° C of 0.25 GPa or more 2. OOGPa or less when measured at a vibration frequency of 10 Hz and a strain of 0.1%, incompatible with component (A) -Based rosin composition.
  • (meth) acryl means to include both “acryl” and “methacryl”.
  • (meth) acrylic acid means acrylic acid and methacrylic acid. The same applies in the description.) O
  • the laminated film and the single-layer film of the present invention are prepared by mixing a predetermined polylactic acid-based resin composition (component (A)) and a polyolefin-based resin composition (component (B)) at a predetermined ratio.
  • component (A) polylactic acid-based resin composition
  • component (B) polyolefin-based resin composition
  • the aspect ratio of the component (B) in the component (A) is adjusted in this layer, so that the resulting heat-shrinkable pore-containing film has excellent rigidity and fracture resistance.
  • the heat shrinkage characteristics can be imparted and the natural shrinkage rate can be reduced.
  • the film of the present invention is mainly composed of a lactic acid-based rosin composition, it is useful in promoting the use of biomass and building a recycling society.
  • the laminated film and the single layer film of the present invention are obtained by laminating the (I) layer containing pores and the ( ⁇ ) layer having a smooth surface. Excellent bag sealability and design. Furthermore, since the film of the present invention contains pores, it has excellent heat insulating properties, light shielding properties, and cushioning properties.
  • the laminated film of the present invention has a bulk specific gravity of 0.50 or more and less than 1.00, it can be separated by a liquid specific gravity method from a plastic for containers having a specific gravity of PET or more of 1.0 or more. Therefore, it is highly recyclable.
  • a container equipped with a molded article or a heat-shrinkable label can be provided.
  • This invention relates to a laminated film or a single layer film containing the following component (A), component (B), and optionally component (C) and component (D).
  • component (A) to (D) will be described first.
  • “contains as a main component” is intended to allow other components to be included within a range that does not interfere with the operation and effect of the resin constituting each layer. Furthermore, this term does not limit the specific content, but it is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more of the total constituents of each layer. It is a component occupying a range of mass% or less.
  • the component (A) refers to a polylactic acid-based resin composition mainly composed of a copolymer of D-lactic acid and L-lactic acid.
  • the component (A) is a copolymer of lactic acid homopolymer, lactic acid and ⁇ -hydroxycarboxylic acid other than lactic acid, diol component and dicarboxylic acid component, or both. It also includes a lactic acid-based copolymer whose main component is a coalescence.
  • lactic acid refers to both D lactic acid and L lactic acid.
  • the lactic acid homopolymer include, for example, poly (D lactic acid), which is a homopolymer of D lactic acid, and L lactic acid alone.
  • examples thereof include poly (L-lactic acid) which is a polymer, poly (DL-lactic acid) which also has a copolymer power of L-lactic acid and D-lactic acid, and a mixture thereof.
  • these lactic acid-only polymers are referred to as lactic acid-based rosins.
  • a known method such as a condensation polymerization method or a ring-opening polymerization method may be employed.
  • a condensation polymerization method D-lactic acid, L-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a polylactic acid-based resin having an arbitrary composition.
  • the ring-opening polymerization method lactide, which is a cyclic dimer of lactic acid, is subjected to ring-opening polymerization in the presence of a predetermined catalyst while using a polymerization regulator or the like, if necessary.
  • the lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL lactide, which is a dimer of D-lactic acid and L-lactic acid.
  • a lactic acid copolymer mainly composed of a copolymer of lactic acid and an ex-hydroxycarboxylic acid other than lactic acid, a diol component and a dicarboxylic acid component, or both of them is used as the lactic acid used.
  • Either D-lactic acid or only lactic acid, or both D-lactic acid and L-lactic acid may be used.
  • the copolymerization ratio of the constituent components is not particularly limited. However, the higher the ratio of lactic acid, the less consumption of petroleum resources, which is preferable as described later. It is preferable to copolymerize at a rate not exceeding the Vicat soft spot range. [0030] Specifically, the copolymerization ratio of lactic acid and a copolymer of a-hydroxycarboxylic acid, aliphatic diol, or aliphatic dicarboxylic acid is expressed by mass ratio of lactic acid-hydroxycarboxylic acid, fatty acid.
  • Group diol or aliphatic dicarboxylic acid 100ZO to 95 ⁇ 5, preferably 90Z10 to 10 ⁇ 90, more preferably 80 ⁇ 20 to 20 ⁇ 80, and most preferably 30,700 to 70 ⁇ 30.
  • the copolymerization ratio is within the above range, a film having a good balance of physical properties such as rigidity, transparency and impact resistance can be obtained.
  • the lactic acid-based rosin and the lactic acid-based copolymer may be used alone or in combination.
  • lactide method when a ring-opening polymerization method (lactide method) is used for the production of the lactic acid-based rosin, lactide, which is a cyclic dimer of lactic acid, is used as necessary using a polymerization regulator or the like.
  • a ring-opening polymerization can be carried out in the presence of a predetermined catalyst to obtain a lactic acid series resin having an arbitrary composition.
  • the lactide to be used include L-lactide, which is a dimer of L lactic acid, D lactide, which is a dimer of D lactic acid, and DL lactide, which is a dimer of D lactic acid and L lactic acid.
  • the a-hydroxycarboxylic acid as a monomer used in the production of the lactic acid copolymer includes glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-1-n-butyric acid, 2-hydroxy Examples include bifunctional aliphatic hydroxycarboxylic acids such as 3,3 dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, and latatones such as prolatatone, petit-mouthed ratataton, and valerolatataton.
  • Examples of the diol component that is a monomer used in the production of the lactic acid-based copolymer include ethylene glycol, propylene glycol, 1,4 butanediol, 1,4 cyclohexanedimethanol, and the like.
  • Examples of the dicarboxylic acid component include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.
  • the polylactic acid-based resin composition (A) may contain a small amount of another copolymer component in order to improve heat resistance.
  • copolymer components include aromatic carboxylic acids such as terephthalic acid, and aromatic dials such as bisphenol A ethylene oxide adducts.
  • the polylactic acid-based resin composition (A) has an increased molecular weight.
  • a chain extender such as a diisocyanate compound, an epoxy compound or an acid anhydride may be contained.
  • the Vicat softness point of the polylactic acid-based resin composition (A) is preferably 50 ° C or higher and 55 ° C or higher. If the Vicat soft spot is 50 ° C or higher, the resulting heat-shrinkable pore-containing film can suppress spontaneous shrinkage even if it is left at a temperature slightly higher than room temperature, for example, in the summer, but 50 ° C If it is less than this, this natural shrinkage may not be suppressed. On the other hand, the Vicat soft spot is preferably 95 ° C or less and preferably 85 ° C or less. If it exceeds 95 ° C, it will be difficult to perform low-temperature stretching when the film is stretched, and it will be difficult to give good shrinkage characteristics to the resulting film.
  • the mass average molecular weight of the polylactic acid-based resin composition (A) is preferably 20,000 or more, more than 40,000 force S, and even more preferably 50,000 or more, It is more preferable that it is 100,000 or more. If the mass average molecular weight is 20,000 or more, it is preferable that defects such as inferior mechanical strength are difficult to occur, an appropriate cohesive strength of the resin is obtained, and the film has insufficient strength and is brittle. O On the other hand, it should be 400,000 or less, preferably 350,000 or less, and more preferably 250,000 or less. If it is 400,000 or less, the melt viscosity becomes too high, and it is difficult to cause problems such as a decrease in molding caloric properties.
  • Typical examples of such a resin composition that can be used as the polylactic acid-based resin composition (A) include "Lacy” series manufactured by Mitsui Chemicals, Inc., “Nat” manufactured by Nature Works LLC. The “ure Works” series and the like are commercially available.
  • the component (A) can also contain a small amount of other copolymerization components for the purpose of improving heat resistance.
  • a copolymer component include aromatic carboxylic acids such as terephthalic acid, and aromatic diols such as ethylene oxide adducts of bisphenol A.
  • the component A can contain a small amount of a chain extender such as a diisocyanate compound, an epoxy compound, an acid anhydride, etc. for the purpose of increasing the molecular weight.
  • the component (B) is a polyolefin-based soot that is incompatible with the component (A) and has predetermined characteristics.
  • incompatible means that when the mixed resin composition of the component (A) and the component (B) is observed using an optical device such as an electron microscope, the component (A) In this state, the component (B) forms a domain having an average diameter of 0.1 ⁇ m or more.
  • Examples of the resin constituting the component (B) include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene and other polyethylene-based resins, highly crystalline homopolypropylene, random polypropylene, and the like. Polypropylene resin, polymethyl terpene, or mixed resin of these, and high crystalline polypropylene is preferable. These coffins can be used alone or in admixture of two or more.
  • the resin constituting the component (B) is more specifically a polyethylene-based resin having the trade names "Novatech HD, LD, LLJ” Kernel “" Toughmer A, PJ (manufactured by Nippon Polyethylene Co., Ltd.) ) "Suntech HD, LDJ (Asahi Kasei Life & Living Co., Ltd.)", “HIZEX” “ULTZEX” "E VOLUEJ (Mitsui Chemicals Co., Ltd.)", “More Tech” (Idemitsu Kosan Co., Ltd.), “UBE Polyethylene “UMERIT” (manufactured by Ube Industries Co., Ltd.), “NUC polyethylene” “Nacflex” (manufactured by Nippon Car Co., Ltd.), “Engage” (manufactured by Dow Chemical Co., Ltd.) .
  • Polypropylene-based resins include the product names “NOVATEC PP”, “WINTEC”, “Toughmer XR” (manufactured by Nippon Polypro), “Mitsui Polypro” (manufactured by Mitsui Chemicals), “Sumitomo Noblen”, “ “Tufselen”, “Exelen EPX” (manufactured by Sumitomo Chemical Co., Ltd.), “IDEMITSU PP”, “IDEMITSU TPO” (manufactured by Idemitsu Kosan Co., Ltd.), “Adflex”, “Adsyl” (manufactured by Sanalomar Co., Ltd.) It has been.
  • TPX polymethylpentene resin
  • the density of [0043] the (beta) component 0. 50 g / cm 3 or higher, preferably 0. 65 g / cm 3 or more, more preferably 0. 80 g / cm 3 or more, 1. 00g / cm 3 or less preferably 0. 96 g / cm 3 hereinafter, still more preferably in the range of 0. 92 g / cm 3 or less. If the density is 1.00 g Zcm 3 or less, the effect of reducing the specific gravity of the entire film is great. If the density is 0.50 g Zcm 3 or more, problems such as lack of rigidity and difficulty in forming pores during stretching occur. It is preferable.
  • the component (B) has a specific gravity smaller than that of the polylactic acid-based resin composition used as the component (A), the film containing the mixed resin composition of the component (A) and the component (B) is , (A) component alone
  • the specific gravity can be further reduced as compared with the case of the film.
  • the bulk specific gravity can be further reduced by the voids generated during stretching due to the presence of the component (1).
  • the component (B) has a storage elastic modulus at 80 ° C when measured at a frequency of 10 Hz and a strain of 0.1%, of 0.25 GPa or more, preferably 0.40 GPa or more, and 2. OOGPa Below, preferably 1.50 GPa or less. If the storage elastic modulus is 0.25 GPa or more, pores can be imparted to the film in the stretching step described below, and if the storage elastic modulus is 2. OOG Pa or less, the desired crystallinity is obtained. In addition, since the specific gravity can be made relatively small, it is easy to obtain a film having a desired bulk specific gravity.
  • the component (B) preferably has a melt flow rate (hereinafter abbreviated as "MFR") measured based on JIS K7211 of 0.5 gZlO or more. 1. OgZlO More preferably, it is more than minutes.
  • the MFR is preferably 50 gZlO or less, more preferably 35 gZlO or less, and even more preferably 20 gZlO or less. If the MFR of component (B) is 1. OgZlO or more, when the sea-island structure is formed on the film, the size of the dispersion domain becomes too large, or the dispersion state is poor and vacancies are not easily generated. This is suitable for preventing problems such as snoring.
  • the MFR of the component (B) is 50 gZlO or less, the size of the dispersed domain is reduced when the sea-island structure is formed, the strength of the domain itself is reduced, and the fracture resistance at low temperatures is reduced. It is suitable without causing problems such as insufficient application.
  • the (I) layer in which both components are mixed has a sea-island structure.
  • the (A) component is present more than the (B) component, so the (A) component and (C) component form a sea part, that is, a matrix.
  • (B) component forms an island portion, that is, a dispersion domain. Details will be described later.
  • the component (C) refers to a soft component that is a rubber component exhibiting rubber elasticity other than the component (A). For the purpose of improving the metaimpact of the film of the present invention, it can be added within a range not impairing the rigidity of the film of the present invention.
  • a lactic acid polymer having a Tg of 0 ° C or less other than the polylactic acid resin, an aliphatic polyester other than the polylactic acid resin, and an aromatic aliphatic polyester Copolymer of diol, dicarboxylic acid and lactic acid-based resin, core-shell structure rubber, ethylene acetate butyl copolymer (EVA), ethylene acrylate ethyl acrylate copolymer (EEA), ethylene (meth) acrylic Acid copolymer (EAA, EMA), ethylene (meth) methyl acrylate copolymer (EMMA, etc.), styrene isoprene copolymer (SIS), styrene butadiene copolymer (SBS), styrene ethylene butylene copolymer ( SEBS), styrene-based elastomers such as acid-modified SEBS, and the like.
  • EVA ethylene acetate butyl copolymer
  • aliphatic polyesters other than polylactic acid-based resin aromatic aliphatic polyester, diol, dicarboxylic acid, and lactic acid-based resin Copolymers, core-shell structure type rubbers, and ethylene-vinyl acetate copolymer (EVA) or the like is preferably used.
  • the lactic acid-based copolymer having a Tg of 0 ° C or lower other than the polylactic acid-based resin is a copolymer of lactic acid and an ex-hydroxycarboxylic acid component or a dicarboxylic acid component and a diol component, Tg is 0 ° C or less.
  • Tg is 0 ° C or less.
  • glycolic acid 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2 hydroxy-n-butyric acid, 2 hydroxy3, 3 Bifunctional aliphatic hydroxycarboxylic acids such as dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, and 2-hydroxycaproic acid, and lactones such as force prolatatone, petit-mouthed ratataton, and valerolatatone.
  • diol component that forms the lactic acid copolymer having a Tg of 0 ° C. or lower include ethylene glycol, propylene glycol, 1,4 butanediol, and 1,4-cyclohexanedimethanol. It is done.
  • dicarboxylic acid component include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.
  • Examples of commercially available lactic acid-based copolymers having a TgO ° C or lower include, for example, the product name “Bramate” (manufactured by Dainippon Ink & Chemicals) and the product name “GS-PLA” (Mitsubishi). Chemical Co., Ltd.).
  • Examples of the aliphatic polyester resin other than the polylactic acid-based resin include, for example, an a-hydroxycarboxylic acid homopolymer excluding lactic acid, an aliphatic diol and an aliphatic dicarboxylic acid.
  • Aliphatic polyester resin except PLA polyester such as aliphatic polyester obtained by condensation, aliphatic polyester obtained by ring-opening polymerization of cyclic ratatones, and synthetic aliphatic polyester.
  • ⁇ -hydroxycarboxylic acid residues include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy ⁇ -butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid.
  • Residues induced by bifunctional aliphatic hydroxycarboxylic acids such as hydroxycaproic acid, and residues induced by ratatones such as force prolatatone, petit-mouthed rataton and normouthed rataton.
  • Specific examples of the aliphatic polyester obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid include ethylene glycol, 1,4 butanediol, hexanediol, octanediol, cyclopentanediol, Aliphatic diols such as cyclohexanediol, 1,4-cyclohexanedimethanol, or anhydrides and derivatives thereof, and aliphatic dicarboxylic acids such as succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid Examples include one obtained by condensation polymerization of one or more of each of acids or their anhydrides and derivatives. At this time, if desired, the desired polymer can be obtained by jumping up with isocyanate compound or the like.
  • aliphatic polyester obtained by ring-opening polymerization of the above-mentioned cyclic ratatones one or more kinds selected from ⁇ -force prolatatatone, ⁇ -valerolataton, 13-methyl- ⁇ -valerolataton, etc. are selected as cyclic monomers. Polymerized ones can be mentioned.
  • examples of the synthetic aliphatic polyester include a copolymer of a cyclic acid anhydride such as succinic anhydride and an oxysilane such as ethylene oxide propylene oxide.
  • Examples of commercially available aliphatic polyester resin other than the polylactic acid resin include the trade name "Pionore” (manufactured by Showa Polymer Co., Ltd.), the trade name “Cell Green” ( Daicel Kagaku Kogyo Co., Ltd.) and the trade name “Tone Polymer” (Union Carbide Japan Co., Ltd.).
  • the aromatic aliphatic polyester resin used as the component (C) includes an aliphatic diol or a derivative thereof, an aliphatic dicarboxylic acid or a derivative thereof, and an aromatic dicarboxylic acid or a derivative thereof. Condensation polymerized.
  • the aromatic polyester Lubricant is a product obtained by condensation polymerization of an aromatic dicarboxylic acid or a derivative thereof and an aromatic dicarboxylic acid or a derivative thereof.
  • aromatic diols or derivatives thereof include bisphenol A ethylene oxide adducts.
  • aromatic dicarboxylic acids or derivatives thereof include terephthalic acid, isophthalic acid, orthophthalic acid, 2,4 naphthalene dicarboxylic acid, paraphenol dicarboxylic acid, and the like.
  • a desired polymer can be obtained by extending the chain with an isocyanate compound or the like as necessary.
  • the mass (weight) average molecular weight of the lactic acid copolymer of TgO ° C or less, the aliphatic polyester resin, and the aliphatic aromatic polyester resin used as the component (C) is 50,000 or more. It is more preferable that it is 100,000 or more. If it is 50,000 or more, it is preferable that problems such as inferior mechanical strength hardly occur.
  • the mass (weight) average molecular weight is preferably 400,000 or less, more preferably 250,000 or less! /. If it is 400,000 or less, it is preferable that problems such as a decrease in molding processability due to excessive increase in melt viscosity are difficult to occur.
  • the above-mentioned copolymer of diol, dicarboxylic acid, and lactic acid-based resin is a lactic acid-based copolymer, and preferably has a Tg of 0 ° C or lower.
  • examples of this include a trade name “Bramate” (Dainippon Ink Chemical Co., Ltd.), a trade name “GS-PLA” (Mitsubishi Chemical Corporation), and the like.
  • the core-shell structure rubber used as the component (C) includes gen-based core-shell type polymers such as monobutadiene methacrylate methacrylate and acrylonitrile butadiene styrene copolymer, styrene acrylonitrile methacrylate copolymer Examples thereof include acrylic core-shell type polymers such as coalescence, silicone-based core-shell type copolymers such as silicone-methacrylic acid-methyl methacrylic acid copolymer, and silicone-one-methacrylic acid-acrylonitrile-styrene copolymer. Among these, silicone-methyl methacrylate is excellent in compatibility with the component (A), and can balance the impact resistance and transparency of the film. A phosphoric acid copolymer is more preferably used.
  • the mass (weight) average molecular weight of the shell portion of the core-shell structure rubber is preferably 10,000 or more, and more preferably 50,000 or more. If it is 10,000 or more, it is preferable that problems such as inferior mechanical strength hardly occur. On the other hand, the weight average molecular weight is preferably 1,500,000 or less, and more preferably 100,000 or less! / ⁇ . If it is 1,500,000 or less, it is preferable that the melt viscosity becomes too high and problems such as deterioration of molding processability are difficult to occur.
  • core-shell structured rubber examples include “Metablene C, S, E, Wj (Mitsubishi Rayon Co., Ltd.)", “Kane Ace” (Kaneki Co., Ltd.), etc. Is mentioned.
  • ethylene acetate butyl copolymer EVA
  • EAA ethylene (meth) acrylic acid copolymer
  • EMA ethylene (meth) acrylic acid ester copolymer
  • C ethylene (meth) acrylic acid ester copolymer
  • EMMA ethylene methyl (meth) acrylate copolymer
  • the ethylene methyl (meth) acrylate copolymer (EMMA) has a comonomer content other than ethylene of 20% by mass or more, preferably 40% by mass, 90% by mass or less, preferably 80% by mass or less. Those are preferably used. If the comonomer content other than ethylene is 20% by mass or more, an effect on the fracture resistance of the film can be sufficiently obtained, and transparency can be maintained, which is preferable.
  • ethylene acetate butyl copolymer (EVA) is more preferably used.
  • the melt flow rate (MFR) of EVA, EAA, and EMMA is not particularly limited, but usually MFR (value at JIS K7210, temperature: 190 ° C, load: 21.18N) Is 0.5 gZlO min or more, preferably 1. OgZlO min or more, 15 gZl0 min or less, preferably 1 OgZlO min or less.
  • Examples of commercially available ethylene vinyl acetate copolymers include EVAFLEXJ (Mitsui DuPont Polychemical Co., Ltd.), Novatec EVA (Mitsubishi Chemical Co., Ltd.), Ebaslene (Dainippon Ink Chemical Co., Ltd.), Evaate (Sumitomo Chemical Co., Ltd.), Soabrene (Nippon Gosei Co., Ltd.), ethylene-acrylic acid copolymer (EAA) "Novatech EAA” (Mitsubishi Chemical Co., Ltd.), Ethylene acrylate copolymer (E MA) and ethylene- (meth) acrylic acid copolymer (EMA) are “NOAFLOY AC” (Mitsui DuPont Polychemical Co., Ltd.), and ethylene methyl (meth) acrylic acid copolymer (EMMA) is “ACLIFT (Sumitomo Chemical Co., Ltd.).
  • ethylene vinyl acetate copolymer EVA
  • EAA ethylene (meth) acrylic acid copolymer
  • EMA ethylene (meth) acrylic acid ester copolymer
  • EMMA ethylene-methyl (meth) acrylic acid ester copolymer
  • a comonomer content other than ethylene is preferably 10% by mass or more, preferably 40% by mass or more and 90% by mass or less, preferably 80% by mass or less. .
  • the content is preferably 10 to 50 mass, more preferably 20 to 40 mass.
  • the storage elastic modulus at 23 ° C when measured under conditions of a vibration frequency of 10 Hz and a strain of 0.1% is 1 X 10 9 Pa or less, more preferably 5 X 10 8 A resin composition having a Pa or lower is used. If the storage elastic modulus is 1 ⁇ 10 9 Pa or less, it becomes possible to suppress delamination during sealing without impairing the properties of the heat-shrinkable film due to the addition.
  • the component (D) refers to a predetermined filler.
  • This component (D) may be a misaligned filler of inorganic fillers and organic fillers as long as it can impart light-shielding properties to the film.
  • Examples of the inorganic filler include calcium carbonate, talc, clay, kaolin, silica, diatomaceous earth, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, aluminum hydroxide, zinc oxide, magnesium hydroxide. , Calcium oxide, magnesium oxide, titanium oxide, alumina, my strength, asbestos powder, shirasu balloon, zeolite, silicate white Examples of the material include calcium carbonate, talc, clay, silica, diatomaceous earth, and barium sulfate.
  • Examples of the organic filler include cellulose powders such as wood powder and pulp powder. These may be used alone or as a mixture of two or more.
  • the component (D) is a material having a large refractive index difference from the component (A) as the base resin constituting the film, that is, an inorganic filler having a large refractive index.
  • an inorganic filler having a large refractive index Is preferred.
  • titanium oxide By using titanium oxide, it absorbs the wavelength in the ultraviolet region of 280 to 380 nm, which deteriorates the contents, so it can give the film light-shielding properties with a small amount of filling, and it is thin-walled. But you can get that effect.
  • titanium oxides examples include crystalline titanium oxides such as anatase type titanium oxide and rutile type titanium oxide. From the viewpoint of increasing the difference in refractive index from the base resin, it is preferable to use an acid-titanium having a refractive index of 2.7 or more. For example, a crystal form of rutile-type acid-titanium is used. It is preferable to use it.
  • high-purity acid titanium can be used to minimize the yellowness of the appearance.
  • High purity titanium oxide is a titanium oxide that has a low light absorption ability for visible light, and has a low content of coloring elements such as vanadium, iron, niobium, copper, manganese, etc.
  • a titanium oxide having a vanadium content of 5 ppm or less, preferably 3 ppm or less, and more preferably 2 ppm or less is referred to as high-purity acid titanium. From the viewpoint of reducing the light absorption ability of high-purity titanium oxide, it is preferable to reduce other coloring elements such as iron, niobium, copper, and manganese contained in titanium oxide.
  • titanium oxide and other fillers can be used in combination. Also,
  • the surface of the component (D) is a silicone compound, polyhydric alcohol compound, amine compound. You may use what surface-treated with a compound, a fatty acid, fatty acid ester, etc.
  • Examples of the surface treatment agent include at least one inorganic compound selected from the group consisting of alumina, silica, zirconia, and the like, a siloxane compound, a silane coupling agent, and a polysiloxane. Group power of all and polyethylene glycol power At least one selected organic compound can be used. These inorganic compounds and organic compounds may be used in combination.
  • the size of the component (D) used in the present invention is such that when titanium oxide is used, the particle diameter is 0.1 ⁇ m or more in terms of a circular equivalent diameter, preferably 0.2 ⁇ m or more. Yes, 1 ⁇ m or less, preferably ⁇ or 0.5 ⁇ m or less. If the particle diameter of titanium oxide is equivalent to an equivalent circle diameter of 0 .: L m or more, the dispersibility of the component (A) or the component (A) and the component (B) in the mixed resin is good, and the Rum can be obtained.
  • the particle diameter of titanium oxide is equivalent to a circle equivalent l / zm or less, the interface between component (A) or a mixed resin of component (A) and component (B) and titanium oxide is formed densely. Therefore, the light shielding property can be further improved.
  • first pore-containing film a heat-shrinkable pore-containing laminated film according to the present invention
  • second pore-containing film a heat-shrinkable pore-containing film
  • the first pore-containing film is composed of a (I) layer containing the component (A) and the component (B) in a predetermined ratio, and a resin composition containing the component (A) as a main component. It is a film stretched in at least a uniaxial direction and having at least two layers (II).
  • the mixed resin composition in the (I) layer is 100 parts by mass of the component (A), and the component (B) is 5 parts by mass or more, preferably 10 parts by mass or more, more preferably 20 parts by mass or more. Therefore, it is formed by mixing an amount of 90 parts by mass or less, preferably 80 parts by mass or less.
  • the rosin composition in which the component (A) and the component (B) are mixed is as described above.
  • (A) component is contained more than (B) component, (A) component forms a matrix and (B) component forms a dispersion domain. Therefore, layer (I) forms a sea-island structure and can be stretched to cause separation at the interface between the matrix and the dispersed domain, thereby forming pores.
  • DZL ratio copolymer ratio
  • the pores can be formed in the layer, and the bulk specific gravity of the stretched film is suppressed to less than 1.0. be able to.
  • the content of the component (B) is 90 parts by mass or less, a sea-island structure can be formed in the layer (I), and a film having good mechanical properties and fracture resistance can be obtained.
  • the shrinkage unevenness can be suppressed more than that containing only one of the lactic acids.
  • a homopolymer having a constitutional ratio (DZL ratio) of D lactic acid and L lactic acid of 100ZO or OZ 100 exhibits very high crystallinity and tends to have excellent heat resistance and mechanical properties with a high melting point.
  • DZL ratio constitutional ratio
  • it when it is used as a heat-shrinkable film, it usually involves printing and a bag making process using a solvent, so that the crystallinity of the component material itself should be lowered moderately in order to improve printability and solvent sealability. Is required.
  • crystallinity when the crystallinity is excessively high, orientational crystallization proceeds at the time of stretching, and the film shrinkage property at the time of heating tends to be reduced, and a film that suppresses crystallization by adjusting stretching conditions, etc. In the future, crystallization may proceed before shrinkage due to heating during heat shrinkage, and as a result, there is a risk that shrinkage may occur or shrinkage may be insufficient.
  • a copolymer of DL lactic acid it is known that the crystallinity decreases as the proportion of the optical isomer increases. Accordingly, when using a polylactic acid-based resin composition as a heat-shrinkable film, it is preferable to adjust its crystallinity by appropriately adjusting the copolymerization ratio of the DL lactic acid copolymer.
  • two or more types of DL lactic acid copolymers having different constituent ratios of D-lactic acid and L-lactic acid are prepared by copolymerization. It can also be adjusted by blending.
  • the plasticizer and the heat stable are within the range not impairing the effects of the present invention.
  • Additives such as additives, antioxidants, UV absorbers, light stabilizers, pigments, colorants, lubricants, nucleating agents, hydrolysis inhibitors and the like can be included.
  • the additive may be contained in an amount of 10 parts by mass or less, preferably 5 parts by mass or less, based on the mass of the mixed resin composition.
  • Glass transition temperature (Tg) of aliphatic polyester resin, aromatic polyester resin, core shell structure rubber, ethylene vinyl acetate copolymer (EVA), etc., 100 parts by mass of polylactic acid resin May be contained in the range of 70 parts by mass or less.
  • the DZL ratio of the component (A) is different from the component (A) used in the layer (I). That is, in the layer (ii), it is important that the DZL ratio of the component (A) is in the range of 6Z94 to 15Z85, or in the range of 94Z6 to 85Z15, and in the range of 7/93 to 12/88, or 93Z7. It is preferably in the range of ⁇ 88Z12.
  • the DZL ratio is within the above range, the degree of crystallization is suppressed to an appropriate range, and the occurrence of defects such as shrinkage unevenness due to crystallization can be suppressed. Therefore, ink adhesion and seal strength can be improved. On the other hand, if the DZL ratio exceeds the above range, the rupture resistance of the film may be extremely lowered.
  • the layer (II) is composed of a resin composition containing the component (A) as a main component.
  • layer insulation improves interlaminar adhesion and reduces bulk specific gravity as long as it does not impair various properties required for the surface layer, such as printability, solvent sealability, and adhesion resistance.
  • Thermoplastic resin other than the relactic acid-based resin composition can be included.
  • thermoplastic resins other than polylactic acid-based resin compositions include polyolefin resin, polystyrene resin, acrylic resin, amide resin, aliphatic and Z or aromatic polyester resin Are listed.
  • the first pore-containing film has, in addition to the (I) layer containing pores, a ( ⁇ ) layer containing no pores or having a low pore content.
  • a ( ⁇ ) layer containing no pores or having a low pore content.
  • the layer (ii) may contain the component (C) in addition to the component (A).
  • the component (C) By mixing this component (C), the difference in elastic modulus with the layer (I) can be reduced, and as a result, the film's stiffness can be reduced.
  • an improvement in interlayer adhesion strength between the (I) layer and the (i) layer can be expected.
  • further improvement in fracture resistance and shrinkage finish can be expected.
  • the component (A) used in the layer (A) is a soft component, although a polylactic acid-based rosin composition having a D ZL ratio within a predetermined range is selected in order to improve shrinkage finish.
  • a polylactic acid-based rosin composition having a D ZL ratio within a predetermined range is selected in order to improve shrinkage finish.
  • the content of the component (C) is 5 parts by mass or more, preferably 10 parts by mass or more, and 50 parts by mass or less, preferably 40 parts by mass or less with respect to 100 parts by mass of the component (A). It is preferable that If the component (C) is 5 parts by mass or less, the effect of addition cannot be obtained, and if it is 50 parts by mass or more, other shrinkage characteristics and rigidity tend to be affected.
  • the layer (II) is used for the purpose of improving interlayer adhesion and reducing bulk specific gravity as long as various properties required as a surface layer, such as printability, solvent sealability, and adhesion resistance, are not impaired.
  • a thermoplastic resin other than the polylactic acid-based resin composition can be included.
  • This polylactic acid based resin examples include polyolefin resin, polystyrene resin, acrylic resin, amide resin, aliphatic polyester resin, aromatic polyester resin, and aliphatic aromatic resin. Examples include polyester-based rosin.
  • the resin composition in the layer (ii) is optionally provided with a plasticizer, a heat stabilizer, an antioxidant, a UV absorber, a light as long as the effects of the present invention are not impaired.
  • Additives such as stabilizers, pigments, colorants, lubricants, nucleating agents and hydrolysis inhibitors may be added.
  • the layer structure is not particularly limited as long as the first pore-containing film has at least two layers of the (I) layer and the (i) layer.
  • “having at least two layers of (1) layer and ( ⁇ ) layer” means that the ( ⁇ ) layer is laminated on one or both sides adjacent to (I) layer.
  • the case of having a third layer for the purpose of improving adhesion, barrier property, concealment property, heat insulation property, etc. between the (I) layer and the (II) layer is also included.
  • a preferred layer structure is a two-layer / three-layer structure (( ⁇ ) layer Z (I) layer ⁇ ( ⁇ ) layer) having (I) layer as an intermediate layer and ( ⁇ ) layer as a surface layer. Or the layer structure of 3 types and 5 layers with an adhesive layer between the intermediate layer and the surface layer ((II) layer ⁇ adhesive layer ⁇ (I) layer ⁇ adhesive layer ⁇ ( ⁇ ) layer) It is.
  • the thickness ratio between the (I) layer and the (i) layer is not particularly limited as long as it is set in consideration of the above-described effects.
  • the thickness ratio of the ( ⁇ ) layer to the total film thickness is 5% or more, preferably 10% or more, It is preferably 15% or more and 70% or less, preferably 50% or less, more preferably 45% or less, and most preferably 40% or less.
  • the thickness ratio of the (I) layer to the total film thickness is 20% or more, preferably 25% or more, more preferably 30% or more, and 95% or less, preferably 90% or less, more preferably 85 % Or less.
  • the adhesive layer When an adhesive layer is provided between the (I) layer and the (i) layer, the adhesive layer has a function of 0.5 ⁇ m or more, preferably 0.75 ⁇ m or more, more preferably It is 1 ⁇ m or more, 6 ⁇ m or less, preferably 5 ⁇ m or less. [0101] If the thickness ratio of each layer is within the above range, the first pore-containing film has excellent elasticity (rigidity at normal temperature), shrink finish, and natural shrinkage, and delamination of the film is suppressed. In addition, a heat-shrinkable laminated film suitable for applications such as shrink wrap, shrink-bound wrap and shrink labels can be obtained with good tolerance.
  • the adhesive resin constituting the adhesive layer includes the (I) layer and the (II) layer.
  • component (A) means having a functional group capable of reacting with (A) component or a functional group capable of reacting with component (A).
  • functional groups having such properties include acid anhydride groups, carboxylic acid groups, carboxylic acid ester groups, carboxylic acid chloride groups, carboxylic acid amide groups, carboxylic acid groups, sulfonic acid groups, and sulfonic acid groups.
  • Examples include ester groups, sulfonated chloride groups, sulfonate amide groups, sulfonate groups, epoxy groups, amino groups, imide groups, or oxazoline groups, among which acid anhydride groups, carboxylic acid groups, Or a carboxylic ester group is preferable.
  • the "site having affinity with the component (B) or (C)” means having a chain having affinity with the component (B) or component (C), and more specifically Means having a straight-chain or branched saturated hydrocarbon moiety as a main chain, a block chain, or a graft chain.
  • Specific examples include polyolefin resins or resins prepared by hydrogenating a copolymer of a styrene hydrocarbon and a conjugated diene hydrocarbon, such as a styrene ethylene butylene copolymer and a styrene ethylene propylene copolymer. .
  • the first pore-containing film is a mixed resin composition in which the component (A) and the component (B) are mixed. It is important that the (I) layer composed of (B) is stretched in at least one direction in a direction orthogonal to the major axis direction of the dispersion domain (B) component force. That is, the first pore-containing film is formed by laminating the (I) layer and the (i) layer composed of the (A) component as a main component and the (C) component as necessary.
  • a method of stretching an unstretched film in at least one direction or (I) a method of laminating an unstretched film or stretched film of layer (i) with heat or a solvent by a known method after stretching the layer in at least one direction Or (I) by stretching the layer in at least one direction and then coating (A) a resin composition having component strength by a known method (without using component (C)! /) Can be made
  • the component (A) and the component (B) there is a method for obtaining a pre-compound using a same-direction twin screw extruder, a kneader, a Henschel mixer, or the like.
  • the two components may be directly fed into the film extruder without being mixed in advance, and mixing and film forming may be performed in the same apparatus.
  • the component (A), the component (B), or a mixture obtained by compounding these components is put into an extruder and melt extrusion molded.
  • a known method such as a T-die method or a tubular method can be employed.
  • the melt-extruded film is cooled with a cooling roll, air, water, or the like.
  • it is important that the (I) layer and the ( ⁇ ⁇ ) layer are laminated.
  • a force lamination method a co-extrusion method using a multi-manifold type die, a feed block is used.
  • Known methods such as a method of co-extrusion, a method of separately obtaining a single layer film of (I) layer and (i) layer, and laminating by thermal lamination can be employed.
  • the laminated unstretched film obtained is reheated by a method such as hot air, warm air, ultraviolet light, carbon dioxide laser, microwave, etc., and at least one direction is obtained by a roll method, a tenter method, a tubular method, etc. That is, the laminated film of the present invention can be produced by stretching in a uniaxial direction or biaxial direction, causing separation at the interface between the matrix and the domain, and forming pores. Whether the stretching is uniaxial stretching or biaxial stretching can be appropriately determined depending on the intended use.
  • the stretching temperature is determined based on the softening temperature of the component (A) and the component (B), and when used, the component (C).
  • the force that can vary depending on the application of the heat-shrinkable pore-containing film obtained is preferably 60 ° C or higher, more preferably 65 ° C or higher, 85 ° C or lower, more preferably 80 ° C or lower. It is desirable to be.
  • the stretching temperature is 60 ° C. or higher, the elastic modulus of the raw material is prevented from becoming too high during the stretching process, and good stretchability can be obtained, and film breakage and thickness unevenness can be suppressed.
  • the stretching temperature is 85 ° C or lower, desired shrinkage characteristics can be exhibited, and the extensibility of the component (B) is suppressed, and peeling at the interface between the matrix and the dispersion domain is promoted. Sufficient pores can be obtained, and the bulk specific gravity can be less than 1.0.
  • the draw ratio in the drawing step is appropriately selected according to the composition of the mixed resin composition in which the components (A) and (B) are mixed, the drawing means, the drawing temperature, the target product form, and the like. can do.
  • the draw ratio is 1.5 times or more, preferably 3.0 times or more, and 8.0 times or less, preferably 6.0 times or less. If the draw ratio is 1.5 times or more, suitable shrinkage characteristics and sufficient pores can be obtained, and the bulk specific gravity can be adjusted to less than 1.0. In addition, a practical performance can be obtained by setting the upper limit of the draw ratio to about 8 times.
  • the stretching direction in the stretching step can be appropriately selected depending on the intended use, but the laminated film of the present invention has a structure in which the dispersion domain of the component (B) extends in the MD direction as described later. Therefore, it is preferable that pores can be easily formed by stretching in the direction perpendicular to the extension direction, that is, in the TD direction.
  • heat-shrinkable pores can be obtained when weak stretching of about 1.0 to 1 to 1.8 times is applied in the direction perpendicular to the main shrinkage direction of the film as necessary. This is preferred because the mechanical properties of the film are improved.
  • the "main shrinkage direction” means a direction in which stretching is large between the longitudinal direction and the transverse direction, and is, for example, a direction corresponding to the outer circumferential direction when the bottle is mounted.
  • the “direction orthogonal to the main shrinkage direction” refers to a direction orthogonal to the direction in which stretching is large.
  • the cooling roll used in the film manufacturing process is located below the extruder. Due to the presence of the film, the film extruded by the extruder is slightly stretched by its own weight before reaching the cooling roll. At this time, the film is in a high temperature state because it is at the stage where the extruder is extruded.
  • the (I) layer constituting the film not only the matrix (component (A)) but also the dispersion domain (component (B)) Is also extended in the direction perpendicular to the main shrinkage direction (flow direction), and in particular, the dispersion domain (component (B)) is stretched in the flow direction (direction perpendicular to the film main shrinkage direction).
  • the aspect ratio of the dispersion domain (component (B)) at this time is 5 or more, preferably 10 or more, more preferably 15 or more, and is adjusted to 50 or less, preferably 40 or less, more preferably 35 or less. I hope that.
  • the heat-shrinkable pore-containing film obtained at low temperature can be obtained by including a dispersion domain having (B) component strength so that the aspect ratio is within the above range in the component (A) which is a matrix. Breaking resistance can be imparted. If the aspect ratio of the dispersion domain (component (B)) is 5 or more, the film can be given breakage resistance at low temperatures, and if the aspect ratio is 50 or less, the layer (I) It is easy to generate pores and a desired bulk specific gravity can be obtained.
  • the aspect ratio is preferably generated by a method based on the dead weight of the film. In such a case, it is desirable to stretch a little between the extruder and the cooling roll. That is, by changing the thickness of the stretched film to be formed with respect to the interval (lip gap) of the extrusion die of the extruder, the film is stretched in the flow direction (direction perpendicular to the main film shrinkage direction), and depending on the ratio It becomes possible to control the aspect ratio of the dispersion domain (component (B)).
  • the dispersion domain (component (B)) has a predetermined aspect ratio
  • the dispersion domain (component (B)) is parallel to the outer surface of the film and is unidirectional, that is, The film stretches in the film flow direction (direction perpendicular to the main film shrinkage direction). For this reason, by making the stretching direction of uniaxial stretching or one stretching direction of biaxial stretching a direction perpendicular to the flow direction (film main shrinkage direction), the matrix (component (A)) and the dispersion domain ((B It is easier to cause separation of the boundary with the component), and a higher porosity can be obtained. [0119] (MFR of component (B))
  • the component (B) has a melt flow rate (MFR: JIS K7210, temperature: 190. C, load: value at 21.18N). It is desirable to use a polyolefin resin composition having a content of 1.0 gZlO or more, preferably 1.5 gZlO or more, 5. OgZlO or less, preferably 4.5 gZlO or less. If the melt flow rate of the polyolefin resin composition is 1. OgZio or more, the size of the dispersion domain becomes too large when the sea-island structure is formed, or the dispersion state is poor and the pores are uniform. It is suitable without causing problems such as ⁇ on the other hand
  • melt flow rate of the polyolefin resin composition is not more than 5. This is suitable without causing any troubles such as failure to sufficiently impart the fracture resistance.
  • the bulk specific gravity of the first pore-containing film is 0.50 or more, more preferably 0.60 or more, further preferably 0.70 or more, less than 1.00, preferably 0.95 or less, more preferably It is desirable that it is 0.90 or less. If the bulk specific gravity is less than 1.00, it is easy and preferable to separate this film by the liquid specific gravity method. On the other hand, if the bulk specific gravity is 0.50 or more, it is preferable that there are no defects such as insufficient strength of the laminated film due to the existing pores.
  • the bulk specific gravity after heat shrinking in the range of 25% or less is preferably less than 1.00, preferably 0.95 or less, and more preferably 0.9 or less. If the bulk specific gravity is less than 1.00, it is preferable that the film is easily separated by the liquid specific gravity method even after heat shrinkage. In this case, the lower limit of the bulk specific gravity exceeds 0.50. Since the bulk specific gravity of the laminated film before heat shrinkage is 0.50 or more, the bulk specific gravity after heat shrinkage will not exceed 0.50. Ruka.
  • the first pore-containing film has a thermal shrinkage rate of 20% or more, preferably 25% or more, more preferably 30% or more when immersed in 80 ° C warm water for 10 seconds. And it is desirable that it is 80% or less, preferably 75% or less. This is because, for example, in heat-shrinkable laminated films applied to PET bottle shrink label applications, the heat shrinkage rate is generally about 20% to 70%. This is in order to be able to respond appropriately in the usage.
  • the shrinking machine that is most commonly used industrially for labeling of PET bottles is generally called a steam shrinker that uses steam as a heating medium for shrinking.
  • a heat-shrinkable film must be sufficiently heat-shrinkable at a temperature that is as low as possible in terms of point power, such as the effect of heat on the coated object.
  • point power such as the effect of heat on the coated object.
  • a laminated film having a heat shrinkage rate of 20% or more under the above conditions is preferable because it can sufficiently adhere to the object to be coated within the shrinkage processing time. .
  • the composition of the resin in order to adjust the heat shrinkage ratio in the main shrinkage direction when immersed in warm water of 80 ° C for 10 seconds to the above range, the composition of the resin is used in the present invention. While adjusting as described, it is preferable to adjust the stretching temperature to a range described later. For example, to increase the thermal shrinkage tl, increase the ratio of the optical isomers of the polylactic acid resin composition (A) in the (I) layer and the ( ⁇ ) layer. B) Lower the content of component, (i) When layer (C) contains component (C), lower the content of soft component (C) in layer (II), increase the draw ratio, lower the stretching temperature It is recommended to use means such as.
  • the heat shrinkage rate in the direction perpendicular to the main shrinkage direction is 10 when immersed in warm water at 80 ° C for 10 seconds. % Is preferably 5% or less, and more preferably 3% or less. If the film has a thermal shrinkage rate of 10% or less in the direction perpendicular to the main shrinkage direction, the dimension itself in the direction perpendicular to the main shrinkage direction after shrinkage will be shortened, It is preferable that characters such as characters tend to be distorted, and that in the case of a square bottle, troubles such as vertical sink are unlikely to occur.
  • the natural shrinkage rate of the first pore-containing film is preferably as small as possible, but in general, the natural shrinkage rate of the heat-shrinkable laminated film is, for example, 3 after 30 days storage at 30 ° C. Desirably, it is 0% or less, preferably 2.0% or less, and more preferably 1.5% or less. If the natural shrinkage rate under the above conditions is 3.0%, even if the produced film is stored for a long period of time, it can be stably attached to a container or the like, and practical problems are unlikely to occur.
  • the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the range described later. Is preferred.
  • reduce the optical isomer ratio of the polylactic acid-based rosin composition (A), reduce the content of component (B), (II) layer When the component (C) is included, the content of the soft component (C) is decreased, the stretching ratio is decreased, the stretching temperature is increased, the temperature for heat setting after stretching is increased, the time for heat setting after stretching is increased, etc. It is good to use the means.
  • the fracture resistance of the first pore-containing film was evaluated by the bow I tension elongation, and in the tensile test under the environment of 0 ° C, especially in the label application, the elongation rate in the film take-off (flow) direction (MD) Is 100% or more, preferably 150% or more, more preferably 200% or more.
  • a tensile elongation at break of 100% or more under an environment of 0 ° C is preferable because it is difficult to cause problems such as film breakage during a process such as printing and bag making.
  • the tension applied to the film increases as the speed of processes such as printing and bag making increases, it is preferable that the tensile elongation at break is 100% or more because it is difficult to break.
  • the upper limit is not particularly limited, but considering the current process speed, it is considered that about 500% is sufficient, and when trying to give too much elongation, the stiffness (tensile modulus) of the film is low. It tends to decrease.
  • the tensile elongation at break at 0 ° C is adjusted to the above range.
  • the waist (stiffness at room temperature) of the first pore-containing film is preferably 1.20 GPa or higher in the tensile modulus in the direction perpendicular to the main shrinkage direction of the first pore-containing film. More preferred is 40 GPa 1. More preferred is 60 GPa or more. Further, the upper limit of the tensile elastic modulus of the heat-shrinkable film that is usually used is about 3. OOGPa, preferably about 2.90 GPa, and more preferably about 2.80 GPa. If the tensile modulus of elasticity in the direction perpendicular to the main shrinkage direction of the first pore-containing film is 1.2 GPa or more, the overall film stiffness (rigidity at room temperature) can be increased.
  • the yield decreases due to slanting or laminating the laminated film when the film made in a plastic bottle or other container is covered with a labeling machine. This is preferable because it causes problems such as wiping and sifting 1.
  • the first pore-containing film has pores, the light rays are refracted and reflected at the interface between the component (A) or the component (B) and the air, and the appearance of an opaque white color as a whole
  • it is particularly suitable for applications where light shielding properties are required.
  • it since it has pores, its heat conduction efficiency is lower than that of ordinary thermoplastic resin, and it is particularly suitable for applications that require heat insulation and heat retention, such as labels for hot beverages.
  • it since it has pores, it has excellent cushioning properties and is suitable for protective applications such as frangible flaws and flaws!
  • the upper limit is not particularly limited, but it is generally about 3. OOGPa. 3. If it is less than OOGPa, the elastic modulus will be too high and it will be difficult to cause problems such as a stiff texture during use.
  • the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the range described later. It is preferable. For example, if you want to improve your waist more, lower the content of component (B), lower the content of soft component (C), or stretch slightly in the direction perpendicular to the main shrinkage direction. Use a means such as
  • the first pore-containing film Since the first pore-containing film has pores, the light rays are refracted and reflected at the interface between the (A) component resin or the (B) component resin and the air, and as a whole, it has an opaque white-like appearance. Therefore, it is particularly suitable for applications that require light shielding properties, for example. Furthermore, since it has pores, its heat conduction efficiency is lower than that of ordinary thermoplastic resin, and it is particularly suitable for applications that require heat insulation and heat retention such as labels for hot beverages. In addition, since it has pores, it has excellent cushioning properties and is suitable for protective applications such as fragile!
  • the first pore-containing film is excellent in printability, high rigidity, rupture resistance, shrink finish, etc. of the film, and its use is not particularly limited.
  • a vapor deposition layer and other functional layers it can be used as various molded products such as bottles (blow bottles), trays, lunch boxes, prepared food containers, and dairy products containers.
  • the laminated film of the present invention is used as a heat-shrinkable label for food containers (for example, PET bottles, glass bottles, preferably PET bottles for soft drinks or foods), a complicated shape (for example, a cylinder with a narrow center) A rectangular column, pentagonal column, hexagonal column, etc.) can be adhered to the shape, and a container with a beautiful label without any shivabata is obtained.
  • the molded article and container of this invention can be produced by using a normal molding method.
  • the first pore-containing film When used as a heat shrink label for PET bottles or the like, it is in a contracted state at the time of recycling, but it is preferable that it can be separated by a liquid specific gravity method even after the contraction.
  • the bulk specific gravity after shrinking in the range of 25% or less is 0.50 or more and less than 1.00, preferably 0.60 or more and 0.95 or less, more preferably 0.70 or more and 0.000 or more. 90 or less is desirable. If the bulk specific gravity after shrinkage is less than 1.00, the film can be separated by the liquid specific gravity method and can be separated.
  • the first pore-containing film has excellent low-temperature shrinkage and shrinkage finish properties, and therefore, in addition to the heat-shrinkable label material of plastic molded products that deform when heated to high temperatures, A material whose water absorption is very different from the heat-shrinkable film of the present invention, for example, polyolefin resin such as metal, porcelain, glass, paper, polyethylene, polypropylene, polybutene, polymethacrylate ester resin, polycarbonate resin
  • it can be suitably used as a heat-shrinkable label material for a package (container) using at least one selected from polyester-based resin such as polyethylene terephthalate and polybutylene terephthalate, and polyamide-based resin as a constituent material.
  • Examples of the material constituting the plastic package in which the first pore-containing film can be used include polystyrene, rubber-modified impact-resistant polystyrene (HIPS), and styrene-butyl acrylate copolymer in addition to the above-mentioned resin.
  • HIPS rubber-modified impact-resistant polystyrene
  • styrene-butyl acrylate copolymer in addition to the above-mentioned resin.
  • Styrene-acrylonitrile copolymer Styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, acrylonitrile-butadiene-styrene copolymer (ABS), methacrylic acid ester butadiene styrene copolymer (MBS), polychlorinated bur resin
  • ABS acrylonitrile-butadiene-styrene copolymer
  • MVS methacrylic acid ester butadiene styrene copolymer
  • polychlorinated bur resin examples include enol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin. These plastic packages may be a mixture of two or more types of resin or a laminate.
  • the second pore-containing film comprises an unstretched film comprising the above-mentioned component (A), component (B) and component (C) in a predetermined ratio, or having at least one mixed resin composition layer. It is a film stretched at least in the uniaxial direction.
  • the component (A) and the component (B) in the second pore-containing film are the characteristics of the (I) layer of the first pore-containing film (mixing ratio and other columns of additives). This is consistent with the characteristics described in (1).
  • the mass ratio of the component (A) to the component (C) in the second pore-containing film must be 10 parts by mass or more for the component (C) with respect to 100 parts by mass of the component (A). Yes, it is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and even more preferably 40 parts by mass or more. In addition, the upper limit of the component (C) is 80 parts by mass or less, and more preferably 70 parts by mass or less. If the content of the component (C) is 10 parts by mass or more with respect to 100 parts by mass of the polylactic acid-based resin composition, it is preferable because fracture resistance can be imparted. On the other hand, if the content is 80 parts by mass or less, the rigidity is not lowered.
  • the second pore-containing film contains the component (B) that is incompatible with the component (A)
  • the second pore-containing film can contain pores, thereby suppressing light transmittance (that is, providing light shielding properties).
  • the light transmittance can be further suppressed by incorporating the component (D) inside.
  • the content of the component (D) contained in the second pore-containing film is determined by taking into consideration the light shielding properties, mechanical properties, productivity, etc. of the second pore-containing film.
  • the component (D) plays an auxiliary role in the light-shielding function. Therefore, if the content is 1 part by mass or more, the component is sufficiently shielded from light. It can function as a film. In addition, when the content of component (D) is 25 parts by mass or less, the functions, fracture resistance, and shrinkage characteristics necessary for a heat shrink film can be secured.
  • the second pore-containing film is used as a surface layer such as printability, solvent sealability, and fusing resistance.
  • a surface layer such as printability, solvent sealability, and fusing resistance.
  • examples of such a resin include acrylic resin, amide resin, aliphatic polyester resin, aliphatic aromatic polyester resin, and the like.
  • the component (A) and the component (C) form a matrix.
  • (B) component, and (D) component used as necessary form a dispersion domain.
  • the size and shape of the dispersion domain can be appropriately determined depending on kneading conditions, sheeting conditions, stretching ratio, stretching direction, and the like.
  • the longitudinal direction of the dispersed domain after stretching that is, the cross-sectional shape in the direction parallel to the stretching direction is preferably elliptical.
  • the maximum axial length in the minor axis direction of this dispersion domain is preferably 0.1 m or more, more preferably 0.3 or more, and further 0.3 m or more. preferable.
  • the maximum axial length in the minor axis direction is preferably 5 m or less, more preferably 4 m or less. If the maximum axial length in the minor axis direction is 0.1 m or more, peeling occurs at the interface between the matrix and the dispersion domain, which is suitable for forming pores, and this maximum axial length is 5 m or less. If so, it is preferable that remarkable unevenness is hardly generated on the surface and the appearance can be kept uniform.
  • the dispersion component (particularly the component (B)) as well as the matrix component (that is, the component (A) and the component (C)) is also perpendicular to the main shrinkage direction (flow direction).
  • the dispersion domain (particularly component (B)) is stretched in the flow direction (direction perpendicular to the main film shrinkage direction).
  • the aspect ratio of the dispersion domain (particularly component (B)) at this time is greater than 1, preferably 3 or more, more preferably 5 or more, and 50 In the following, it is desirable to adjust to 40 or less, more preferably 35 or less.
  • the aspect ratio of the dispersion domain is larger than 1, it is easy to generate pores when stretched in the direction perpendicular to the flow direction, and if the aspect ratio is 50 or less, the dispersion domain is It is preferable that it is difficult to cause a defect that pores are not easily generated even if stretched due to excessive tension.
  • the dispersion domain (particularly component (B)) has a predetermined aspect ratio
  • the dispersion domain is parallel to the outer surface of the monolayer film and is unidirectional, that is, a monolayer film. Stretched in the flow direction (direction perpendicular to the main shrinkage direction of the single layer film).
  • the matrix ((A) component and (C) component) can be obtained by setting one stretching direction of uniaxial stretching or one stretching direction of biaxial stretching to a direction perpendicular to the flow direction (single layer main shrinkage direction).
  • the dispersion domain (particularly the component (B)) are more likely to be separated, and more vacancies can be formed.
  • the "main shrinkage direction” means a direction having a large shrinkage rate in the longitudinal direction and the transverse direction, and, for example, a direction corresponding to the outer circumferential direction when the bottle is attached to the bottle. It is. Further, the “direction perpendicular to the main shrinkage direction” refers to a direction perpendicular to the direction in which yield shrinkage is large.
  • the second pore-containing film can be produced by stretching at least a uniaxial direction of an unstretched film made of the above-described resin composition or having at least one layer of the mixed resin composition layer.
  • the (A) component, the (B) component, and the (C) component are mixed at the mass mixing ratio described above to obtain the greave composition.
  • additives such as plasticizers, heat stabilizers, antioxidants, UV absorbers, light stabilizers, pigments, colorants, lubricants, nucleating agents, and hydrolysis inhibitors should be added as necessary. I can do it.
  • a method of mixing for example, there is a method of obtaining a pre-compound using a unidirectional twin-screw extruder, a kneader, a Henschel mixer or the like.
  • the resin composition is charged into an extruder and melt-extruded.
  • the film can be either flat or tube-shaped, but it can be productive (a few products can be taken in the width direction of the original film) A planar shape is preferable in that printing is possible on the surface.
  • the melt-extruded film is cooled with a cooling tool, air, water or the like.
  • a known method such as a T-die method or a tubular method can be employed.
  • Another example is a method of cutting a film produced by a tubular method into a flat shape.
  • the obtained unstretched monolayer film is reheated by a method such as hot air, warm air, ultraviolet light, carbon dioxide laser, or microwave, and is at least in one direction by a roll method, a tenter method, a tubular method, or the like. That is, by stretching in a uniaxial direction or biaxial direction, peeling occurs at the interface between the matrix and the domain, and pores are formed, whereby the heat-shrinkable pore-containing film according to the present invention can be produced. Whether the stretching is uniaxial stretching or biaxial stretching can be appropriately determined depending on the use of the monolayer film to be produced.
  • the temperature at which the stretching is performed includes the softening temperature of the component (A), the component (B), the component (C), and the component (D) used as necessary, and the second voids obtained.
  • the force that can vary depending on the use of the contained film, etc. 60 ° C. or more is preferred. 65 ° C. or more is more preferred, and 70 ° C. or more is more preferred.
  • the stretching temperature is 60 ° C. or higher, the raw material has a high modulus of elasticity during the stretching process, and it is difficult to obtain good stretchability, and it is difficult to cause defects such as film breakage and thickness unevenness.
  • the draw ratio at the time of drawing is the composition of the resin composition in which the component (A), the component (B), the component (C), and the component (D) used as necessary are mixed.
  • the composition, stretching means, stretching temperature, desired product form, etc. can be selected as appropriate according to the composition, stretching means, stretching temperature, desired product form, etc., but in the case of biaxial stretching, it is preferred that it is 1.5 times or more in both the longitudinal and transverse directions. 2 times or more is more preferable 3 times or more is more preferable. If the draw ratio is 1.5 times or more, it is preferable that sufficient pores cannot be obtained and a desired function cannot be obtained, and the draw ratio is preferably 10 times or less. 8 times or less is preferable and 6 times or less is more preferable. If it is 10 times or less, it is possible to obtain practical performance without causing problems such as a problem in strength, and it is possible to sufficiently form holes.
  • the lateral direction is preferably 1.5 times or more, more preferably 2 times or more, and more preferably 3 times or more. preferable. If the draw ratio is 1.5 times or more, it is preferable that sufficient pores cannot be obtained and the desired function cannot be obtained, and it is preferable. On the other hand, the draw ratio is 8 times or less. If it is less than 7 times, it is preferable. If it is less than 6 times, it is more preferable if it is less than 5 times. If it is 8 times or less, it is possible to obtain practical performance without causing problems such as a problem in strength, and it is possible to sufficiently form holes.
  • a biaxially stretched film stretched at a stretch ratio in the above range does not have a too high heat shrinkage rate in the direction orthogonal to the main shrinkage direction.
  • V is preferable because the film shrinks in the height direction of the container.
  • the stretching direction in the stretching step at this time can be appropriately selected depending on the intended use.
  • the film of the present invention has the polyolefin resin composition (B) in the film take-off direction (MD). Therefore, it is preferable to extend in the direction perpendicular to the extension direction (TD) because pores can be easily formed.
  • the stretched second pore-containing film can reduce the natural shrinkage rate or heat shrink as necessary. After heat treatment or relaxation treatment at a temperature of about 50 ° C or more and 100 ° C or less for the purpose of improving the characteristics, etc., the film is quickly cooled within a time period in which the molecular orientation does not relax and becomes a heat-shrinkable film.
  • the second pore-containing film may be subjected to surface treatment and surface treatment such as corona treatment, printing, coating, and vapor deposition, as well as bag-making processing and perforation using various solvents and heat sealing. Processing can be performed.
  • the stretching direction in this stretching step can be appropriately selected depending on the intended use, but the second pore-containing film has a structure in which the dispersion domain of the (B) component extends in the MD direction as described later. Therefore, it is preferable that pores can be easily formed by stretching in the direction perpendicular to the extension direction, that is, in the TD direction.
  • heat-shrinkable pores can be obtained when weak stretching of about 1.0 to 1 to 1.8 times is applied in the direction perpendicular to the main shrinkage direction of the film as necessary. This is preferred because the mechanical properties of the film are improved.
  • the film extruded by the extruder reaches the cooling roll.
  • the film is in a slightly stretched state because it is at the stage where the extruder force is extruded, and when the second pore-containing film contains the component (B), (A) only the matrix having the component force can be used (
  • the dispersion domain consisting of component B) is also extended in the direction (flow direction) perpendicular to the main contraction direction.
  • the dispersion domain (B) component force is in a state of being stretched in the flow direction (direction perpendicular to the main film shrinkage direction).
  • the fracture resistance of the film can be improved by adjusting the aspect ratio of the dispersion domain which also has the component force (B).
  • the aspect ratio of the dispersion domain is preferably generated by a method of self-weighting the film, but this may not be sufficient. In such a case, it is desirable to stretch a little between the extruder and the cooling roll. That is, by changing the thickness of the stretched film to be formed with respect to the interval (lip gap) of the extrusion die of the extruder, the film is stretched in the flow direction (direction perpendicular to the main film shrinkage direction), and the ratio Thus, the aspect ratio of the dispersion domain (component (B)) can be controlled. [0170] (When adopting laminated structure)
  • the second pore-containing film may be used as a single layer, shrinkage adjustment, printability, solvent sealability, barrier properties, concealment properties, heat insulation properties, readability, slip properties, heat resistance, solvent resistance
  • the layers may be laminated so as to have two or more layers.
  • the layer to be laminated include a printing layer and a vapor deposition layer.
  • the thickness of the second pore-containing film is 30 ⁇ m or more, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and powerfully 200 ⁇ m or less, preferably Is preferably 175 ⁇ m or less, more preferably 150 m or less.
  • the thickness ratio of the film of the present invention to the thickness of the entire film is 20% or more, preferably 25% or more, more preferably 30% or more, and 95% or less, preferably 90% or less, more preferably It should be 85% or less.
  • the layer structure is not particularly limited. If the second layer comprising the second pore-containing film is the first layer, the printed layer, the vapor-deposited layer, etc., is denoted as the second layer, the layer structure is adjacent to the first layer and the second layer is on one side or Not only is it laminated on both sides, but it has a third layer for the purpose of improving adhesion, barrier properties, hiding properties, heat insulation, etc. between the first and second layers. Cases are also included.
  • the first layer as the intermediate layer and the second layer as the surface layer and the three layers of the two layers (second layer Z first layer Z second layer), or an adhesive layer between the intermediate layer and the surface layer
  • a layer configuration such as a three-layer five-layer configuration (second layer Z adhesive layer Z first layer Z adhesive layer Z second layer).
  • second layer Z adhesive layer Z first layer Z adhesive layer Z second layer a layer configuration such as a three-layer five-layer configuration
  • the first layer It is preferable that the polylactic acid based resin composition (A) used is used as a main component. Furthermore, the second layer has improved interlayer adhesion, reduced bulk specific gravity, and fracture resistance within the range that does not impair various properties required for the surface layer, such as printability, solvent sealability, and fusing resistance.
  • a thermoplastic resin other than the polylactic acid-based resin composition can be included.
  • thermoplastic resins other than the lactic acid-based resin composition include polyolefin resin, polystyrene resin, acrylic resin, amide resin, aliphatic and Z or aromatic polyester resin Among them, the polyolefin resin composition (B) and the soft component (C) described above can be preferably used.
  • a preferred layer structure is a case where the second layer is a layer mainly composed of a polylactic acid-based resin.
  • the DZL ratio of the polylactic acid-based resin constituting the second layer is preferably different from the DZL ratio constituting the first layer.
  • the second pore-containing film contains pores, in addition to this layer, a second layer having no pores or having a low pore content should be disposed. As a result, printability, solvent sealability, etc. can be improved. Further, by changing the DZL ratio of the polylactic acid-based resin used in the first layer and the second layer, the void formation / shrinkage characteristics can be adjusted within a preferable range.
  • Examples of a method for forming this laminate include a co-extrusion method, a method of forming a film of each layer and then heat-sealing them with each other, a method of bonding with an adhesive, and the like.
  • the total thickness of the second pore-containing film is not particularly limited, whether it is a single layer or a laminated structure, but is thin from the viewpoints of transparency, shrinkage workability, raw material cost, etc. Is preferred.
  • the total thickness of the stretched film is preferably 150 m or less, more preferably 100 / z m or less, and even more preferably 80 m or less.
  • the lower limit of the total thickness of the film is not particularly limited, but is preferably 20 ⁇ or more in consideration of the handleability of the film.
  • the cocoon yarn and the composition constituting the first layer and the second layer may include a plasticizer, a heat stabilizer, an antioxidant, and the like within a range not impairing the effects of the present invention.
  • Additives such as UV absorbers, light stabilizers, pigments, colorants, lubricants, nucleating agents, and hydrolysis inhibitors may be added.
  • the above-mentioned laminated film is a method in which an unstretched film in which a first layer and other layers are laminated is stretched in at least one direction, or after the first layer is stretched in at least one direction, the other layers are unstretched.
  • a method of laminating a film or a stretched film with heat or a solvent by a known method, or the other layer after stretching the first layer in at least one direction Can be prepared by a known method for coating a rosin composition used in
  • the second pore-containing film needs to have a shrinkage rate of 20% or more when immersed in warm water at 80 ° C for 10 seconds, preferably 25% or more, more preferably 30% or more, and even more preferably. Or 40% or more, more preferably 45% or more, and still more preferably 50% or more.
  • the shrinkage ratio needs to be 80% or less, preferably 75% or less, and more preferably 70% or less. This requires a heat shrinkage rate of at least 20% to be used as a heat shrinkable label, such as a heat shrinkable label used in packaging of PET bottles, etc., while heat shrinkage exceeds 80%. This is because it becomes difficult to control the later form.
  • the shrinkage rate is the difference in length before and after shrinkage when the original length is 100%.
  • an example of a shrinkage caloe machine that is most widely used industrially for labeling of PET bottles is generally referred to as a steam shrinker that uses steam as a heating medium for shrinkage processing.
  • a heat-shrinkable label must be sufficiently heat-shrinkable at the lowest possible temperature in view of the influence of heat on the object to be coated, and moreover, it shrinks quickly at a lower temperature due to the recent high-speed labeling process.
  • the demand to do has increased.
  • a single-layer film having a heat shrinkage rate of 20% or more under the above conditions is preferable because it can sufficiently adhere to the object to be coated within the shrinkage processing time.
  • the composition of the resin is used in the present invention. While adjusting as described, it is preferable to adjust the stretching temperature to a range described later. For example, if the heat shrinkage rate is further increased, in the case of increasing the optical isomer ratio of the polylactic acid-based resin composition (A), increasing the content of the soft component (C), and increasing the draw ratio. Means such as increasing the stretching temperature or lowering the stretching temperature may be used.
  • the thermal shrinkage rate in the direction perpendicular to the shrinkage direction of the film is 10% or less when immersed in warm water at 80 ° C for 10 seconds. is there More preferably, it is 5% or less, more preferably 3% or less. If the film has a thermal shrinkage rate in excess of 10% in the direction perpendicular to the main shrinkage direction, the dimensions in the direction perpendicular to the main shrinkage direction after shrinkage may be shortened, and the printed pattern or characters may be distorted after shrinkage. Problems such as easy sinking and troubles such as vertical sinks cannot be ignored in the case of square bottles.
  • the natural shrinkage rate of the second pore-containing film is desirably as small as possible.
  • the natural shrinkage rate after storage at 30 ° C for 30 days is 3.0% or less, preferably 2.0% or less. Preferably it is 1.5% or less. If the natural shrinkage rate under the above conditions is 3.0% or less, even if the produced film is stored for a long period of time, it can be stably attached to a container etc. If it exceeds 0%, there may be a problem in adhesion stability.
  • the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the above range.
  • the optical isomer ratio of the polylactic acid-based rosin composition (A) is reduced, the content of the soft component (C) is reduced, and the draw ratio is increased. It is preferable to use means such as reducing the temperature, increasing the stretching temperature, increasing the temperature of heat setting after stretching, or extending the heat setting time after stretching.
  • the bulk specific gravity when the second pore-containing film is used is lower than the true specific gravity of the resin used for the film of the present invention.
  • the ratio of the bulk specific gravity to the true specific gravity of the film of the present invention is 50% or more, preferably 60% or more, more preferably 70% or more, and 95% or less, preferably 90% or less, more preferably 85. % Or less is desirable.
  • the ratio of the bulk specific gravity to the true specific gravity is less than 50%, there is a possibility that defects such as insufficient strength of the film may occur due to the excessive proportion of the pores.
  • it exceeds 90% the formation of pores is so small that the light shielding property and the heat insulating property may be insufficient.
  • the second pore-containing film is made of polyethylene terephthalate.
  • the one used as a coated label for a rate bottle is disposed of, it can be easily separated from polyethylene terephthalate by a liquid specific gravity method, which is more preferable.
  • Examples of a method for adjusting the bulk specific gravity to a desired value include a method of increasing the mixing ratio of components having a small specific gravity among the components (A), (B) and (C), and stretching. Examples include a method in which a large number of pores are generated by manipulating stretching conditions such as increasing the magnification within the above range and lowering the stretching temperature.
  • the second pore-containing film is an opaque white light-blocking film in which light rays are refracted and reflected at the interface between the resin composition and the pores, and part of the light rays are absorbed in the resin composition.
  • Light-shielding property 240nm or more and 800nm or less (ultraviolet-visible region), including the ultraviolet region of 240nm or more and 400nm or less, which may deteriorate or alter the contents, and the visible region of 400nm or more and 8OOnm or less related to the concealment of the contents
  • the light transmittance measured based on JIS K 7015 is required to be 50% or less at any wavelength, and is preferably 40% or less and more preferably 30% or less.
  • it is more preferable that it is 25% or less, and it is still more preferable that it is 20%. If it is 50% or less, the light-shielding property is sufficient, and it is preferable that the problem of lack of content protection and concealment is difficult to be exhibited.
  • the average wavelength range is preferably 20% or less in the ultraviolet region of 240 nm or more and 400 nm or less, which degrades or alters the content, and 10% or less. It is even more preferable that it is 5% or less.
  • the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted. It is preferable to adjust to the above-mentioned range. For example, to further reduce the light transmittance, reduce the ratio of the optical isomers of component (A), increase the content of components (B) and (D), and contain component (C). It is advisable to use means such as reducing the amount, increasing the draw ratio, and lowering the stretching temperature. It is also effective to add pigments, colorants, inorganic particles, etc. within a range that does not deteriorate various properties such as shrinkage and rupture resistance. In particular, to adjust the light transmittance in the ultraviolet region from 240 nm to 400 nm in the above range, (D) Preference is given to using acid titanium as a fraction.
  • the second pore-containing film has pores, the heat conduction efficiency is lower than that of a film using a general thermoplastic resin without pores. For this reason, it can be particularly suitably used for applications requiring heat insulation and heat retention properties such as labels for hot beverages.
  • Beverages that are heated and sold by hot-warmers such as beverage vending machines and convenience stores are sold at 60-70 ° C, considering the temperature distribution in the vending machine. .
  • This beverage container made of metal has a significantly higher thermal conductivity than glass or rosin beverage containers, so even if it is heated at the same temperature, it feels more hot and immediately. It is necessary to relieve the heat.
  • the heat-shrinkable film of the present invention has pores, and by covering this, it becomes difficult for heat to be transmitted to the beverage container force, so that it can be suitably used.
  • Examples of methods for further increasing the heat insulating property and heat retention include decreasing the optical isomer ratio of the component (A), increasing the content of the component (B), and decreasing the content of the component (C). It is advisable to use means such as increasing the stretching ratio or lowering the stretching temperature.
  • the fracture resistance of the second pore-containing film is evaluated by the tensile elongation at break according to JIS K7127.
  • the tensile elongation at break in the film take-off direction (MD) is preferably 100% or more, more preferably 150% or more, and more preferably 200% or more. More preferably. If the tensile elongation at break in an environment of 0 ° C is less than 100%, there is a high possibility that the film breaks during the process of printing and bag making.
  • the film is hard to break even when the tension applied to the film increases as the speed of processes such as printing and bag making increases.
  • the current process speed it can be considered that about 500% is sufficient.
  • the resin composition is adjusted as described in the present invention and stretched. It is preferable to adjust the temperature to a range described later. For example, the tensile elongation at break was further improved In such a case, it is advisable to use means such as increasing the content of the soft component (C) or giving weak extension to MD.
  • the stiffness of the second pore-containing film is preferably 1.20 GPa or higher in the tensile modulus in the direction orthogonal to the main shrinkage direction. 1. More preferably 40 GPa or higher. 1. More preferably, it is 60 GPa or more. 1. If it is less than 20 GPa, especially when the thickness of the single-layer film is reduced, when the film made in a plastic bottle or other container is covered with a labeling machine, it may be slanted or the single-layer film may be folded back. This can lead to problems such as a decrease in yield and a problem of screening. On the other hand, the upper limit of the tensile modulus of heat-shrinkable film is generally about 3.
  • OOGPa preferably about 2.90 GPa, and more preferably about 2.80 GPa. 3. If it is OOGPa or less, the elastic modulus is too high, and it is preferable that it does not easily cause a malfunction such as a stiff texture during use.
  • the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the range described later. It is preferable. For example, when it is desired to further improve the waist, it is preferable to use means such as lowering the content of the soft component (C) or giving weak stretching in a direction orthogonal to the main shrinkage direction.
  • the second pore-containing film contains the component (B)
  • the second pore-containing film has pores, so that light rays are refracted and reflected at the interface between the component (A) or the component (B) and air, and (D
  • the component is added, it will appear as an opaque white-like appearance as a whole, and is particularly suitable for applications where light shielding properties are required.
  • it since it has pores, its heat conduction efficiency is lower than that of ordinary thermoplastic resin, and it is particularly suitable for applications requiring heat insulation and heat retention such as labels for hot beverages.
  • it since it has pores, it has excellent cushioning properties, and it is also suitable for protection purposes such as fragile, fragile and fragile items.
  • the second pore-containing film is excellent in printability, light shielding properties, high rigidity, fracture resistance, shrinkage finish properties, etc. of the film, its use is not particularly limited. If necessary, it can be used as various molded products such as plastic bottles such as blow bottles, trays, lunch boxes, prepared food containers and dairy products containers by forming printed layers, vapor deposition layers and other functional layers. Such a molded product can be manufactured using a general method for manufacturing a molded product.
  • the second pore-containing film can be used as a heat-shrinkable label for food containers such as PET bottles and glass bottles for soft drinks and foods. Even a complicated shape such as a round cylinder, square prism, pentagonal column, hexagonal column, etc., can be adhered to the shape by heat shrinking, and a container with a beautiful label without avatar Can be obtained.
  • a heat shrinking method for performing such mounting a general heat shrinking method can be used.
  • the resulting molded product can be used as a container or the like.
  • the molded article and container of the present invention can be produced by using a normal molding method.
  • the second pore-containing film has excellent low-temperature shrinkability and shrink-finishing properties. Therefore, when used as a heat-shrinkable label, the heat of a plastic molded product that causes deformation when heated to a high temperature. It can be suitably used as a heat-shrinkable label for a package made of a material that is very different from the heat-contractible pore-containing film of the present invention in terms of thermal expansion coefficient and water absorption.
  • the material forming the package include metal, porcelain, glass, paper, polyethylene, polypropylene, polybutene and other polyolefin resin, polymethacrylate resin, polycarbonate resin, polyethylene, and the like. Examples include those using at least one selected from polyester-based and polyamide-based resins such as terephthalate and polybutylene terephthalate as constituent materials.
  • the second pore-containing film can be used as a heat-shrinkable label
  • polystyrene polystyrene, rubber-modified impact-resistant polystyrene (HIPS) ), Styrene-butyl acrylate copolymer, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, acrylonitrile butadiene styrene copolymer (MBS), polysalt-bulb resin, phenol resin, urea
  • the resin include cocoa resin, melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin, and may be a mixture of two or more of these, or a laminate.
  • melt flow rate of the polyolefin resin composition was measured in accordance with JIS K7210 (measurement temperature: 230 ° C, load: 21.18N).
  • a film with a thickness of 200 ⁇ m was prepared using polyolefin resin using a hot press (made by Shinfuji Metal Industry Co., Ltd.), then cut into a size of 4 mm x 60 mm, and a viscoelasticity spectrometer (IT measurement ( Co., Ltd .: DVA-200), chuck 2.5 cm, vibration frequency 10 Hz, strain 0.1%, heating rate 1 ° CZ min., Measuring temperature 40 ° C to 150 ° C in the longitudinal direction Measurement was made in the direction (side length 60 mm), and the storage modulus at 80 ° C was measured.
  • IT measurement Co., Ltd .: DVA-200
  • the obtained film was cut into a size of TDlOmm X MDlmm X thickness 80 ⁇ m with a microtome, and the dispersed domain shape at the center of the film thickness was observed at 10 locations with an electron microscope, and the average value of the maximum width in the flow direction was determined as the major axis. The average value of the maximum width in the thickness direction of the dispersion domain was calculated as the minor axis.
  • the obtained film was cut into a size of TDlmm x MDIOmm with a microtome, and observed at 10 locations with an electron microscope.
  • the minor axis was calculated.
  • The ink is uniformly applied without unevenness.
  • a sero tape (Elpac LP-18, manufactured by Nichiban Co., Ltd.) is applied to the coated surface after 1 minute, and it is rubbed 5 times with a finger. Immediately thereafter, the cellophane tape was peeled off at once, and the amount of ink peeled off was visually observed. Evaluation was performed according to the following criteria.
  • the true specific gravity of the used fat is dl, (12 (g / cm 3 ), the mass part of each is rl, ⁇ 2, and the true specific gravity (gZcm 3 ) is Calculated.
  • the obtained film was accurately cut into a size of MDlOcmXTDlOcm, and the mass w (g) was measured.
  • the thickness t (m) at 50 points of the film was measured, and the bulk specific gravity (g / cm3) was calculated by the following formula. Calculated.
  • the obtained film was cut into MD110mmXTD15mm strips, and the tensile elongation at MD of the film at an ambient temperature of 0 ° C was measured at a chucking distance of 40mm and a tensile speed of lOOmmZmin according to JIS K 6732. The average value of the measured values is shown in the table.
  • the obtained film was cut into a size of MD100mmXTD4mm, and the tensile elongation in the MD direction of the film at an ambient temperature of 0 ° C was measured at 1 OOmmZmin according to JIS K 7127. The value was determined. Those with an elongation exceeding 150% were evaluated as ⁇ , those with 100% or more and less than 150% were evaluated as ⁇ , and others were evaluated as X.
  • the obtained film was cut into a size of MD110mmXTD15mm, and in accordance with JIS K 6732, at a tensile speed of 200mmZmin, at an ambient temperature of 23 ° C, at a tensile speed of lOOmmZ min, at an ambient temperature of 0 ° C, the tensile elongation at MD
  • the average value of 10 measurements was shown in the table.
  • the obtained film was cut into a size of MDlOOmmXTDlOOmm, immersed in an 80 ° C hot water bath for 10 seconds, and the amount of shrinkage was measured.
  • MDZTD which is the ratio of shrinkage to the original size before shrinkage, is expressed as a percentage.
  • the obtained film was cut into a size of MD400mmXTD5mm and measured according to JIS K7127 in the direction perpendicular to the main shrinkage direction (MD) of the distance between chucks of 300mm, tensile speed of 5mmZmin, and ambient temperature of 23 ° C. did.
  • MD main shrinkage direction
  • the obtained film was cut into a size of MD5mm x TD400mm, and a tensile test was performed at a test speed of 5. OmmZ at a temperature of 23 ° C with a chuck spacing of 80. Omm, and the first straight line of the tensile stress strain curve. Using the part, it was calculated by the following formula.
  • Difference in stress per unit area (average cross-sectional area of sample before tensile test) between two points on a straight line
  • the obtained film was cut into a size of MD100 mm X TD4 mm and measured in the direction (longitudinal direction) perpendicular to the main shrinkage direction of the film at a temperature of 23 ° C according to JIS K 7127.
  • a film printed with a grid of 10 mm intervals was cut into a size of MD100 mm X TD298 mm, and both ends of the TD were overlapped 10 mm and bonded with a solvent to form a cylinder.
  • This cylindrical film was attached to a 500 ml PET bottle and passed in about 4 seconds without rotating through a steam heating type 3.2 m (3 zone) shrink tunnel.
  • the tunnel ambient temperature in each zone was adjusted to 80 to 90 ° C by adjusting the amount of steam with a steam valve.
  • the film passed through was evaluated visually by the following criteria.
  • Shrinkage is sufficient, and there is no wrinkle, fluttering, or lattice distortion, and adhesion is good.
  • the obtained film was cut into a size of MD50 mm XTD 50 mm, and a spectrophotometer (“U-4000”, manufactured by Hitachi, Ltd.) with an integrating sphere attached was used.
  • the light transmittance was measured at, and X was evaluated when the maximum value of the light transmittance exceeded 50%, ⁇ was evaluated when it was 50-25%, and ⁇ was evaluated when it was less than 25%.
  • the light transmittance at wavelengths of 315 nm and 550 nm and the maximum light transmittance between 240 nm and 800 nm were measured by the method of light transmittance 1 described above.
  • the obtained film was cut into a size of MD98 mm XTD 208 mm and coated on a metal can (Toyo Seikan Co., Ltd .: TEC200) coated with the film of the present invention so that the shrinkage rate was 20% at 65 ° C. 190 mL of hot water was poured, immediately held with bare hands, and the number of seconds that could be kept without feeling the heat was measured and evaluated as follows.
  • PLA3 Polylactic acid-based fats-Polylactic acid-based fats manufactured by Nature Works LLC "Nature Works 4050D (L: D: 95Z5, weight average molecular weight 200,000, hereinafter abbreviated as” PLA3 ".
  • Fatty acid Polylactic acid based fat oil manufactured by Cargill 'Dow, Inc.
  • Polypropylene resin manufactured by Nippon Polypro Co., Ltd.
  • 'Polypropylene resin Made by Nippon Polypro Co., Ltd.
  • Polybutylene succinate resin Showa High Polymer Co., Ltd. Trade name: Pionore, hereinafter abbreviated as “BN 2”.
  • Lactic acid-based copolymer manufactured by Dainippon Ink Co., Ltd.
  • Lactic acid copolymer with Tg of 0 ° C or less Product name GS—PLA AD92W manufactured by Mitsubishi Chemical Corporation, hereinafter abbreviated as “AD92W”.
  • 'Oxidized titanium DuPont's product name: R108, hereinafter abbreviated as “FL1”. • Barium sulfate: manufactured by Sakai Chemical Co., Ltd. Product name: B-55, hereinafter abbreviated as “FL2”.
  • inorganic particles manufactured by Shiraishi Calcium Co., Ltd. Trade name: Opti White, special calcined kaolin clay, hereinafter abbreviated as “inorganic particles”.
  • the obtained pellets are put into separate single screw extruders manufactured by Mitsubishi Heavy Industries, Ltd., melt-mixed at a set temperature of 200 ° C, then co-extruded from two types of three-layer dies, and cast at 60 ° C. It was taken up and cooled and solidified to obtain an unstretched laminated sheet. The film was then stretched 4.0 times in the transverse uniaxial direction at a preheating temperature of 75 ° C and a stretching temperature of 72 ° C using a film tenter manufactured by Kyoto Machine Co., Ltd. A shrinkable pore-containing film was obtained. Table 1 shows the measurement and evaluation results of the obtained film.
  • Example 1 As shown in Table 1, a heat-shrinkable pore-containing film was obtained in the same manner as in Example 1, except that the amount of “P01” added in Example 1 was changed to 60 parts by mass.
  • Example 1 when the unstretched laminated sheet was prepared, the aspect ratio was changed by adjusting the lip gap of the die and the take-up speed of the cast roll. Thus, a heat-shrinkable pore-containing film was obtained.
  • Example 1 The result Table 1 shows.
  • Example 1 As shown in Table 1, in Example 1, the (A) component in the (I) layer was mixed with 80 parts by mass of “PLA3” and 20 parts by mass of “PLA4”, and the component (B) was changed to 20 parts by mass of ⁇ P02 '' and the resin composition used in the layer ( ⁇ ) was changed to 100 parts by mass of ⁇ PLA1 '', and heat shrinkage was performed in the same manner as in Example 1. A characteristic void-containing film was obtained.
  • Example 1 As shown in Table 1, in Example 1, the content of “P01” is changed to 20 parts by mass, and the lip gap of the die and the take-up speed of the cast roll are adjusted when producing an unstretched laminated sheet. A heat-shrinkable Finolem was obtained in the same manner as in Example 1 except that the aspect ratio was changed by.
  • Example 1 As shown in Table 1, a heat-shrinkable film was obtained in the same manner as in Example 1 except that the amount of “P01” added in Example 1 was changed to 5 parts by mass.
  • Example 1 As shown in Table 1, a heat-shrinkable film was obtained in the same manner as in Example 1 except that the amount of “P01” added in Example 1 was changed to 100 parts by mass.
  • Example 1 a heat-shrinkable pore-containing film was prepared in the same manner as in Example 1 except that the layer (ii) was not formed and a single-layer film (I) was used. Obtained. About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
  • Example 1 As shown in Table 1, a heat-shrinkable film was obtained in the same manner as in Example 1 except that in Example 1, the component (B) in the (I) layer was changed to 40 parts by mass of “PO3”.
  • Example 1 As shown in Table 1, in Example 1, “BN2” (corresponding to the component (C) that is compatible with the component (A) instead of the component (B) in the (I) layer. ) A heat-shrinkable film was obtained in the same manner as in Example 1 except that 30 parts by mass was added.
  • the film within the range defined by the present invention was excellent in recyclability, rigidity, low-temperature shrinkage, and natural shrinkage with small bulk specific gravity (Examples 1 to 4).
  • the aspect ratio is out of the range of the present invention, the obtained film is inferior in fracture resistance or does not sufficiently form pores, so the bulk specific gravity is lower than the desired value. Slightly larger and inferior in fracture resistance (Comparative Examples 1 and 5).
  • the component (B) in the (I) layer is outside the scope of the present invention, the obtained film does not exhibit sufficient fracture resistance and shrinkage characteristics and forms sufficient pores. As a result, the bulk specific gravity was larger than the desired value (Comparative Examples 2 and 3).
  • the film of the present invention has a low bulk specific gravity, excellent recyclability, rigidity, low temperature shrinkability, and natural shrinkage, and heat shrinkability suitable for applications such as shrink wrapping, shrink tying wrapping and heat shrinkable labels. It turns out that it is a void
  • the components (A) and (B) were dry blended, and a small co-directional twin screw extruder (Mitsubishi Heavy Industries, Ltd., 40 mm ⁇ ) was used. The mixture was kneaded at ° C and lOOrpm, extruded into a strand, quenched in a water bath, and then cut to prepare a mixed resin pellet.
  • a small co-directional twin screw extruder Mitsubishi Heavy Industries, Ltd., 40 mm ⁇
  • Each of the obtained pellets is put into a separate single-screw extruder (Mitsubishi Heavy Industries, Ltd.), melted and mixed at a set temperature of 200 ° C, and co-extruded from two types of three-layer die.
  • the unstretched laminated sheet was obtained by taking up with a cast roll and cooling and solidifying.
  • the film was then stretched 4.0 times in the transverse uniaxial direction at a preheating temperature of 80 ° C and a stretching temperature of 71 ° C by a film tenter (Kyoto Kikai Co., Ltd.), and then rapidly cooled with cold air to heat 80 m thick.
  • a shrinkable pore-containing film was obtained.
  • the evaluation results of the obtained film are shown in Table 2.
  • Example 7 is the same as Example 5 except that the aspect ratio was changed by adjusting the lip gap of the die and the take-up speed of the cast roll when producing the unstretched laminated sheet. A similar method was adopted.
  • Example 6 The stretching temperature in Example 6 was 72 ° C, and the stretching temperature in Comparative Example 1 was 73 ° C.
  • the film having the composition, heat shrinkage ratio, and aspect ratio defined in the present invention was excellent in break resistance, ink adhesion, and spontaneous shrink resistance.
  • the heat-shrinkable film of the present invention has excellent mechanical properties such as heat-shrinkability, rupture resistance, and printing properties, and can reduce the bulk specific gravity and suppress the amount of resin used. I understand.
  • Polylactic acid-based resin composition ( ⁇ ), polyolefin-based resin composition ( ⁇ ), and the above soft component (C) were mixed at the mixing ratio shown in Table 3, respectively, and a twin-screw extruder (Mitsubishi Heavy Industries, Ltd. ) Then, melt and mix at a set temperature of 200 ° C, extrude from a die with a set temperature of 200 ° C, take it up with a cast roll at 50 ° C, and cool and solidify it to form an unstretched film with a width of 300 mm and a thickness of 200 m. Obtained.
  • a twin-screw extruder Mitsubishi Heavy Industries, Ltd.
  • the obtained unstretched film was stretched 1.05 times at 65-75 ° C by a roll longitudinal stretching machine (Mitsubishi Heavy Industries, Ltd.), and then a film tenter (Mitsubishi Heavy Industries, Ltd.) preheating temperature 80-
  • the film was stretched 4.0 times in the horizontal axis direction at 90 ° C. and a stretching temperature of 65 to 75 ° C. to obtain a heat-shrinkable pore-containing film having a thickness of 80 m.
  • Example 2 The method described in Example 1, wherein the polylactic acid-based resin composition (A), the polyolefin-based resin composition (B), other inorganic particles, and the soft component (C) were mixed at the mixing ratios shown in Table 3, respectively. In the same manner as above, a heat-shrinkable pore-containing film and a heat-shrinkable film were obtained.
  • Component S2001 (parts by mass) ⁇ 30 ⁇ 15 ⁇ 30 One ⁇
  • a film having the composition, heat shrinkage rate and storage elastic modulus ( ⁇ '), bulk specific gravity, and particle diameter defined in the present invention from Table 3 was excellent in impact resistance, light shielding properties and heat insulation properties. .
  • polyolefin resin (resin) and soft component (C) were not used! /, The case (Comparative Example 11) did not satisfy the breaking resistance at all.
  • component (C) Comparative Examples 12 to 14
  • the heat-shrinkable film of the present invention has excellent mechanical properties such as heat-shrinkability, impact resistance, light-shielding properties, and heat insulation properties, and can reduce the bulk specific gravity and suppress the amount of resin used. It is a force to be.
  • the films of the inventions of Examples 13 to 17 have break resistance, high shrinkage properties, and light shielding function, whereas the film of Comparative Example 1 has insufficient break resistance, and It can be seen that the light transmittance exceeds 40%, and the light shielding property cannot be obtained.
  • the light transmittance at a wavelength of 240 to 40 Onm is suppressed to a very low level, and a good light shielding property is obtained.
  • the film of the present invention has a low bulk specific gravity and excellent printability, high rigidity, rupture resistance, light-shielding properties, and shrinkage characteristics. Therefore, the film, shrink-wrapping, and shrink-binding that require heat shrinkability. It can be suitably used for shrinkage labels, particularly shrink labels.
  • PLA-based coconut resin used in the present invention is plant-derived rosin, it can reduce the environmental burden and is suitable for promoting the use of biomass and aiming for a recycling-oriented society.

Abstract

The object is to provide a thermally shrinkable film which has a low bulk specific gravity, can be separated readily by liquid gravity separation when used as a label for a PET bottle, has high stiffness, breaking resistance, excellent shrinking property and a small natural shrinkage, and can be separated readily by liquid gravity separation. Disclosed is a thermally shrinkable void-containing laminate film which comprises at least two layers comprising a layer (1) and a layer (II). The layer (I) comprises a mixed resin composition which comprises a component (A) comprising a given polylactate resin composition and a component (B) comprising a given polyolefin resin composition, wherein the content of the component (B) is 10 to 90 parts by mass inclusive relative to 100 parts by mass of the component (A). The layer (II) comprises a resin composition comprising mainly the component (A). In the layer (I), the aspect ratio of a dispersion domain comprising the component (B) dispersed in a matrix composed of the component (A) with respect to the direction orthogonal to the main shrinkage direction is 5 to 50 inclusive.

Description

明 細 書  Specification
熱収縮性空孔含有積層フィルム及び熱収縮性空孔含有フィルム 技術分野  Heat-shrinkable pore-containing laminated film and heat-shrinkable pore-containing film
[0001] この発明は、熱収縮性空孔含有積層フィルム、熱収縮性空孔含有フィルム、及びこ れを用いた成形品、熱収縮性ラベル及び容器に関する。より詳しくは石油資源の使 用を抑えることにより環境負荷を低減させた熱収縮性フィルムに、高い剛性を持たせ つつ、空孔を持たせて嵩比重が小さくし、軽量性、断熱性、遮光性、隠蔽性を発現さ せるとともに、印刷適性、剛性、耐破断性及び収縮特性に優れ、自然収縮が小さい 熱収縮性空孔含有フィルム、熱収縮性ラベル、成形品及び容器に関する。  [0001] The present invention relates to a heat-shrinkable pore-containing laminated film, a heat-shrinkable pore-containing film, and a molded product, a heat-shrinkable label, and a container using the same. More specifically, the heat shrinkable film, which has reduced environmental impact by reducing the use of petroleum resources, has high rigidity and has pores to reduce bulk specific gravity, making it lightweight, heat insulating, and light-shielding. The present invention relates to a heat-shrinkable pore-containing film, a heat-shrinkable label, a molded product, and a container that exhibit high performance and concealability, and are excellent in printability, rigidity, rupture resistance, and shrinkage properties, and have small natural shrinkage.
背景技術  Background art
[0002] 従来、容器などの包装用途'結束用途としては熱収縮性フィルムが用いられてきた 。熱収縮性フィルムの原料としては、主としてポリ塩ィ匕ビニル、ポリスチレン、ポリエス テルなどが用いられて 、る。これらは 、ずれも原料として石油資源を使用して 、るた め、将来に亘り継続的に使用していくと石油資源の枯渴という問題を引き起こす可能 性がある。また、これらの原料は使用後の燃焼時に有害なガスを発生する、燃焼カロ リーが高すぎて燃焼炉を痛め、炉の寿命を縮める等といった問題もある。  Conventionally, heat-shrinkable films have been used for packaging applications such as containers and for bundling applications. As raw materials for the heat-shrinkable film, polyvinyl chloride, polystyrene, polyester and the like are mainly used. All of these use petroleum resources as raw materials, so if they are used continuously in the future, there is a possibility that they will cause a problem of oil resource depletion. These raw materials also have problems such as generation of harmful gases during combustion after use, combustion calories are too high, damage the combustion furnace, and shorten the life of the furnace.
[0003] これらの問題を解決する材料として、植物由来で工業的に生産が可能なポリ乳酸 が最近注目を集めている。すなわち、ポリ乳酸はとうもろこしなどのバイオマスを原料 とするため、持続可能型社会を目指す上で好適であり、さらに燃焼時に有害ガスを発 生せず、燃焼カロリーが低 、ため燃焼炉を傷めることもな!/、。  [0003] As a material for solving these problems, polylactic acid, which is derived from plants and can be industrially produced, has recently attracted attention. In other words, polylactic acid uses corn and other biomass as a raw material, so it is suitable for aiming for a sustainable society. Furthermore, it does not generate harmful gases during combustion, and its combustion calories are low, which can damage the combustion furnace. What! /
[0004] しかし、熱収縮性ラベルの材料としてポリ乳酸を使用した場合、剛性が高ぐ低温収 縮性に優れ、かつ自然収縮力 、さいという特長を有する反面、耐破断性に問題があ り、ポリ乳酸単独では高品質な熱収縮性ラベルを作製することは困難であった。  [0004] However, when polylactic acid is used as the material for the heat-shrinkable label, it has high rigidity and excellent low-temperature shrinkability, and has the characteristics of natural shrinkage and small size, but there is a problem in fracture resistance. Therefore, it has been difficult to produce a high-quality heat-shrinkable label using polylactic acid alone.
[0005] ポリ乳酸の耐破断性を改良するため、ポリ乳酸に相溶する軟質成分を添加した熱 収縮性フィルムも提案されている(例えば、特許文献 1参照)。このフィルムは、軟質 成分を添加することにより耐破断性の問題をある程度改善できるが、その反面、剛性 が低下し、自然収縮が大きくなつてしまうという問題があった。 [0006] 一方、現在、消費量が増大して 、る PET (ポリエチレンテレフタレート)ボトルに熱収 縮性ラベルを使用する場合、使用後の PETボトルをリサイクルする観点から、熱収縮 性ラベルを PETボトル力 容易に分離できることが望まし 、。 PETボトル力 熱収縮 性ラベルを分離する方法として、熱収縮性ラベルとともに粉砕された PETボトルのフ レークを水中に投入し、比重の大き 、PETフレークのみを水中に沈めて回収する液 比重分離法が用いられている。しかし、特許文献 1に記載された熱収縮性ラベルの 嵩比重は 1より大き 、ため、 PETボトルフレークと共にラベルも水中に沈んでしま 、、 分離が困難であった。 [0005] In order to improve the fracture resistance of polylactic acid, a heat-shrinkable film to which a soft component compatible with polylactic acid is added has also been proposed (see, for example, Patent Document 1). This film can improve the rupture resistance problem to some extent by adding a soft component, but on the other hand, there is a problem that the rigidity is reduced and the natural shrinkage is increased. [0006] On the other hand, when heat-contractable labels are used in PET (polyethylene terephthalate) bottles that are currently consumed, heat-shrinkable labels are used in PET bottles from the viewpoint of recycling used PET bottles. The power should be easily separable. PET bottle force As a method of separating heat-shrinkable labels, liquid specific gravity separation method in which flakes of PET bottles pulverized with heat-shrinkable labels are put into water, and only the PET flakes are submerged in water and recovered. Is used. However, since the bulk specific gravity of the heat-shrinkable label described in Patent Document 1 is greater than 1, the label also sunk in water together with the PET bottle flakes, making it difficult to separate.
[0007] ところで、熱収縮性ラベルに限らず、熱可塑性榭脂を用いた成形品中に空孔を形 成させることにより、成形品の嵩比重を低下させることで榭脂使用量を減少し環境負 荷を低減させ、さらに遮光性、断熱性、クッション性などの機能付与が可能であること が知られている。この空孔形成の手法にはさまざまな方法が用いられる力 熱可塑性 榭脂を用いた延伸フィルムの場合、該熱可塑性榭脂に対し非相溶成分を添加した後 に少なくとも 1方向以上に延伸する手法が知られている。  [0007] By the way, not only the heat-shrinkable label but also the formation of pores in a molded product using thermoplastic resin reduces the bulk specific gravity of the molded product, thereby reducing the amount of resin used. It is known that environmental loads can be reduced and functions such as light shielding, heat insulation and cushioning can be added. Various methods can be used to form this pore. In the case of a stretched film using thermoplastic resin, it is stretched in at least one direction after adding incompatible components to the thermoplastic resin. Techniques are known.
[0008] この熱可塑性榭脂の嵩比重を低下させる目的で、非相溶成分を添加した後、一方 向以上に延伸し、空隙を形成させるという手法が知られている。ポリ乳酸系榭脂を使 用したフィルムにおいても非相溶な榭脂を添加した後に延伸することにより嵩比重を 低下させたフィルムが報告されている(例えば特許文献 2参照)。し力しながら、このフ イルムは二軸方向に延伸した後、熱処理を施しているため、熱収縮性ラベルとして使 用することはできない。  [0008] For the purpose of reducing the bulk specific gravity of this thermoplastic resin, a method is known in which after adding an incompatible component, the thermoplastic resin is stretched in one direction or more to form voids. Even in a film using polylactic acid-based resin, a film having a reduced bulk specific gravity by stretching after adding an incompatible resin has been reported (for example, see Patent Document 2). However, this film cannot be used as a heat-shrinkable label because it has been biaxially stretched and then heat-treated.
[0009] また、ポリ乳酸以外のポリエステル系榭脂に非相溶な榭脂を添加した後、延伸し、 空孔を形成した熱収縮フィルムも提案されて ヽる (例えば特許文献 3参照)。しかし、 この熱収縮性フィルムで使用されるポリエステル系榭脂は、ポリ乳酸に比べて延伸時 における空孔形成が困難であるという欠点があった。  [0009] In addition, a heat-shrinkable film in which a non-compatible resin is added to a polyester-based resin other than polylactic acid and then stretched to form pores has also been proposed (see, for example, Patent Document 3). However, the polyester-based resin used in this heat-shrinkable film has a drawback that it is difficult to form pores at the time of stretching compared to polylactic acid.
[0010] さらにまた、ポリ乳酸系シュリンクフィルムの収縮仕上がりを調整するために、ポリ乳 酸の異性体比率を調整することが特許文献 4等に記載されて ヽるが、熱収縮フィルム として剛性、収縮特性を十分に満たすものではなぐまた、空孔を形成したフィルムへ の応用については、記載されていない。 [0011] また、最近、容器の内容物を紫外線や可視光線から保護する目的で、遮光性機能 を有する熱収縮性ラベルが多く用いられるようになり、それに伴い、遮光性機能を付 与した芳香族ポリエステル系収縮ラベルが多く提案されている(特許文献 5、 6参照)[0010] Furthermore, adjusting the isomer ratio of polylactic acid in order to adjust the shrink finish of the polylactic acid-based shrink film is described in Patent Document 4, etc., but it is rigid as a heat-shrinkable film. It does not sufficiently satisfy the shrinkage characteristics, and there is no description about application to a film in which pores are formed. [0011] In addition, recently, heat-shrinkable labels having a light-shielding function have been frequently used for the purpose of protecting the contents of containers from ultraviolet rays and visible light, and accordingly, aroma having a light-shielding function. Many polyester-based shrink labels have been proposed (see Patent Documents 5 and 6)
。しかし、これらの熱収縮性フィルムは、いずれも石油由来の榭脂である芳香族ポリ エステルを使用しているため、環境負荷という問題がある上、ポリ乳酸系榭脂と比べ て延伸成形時に空孔を形成し難 ヽと ヽぅ欠点があった。 . However, all of these heat-shrinkable films use aromatic polyester, which is a petroleum-derived rosin, and therefore have a problem of environmental impact and are more vacant when stretch-molded than a polylactic acid-based rosin. There were difficulties and disadvantages in forming holes.
[0012] さらに、ポリ乳酸に非相溶榭脂を混合した熱収縮性空孔フィルムが提案されている [0012] Further, a heat-shrinkable holey film in which polylactic acid is mixed with an incompatible resin is proposed.
(特許文献 7参照)。し力しながら、このフィルムは、十分な空孔を形成できるが、十分 な遮光性機能を有するものではな力つた。  (See Patent Document 7). However, this film was able to form sufficient pores, but did not have sufficient light shielding function.
[0013] 特許文献 1:特開 2003 - 119367号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2003-119367
特許文献 2 :特開 2002— 146071号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-146071
特許文献 3:特開 2003 - 321562号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-321562
特許文献 4:特開 2001— 011214号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-011214
特許文献 5:特開 2003 - 236930号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2003-236930
特許文献 6:特開 2004 - 114498号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2004-114498
特許文献 7:特開 2006 - 045296号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2006-045296
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] この発明は前記課題に鑑みてなされたものであり、この発明の課題は、植物由来で あるポリ乳酸系榭脂を用いて、嵩比重が小さぐ PETボトル用ラベルとして使用され た場合に、容易に液比重分離でき、高剛性、耐破断性、及び収縮特性に優れ、かつ 自然収縮が小さぐさらに、容易に液比重分離できる熱収縮性フィルムを提供するこ とにある。 [0014] The present invention has been made in view of the above-mentioned problems, and the problem of the present invention is that it is used as a label for PET bottles having a low bulk specific gravity using a polylactic acid-based resin derived from plants. Another object is to provide a heat-shrinkable film that can be easily separated by liquid specific gravity, has high rigidity, rupture resistance, and shrinkage characteristics, has small natural shrinkage, and can be easily separated by liquid specific gravity.
[0015] この発明のもう一つの課題は、収縮包装、収縮結束包装や収縮ラベル等の用途に 適した前記フィルムを用いた熱収縮性ラベル、成形品及び容器を提供することにある 課題を解決するための手段  Another object of the present invention is to provide a heat-shrinkable label, a molded product and a container using the film suitable for applications such as shrink wrapping, shrink-bound wrapping and shrinkage labels. Means to do
[0016] この発明は、下記の (A)成分と (B)成分とを含み、この (B)成分の含有量が前記( A)成分 100質量部に対し 5質量部以上 90質量部以下である混合榭脂組成物で構 成される (I)層と、前記 (A)成分を主成分とし、必要に応じて下記 (C)成分を含み、( C)成分を含む場合、この (C)成分の含有量が (A)成分 100質量部に対して 5質量 部以上 50質量部以下である混合榭脂組成物で構成される(Π)層との少なくとも 2層 を有する、少なくとも 1軸方向に延伸し、前記 (I)層において、(A)成分力もなるマトリ ックス中に分散して 、る (B)成分からなる分散ドメインの主収縮方向に直交する方向 に対するアスペクト比が 5以上 50以下である積層フィルム、又は下記の (A)成分と(B )成分と (C)成分とを含み、(A)成分 100質量部に対して、(B)成分の含有量が 5質 量部以上 90質量部以下であり、かつ、(C)成分の含有量が 10質量部以上 80質量 部以下である混合榭脂組成物からなり、又はこの混合榭脂層を少なくとも 1層有する 未延伸フィルムを少なくとも一軸以上に延伸したフィルムであり、 80°Cの温水中に 10 秒間浸漬したときの主収縮方向の熱収縮率が 20%以上である、空孔を有する熱収 縮性の積層フィルム又は単層フィルムにかかる発明である。 [0016] The present invention includes the following component (A) and component (B), and the content of component (B) is the above ( The component (I) is composed of a mixed resin composition that is 5 parts by weight or more and 90 parts by weight or less with respect to 100 parts by weight of the component (A) and the component (A) as a main component. C) component, and when it contains (C) component, it is composed of a mixed resin composition whose content of (C) component is 5 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of component (A) The (I) layer has at least two layers and is stretched in at least one axial direction, and in the (I) layer, dispersed in a matrix having (A) component force, Including a laminated film having an aspect ratio of 5 to 50 in the direction perpendicular to the main shrinkage direction of the dispersion domain, or the following (A) component, (B) component and (C) component, and (A) component 100 mass The content of component (B) is not less than 5 parts by mass and not more than 90 parts by mass, and the content of component (C) is not less than 10 parts by mass and not more than 80 parts by mass An unstretched film made of a synthetic resin composition or having at least one mixed resin layer and stretched at least uniaxially. When immersed in warm water at 80 ° C for 10 seconds, The invention relates to a heat-shrinkable laminated film or single-layer film having pores having a heat shrinkage rate of 20% or more.
(A)成分: D 乳酸及び L 乳酸の共重合体を主成分とするポリ乳酸系榭脂組成物  Component (A): Polylactic acid based resin composition comprising a copolymer of D lactic acid and L lactic acid as a main component
(B)成分:(A)成分に非相溶で、振動周波数 10Hz、歪み 0. 1%の条件で測定した ときの 80°Cにおける貯蔵弾性率が 0. 25GPa以上 2. OOGPa以下であるポリオレフィ ン系榭脂組成物。 Component (B): Polyolefin with a storage modulus at 80 ° C of 0.25 GPa or more 2. OOGPa or less when measured at a vibration frequency of 10 Hz and a strain of 0.1%, incompatible with component (A) -Based rosin composition.
(C)成分:ポリ乳酸系榭脂以外の脂肪族ポリエステル、芳香族脂肪族ポリエステル、 ジオールとジカルボン酸とポリ乳酸系榭脂との共重合体、コアシェル構造型ゴム、ェ チレン 酢酸ビュル共重合体、エチレン (メタ)アクリル酸ェチル共重合体、ェチレ ンー(メタ)アクリル酸共重合体、エチレン (メタ)アクリル酸メチル共重合体、及びス チレン系エラストマ一力 選ばれる少なくとも 1種力 なる榭脂又は榭脂混合体力 構 成される軟質成分。  Component (C): Aliphatic polyester other than polylactic acid-based resin, aromatic aliphatic polyester, copolymer of diol, dicarboxylic acid and polylactic acid-based resin, core-shell structure type rubber, ethylene-butyl acetate copolymer , Ethylene (meth) acrylate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene (meth) methyl acrylate copolymer, and styrene elastomer Or a mixture of rosin and soft ingredients.
なお、上記において、「(メタ)アクリル」とは、「アクリル」と「メタクリル」の両方を含む 意味であり、例えば「(メタ)アクリル酸」とは、アクリル酸およびメタクリル酸を意味する (本明細書において同様である。 ) o  In the above, “(meth) acryl” means to include both “acryl” and “methacryl”. For example, “(meth) acrylic acid” means acrylic acid and methacrylic acid. The same applies in the description.) O
発明の効果 [0018] この発明の積層フィルム及び単層フィルムは、所定のポリ乳酸系榭脂組成物( (A) 成分)とポリオレフイン系榭脂組成物( (B)成分)とを所定の割合で混合する層を有し 、さらにこの層では、(A)成分中における(B)成分のアスペクト比が調整されているた め、得られる熱収縮性空孔含有フィルムに対し、優れた剛性、耐破断性、及び熱収 縮特性を付与できるとともに、自然収縮率を小さくできる。また、この発明のフィルム は、乳酸系榭脂組成物を主成分とするため、バイオマスの使用を促し、循環型社会 を構築する上で有用である。 The invention's effect [0018] The laminated film and the single-layer film of the present invention are prepared by mixing a predetermined polylactic acid-based resin composition (component (A)) and a polyolefin-based resin composition (component (B)) at a predetermined ratio. In addition, the aspect ratio of the component (B) in the component (A) is adjusted in this layer, so that the resulting heat-shrinkable pore-containing film has excellent rigidity and fracture resistance. In addition, the heat shrinkage characteristics can be imparted and the natural shrinkage rate can be reduced. In addition, since the film of the present invention is mainly composed of a lactic acid-based rosin composition, it is useful in promoting the use of biomass and building a recycling society.
[0019] さらに、この発明の積層フィルム及び単層フィルムは、空孔を含有する(I)層と、表 面が平滑である (Π)層とを積層したものであるため、印刷性'製袋シール性 ·意匠性 にも優れている。さらに、この発明のフィルムは空孔を含有するため、断熱性や遮光 性、クッション性にも優れている。  Furthermore, the laminated film and the single layer film of the present invention are obtained by laminating the (I) layer containing pores and the (、) layer having a smooth surface. Excellent bag sealability and design. Furthermore, since the film of the present invention contains pores, it has excellent heat insulating properties, light shielding properties, and cushioning properties.
[0020] また、この発明の積層フィルムは、嵩比重 0. 50以上 1. 00未満であるので、 PET 等の比重が 1. 0以上である容器用のプラスチックとの液比重法による分別が可能と なり、リサイクル性に優れる。  [0020] Further, since the laminated film of the present invention has a bulk specific gravity of 0.50 or more and less than 1.00, it can be separated by a liquid specific gravity method from a plastic for containers having a specific gravity of PET or more of 1.0 or more. Therefore, it is highly recyclable.
[0021] さらに、この発明の積層フィルムや単層フィルムを用いることにより、優れた収縮仕 上がり性と遮光性とを有する収縮包装、収縮結束包装や収縮ラベル等の用途に適し た成形品、熱収縮性ラベルを提供することができる。  [0021] Furthermore, by using the laminated film or single layer film of the present invention, a molded product suitable for applications such as shrink wrapping, shrink tying wrapping, and shrink label having excellent shrink finish and light shielding properties, heat A shrinkable label can be provided.
[0022] さらにまた、装着物の形状にかかわらず所望の位置に密着固定させることができ、 皺、ァバタの発生、収縮不十分等の異常がなぐかつ遮光性のある綺麗な外観を呈 した前記成形品又は熱収縮性ラベルを装着した容器を提供できる。  [0022] Furthermore, it can be fixed in a desired position regardless of the shape of the wearing object, and has a beautiful appearance with no shading, abnormal occurrence such as avatar, insufficient shrinkage, etc., and a light shielding property. A container equipped with a molded article or a heat-shrinkable label can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] この発明は、下記の (A)成分、(B)成分、並びに必要に応じて (C)成分及び (D)成 分を含有する積層フィルム又は単層フィルムにかかる発明である。以下において、ま ず、(A)成分〜 (D)成分について説明する。 [0023] This invention relates to a laminated film or a single layer film containing the following component (A), component (B), and optionally component (C) and component (D). In the following, components (A) to (D) will be described first.
なお、本明細書において、「主成分として含有する」とは、各層を構成する榭脂の作 用 ·効果を妨げない範囲で、他の成分を含むことを許容する趣旨である。さらに、この 用語は、具体的な含有率を制限するものではないが、各層の構成成分全体の 70質 量%以上、好ましくは 80質量%以上、さらに好ましくは 90質量%以上であって 100 質量%以下の範囲を占める成分である。 In the present specification, “contains as a main component” is intended to allow other components to be included within a range that does not interfere with the operation and effect of the resin constituting each layer. Furthermore, this term does not limit the specific content, but it is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more of the total constituents of each layer. It is a component occupying a range of mass% or less.
[0024] < (八)成分>  [0024] <(Eight) component>
前記 (A)成分とは、 D—乳酸及び L 乳酸の共重合体を主成分とするポリ乳酸系 榭脂組成物をいう。  The component (A) refers to a polylactic acid-based resin composition mainly composed of a copolymer of D-lactic acid and L-lactic acid.
[0025] 前記 (A)成分は、具体的には、乳酸の単独重合体や、乳酸と、乳酸以外の α ヒ ドロキシカルボン酸、ジオール成分及びジカルボン酸成分、又はこれらの両方との共 重合体を主成分とする乳酸系共重合体も含むものである。  [0025] Specifically, the component (A) is a copolymer of lactic acid homopolymer, lactic acid and α-hydroxycarboxylic acid other than lactic acid, diol component and dicarboxylic acid component, or both. It also includes a lactic acid-based copolymer whose main component is a coalescence.
[0026] ここで乳酸とは、 D 乳酸と L 乳酸の両方を示し、前記の乳酸の単独重合体とし ては、例えば、 D 乳酸の単独重合体であるポリ(D 乳酸)、 L 乳酸の単独重合 体であるポリ(L—乳酸)、 L—乳酸と D—乳酸との共重合体力もなるポリ(DL—乳酸) 、及びこれらの混合体が挙げられる。以下、これらの乳酸のみ力 なる重合体を乳酸 系榭脂と称する。  [0026] Here, lactic acid refers to both D lactic acid and L lactic acid. Examples of the lactic acid homopolymer include, for example, poly (D lactic acid), which is a homopolymer of D lactic acid, and L lactic acid alone. Examples thereof include poly (L-lactic acid) which is a polymer, poly (DL-lactic acid) which also has a copolymer power of L-lactic acid and D-lactic acid, and a mixture thereof. Hereinafter, these lactic acid-only polymers are referred to as lactic acid-based rosins.
[0027] 前記乳酸系榭脂の重合法としては、縮合重合法、開環重合法など、公知の方法を 採用することも可能である。例えば縮合重合法であれば、 D 乳酸、 L 乳酸、又は 、これらの混合物を直接脱水縮合重合して任意の組成を有するポリ乳酸系榭脂を得 ることができる。また、開環重合法では、乳酸の環状 2量体であるラクチドを、必要に 応じて重合調整剤などを用いながら、所定の触媒の存在下で開環重合することによ り任意の組成を有するポリ乳酸系榭脂を得ることができる。前記ラクチドには、 L—乳 酸の 2量体である Lーラクチド、 D 乳酸の 2量体である D ラクチド、及び D 乳酸と L 乳酸との 2量体である DL ラクチドがあり、これらを必要に応じて混合して重合 することにより、任意の組成、結晶性を有するポリ乳酸系榭脂を得ることができる。  [0027] As a method for polymerizing the lactic acid-based rosin, a known method such as a condensation polymerization method or a ring-opening polymerization method may be employed. For example, in the case of the condensation polymerization method, D-lactic acid, L-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a polylactic acid-based resin having an arbitrary composition. In the ring-opening polymerization method, lactide, which is a cyclic dimer of lactic acid, is subjected to ring-opening polymerization in the presence of a predetermined catalyst while using a polymerization regulator or the like, if necessary. It is possible to obtain a polylactic acid-based resin having the same. The lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL lactide, which is a dimer of D-lactic acid and L-lactic acid. By mixing and polymerizing according to the above, it is possible to obtain a polylactic acid-based resin having an arbitrary composition and crystallinity.
[0028] ところで、乳酸と、乳酸以外の exーヒドロキシカルボン酸、ジオール成分及びジカル ボン酸成分、又はこれらの両方との共重合体を主成分とする乳酸系共重合体は、使 用する乳酸が D 乳酸又はし 乳酸のみであるものと、 D 乳酸と L 乳酸との両方 であるものとの、いずれでもよい。  [0028] By the way, a lactic acid copolymer mainly composed of a copolymer of lactic acid and an ex-hydroxycarboxylic acid other than lactic acid, a diol component and a dicarboxylic acid component, or both of them is used as the lactic acid used. Either D-lactic acid or only lactic acid, or both D-lactic acid and L-lactic acid may be used.
[0029] なお、前記乳酸系共重合体を用いる場合、構成成分の共重合割合は特に限定さ れないが、乳酸の占める割合が高いほど、石油資源の消費が少ないため好ましぐま た後述するビカット軟ィ匕点の範囲を超えな 、程度の割合で共重合すると好ま U、。 [0030] 具体的には、乳酸と、 aーヒドロキシカルボン酸、脂肪族ジオール、又は脂肪族ジ カルボン酸との共重合体の共重合比率は、質量比で、乳酸 —ヒドロキシカルボ ン酸、脂肪族ジオール、又は脂肪族ジカルボン酸 = 100ZO乃至 95Ζ5、好ましくは 90Z10乃至 10Ζ90、さらに好ましくは 80Ζ20乃至 20Ζ80、最も好ましくは 30,7 0乃至 70Ζ30である。共重合比が前記範囲内であれば、剛性、透明性、耐衝撃性 などの物性バランスの良好なフィルムを得ることができる。 [0029] When the lactic acid copolymer is used, the copolymerization ratio of the constituent components is not particularly limited. However, the higher the ratio of lactic acid, the less consumption of petroleum resources, which is preferable as described later. It is preferable to copolymerize at a rate not exceeding the Vicat soft spot range. [0030] Specifically, the copolymerization ratio of lactic acid and a copolymer of a-hydroxycarboxylic acid, aliphatic diol, or aliphatic dicarboxylic acid is expressed by mass ratio of lactic acid-hydroxycarboxylic acid, fatty acid. Group diol or aliphatic dicarboxylic acid = 100ZO to 95Ζ5, preferably 90Z10 to 10Ζ90, more preferably 80Ζ20 to 20Ζ80, and most preferably 30,700 to 70Ζ30. When the copolymerization ratio is within the above range, a film having a good balance of physical properties such as rigidity, transparency and impact resistance can be obtained.
[0031] なお、前記乳酸系榭脂及び乳酸系共重合体は、単独で用いても混合して用いても 構わない。  [0031] The lactic acid-based rosin and the lactic acid-based copolymer may be used alone or in combination.
[0032] また、前記乳酸系榭脂の製造に開環重合法 (ラクチド法)を用いた場合、乳酸の環 状 2量体であるラクチドを、必要に応じて重合調整剤等を用いながら、所定の触媒の 存在下で開環重合をして、任意の組成を有する乳酸系榭脂を得ることができる。用い る前記ラクチドとしては、 L 乳酸の 2量体である Lーラクチド、 D 乳酸の 2量体であ る D ラクチド、及び D 乳酸と L 乳酸との 2量体である DL ラクチドが挙げられる 。これらを必要に応じて混合し、重合することにより、任意の組成及び結晶性を有す る前記乳酸系榭脂を得ることができる。  [0032] In addition, when a ring-opening polymerization method (lactide method) is used for the production of the lactic acid-based rosin, lactide, which is a cyclic dimer of lactic acid, is used as necessary using a polymerization regulator or the like. A ring-opening polymerization can be carried out in the presence of a predetermined catalyst to obtain a lactic acid series resin having an arbitrary composition. Examples of the lactide to be used include L-lactide, which is a dimer of L lactic acid, D lactide, which is a dimer of D lactic acid, and DL lactide, which is a dimer of D lactic acid and L lactic acid. By mixing and polymerizing these as necessary, the above-mentioned lactic acid-based resin having any composition and crystallinity can be obtained.
[0033] 前記乳酸系共重合体の製造に用いる、単量体である前記の aーヒドロキシカルボ ン酸としては、グリコール酸、 3 ヒドロキシ酪酸、 4 ヒドロキシ酪酸、 2 ヒドロキシ一 n—酪酸、 2 ヒドロキシ 3, 3 ジメチル酪酸、 2 ヒドロキシ 3 メチル酪酸、 2 メチル乳酸、 2—ヒドロキシカプロン酸等の 2官能脂肪族ヒドロキシカルボン酸や力 プロラタトン、プチ口ラタトン、バレロラタトン等のラタトン類が挙げられる。  [0033] The a-hydroxycarboxylic acid as a monomer used in the production of the lactic acid copolymer includes glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-1-n-butyric acid, 2-hydroxy Examples include bifunctional aliphatic hydroxycarboxylic acids such as 3,3 dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, and latatones such as prolatatone, petit-mouthed ratataton, and valerolatataton.
[0034] 前記乳酸系共重合体の製造に用いる単量体である前記のジオール成分としては、 エチレングリコーノレ、プロピレングリコール、 1, 4 ブタンジオール、 1, 4 シクロへキ サンジメタノール等が挙げられる。また、ジカルボン酸成分としては、例えば、コハク 酸、アジピン酸、スベリン酸、セバシン酸及びドデカン二酸等が挙げられる。  [0034] Examples of the diol component that is a monomer used in the production of the lactic acid-based copolymer include ethylene glycol, propylene glycol, 1,4 butanediol, 1,4 cyclohexanedimethanol, and the like. . Examples of the dicarboxylic acid component include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.
[0035] 前記ポリ乳酸系榭脂組成物 (A)は、耐熱性を向上させるために、少量の他の共重 合成分を含有していてもよい。そのような共重合成分としては、例えば、テレフタル酸 等の芳香族カルボン酸、ビスフエノール Aのエチレンオキサイド付加物等の芳香族ジ オール等が挙げられる。さらに前記ポリ乳酸系榭脂組成物 (A)は、分子量を増加さ せる目的で、少量の鎖延長剤、例えばジイソシァネートイ匕合物、エポキシィ匕合物、酸 無水物等を含有して ヽてもよ ヽ。 [0035] The polylactic acid-based resin composition (A) may contain a small amount of another copolymer component in order to improve heat resistance. Examples of such copolymer components include aromatic carboxylic acids such as terephthalic acid, and aromatic dials such as bisphenol A ethylene oxide adducts. Furthermore, the polylactic acid-based resin composition (A) has an increased molecular weight. For this purpose, a small amount of a chain extender such as a diisocyanate compound, an epoxy compound or an acid anhydride may be contained.
[0036] 前記ポリ乳酸系榭脂組成物 (A)のビカット軟ィ匕点は、 50°C以上であるとよぐ 55°C 以上であると好ましい。ビカット軟ィ匕点が 50°C以上であれば、得られる熱収縮性空孔 含有フィルムを常温よりやや高い温度、例えば夏場に放置しておいても、自然収縮を 抑制できるが、 50°C未満であるとこの自然収縮を抑制しきれなくなってしまうおそれ がある。一方で、ビカット軟ィ匕点は 95°C以下であるとよぐ 85°C以下であると好ましい 。 95°Cを超えるとフィルムの延伸時に低温延伸を行うことが難しくなり、得られるフィル ムに良好な収縮特性を与えることが難しくなつてしまう。  [0036] The Vicat softness point of the polylactic acid-based resin composition (A) is preferably 50 ° C or higher and 55 ° C or higher. If the Vicat soft spot is 50 ° C or higher, the resulting heat-shrinkable pore-containing film can suppress spontaneous shrinkage even if it is left at a temperature slightly higher than room temperature, for example, in the summer, but 50 ° C If it is less than this, this natural shrinkage may not be suppressed. On the other hand, the Vicat soft spot is preferably 95 ° C or less and preferably 85 ° C or less. If it exceeds 95 ° C, it will be difficult to perform low-temperature stretching when the film is stretched, and it will be difficult to give good shrinkage characteristics to the resulting film.
[0037] 前記ポリ乳酸系榭脂組成物 (A)の質量平均分子量は、 20, 000以上であるとよぐ 40, 000以上力 Sさらによく、 50, 000以上であるとよりさらによく、 60, 000以上力 Sもつ とよぐ 100, 000以上であるとより好ましい。質量平均分子量が 20, 000以上であれ ば、機械的強度が劣るなどの不具合を生じづらく好適であり、また、適度な榭脂凝集 力が得られ、フィルムの強伸度が不足したり、脆ィ匕したりすることを抑えることができる o一方で 400, 000以下であるとよく、 350, 000以下力 S好ましく、 250, 000以下の 範囲であるとより好ましい。 400, 000以下であれば溶融粘度が高くなりすぎ成形カロ ェ性を低下させるなどの不具合を生じづらく好適である。  [0037] The mass average molecular weight of the polylactic acid-based resin composition (A) is preferably 20,000 or more, more than 40,000 force S, and even more preferably 50,000 or more, It is more preferable that it is 100,000 or more. If the mass average molecular weight is 20,000 or more, it is preferable that defects such as inferior mechanical strength are difficult to occur, an appropriate cohesive strength of the resin is obtained, and the film has insufficient strength and is brittle. O On the other hand, it should be 400,000 or less, preferably 350,000 or less, and more preferably 250,000 or less. If it is 400,000 or less, the melt viscosity becomes too high, and it is difficult to cause problems such as a decrease in molding caloric properties.
[0038] このような、前記ポリ乳酸系榭脂組成物 (A)として使用できる代表的な榭脂組成物 としては、三井化学 (株)製の「レイシァ」シリーズ、 Nature WorksLLC社製の「Nat ure Works」シリーズ等が商業的に入手されるものとして挙げられる。  [0038] Typical examples of such a resin composition that can be used as the polylactic acid-based resin composition (A) include "Lacy" series manufactured by Mitsui Chemicals, Inc., "Nat" manufactured by Nature Works LLC. The “ure Works” series and the like are commercially available.
[0039] また、前記 (A)成分は、耐熱性を向上させる等の目的で、少量の他の共重合成分 を含有することもできる。そのような共重合成分としては、例えば、テレフタル酸等の 芳香族カルボン酸、ビスフエノール Aのエチレンオキサイド付加物等の芳香族ジォー ル等が挙げられる。さらに A成分は、分子量を増加させる目的で、少量の鎖延長剤、 例えばジイソシァネートイ匕合物、エポキシィ匕合物、酸無水物等を含有することもでき る。  [0039] The component (A) can also contain a small amount of other copolymerization components for the purpose of improving heat resistance. Examples of such a copolymer component include aromatic carboxylic acids such as terephthalic acid, and aromatic diols such as ethylene oxide adducts of bisphenol A. Furthermore, the component A can contain a small amount of a chain extender such as a diisocyanate compound, an epoxy compound, an acid anhydride, etc. for the purpose of increasing the molecular weight.
[0040] < (B)成分 >  [0040] <Component (B)>
前記 (B)成分とは、(A)成分に非相溶で、所定の特性を有するポリオレフイン系榭 脂組成物をいう。ここで、「非相溶」とは、前記の (A)成分と (B)成分との混合榭脂組 成物を電子顕微鏡等の光学装置を用いて観察したときに、 (A)成分中にお!、て (B) 成分が平均径 0. 1 μ m以上のドメインを形成して 、る状態を!、う。 The component (B) is a polyolefin-based soot that is incompatible with the component (A) and has predetermined characteristics. Refers to a fat composition. Here, “incompatible” means that when the mixed resin composition of the component (A) and the component (B) is observed using an optical device such as an electron microscope, the component (A) In this state, the component (B) forms a domain having an average diameter of 0.1 μm or more.
[0041] 前記 (B)成分を構成する榭脂としては、高密度ポリエチレン、中密度ポリエチレン、 低密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン系榭脂、高結晶性 ホモポリプロピレン、ランダムポリプロピレン等のポリプロピレン系榭脂、ポリメチルテル ペン、又はこれらの混合榭脂等が挙げられ、好ましくは高結晶性ポリプロピレンである 。これらの榭脂は単体で又は 2種以上を混合して用いることができる。  [0041] Examples of the resin constituting the component (B) include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene and other polyethylene-based resins, highly crystalline homopolypropylene, random polypropylene, and the like. Polypropylene resin, polymethyl terpene, or mixed resin of these, and high crystalline polypropylene is preferable. These coffins can be used alone or in admixture of two or more.
[0042] 前記 (B)成分を構成する榭脂は、より具体的には、ポリエチレン系榭脂として商品 名「ノバテック HD、 LD、 LLJ「カーネル」「タフマー A, PJ (日本ポリエチレン (株)製) 、 「サンテック HD, LDJ (旭化成ライフ &リビング (株)製)、「HIZEX」「ULTZEX」「E VOLUEJ (三井化学 (株)製)、「モアテック」(出光興産 (株)製)、「UBEポリエチレン 」「UMERIT」(宇部興産 (株)製)、「NUCポリエチレン」「ナックフレックス」(日本ュ- カー (株)製)、「Engage」(ダウケミカル (株)製)などが市販されている。またポリプロ ピレン系榭脂としては、商品名「ノバテック PP」「WINTEC」「タフマー XR」(日本ポリ プロ (株)製)、「三井ポリプロ」(三井化学 (株)製)、「住友ノーブレン」「タフセレン」「ェ クセレン EPX」(住友化学(株)製)、「IDEMITSU PP」「IDEMITSU TPO」(出 光興産 (株)製)、「Adflex」「Adsyl」(サンァロマー (株)製)などが市販されて 、る。 また、ポリメチルペンテン系榭脂としては、「TPX」(三井ィ匕学 (株)製)が市販されてい る。これらは、各々単独に、又は 2種以上を混合して使用することができる。  [0042] The resin constituting the component (B) is more specifically a polyethylene-based resin having the trade names "Novatech HD, LD, LLJ" Kernel "" Toughmer A, PJ (manufactured by Nippon Polyethylene Co., Ltd.) ) "Suntech HD, LDJ (Asahi Kasei Life & Living Co., Ltd.)", "HIZEX" "ULTZEX" "E VOLUEJ (Mitsui Chemicals Co., Ltd.)", "More Tech" (Idemitsu Kosan Co., Ltd.), "UBE Polyethylene "UMERIT" (manufactured by Ube Industries Co., Ltd.), "NUC polyethylene" "Nacflex" (manufactured by Nippon Car Co., Ltd.), "Engage" (manufactured by Dow Chemical Co., Ltd.) . Polypropylene-based resins include the product names “NOVATEC PP”, “WINTEC”, “Toughmer XR” (manufactured by Nippon Polypro), “Mitsui Polypro” (manufactured by Mitsui Chemicals), “Sumitomo Noblen”, “ "Tufselen", "Exelen EPX" (manufactured by Sumitomo Chemical Co., Ltd.), "IDEMITSU PP", "IDEMITSU TPO" (manufactured by Idemitsu Kosan Co., Ltd.), "Adflex", "Adsyl" (manufactured by Sanalomar Co., Ltd.) It has been. As a polymethylpentene resin, “TPX” (manufactured by Mitsui Engineering Co., Ltd.) is commercially available. These can be used alone or in admixture of two or more.
[0043] 前記(Β)成分の密度は、 0. 50g/cm3以上、好ましくは 0. 65g/cm3以上、さらに 好ましくは 0. 80g/cm3以上であり、 1. 00g/cm3以下、好ましくは 0. 96g/cm3以 下、さらに好ましくは 0. 92g/cm3以下の範囲であることが望ましい。密度が 1. 00g Zcm3以下であればフィルム全体の比重を低減させる効果が大きぐ密度が 0. 50g Zcm3以上であれば剛性に欠け延伸時に空孔を生じさせにくいなどの不具合が起こ りづらぐ好適である。 The density of [0043] the (beta) component, 0. 50 g / cm 3 or higher, preferably 0. 65 g / cm 3 or more, more preferably 0. 80 g / cm 3 or more, 1. 00g / cm 3 or less preferably 0. 96 g / cm 3 hereinafter, still more preferably in the range of 0. 92 g / cm 3 or less. If the density is 1.00 g Zcm 3 or less, the effect of reducing the specific gravity of the entire film is great. If the density is 0.50 g Zcm 3 or more, problems such as lack of rigidity and difficulty in forming pores during stretching occur. It is preferable.
[0044] 前記 (B)成分は、 (A)成分として用いられるポリ乳酸系榭脂組成物より比重が小さ いため、(A)成分と (B)成分との混合榭脂組成物を含むフィルムは、(A)成分単独か らなるフィルムの場合と比較して、比重をより小さくすることができる。さらに、前記 ) 成分が存在することによって延伸時に生じる空孔により、嵩比重をより小さくすること ができる。 [0044] Since the component (B) has a specific gravity smaller than that of the polylactic acid-based resin composition used as the component (A), the film containing the mixed resin composition of the component (A) and the component (B) is , (A) component alone The specific gravity can be further reduced as compared with the case of the film. Furthermore, the bulk specific gravity can be further reduced by the voids generated during stretching due to the presence of the component (1).
[0045] 前記 (B)成分は、周波数 10Hz、歪み 0. 1%で測定したときの 80°Cにおける貯蔵 弾性率が、 0. 25GPa以上、好ましくは 0. 40GPa以上であり、かつ 2. OOGPa以下、 好ましくは 1. 50GPa以下の範囲である。貯蔵弾性率が 0. 25GPa以上であれば、後 述する延伸工程において、フィルムに空孔を付与でき、また、貯蔵弾性率が 2. OOG Pa以下であれば、所望の結晶性が得られ、かつ比重も比較的小さくできるため、目 的とする嵩比重のフィルムを得やす 、。  [0045] The component (B) has a storage elastic modulus at 80 ° C when measured at a frequency of 10 Hz and a strain of 0.1%, of 0.25 GPa or more, preferably 0.40 GPa or more, and 2. OOGPa Below, preferably 1.50 GPa or less. If the storage elastic modulus is 0.25 GPa or more, pores can be imparted to the film in the stretching step described below, and if the storage elastic modulus is 2. OOG Pa or less, the desired crystallinity is obtained. In addition, since the specific gravity can be made relatively small, it is easy to obtain a film having a desired bulk specific gravity.
[0046] また、前記(B)成分は、 JIS K7211に基づいて測定されるメルトフローレート(以下 、「MFR」と略記する。)が、 0. 5gZlO分以上であると好ましぐ 1. OgZlO分以上で あるとより好ましい。また MFRは、 50gZlO分以下であると好ましぐ 35gZlO分以 下であるとより好ましぐ 20gZlO分以下であるとさらに好ましい。(B)成分の MFRが 1. OgZlO分以上であれば、フィルムに海島構造が形成された際に分散ドメインのサ ィズが大きくなりすぎたり、分散状態が悪く空孔が均一に発生しにくくなつたりするな どの不具合を生じることなぐ好適である。一方、(B)成分の MFRが 50gZlO分以下 であれば、前記の海島構造が形成された際に分散ドメインのサイズが小さくなり、ドメ イン自体の強度が低下し、低温での耐破断性を十分に付与できな 、などの不具合を 生じることなく好適である。  [0046] The component (B) preferably has a melt flow rate (hereinafter abbreviated as "MFR") measured based on JIS K7211 of 0.5 gZlO or more. 1. OgZlO More preferably, it is more than minutes. The MFR is preferably 50 gZlO or less, more preferably 35 gZlO or less, and even more preferably 20 gZlO or less. If the MFR of component (B) is 1. OgZlO or more, when the sea-island structure is formed on the film, the size of the dispersion domain becomes too large, or the dispersion state is poor and vacancies are not easily generated. This is suitable for preventing problems such as snoring. On the other hand, if the MFR of the component (B) is 50 gZlO or less, the size of the dispersed domain is reduced when the sea-island structure is formed, the strength of the domain itself is reduced, and the fracture resistance at low temperatures is reduced. It is suitable without causing problems such as insufficient application.
[0047] 前記 (B)成分は (A)成分や後述する(C)成分に非相溶であるため、両成分が混合 される(I)層は海島構造をとる。後述するように、この発明のフィルムの (I)層では (B) 成分よりも (A)成分が多く存在するため、(A)成分や (C)成分が海部分、すなわちマ トリックスを形成し、(B)成分が島部分、すなわち分散ドメインを形成する。詳細につ いては後述する。  [0047] Since the component (B) is incompatible with the component (A) and the component (C) described later, the (I) layer in which both components are mixed has a sea-island structure. As will be described later, in the (I) layer of the film of the present invention, the (A) component is present more than the (B) component, so the (A) component and (C) component form a sea part, that is, a matrix. , (B) component forms an island portion, that is, a dispersion domain. Details will be described later.
[0048] < (C)成分 >  [0048] <(C) component>
前記 (C)成分とは、前記 (A)成分以外のゴム弾性を示すゴム成分である軟質成分 をいう。この発明のフィルムの而衝撃性を向上させる目的で、この発明のフィルムの 剛性を損なわない範囲内で添加することができる。 [0049] 具体的には、(C)成分として、ポリ乳酸系榭脂以外の Tgが 0°C以下である乳酸系 重合体、ポリ乳酸系榭脂以外の脂肪族ポリエステル、芳香族脂肪族ポリエステル、ジ オールとジカルボン酸と乳酸系榭脂との共重合体、コアシェル構造型ゴム、エチレン 酢酸ビュル共重合体(EVA)、エチレンアクリル酸ェチル共重合体(EEA)、ェチ レン (メタ)アクリル酸共重合体(EAA、 EMA)、エチレン(メタ)アクリル酸メチル共重 合体(EMMA等)、スチレンイソプレン共重合体(SIS)、スチレンブタジエン共重合 体(SBS)、スチレンエチレンブチレン共重合体(SEBS)、酸変性 SEBS等のスチレ ン系エラストマ一等を挙げることができ、その中でも、ポリ乳酸系榭脂以外の脂肪族 ポリエステル、芳香族脂肪族ポリエステル、ジオールとジカルボン酸と乳酸系榭脂と の共重合体、コアシェル構造型ゴム、及びエチレン酢酸ビニル共重合体 (EVA)等が 好適に用いられる。 The component (C) refers to a soft component that is a rubber component exhibiting rubber elasticity other than the component (A). For the purpose of improving the metaimpact of the film of the present invention, it can be added within a range not impairing the rigidity of the film of the present invention. [0049] Specifically, as the component (C), a lactic acid polymer having a Tg of 0 ° C or less other than the polylactic acid resin, an aliphatic polyester other than the polylactic acid resin, and an aromatic aliphatic polyester , Copolymer of diol, dicarboxylic acid and lactic acid-based resin, core-shell structure rubber, ethylene acetate butyl copolymer (EVA), ethylene acrylate ethyl acrylate copolymer (EEA), ethylene (meth) acrylic Acid copolymer (EAA, EMA), ethylene (meth) methyl acrylate copolymer (EMMA, etc.), styrene isoprene copolymer (SIS), styrene butadiene copolymer (SBS), styrene ethylene butylene copolymer ( SEBS), styrene-based elastomers such as acid-modified SEBS, and the like. Among them, aliphatic polyesters other than polylactic acid-based resin, aromatic aliphatic polyester, diol, dicarboxylic acid, and lactic acid-based resin Copolymers, core-shell structure type rubbers, and ethylene-vinyl acetate copolymer (EVA) or the like is preferably used.
[0050] 前記ポリ乳酸系榭脂以外の Tgが 0°C以下の乳酸系共重合体とは、乳酸と exーヒド ロキシカルボン酸成分若しくはジカルボン酸成分とジオール成分との共重合体であ つて、 Tgが 0°C以下のものをいう。前記 Tgが 0°C以下の乳酸系共重合体を形成する aーヒドロキシカルボン酸成分としては、例えば、グリコール酸、 3—ヒドロキシ酪酸、 4 ーヒドロキシ酪酸、 2 ヒドロキシ—n—酪酸、 2 ヒドロキシ 3, 3 ジメチル酪酸、 2 ーヒドロキシー3 メチル酪酸、 2 メチル乳酸、 2 ヒドロキシカプロン酸等の 2官能 脂肪族ヒドロキシカルボン酸や力プロラタトン、プチ口ラタトン、バレロラタトン等のラクト ン類が挙げられる。また、前記 Tgが 0°C以下の乳酸系共重合体を形成するジオール 成分としては、例えば、エチレングリコール、プロピレングリコール、 1, 4 ブタンジォ ール、及び 1, 4ーシクロへキサンジメタノール等が挙げられる。また、ジカルボン酸成 分としては、例えば、コハク酸、アジピン酸、スベリン酸、セバシン酸及びドデカン二 酸等が挙げられる。  [0050] The lactic acid-based copolymer having a Tg of 0 ° C or lower other than the polylactic acid-based resin is a copolymer of lactic acid and an ex-hydroxycarboxylic acid component or a dicarboxylic acid component and a diol component, Tg is 0 ° C or less. Examples of the a-hydroxycarboxylic acid component that forms a lactic acid copolymer having a Tg of 0 ° C. or less include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2 hydroxy-n-butyric acid, 2 hydroxy3, 3 Bifunctional aliphatic hydroxycarboxylic acids such as dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, and 2-hydroxycaproic acid, and lactones such as force prolatatone, petit-mouthed ratataton, and valerolatatone. Examples of the diol component that forms the lactic acid copolymer having a Tg of 0 ° C. or lower include ethylene glycol, propylene glycol, 1,4 butanediol, and 1,4-cyclohexanedimethanol. It is done. Examples of the dicarboxylic acid component include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.
[0051] 商業的に入手可能な前記 TgO°C以下の乳酸系共重合体の例としては、例えば商 品名「ブラメート」(大日本インキ化学工業社製)や商品名「GS— PLA」(三菱化学社 製)などが挙げられる。  [0051] Examples of commercially available lactic acid-based copolymers having a TgO ° C or lower include, for example, the product name “Bramate” (manufactured by Dainippon Ink & Chemicals) and the product name “GS-PLA” (Mitsubishi). Chemical Co., Ltd.).
[0052] 前記ポリ乳酸系榭脂以外の脂肪族ポリエステル榭脂としては、例えば、乳酸を除く aーヒドロキシカルボン酸の単独重合体、脂肪族ジオールと脂肪族ジカルボン酸とを 縮合して得られる脂肪族ポリエステル、環状ラタトン類を開環重合した脂肪族ポリエス テル、合成系脂肪族ポリエステル等の PLA系榭脂を除く脂肪族ポリエステル榭脂が 挙げられる。 [0052] Examples of the aliphatic polyester resin other than the polylactic acid-based resin include, for example, an a-hydroxycarboxylic acid homopolymer excluding lactic acid, an aliphatic diol and an aliphatic dicarboxylic acid. Aliphatic polyester resin except PLA polyester such as aliphatic polyester obtained by condensation, aliphatic polyester obtained by ring-opening polymerization of cyclic ratatones, and synthetic aliphatic polyester.
[0053] ここで、 α—ヒドロキシカルボン酸残基としては、グリコール酸、 3 ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 2 ヒドロキシ η—酪酸、 2 ヒドロキシ 3, 3 ジメチル酪酸、 2 ヒドロキシー3 メチル酪酸、 2 メチル乳酸、 2 ヒドロキシカプロン酸等の 2官 能脂肪族ヒドロキシカルボン酸力 誘導される残基や力プロラタトン、プチ口ラタトン、 ノル口ラタトン等のラタトン類力 誘導される残基が挙げられる。  Here, α-hydroxycarboxylic acid residues include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy η-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid. 2 Residues induced by bifunctional aliphatic hydroxycarboxylic acids such as hydroxycaproic acid, and residues induced by ratatones such as force prolatatone, petit-mouthed rataton and normouthed rataton.
[0054] また、脂肪族ジオールと脂肪族ジカルボン酸とを縮合して得られる脂肪族ポリエス テルの具体例としては、エチレングリコール、 1, 4 ブタンジオール、へキサンジォー ル、オクタンジオール、シクロペンタンジオール、シクロへキサンジオール、 1, 4ーシ クロへキサンジメタノール等の脂肪族ジオール又はこれらの無水物や誘導体と、コハ ク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、 又はこれらの無水物や誘導体の中力 それぞれ 1種類以上選んで縮合重合すること により得られたものが挙げられる。この際、必要に応じてイソシァネートイ匕合物等でジ ヤンプアップすることにより、所望のポリマーを得ることができる。  [0054] Specific examples of the aliphatic polyester obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid include ethylene glycol, 1,4 butanediol, hexanediol, octanediol, cyclopentanediol, Aliphatic diols such as cyclohexanediol, 1,4-cyclohexanedimethanol, or anhydrides and derivatives thereof, and aliphatic dicarboxylic acids such as succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid Examples include one obtained by condensation polymerization of one or more of each of acids or their anhydrides and derivatives. At this time, if desired, the desired polymer can be obtained by jumping up with isocyanate compound or the like.
[0055] また、前記の環状ラタトン類を開環重合した脂肪族ポリエステルとしては、環状モノ マーとして、 ε—力プロラタトン、 δ—バレロラタトン、 13—メチルー δ—バレロラタトン 等から 1種類以上を選択して重合したものが挙げられる。さらに、前記の合成系脂肪 族ポリエステルとしては、無水コハク酸等の環状酸無水物と、エチレンオキサイドゃプ ロピレンオキサイド等のォキシラン類との共重合体等が挙げられる。  [0055] In addition, as the aliphatic polyester obtained by ring-opening polymerization of the above-mentioned cyclic ratatones, one or more kinds selected from ε-force prolatatatone, δ-valerolataton, 13-methyl-δ-valerolataton, etc. are selected as cyclic monomers. Polymerized ones can be mentioned. Furthermore, examples of the synthetic aliphatic polyester include a copolymer of a cyclic acid anhydride such as succinic anhydride and an oxysilane such as ethylene oxide propylene oxide.
[0056] 商業的に入手可能な前記ポリ乳酸系榭脂以外の脂肪族ポリエステル榭脂の例とし ては、商品名「ピオノーレ」(昭和高分子 (株)製)、商品名「セルグリーン」(ダイセル化 学工業 (株)製)や、商品名「トーンポリマー」(ユニオンカーバイド日本社製)などが挙 げられる。  [0056] Examples of commercially available aliphatic polyester resin other than the polylactic acid resin include the trade name "Pionore" (manufactured by Showa Polymer Co., Ltd.), the trade name "Cell Green" ( Daicel Kagaku Kogyo Co., Ltd.) and the trade name “Tone Polymer” (Union Carbide Japan Co., Ltd.).
[0057] 前記 (C)成分として用いる前記芳香族脂肪族ポリエステル榭脂とは、脂肪族ジォー ル若しくはその誘導体と、脂肪族ジカルボン酸若しくはその誘導体と、芳香族ジカル ボン酸又はその誘導体とを、縮合重合したものである。また、前記芳香族ポリエステ ル榭脂とは、芳香族ジカルボン酸若しくはその誘導体と、芳香族ジカルボン酸又はそ の誘導体とを、縮合重合したものである。このうち、芳香族ジオール若しくはその誘導 体としては、ビスフエノール Aのエチレンオキサイド付加物などが挙げられる。また、芳 香族ジカルボン酸若しくはその誘導体としては、テレフタル酸、イソフタル酸、オルト フタル酸、 2, 4 ナフタレンジカルボン酸、パラフエ-ルジカルボン酸などが挙げられ る。この縮合重合の際、必要に応じてイソシァネートイ匕合物等で鎖延長することにより 、所望のポリマーを得ることができる。 [0057] The aromatic aliphatic polyester resin used as the component (C) includes an aliphatic diol or a derivative thereof, an aliphatic dicarboxylic acid or a derivative thereof, and an aromatic dicarboxylic acid or a derivative thereof. Condensation polymerized. In addition, the aromatic polyester Lubricant is a product obtained by condensation polymerization of an aromatic dicarboxylic acid or a derivative thereof and an aromatic dicarboxylic acid or a derivative thereof. Among these, examples of aromatic diols or derivatives thereof include bisphenol A ethylene oxide adducts. In addition, examples of aromatic dicarboxylic acids or derivatives thereof include terephthalic acid, isophthalic acid, orthophthalic acid, 2,4 naphthalene dicarboxylic acid, paraphenol dicarboxylic acid, and the like. In this condensation polymerization, a desired polymer can be obtained by extending the chain with an isocyanate compound or the like as necessary.
[0058] 前記の芳香族脂肪族ポリエステル榭脂の商業的に入手可能な例としては、商品名 「イースターバイオ」(イーストマンケミカルズ社製)や、商品名「ェコフレックス」(BAS F社製)が挙げられる。 [0058] Commercially available examples of the above aromatic aliphatic polyester rosin include the product name "Easter Bio" (Eastman Chemicals) and the product name "Ecoflex" (BAS F) ).
[0059] 前記 (C)成分として用いる前記 TgO°C以下の乳酸系共重合体、脂肪族ポリエステ ル榭脂、脂肪族芳香族ポリエステル榭脂の質量 (重量)平均分子量は、 50, 000以 上であると好ましぐ 100, 000以上であるとより好ましい。 50, 000以上であれば機 械的強度が劣るなどの不具合が生じづらぐ好適である。一方で、質量 (重量)平均 分子量 400, 000以下であると好ましく、 250, 000以下であるとより好まし!/、。 400, 000以下であれば、溶解粘度が高くなりすぎて成形加工性を低下させるなどの不具 合が生じづらぐ好適である。  [0059] The mass (weight) average molecular weight of the lactic acid copolymer of TgO ° C or less, the aliphatic polyester resin, and the aliphatic aromatic polyester resin used as the component (C) is 50,000 or more. It is more preferable that it is 100,000 or more. If it is 50,000 or more, it is preferable that problems such as inferior mechanical strength hardly occur. On the other hand, the mass (weight) average molecular weight is preferably 400,000 or less, more preferably 250,000 or less! /. If it is 400,000 or less, it is preferable that problems such as a decrease in molding processability due to excessive increase in melt viscosity are difficult to occur.
[0060] 前記のジオールとジカルボン酸と乳酸系榭脂との共重合体とは、乳酸系共重合体 のことであり、 Tgが 0°C以下のものが好ましい。この例としては、商品名「ブラメート」 ( 大日本インキ化学工業 (株)製)、商品名「GS― PLA」(三菱化学 (株)製)等があげら れる。  [0060] The above-mentioned copolymer of diol, dicarboxylic acid, and lactic acid-based resin is a lactic acid-based copolymer, and preferably has a Tg of 0 ° C or lower. Examples of this include a trade name “Bramate” (Dainippon Ink Chemical Co., Ltd.), a trade name “GS-PLA” (Mitsubishi Chemical Corporation), and the like.
[0061] また、前記 (C)成分として使用するコアシェル構造ゴムとしては、メタクリル酸一ブタ ジェン共重合体、アクリロニトリル ブタジエンスチレン共重合体などのジェン系コア シェル型重合体、メタクリル酸 スチレン アクリロニトリル共重合体などのアクリル系 コアシェル型重合体、シリコーンーメタクリル酸ーメチルメタクリル酸共重合体、シリコ 一ン一メタクリル酸一アクリロニトリル一スチレン共重合体などのシリコーン系コアシェ ル型共重合体が挙げられる。この中でも前記 (A)成分との相溶性が良好であり、フィ ルムの耐衝撃性、透明性のバランスのとれるシリコーンーメタクリル酸 メチルメタタリ ル酸共重合体がより好適に用いられる。 [0061] The core-shell structure rubber used as the component (C) includes gen-based core-shell type polymers such as monobutadiene methacrylate methacrylate and acrylonitrile butadiene styrene copolymer, styrene acrylonitrile methacrylate copolymer Examples thereof include acrylic core-shell type polymers such as coalescence, silicone-based core-shell type copolymers such as silicone-methacrylic acid-methyl methacrylic acid copolymer, and silicone-one-methacrylic acid-acrylonitrile-styrene copolymer. Among these, silicone-methyl methacrylate is excellent in compatibility with the component (A), and can balance the impact resistance and transparency of the film. A phosphoric acid copolymer is more preferably used.
[0062] 前記コアシェル構造ゴムのシェル部の質量(重量)平均分子量は、 10, 000以上で あると好ましく、 50, 000以上であるとより好ましい。 10, 000以上であれば機械的強 度が劣るなどの不具合が生じづらぐ好適である。一方で、前記重量平均分子量は 1 , 500, 000以下であると好ましく、 100, 000以下であるとより好まし!/ヽ。 1, 500, 00 0以下であれば、溶解粘度が高くなりすぎて成形加工性を低下させるなどの不具合 が生じづらぐ好適である。  [0062] The mass (weight) average molecular weight of the shell portion of the core-shell structure rubber is preferably 10,000 or more, and more preferably 50,000 or more. If it is 10,000 or more, it is preferable that problems such as inferior mechanical strength hardly occur. On the other hand, the weight average molecular weight is preferably 1,500,000 or less, and more preferably 100,000 or less! / ヽ. If it is 1,500,000 or less, it is preferable that the melt viscosity becomes too high and problems such as deterioration of molding processability are difficult to occur.
[0063] このようなコアシェル構造ゴムの商業的に入手可能な例としては、「メタブレン C、 S、 E、 Wj (三菱レイヨン (株)製)、「カネエース」((株)カネ力製)などが挙げられる。  [0063] Commercially available examples of such core-shell structured rubber include "Metablene C, S, E, Wj (Mitsubishi Rayon Co., Ltd.)", "Kane Ace" (Kaneki Co., Ltd.), etc. Is mentioned.
[0064] さらに、前記 (C)成分として用いるエチレン 酢酸ビュル共重合体 (EVA)、ェチレ ンー(メタ)アクリル酸共重合体 (EAA)、エチレン (メタ)アクリル酸エステル共重合 体(EMA)、エチレン メチル (メタ)アクリル酸エステル共重合体(EMMA)としては 、エチレン以外のコモノマー含有量が 20質量%以上、好ましくは 40質量%であり、 9 0質量%以下、好ましくは 80質量%以下のものが好適に使用される。エチレン以外 のコモノマー含有量が 20質量%以上であればフィルムの耐破断性に対する効果が 十分に得られるほか、透明性も維持できるため好ましい。一方、エチレン以外のコモ ノマー含有量が 80質量%以下であればフィルム全体の剛性、耐熱性を良好に維持 できるため好ましい。これらの中でも、エチレン 酢酸ビュル共重合体 (EVA)がより 好適に使用される。  [0064] Further, ethylene acetate butyl copolymer (EVA), ethylene (meth) acrylic acid copolymer (EAA), ethylene (meth) acrylic acid ester copolymer (EMA), used as the component (C), The ethylene methyl (meth) acrylate copolymer (EMMA) has a comonomer content other than ethylene of 20% by mass or more, preferably 40% by mass, 90% by mass or less, preferably 80% by mass or less. Those are preferably used. If the comonomer content other than ethylene is 20% by mass or more, an effect on the fracture resistance of the film can be sufficiently obtained, and transparency can be maintained, which is preferable. On the other hand, if the content of monomers other than ethylene is 80% by mass or less, the rigidity and heat resistance of the entire film can be maintained well, which is preferable. Among these, ethylene acetate butyl copolymer (EVA) is more preferably used.
[0065] 前記 EVA、 EAA、 EMMAのメルトフローレート(MFR)は、特に制限されるもので はないが、通常、 MFR(JIS K7210、温度: 190°C、荷重: 21. 18Nでの値)が、 0. 5gZlO分以上、好ましくは 1. OgZlO分以上であり、 15gZl0分以下、好ましくは 1 OgZlO分以下であることが望まし 、。  [0065] The melt flow rate (MFR) of EVA, EAA, and EMMA is not particularly limited, but usually MFR (value at JIS K7210, temperature: 190 ° C, load: 21.18N) Is 0.5 gZlO min or more, preferably 1. OgZlO min or more, 15 gZl0 min or less, preferably 1 OgZlO min or less.
[0066] 商業的に入手できる例としては、エチレン 酢酸ビニル共重合体 (EVA)としては「 EVAFLEXJ (三井デュポンポリケミカル (株)製)、「ノバテック EVA」(三菱化学 (株) 製)、「エバスレン」(大日本インキ化学工業 (株)製)、「エバテート」(住友化学 (株)製 )、「ソアブレン」(日本合成化学 (株)製)、エチレン—アクリル酸共重合体 (EAA)とし ては「ノバテック EAA」(三菱ィ匕学 (株)製)、エチレン アクリル酸ェチル共重合体 (E MA)やエチレン—(メタ)アクリル酸共重合体 (EMA)としては「ノアフロイ AC」(三井 デュポンポリケミカル (株)製)、エチレン メチル (メタ)アクリル酸共重合体 (EMMA )としては「ァクリフト」(住友化学 (株)製)などが挙げられる。 [0066] Examples of commercially available ethylene vinyl acetate copolymers (EVA) include EVAFLEXJ (Mitsui DuPont Polychemical Co., Ltd.), Novatec EVA (Mitsubishi Chemical Co., Ltd.), Ebaslene (Dainippon Ink Chemical Co., Ltd.), Evaate (Sumitomo Chemical Co., Ltd.), Soabrene (Nippon Gosei Co., Ltd.), ethylene-acrylic acid copolymer (EAA) "Novatech EAA" (Mitsubishi Chemical Co., Ltd.), Ethylene acrylate copolymer (E MA) and ethylene- (meth) acrylic acid copolymer (EMA) are “NOAFLOY AC” (Mitsui DuPont Polychemical Co., Ltd.), and ethylene methyl (meth) acrylic acid copolymer (EMMA) is “ACLIFT (Sumitomo Chemical Co., Ltd.).
[0067] 前記エチレン 酢酸ビニル共重合体 (EVA)、エチレン (メタ)アクリル酸共重合 体(EAA)、エチレン (メタ)アクリル酸エステル共重合体(EMA)、エチレンーメチ ル (メタ)アクリル酸エステル共重合体(EMMA)としては、エチレン以外のコモノマー 含有量が 10質量%以上、好ましくは 40質量%以上であって、 90質量%以下、好ま しくは 80質量%以下のものが好適に使用される。前記範囲内にすることにより、後述 する (II)層に十分な軟質性を付与しつつ、溶剤シール性の低下を生じなくさせること が可能となる。 [0067] The ethylene vinyl acetate copolymer (EVA), ethylene (meth) acrylic acid copolymer (EAA), ethylene (meth) acrylic acid ester copolymer (EMA), ethylene-methyl (meth) acrylic acid ester copolymer As the polymer (EMMA), a comonomer content other than ethylene is preferably 10% by mass or more, preferably 40% by mass or more and 90% by mass or less, preferably 80% by mass or less. . By making it within the above range, it becomes possible to prevent the deterioration of the solvent sealing property while giving sufficient softness to the layer (II) described later.
[0068] また、前記スチレン イソプレン共重合体(SIS)、スチレン ブタジエン共重合体( SBS)、スチレン エチレンーブチレン共重合体(SEBS)、酸変性 SEBS等のスチレ ン系エラストマ一等としては、スチレン含有量が 10質量以上 50質量以下、好ましくは 20質量以上 40質量以下であることが好ましい。前記範囲にすることによって、後述 する (Π)層に十分な軟質性を付与することが可能となる。  [0068] The styrene-isoprene copolymer (SIS), styrene-butadiene copolymer (SBS), styrene ethylene-butylene copolymer (SEBS), styrene-based elastomers such as acid-modified SEBS, etc. The content is preferably 10 to 50 mass, more preferably 20 to 40 mass. By setting the amount within the above range, it becomes possible to impart sufficient softness to the layer (ii) described later.
[0069] 前記 (C)成分としては、振動周波数 10Hz、歪み 0. 1%の条件で測定したときの 23 °Cでの貯蔵弾性率が 1 X 109Pa以下、より好ましくは 5 X 108Pa以下である榭脂組成 物が用いられる。貯蔵弾性率が 1 X 109Pa以下となれば、添加することによる熱収縮 フィルムの特性を損なうことなぐシール時の層間剥離を抑えることが可能となるので ある。 [0069] As the component (C), the storage elastic modulus at 23 ° C when measured under conditions of a vibration frequency of 10 Hz and a strain of 0.1% is 1 X 10 9 Pa or less, more preferably 5 X 10 8 A resin composition having a Pa or lower is used. If the storage elastic modulus is 1 × 10 9 Pa or less, it becomes possible to suppress delamination during sealing without impairing the properties of the heat-shrinkable film due to the addition.
[0070] < (D)成分 >  [0070] <(D) component>
前記 (D)成分とは、所定の充填剤をいう。この(D)成分は、フィルムに遮光性を付 与できるものであれば無機充填剤及び有機充填剤の 、ずれの充填剤であってもよ ヽ  The component (D) refers to a predetermined filler. This component (D) may be a misaligned filler of inorganic fillers and organic fillers as long as it can impart light-shielding properties to the film.
[0071] 無機充填剤としては、炭酸カルシウム、タルク、クレー、カオリン、シリカ、珪藻土、炭 酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸バリウム、硫酸カルシウム、水 酸ィ匕アルミニウム、酸化亜鉛、水酸化マグネシウム、酸ィ匕カルシウム、酸化マグネシゥ ム、酸化チタン、アルミナ、マイ力、アスベスト粉、シラスバルーン、ゼォライト、珪酸白 土などが挙げられ、特に炭酸カルシウム、タルク、クレー、シリカ、珪藻土、硫酸バリゥ ムなどが好適である。また、有機充填剤としては、木粉、パルプ粉などのセルロース 系粉末が挙げられる。これらは単独でも、 2種以上の混合物であってもよい。 [0071] Examples of the inorganic filler include calcium carbonate, talc, clay, kaolin, silica, diatomaceous earth, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, aluminum hydroxide, zinc oxide, magnesium hydroxide. , Calcium oxide, magnesium oxide, titanium oxide, alumina, my strength, asbestos powder, shirasu balloon, zeolite, silicate white Examples of the material include calcium carbonate, talc, clay, silica, diatomaceous earth, and barium sulfate. Examples of the organic filler include cellulose powders such as wood powder and pulp powder. These may be used alone or as a mixture of two or more.
[0072] 前記 (D)成分は、フィルムを構成するベース榭脂としての (A)成分との屈折率差が 大き 、もの、すなわち無機系充填剤であって屈折率が大き 、ものを用いることが好ま しい。具体的には、屈折率が 1. 6以上である炭酸カルシウム、硫酸バリウム、酸ィ匕チ タン又は酸ィ匕亜鉛を用いることが好ましぐこれらの中でも酸ィ匕チタンを用いることが より好ましい。酸ィ匕チタンを用いることにより、内容物を劣化させる 280〜380nmの紫 外線領域の波長を良好に吸収するため、より少な 、充填量でフィルムの遮光性を付 与することができ、また薄肉でもその効果を得ることができる。 [0072] The component (D) is a material having a large refractive index difference from the component (A) as the base resin constituting the film, that is, an inorganic filler having a large refractive index. Is preferred. Specifically, it is preferable to use calcium carbonate, barium sulfate, acid titanium or acid zinc having a refractive index of 1.6 or more, and among these, it is more preferable to use acid titanium. . By using titanium oxide, it absorbs the wavelength in the ultraviolet region of 280 to 380 nm, which deteriorates the contents, so it can give the film light-shielding properties with a small amount of filling, and it is thin-walled. But you can get that effect.
[0073] 前記酸ィ匕チタンとしては、例えば、アナタース型酸ィ匕チタン及びルチル型酸ィ匕チタ ンのような結晶形の酸ィ匕チタンが挙げられる。ベース榭脂との屈折率差を大きくする という観点からは、屈折率が 2. 7以上の酸ィ匕チタンであることが好ましぐ例えば、ル チル型酸ィ匕チタンの結晶形のものを用いることが好まし 、。 [0073] Examples of the titanium oxides include crystalline titanium oxides such as anatase type titanium oxide and rutile type titanium oxide. From the viewpoint of increasing the difference in refractive index from the base resin, it is preferable to use an acid-titanium having a refractive index of 2.7 or more. For example, a crystal form of rutile-type acid-titanium is used. It is preferable to use it.
[0074] 酸ィ匕チタンの中でも、高純度酸ィ匕チタンを用いることで外観の黄色味などを最小限 に抑えることも可能となる。高純度酸ィ匕チタンとは、可視光に対する光吸収能が小さ い酸化チタンであり、例えばバナジウム、鉄、ニオブ、銅、マンガン等の着色元素の 含有量が少ないものをいい、この発明では、バナジウムの含有量が 5ppm以下、好ま しくは 3ppm以下、さらに好ましくは 2ppm以下の酸ィ匕チタンを高純度酸ィ匕チタンと称 する。高純度酸ィ匕チタンは、光吸収能を小さくするという観点からは、酸化チタンに含 まれる、その他の着色元素である鉄、ニオブ、銅、マンガン等も少なくすることが好ま しい。 [0074] Among the titanium oxides, high-purity acid titanium can be used to minimize the yellowness of the appearance. High purity titanium oxide is a titanium oxide that has a low light absorption ability for visible light, and has a low content of coloring elements such as vanadium, iron, niobium, copper, manganese, etc. A titanium oxide having a vanadium content of 5 ppm or less, preferably 3 ppm or less, and more preferably 2 ppm or less is referred to as high-purity acid titanium. From the viewpoint of reducing the light absorption ability of high-purity titanium oxide, it is preferable to reduce other coloring elements such as iron, niobium, copper, and manganese contained in titanium oxide.
[0075] この発明のフィルムでは、酸ィ匕チタンと他の充填剤とを併用することもできる。また、  [0075] In the film of the present invention, titanium oxide and other fillers can be used in combination. Also,
(D)成分の榭脂 (すなわち、(A)成分及び (B)成分)への分散性を向上させるために 、(D)成分の表面に、シリコーン系化合物、多価アルコール系化合物、アミン系化合 物、脂肪酸、脂肪酸エステル等で表面処理を施したものを使用してもよい。  In order to improve the dispersibility of the component (D) in the resin (that is, the component (A) and the component (B)), the surface of the component (D) is a silicone compound, polyhydric alcohol compound, amine compound. You may use what surface-treated with a compound, a fatty acid, fatty acid ester, etc.
[0076] 前記表面処理剤としては、例えば、アルミナ、シリカ、ジルコユア等力 なる群から 選ばれた少なくとも 1種の無機化合物、シロキサン化合物、シランカップリング剤、ポリ オール及びポリエチレングリコール力 なる群力 選ばれた少なくとも 1種の有機化合 物等を用いることができる。また、これらの無機化合物と有機化合物とを組み合わせ て用いてもよい。 [0076] Examples of the surface treatment agent include at least one inorganic compound selected from the group consisting of alumina, silica, zirconia, and the like, a siloxane compound, a silane coupling agent, and a polysiloxane. Group power of all and polyethylene glycol power At least one selected organic compound can be used. These inorganic compounds and organic compounds may be used in combination.
[0077] この発明に用いられる(D)成分の大きさは、酸ィ匕チタンを用いる場合、粒径が円相 当径で 0. 1 μ m以上、好ましく ίま 0. 2 μ m以上であり、 1 μ m以下、好ましく ίま 0. 5 μ m以下であることが望ましい。酸ィ匕チタンの粒径が円相当径で 0.: L m以上あれば、 (A)成分又は (A)成分と (B)成分の混合樹脂への分散性が良好であり、均質なフィ ルムを得ることができる。また、酸ィ匕チタンの粒径が円相当径で l /z m以下であれば、 (A)成分又は (A)成分と (B)成分との混合樹脂と酸化チタンとの界面が緻密に形成 されるので、より遮光性を向上させることができる。  [0077] The size of the component (D) used in the present invention is such that when titanium oxide is used, the particle diameter is 0.1 μm or more in terms of a circular equivalent diameter, preferably 0.2 μm or more. Yes, 1 μm or less, preferably ί or 0.5 μm or less. If the particle diameter of titanium oxide is equivalent to an equivalent circle diameter of 0 .: L m or more, the dispersibility of the component (A) or the component (A) and the component (B) in the mixed resin is good, and the Rum can be obtained. If the particle diameter of titanium oxide is equivalent to a circle equivalent l / zm or less, the interface between component (A) or a mixed resin of component (A) and component (B) and titanium oxide is formed densely. Therefore, the light shielding property can be further improved.
[0078] <この発明に力かる熱収縮性空孔含有積層フィルム及び熱収縮性空孔含有フィル ム>  <Heat-shrinkable pore-containing laminated film and heat-shrinkable pore-containing film that are useful in the present invention>
次に、この発明にかかる熱収縮性空孔含有積層フィルム (以下、「第 1の空孔含有 フィルム」と称する。)及び熱収縮性空孔含有フィルム (以下、「第 2の空孔含有フィル ム」と称する。)について説明する。  Next, a heat-shrinkable pore-containing laminated film according to the present invention (hereinafter referred to as “first pore-containing film”) and a heat-shrinkable pore-containing film (hereinafter referred to as “second pore-containing film”). Will be described.).
[0079] <第 1の空孔含有フィルム > [0079] <First pore-containing film>
第 1の空孔含有フィルムは、前記の (A)成分と (B)成分とを所定割合で含む (I)層と 、前記 ( A)成分を主成分とする榭脂組成物で構成される (II)層との少なくとも 2層を 有する、少なくとも 1軸方向に延伸したフィルムである。  The first pore-containing film is composed of a (I) layer containing the component (A) and the component (B) in a predetermined ratio, and a resin composition containing the component (A) as a main component. It is a film stretched in at least a uniaxial direction and having at least two layers (II).
[0080] [ (1)層] [0080] [(1) layer]
(混合比)  (mixing ratio)
前記 (I)層における混合榭脂組成物は、前記 (A)成分 100質量部に対し、(B)成 分は、 5質量部以上、好ましくは 10質量部以上、さらに好ましくは 20質量部以上であ つて、 90質量部以下、好ましくは 80質量部以下の量を混合して形成される。  The mixed resin composition in the (I) layer is 100 parts by mass of the component (A), and the component (B) is 5 parts by mass or more, preferably 10 parts by mass or more, more preferably 20 parts by mass or more. Therefore, it is formed by mixing an amount of 90 parts by mass or less, preferably 80 parts by mass or less.
[0081] 前記 (I)層にお 、て、 (A)成分と (B)成分とを混合した榭脂組成物は、前記のとおり [0081] In the layer (I), the rosin composition in which the component (A) and the component (B) are mixed is as described above.
(A)成分が (B)成分より多く含まれているため、(A)成分がマトリックスを形成し、 (B) 成分が分散ドメインを形成する。そのため、(I)層は海島構造を形成し、延伸すること により、マトリックスと分散ドメインとの界面で剥離を生じ、空孔を形成させることができ る。そして、使用するポリ乳酸系榭脂組成物の共重合体比率 (DZL比)を変更するこ とにより、空隙形成 ·収縮特性を好ま U、範囲に調整できる。 Since (A) component is contained more than (B) component, (A) component forms a matrix and (B) component forms a dispersion domain. Therefore, layer (I) forms a sea-island structure and can be stretched to cause separation at the interface between the matrix and the dispersed domain, thereby forming pores. The By changing the copolymer ratio (DZL ratio) of the polylactic acid-based resin composition to be used, the void formation / shrinkage characteristics can be adjusted to the desired range.
[0082] 特に、前記 (B)成分の含有量が 5質量部以上であれば、 (I)層中に空孔を形成でき 、かつ延伸した後のフィルムの嵩比重を 1. 0未満に抑えることができる。一方、(B)成 分の含有量が 90質量部以下であれば、(I)層において海島構造を形成でき、良好な 機械的特性及び耐破断性を有するフィルムを得ることができる。  [0082] In particular, when the content of the component (B) is 5 parts by mass or more, (I) the pores can be formed in the layer, and the bulk specific gravity of the stretched film is suppressed to less than 1.0. be able to. On the other hand, if the content of the component (B) is 90 parts by mass or less, a sea-island structure can be formed in the layer (I), and a film having good mechanical properties and fracture resistance can be obtained.
[0083] (DZL比)  [0083] (DZL ratio)
前記 (I)層にお 、て、 (A)成分が乳酸として D -乳酸と L -乳酸との両方を含んで いると、いずれか一方の乳酸のみを含むものよりも、収縮ムラを抑えることができるた め好ましい。すなわち、 D 乳酸と L 乳酸との構成比(DZL比)が 100ZO又は OZ 100である単独重合体は非常に高い結晶性を示し、融点が高ぐ耐熱性及び機械的 物性に優れる傾向がある。しかし熱収縮性フィルムとして使用する場合は、通常、印 刷及び溶剤を用いた製袋工程が伴うため、印刷適性及び溶剤シール性を向上させ るために構成材料自体の結晶性を適度に下げることが必要となる。また、結晶性が過 度に高い場合、延伸時に配向結晶化が進行し、加熱時のフィルム収縮特性が低下 する傾向となり、延伸条件等を調整することによって結晶化を抑えたフィルムにしても 、今後は熱収縮時の加熱により結晶化が収縮より先に進行してしまい、その結果収 縮むらや収縮不足を生じてしまうおそれがある。一方、 DL 乳酸の共重合体の場合 、その光学異性体の割合が増えるに従って結晶性が低下することが知られている。 従って、熱収縮性フィルムとしてポリ乳酸系榭脂組成物を使用する場合にはその DL 乳酸の共重合体の共重合比を適度に調整することによって、その結晶性を調整す ることが好ましい。  In the layer (I), when the component (A) contains both D-lactic acid and L-lactic acid as lactic acid, the shrinkage unevenness can be suppressed more than that containing only one of the lactic acids. This is preferable. That is, a homopolymer having a constitutional ratio (DZL ratio) of D lactic acid and L lactic acid of 100ZO or OZ 100 exhibits very high crystallinity and tends to have excellent heat resistance and mechanical properties with a high melting point. However, when it is used as a heat-shrinkable film, it usually involves printing and a bag making process using a solvent, so that the crystallinity of the component material itself should be lowered moderately in order to improve printability and solvent sealability. Is required. Further, when the crystallinity is excessively high, orientational crystallization proceeds at the time of stretching, and the film shrinkage property at the time of heating tends to be reduced, and a film that suppresses crystallization by adjusting stretching conditions, etc. In the future, crystallization may proceed before shrinkage due to heating during heat shrinkage, and as a result, there is a risk that shrinkage may occur or shrinkage may be insufficient. On the other hand, in the case of a copolymer of DL lactic acid, it is known that the crystallinity decreases as the proportion of the optical isomer increases. Accordingly, when using a polylactic acid-based resin composition as a heat-shrinkable film, it is preferable to adjust its crystallinity by appropriately adjusting the copolymerization ratio of the DL lactic acid copolymer.
[0084] ところで、前記 D体、 L体を調整する方法としては、共重合にて調整しても、 D 乳 酸と L 乳酸の構成割合が異なる 2種類以上の前記 DL 乳酸の共重合体をプレン ドすることによって調整しても可能である。  [0084] By the way, as a method for adjusting the D-form and L-form, two or more types of DL lactic acid copolymers having different constituent ratios of D-lactic acid and L-lactic acid are prepared by copolymerization. It can also be adjusted by blending.
[0085] 前記の DZL比は、 L 乳酸 ZD 乳酸 = 99Zl〜90ZlOの範囲、又は 1Z99 〜10/90の範囲であることが好ましぐ 97Ζ3〜93Ζ7の範囲、又は 3/97〜7/9 3の範囲であることが好ましい。 DZL比が前記範囲内であれば、後述する空孔成形 工程において、十分な空孔形成を起こし、所望の嵩比重を有するフィルムを得ること ができると共に、収縮ムラを抑えることができ、十分な収縮特性を有するフィルムを得 やすい。 [0085] The DZL ratio is preferably L lactic acid ZD lactic acid = 99Zl to 90ZlO, or 1Z99 to 10/90, preferably 97Ζ3 to 93Ζ7, or 3/97 to 7/93. It is preferable that it is the range of these. If the DZL ratio is within the above range, hole forming will be described later. In the process, sufficient pore formation is caused, and a film having a desired bulk specific gravity can be obtained, shrinkage unevenness can be suppressed, and a film having sufficient shrinkage characteristics can be easily obtained.
[0086] (その他の添加物)  [0086] (Other additives)
前記 (I)層には、前記 (A)成分及び (B)成分を混合した混合榭脂組成物以外に、 必要に応じて、この発明の効果を損なわない範囲内で、可塑剤、熱安定剤、抗酸ィ匕 剤、 UV吸収剤、光安定剤、顔料、着色剤、滑剤、核剤、加水分解防止剤等の添カロ 剤を含むことができる。その場合、添加剤は、前記混合榭脂組成物の質量に対して 1 0質量部以下、好ましくは 5質量部以下で含ませることができる。  In the layer (I), in addition to the mixed resin composition in which the component (A) and the component (B) are mixed, if necessary, the plasticizer and the heat stable are within the range not impairing the effects of the present invention. Additives such as additives, antioxidants, UV absorbers, light stabilizers, pigments, colorants, lubricants, nucleating agents, hydrolysis inhibitors and the like can be included. In that case, the additive may be contained in an amount of 10 parts by mass or less, preferably 5 parts by mass or less, based on the mass of the mixed resin composition.
[0087] また、さらに (I)層では、前記混合榭脂組成物以外に、必要に応じて、この発明の 効果を損なわない範囲内で、さらに耐衝撃性や耐寒性を向上させる目的で、ガラス 転移温度 (Tg)が 0°C以下の脂肪族ポリエステル榭脂ゃ芳香族ポリエステル榭脂、コ ァシェル構造型ゴム及びエチレン酢酸ビニル共重合体 (EVA)等を、ポリ乳酸系榭 脂 100質量部に対して 70質量部以下の範囲で含有してもよい。  [0087] Further, in the layer (I), in addition to the mixed resin composition, if necessary, for the purpose of further improving impact resistance and cold resistance within a range not impairing the effects of the present invention, Glass transition temperature (Tg) of aliphatic polyester resin, aromatic polyester resin, core shell structure rubber, ethylene vinyl acetate copolymer (EVA), etc., 100 parts by mass of polylactic acid resin May be contained in the range of 70 parts by mass or less.
[0088] [ (II)層]  [0088] [(II) layer]
(DZL比)  (DZL ratio)
前記 (Π)層において、(A)成分の DZL比は、前記 (I)層で用いられる (A)成分と は、相違する。すなわち、(Π)層において、(A)成分の DZL比は、 6Z94〜15Z85 の範囲、又は、 94Z6〜85Z15の範囲であることが重要であり、 7/93~12/88 の範囲、又は 93Z7〜88Z12の範囲であることが好ましい。  In the layer (ii), the DZL ratio of the component (A) is different from the component (A) used in the layer (I). That is, in the layer (ii), it is important that the DZL ratio of the component (A) is in the range of 6Z94 to 15Z85, or in the range of 94Z6 to 85Z15, and in the range of 7/93 to 12/88, or 93Z7. It is preferably in the range of ~ 88Z12.
[0089] DZL比が前記範囲内であれば、結晶化度を適度な範囲に抑え、結晶化に伴う収 縮むらなどの不具合の発生を抑えられるため好ましぐさらに空孔が形成し難くなるた めにインキ密着性やシール強度を向上させることができる。一方、 DZL比が前記範 囲を超えると、フィルムの耐破断性が極端に低下してしまう場合がある。  [0089] If the DZL ratio is within the above range, the degree of crystallization is suppressed to an appropriate range, and the occurrence of defects such as shrinkage unevenness due to crystallization can be suppressed. Therefore, ink adhesion and seal strength can be improved. On the other hand, if the DZL ratio exceeds the above range, the rupture resistance of the film may be extremely lowered.
[0090] ( (Π)層の構成成分((A)成分のみのとき))  [0090] (Constituent components of (Π) layer (only for component (A)))
前記の通り、(II)層は、前記 (A)成分を主成分とする榭脂組成物で構成される。さ らに、(Π)層〖こは、印刷性、溶剤シール性、耐融着性など表面層としての要求される 諸特性を損なわない範囲で、層間接着性の向上、嵩比重の低減などを目的としてポ リ乳酸系榭脂組成物以外の熱可塑性榭脂を含むことができる。ポリ乳酸系榭脂組成 物以外の熱可塑性榭脂を例示すると、ポリオレフイン系榭脂、ポリスチレン系榭脂、ァ クリル系榭脂、アミド系榭脂、脂肪族及び Z又は芳香族ポリエステル系榭脂などが挙 げられる。 As described above, the layer (II) is composed of a resin composition containing the component (A) as a main component. In addition, (ii) layer insulation improves interlaminar adhesion and reduces bulk specific gravity as long as it does not impair various properties required for the surface layer, such as printability, solvent sealability, and adhesion resistance. For the purpose Thermoplastic resin other than the relactic acid-based resin composition can be included. Examples of thermoplastic resins other than polylactic acid-based resin compositions include polyolefin resin, polystyrene resin, acrylic resin, amide resin, aliphatic and Z or aromatic polyester resin Are listed.
[0091] 第 1の空孔含有フィルムは、空孔を含有する前記 (I)層のほかに、空孔を含有しな い又は空孔含有量を低く抑えた (Π)層を有する。(I)層に (Π)層を配設することにより 、印刷性、溶剤シール性などを向上できる。また、(I)層及び (Π)層において、使用す るポリ乳酸系榭脂組成物の共重合体比率を変更することにより、空隙形成 ·収縮特性 を好まし 、範囲に調整できる。  [0091] The first pore-containing film has, in addition to the (I) layer containing pores, a (Π) layer containing no pores or having a low pore content. By disposing the (i) layer in the (I) layer, it is possible to improve printability, solvent sealability, and the like. Further, in the (I) layer and the (i) layer, by changing the copolymer ratio of the polylactic acid-based resin composition to be used, the void formation / shrinkage characteristics can be favored and adjusted to the range.
[0092] ( (Π)層の構成成分((C)成分を含むとき))  [0092] ((Π) component of the layer (when the component (C) is included))
前記 (Π)層は、前記 (A)成分以外に、前記 (C)成分を含んでもよい。この (C)成分 を混合することによって (I)層との弾性率差を小さくでき、その結果、フィルムのごわご ゎ感を低減させることができる。また、(I)層と (Π)層の層間接着強度の向上も期待で きる。また、耐破断性と収縮仕上がり性の更なる向上も期待できる。  The layer (ii) may contain the component (C) in addition to the component (A). By mixing this component (C), the difference in elastic modulus with the layer (I) can be reduced, and as a result, the film's stiffness can be reduced. In addition, an improvement in interlayer adhesion strength between the (I) layer and the (i) layer can be expected. In addition, further improvement in fracture resistance and shrinkage finish can be expected.
[0093] (Π)層に用いられる (A)成分は、収縮仕上がり性を向上させるために所定範囲の D ZL比を有するポリ乳酸系榭脂組成物が選択されるが、軟質成分である (C)成分を 混合することによって、(I)層と (Π)層との接着力が向上し、また温度変化による収縮 率変化が緩和される。その結果、層間接着強度が向上するとともに、加熱収縮時の 温度むらによる収縮率差が小さくなるために仕上がり性が向上する。  [0093] The component (A) used in the layer (A) is a soft component, although a polylactic acid-based rosin composition having a D ZL ratio within a predetermined range is selected in order to improve shrinkage finish. By mixing the component (C), the adhesion between the (I) layer and the (i) layer is improved, and the shrinkage rate change due to temperature change is alleviated. As a result, the interlayer adhesion strength is improved and the difference in shrinkage rate due to temperature unevenness during heat shrinkage is reduced, resulting in improved finish.
[0094] ( (A)成分と (C)成分との混合比)  [0094] (Mixing ratio of component (A) to component (C))
前記 (C)成分の含有量は、(A)成分 100質量部に対して、 5質量部以上であり、好 ましくは 10質量部以上であり、 50質量部以下、好ましくは 40質量部以下であること が好ましい。前記 (C)成分が 5質量部以下では添加効果が得られず、また 50質量部 以上では、そのほかの収縮特性、剛性に影響を与えてしまう傾向がある。  The content of the component (C) is 5 parts by mass or more, preferably 10 parts by mass or more, and 50 parts by mass or less, preferably 40 parts by mass or less with respect to 100 parts by mass of the component (A). It is preferable that If the component (C) is 5 parts by mass or less, the effect of addition cannot be obtained, and if it is 50 parts by mass or more, other shrinkage characteristics and rigidity tend to be affected.
[0095] (その他の添加物)  [0095] (Other additives)
前記 (II)層には、印刷性、溶剤シール性、耐融着性等、表面層としての要求される 諸特性を損なわない範囲で、層間接着性の向上、嵩比重の低減等を目的として、ポ リ乳酸系榭脂組成物以外の熱可塑性榭脂を含むことができる。このポリ乳酸系榭脂 組成物以外の熱可塑性榭脂としては、ポリオレフイン系榭脂、ポリスチレン系榭脂、ァ クリル系榭脂、アミド系榭脂、脂肪族ポリエステル系榭脂、芳香族ポリエステル系榭脂 、脂肪族芳香族ポリエステル系榭脂等が挙げられる。 The layer (II) is used for the purpose of improving interlayer adhesion and reducing bulk specific gravity as long as various properties required as a surface layer, such as printability, solvent sealability, and adhesion resistance, are not impaired. In addition, a thermoplastic resin other than the polylactic acid-based resin composition can be included. This polylactic acid based resin Examples of the thermoplastic resin other than the composition include polyolefin resin, polystyrene resin, acrylic resin, amide resin, aliphatic polyester resin, aromatic polyester resin, and aliphatic aromatic resin. Examples include polyester-based rosin.
[0096] また、前記 (Π)層における榭脂組成物には、必要に応じて、この発明の効果を損な わない範囲で可塑剤、熱安定剤、抗酸化剤、 UV吸収剤、光安定剤、顔料、着色剤 、滑剤、核剤、加水分解防止剤等の添加剤を添加してもよい。  [0096] In addition, the resin composition in the layer (ii) is optionally provided with a plasticizer, a heat stabilizer, an antioxidant, a UV absorber, a light as long as the effects of the present invention are not impaired. Additives such as stabilizers, pigments, colorants, lubricants, nucleating agents and hydrolysis inhibitors may be added.
[0097] (第 1の空孔含有フィルムの層構成)  [0097] (Layer configuration of first pore-containing film)
第 1の空孔含有フィルムは、少なくとも前記 (I)層と (Π)層との少なくとも 2層を有す れば、層構成は特に限定されるものではない。ここで、 「(1)層と (Π)層との少なくとも 2 層を有する」とは、 (I)層に隣接して (Π)層が片面又は両面に積層されて 、る態様の みならず、(I)層と (II)層との間に接着性の改良やバリア性、隠蔽性、断熱性等を付 与する目的のため、第 3の層を有する場合も含まれる。  The layer structure is not particularly limited as long as the first pore-containing film has at least two layers of the (I) layer and the (i) layer. Here, “having at least two layers of (1) layer and (Π) layer” means that the (Π) layer is laminated on one or both sides adjacent to (I) layer. In addition, the case of having a third layer for the purpose of improving adhesion, barrier property, concealment property, heat insulation property, etc. between the (I) layer and the (II) layer is also included.
[0098] 好ましい層構成としては、中間層として (I)層、表面層として (Π)層を有する 2種 3層 の層構成((Π)層 Z(I)層 Ζ(Π)層)、又は中間層と表面層との間に接着層を有する 3 種 5層の層構成 ( (II)層 Ζ接着層 Ζ (I)層 Ζ接着層 Ζ (Π)層)などの層構成が挙げら れる。  [0098] A preferred layer structure is a two-layer / three-layer structure ((Π) layer Z (I) layer Ζ (Π) layer) having (I) layer as an intermediate layer and (Π) layer as a surface layer. Or the layer structure of 3 types and 5 layers with an adhesive layer between the intermediate layer and the surface layer ((II) layer Ζ adhesive layer Ζ (I) layer Ζ adhesive layer Ζ (Π) layer) It is.
[0099] (I)層及び (Π)層の厚み比は、上述した作用効果を考慮して設定すればよぐ特に 限定されるものではない。例えば、中間層として (I)層、表面層として (Π)層の層構成 を有するフィルムの場合、フィルム全体の厚みに対する(Π)層の厚み比は 5%以上、 好ましくは 10%以上、さらに好ましくは 15%以上であり、かつ 70%以下、好ましくは 5 0%以下、さらに好ましくは 45%以下、最も好ましくは 40%以下の範囲にすることが できる。またフィルム全体の厚みに対する(I)層の厚み比は、 20%以上、好ましくは 2 5%以上、さらに好ましくは 30%以上であり、かつ 95%以下、好ましくは 90%以下、 さらに好ましくは 85%以下である。厚み比を前記範囲内に調整することにより、熱収 縮率を適度に調整しやすくなる。  [0099] The thickness ratio between the (I) layer and the (i) layer is not particularly limited as long as it is set in consideration of the above-described effects. For example, in the case of a film having a layer structure of (I) layer as an intermediate layer and (Π) layer as a surface layer, the thickness ratio of the (Π) layer to the total film thickness is 5% or more, preferably 10% or more, It is preferably 15% or more and 70% or less, preferably 50% or less, more preferably 45% or less, and most preferably 40% or less. The thickness ratio of the (I) layer to the total film thickness is 20% or more, preferably 25% or more, more preferably 30% or more, and 95% or less, preferably 90% or less, more preferably 85 % Or less. By adjusting the thickness ratio within the above range, it becomes easy to adjust the heat contraction rate appropriately.
[0100] 前記の (I)層と (Π)層との間に接着層を有する場合、接着層はその機能から、 0. 5 μ m以上、好ましくは 0. 75 μ m以上、さらに好ましくは 1 μ m以上であり、 6 μ m以下 、好ましくは 5 μ m以下である。 [0101] 各層の厚み比が前記範囲内であれば、第 1の空孔含有フィルムの腰強さ(常温で の剛性)、収縮仕上がり性、自然収縮に優れ、かつフィルムの層間剥離が抑制された 、収縮包装、収縮結束包装や収縮ラベル等の用途に適した熱収縮性積層フィルムが ノ ランスよく得ることができる。 [0100] When an adhesive layer is provided between the (I) layer and the (i) layer, the adhesive layer has a function of 0.5 μm or more, preferably 0.75 μm or more, more preferably It is 1 μm or more, 6 μm or less, preferably 5 μm or less. [0101] If the thickness ratio of each layer is within the above range, the first pore-containing film has excellent elasticity (rigidity at normal temperature), shrink finish, and natural shrinkage, and delamination of the film is suppressed. In addition, a heat-shrinkable laminated film suitable for applications such as shrink wrap, shrink-bound wrap and shrink labels can be obtained with good tolerance.
[0102] 第 1の空孔含有フィルムが前記 (I)層及び (Π)層の間に接着層を有する場合、接着 層を構成する接着性榭脂は、 (I)層及び (II)層の主成分として含まれる (A)成分に 対して反応性又は親和性を有する部位と、(B)成分、又は (C)成分を用いる場合の( C)成分と親和性を有する部位とを備えた榭脂が好適に用いられる。  [0102] When the first pore-containing film has an adhesive layer between the (I) layer and the (Π) layer, the adhesive resin constituting the adhesive layer includes the (I) layer and the (II) layer. A part having reactivity or affinity for the component (A) contained as a main component of the component, and a part having affinity for the component (B) or the component (C) when the component (C) is used.榭 脂 is preferably used.
[0103] ここで、 「 (A)成分に対して反応性又は親和性を有する」とは、 (A)成分と親和性の 高 ヽ官能基又は (A)成分と反応し得る官能基を有することを意味する。そのような特 性を有する官能基の例としては、酸無水物基、カルボン酸基、カルボン酸エステル基 、カルボン酸塩化物基、カルボン酸アミド基、カルボン酸塩基、スルホン酸基、スルホ ン酸エステル基、スルホン酸塩化物基、スルホン酸アミド基、スルホン酸塩基、ェポキ シ基、アミノ基、イミド基、又はォキサゾリン基などの官能基が挙げられ、中でも酸無 水物基、カルボン酸基、又はカルボン酸エステル基が好ましい。  [0103] Here, "having reactivity or affinity for component (A)" means having a functional group capable of reacting with (A) component or a functional group capable of reacting with component (A). Means that. Examples of functional groups having such properties include acid anhydride groups, carboxylic acid groups, carboxylic acid ester groups, carboxylic acid chloride groups, carboxylic acid amide groups, carboxylic acid groups, sulfonic acid groups, and sulfonic acid groups. Examples include ester groups, sulfonated chloride groups, sulfonate amide groups, sulfonate groups, epoxy groups, amino groups, imide groups, or oxazoline groups, among which acid anhydride groups, carboxylic acid groups, Or a carboxylic ester group is preferable.
[0104] また、「(B)成分又は(C)成分と親和性を有する部位」とは、 (B)成分又は (C)成分 と親和性のある連鎖を有することを意味し、より詳しくは、直鎖又は分岐した飽和炭化 水素部位を主鎖、あるいはブロック鎖、グラフト鎖として有することを意味する。具体 例としては、ポリオレフイン系榭脂あるいはスチレン系炭化水素と共役ジェン系炭化 水素との共重合体を水素添加した榭脂、例えばスチレンエチレンブチレン共重合体 、スチレンエチレンプロピレン共重合体などが挙げられる。  [0104] Further, the "site having affinity with the component (B) or (C)" means having a chain having affinity with the component (B) or component (C), and more specifically Means having a straight-chain or branched saturated hydrocarbon moiety as a main chain, a block chain, or a graft chain. Specific examples include polyolefin resins or resins prepared by hydrogenating a copolymer of a styrene hydrocarbon and a conjugated diene hydrocarbon, such as a styrene ethylene butylene copolymer and a styrene ethylene propylene copolymer. .
[0105] 前記 (A)成分と親和性の高!、又は反応可能な極性基を有し、かつ(B)成分又は( C)成分と相溶可能な榭脂の具体的な商品としては、例えば、エポキシ基を有する G MAとのエチレンコポリマー及びエチレンメタアクリル酸コポリマー「ボンドファースト」 ( 住友化学工業 (株))や、変性スチレンエチレンブタジエンブロック共重合体「タフテツ ク」(旭化成ケミカルズ (株))等が挙げられる。  [0105] As a specific product of the resin having a high affinity with the component (A) or a polar group capable of reacting and compatible with the component (B) or the component (C), For example, ethylene copolymer and ethylene methacrylic acid copolymer “bond first” with Sumitomo Chemical Co., Ltd. (Sumitomo Chemical Co., Ltd.) and modified styrene ethylene butadiene block copolymer “Tuftec” (Asahi Kasei Chemicals Corp.) ) And the like.
[0106] (第 1の空孔含有フィルムの製造方法)  [0106] (Method for producing first pore-containing film)
第 1の空孔含有フィルムは、前記 (A)成分と (B)成分とを混合した混合榭脂組成物 で構成される (I)層が(B)成分力 なる分散ドメインの長軸方向と直交する方向に少 なくとも一方向に延伸されてなることが肝要である。すなわち、第 1の空孔含有フィル ムは (I)層と、前記 (A)成分を主成分として、必要に応じて (C)成分を含有して構成さ れる (Π)層とを積層した未延伸フィルムを少なくとも一方向に延伸する方法、あるいは (I)層を少なくとも一方向に延伸した後、(Π)層の未延伸フィルム又は延伸フィルムを 公知の方法によって熱又は溶剤によりラミネーシヨンする方法、あるいは (I)層を少な くとも一方向に延伸した後、(A)成分力もなる榭脂組成物を公知の方法によりコーテ イングする方法( (C)成分を用いな!/、場合)により作製できる The first pore-containing film is a mixed resin composition in which the component (A) and the component (B) are mixed. It is important that the (I) layer composed of (B) is stretched in at least one direction in a direction orthogonal to the major axis direction of the dispersion domain (B) component force. That is, the first pore-containing film is formed by laminating the (I) layer and the (i) layer composed of the (A) component as a main component and the (C) component as necessary. A method of stretching an unstretched film in at least one direction, or (I) a method of laminating an unstretched film or stretched film of layer (i) with heat or a solvent by a known method after stretching the layer in at least one direction Or (I) by stretching the layer in at least one direction and then coating (A) a resin composition having component strength by a known method (without using component (C)! /) Can be made
[0107] 具体的な製造方法の一例を示す。 [0107] An example of a specific manufacturing method will be described.
先ず、前記 (A)成分と (B)成分の混合方法等として、同方向 2軸押出機、ニーダー 、ヘンシェルミキサー等を用いてプレコンパウンドを得る方法がある。また、両成分を 予め混合することなぐ直接、フィルム押出機に投入し、混合とフィルム成形とを同一 装置で行ってもよい。  First, as a method for mixing the component (A) and the component (B), there is a method for obtaining a pre-compound using a same-direction twin screw extruder, a kneader, a Henschel mixer, or the like. Alternatively, the two components may be directly fed into the film extruder without being mixed in advance, and mixing and film forming may be performed in the same apparatus.
[0108] 第 1の空孔含有フィルムの製造方法は、前記 (A)成分、(B)成分、又はこれらの成 分をコンパゥンドした混合物をそれぞれ押出機に投入し、溶融押出成形する。この際 の押出方法としては、 Tダイ法、チューブラ法等の公知の方法を採用できる。溶融押 出されたフィルムは、冷却ロール、空気、水等で冷却される。また、この発明において は (I)層と (Π)層とが積層されてなることが重要である力 積層方法としてはマルチマ ニフォ一ルド式の口金を用い共押出する方法、フィードブロックを用いて共押出する 方法、(I)層と (Π)層の単層フィルムを別個に得た後、熱ラミネーシヨンにより積層する 方法など、公知の方法を採用できる。  [0108] In the first method for producing a pore-containing film, the component (A), the component (B), or a mixture obtained by compounding these components is put into an extruder and melt extrusion molded. As the extrusion method at this time, a known method such as a T-die method or a tubular method can be employed. The melt-extruded film is cooled with a cooling roll, air, water, or the like. Further, in the present invention, it is important that the (I) layer and the (積 層) layer are laminated. As a force lamination method, a co-extrusion method using a multi-manifold type die, a feed block is used. Known methods such as a method of co-extrusion, a method of separately obtaining a single layer film of (I) layer and (i) layer, and laminating by thermal lamination can be employed.
[0109] 得られた積層未延伸フィルムは、熱風、温風、紫外線、炭酸ガスレーザー、マイクロ ウェーブ等の方法で再加熱され、ロール法、テンター法、チューブラ法等により、少な くとも 1方向、すなわち一軸方向又は二軸方向に延伸し、マトリックスとドメインとの界 面で剥離を生じさせ、空孔を形成させることによりこの発明の積層フィルムを作製でき る。前記延伸を一軸延伸とするか、二軸延伸とするかは、目的の用途によって適宜決 定できる。 [0109] The laminated unstretched film obtained is reheated by a method such as hot air, warm air, ultraviolet light, carbon dioxide laser, microwave, etc., and at least one direction is obtained by a roll method, a tenter method, a tubular method, etc. That is, the laminated film of the present invention can be produced by stretching in a uniaxial direction or biaxial direction, causing separation at the interface between the matrix and the domain, and forming pores. Whether the stretching is uniaxial stretching or biaxial stretching can be appropriately determined depending on the intended use.
[0110] 延伸温度は、前記 (A)成分及び (B)成分、使用する場合は (C)成分の軟化温度や 、得られる熱収縮性空孔含有フィルムの用途等によって変動し得る力 60°C以上が 好ましぐ 65°C以上がさらに好ましぐ 85°C以下、より好ましくは 80°C以下の範囲で あることが望ましい。延伸温度が 60°C以上であれば、延伸過程において原料の弾性 率が高くなりすぎることを抑え、良好な延伸性が得られると共に、フィルム破断や厚み 斑を抑えられる。一方、延伸温度が 85°C以下であれば、所望の収縮特性を発現でき 、また (B)成分の延伸性が高くなることを抑えて、マトリックスと分散ドメインとの界面で の剥離を促進し、十分な空孔を得ることができ、かつ嵩比重を 1. 0未満にすることが できる。 [0110] The stretching temperature is determined based on the softening temperature of the component (A) and the component (B), and when used, the component (C). The force that can vary depending on the application of the heat-shrinkable pore-containing film obtained is preferably 60 ° C or higher, more preferably 65 ° C or higher, 85 ° C or lower, more preferably 80 ° C or lower. It is desirable to be. When the stretching temperature is 60 ° C. or higher, the elastic modulus of the raw material is prevented from becoming too high during the stretching process, and good stretchability can be obtained, and film breakage and thickness unevenness can be suppressed. On the other hand, if the stretching temperature is 85 ° C or lower, desired shrinkage characteristics can be exhibited, and the extensibility of the component (B) is suppressed, and peeling at the interface between the matrix and the dispersion domain is promoted. Sufficient pores can be obtained, and the bulk specific gravity can be less than 1.0.
[0111] 前記延伸工程での延伸倍率は、前記 (A)成分及び (B)成分を混合した混合榭脂 組成物の構成組成、延伸手段、延伸温度、目的の製品形態等に応じて適宜選択す ることができる。例えば、延伸倍率としては、 1. 5倍以上、好ましくは 3. 0倍以上であ つて、 8. 0倍以下、好ましくは 6. 0倍以下とすることが望ましい。延伸倍率が 1. 5倍 以上あれば、適切な収縮特と十分な空孔が得られ、かつ嵩比重を 1. 0未満に調整 できる。また、延伸倍率の上限を 8倍程度にすることにより実用的な性能を有するが 得られる。  [0111] The draw ratio in the drawing step is appropriately selected according to the composition of the mixed resin composition in which the components (A) and (B) are mixed, the drawing means, the drawing temperature, the target product form, and the like. can do. For example, the draw ratio is 1.5 times or more, preferably 3.0 times or more, and 8.0 times or less, preferably 6.0 times or less. If the draw ratio is 1.5 times or more, suitable shrinkage characteristics and sufficient pores can be obtained, and the bulk specific gravity can be adjusted to less than 1.0. In addition, a practical performance can be obtained by setting the upper limit of the draw ratio to about 8 times.
[0112] 前記延伸工程での延伸方向は、目的用途によって適宜選択することができるが、こ の発明の積層フィルムは後述するとおり MD方向に (B)成分の分散ドメインが伸長し た構造をとるため、伸長方向と垂直方向、すなわち TD方向に延伸することにより容 易に空孔を形成することができ好適である。  [0112] The stretching direction in the stretching step can be appropriately selected depending on the intended use, but the laminated film of the present invention has a structure in which the dispersion domain of the component (B) extends in the MD direction as described later. Therefore, it is preferable that pores can be easily formed by stretching in the direction perpendicular to the extension direction, that is, in the TD direction.
[0113] また、一軸延伸の場合、必要に応じてフィルムの主収縮方向と直交する方向に 1. 0 1倍から 1. 8倍程度の弱延伸を付与すると、得られる熱収縮性空孔含有フィルムの 機械的物性が改良されるのでより好ま 、。  [0113] In addition, in the case of uniaxial stretching, heat-shrinkable pores can be obtained when weak stretching of about 1.0 to 1 to 1.8 times is applied in the direction perpendicular to the main shrinkage direction of the film as necessary. This is preferred because the mechanical properties of the film are improved.
[0114] なお、本明細書において「主収縮方向」とは、縦方向と横方向のうち延伸の大きい 方向を意味し、例えば、ボトルに装着する場合にはその外周方向に相当する方向で ある。また、「主収縮方向と直交する方向」とは、延伸の大きい方向と直交する方向を いう。  [0114] In the present specification, the "main shrinkage direction" means a direction in which stretching is large between the longitudinal direction and the transverse direction, and is, for example, a direction corresponding to the outer circumferential direction when the bottle is mounted. . Further, the “direction orthogonal to the main shrinkage direction” refers to a direction orthogonal to the direction in which stretching is large.
[0115] ( (I)層中の(B)成分力 なる分散ドメインのアスペクト比の調整方法)  [0115] (Method for adjusting the aspect ratio of the dispersion domain (B) component force in the (I) layer)
ところで、前記フィルム製造工程で使用される冷却ロールは、前記押出機の下方に 存在するため、前記押出機力 押し出されたフィルムが冷却ロールに到達するまで に、自重により多少延伸された状態になる。このとき、フィルムは前記押出機力 押し 出された段階であるため高温状態にあり、フィルムを構成する(I)層では、マトリックス ( (A)成分)だけでなく分散ドメイン( (B)成分)も主収縮方向と直交する方向 (流れ方 向)に延ばされ、特に分散ドメイン((B)成分)は、流れ方向(フィルム主収縮方向と直 交する方向)に伸長された状態となる。このときの分散ドメイン((B)成分)のアスペクト 比は、 5以上、好ましくは 10以上、さらに好ましくは 15以上であり、かつ 50以下、好ま しくは 40以下、さらに好ましくは 35以下に調整することが望まし 、。 By the way, the cooling roll used in the film manufacturing process is located below the extruder. Due to the presence of the film, the film extruded by the extruder is slightly stretched by its own weight before reaching the cooling roll. At this time, the film is in a high temperature state because it is at the stage where the extruder is extruded. In the (I) layer constituting the film, not only the matrix (component (A)) but also the dispersion domain (component (B)) Is also extended in the direction perpendicular to the main shrinkage direction (flow direction), and in particular, the dispersion domain (component (B)) is stretched in the flow direction (direction perpendicular to the film main shrinkage direction). The aspect ratio of the dispersion domain (component (B)) at this time is 5 or more, preferably 10 or more, more preferably 15 or more, and is adjusted to 50 or less, preferably 40 or less, more preferably 35 or less. I hope that.
[0116] 前記 (A)成分単独で構成されるフィルムを形成した場合、フィルム自体は脆性とな つてしまう。これに対し、マトリックスである (A)成分中にアスペクト比が前記範囲内と なるように (B)成分力 なる分散ドメインを含ませることにより、得られる熱収縮性空孔 含有フィルムに低温での耐破断性を付与できる。前記分散ドメイン((B)成分)のァス ぺクト比が 5以上であれば、低温における耐破断性をフィルムに付与でき、また前記 アスペクト比が 50以下であれば、(I)層中に空孔を生じさせ易ぐかつ所望の嵩比重 が得られる。 [0116] When a film composed of the component (A) alone is formed, the film itself becomes brittle. On the other hand, the heat-shrinkable pore-containing film obtained at low temperature can be obtained by including a dispersion domain having (B) component strength so that the aspect ratio is within the above range in the component (A) which is a matrix. Breaking resistance can be imparted. If the aspect ratio of the dispersion domain (component (B)) is 5 or more, the film can be given breakage resistance at low temperatures, and if the aspect ratio is 50 or less, the layer (I) It is easy to generate pores and a desired bulk specific gravity can be obtained.
[0117] 前記アスペクト比は、前記のフィルムの自重による方法で生じさせることが好ましい 力 それでは不十分な場合がある。このような場合、押出機と冷却ロールとの間で多 少延伸させることが望ましい。すなわち、押出機の押出口金の間隔(リップギャップ) に対し、製膜する延伸フィルムの厚みを変えることにより、流れ方向(フィルム主収縮 方向に直交する方向)に伸長させ、また、その比によって、前記分散ドメイン((B)成 分)のアスペクト比を制御することが可能となる。  [0117] The aspect ratio is preferably generated by a method based on the dead weight of the film. In such a case, it is desirable to stretch a little between the extruder and the cooling roll. That is, by changing the thickness of the stretched film to be formed with respect to the interval (lip gap) of the extrusion die of the extruder, the film is stretched in the flow direction (direction perpendicular to the main film shrinkage direction), and depending on the ratio It becomes possible to control the aspect ratio of the dispersion domain (component (B)).
[0118] 分散ドメイン( (B)成分)が所定のアスペクト比を有するようにしたとき、この分散ドメ イン((B)成分)は、フィルム外表面に対して平行となり、かつ、一方向、すなわち、フ イルムの流れ方向(フィルム主収縮方向に直交する方向)に伸長したものとなる。この ため、一軸延伸の延伸方向又は二軸延伸の一方の延伸方向を流れ方向に対して直 角方向(フィルム主収縮方向)とすることにより、マトリックス((A)成分)と分散ドメイン( (B)成分)との境界の剥離をより生じさせやすくなり、かつより高い空孔率を得ることが できる。 [0119] ( (B)成分の MFR) [0118] When the dispersion domain (component (B)) has a predetermined aspect ratio, the dispersion domain (component (B)) is parallel to the outer surface of the film and is unidirectional, that is, The film stretches in the film flow direction (direction perpendicular to the main film shrinkage direction). For this reason, by making the stretching direction of uniaxial stretching or one stretching direction of biaxial stretching a direction perpendicular to the flow direction (film main shrinkage direction), the matrix (component (A)) and the dispersion domain ((B It is easier to cause separation of the boundary with the component), and a higher porosity can be obtained. [0119] (MFR of component (B))
前記分散ドメイン((B)成分)のアスペクト比を実現させるため、(B)成分としては、メ ルトフローレート(MFR:JIS K7210、温度: 190。C、荷重: 21. 18Nでの値)が 1. 0 gZlO分以上、好ましくは 1. 5gZlO分以上であり、 5. OgZlO分以下、好ましくは 4 . 5gZlO分以下であるポリオレフイン系榭脂組成物を用いることが望ましい。ポリオレ フィン系榭脂組成物のメルトフローレートが 1. OgZio分以上であれば、前記の海島 構造が形成された際に分散ドメインのサイズが大きくなりすぎたり、分散状態が悪く空 孔が均一に発生しに《なったりするなどの不具合を生じることなく好適である。一方 In order to realize the aspect ratio of the dispersion domain (component (B)), the component (B) has a melt flow rate (MFR: JIS K7210, temperature: 190. C, load: value at 21.18N). It is desirable to use a polyolefin resin composition having a content of 1.0 gZlO or more, preferably 1.5 gZlO or more, 5. OgZlO or less, preferably 4.5 gZlO or less. If the melt flow rate of the polyolefin resin composition is 1. OgZio or more, the size of the dispersion domain becomes too large when the sea-island structure is formed, or the dispersion state is poor and the pores are uniform. It is suitable without causing problems such as << on the other hand
、ポリオレフイン系榭脂組成物のメルトフローレートが 5. OgZlO分以下であれば、前 記の海島構造が形成された際に分散ドメィのンサイズが小さくなり、ドメイン自体の強 度が低下し、低温での耐破断性を十分に付与できな 、等の不具合を生じることなく 好適である。 If the melt flow rate of the polyolefin resin composition is not more than 5. This is suitable without causing any troubles such as failure to sufficiently impart the fracture resistance.
[0120] (嵩比重)  [0120] (bulk specific gravity)
第 1の空孔含有フィルムの嵩比重は 0. 50以上、より好ましくは 0. 60以上、さらに 好ましくは 0. 70以上であって、 1. 00未満、好ましくは 0. 95以下、さらに好ましくは 0 . 90以下であることが望ましい。嵩比重が 1. 00未満であれば、このフィルムを液比 重法によって分離することが容易であり好ましい。一方、嵩比重が 0. 50以上であれ ば、存在する空孔によって、この積層フィルムの強度が不十分となるなどの不具合を 生じることなく好ましい。  The bulk specific gravity of the first pore-containing film is 0.50 or more, more preferably 0.60 or more, further preferably 0.70 or more, less than 1.00, preferably 0.95 or less, more preferably It is desirable that it is 0.90 or less. If the bulk specific gravity is less than 1.00, it is easy and preferable to separate this film by the liquid specific gravity method. On the other hand, if the bulk specific gravity is 0.50 or more, it is preferable that there are no defects such as insufficient strength of the laminated film due to the existing pores.
[0121] 前記嵩比重を所望の値に調整する方法としては、前記 (A)成分及び (B)成分のう ち、比重が小さい方の成分の混合比率を増加させる方法や、延伸倍率を大きくする、 延伸温度を低くするなどの延伸条件を操作することにより空孔を多く生じさせる方法 などが挙げられる。  [0121] As a method of adjusting the bulk specific gravity to a desired value, a method of increasing the mixing ratio of the component (A) and the component (B) having a smaller specific gravity, or increasing the draw ratio And a method of generating a large number of pores by operating stretching conditions such as lowering the stretching temperature.
[0122] また、 25%以下の範囲で熱収縮させた後の嵩比重は、 1. 00未満が好ましぐ 0. 9 5以下がより好ましぐ 0. 9以下であることが望ましい。嵩比重が 1. 00未満であれば 、熱収縮後においても、このフィルムを液比重法によって分離することが容易であり好 ましい。なお、この場合の嵩比重の下限は、 0. 50を超える。熱収縮前の積層フィル ムの嵩比重が 0. 50以上なので、前記熱収縮後の嵩比重は、 0. 50を超えることにな るカゝらである。 [0122] The bulk specific gravity after heat shrinking in the range of 25% or less is preferably less than 1.00, preferably 0.95 or less, and more preferably 0.9 or less. If the bulk specific gravity is less than 1.00, it is preferable that the film is easily separated by the liquid specific gravity method even after heat shrinkage. In this case, the lower limit of the bulk specific gravity exceeds 0.50. Since the bulk specific gravity of the laminated film before heat shrinkage is 0.50 or more, the bulk specific gravity after heat shrinkage will not exceed 0.50. Ruka.
[0123] (熱収縮)  [0123] (Heat shrinkage)
第 1の空孔含有フィルムは、 80°C温水中に 10秒間浸漬したときの主収縮方向の熱 収縮率が 20%以上であり、好ましくは 25%以上、さらに好ましくは 30%以上であり、 かつ 80%以下、好ましくは 75%以下であることが望ましい。これは、例えばペットボト ルの収縮ラベル用途に適用される熱収縮性積層フィルムでは、その形状によって様 々であるが、一般に 20%乃至 70%程度の熱収縮率が要求されるため、そのような用 途にお 、て好適に対応し得るようにするためである。  The first pore-containing film has a thermal shrinkage rate of 20% or more, preferably 25% or more, more preferably 30% or more when immersed in 80 ° C warm water for 10 seconds. And it is desirable that it is 80% or less, preferably 75% or less. This is because, for example, in heat-shrinkable laminated films applied to PET bottle shrink label applications, the heat shrinkage rate is generally about 20% to 70%. This is in order to be able to respond appropriately in the usage.
[0124] また、現在ペットボトルのラベル装着用途に工業的に最も多く用いられている収縮 加工機としては、収縮加工を行う加熱媒体として水蒸気を用いる蒸気シュリンカ一と 一般に呼ばれて ヽるものである。熱収縮性フィルムは被覆対象物への熱の影響など の点力もできるだけ低い温度で十分熱収縮することが必要である。さらに、近年のラ ベリング工程の高速ィ匕に伴い、より低温で素早く収縮する要求が高くなつてきた。こ のような工業生産性も考慮して、前記条件における熱収縮率が 20%以上の積層フィ ルムであれば、収縮加工時間内に十分に被覆対象物に密着することができるため好 ましい。 [0124] Further, the shrinking machine that is most commonly used industrially for labeling of PET bottles is generally called a steam shrinker that uses steam as a heating medium for shrinking. is there. A heat-shrinkable film must be sufficiently heat-shrinkable at a temperature that is as low as possible in terms of point power, such as the effect of heat on the coated object. Furthermore, with the recent high-speed labeling process, there has been an increasing demand for shrinking quickly at a lower temperature. Considering such industrial productivity, a laminated film having a heat shrinkage rate of 20% or more under the above conditions is preferable because it can sufficiently adhere to the object to be coated within the shrinkage processing time. .
[0125] 第 1の空孔含有フィルムにおいて、 80°Cの温水中に 10秒浸漬した際の主収縮方 向の熱収縮率を前記範囲に調整するためには、榭脂組成をこの発明で記載するよう に調整するとともに、延伸温度を後述する範囲に調整することが好ましい。例えば、 熱収縮率をより増力 tlさせたい場合には、(I)層及び (Π)層のポリ乳酸系榭脂組成物( A)の光学異性体比率を大きくする、(I)層の (B)成分の含有量を下げる、(Π)層に( C)成分を含む場合は、(II)層の軟質成分 (C)の含有量を下げる、延伸倍率を高くす る、延伸温度を低くする等の手段を用いるとよい。  [0125] In the first pore-containing film, in order to adjust the heat shrinkage ratio in the main shrinkage direction when immersed in warm water of 80 ° C for 10 seconds to the above range, the composition of the resin is used in the present invention. While adjusting as described, it is preferable to adjust the stretching temperature to a range described later. For example, to increase the thermal shrinkage tl, increase the ratio of the optical isomers of the polylactic acid resin composition (A) in the (I) layer and the (層) layer. B) Lower the content of component, (i) When layer (C) contains component (C), lower the content of soft component (C) in layer (II), increase the draw ratio, lower the stretching temperature It is recommended to use means such as.
[0126] また、第 1の空孔含有フィルムが熱収縮性ラベルとして用いられる場合、主収縮方 向と直交する方向の熱収縮率は、 80°Cの温水中で 10秒間浸漬したときは 10%以下 であることが好ましぐ 5%以下であることがより好ましぐ 3%以下であることがさらに 好ましい。主収縮方向と直交する方向の熱収縮率が 10%以下のフィルムであれば、 収縮後の主収縮方向と直交する方向の寸法自体が短くなつたり、収縮後の印刷柄や 文字の歪み等が生じやす力つたり、角型ボトルの場合においては縦ひけ等のトラブ ルが発生し難ぐ好ましい。 [0126] When the first pore-containing film is used as a heat-shrinkable label, the heat shrinkage rate in the direction perpendicular to the main shrinkage direction is 10 when immersed in warm water at 80 ° C for 10 seconds. % Is preferably 5% or less, and more preferably 3% or less. If the film has a thermal shrinkage rate of 10% or less in the direction perpendicular to the main shrinkage direction, the dimension itself in the direction perpendicular to the main shrinkage direction after shrinkage will be shortened, It is preferable that characters such as characters tend to be distorted, and that in the case of a square bottle, troubles such as vertical sink are unlikely to occur.
[0127] (自然収縮率)  [0127] (Natural contraction rate)
第 1の空孔含有フィルムの自然収縮率はできるだけ小さいほうが望ましいが、一般 的に熱収縮性積層フィルムの自然収縮率は、例えば、 30°Cで 30日保存後の自然収 縮率が 3. 0%以下、好ましくは 2. 0%以下、さらに好ましくは 1. 5%以下であることが 望ましい。前記条件下における自然収縮率が 3. 0%であれば作製したフィルムを長 期保存する場合であっても容器等に安定して装着することができ、実用上問題を生 じにくい。  The natural shrinkage rate of the first pore-containing film is preferably as small as possible, but in general, the natural shrinkage rate of the heat-shrinkable laminated film is, for example, 3 after 30 days storage at 30 ° C. Desirably, it is 0% or less, preferably 2.0% or less, and more preferably 1.5% or less. If the natural shrinkage rate under the above conditions is 3.0%, even if the produced film is stored for a long period of time, it can be stably attached to a container or the like, and practical problems are unlikely to occur.
[0128] 第 1の空孔含有フィルムにおいて、自然収縮率を前記範囲に調整するためには、 榭脂組成をこの発明で記載するように調整するとともに、延伸温度を後述する範囲に 調整することが好ましい。例えば、自然収縮率をより低下させたい場合には、ポリ乳 酸系榭脂組成物 (A)の光学異性体比率を小さくする、(B)成分の含有量を下げる、 ( II)層に (C)成分を含む場合は、軟質成分 (C)の含有量を下げる、延伸倍率を小さく する、延伸温度を高くする、延伸後熱固定の温度を高くする、延伸後熱固定時間を 長くする等の手段を用いるとよい。  [0128] In the first pore-containing film, in order to adjust the natural shrinkage ratio to the above range, the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the range described later. Is preferred. For example, to further reduce the natural shrinkage, reduce the optical isomer ratio of the polylactic acid-based rosin composition (A), reduce the content of component (B), (II) layer ( When the component (C) is included, the content of the soft component (C) is decreased, the stretching ratio is decreased, the stretching temperature is increased, the temperature for heat setting after stretching is increased, the time for heat setting after stretching is increased, etc. It is good to use the means.
[0129] (耐破断性)  [0129] (Fracture resistance)
第 1の空孔含有フィルムの耐破断性は弓 I張破断伸度により評価され、 0°C環境下の 引張試験において、特にラベル用途ではフィルムの引き取り(流れ)方向(MD)で伸 び率が 100%以上、好ましくは 150%以上、さらに好ましくは 200%以上ある。 0°C環 境下での引張破断伸度が 100%以上あれば印刷'製袋などの工程時にフィルムが 破断するなどの不具合を生じ難くなるため好ましい。また、印刷'製袋などの工程のス ピードアップにともなってフィルムに対して力かる張力が増加するような際にも、引張 破断伸度が 100%以上あれば破断し難くなり好ましい。  The fracture resistance of the first pore-containing film was evaluated by the bow I tension elongation, and in the tensile test under the environment of 0 ° C, especially in the label application, the elongation rate in the film take-off (flow) direction (MD) Is 100% or more, preferably 150% or more, more preferably 200% or more. A tensile elongation at break of 100% or more under an environment of 0 ° C is preferable because it is difficult to cause problems such as film breakage during a process such as printing and bag making. In addition, when the tension applied to the film increases as the speed of processes such as printing and bag making increases, it is preferable that the tensile elongation at break is 100% or more because it is difficult to break.
[0130] 上限については特に限定されないが、現在の工程スピードを考えた場合、 500% ほどあれば十分だと考えられ、伸びを付与しすぎようとするとその反面フィルムの剛性 (引張弾性率)が低下してしまう傾向となる。  [0130] The upper limit is not particularly limited, but considering the current process speed, it is considered that about 500% is sufficient, and when trying to give too much elongation, the stiffness (tensile modulus) of the film is low. It tends to decrease.
[0131] 第 1の空孔含有フィルムにおいて、 0°C環境下での引張破断伸度を前記範囲に調 整するためには、榭脂組成をこの発明で記載するように調整するとともに、延伸温度 を後述する範囲に調整することが好ましい。例えば、引張破断伸度をより向上させた い場合には、(B)成分の含有量を上げる、(II)層に (C)成分を含む場合は、軟質成 分 (C)の含有量を上げる、 MDに対して弱延伸を与える等の手段を用いるとよ 、。 [0131] In the first pore-containing film, the tensile elongation at break at 0 ° C is adjusted to the above range. In order to adjust, it is preferable to adjust the resin composition as described in the present invention and to adjust the stretching temperature to a range described later. For example, if you want to improve the tensile elongation at break, increase the content of component (B). If the component (C) is included in the layer (II), increase the content of soft component (C). Use a means such as raising or giving weak extension to MD.
[0132] (剛性 (引張弾性率))  [0132] (Rigidity (tensile modulus))
第 1の空孔含有フィルムの腰(常温での剛性)は、第 1の空孔含有フィルムの主収縮 方向と直交する方向の引張弾性率が 1. 20GPa以上であることが好ましぐ 1. 40GP aであることがより好ましぐ 1. 60GPa以上であることがさらに好ましい。また、通常使 用される熱収縮性フィルムの引張弾性率の上限値は 3. OOGPa程度であり、好ましく は 2. 90GPa程度であり、さらに好ましは 2. 80GPa程度である。第 1の空孔含有フィ ルムの主収縮方向と直交する方向の引張弾性率が 1. 2GPa以上あれば、フィルム 全体としての腰 (常温での剛性)を高くすることができ、特に第 1の空孔含有フィルム の厚みを薄くした場合にぉ 、ても、ペットボトルなどの容器に製袋したフィルムをラベ リングマシン等で被せる際に、斜めに被ったり、積層フィルムの腰折れなどで歩留まり が低下したりしゃすいなどの問題点が発生し 1 、好ましい。  The waist (stiffness at room temperature) of the first pore-containing film is preferably 1.20 GPa or higher in the tensile modulus in the direction perpendicular to the main shrinkage direction of the first pore-containing film. More preferred is 40 GPa 1. More preferred is 60 GPa or more. Further, the upper limit of the tensile elastic modulus of the heat-shrinkable film that is usually used is about 3. OOGPa, preferably about 2.90 GPa, and more preferably about 2.80 GPa. If the tensile modulus of elasticity in the direction perpendicular to the main shrinkage direction of the first pore-containing film is 1.2 GPa or more, the overall film stiffness (rigidity at room temperature) can be increased. Even when the pore-containing film is thinned, the yield decreases due to slanting or laminating the laminated film when the film made in a plastic bottle or other container is covered with a labeling machine. This is preferable because it causes problems such as wiping and sifting 1.
[0133] また、第 1の空孔含有フィルムは、空孔を有するため、(A)成分又は(B)成分と空 気との界面で光線が屈折'反射し、全体として不透明白色様の外観を呈するため、 例えば遮光性が求められる用途などに特に好適である。さらに、空孔を有するため通 常の熱可塑性榭脂よりも熱伝導効率が低下し、例えばホット飲料用ラベルなどの断 熱性 ·保温性を求められる用途に特に好適である。さらに、空孔を有するためクッショ ン性にも優れ、壊れやす ヽものや割れやす!/ヽものなどの保護用途にも適して 、る。  [0133] Further, since the first pore-containing film has pores, the light rays are refracted and reflected at the interface between the component (A) or the component (B) and the air, and the appearance of an opaque white color as a whole For example, it is particularly suitable for applications where light shielding properties are required. Furthermore, since it has pores, its heat conduction efficiency is lower than that of ordinary thermoplastic resin, and it is particularly suitable for applications that require heat insulation and heat retention, such as labels for hot beverages. In addition, since it has pores, it has excellent cushioning properties and is suitable for protective applications such as frangible flaws and flaws!
[0134] 上限については特に限定されないが、 3. OOGPa程度であるのが一般的である。 3 . OOGPa以下であれば弾性率が高くなりすぎて使用時にごわごわしたような風合い になるというような不具合も生じづらくなる。  [0134] The upper limit is not particularly limited, but it is generally about 3. OOGPa. 3. If it is less than OOGPa, the elastic modulus will be too high and it will be difficult to cause problems such as a stiff texture during use.
[0135] 第 1の空孔含有フィルムにおいて、常温での腰を前記範囲に調整するためには、 榭脂組成をこの発明で記載するように調整するとともに、延伸温度を後述する範囲に 調整することが好ましい。例えば、腰をより向上させたい場合には、(B)成分の含有 量を下げる、軟質成分 (C)の含有量を下げる、主収縮方向と直交する方向に弱延伸 を与える等の手段を用いるとよ 、。 [0135] In the first pore-containing film, in order to adjust the waist at room temperature to the above range, the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the range described later. It is preferable. For example, if you want to improve your waist more, lower the content of component (B), lower the content of soft component (C), or stretch slightly in the direction perpendicular to the main shrinkage direction. Use a means such as
[0136] (用途)  [0136] (Use)
第 1の空孔含有フィルムは、空孔を有するため、(A)成分榭脂又は (B)成分樹脂と 空気との界面で光線が屈折'反射し、全体として不透明白色様の外観を呈することと なるので、例えば遮光性が求められる用途などに特に好適である。さらに、空孔を有 するため通常の熱可塑性榭脂よりも熱伝導効率が低下し、例えばホット飲料用ラベ ルなどの断熱性 ·保温性を求められる用途に特に好適である。さらに、空孔を有する ためクッション性にも優れ、壊れやす!/ヽものや割れやす!/ヽものなどの保護用途にも適 している。  Since the first pore-containing film has pores, the light rays are refracted and reflected at the interface between the (A) component resin or the (B) component resin and the air, and as a whole, it has an opaque white-like appearance. Therefore, it is particularly suitable for applications that require light shielding properties, for example. Furthermore, since it has pores, its heat conduction efficiency is lower than that of ordinary thermoplastic resin, and it is particularly suitable for applications that require heat insulation and heat retention such as labels for hot beverages. In addition, since it has pores, it has excellent cushioning properties and is suitable for protective applications such as fragile!
[0137] (成形品、熱収縮性ラベル及び容器)  [0137] (Molded products, heat-shrinkable labels and containers)
第 1の空孔含有フィルムは、フィルムの印刷適性、高剛性、耐破断性、収縮仕上り 性等に優れているため、その用途が特に制限されるものではないが、必要に応じて 印刷層、蒸着層その他機能層を形成することにより、ボトル (ブローボトル)、トレー、 弁当箱、総菜容器、乳製品容器等の様々な成形品として用いることができる。特にこ の発明の積層フィルムを食品容器 (例えば清涼飲料水用又は食品用の PETボトル、 ガラス瓶、好ましくは PETボトル)用熱収縮性ラベルとして用いる場合、複雑な形状( 例えば、中心がくびれた円柱、角のある四角柱、五角柱、六角柱など)であっても該 形状に密着可能であり、シヮゃァバタ等のない美麗なラベルが装着された容器が得 られる。この発明の成形品及び容器は、通常の成形法を用いることにより作製できる  The first pore-containing film is excellent in printability, high rigidity, rupture resistance, shrink finish, etc. of the film, and its use is not particularly limited. By forming a vapor deposition layer and other functional layers, it can be used as various molded products such as bottles (blow bottles), trays, lunch boxes, prepared food containers, and dairy products containers. In particular, when the laminated film of the present invention is used as a heat-shrinkable label for food containers (for example, PET bottles, glass bottles, preferably PET bottles for soft drinks or foods), a complicated shape (for example, a cylinder with a narrow center) A rectangular column, pentagonal column, hexagonal column, etc.) can be adhered to the shape, and a container with a beautiful label without any shivabata is obtained. The molded article and container of this invention can be produced by using a normal molding method.
[0138] 第 1の空孔含有フィルムを PETボトル用熱収縮ラベル等として使用した場合、リサイ クルされる時点では収縮された状態であるが、収縮後においても液比重法により分 別できることが好ましい。具体的には、例えば、 25%以下の範囲で収縮させた後の 嵩比重は 0. 50以上 1. 00未満、好ましくは 0. 60以上 0. 95以下、さらに好ましくは 0 . 70以上 0. 90以下であることが望ましい。収縮後の嵩比重が 1. 00未満であれば、 このフィルムを液比重法によって分離でき、分別が可能となる。一方、収縮後の嵩比 重が 0. 50以上であれば、存在する空孔によって、このフィルムの強度が不十分とな るなどの不具合を生じることなぐ好適である。 [0139] 第 1の空孔含有フィルムは、優れた低温収縮性、収縮仕上り性を有するため、高温 に加熱すると変形を生じるようなプラスチック成形品の熱収縮性ラベル素材のほか、 熱膨張率や吸水性等がこの発明の熱収縮性フィルムとは極めて異なる材質、例えば 金属、磁器、ガラス、紙、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフイン 系榭脂、ポリメタクリル酸エステル系榭脂、ポリカーボネート系榭脂、ポリエチレンテレ フタレート、ポリブチレンテレフタレート等のポリエステル系榭脂、ポリアミド系榭脂から 選ばれる少なくとも 1種を構成素材として用いた包装体 (容器)の熱収縮性ラベル素 材として好適に利用できる。 [0138] When the first pore-containing film is used as a heat shrink label for PET bottles or the like, it is in a contracted state at the time of recycling, but it is preferable that it can be separated by a liquid specific gravity method even after the contraction. . Specifically, for example, the bulk specific gravity after shrinking in the range of 25% or less is 0.50 or more and less than 1.00, preferably 0.60 or more and 0.95 or less, more preferably 0.70 or more and 0.000 or more. 90 or less is desirable. If the bulk specific gravity after shrinkage is less than 1.00, the film can be separated by the liquid specific gravity method and can be separated. On the other hand, if the bulk specific gravity after shrinkage is 0.50 or more, it is preferable that there are no defects such as insufficient strength of the film due to the existing pores. [0139] The first pore-containing film has excellent low-temperature shrinkage and shrinkage finish properties, and therefore, in addition to the heat-shrinkable label material of plastic molded products that deform when heated to high temperatures, A material whose water absorption is very different from the heat-shrinkable film of the present invention, for example, polyolefin resin such as metal, porcelain, glass, paper, polyethylene, polypropylene, polybutene, polymethacrylate ester resin, polycarbonate resin In addition, it can be suitably used as a heat-shrinkable label material for a package (container) using at least one selected from polyester-based resin such as polyethylene terephthalate and polybutylene terephthalate, and polyamide-based resin as a constituent material.
[0140] 第 1の空孔含有フィルムが利用できるプラスチック包装体を構成する材質としては、 前記の榭脂の他、ポリスチレン、ゴム変性耐衝撃性ポリスチレン (HIPS)、スチレン— ブチルアタリレート共重合体、スチレン—アクリロニトリル共重合体、スチレン 無水マ レイン酸共重合体、アクリロニトリル—ブタジエン—スチレン共重合体 (ABS)、メタタリ ル酸エステル ブタジエン スチレン共重合体(MBS)、ポリ塩化ビュル系榭脂、フ エノール榭脂、ユリア榭脂、メラミン榭脂、エポキシ榭脂、不飽和ポリエステル榭脂、シ リコーン榭脂等を挙げることができる。これらのプラスチック包装体は 2種以上の榭脂 類の混合物でも、積層体であってもよい。  [0140] Examples of the material constituting the plastic package in which the first pore-containing film can be used include polystyrene, rubber-modified impact-resistant polystyrene (HIPS), and styrene-butyl acrylate copolymer in addition to the above-mentioned resin. , Styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, acrylonitrile-butadiene-styrene copolymer (ABS), methacrylic acid ester butadiene styrene copolymer (MBS), polychlorinated bur resin, Examples include enol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin. These plastic packages may be a mixture of two or more types of resin or a laminate.
[0141] <第 2の空孔含有フィルム >  [0141] <Second pore-containing film>
第 2の空孔含有フィルムは、前記の (A)成分と (B)成分と (C)成分を所定割合で含 んでなり、又はこの混合榭脂組成物層を少なくとも 1層有する未延伸フィルムを少なく とも 1軸方向に延伸したフィルムである。  The second pore-containing film comprises an unstretched film comprising the above-mentioned component (A), component (B) and component (C) in a predetermined ratio, or having at least one mixed resin composition layer. It is a film stretched at least in the uniaxial direction.
[0142] 第 2の空孔含有フィルムにおける(A)成分の DZL比は、 L 乳酸 ZD 乳酸 =99 Zl〜85Zl5の範囲、又は 1Z99〜15Z85の範囲であることが好ましぐ 97/3~ 88/12の範囲、又は 3/97〜12/88の範囲であること力 Sより好ましく、 97/3〜90 Z10の範囲、又は 3Z97〜: LOZ90の範囲であることがさらに好ましぐ 97/3~93 Z7の範囲、又は 3Z97〜7Z93の範囲であることがさらに好ましい。 DZL比が前 記範囲内であれば、後述する空孔成形工程において、十分な空孔形成を起こし、所 望の嵩比重を有するフィルムを得ることができると共に、収縮ムラを抑えることができ、 十分な収縮特性を有するフィルムを得やす ヽ。 [0143] 第 2の空孔含有フィルムにおける (A)成分及び (B)成分は、前記した第 1の空孔含 有フィルムの(I)層の各特徴 (混合比その他の添加物の各欄に記載の特徴)と一致 する。 [0142] The DZL ratio of the component (A) in the second pore-containing film is preferably in the range of L lactic acid ZD lactic acid = 99 Zl to 85 Zl5, or 1Z99 to 15 Z85. / 12, or 3/97 to 12/88 is more preferable than force S, 97/3 to 90 Z10, or 3Z97 to: LOZ90 is more preferable 97/3 It is more preferably in the range of ~ 93 Z7, or in the range of 3Z97 to 7Z93. If the DZL ratio is within the above range, in the pore forming process described later, sufficient pore formation can be caused, and a film having the desired bulk specific gravity can be obtained, and shrinkage unevenness can be suppressed, Easily obtain a film with sufficient shrinkage characteristics. [0143] The component (A) and the component (B) in the second pore-containing film are the characteristics of the (I) layer of the first pore-containing film (mixing ratio and other columns of additives). This is consistent with the characteristics described in (1).
[0144] ( (C)成分の混合比)  [0144] (mixing ratio of component (C))
第 2の空孔含有フィルムにおける (A)成分と (C)成分の質量比は、前記 (A)成分 1 00質量部に対して、(C)成分は 10質量部以上であることが必要であり、 20質量部以 上であると好ましぐ 30質量部以上であるとより好ましぐ 40質量部以上であるとさら に好ましい。また、(C)成分の上限は 80質量部以下であり、 70質量部以下であるとよ り好ましい。(C)成分の含有量がポリ乳酸系榭脂組成物 100質量部に対して 10質量 部以上であれば、耐破断性を付与できるため好ましい。一方、この含有量が 80質量 部以下であれば、剛性を低下させな 、ため好ま 、。  The mass ratio of the component (A) to the component (C) in the second pore-containing film must be 10 parts by mass or more for the component (C) with respect to 100 parts by mass of the component (A). Yes, it is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and even more preferably 40 parts by mass or more. In addition, the upper limit of the component (C) is 80 parts by mass or less, and more preferably 70 parts by mass or less. If the content of the component (C) is 10 parts by mass or more with respect to 100 parts by mass of the polylactic acid-based resin composition, it is preferable because fracture resistance can be imparted. On the other hand, if the content is 80 parts by mass or less, the rigidity is not lowered.
[0145] ( (D)成分)  [0145] (Component (D))
第 2の空孔含有フィルムは、(A)成分に非相溶な (B)成分を含む場合、空孔を含 有することができ、それによつて光線透過率を抑えること (すなわち遮光性を付与する こと)は可能であるが、内部に上記 (D)成分を含有させることにより、さらにその光線 透過率を抑えることが可能となる。  When the second pore-containing film contains the component (B) that is incompatible with the component (A), the second pore-containing film can contain pores, thereby suppressing light transmittance (that is, providing light shielding properties). However, the light transmittance can be further suppressed by incorporating the component (D) inside.
[0146] 第 2の空孔含有フィルムに含まれる (D)成分の含有量は、第 2の空孔含有フィルム の遮光性、機械的物性、生産性等を考慮すると、(A)成分と (B)成分との混合榭脂 中 100質量部に対して、 1質量部以上、好ましくは 2質量部以上、さらに好ましくは 5 質量部以上であり、 25質量部以下、好ましくは 20質量部以下、さらに好ましくは 15 質量部以下であることが必要である。  [0146] The content of the component (D) contained in the second pore-containing film is determined by taking into consideration the light shielding properties, mechanical properties, productivity, etc. of the second pore-containing film. B) 100 parts by weight in a mixed fat with component, 1 part by weight or more, preferably 2 parts by weight or more, more preferably 5 parts by weight or more, 25 parts by weight or less, preferably 20 parts by weight or less, More preferably, it should be 15 parts by mass or less.
[0147] 第 2の空孔含有フィルムは空孔を有する場合、 (D)成分は、遮光機能の補助的な 役目を担うことより、その含有量が 1質量部以上であれば、十分に遮光フィルムとして 機能することが可能となる。また、(D)成分の含有量が 25質量部以下にすることによ つて、熱収縮フィルムとして必要な機能、耐破断性、収縮特性を確保することができ る。  [0147] When the second pore-containing film has pores, the component (D) plays an auxiliary role in the light-shielding function. Therefore, if the content is 1 part by mass or more, the component is sufficiently shielded from light. It can function as a film. In addition, when the content of component (D) is 25 parts by mass or less, the functions, fracture resistance, and shrinkage characteristics necessary for a heat shrink film can be secured.
[0148] (さらなる添加物)  [0148] (Additional additives)
第 2の空孔含有フィルムは、印刷性、溶剤シール性、耐融着性等、表面層としての 要求される諸特性を損なわない範囲で、嵩比重の低減等を目的として、前記 (A)成 分、(B)成分、(C)成分、及び必要に応じて用いる(D)成分以外の他の榭脂を含む ことができる。このような榭脂としては、例えば、アクリル系榭脂、アミド系榭脂、脂肪族 ポリエステル系榭脂、脂肪族芳香族ポリエステル系榭脂等が挙げられる。 The second pore-containing film is used as a surface layer such as printability, solvent sealability, and fusing resistance. Other than the (A) component, the (B) component, the (C) component, and the (D) component used as necessary for the purpose of reducing the bulk specific gravity and the like within a range that does not impair the required properties. Can be included. Examples of such a resin include acrylic resin, amide resin, aliphatic polyester resin, aliphatic aromatic polyester resin, and the like.
[0149] (空孔)  [0149] (Hole)
前記 (A)成分、(B)成分、(C)成分、及び必要に応じて (D)成分を含有する前記 榭脂組成物は、前記 (A)成分及び (C)成分がマトリックスを形成し、(B)成分、及び 必要に応じて用いた (D)成分が分散ドメインを形成する。前記の質量比で (B)成分( 及び必要に応じて用いた (D)成分)を含有して全体として海島構造を形成する前記 榭脂組成物からなる単層フィルムを延伸することにより、マトリックスと分散ドメインとの 界面で剥離を生じさせて、空孔を形成させることができる。これにより、後述する嵩比 重の小さぐ遮光性や断熱性の良好なフィルムを得ることができる。この分散ドメイン の大きさ及び形状は、混練条件、シート化条件、延伸倍率、延伸方向等により適宜 決定され得る。延伸後の分散ドメインの長手方向、すなわち延伸方向と平行する方 向の断面形状は楕円形であることが好ましい。断面形状が楕円形である場合、この 分散ドメインの短軸方向の最大軸長は 0. 1 m以上であると好ましく、 0. 以上 であるとより好ましぐ 0. 3 m以上であるとさらに好ましい。一方、この短軸方向の最 大軸長は 5 m以下であると好ましぐ 4 m以下であるとさらに好ましい。短軸方向 の最大軸長が 0. 1 m以上であれば、マトリックスと分散ドメインとの界面における剥 離が生じ、空孔を形成するのに好適であり、またこの最大軸長が 5 m以下であれば 、表面に著しい凹凸が生じにくぐかつ外見も均一に保つことができるため好適であ る。  In the resin composition containing the component (A), the component (B), the component (C), and the component (D) as necessary, the component (A) and the component (C) form a matrix. , (B) component, and (D) component used as necessary form a dispersion domain. By stretching the single layer film comprising the above-mentioned rosin composition containing the component (B) (and the component (D) used as needed) at the above-mentioned mass ratio and forming a sea-island structure as a whole, a matrix is obtained. It is possible to form vacancies by causing separation at the interface between the particles and the dispersion domain. As a result, a film having a small bulk specific gravity, which will be described later, and a good light shielding property and heat insulating property can be obtained. The size and shape of the dispersion domain can be appropriately determined depending on kneading conditions, sheeting conditions, stretching ratio, stretching direction, and the like. The longitudinal direction of the dispersed domain after stretching, that is, the cross-sectional shape in the direction parallel to the stretching direction is preferably elliptical. When the cross-sectional shape is an ellipse, the maximum axial length in the minor axis direction of this dispersion domain is preferably 0.1 m or more, more preferably 0.3 or more, and further 0.3 m or more. preferable. On the other hand, the maximum axial length in the minor axis direction is preferably 5 m or less, more preferably 4 m or less. If the maximum axial length in the minor axis direction is 0.1 m or more, peeling occurs at the interface between the matrix and the dispersion domain, which is suitable for forming pores, and this maximum axial length is 5 m or less. If so, it is preferable that remarkable unevenness is hardly generated on the surface and the appearance can be kept uniform.
[0150] (アスペクト比)  [0150] (Aspect ratio)
第 2の空孔含有フィルム製作時にぉ 、て、マトリックス成分 (すなわち (A)成分と (C )成分)とともに、分散ドメイン (特に (B)成分)も主収縮方向と直交する方向 (流れ方 向)に延ばされ、特に分散ドメイン (特に (B)成分)は、流れ方向(フィルム主収縮方向 と直交する方向)に伸長された状態となる。このときの分散ドメイン (特に (B)成分)の アスペクト比は、 1より大きぐ好ましくは 3以上、さらに好ましくは 5以上であり、かつ 50 以下、好ましくは 40以下、さらに好ましくは 35以下となるように調整されることが望ま L 、。前記分散ドメイン (特に(B)成分)のアスペクト比が 1より大きければ流れ方向と 直交する方向に延伸したときに空孔を生じさせ易ぐまた前記アスペクト比が 50以下 であれば、分散ドメインが細力べなりすぎて延伸しても空孔を生じさせ難いという不具 合をおこしづらぐ好ましい。 During the production of the second pore-containing film, the dispersion component (particularly the component (B)) as well as the matrix component (that is, the component (A) and the component (C)) is also perpendicular to the main shrinkage direction (flow direction). In particular, the dispersion domain (particularly component (B)) is stretched in the flow direction (direction perpendicular to the main film shrinkage direction). The aspect ratio of the dispersion domain (particularly component (B)) at this time is greater than 1, preferably 3 or more, more preferably 5 or more, and 50 In the following, it is desirable to adjust to 40 or less, more preferably 35 or less. If the aspect ratio of the dispersion domain (particularly component (B)) is larger than 1, it is easy to generate pores when stretched in the direction perpendicular to the flow direction, and if the aspect ratio is 50 or less, the dispersion domain is It is preferable that it is difficult to cause a defect that pores are not easily generated even if stretched due to excessive tension.
[0151] 分散ドメイン (特に (B)成分)が所定のアスペクト比を有するようにしたとき、この分散 ドメインは、単層フィルム外表面に対して平行となり、かつ、一方向、すなわち、単層 フィルムの流れ方向(単層フィルム主収縮方向に直交する方向)に伸長したものとな る。このため、一軸延伸の延伸方向又は二軸延伸の一方の延伸方向を流れ方向に 対して直角方向(単層フィルム主収縮方向)とすることにより、マトリックス ( (A)成分と( C)成分)と分散ドメイン (特に (B)成分)との境界の剥離をより生じさせやすくなり、か つ多くの空孔を形成することができる。  [0151] When the dispersion domain (particularly component (B)) has a predetermined aspect ratio, the dispersion domain is parallel to the outer surface of the monolayer film and is unidirectional, that is, a monolayer film. Stretched in the flow direction (direction perpendicular to the main shrinkage direction of the single layer film). For this reason, the matrix ((A) component and (C) component) can be obtained by setting one stretching direction of uniaxial stretching or one stretching direction of biaxial stretching to a direction perpendicular to the flow direction (single layer main shrinkage direction). And the dispersion domain (particularly the component (B)) are more likely to be separated, and more vacancies can be formed.
[0152] なお、本明細書において「主収縮方向」とは、縦方向と横方向のうち収縮率の大き い方向を意味し、例えば、ボトルに装着する場合にはその外周方向に相当する方向 である。また、「主収縮方向と直交する方向」とは、収率縮の大きい方向と直交する方 向をいう。  [0152] In this specification, the "main shrinkage direction" means a direction having a large shrinkage rate in the longitudinal direction and the transverse direction, and, for example, a direction corresponding to the outer circumferential direction when the bottle is attached to the bottle. It is. Further, the “direction perpendicular to the main shrinkage direction” refers to a direction perpendicular to the direction in which yield shrinkage is large.
[0153] (第 2の空孔含有フィルムの製造方法)  [0153] (Method for producing second pore-containing film)
第 2の空孔含有フィルムは、前記榭脂組成物からなり、又は前記混合榭脂組成物 層を少なくとも 1層有する未延伸のフィルムを、少なくとも一軸方向に延伸することに より作製できる。具体的には、まず前記 (A)成分、(B)成分及び (C)成分を前記の質 量混合比で混合して、前記榭脂組成物を得る。また、さらに可塑剤、熱安定剤、抗酸 ィ匕剤、 UV吸収剤、光安定剤、顔料、着色剤、滑剤、核剤、加水分解防止剤等の添 加剤を必要に応じて加えることが出来る。この混合する方法としては、例えば、同方 向 2軸押出機、ニーダー、ヘンシェルミキサー等を用いてプレコンパウンドを得る方法 がある。  The second pore-containing film can be produced by stretching at least a uniaxial direction of an unstretched film made of the above-described resin composition or having at least one layer of the mixed resin composition layer. Specifically, first, the (A) component, the (B) component, and the (C) component are mixed at the mass mixing ratio described above to obtain the greave composition. In addition, additives such as plasticizers, heat stabilizers, antioxidants, UV absorbers, light stabilizers, pigments, colorants, lubricants, nucleating agents, and hydrolysis inhibitors should be added as necessary. I can do it. As a method of mixing, for example, there is a method of obtaining a pre-compound using a unidirectional twin-screw extruder, a kneader, a Henschel mixer or the like.
[0154] 次に、第 2の空孔含有フィルムを成形する方法としては、前記榭脂組成物を押出機 に投入し、溶融押出成形する。フィルムの形態としては平面状、チューブ状の何れで あってもょ 、が、生産性 (原反フィルムの幅方向に製品として数丁取りが可能)や内 面に印刷が可能という点から平面状が好ましい。溶融押出されたフィルムは、冷却口 ール、空気、水等で冷却される。この際の押出方法としては、 Tダイ法、チューブラ法 等の公知の方法を採用できる。 [0154] Next, as a method for forming the second pore-containing film, the resin composition is charged into an extruder and melt-extruded. The film can be either flat or tube-shaped, but it can be productive (a few products can be taken in the width direction of the original film) A planar shape is preferable in that printing is possible on the surface. The melt-extruded film is cooled with a cooling tool, air, water or the like. As the extrusion method at this time, a known method such as a T-die method or a tubular method can be employed.
[0155] 次に、縦方向にロール延伸をし、横方向にテンター延伸をし、ァニールし、冷却し、 印刷が施される場合にはその面にコロナ放電処理をして、卷取機にて巻き取ることに よりフィルムを得ることができる。  [0155] Next, roll-stretching is performed in the vertical direction, tenter-stretching is performed in the horizontal direction, annealing, cooling, and when printing is performed, corona discharge treatment is performed on the surface, and the sheet is removed by a scraper. The film can be obtained by winding up.
[0156] また、チューブラー法により製造したフィルムを切り開いて平面状とする方法も挙げ られる。  [0156] Another example is a method of cutting a film produced by a tubular method into a flat shape.
[0157] なお、これらの成分を予め混合した後にフィルムを成形するのではなぐ前記榭脂 混合物の構成成分である前記ポリ乳酸系榭脂組成物 (A)、前記ポリオレフイン系榭 脂組成物 (B)及び前記軟質成分 (C)を、直接にフィルム押出機に投入し、混合とフィ ルム成形を同一装置で行ってもょ 、。  [0157] The polylactic acid-based resin composition (A) and the polyolefin-based resin composition (B), which are constituents of the resin mixture, in which the film is not formed after these components are mixed in advance. ) And the soft component (C) may be directly introduced into a film extruder, and mixing and film forming may be performed in the same apparatus.
[0158] 得られた前記の未延伸単層フィルムを、熱風、温風、紫外線、炭酸ガスレーザー、 マイクロウエーブ等の方法で再加熱し、ロール法、テンター法、チューブラ法等により 、少なくとも 1方向、すなわち一軸方向又は二軸方向に延伸することで、マトリックスと ドメインとの界面で剥離を生じさせ、空孔を形成させることによりこの発明にかかる熱 収縮性空孔含有フィルムを作製できる。前記の延伸を一軸延伸とするか、二軸延伸 とするかは、製造する単層フィルムの用途によって適宜決定できる。  [0158] The obtained unstretched monolayer film is reheated by a method such as hot air, warm air, ultraviolet light, carbon dioxide laser, or microwave, and is at least in one direction by a roll method, a tenter method, a tubular method, or the like. That is, by stretching in a uniaxial direction or biaxial direction, peeling occurs at the interface between the matrix and the domain, and pores are formed, whereby the heat-shrinkable pore-containing film according to the present invention can be produced. Whether the stretching is uniaxial stretching or biaxial stretching can be appropriately determined depending on the use of the monolayer film to be produced.
[0159] 前記の延伸を行う温度は、前記 (A)成分、(B)成分、(C)成分、及び必要に応じて 用いた (D)成分の軟化温度や、得られる第 2の空孔含有フィルムの用途等によって 変動し得る力 60°C以上であると好ましぐ 65°C以上であるとさらに好ましぐ 70°C以 上がさらに好ましい。延伸温度が 60°C以上であれば、延伸過程において原料の弹 性率が高くなり、良好な延伸性が得られにくくフィルム破断や厚み斑が起こるという不 具合を生じづらぐ好適である。一方で、 100°C以下がよぐ 90°C以下が好ましぐ 85 °C以下であるとさらに好ましぐ 80°C以下であるとより好ましい。延伸温度が 100°C以 下であれば、所望の収縮特性を発現できなくなる、マトリックスと分散ドメインとの界面 での剥離が促進せず十分な空孔が得られなくなるなどの不具合を生じづらぐ好適 である。 [0160] 前記の延伸を行う際の延伸倍率は、前記 (A)成分、(B)成分、(C)成分、及び必要 に応じて用いた (D)成分を混合した榭脂組成物の構成組成、延伸手段、延伸温度、 目的の製品形態等に応じて適宜選択することができるが、二軸延伸の場合は、縦方 向、横方向とも、 1. 5倍以上であると好ましぐ 2倍以上がより好ましぐ 3倍以上であ るとさらに好ましい。延伸倍率が 1. 5倍以上であれば、十分な空孔が得られず所望 の機能が得られないなどの不具合を生じることがなく好適であり、一方で、延伸倍率 は 10倍以下がよぐ 8倍以下であると好ましぐ 6倍以下であるとより好ましい。 10倍以 下であれば強度上問題を生じるなどの不具合を生じる事がなぐ実用的な性能が得 ることができ、空孔を十分に形成することができるためである。 [0159] The temperature at which the stretching is performed includes the softening temperature of the component (A), the component (B), the component (C), and the component (D) used as necessary, and the second voids obtained. The force that can vary depending on the use of the contained film, etc. 60 ° C. or more is preferred. 65 ° C. or more is more preferred, and 70 ° C. or more is more preferred. When the stretching temperature is 60 ° C. or higher, the raw material has a high modulus of elasticity during the stretching process, and it is difficult to obtain good stretchability, and it is difficult to cause defects such as film breakage and thickness unevenness. On the other hand, 100 ° C or less is preferable 90 ° C or less is preferable 85 ° C or less, and more preferable 80 ° C or less is more preferable. If the stretching temperature is 100 ° C or less, the desired shrinkage characteristics cannot be exhibited, and peeling at the interface between the matrix and the dispersion domain is not promoted, so that it is difficult to produce defects such as insufficient pores. Is preferred. [0160] The draw ratio at the time of drawing is the composition of the resin composition in which the component (A), the component (B), the component (C), and the component (D) used as necessary are mixed. It can be selected as appropriate according to the composition, stretching means, stretching temperature, desired product form, etc., but in the case of biaxial stretching, it is preferred that it is 1.5 times or more in both the longitudinal and transverse directions. 2 times or more is more preferable 3 times or more is more preferable. If the draw ratio is 1.5 times or more, it is preferable that sufficient pores cannot be obtained and a desired function cannot be obtained, and the draw ratio is preferably 10 times or less. 8 times or less is preferable and 6 times or less is more preferable. If it is 10 times or less, it is possible to obtain practical performance without causing problems such as a problem in strength, and it is possible to sufficiently form holes.
[0161] また、熱収縮性ラベル用等、主として一方向に収縮させる用途では、横方向が 1. 5 倍以上であると好ましぐ 2倍以上がより好ましぐ 3倍以上であるとさらに好ましい。延 伸倍率が 1. 5倍以上であれば、十分な空孔が得られず所望の機能が得られないな どの不具合を生じることがなく好適であり、一方で、延伸倍率は、 8倍以下であるとよく 、 7倍以下だと好ましぐ 6倍以下であるとより好ましぐ 5倍以下だとさらに好ましい。 8 倍以下であれば強度上問題を生じるなどの不具合を生じる事がなぐ実用的な性能 が得ることができ、空孔を十分に形成することができるためである。さらに、上記範囲 内の延伸倍率で延伸した二軸延伸フィルムは、主収縮方向と直交する方向の熱収 縮率が大きくなりすぎることはなぐ例えば、収縮ラベルとして用いる場合、容器に装 着するとき容器の高さ方向にもフィルムが熱収縮する、 V、わゆる縦引け現象を抑える ことができるため好ましい。  [0161] Also, in applications that shrink mainly in one direction, such as for heat-shrinkable labels, the lateral direction is preferably 1.5 times or more, more preferably 2 times or more, and more preferably 3 times or more. preferable. If the draw ratio is 1.5 times or more, it is preferable that sufficient pores cannot be obtained and the desired function cannot be obtained, and it is preferable. On the other hand, the draw ratio is 8 times or less. If it is less than 7 times, it is preferable. If it is less than 6 times, it is more preferable if it is less than 5 times. If it is 8 times or less, it is possible to obtain practical performance without causing problems such as a problem in strength, and it is possible to sufficiently form holes. Furthermore, a biaxially stretched film stretched at a stretch ratio in the above range does not have a too high heat shrinkage rate in the direction orthogonal to the main shrinkage direction.For example, when used as a shrinkage label, V is preferable because the film shrinks in the height direction of the container.
[0162] このときの前記延伸工程での延伸方向は、目的用途によって適宜選択することが できるが、この発明のフィルムは、フィルムの引き取り方向(MD)に前記ポリオレフイン 系榭脂組成物 (B)の分散ドメインが伸長した構造をとりやすいため、伸長方向と垂直 の方向(TD)に延伸すると、容易に空孔を形成することができるため好ましい。  [0162] The stretching direction in the stretching step at this time can be appropriately selected depending on the intended use. However, the film of the present invention has the polyolefin resin composition (B) in the film take-off direction (MD). Therefore, it is preferable to extend in the direction perpendicular to the extension direction (TD) because pores can be easily formed.
[0163] また、一軸延伸の場合でも、必要に応じてフィルムの主収縮方向と直交する方向に 1. 01倍から 1. 5倍、好ましくは 1. 8倍程度の弱延伸を付与すると、得られる熱収縮 性空孔含有フィルムの機械的物性が改良されるのでより好ましい。  [0163] Even in the case of uniaxial stretching, it can be obtained by applying a weak stretching of 1.01 to 1.5 times, preferably about 1.8 times in the direction perpendicular to the main shrinkage direction of the film, if necessary. It is more preferable because the mechanical properties of the heat-shrinkable pore-containing film obtained are improved.
[0164] 延伸した第 2の空孔含有フィルムは、必要に応じて、自然収縮率の低減や熱収縮 特性の改良等を目的として、 50°C以上 100°C以下程度の温度で熱処理や弛緩処理 を行った後、分子配向が緩和しない時間内に速やかに冷却され、熱収縮性フィルム となる。 [0164] The stretched second pore-containing film can reduce the natural shrinkage rate or heat shrink as necessary. After heat treatment or relaxation treatment at a temperature of about 50 ° C or more and 100 ° C or less for the purpose of improving the characteristics, etc., the film is quickly cooled within a time period in which the molecular orientation does not relax and becomes a heat-shrinkable film.
[0165] また、第 2の空孔含有フィルムは、必要に応じてコロナ処理、印刷、コーティング、蒸 着等の表面処理や表面加工、さらには、各種溶剤やヒートシールによる製袋加工や ミシン目加工などを施すことができる。  [0165] In addition, the second pore-containing film may be subjected to surface treatment and surface treatment such as corona treatment, printing, coating, and vapor deposition, as well as bag-making processing and perforation using various solvents and heat sealing. Processing can be performed.
[0166] この延伸工程での延伸方向は、目的用途によって適宜選択することができるが、第 2の空孔含有フィルムは後述するとおり MD方向に (B)成分の分散ドメインが伸長し た構造をとるため、伸長方向と垂直方向、すなわち TD方向に延伸することにより容 易に空孔を形成することができ好適である。  [0166] The stretching direction in this stretching step can be appropriately selected depending on the intended use, but the second pore-containing film has a structure in which the dispersion domain of the (B) component extends in the MD direction as described later. Therefore, it is preferable that pores can be easily formed by stretching in the direction perpendicular to the extension direction, that is, in the TD direction.
[0167] また、一軸延伸の場合、必要に応じてフィルムの主収縮方向と直交する方向に 1. 0 1倍から 1. 8倍程度の弱延伸を付与すると、得られる熱収縮性空孔含有フィルムの 機械的物性が改良されるのでより好ま 、。  [0167] In addition, in the case of uniaxial stretching, heat-shrinkable pores can be obtained when weak stretching of about 1.0 to 1 to 1.8 times is applied in the direction perpendicular to the main shrinkage direction of the film as necessary. This is preferred because the mechanical properties of the film are improved.
[0168] ところで、前記の第 2の空孔含有フィルム製造方法で使用される冷却ロールは、前 記押出機の下方に存在するため、前記押出機力 押し出されたフィルムが冷却ロー ルに到達するまでに、自重により、多少延伸された状態になる。このとき、フィルムは 前記押出機力 押し出された段階であるため高温状態にあり、第 2の空孔含有フィル ムが (B)成分を含有する場合、(A)成分力もなるマトリックスだけでなぐ(B)成分から なる分散ドメインも主収縮方向と直交する方向(流れ方向)に延ばされる。このため、 特に(B)成分力 なる分散ドメインは、流れ方向(フィルム主収縮方向と直交する方 向)に伸長された状態となる。このときの(B)成分力もなる分散ドメインのアスペクト比 を調整することによってフィルムの耐破断性を向上させることも可能となる。  [0168] By the way, since the cooling roll used in the second pore-containing film manufacturing method exists below the extruder, the film extruded by the extruder reaches the cooling roll. By the time, due to its own weight, it is in a slightly stretched state. At this time, the film is in a high temperature state because it is at the stage where the extruder force is extruded, and when the second pore-containing film contains the component (B), (A) only the matrix having the component force can be used ( The dispersion domain consisting of component B) is also extended in the direction (flow direction) perpendicular to the main contraction direction. For this reason, in particular, the dispersion domain (B) component force is in a state of being stretched in the flow direction (direction perpendicular to the main film shrinkage direction). At this time, the fracture resistance of the film can be improved by adjusting the aspect ratio of the dispersion domain which also has the component force (B).
[0169] すなわち、分散ドメインのアスペクト比は、フィルムの自重〖こよる方法で生じさせるこ とが好ましいが、それでは不十分な場合がある。このような場合、押出機と冷却ロール との間で多少延伸させることが望ましい。すなわち、押出機の押出口金の間隔 (リップ ギャップ)に対し、製膜する延伸フィルムの厚みを変えることにより、流れ方向(フィル ム主収縮方向に直交する方向)に伸長させ、また、その比によって、前記分散ドメイン ( (B)成分)のアスペクト比を制御することが可能となる。 [0170] (積層構成を採用する場合) [0169] That is, the aspect ratio of the dispersion domain is preferably generated by a method of self-weighting the film, but this may not be sufficient. In such a case, it is desirable to stretch a little between the extruder and the cooling roll. That is, by changing the thickness of the stretched film to be formed with respect to the interval (lip gap) of the extrusion die of the extruder, the film is stretched in the flow direction (direction perpendicular to the main film shrinkage direction), and the ratio Thus, the aspect ratio of the dispersion domain (component (B)) can be controlled. [0170] (When adopting laminated structure)
第 2の空孔含有フィルムは単層で用いてもよいし、収縮特性の調整、印刷性、溶剤 シール性、バリア性、隠蔽性、断熱性、閲覧性、滑り性、耐熱性、耐溶剤性、易接着 性等の向上などの目的のために、 2層以上の層構成を有するように積層を行ってもよ い。積層する層としては、印刷層、蒸着層などが挙げられる。単層構成で用いる場合 、第 2の空孔含有フィルムの厚みは、 30 μ m以上、好ましくは 40 μ m以上、さらに好 ましくは 50 μ m以上であり、力つ 200 μ m以下、好ましくは 175 μ m以下、さらに好ま しくは 150 m以下とすることが望ましい。また、積層構成で用いる場合には、中間層 として用いることが好ましい。その場合、フィルム全体の厚みに対するこの発明のフィ ルムの厚み比は、 20%以上、好ましくは 25%以上、さらに好ましくは 30%以上とし、 かつ 95%以下、好ましくは 90%以下、さらに好ましくは 85%以下とすることが望まし い。  The second pore-containing film may be used as a single layer, shrinkage adjustment, printability, solvent sealability, barrier properties, concealment properties, heat insulation properties, readability, slip properties, heat resistance, solvent resistance For the purpose of improving easy adhesion, etc., the layers may be laminated so as to have two or more layers. Examples of the layer to be laminated include a printing layer and a vapor deposition layer. When used in a single layer configuration, the thickness of the second pore-containing film is 30 μm or more, preferably 40 μm or more, more preferably 50 μm or more, and powerfully 200 μm or less, preferably Is preferably 175 μm or less, more preferably 150 m or less. Further, when used in a laminated structure, it is preferably used as an intermediate layer. In that case, the thickness ratio of the film of the present invention to the thickness of the entire film is 20% or more, preferably 25% or more, more preferably 30% or more, and 95% or less, preferably 90% or less, more preferably It should be 85% or less.
[0171] 第 2の空孔含有フィルムを積層構成の一部として用いた場合、層構成は特に限定 されるものではない。第 2の空孔含有フィルムを第 1層、印刷層、蒸着層等からなる第 二の層を第 2層と表記した場合、層構成としては第 1層に隣接して第 2層が片面又は 両面に積層されている態様のみならず、第 1層と第 2層との間に接着性の改良やバリ ァ性、隠蔽性、断熱性等を付与する目的のため、第 3の層を有する場合も含まれる。 好ましくは中間層として第 1層、表面層として第 2層を有する 2種 3層の層構成 (第 2層 Z第 1層 Z第 2層)、又は中間層と表面層との間に接着層を有する 3種 5層の層構成 (第 2層 Z接着層 Z第 1層 Z接着層 Z第 2層)などの層構成が挙げられる。さらに、前 記第 3層を用いる場合の例として、第 2層 Z第 1層 Z第 3層、第 2層 Z第 1層 Z第 3層 Z第 2層等が挙げられる。  [0171] When the second pore-containing film is used as a part of the laminated structure, the layer structure is not particularly limited. If the second layer comprising the second pore-containing film is the first layer, the printed layer, the vapor-deposited layer, etc., is denoted as the second layer, the layer structure is adjacent to the first layer and the second layer is on one side or Not only is it laminated on both sides, but it has a third layer for the purpose of improving adhesion, barrier properties, hiding properties, heat insulation, etc. between the first and second layers. Cases are also included. Preferably, the first layer as the intermediate layer and the second layer as the surface layer and the three layers of the two layers (second layer Z first layer Z second layer), or an adhesive layer between the intermediate layer and the surface layer And a layer configuration such as a three-layer five-layer configuration (second layer Z adhesive layer Z first layer Z adhesive layer Z second layer). Furthermore, as an example of using the third layer, the second layer Z, the first layer Z, the third layer, the second layer Z, the first layer Z, the third layer Z, the second layer, and the like can be given.
[0172] 第 1層以外の層に用いられる榭脂糸且成物は特に限定されるものではないが、第 1層 との接着性、フィルム全体のリサイクル性などを考慮すると、第 1層に用いられるポリ 乳酸系榭脂組成物 (A)を主成分として構成することが好ましい。さらに、第 2層には、 印刷性、溶剤シール性、耐融着性など表面層としての要求される諸特性を損なわな い範囲で、層間接着性の向上、嵩比重の低減、耐破断性の向上、収縮特性の調整 などを目的としてポリ乳酸系榭脂組成物以外の熱可塑性榭脂を含むことができる。ポ リ乳酸系榭脂組成物以外の熱可塑性榭脂を例示すると、ポリオレフイン系榭脂、ポリ スチレン系榭脂、アクリル系榭脂、アミド系榭脂、脂肪族及び Z又は芳香族ポリエス テル系榭脂などが挙げられ、中でも上述したポリオレフイン系榭脂組成物 (B)や軟質 成分 (C)も好適に使用できる。 [0172] There are no particular limitations on the resin yarn and composition used in layers other than the first layer, but considering the adhesiveness to the first layer and the recyclability of the entire film, the first layer It is preferable that the polylactic acid based resin composition (A) used is used as a main component. Furthermore, the second layer has improved interlayer adhesion, reduced bulk specific gravity, and fracture resistance within the range that does not impair various properties required for the surface layer, such as printability, solvent sealability, and fusing resistance. For the purpose of improving the viscosity and adjusting the shrinkage properties, a thermoplastic resin other than the polylactic acid-based resin composition can be included. Po Examples of thermoplastic resins other than the lactic acid-based resin composition include polyolefin resin, polystyrene resin, acrylic resin, amide resin, aliphatic and Z or aromatic polyester resin Among them, the polyolefin resin composition (B) and the soft component (C) described above can be preferably used.
[0173] 第 2の空孔含有フィルムを用いる積層構造において、好適な層構成は第 2層がポリ 乳酸系榭脂を主成分とする層の場合である。特に第 2層を構成するポリ乳酸系榭脂 の DZL比は、第 1層を構成する DZL比と異なることが好ましい。第 1層と第 2層にお いて、 DZL比を変化させ結晶性を異なるように調整することにより、より良好な収縮 仕上がり性を実現させることができる。  [0173] In the laminated structure using the second pore-containing film, a preferred layer structure is a case where the second layer is a layer mainly composed of a polylactic acid-based resin. In particular, the DZL ratio of the polylactic acid-based resin constituting the second layer is preferably different from the DZL ratio constituting the first layer. By adjusting the DZL ratio and changing the crystallinity to be different in the first layer and the second layer, it is possible to achieve better shrinkage finish.
[0174] また、第 2の空孔含有フィルムは、空孔を含有する場合、この層のほかに、空孔のな い、又は空孔含有量を低く抑えた第 2層を配設することにより、印刷性、溶剤シール 性などを向上できる。また、第 1層及び第 2層において、使用するポリ乳酸系榭脂の DZL比を変更することにより、空隙形成 ·収縮特性を好ましい範囲に調整できる。  [0174] When the second pore-containing film contains pores, in addition to this layer, a second layer having no pores or having a low pore content should be disposed. As a result, printability, solvent sealability, etc. can be improved. Further, by changing the DZL ratio of the polylactic acid-based resin used in the first layer and the second layer, the void formation / shrinkage characteristics can be adjusted within a preferable range.
[0175] この積層体を形成する方法としては、共押出法、各層のフィルムを形成した後に、 重ね合わせて熱融着する方法、接着剤等で接合する方法等が挙げられる。  [0175] Examples of a method for forming this laminate include a co-extrusion method, a method of forming a film of each layer and then heat-sealing them with each other, a method of bonding with an adhesive, and the like.
[0176] 第 2の空孔含有フィルムの総厚みは、単層であっても積層構造としても、特に限定 されるものではないが、透明性、収縮加工性、原料コスト等の観点からは薄い方が好 ましい。具体的には、延伸後のフィルムの総厚みが 150 m以下であることがよぐ好 ましくは 100 /z m以下であり、さらに好ましくは 80 m以下である。また、フィルムの総 厚みの下限は特に限定されないが、フィルムのハンドリング性を考慮すると、 20 μ ηι 以上であることが好ましい。  [0176] The total thickness of the second pore-containing film is not particularly limited, whether it is a single layer or a laminated structure, but is thin from the viewpoints of transparency, shrinkage workability, raw material cost, etc. Is preferred. Specifically, the total thickness of the stretched film is preferably 150 m or less, more preferably 100 / z m or less, and even more preferably 80 m or less. Further, the lower limit of the total thickness of the film is not particularly limited, but is preferably 20 μηι or more in consideration of the handleability of the film.
[0177] また、第 1層及び第 2層を構成する榭脂糸且成物には、必要に応じて、この発明の効 果を損なわない範囲で可塑剤、熱安定剤、抗酸化剤、 UV吸収剤、光安定剤、顔料 、着色剤、滑剤、核剤、加水分解防止剤等の添加剤を添加してもよい。  [0177] In addition, if necessary, the cocoon yarn and the composition constituting the first layer and the second layer may include a plasticizer, a heat stabilizer, an antioxidant, and the like within a range not impairing the effects of the present invention. Additives such as UV absorbers, light stabilizers, pigments, colorants, lubricants, nucleating agents, and hydrolysis inhibitors may be added.
[0178] 上述の積層フィルムは第 1層と、その他の層を積層した未延伸フィルムを少なくとも 一方向に延伸する方法、あるいは第 1層を少なくとも一方向に延伸した後、その他の 層の未延伸フィルムまたは延伸フィルムを公知の方法によって熱または溶剤によりラ ミネーシヨンする方法、あるいは第 1層を少なくとも一方向に延伸した後、その他の層 に用いられる榭脂組成物を公知の方法によりコーティングする方法により作製できる [0178] The above-mentioned laminated film is a method in which an unstretched film in which a first layer and other layers are laminated is stretched in at least one direction, or after the first layer is stretched in at least one direction, the other layers are unstretched. A method of laminating a film or a stretched film with heat or a solvent by a known method, or the other layer after stretching the first layer in at least one direction Can be prepared by a known method for coating a rosin composition used in
[0179] (熱収縮率) [0179] (Heat shrinkage)
第 2の空孔含有フィルムは、 80°Cの温水中で 10秒間浸漬した際の収縮率が 20% 以上である必要があり、好ましくは 25%以上、より好ましくは 30%以上、さらに好まし くは 40%以上、よりさらに好ましくは 45%以上、もっと好ましくは 50%以上である。一 方で前記収縮率は 80%以下である必要があり、好ましくは 75%以下であり、さらに好 ましくは 70%以下である。これは、例えばペットボトルなどの包装に用いる熱収縮性 ラベルなどのように、熱収縮性ラベルとして用いるには、少なくとも 20%の熱収縮率 が要求される一方で、 80%を超えると熱収縮後の形態を制御することが難しくなつて しまうためである。なお、収縮率とは、元の長さを 100%とした時の、収縮前後の長さ の差をいう。  The second pore-containing film needs to have a shrinkage rate of 20% or more when immersed in warm water at 80 ° C for 10 seconds, preferably 25% or more, more preferably 30% or more, and even more preferably. Or 40% or more, more preferably 45% or more, and still more preferably 50% or more. On the other hand, the shrinkage ratio needs to be 80% or less, preferably 75% or less, and more preferably 70% or less. This requires a heat shrinkage rate of at least 20% to be used as a heat shrinkable label, such as a heat shrinkable label used in packaging of PET bottles, etc., while heat shrinkage exceeds 80%. This is because it becomes difficult to control the later form. The shrinkage rate is the difference in length before and after shrinkage when the original length is 100%.
[0180] 現在、ペットボトルのラベル装着用途に工業的に最も多く用いられている収縮カロェ 機の例としては、収縮加工を行う加熱媒体として水蒸気を用いる蒸気シュリンカ一と 一般に呼ばれて 、るものがある。熱収縮性ラベルは被覆対象物への熱の影響などの 点からできるだけ低い温度で十分熱収縮することが必要であり、さらに、近年のラベリ ング工程の高速ィ匕に伴い、より低温で素早く収縮する要求が高くなつてきた。このよう な工業生産性も考慮して、前記条件における熱収縮率が 20%以上の単層フィルム であれば、収縮加工時間内に十分に被覆対象物に密着することができるため好まし い。  [0180] At present, an example of a shrinkage caloe machine that is most widely used industrially for labeling of PET bottles is generally referred to as a steam shrinker that uses steam as a heating medium for shrinkage processing. There is. A heat-shrinkable label must be sufficiently heat-shrinkable at the lowest possible temperature in view of the influence of heat on the object to be coated, and moreover, it shrinks quickly at a lower temperature due to the recent high-speed labeling process. The demand to do has increased. In consideration of such industrial productivity, a single-layer film having a heat shrinkage rate of 20% or more under the above conditions is preferable because it can sufficiently adhere to the object to be coated within the shrinkage processing time.
[0181] 第 2の空孔含有フィルムにおいて、 80°Cの温水中に 10秒浸漬した際の主収縮方 向の熱収縮率を前記範囲に調整するためには、榭脂組成をこの発明で記載するよう に調整するとともに、延伸温度を後述する範囲に調整することが好ましい。例えば、 熱収縮率をより増カロさせた 、場合には、ポリ乳酸系榭脂組成物 (A)の光学異性体比 率を大きくする、軟質成分 (C)の含有量を上げる、延伸倍率を高くする、延伸温度を 低くする等の手段を用いるとよい。  [0181] In the second pore-containing film, in order to adjust the heat shrinkage ratio in the main shrinkage direction when immersed in warm water of 80 ° C for 10 seconds to the above range, the composition of the resin is used in the present invention. While adjusting as described, it is preferable to adjust the stretching temperature to a range described later. For example, if the heat shrinkage rate is further increased, in the case of increasing the optical isomer ratio of the polylactic acid-based resin composition (A), increasing the content of the soft component (C), and increasing the draw ratio. Means such as increasing the stretching temperature or lowering the stretching temperature may be used.
[0182] また、第 2の空孔含有フィルムをラベルとして用いる場合、フィルムの収縮方向と直 交する方向の熱収縮率は、 80°Cの温水中で 10秒間浸漬したときは 10%以下である ことが好ましぐ 5%以下であることがより好ましぐ 3%以下であることがさらに好ましい 。主収縮方向と直交する方向の熱収縮率が 10%を超えるフィルムだと、収縮後の主 収縮方向と直交する方向の寸法自体が短くなつたり、収縮後の印刷柄や文字の歪み 等が生じやすくなつたり、角型ボトルの場合においては縦ひけ等のトラブルが発生し たりする問題が無視できなくなる。 [0182] When the second pore-containing film is used as a label, the thermal shrinkage rate in the direction perpendicular to the shrinkage direction of the film is 10% or less when immersed in warm water at 80 ° C for 10 seconds. is there More preferably, it is 5% or less, more preferably 3% or less. If the film has a thermal shrinkage rate in excess of 10% in the direction perpendicular to the main shrinkage direction, the dimensions in the direction perpendicular to the main shrinkage direction after shrinkage may be shortened, and the printed pattern or characters may be distorted after shrinkage. Problems such as easy sinking and troubles such as vertical sinks cannot be ignored in the case of square bottles.
[0183] (自然収縮率)  [0183] (Natural contraction rate)
第 2の空孔含有フィルムの自然収縮率は、できるだけ小さいほうが望ましいが、例え ば、 30°Cで 30日保存後の自然収縮率が 3. 0%以下、好ましくは 2. 0%以下、さらに 好ましくは 1. 5%以下であることが望ましい。前記条件下における自然収縮率が 3. 0 %以下であれば作製したフィルムを長期保存する場合であっても容器等に安定して 装着することができ、実用上問題を生じにくいが、 3. 0%を超えると接着安定性に問 題を生じる場合がある。  The natural shrinkage rate of the second pore-containing film is desirably as small as possible.For example, the natural shrinkage rate after storage at 30 ° C for 30 days is 3.0% or less, preferably 2.0% or less. Preferably it is 1.5% or less. If the natural shrinkage rate under the above conditions is 3.0% or less, even if the produced film is stored for a long period of time, it can be stably attached to a container etc. If it exceeds 0%, there may be a problem in adhesion stability.
[0184] 第 2の空孔含有フィルムにおいて、自然収縮率を前記範囲に調整するためには、 榭脂組成をこの発明で記載するように調整するとともに、延伸温度を上述する範囲に 調整することが好ましい。例えば、自然収縮率をより低下させたい場合には、ポリ乳 酸系榭脂組成物 (A)の光学異性体比率を小さくする、軟質成分 (C)の含有量を下 げる、延伸倍率を小さくする、延伸温度を高くする、延伸後熱固定の温度を高くする 、延伸後熱固定時間を長くする等の手段を用いるとよい。  [0184] In the second pore-containing film, in order to adjust the natural shrinkage ratio to the above range, the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the above range. Is preferred. For example, when it is desired to further reduce the natural shrinkage, the optical isomer ratio of the polylactic acid-based rosin composition (A) is reduced, the content of the soft component (C) is reduced, and the draw ratio is increased. It is preferable to use means such as reducing the temperature, increasing the stretching temperature, increasing the temperature of heat setting after stretching, or extending the heat setting time after stretching.
[0185] (嵩比重)  [0185] (bulk specific gravity)
また、第 2の空孔含有フィルムは空孔を有するため、この発明のフィルムに用いる榭 脂の真比重よりも、第 2の空孔含有フィルムとした場合の嵩比重の方が低下する。こ の発明のフィルムの嵩比重の真比重に対する割合は、 50%以上、好ましくは 60%以 上、さらに好ましくは 70%以上であり、かつ 95%以下、好ましくは 90%以下、さらに 好ましくは 85%以下であると望ましい。嵩比重の真比重に対する割合が 50%未満で あると、空孔の占める割合が多すぎることで、このフィルムの強度が不十分となるなど の不具合を生じるおそれがある。一方で、 90%を超えると、空孔の形成が少なすぎて 遮光性や断熱性が不十分となる場合がある。  In addition, since the second pore-containing film has pores, the bulk specific gravity when the second pore-containing film is used is lower than the true specific gravity of the resin used for the film of the present invention. The ratio of the bulk specific gravity to the true specific gravity of the film of the present invention is 50% or more, preferably 60% or more, more preferably 70% or more, and 95% or less, preferably 90% or less, more preferably 85. % Or less is desirable. When the ratio of the bulk specific gravity to the true specific gravity is less than 50%, there is a possibility that defects such as insufficient strength of the film may occur due to the excessive proportion of the pores. On the other hand, if it exceeds 90%, the formation of pores is so small that the light shielding property and the heat insulating property may be insufficient.
[0186] また、嵩比重が 1. 0未満であると、第 2の空孔含有フィルムをポリエチレンテレフタ レート製ボトルに被覆ラベルとして用いたものを廃棄処理する際に、液比重法により ポリエチレンテレフタレートと容易に分離させることができ、さらに好ましい。 [0186] If the bulk specific gravity is less than 1.0, the second pore-containing film is made of polyethylene terephthalate. When the one used as a coated label for a rate bottle is disposed of, it can be easily separated from polyethylene terephthalate by a liquid specific gravity method, which is more preferable.
[0187] 前記嵩比重を所望の値に調整する方法としては、例えば前記 (A)成分、(B)成分 及び (C)成分のうち、比重が小さい成分の混合比率を増加させる方法や、延伸倍率 を前記の範囲で大きくする、延伸温度を低くするなどの延伸条件を操作することによ り空孔を多く生じさせるといった方法が挙げられる。  [0187] Examples of a method for adjusting the bulk specific gravity to a desired value include a method of increasing the mixing ratio of components having a small specific gravity among the components (A), (B) and (C), and stretching. Examples include a method in which a large number of pores are generated by manipulating stretching conditions such as increasing the magnification within the above range and lowering the stretching temperature.
[0188] (光線透過率)  [0188] (Light transmittance)
第 2の空孔含有フィルムは、前記榭脂組成物と空孔との界面で光線が屈折'反射 すること、および榭脂組成物中に光線が一部吸収されることによって不透明白色の 光線遮断性 (遮光性)を有している。内容物を劣化、変質させる恐れのある 240nm 以上、 400nm以下の紫外領域、および内容物の隠蔽性にかかわる 400nm以上、 8 OOnm以下の可視領域をあわせた 240nm以上、 800nm以下(紫外可視領域)での 、JIS K 7015に基づいて測定された光線透過率がいずれの波長においても 50% 以下であることが必要であり、 40%以下であると好ましぐ 30%以下であるとより好ま しぐ 25%以下であることがさらに好ましぐ 20%であることがよりさらに好ましい。 50 %以下であれば遮光性が十分であり、内容物保護、隠蔽性に欠けるという不具合を 発現しづらぐ好適である。  The second pore-containing film is an opaque white light-blocking film in which light rays are refracted and reflected at the interface between the resin composition and the pores, and part of the light rays are absorbed in the resin composition. (Light-shielding property). 240nm or more and 800nm or less (ultraviolet-visible region), including the ultraviolet region of 240nm or more and 400nm or less, which may deteriorate or alter the contents, and the visible region of 400nm or more and 8OOnm or less related to the concealment of the contents However, the light transmittance measured based on JIS K 7015 is required to be 50% or less at any wavelength, and is preferably 40% or less and more preferably 30% or less. It is more preferable that it is 25% or less, and it is still more preferable that it is 20%. If it is 50% or less, the light-shielding property is sufficient, and it is preferable that the problem of lack of content protection and concealment is difficult to be exhibited.
[0189] さらに、特に内容物保護という目的からは、内容物を劣化、変質させる 240nm以上 、400nm以下の紫外領域ではその波長範囲の平均が 20%以下であることが好まし く、 10%以下であることがより好ましぐ 5%以下であることがさらにより好ましい。  [0189] Furthermore, for the purpose of content protection in particular, the average wavelength range is preferably 20% or less in the ultraviolet region of 240 nm or more and 400 nm or less, which degrades or alters the content, and 10% or less. It is even more preferable that it is 5% or less.
[0190] 第 2の空孔含有フィルムにおいて、 240nm以上、 800nm以下の光線透過率を前 記範囲に調整するためには、榭脂組成をこの発明で記載するように調整するとともに 、延伸温度を上述する範囲に調整することが好ましい。例えば、光線透過率をより低 下させたい場合には、(A)成分の光学異性体比率を小さくする、(B)成分や (D)成 分の含有量を上げる、(C)成分の含有量を下げる、延伸倍率を高くする、延伸温度 を低くする等の手段を用いるとよい。また、収縮率や耐破断性などの諸特性を低下さ せない範囲で顔料や着色剤、無機粒子などを添加することも有効である。特に、 240 nm以上 400nm以下の紫外領域の光線透過率を上記範囲に調整するには、(D)成 分として酸ィ匕チタンを用いることが好まし 、。 [0190] In the second pore-containing film, in order to adjust the light transmittance of 240 nm or more and 800 nm or less to the above range, the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted. It is preferable to adjust to the above-mentioned range. For example, to further reduce the light transmittance, reduce the ratio of the optical isomers of component (A), increase the content of components (B) and (D), and contain component (C). It is advisable to use means such as reducing the amount, increasing the draw ratio, and lowering the stretching temperature. It is also effective to add pigments, colorants, inorganic particles, etc. within a range that does not deteriorate various properties such as shrinkage and rupture resistance. In particular, to adjust the light transmittance in the ultraviolet region from 240 nm to 400 nm in the above range, (D) Preference is given to using acid titanium as a fraction.
[0191] (熱伝導効率)  [0191] (Heat conduction efficiency)
さらに、第 2の空孔含有フィルムは空孔を有するため、空孔の無い一般的な熱可塑 性榭脂を用いたフィルムよりも熱伝導効率が低くなる。このため、ホット飲料用ラベル などの断熱性 ·保温性を求められる用途に特に好適に用いることができる。  Furthermore, since the second pore-containing film has pores, the heat conduction efficiency is lower than that of a film using a general thermoplastic resin without pores. For this reason, it can be particularly suitably used for applications requiring heat insulation and heat retention properties such as labels for hot beverages.
[0192] 飲料用自動販売機やコンビ-エンスストアなどのホットウォーマーなどによって加熱 されて販売される飲料は、販売機内の温度分布なども考慮に入れると 60〜70°Cに て販売されている。この飲料容器が金属製のものは、ガラス製、榭脂製などの飲料容 器よりも著しく高い熱伝導率を持っため、同じ温度にて加熱されたものであってもより 熱さを感じやすぐ熱さを和らげる必要がある。この発明の熱収縮フィルムは空孔を有 し、これを被覆することにより熱が飲料容器力も伝わりづらくなるため、好適に用いる ことが出来る。  [0192] Beverages that are heated and sold by hot-warmers such as beverage vending machines and convenience stores are sold at 60-70 ° C, considering the temperature distribution in the vending machine. . This beverage container made of metal has a significantly higher thermal conductivity than glass or rosin beverage containers, so even if it is heated at the same temperature, it feels more hot and immediately. It is necessary to relieve the heat. The heat-shrinkable film of the present invention has pores, and by covering this, it becomes difficult for heat to be transmitted to the beverage container force, so that it can be suitably used.
[0193] 前記断熱性'保温性をより高める方法としては、例えば前記 (A)成分の光学異性体 比率を小さくする、(B)成分の含有量を上げる、(C)成分の含有量を下げる、延伸倍 率を高くする、延伸温度を低くする等の手段を用いるとよい。  [0193] Examples of methods for further increasing the heat insulating property and heat retention include decreasing the optical isomer ratio of the component (A), increasing the content of the component (B), and decreasing the content of the component (C). It is advisable to use means such as increasing the stretching ratio or lowering the stretching temperature.
[0194] (耐破断性)  [0194] (Fracture resistance)
第 2の空孔含有フィルムの耐破断性は、 JIS K7127の引張破断伸度により評価さ れる。 0°C環境下の引張試験において、特にラベル用途ではフィルムの引き取り方向 (MD)の引張破断伸度が 100%以上であると好ましぐ 150%以上であるとより好ま しぐ 200%以上であるとさらに好ましい。 0°C環境下での引張破断伸度が 100%未 満であると、印刷'製袋などの工程時にフィルムが破断するなどの不具合を生じるお それが高くなつてしまう。また、引張破断伸度が 150%以上あれば、印刷'製袋など の工程のスピードアップにともなってフィルムに対して力かる張力が増加するような際 にも破断しづらぐより好ましい。また、上限値は特に指定されないが、現在の工程ス ピードを考えた場合、 500%ほどあれば十分だと考えることができる。  The fracture resistance of the second pore-containing film is evaluated by the tensile elongation at break according to JIS K7127. In tensile tests at 0 ° C, especially for label applications, the tensile elongation at break in the film take-off direction (MD) is preferably 100% or more, more preferably 150% or more, and more preferably 200% or more. More preferably. If the tensile elongation at break in an environment of 0 ° C is less than 100%, there is a high possibility that the film breaks during the process of printing and bag making. Further, if the tensile elongation at break is 150% or more, it is more preferable that the film is hard to break even when the tension applied to the film increases as the speed of processes such as printing and bag making increases. Although no upper limit is specified, considering the current process speed, it can be considered that about 500% is sufficient.
[0195] 第 2の空孔含有フィルムにおいて、 0°C環境下での引張破断伸度を前記範囲に調 整するためには、榭脂組成をこの発明で記載するように調整するとともに、延伸温度 を後述する範囲に調整することが好ましい。例えば、引張破断伸度をより向上させた い場合には、軟質成分 (C)の含有量を上げる、 MDに対して弱延伸を与える等の手 段を用いるとよい。 [0195] In the second pore-containing film, in order to adjust the tensile elongation at break in the environment of 0 ° C to the above range, the resin composition is adjusted as described in the present invention and stretched. It is preferable to adjust the temperature to a range described later. For example, the tensile elongation at break was further improved In such a case, it is advisable to use means such as increasing the content of the soft component (C) or giving weak extension to MD.
[0196] (剛性) [0196] (Rigidity)
第 2の空孔含有フィルムの腰、すなわち常温での剛性は、主収縮方向と直交する 方向の引張弾性率が 1. 20GPa以上であると好ましぐ 1. 40GPa以上であるとより好 ましぐ 1. 60GPa以上であるとさらに好ましい。 1. 20GPa未満であると、特に単層フ イルムの厚みを薄くした場合に、ペットボトルなどの容器に製袋したフィルムをラベリン グマシン等で被せる際に、斜めに被ったり、単層フィルムの腰折れなどで歩留まりが 低下したりしゃすいなどの問題点が発生やすくなつてしまう。一方で、熱収縮性フィ ルムの引張弾性率の上限値は 3. OOGPa程度であるのが一般的であり、好ましくは 2 . 90GPa程度であり、さらに好ましくは 2. 80GPa程度である。 3. OOGPa以下であれ ば弾性率が高くなりすぎて使用時にごわごわしたような風合いになるというような不具 合を生じづらぐ好適である。  The stiffness of the second pore-containing film, that is, the rigidity at room temperature, is preferably 1.20 GPa or higher in the tensile modulus in the direction orthogonal to the main shrinkage direction. 1. More preferably 40 GPa or higher. 1. More preferably, it is 60 GPa or more. 1. If it is less than 20 GPa, especially when the thickness of the single-layer film is reduced, when the film made in a plastic bottle or other container is covered with a labeling machine, it may be slanted or the single-layer film may be folded back. This can lead to problems such as a decrease in yield and a problem of screening. On the other hand, the upper limit of the tensile modulus of heat-shrinkable film is generally about 3. OOGPa, preferably about 2.90 GPa, and more preferably about 2.80 GPa. 3. If it is OOGPa or less, the elastic modulus is too high, and it is preferable that it does not easily cause a malfunction such as a stiff texture during use.
[0197] 第 2の空孔含有フィルムにおいて、常温での腰を前記範囲に調整するためには、 榭脂組成をこの発明で記載するように調整するとともに、延伸温度を後述する範囲に 調整することが好ましい。例えば、腰をより向上させたい場合には、軟質成分 (C)の 含有量を下げる、主収縮方向と直交する方向に弱延伸を与える等の手段を用いると よい。  [0197] In the second pore-containing film, in order to adjust the waist at room temperature to the above range, the resin composition is adjusted as described in the present invention, and the stretching temperature is adjusted to the range described later. It is preferable. For example, when it is desired to further improve the waist, it is preferable to use means such as lowering the content of the soft component (C) or giving weak stretching in a direction orthogonal to the main shrinkage direction.
[0198] (用途)  [0198] (Use)
第 2の空孔含有フィルムは、(B)成分を含有する場合、空孔を有するため、(A)成 分又は (B)成分と空気との界面で光線が屈折'反射し、さらに (D)成分を添加した場 合は、全体として不透明白色様の外観を呈することとなるので、遮光性が求められる 用途などに特に好適である。さらに、空孔を有するため通常の熱可塑性榭脂よりも熱 伝導効率が低下し、例えばホット飲料用ラベルなどの断熱性'保温性を求められる用 途に特に好適である。さらに、空孔を有するためクッション性にも優れ、壊れやすいも のや割れやす 、ものなどの保護用途にも適して 、る。  When the second pore-containing film contains the component (B), the second pore-containing film has pores, so that light rays are refracted and reflected at the interface between the component (A) or the component (B) and air, and (D When the component) is added, it will appear as an opaque white-like appearance as a whole, and is particularly suitable for applications where light shielding properties are required. Further, since it has pores, its heat conduction efficiency is lower than that of ordinary thermoplastic resin, and it is particularly suitable for applications requiring heat insulation and heat retention such as labels for hot beverages. In addition, since it has pores, it has excellent cushioning properties, and it is also suitable for protection purposes such as fragile, fragile and fragile items.
[0199] そして、第 2の空孔含有フィルムは、フィルムの印刷適性、遮光性、高剛性、耐破断 性、収縮仕上り性等に優れているため、その用途が特に制限されるものではなぐ必 要に応じて、印刷層、蒸着層その他機能層を形成することにより、ブローボトルなどの プラスチックボトル、トレー、弁当箱、総菜容器、乳製品容器等の様々な成形品として 用いることができる。このような成形品の製造は、一般的な成形品の製造方法を用い ることがでさる。 [0199] Since the second pore-containing film is excellent in printability, light shielding properties, high rigidity, fracture resistance, shrinkage finish properties, etc. of the film, its use is not particularly limited. If necessary, it can be used as various molded products such as plastic bottles such as blow bottles, trays, lunch boxes, prepared food containers and dairy products containers by forming printed layers, vapor deposition layers and other functional layers. Such a molded product can be manufactured using a general method for manufacturing a molded product.
[0200] また、第 2の空孔含有フィルムを、清涼飲料水用や食品用の PETボトル、ガラス瓶 などの食品容器用熱収縮性ラベルとして用いることもでき、その場合は、例えば中心 力 Sくびれた円柱や、角のある四角柱、五角柱、六角柱などの複雑な形状であっても、 熱収縮によりその形状に密着可能であり、皺ゃァバタの無い美麗なラベルが装着さ れた容器を得ることができる。このような装着を行う熱収縮の方法は、一般的な熱収 縮の方法を用いることができる。そして、得られる成形品は、容器等として使用できる  [0200] In addition, the second pore-containing film can be used as a heat-shrinkable label for food containers such as PET bottles and glass bottles for soft drinks and foods. Even a complicated shape such as a round cylinder, square prism, pentagonal column, hexagonal column, etc., can be adhered to the shape by heat shrinking, and a container with a beautiful label without avatar Can be obtained. As a heat shrinking method for performing such mounting, a general heat shrinking method can be used. The resulting molded product can be used as a container or the like.
[0201] この発明の成形品及び容器は、通常の成形法を用いることにより作製できる。 [0201] The molded article and container of the present invention can be produced by using a normal molding method.
[0202] 第 2の空孔含有フィルムは、優れた低温収縮性、収縮仕上がり性を有するので、熱 収縮性ラベルとして用いる場合には、高温に加熱すると変形が生じるようなプラスチッ ク成形品の熱収縮性ラベルとして用いたり、熱膨張率や吸水性等がこの発明の熱収 縮性空孔含有フィルムとは極めて異なる材質の包装体の熱収縮性ラベルとして好適 に利用できる。このような、包装体を形成する材質としては、例えば、金属、磁器、ガ ラス、紙、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフイン系榭脂、ポリメタ クリル酸エステル系榭脂、ポリカーボネート系榭脂、ポリエチレンテレフタレートやポリ ブチレンテレフタレートなどのポリエステル系榭脂、ポリアミド系榭脂から選ばれる少 なくとも 1種を構成素材として用いたものが挙げられる。 [0202] The second pore-containing film has excellent low-temperature shrinkability and shrink-finishing properties. Therefore, when used as a heat-shrinkable label, the heat of a plastic molded product that causes deformation when heated to a high temperature. It can be suitably used as a heat-shrinkable label for a package made of a material that is very different from the heat-contractible pore-containing film of the present invention in terms of thermal expansion coefficient and water absorption. Examples of the material forming the package include metal, porcelain, glass, paper, polyethylene, polypropylene, polybutene and other polyolefin resin, polymethacrylate resin, polycarbonate resin, polyethylene, and the like. Examples include those using at least one selected from polyester-based and polyamide-based resins such as terephthalate and polybutylene terephthalate as constituent materials.
[0203] さらに、第 2の空孔含有フィルムを熱収縮性ラベルとして用いることのできる包装体 を構成する材質としては、前記の榭脂の他に、ポリスチレン、ゴム変性耐衝撃性ポリス チレン(HIPS)、スチレン—ブチルアタリレート共重合体、スチレン—アクリロニトリル 共重合体、スチレン 無水マレイン酸共重合体、アクリロニトリル ブタジエンースチ レン共重合体 (MBS)、ポリ塩ィ匕ビュル系榭脂、フエノール榭脂、ユリア榭脂、メラミン 榭脂、エポキシ榭脂、不飽和ポリエステル榭脂、シリコーン榭脂等を挙げることができ 、これらの 2種以上の混合物でもよいし、積層体であってもよい。 実施例 [0203] Further, as a material constituting the package in which the second pore-containing film can be used as a heat-shrinkable label, in addition to the above-mentioned resin, polystyrene, rubber-modified impact-resistant polystyrene (HIPS) ), Styrene-butyl acrylate copolymer, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, acrylonitrile butadiene styrene copolymer (MBS), polysalt-bulb resin, phenol resin, urea Examples of the resin include cocoa resin, melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin, and may be a mixture of two or more of these, or a laminate. Example
[0204] 以下に、実験例及び比較例等を示して本発明を詳述するが、これらにより本発明は 何ら制限を受けるものではな 、。  [0204] Hereinafter, the present invention will be described in detail with reference to experimental examples and comparative examples, but the present invention is not limited thereto.
なお実験例及び比較例中の物性値及び評価は、以下の方法により測定し、評価を 行った。ここで、フィルムの引き取り(流れ)方向を MD、それと直交方向を TDと記載 する。  The physical property values and evaluation in the experimental examples and comparative examples were measured and evaluated by the following methods. Here, the direction of film take-up (flow) is described as MD, and the direction perpendicular to it is described as TD.
[0205] <測定方法及び評価方法 >  <Measurement method and evaluation method>
[メルトフローレート(MFR) ]  [Melt flow rate (MFR)]
安田精機製作所製メルトインデクサ一( 120S AS - 2000)を用い、 JIS K7210 ( 測定温度: 230°C、荷重: 21. 18N)に準拠してポリオレフイン系榭脂組成物のメルト フローレートを測定した。  Using a melt indexer (120S AS-2000) manufactured by Yasuda Seiki Seisakusho, the melt flow rate of the polyolefin resin composition was measured in accordance with JIS K7210 (measurement temperature: 230 ° C, load: 21.18N).
[0206] [動的粘弾性測定 (Ε' ) ] [0206] [Dynamic viscoelasticity measurement (Ε ')]
熱プレス装置 (神藤金属工業所製)によりポリオレフイン系榭脂を用いて厚み 200 μ mのフィルムを作製し、次いで 4mm X 60mmの大きさに切り出し、粘弾性スぺタトロメ 一ター(アイティー計測 (株)製: DVA— 200)を用い、チャック間 2. 5cm、振動周波 数 10Hz、ひずみ 0. 1%、昇温速度 1°CZ分、測定温度 40°Cから 150°Cまでの範囲 で長手方向(辺長 60mmの方向)について測定し、 80°Cにおける貯蔵弾性率を測定 した。  A film with a thickness of 200 μm was prepared using polyolefin resin using a hot press (made by Shinfuji Metal Industry Co., Ltd.), then cut into a size of 4 mm x 60 mm, and a viscoelasticity spectrometer (IT measurement ( Co., Ltd .: DVA-200), chuck 2.5 cm, vibration frequency 10 Hz, strain 0.1%, heating rate 1 ° CZ min., Measuring temperature 40 ° C to 150 ° C in the longitudinal direction Measurement was made in the direction (side length 60 mm), and the storage modulus at 80 ° C was measured.
[0207] [ポリオレフイン系榭脂組成物の粒子径]  [Particle size of polyolefin resin composition]
得られたフィルムをミクロトームで TDlOmm X MDlmm X厚み 80 μ mの大きさに 切り出し、電子顕微鏡でフィルム厚み中央部の分散ドメイン形状を 10力所観察し、流 れ方向の最大幅の平均値を長径とした場合における分散ドメインの厚み方向におけ る最大幅の平均値を短径として算出した。  The obtained film was cut into a size of TDlOmm X MDlmm X thickness 80 μm with a microtome, and the dispersed domain shape at the center of the film thickness was observed at 10 locations with an electron microscope, and the average value of the maximum width in the flow direction was determined as the major axis. The average value of the maximum width in the thickness direction of the dispersion domain was calculated as the minor axis.
[0208] [アスペクト比] [0208] [Aspect ratio]
得られたフィルムをミクロトームで TDlmm X MDIOmmの大きさに切り出し、電子 顕微鏡で 10力所観察し、フィルム中の (A)成分に非相溶の(B)成分力もなるドメイン のアスペクト比 (長径 Z短径)を算出した。  The obtained film was cut into a size of TDlmm x MDIOmm with a microtome, and observed at 10 locations with an electron microscope. The aspect ratio of the domain (major axis Z) with component (B) incompatible with component (A) in the film. The minor axis was calculated.
[0209] [印刷適性] バーコ一ターを用いて、大日精化工業 (株)製特殊グラビアインキ OS— M (藍色)を 溶媒にて適度に希釈したインキを得られたフィルムに塗布し、その塗布面の状態を下 記の基準により判断した。 [0209] [Printability] Using a bar coater, apply a special gravure ink OS-M (indigo) manufactured by Dainichi Seika Kogyo Co., Ltd. to a film obtained by appropriately diluting with a solvent. Judgment was made based on the above criteria.
〇:インキがムラなく均一に塗布されている。  ◯: The ink is uniformly applied without unevenness.
△:インキ塗布面にムラがあり、インキが塗布されて ヽな 、個所がある。  Δ: There is unevenness on the ink application surface, and there are places where the ink is applied.
X:インキがほとんど塗布されていない。  X: Ink is hardly applied.
[0210] [インキ密着性] [0210] [Ink adhesion]
上記印刷適性試験で得られたインキ塗布フィルムに、インキ塗布後、 1分後に塗布 面にセロテ—プ (ニチバン (株)製エルパック LP— 18)を貼り、指で 5回それをこすり 貼る。その直後、セロテープを一気に剥がしその部分のインキがどれほど剥離したか を目視で観察した。評価は、下記の基準で行った。  After applying the ink to the ink-coated film obtained in the above printability test, a sero tape (Elpac LP-18, manufactured by Nichiban Co., Ltd.) is applied to the coated surface after 1 minute, and it is rubbed 5 times with a finger. Immediately thereafter, the cellophane tape was peeled off at once, and the amount of ink peeled off was visually observed. Evaluation was performed according to the following criteria.
〇:インキの剥離がない。  ◯: There is no peeling of ink.
△:一部剥離するが残って!/、る部分の方が多 、。  Δ: Some peeled but remained! /, More parts.
X:完全に剥離する。  X: Completely peels off.
[0211] [真比重] [0211] [True specific gravity]
使用した榭脂の真比重を dl、 (12··· (g/cm3)とし、それぞれの榭脂の質量部を rl 、 Γ2···とし、次式の通り真比重 (gZcm3)を算出した。 The true specific gravity of the used fat is dl, (12 (g / cm 3 ), the mass part of each is rl, Γ2, and the true specific gravity (gZcm 3 ) is Calculated.
真比重 =(dlXrl + d2Xr2+''')Z(rl+r2+'-')  True specific gravity = (dlXrl + d2Xr2 + '' ') Z (rl + r2 +'-')
[0212] [嵩比重]  [0212] [bulk specific gravity]
得られたフィルムを正確に MDlOcmXTDlOcmの大きさに切り出して質量 w(g) を量り、そのフィルムの 50点の厚み t( m)を測定し、下記の式により嵩比重(g/cm 3)を算出した。  The obtained film was accurately cut into a size of MDlOcmXTDlOcm, and the mass w (g) was measured. The thickness t (m) at 50 points of the film was measured, and the bulk specific gravity (g / cm3) was calculated by the following formula. Calculated.
嵩比重 =(wZt) X100  Bulk specific gravity = (wZt) X100
[0213] [液比重分離 (熱収縮後の嵩比重)] [0213] [Liquid specific gravity separation (bulk specific gravity after heat shrinkage)]
測定対象のフィルムを 80°Cで 25%収縮させた後、 MDlcmXTDlcmの小片に細 力べ粉砕し、水に浮かべて浮くか否力 (すなわち、嵩比重が 1. OOg/cm3未満である か否か)を下記の基準で判別した。 After the measurement target film was 25% shrinkage at 80 ° C, and fine power base crushed into pieces MDlcmXTDlcm, whether power float floated in water (i.e., bulk specific gravity is less than 1. OOg / cm 3 No) was determined according to the following criteria.
〇:全てが浮く場合 Δ:浮くものと沈むものがある場合、又は水中に漂うものがある場合 ○: When everything floats Δ: When there is something floating and sinking, or when there is something floating in the water
X:全てが沈む場合  X: When everything sinks
[0214] [耐破断性 1] [0214] [Fracture resistance 1]
フィルムの製造工程及び使用時の耐破断性を評価するため、下記測定をおこなつ た。  In order to evaluate the film manufacturing process and the fracture resistance during use, the following measurements were performed.
得られたフィルムを MD110mmXTD15mmの短冊形に切り出し、 JIS K 6732 に準拠し、チャック間距離 40mm、引張速度 lOOmmZminで、雰囲気温度 0°Cにお けるフィルムの MDでの引張伸度を測定し、十回の測定値の平均値を表に示した。  The obtained film was cut into MD110mmXTD15mm strips, and the tensile elongation at MD of the film at an ambient temperature of 0 ° C was measured at a chucking distance of 40mm and a tensile speed of lOOmmZmin according to JIS K 6732. The average value of the measured values is shown in the table.
[0215] [耐破断性 2] [0215] [Rupture resistance 2]
得られたフィルムを MD100mmXTD4mmの大きさに切り出し、 JIS K 7127に 準拠し、 I張速度 1 OOmmZminで雰囲気温度 0°Cにおけるフィルムの MD方向の 引張伸度を測定し、 10回の測定値の平均値を求めた。この伸度が 150%を超えるも のを〇、 100%以上 150%未満のものを△と評価し、それ以外は Xと評価した。  The obtained film was cut into a size of MD100mmXTD4mm, and the tensile elongation in the MD direction of the film at an ambient temperature of 0 ° C was measured at 1 OOmmZmin according to JIS K 7127. The value was determined. Those with an elongation exceeding 150% were evaluated as ◯, those with 100% or more and less than 150% were evaluated as △, and others were evaluated as X.
[0216] [耐破断性 3] [0216] [Fracture resistance 3]
フィルムの製造工程及び使用時の耐破断性を評価するため、下記測定を行った。 得られたフィルムを MD110mmXTD15mmの大きさに切り出し、 JIS K 6732 に準拠し、引張速度 200mmZminで、雰囲気温度 23°C及び引張速度 lOOmmZ minで、雰囲気温度 0°Cにおけるフィルムの MDでの引張伸度を測定し、十回の測定 値の平均値を表に示した。  In order to evaluate the manufacturing process of the film and the fracture resistance during use, the following measurements were performed. The obtained film was cut into a size of MD110mmXTD15mm, and in accordance with JIS K 6732, at a tensile speed of 200mmZmin, at an ambient temperature of 23 ° C, at a tensile speed of lOOmmZ min, at an ambient temperature of 0 ° C, the tensile elongation at MD The average value of 10 measurements was shown in the table.
[0217] [熱収縮率] [0217] [Heat shrinkage]
得られたフィルムを、 MDlOOmmXTDlOOmmの大きさに切り出し、 80°C温水バ スに 10秒間浸漬し、収縮量を測定した。熱収縮率は、収縮前の原寸に対する収縮 量の比率の MDZTDのうち大きい値を%値で表示した。  The obtained film was cut into a size of MDlOOmmXTDlOOmm, immersed in an 80 ° C hot water bath for 10 seconds, and the amount of shrinkage was measured. For thermal shrinkage, the larger value of MDZTD, which is the ratio of shrinkage to the original size before shrinkage, is expressed as a percentage.
[0218] [引張弾性率 1] [0218] [Tensile modulus 1]
得られたフィルムの剛性を評価するため、下記の測定を行った。  In order to evaluate the rigidity of the obtained film, the following measurements were performed.
得られたフィルムを MD400mmXTD5mmの大きさに切り出し、 JIS K7127に従 つて、チャック間距離 300mm、引張速度 5mmZmin、雰囲気温度 23°Cの条件でフ イルムの主収縮方向と直交する方向(MD)について測定した。 [0219] I張弾性率 2] The obtained film was cut into a size of MD400mmXTD5mm and measured according to JIS K7127 in the direction perpendicular to the main shrinkage direction (MD) of the distance between chucks of 300mm, tensile speed of 5mmZmin, and ambient temperature of 23 ° C. did. [0219] I-tension elastic modulus 2]
得られたフィルムの剛性を評価するため、下記測定を行った。  In order to evaluate the rigidity of the obtained film, the following measurements were performed.
得られたフィルムを MD5mm X TD400mmの大きさに切り出し、温度 23°Cの条件 で、チャック間を 80. Ommとして試験速度を 5. OmmZ分で引張試験を行い、引張 応力 歪み曲線の始めの直線部分を用いて、次式によって計算した。  The obtained film was cut into a size of MD5mm x TD400mm, and a tensile test was performed at a test speed of 5. OmmZ at a temperature of 23 ° C with a chuck spacing of 80. Omm, and the first straight line of the tensile stress strain curve. Using the part, it was calculated by the following formula.
Ε = σ / ε  Ε = σ / ε
Ε :引張弾性率  Ε: Tensile modulus
σ:直線上の 2点間の単位面積(引張試験前のサンプルの平均断面積)当たりの 応力の差  σ: Difference in stress per unit area (average cross-sectional area of sample before tensile test) between two points on a straight line
[0220] [引張弾性率 3] [0220] [Tensile modulus 3]
得られたフィルムを MD100mm X TD4mmの大きさに切り出し、 JIS K 7127に 準じて、温度 23°Cの条件でフィルムの主収縮方向と直交する方向(縦方向)につい て測定した。  The obtained film was cut into a size of MD100 mm X TD4 mm and measured in the direction (longitudinal direction) perpendicular to the main shrinkage direction of the film at a temperature of 23 ° C according to JIS K 7127.
[0221] [収縮仕上がり性] [0221] [Shrink finish]
10mm間隔の格子目を印刷したフィルムを MD100mm X TD298mmの大きさに 切り取り、 TDの両端を 10mm重ねて溶剤等で接着し円筒状にした。この円筒状フィ ルムを、容量 500ミリリットルのペットボトルに装着し、蒸気加熱方式の長さ 3. 2m (3 ゾーン)の収縮トンネル中を回転させずに、約 4秒間で通過させた。各ゾーンでのトン ネル内雰囲気温度は蒸気量を蒸気バルブにて調整し、 80〜90°Cの範囲とした。そ して、通過したフィルムにつ!/、て下記の基準で目視評価した。  A film printed with a grid of 10 mm intervals was cut into a size of MD100 mm X TD298 mm, and both ends of the TD were overlapped 10 mm and bonded with a solvent to form a cylinder. This cylindrical film was attached to a 500 ml PET bottle and passed in about 4 seconds without rotating through a steam heating type 3.2 m (3 zone) shrink tunnel. The tunnel ambient temperature in each zone was adjusted to 80 to 90 ° C by adjusting the amount of steam with a steam valve. The film passed through was evaluated visually by the following criteria.
◎:収縮が十分でしわ、あばた、格子目の歪みがなく密着性が良好である。  A: Shrinkage is sufficient, and there is no wrinkle, fluttering, or lattice distortion, and adhesion is good.
〇:収縮は十分だ力 しわ、あばた、格子目の歪みが僅かにある力、又は縦方向の 収縮率が僅かに目立つが実用上問題ない。  〇: Shrinkage is sufficient force Wrinkle, fluttering, force with slight distortion of lattice, or shrinkage in the vertical direction is noticeable, but there is no practical problem.
X:横方向収縮不足もしくは縦方向の収縮が目立ち実用上問題となる。  X: Insufficient lateral shrinkage or longitudinal shrinkage is conspicuous and causes a practical problem.
[0222] [自然収縮率 1] [0222] [Natural contraction rate 1]
得られたフィルムを MDlOOmm X TDlOOOmmの大きさに切り取り、 30°Cの雰囲 気の恒温槽に 30日間放置し、主収縮方向について、収縮前の原寸に対する収縮量 を測定し、その比率を%値で表示した。 [0223] [自然収縮率 2] Cut the resulting film to MDlOOmm X TDlOOOmm size, leave it in a thermostatic chamber at 30 ° C for 30 days, measure the amount of shrinkage relative to the original size before shrinkage in the main shrinkage direction, and set the ratio as% Displayed by value. [0223] [Natural contraction rate 2]
得られたフィルムを MDlOOmmXTDlOOOmmの大きさに切り取り、 30°Cの雰囲 気の恒温槽に 30日間放置し、それぞれの方向の収縮前の原寸に対する収縮後の 長さを測定して収縮幅の比率を求め、高い方の比率を自然収縮率として得た。この 自然収縮率が 1. 5%以下であれば〇と評価し、 1. 5%を超えて 3. 0%以下であれ ば△と評価し、 3. 0%を超えれば Xと評価した。  Cut the resulting film to MDlOOmmXTDlOOOmm size, leave it in a constant temperature bath at 30 ° C for 30 days, and measure the length after shrinkage relative to the original size before shrinkage in each direction. The higher ratio was obtained as the natural shrinkage rate. If this natural shrinkage was 1.5% or less, it was evaluated as ◯, if it exceeded 1.5% and 3.0% or less, it was evaluated as △, and if it exceeded 3.0%, it was evaluated as X.
[0224] [光線透過度 1]  [0224] [Light transmittance 1]
得られたフィルムを MD50mm XTD50mmの大きさに切り出し、積分球が取り付け たられた分光光度計(「U— 4000」、(株)日立製作所製)にて波長 240nm力も 800η mまで走査周期 0. 5nmmにて光線透過率を測定し、光線透過率の最大値が 50% を超えるものを X、 50〜25%のものを〇、 25%未満のものを◎としてそれぞれ評価 した。  The obtained film was cut into a size of MD50 mm XTD 50 mm, and a spectrophotometer (“U-4000”, manufactured by Hitachi, Ltd.) with an integrating sphere attached was used. The light transmittance was measured at, and X was evaluated when the maximum value of the light transmittance exceeded 50%, ○ was evaluated when it was 50-25%, and ◎ was evaluated when it was less than 25%.
[0225] [光線透過度 2]  [0225] [Light transmittance 2]
上記の光線透過度 1の方法で、波長が 315nm、 550nmの光線透過率及び、 240 nmから 800nmの間での最大光線透過率を測定した。  The light transmittance at wavelengths of 315 nm and 550 nm and the maximum light transmittance between 240 nm and 800 nm were measured by the method of light transmittance 1 described above.
[0226] [断熱性測定] [0226] [Measurement of thermal insulation]
得られたフィルムを MD98mm XTD208mmの大きさに切り出し、収縮率 20%とな るように本発明のフィルムを収縮させて被覆した金属缶 (東洋製罐 (株)製: TEC200 )に、 65°Cの熱湯 190mLを注ぎ、直ちに素手で保持して熱さを感じずに持ち続ける ことができる秒数を測定し、下記の通り評価した。  The obtained film was cut into a size of MD98 mm XTD 208 mm and coated on a metal can (Toyo Seikan Co., Ltd .: TEC200) coated with the film of the present invention so that the shrinkage rate was 20% at 65 ° C. 190 mL of hot water was poured, immediately held with bare hands, and the number of seconds that could be kept without feeling the heat was measured and evaluated as follows.
3名の測定者 (25歳男性、 25歳女性、 35歳男性)により測定された秒数の平均値 を算出し、その値が 30秒以上であれば〇、 30秒未満であれば Xとした。なお、 60秒 以上持ち続けることができたものは 60秒として評価した。  Calculate the average number of seconds measured by three measurers (25-year-old male, 25-year-old female, 35-year-old male). If the value is 30 seconds or more, 〇, and if it is less than 30 seconds, X did. Those that could last longer than 60 seconds were evaluated as 60 seconds.
[0227] また、各実施例、比較例で使用した原材料は、下記の通りである。 [0227] The raw materials used in the examples and comparative examples are as follows.
<原材料 >  <Raw materials>
( (A)成分)  ((A) component)
•ポリ乳酸系榭脂" -Nature WorksLLC社製 商品名: NatureWorks4050、 L体 ZD体量 =95Z5、以下、「PLA1」と略する。 •ポリ乳酸系榭脂" -Nature WorksLLC社製 商品名: NatureWorks4060、 L体 ZD体量 =88Z12、以下、「PLA2」と略する。 • Polylactic acid-based rosin-made by Nature Works LLC Product name: NatureWorks4050, L-form ZD-form weight = 95Z5, hereinafter abbreviated as “PLA1”. • Polylactic acid-based rosin-made by Nature Works LLC Product name: NatureWorks4060, L-form ZD-form weight = 88Z12, hereinafter abbreviated as “PLA2”.
•ポリ乳酸系榭脂" -Nature WorksLLC社製のポリ乳酸系榭脂「Nature Works 4050D (L体: D体 = 95Z5、重量平均分子量 20万、以下、「PLA3」と略する。 'ポリ乳酸系榭脂…カーギル'ダウ社製のポリ乳酸系榭脂 Nature Works 4060D (L体: D体 =88Z12、重量平均分子量 20万、以下「PLA4」と略する。  • Polylactic acid-based fats-Polylactic acid-based fats manufactured by Nature Works LLC "Nature Works 4050D (L: D: 95Z5, weight average molecular weight 200,000, hereinafter abbreviated as" PLA3 ". Fatty acid: Polylactic acid based fat oil manufactured by Cargill 'Dow, Inc. Nature Works 4060D (L form: D form = 88Z12, weight average molecular weight 200,000, hereinafter abbreviated as “PLA4”.
[0228] ( (B)成分) [0228] (Component (B))
'ポリプロピレン榭脂…日本ポリプロ (株)製 商品名:ノバテック FY6H (80°Cにおけ る弾性率 =0. 72GPa MFR= 1. 9gZlO分)、以下、「P01」と略する。  'Polypropylene resin: manufactured by Nippon Polypro Co., Ltd. Product name: Novatec FY6H (elastic modulus at 80 ° C = 0.72GPa MFR = 1.9gZlO), hereinafter abbreviated as "P01".
•ポリプロピレン榭脂…日本ポリプロ (株)製 商品名: FL6H、以下「P02」と略する。 'ポリプロピレン榭脂…日本ポリプロ (株)製 商品名: FB3HAT、以下「P03」と略す る。  • Polypropylene resin: manufactured by Nippon Polypro Co., Ltd. Product name: FL6H, hereinafter abbreviated as “P02”. 'Polypropylene resin: Made by Nippon Polypro Co., Ltd. Product name: FB3HAT, hereinafter abbreviated as “P03”.
[0229] ( (C)成分)  [0229] (Component (C))
•ポリ乳酸榭脂以外の脂肪族ポリエステル…昭和高分子 (株)社製 商品名:ビオノ一 レ 3003、ポリブチレンサクシネート'アジペート共重合体、 23°Cの貯蔵弾性率 = 3. 9 2 X 108Pa、以下、「BN1」と略する。 • Aliphatic polyesters other than polylactic acid resin: Showa High Polymer Co., Ltd. Trade name: Biono Ile 3003, Polybutylene succinate 'adipate copolymer, Storage elastic modulus at 23 ° C = 3. 9 2 X 10 8 Pa, hereinafter abbreviated as “BN1”.
.ポリブチレンサクシネート榭脂…昭和高分子 (株)製 商品名:ピオノーレ、以下「BN 2」と略する。  .Polybutylene succinate resin: Showa High Polymer Co., Ltd. Trade name: Pionore, hereinafter abbreviated as “BN 2”.
'ポリエチレンポリ酢酸ビュル共重合体…大日本インキ化学工業 (株)製 商品名:ェ ノ スレン 260、 23°Cの貯蔵弾性率 = 2. 42 X 107Pa、以下、「EVA」と略する。 'Polyethylene polyacetate butyl copolymer ... manufactured by Dainippon Ink & Chemicals, Inc. Product name: Enoslene 260, storage elastic modulus at 23 ° C = 2. 42 X 10 7 Pa, hereinafter abbreviated as "EVA" .
•乳酸系共重合体…大日本インキ (株)製 商品名:ブラメート PD150、以下、「PD1 50」と略する。  • Lactic acid-based copolymer: manufactured by Dainippon Ink Co., Ltd. Product name: Bramate PD150, hereinafter abbreviated as “PD1 50”.
'コアシェル構造アクリル シリコーン共重合体…三菱レイヨン (株)製 商品名:メタ ブレン S2001、(以下、「S2001」と略する。  'Core-shell structure acrylic silicone copolymer… Made by Mitsubishi Rayon Co., Ltd. Product name: Metabrene S2001, (hereinafter abbreviated as “S2001”).
•Tg0°C以下の乳酸系共重合体…三菱化学 (株)製 商品名 GS— PLA AD92W 、以下、「AD92W」と略する。  • Lactic acid copolymer with Tg of 0 ° C or less: Product name GS—PLA AD92W manufactured by Mitsubishi Chemical Corporation, hereinafter abbreviated as “AD92W”.
[0230] ( (D)成分) [0230] (Component (D))
'酸ィ匕チタン…デュポン社製 商品名: R108、以下、「FL1」と略する。 •硫酸バリウム…堺化学 (株)製 商品名: B— 55、以下、「FL2」と略する。 'Oxidized titanium: DuPont's product name: R108, hereinafter abbreviated as “FL1”. • Barium sulfate: manufactured by Sakai Chemical Co., Ltd. Product name: B-55, hereinafter abbreviated as “FL2”.
[0231] (その他添加物) [0231] (Other additives)
'無機粒子…白石カルシウム (株)製 商品名:ォプチホワイト、特殊焼成カオリンクレ ィ、以下、「無機粒子」と略する。  'Inorganic particles: manufactured by Shiraishi Calcium Co., Ltd. Trade name: Opti White, special calcined kaolin clay, hereinafter abbreviated as “inorganic particles”.
[0232] <積層フィルムの製造 > [0232] <Manufacture of laminated film>
(実施例 1)  (Example 1)
表 1に示すように、(I)層に用いられる (A)成分として、「PLA3」 100質量部、(B)成 分として rpoij 30質量部をドライブレンドし、三菱重工業株式会社製の 40mm φ 小型同方向 2軸押出機を用いて、 200°C、 lOOrpmにて混練し、ストランド形状に押 出して水槽で急冷し、その後、切断してペレットを作製した。  As shown in Table 1, 100 parts by mass of “PLA3” as component (A) used in layer (I) and 30 parts by mass of rpoij as component (B) were dry blended, and 40 mm φ manufactured by Mitsubishi Heavy Industries, Ltd. The mixture was kneaded at 200 ° C and lOOrpm using a small unidirectional twin-screw extruder, extruded into a strand shape, quenched in a water tank, and then cut to produce pellets.
(II)層に用いられる榭脂組成物として、前述の「PLA3」 50質量部と、「PLA4」 50 質量部とをドライブレンドし、上述の方法にてペレットを作製した。  As the resin composition used for the (II) layer, 50 parts by mass of the above-mentioned “PLA3” and 50 parts by mass of “PLA4” were dry blended, and pellets were produced by the above-described method.
得られたペレットを、それぞれ別個の三菱重工業株式会社製の単軸押出機に投入 し、設定温度 200°Cで溶融混合後、 2種 3層ダイスより共押出し、 60°Cのキャストロー ルで引き取り、冷却固化させて未延伸積層シートを得た。次いで、京都機械株式会 社製のフィルムテンターにて、予熱温度 75°C、延伸温度 72°Cで横一軸方向に 4. 0 倍延伸した後、冷風で急冷して、厚さ 80 mの熱収縮性空孔含有フィルムを得た。 得られたフィルムの測定及び評価結果を表 1に示す。  The obtained pellets are put into separate single screw extruders manufactured by Mitsubishi Heavy Industries, Ltd., melt-mixed at a set temperature of 200 ° C, then co-extruded from two types of three-layer dies, and cast at 60 ° C. It was taken up and cooled and solidified to obtain an unstretched laminated sheet. The film was then stretched 4.0 times in the transverse uniaxial direction at a preheating temperature of 75 ° C and a stretching temperature of 72 ° C using a film tenter manufactured by Kyoto Machine Co., Ltd. A shrinkable pore-containing film was obtained. Table 1 shows the measurement and evaluation results of the obtained film.
[0233] (実施例 2) [0233] (Example 2)
表 1に示すように、実施例 1において、「P01」の添加量を 60質量部に変更した以 外は、実施例 1と同様にして熱収縮性空孔含有フィルムを得た。  As shown in Table 1, a heat-shrinkable pore-containing film was obtained in the same manner as in Example 1, except that the amount of “P01” added in Example 1 was changed to 60 parts by mass.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。  About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0234] (実施例 3) [0234] (Example 3)
表 1に示すように、実施例 1において、未延伸積層シートを作製する際にダイスのリ ップギャップとキャストロールの引取速度を調整することによりアスペクト比を変更した 以外は、実施例 1と同様にして熱収縮性空孔含有フィルムを得た。  As shown in Table 1, in Example 1, when the unstretched laminated sheet was prepared, the aspect ratio was changed by adjusting the lip gap of the die and the take-up speed of the cast roll. Thus, a heat-shrinkable pore-containing film was obtained.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。 About the obtained film, the same measurement and evaluation as Example 1 were performed. The result Table 1 shows.
[0235] (実施例 4) [Example 4]
表 1に示すように、実施例 1において、(I)層中の (A)成分を「PLA3」80質量部、 及び「PLA4」 20質量部との混合榭脂組成物に、(B)成分を「P02」 20質量部にそ れぞれ変更し、かつ (Π)層に用いられる榭脂組成物を「PLA1」 100質量部に変更し た以外は、実施例 1と同様にして熱収縮性空孔含有フィルムを得た。  As shown in Table 1, in Example 1, the (A) component in the (I) layer was mixed with 80 parts by mass of “PLA3” and 20 parts by mass of “PLA4”, and the component (B) Was changed to 20 parts by mass of `` P02 '' and the resin composition used in the layer (Π) was changed to 100 parts by mass of `` PLA1 '', and heat shrinkage was performed in the same manner as in Example 1. A characteristic void-containing film was obtained.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。  About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0236] (比較例 1) [0236] (Comparative Example 1)
表 1に示すように、実施例 1において、「P01」の含有量を 20質量部に変更し、かつ 未延伸積層シートを作製する際にダイスのリップギャップとキャストロールの引取速度 を調整することによりアスペクト比を変更した以外は、実施例 1と同様にして熱収縮性 フイノレムを得た。  As shown in Table 1, in Example 1, the content of “P01” is changed to 20 parts by mass, and the lip gap of the die and the take-up speed of the cast roll are adjusted when producing an unstretched laminated sheet. A heat-shrinkable Finolem was obtained in the same manner as in Example 1 except that the aspect ratio was changed by.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。  About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0237] (比較例 2) [0237] (Comparative Example 2)
表 1に示すように、実施例 1において、「P01」の添加量を 5質量部に変更した以外 は実施例 1と同様にして熱収縮性フィルムを得た。  As shown in Table 1, a heat-shrinkable film was obtained in the same manner as in Example 1 except that the amount of “P01” added in Example 1 was changed to 5 parts by mass.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。  About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0238] (比較例 3) [0238] (Comparative Example 3)
表 1に示すように、実施例 1において、「P01」の添加量を 100質量部に変更した以 外は実施例 1と同様にして熱収縮性フィルムを得た。  As shown in Table 1, a heat-shrinkable film was obtained in the same manner as in Example 1 except that the amount of “P01” added in Example 1 was changed to 100 parts by mass.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。  About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0239] (比較例 4) [0239] (Comparative Example 4)
表 1に示すように、実施例 1において、(Π)層を形成せず、(I)層のみの単層フィル ムとした以外は実施例 1と同様にして熱収縮性空孔含有フィルムを得た。 得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。 As shown in Table 1, in Example 1, a heat-shrinkable pore-containing film was prepared in the same manner as in Example 1 except that the layer (ii) was not formed and a single-layer film (I) was used. Obtained. About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0240] (比較例 5) [0240] (Comparative Example 5)
表 1に示すように、実施例 1において、(I)層中の(B)成分として「PO3」40質量部 に変更した以外は実施例 1と同様にして熱収縮性フィルムを得た。  As shown in Table 1, a heat-shrinkable film was obtained in the same manner as in Example 1 except that in Example 1, the component (B) in the (I) layer was changed to 40 parts by mass of “PO3”.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。  About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0241] (比較例 6) [0241] (Comparative Example 6)
表 1に示すように、実施例 1において、(I)層中の(B)成分の代わりに (A)成分と相 溶可能な榭脂組成物である「BN2」((C)成分に相当) 30質量部添加した以外は実 施例 1と同様にして熱収縮性フィルムを得た。  As shown in Table 1, in Example 1, “BN2” (corresponding to the component (C) that is compatible with the component (A) instead of the component (B) in the (I) layer. ) A heat-shrinkable film was obtained in the same manner as in Example 1 except that 30 parts by mass was added.
得られたフィルムについて、実施例 1と同様の測定及び評価を行った。その結果を 表 1に示す。  About the obtained film, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.
[0242] [表 1] [0242] [Table 1]
Figure imgf000056_0001
Figure imgf000056_0001
表 1より、本発明で規定される範囲のフィルムは、嵩比重が小さぐリサイクル性、剛 性、低温収縮性、自然収縮性に優れていた (実施例 1乃至 4)。 これに対し、アスペクト比が本発明の範囲外である場合、得られたフィルムは耐破 断性に劣っていたり、十分に空孔を形成しな力つたため、嵩比重が所望の値よりもや や大きなつたりして、耐破断性に劣っていた (比較例 1及び 5)。また、(I)層中の(B) 成分が本発明の範囲外である場合には、得られたフィルムは十分な耐破断性及び 収縮特性を発現せず、また十分な空孔を形成しなカゝつたため、嵩比重も所望の値よ りも大きくなつた (比較例 2及び 3)。また、(Π)層を有しない場合には、得られたフィル ムは良好な機械物性を発現した力 インキを塗布する際にややムラが生じた (比較例 4)。また、(I)層において (A)成分と相溶可能な榭脂を用いた場合には、得られたフ イルムは良好な耐破断性を示したが、ほとんど空孔を形成しな力 たため、嵩比重が 所望の値よりも大きぐまた自然収縮性もやや劣るものとなった (比較例 6)。 From Table 1, the film within the range defined by the present invention was excellent in recyclability, rigidity, low-temperature shrinkage, and natural shrinkage with small bulk specific gravity (Examples 1 to 4). On the other hand, when the aspect ratio is out of the range of the present invention, the obtained film is inferior in fracture resistance or does not sufficiently form pores, so the bulk specific gravity is lower than the desired value. Slightly larger and inferior in fracture resistance (Comparative Examples 1 and 5). In addition, when the component (B) in the (I) layer is outside the scope of the present invention, the obtained film does not exhibit sufficient fracture resistance and shrinkage characteristics and forms sufficient pores. As a result, the bulk specific gravity was larger than the desired value (Comparative Examples 2 and 3). In addition, in the case of having no (i) layer, the obtained film was slightly uneven when applying a force ink exhibiting good mechanical properties (Comparative Example 4). In addition, when the resin compatible with the component (A) was used in the (I) layer, the obtained film showed good rupture resistance, but was almost free from pore formation. The bulk specific gravity was larger than the desired value and the natural shrinkage was slightly inferior (Comparative Example 6).
これより本発明のフィルムは、嵩比重が小さぐリサイクル性、剛性、低温収縮性、自 然収縮性に優れた、収縮包装、収縮結束包装や熱収縮性ラベル等の用途に適した 熱収縮性空孔含有フィルムであることが分かる。  Thus, the film of the present invention has a low bulk specific gravity, excellent recyclability, rigidity, low temperature shrinkability, and natural shrinkage, and heat shrinkability suitable for applications such as shrink wrapping, shrink tying wrapping and heat shrinkable labels. It turns out that it is a void | hole containing film.
(実施例 5〜8、比較例 7〜: LO) (Examples 5-8, Comparative Example 7-: LO)
表 2に示す (I)層用榭脂として、(A)成分及び (B)成分をドライブレンドし、小型同 方向 2軸押出機(三菱重工業 (株)製、 40mm φ )を用いて、 200°C、 lOOrpmにて混 練し、ストランド状に押し出して水槽で急冷し、その後切断して混合樹脂のペレットを 作製した。  As the resin for (I) layer shown in Table 2, the components (A) and (B) were dry blended, and a small co-directional twin screw extruder (Mitsubishi Heavy Industries, Ltd., 40 mm φ) was used. The mixture was kneaded at ° C and lOOrpm, extruded into a strand, quenched in a water bath, and then cut to prepare a mixed resin pellet.
また、表 2に示す (Π)層用榭脂として、(A)成分及び (C)成分をドライブレンドし、上 記の方法と同様の方法を用いて、混合樹脂のペレットを作製した。  In addition, as (Π) layered resin shown in Table 2, components (A) and (C) were dry blended, and mixed resin pellets were produced using the same method as described above.
得られたそれぞれのペレットを、それぞれ別個の単軸押出機 (三菱重工業 (株)製) に投入し、設定温度 200°Cで溶融混合し、 2種 3層口金より共押出し、 60°Cのキャス トロールで引き取り、冷却固化させて、未延伸積層シートを得た。  Each of the obtained pellets is put into a separate single-screw extruder (Mitsubishi Heavy Industries, Ltd.), melted and mixed at a set temperature of 200 ° C, and co-extruded from two types of three-layer die. The unstretched laminated sheet was obtained by taking up with a cast roll and cooling and solidifying.
次いで、フィルムテンター (京都機械 (株)製)により、予熱温度 80°C、延伸温度 71 °Cで横一軸方向に 4. 0倍延伸した後、冷風で急冷して、厚さ 80 mの熱収縮性空 孔含有フィルムを得た。得られたフィルムの評価結果を表 2に示す。  The film was then stretched 4.0 times in the transverse uniaxial direction at a preheating temperature of 80 ° C and a stretching temperature of 71 ° C by a film tenter (Kyoto Kikai Co., Ltd.), and then rapidly cooled with cold air to heat 80 m thick. A shrinkable pore-containing film was obtained. The evaluation results of the obtained film are shown in Table 2.
なお、実施例 7は、未延伸積層シートを作製する際にダイスのリップギャップとキャス トロールの引取速度を調整することによりアスペクト比を変更した以外は、実施例 5と 同様の方法を採用した。 Example 7 is the same as Example 5 except that the aspect ratio was changed by adjusting the lip gap of the die and the take-up speed of the cast roll when producing the unstretched laminated sheet. A similar method was adopted.
また、実施例 6での延伸温度は 72°C、比較例 1での延伸温度は、 73°Cとした。  The stretching temperature in Example 6 was 72 ° C, and the stretching temperature in Comparative Example 1 was 73 ° C.
[0245] [表 2] [0245] [Table 2]
Figure imgf000058_0001
Figure imgf000058_0001
[0246] 表 2より本発明で規定される組成、熱収縮率、及びアスペクト比を有するフィルムは 、耐破断性、インキ密着性、耐自然収縮性に優れていた。  [0246] From Table 2, the film having the composition, heat shrinkage ratio, and aspect ratio defined in the present invention was excellent in break resistance, ink adhesion, and spontaneous shrink resistance.
これに対し、(Π)層で軟質成分 (C成分)を用いない場合 (比較例 7及び 8)には耐 破断性、インキ密着性が悪かった。また、アスペクト比が高い場合 (比較例 9)には、 嵩比重が高ぐまた耐破断性と収縮仕上がりに劣っていた。また、(Π)層のポリ乳酸 系榭脂の DZL比が高い場合 (比較例 10)には、延伸時に空孔が生じな力つたため 、嵩比重が大きく著しくなつた。  On the other hand, when the soft component (component C) was not used in the layer (Π) (Comparative Examples 7 and 8), the fracture resistance and ink adhesion were poor. Further, when the aspect ratio was high (Comparative Example 9), the bulk specific gravity was high, and the fracture resistance and shrinkage finish were inferior. In addition, when the DZL ratio of the polylactic acid-based resin in the layer (Π) was high (Comparative Example 10), voids were not generated during stretching, and the bulk specific gravity was large and remarkable.
これより、本発明の熱収縮性フィルムは、熱収縮性、耐破断性、印刷特性等の機械 的特性に優れ、かつ嵩比重を減らし榭脂の使用量を抑えることが可能なものであるこ とが分かる。  Thus, the heat-shrinkable film of the present invention has excellent mechanical properties such as heat-shrinkability, rupture resistance, and printing properties, and can reduce the bulk specific gravity and suppress the amount of resin used. I understand.
[0247] (実施例 9〜: L 1) [Example 9 ~: L 1]
ポリ乳酸系榭脂組成物 (Α)、ポリオレフイン系榭脂組成物 (Β)及び、上記軟質成分 (C)をそれぞれ表 3の混合比率で混合し、二軸押出機 (三菱重工業 (株)製)に投入 し、設定温度 200°Cで溶融混合し、設定温度 200°Cの口金より押し出して、 50°Cの キャストロールで引き取り、冷却固化させて、幅 300mm、厚さ 200 mの未延伸フィ ルムを得た。 Polylactic acid-based resin composition (組成), polyolefin-based resin composition (Β), and the above soft component (C) were mixed at the mixing ratio shown in Table 3, respectively, and a twin-screw extruder (Mitsubishi Heavy Industries, Ltd. ) Then, melt and mix at a set temperature of 200 ° C, extrude from a die with a set temperature of 200 ° C, take it up with a cast roll at 50 ° C, and cool and solidify it to form an unstretched film with a width of 300 mm and a thickness of 200 m. Obtained.
得られた未延伸フィルムをロール縦延伸機 (三菱重工業 (株)製)により 65〜75°C にて 1. 05倍に延伸した後に、フィルムテンター(三菱重工業 (株)製)予熱温度 80〜 90°C、延伸温度 65〜75°Cで横軸方向に 4. 0倍に延伸して厚さ 80 mの熱収縮性 空孔含有フィルムを得た。  The obtained unstretched film was stretched 1.05 times at 65-75 ° C by a roll longitudinal stretching machine (Mitsubishi Heavy Industries, Ltd.), and then a film tenter (Mitsubishi Heavy Industries, Ltd.) preheating temperature 80- The film was stretched 4.0 times in the horizontal axis direction at 90 ° C. and a stretching temperature of 65 to 75 ° C. to obtain a heat-shrinkable pore-containing film having a thickness of 80 m.
[0248] (実施例 12) [Example 12]
表 3に示したポリ乳酸系榭脂組成物 (A)、ポリオレフイン系榭脂組成物(B)及び、 上記軟質成分 (C)の混合樹脂からなる (I)層の両側に、 PLA2を 100質量部用いた ( Π)層を形成するよう 300mm幅 2種 3層マルチマ-ホールドダイを用いた共押出法に より積層した未延伸フィルムを得たのち、上述した方法にて延伸をおこない、厚さ 80 m (表層 8 mZ中間層 64 mZ裏層 8 m)の熱収縮性空孔含有フィルムを得 た。  100 masses of PLA2 on both sides of the (I) layer consisting of a mixed resin of the polylactic acid-based resin composition (A), the polyolefin resin composition (B), and the soft component (C) shown in Table 3. After forming an unstretched film laminated by coextrusion using a 300 mm width, two-kind, three-layer multi-hold die so as to form the layer (ii) used, the film was stretched by the method described above to obtain a thickness. A heat-shrinkable pore-containing film of 80 m (surface layer 8 mZ intermediate layer 64 mZ back layer 8 m) was obtained.
[0249] (比較例 11〜14)  [0249] (Comparative Examples 11 to 14)
ポリ乳酸系榭脂組成物 (A)、ポリオレフイン系榭脂組成物 (B)、その他無機粒子、 及び上記軟質成分 (C)をそれぞれ表 3の混合比率で混合し、実施例 1に記した方法 と同様に熱収縮性空孔含有フィルム及び熱収縮性フィルムを得た。  The method described in Example 1, wherein the polylactic acid-based resin composition (A), the polyolefin-based resin composition (B), other inorganic particles, and the soft component (C) were mixed at the mixing ratios shown in Table 3, respectively. In the same manner as above, a heat-shrinkable pore-containing film and a heat-shrinkable film were obtained.
[0250] (比較例 15) [0250] (Comparative Example 15)
表 1の混合比率で混合し、実施例 1に記した方法と同様に未延伸フィルムを延伸し た後、そのまま 80°C雰囲気中にて熱固定を行い、空孔含有フィルムを得た。  After mixing at the mixing ratio shown in Table 1 and stretching the unstretched film in the same manner as described in Example 1, the film was heat-set in an 80 ° C atmosphere to obtain a pore-containing film.
得られた熱収縮性空孔含有フィルムについて、以下の評価を行った。その結果を それぞれ表 3に示す。  The following evaluation was performed about the obtained heat-shrinkable void-containing film. The results are shown in Table 3.
[0251] [表 3] 成分 フィルム構成 [0251] [Table 3] Ingredient Film composition
実方 s例 比較例  Actual s example Comparative example
分類  Classification
9 10 11 12 1 1 12 13 14 15 9 10 11 12 1 1 12 13 14 15
(A) PLA1 (質量部) 100 100 100 100 100 100 100 100 100 成分 PLA2 (質量部) (A) PLA1 (mass part) 100 100 100 100 100 100 100 100 100 Component PLA2 (mass part)
(B)成^ P01 (質量部) 30 30 30 30 ― ― ― ― 30 (B) Made ^ P01 (Mass) 30 30 30 30 ― ― ― ― 30
( 1) PD150 (質量部) 30 ― ― ― ― 30 ― ― ― 層 (0 ― (1) PD150 (mass part) 30 ― ― ― ― 30 ― ― ― Layer (0 ―
成分 S2001 (質量部) ― 30 ― 15 ― 30 一 ― Component S2001 (parts by mass) ― 30 ― 15 ― 30 One ―
BN1 (質量部) ― 一 30 一 ― ― 一 30 ― その他 無機 BN1 (parts by mass) ― 1 30 1 ― ― 1 30 ― Others Inorganic
(質量部) ― ― ― ―  (Mass) ― ― ― ―
粒子 10 ― 一 ― ― Particle 10 ― One ― ―
( I I)層 PLA2 (質量部) ― ― 一 100 ― ― ― ― ― 熱収縮率 (¾) 42 45 50 42 44 48 46 44 1. 2 自然収縮率 2 (%) 0. 4 0. 4 0. 5 0. 3 0. 2 0. 9 0. 9 0. 8 0. 0 耐破断性 2 (%) 270 326 318 390 5. 0 245 481 180 167(II) Layer PLA2 (parts by mass) ― ― One 100 ― ― ― ― ― Thermal shrinkage (¾) 42 45 50 42 44 48 46 44 1.2 Natural shrinkage 2 (%) 0.4 4 0.4 5 0. 3 0. 2 0. 9 0. 9 0. 8 0. 0 Fracture resistance 2 (%) 270 326 318 390 5. 0 245 481 180 167
(B)成分の粒子径 ( m) 4. 2 1. 9 3. 7 2. 2 ― 一 ― ― 2. 8 真比重 (g/cm3) 1. 18 1. 18 1. 18 1. 20 1. 32 1. 22 1. 22 1. 24 1. 16 局 し (g/cm3) 1. 04 0. 98 1. 06 1. 04 1. 15 1. 20 1. 21 1. 24 0. 92 Particle size of component (B) (m) 4. 2 1. 9 3. 7 2. 2 ― One ― ― 2. 8 True specific gravity (g / cm 3 ) 1. 18 1. 18 1. 18 1. 20 1 32 1. 22 1. 22 1. 24 1. 16 stations (g / cm 3 ) 1. 04 0. 98 1. 06 1. 04 1. 15 1. 20 1. 21 1. 24 0. 92
88  88
嵩比重/真比重 83 89 86 87 99 99 100 79  Bulk specific gravity / true specific gravity 83 89 86 87 99 99 100 79
(¾)  (¾)
〇 〇 〇 〇 〇 X X X 〇 光線透過度 1 31 21 38 22 34 94 97 92 24  ○ ○ ○ ○ ○ X X X ○ Light transmittance 1 31 21 38 22 34 94 97 92 24
(W  (W
〇 ◎ 〇 ◎ 〇 X X X ◎ 断熱性 〇 〇 〇 〇 〇 X X X ―  ○ ◎ ○ ◎ ○ X X X ◎ Thermal insulation ○ ○ ○ ○ ○ X X X ―
[0252] 表 3より本発明で規定される組成、熱収縮率および貯蔵弾性率 (Ε' )、嵩比重、粒 子径を有するフィルムは、耐衝撃性、遮光性及び断熱性が優れていた。これに対し、 ポリオレフイン系榭脂(Β)および軟質成分 (C)を用いな!/、場合 (比較例 11)には耐破 断性をまったく満たさず、ポリ乳酸系榭脂 (Α)と軟質成分 (C)よりなるフィルム (比較 例 12乃至 14)では、延伸時に空孔が生じな力つたため、嵩比重が大きぐまた遮光 性、断熱性に著しく劣っていた。また、軟質成分をもちいず、さらに熱固定をおこなつ た場合 (比較例 13)には、収縮率が著しく低く熱収縮性ラベルへの使用が困難であ つた。さらに、軟質成分 (C)を含有せず、熱固定したフィルム (比較例 15)は、ほとん ど収縮が見られな力つた。 [0252] A film having the composition, heat shrinkage rate and storage elastic modulus (Ε '), bulk specific gravity, and particle diameter defined in the present invention from Table 3 was excellent in impact resistance, light shielding properties and heat insulation properties. . On the other hand, when polyolefin resin (resin) and soft component (C) were not used! /, The case (Comparative Example 11) did not satisfy the breaking resistance at all. In the film composed of component (C) (Comparative Examples 12 to 14), since the pores were not generated during stretching, the bulk specific gravity was large, and the light shielding property and heat insulating property were remarkably inferior. In addition, when a soft component was not used and heat setting was further performed (Comparative Example 13), the shrinkage rate was extremely low and it was difficult to use the heat shrinkable label. Furthermore, the heat-set film (Comparative Example 15) which did not contain the soft component (C) had a force with almost no shrinkage.
これより、本発明の熱収縮性フィルムは、熱収縮性、耐衝撃性、遮光性、断熱性等 の機械的特性に優れ、かつ嵩比重を減らし榭脂の使用量を抑えることが可能なもの であることが分力ゝる。  Thus, the heat-shrinkable film of the present invention has excellent mechanical properties such as heat-shrinkability, impact resistance, light-shielding properties, and heat insulation properties, and can reduce the bulk specific gravity and suppress the amount of resin used. It is a force to be.
[0253] (実施例 13〜17、比較例 16)  [0253] (Examples 13 to 17, Comparative Example 16)
表 4に示すポリ乳酸系榭脂 (Α)、ポリオレフイン系榭脂 (Β)、充填剤 (D)成分、軟質 成分 (C)成分、及びその他の添加物を混合して得られた混合榭脂を二軸押出機 (三 菱重工業 (株)製)に投入し、設定温度 200°Cで溶融混合し、設定温度 200°Cの口金 よりより押出した後、 50°Cのキャストロールで引き取り、冷却固化させて未延伸シート を得た。 Mixed lactic acid obtained by mixing the polylactic acid-based rosin (Α), polyolefin-based rosin (Β), filler (D) component, soft component (C) component, and other additives shown in Table 4 The twin screw extruder (three Ryoshige Industry Co., Ltd.), melted and mixed at a preset temperature of 200 ° C, extruded from a die with a preset temperature of 200 ° C, taken up with a cast roll at 50 ° C, cooled and solidified, and unstretched sheet Got.
次いで、フィルムテンター (京都機械 (株)製)にて、表 1の条件下で横方向に延伸を して、熱収縮性フィルムを得た。得られたフィルムの評価結果を表 4に示す。  Subsequently, the film was stretched in the transverse direction under the conditions shown in Table 1 using a film tenter (manufactured by Kyoto Machine Co., Ltd.) to obtain a heat-shrinkable film. Table 4 shows the evaluation results of the obtained film.
[0254] [表 4] [0254] [Table 4]
Figure imgf000061_0001
Figure imgf000061_0001
AD92W GSP I a (C)成分として添加  AD92W GSP I a Added as component (C)
[0255] 表 4より実施例 13〜17の本発明のフィルムは、耐破断性、高収縮特性、遮光機能 を有するのに対し、比較例 1のフィルムでは耐破断性が不十分であり、また光線透過 率も 40%を超え、遮光性が得られないことが分かる。特に本発明のフィルムにおいて 充填剤として酸ィ匕チタンを用いた場合 (実施例 13、 14、 15及び 17)、波長 240〜40 Onmの光線透過率をかなり低く抑えて、良好な遮光性が得られることが分かる。 産業上の利用可能性 [0255] From Table 4, the films of the inventions of Examples 13 to 17 have break resistance, high shrinkage properties, and light shielding function, whereas the film of Comparative Example 1 has insufficient break resistance, and It can be seen that the light transmittance exceeds 40%, and the light shielding property cannot be obtained. In particular, when titanium oxide is used as a filler in the film of the present invention (Examples 13, 14, 15, and 17), the light transmittance at a wavelength of 240 to 40 Onm is suppressed to a very low level, and a good light shielding property is obtained. You can see that Industrial applicability
本発明のフィルムは、嵩比重が小さぐ印刷適性、高剛性、耐破断性、遮光性、及 び収縮特性に優れているため、熱収縮性を必要とする成形品や収縮包装、収縮結 束、収縮ラベル等、特にシュリンクラベル等に好適に利用することができる。  The film of the present invention has a low bulk specific gravity and excellent printability, high rigidity, rupture resistance, light-shielding properties, and shrinkage characteristics. Therefore, the film, shrink-wrapping, and shrink-binding that require heat shrinkability. It can be suitably used for shrinkage labels, particularly shrink labels.
また、本発明に使用する PLA系榭脂は植物由来榭脂であるため、環境負荷を低減 させることができ、バイオマスの利用を促進し、循環型社会を目指す上で好適である  In addition, since PLA-based coconut resin used in the present invention is plant-derived rosin, it can reduce the environmental burden and is suitable for promoting the use of biomass and aiming for a recycling-oriented society.

Claims

請求の範囲 The scope of the claims
[1] 下記の (A)成分と (B)成分とを含み、この(B)成分の含有量が前記 (A)成分 100 質量部に対して 5質量部以上 90質量部以下である混合榭脂組成物で構成される (I) 層と、前記 ( A)成分を主成分とする榭脂組成物で構成される (II)層との少なくとも 2 層を有する、少なくとも 1軸方向に延伸したフィルムであり、  [1] A mixed container containing the following component (A) and component (B), wherein the content of component (B) is 5 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of component (A) Stretched at least uniaxially, having at least two layers of (I) layer composed of a fat composition and (II) layer composed of a greave composition mainly composed of the component (A) A film,
前記 (I)層にお 、て、 (A)成分力もなるマトリックス中に分散して 、る (B)成分からな る分散ドメインの主収縮方向に直交する方向に対するアスペクト比が 5以上 50以下 であり、  In the layer (I), the aspect ratio with respect to the direction perpendicular to the main shrinkage direction of the dispersion domain consisting of the component (B) is dispersed in the matrix having the component force (A) and is not more than 5 and not more than 50. Yes,
80°Cの温水中に 10秒間浸漬したときの主収縮方向の熱収縮率が 20%以上である 熱収縮性空孔含有積層フィルム。  A heat-shrinkable pore-containing laminated film having a heat shrinkage ratio in the main shrinkage direction of 20% or more when immersed in warm water at 80 ° C for 10 seconds.
(A)成分: D 乳酸及び L 乳酸の共重合体を主成分とするポリ乳酸系榭脂組成物 Component (A): Polylactic acid based resin composition comprising a copolymer of D lactic acid and L lactic acid as a main component
(B)成分:(A)成分に非相溶で、振動周波数 10Hz、歪み 0. 1%の条件で測定した ときの 80°Cにおける貯蔵弾性率が 0. 25GPa以上 2. OOGPa以下であるポリオレフィ ン系榭脂組成物 Component (B): Polyolefin with a storage modulus at 80 ° C of 0.25 GPa or more 2. OOGPa or less when measured at a vibration frequency of 10 Hz and a strain of 0.1%, incompatible with component (A) -Based rosin composition
[2] 前記(I)層において、(A)成分の DZL比力 1Z99〜: L0Z90又は 99Zl〜90Z  [2] In the layer (I), the DZL specific force of the component (A) 1Z99 ~: L0Z90 or 99Zl ~ 90Z
10であり、  10 and
前記(Π)層において、(Α)成分の DZL比力 6Z94〜15Z85又は 94Z6〜85 Z15である請求項 1に記載の熱収縮性空孔含有積層フィルム。  2. The heat-shrinkable pore-containing laminated film according to claim 1, wherein in the (Π) layer, the DZL specific force of the (Α) component is 6Z94 to 15Z85 or 94Z6 to 85 Z15.
[3] 前記 (Π)層は、前記 (A)成分以外に、下記 (C)成分を含み、この (C)成分の含有 量が (A)成分 100質量部に対して 5質量部以上 50質量部以下である混合榭脂組成 物で構成される請求項 1又は 2に記載の熱収縮性空孔含有積層フィルム。 [3] The layer (ii) contains the following component (C) in addition to the component (A), and the content of the component (C) is 5 parts by mass or more with respect to 100 parts by mass of the component (A). The heat-shrinkable pore-containing laminated film according to claim 1 or 2, comprising a mixed resin composition having a mass part or less.
(C)成分:ポリ乳酸系榭脂以外の Tgが 0°C以下である乳酸系重合体、ポリ乳酸系榭 脂以外の脂肪族ポリエステル、芳香族脂肪族ポリエステル、ジオールとジカルボン酸 とポリ乳酸系榭脂との共重合体、コアシェル構造型ゴム、エチレン 酢酸ビニル共重 合体、エチレン (メタ)アクリル酸ェチル共重合体、エチレン (メタ)アクリル酸共重 合体、エチレン (メタ)アクリル酸メチル共重合体、及びスチレン系エラストマ一から 選ばれる少なくとも 1種からなる榭脂又は榭脂混合体から構成される軟質成分  Component (C): Lactic acid-based polymer whose Tg other than polylactic acid-based resin is 0 ° C or less, aliphatic polyester other than polylactic acid-based resin, aromatic aliphatic polyester, diol, dicarboxylic acid and polylactic acid Copolymer with resin, core-shell structure rubber, ethylene vinyl acetate copolymer, ethylene (meth) acrylate ethyl copolymer, ethylene (meth) acrylic acid copolymer, ethylene (meth) methyl acrylate copolymer A soft component composed of a coagulant or a coagulant mixture comprising at least one selected from a coalesced styrene elastomer
[4] 前記(B)成分のメルトフローレートが 1. OgZlO分以上 5. 0 gZlO分以下である請求項 1乃至 3のいずれかに記載の熱収縮性空孔含有積層フィ ノレム。 [4] The melt flow rate of the component (B) is 1. OgZlO or more 5.0 4. The heat-shrinkable pore-containing laminated phenolic according to any one of claims 1 to 3, having a gZlO content or less.
[5] 嵩比重が 0. 50以上 1. 00未満である請求項 1乃至 4のいずれかに記載の熱収縮 性空孔含有積層フィルム。  [5] The heat-shrinkable pore-containing laminated film according to any one of claims 1 to 4, having a bulk specific gravity of 0.50 or more and less than 1.00.
[6] 25%以下の範囲で熱収縮させた後の嵩比重が 1. 00未満である請求項 5に記載 の熱収縮性空孔含有積層フィルム。  6. The heat-shrinkable pore-containing laminated film according to claim 5, wherein the bulk specific gravity after heat-shrinking in the range of 25% or less is less than 1.00.
[7] 下記の (A)成分と (B)成分と (C)成分とを含み、(A)成分 100質量部に対して、 (B )成分の含有量が 5質量部以上 90質量部以下であり、かつ、(C)成分の含有量が 10 質量部以上 80質量部以下である混合榭脂組成物からなり、又はこの混合榭脂組成 物層を少なくとも 1層有する未延伸フィルムを少なくとも一軸以上に延伸してなり、空 孔を含有し、 80°Cの温水中に 10秒間浸漬した際の主収縮方向の収縮率が 20%以 上、 80%以下である熱収縮性空孔含有フィルム。  [7] The following (A) component, (B) component, and (C) component are included, and the content of (B) component is 5 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of (A) component And an unstretched film comprising at least one layer of the mixed resin composition, wherein the content of the component (C) is 10 parts by mass or more and 80 parts by mass or less. A film containing heat-shrinkable pores that has been stretched as described above, contains pores, and has a shrinkage ratio in the main shrinkage direction of 20% or more and 80% or less when immersed in warm water at 80 ° C for 10 seconds. .
(A)成分: D 乳酸及び L 乳酸の共重合体を主成分とするポリ乳酸系榭脂組成物 Component (A): Polylactic acid based resin composition comprising a copolymer of D lactic acid and L lactic acid as a main component
(B)成分:(A)成分に非相溶で、振動周波数 10Hz、歪み 0. 1%の条件で測定した ときの 80°Cにおける貯蔵弾性率が 0. 25GPa以上 2. OOGPa以下であるポリオレフィ ン系榭脂組成物 Component (B): Polyolefin with a storage modulus at 80 ° C of 0.25 GPa or more 2. OOGPa or less when measured at a vibration frequency of 10 Hz and a strain of 0.1%, incompatible with component (A) -Based rosin composition
(C)成分:ポリ乳酸系榭脂以外の Tgが o°c以下である乳酸系重合体、ポリ乳酸系榭 脂以外の脂肪族ポリエステル、芳香族脂肪族ポリエステル、ジオールとジカルボン酸 とポリ乳酸系榭脂との共重合体、コアシェル構造型ゴム、エチレン 酢酸ビニル共重 合体、エチレン (メタ)アクリル酸ェチル共重合体、エチレン (メタ)アクリル酸共重 合体、エチレン (メタ)アクリル酸メチル共重合体、及びスチレン系エラストマ一から 選ばれる少なくとも 1種からなる榭脂又は榭脂混合体から構成される軟質成分  Component (C): Lactic acid polymer having Tg of o ° c or less other than polylactic acid resin, aliphatic polyester other than polylactic acid resin, aromatic aliphatic polyester, diol, dicarboxylic acid and polylactic acid Copolymer with resin, core-shell structure rubber, ethylene vinyl acetate copolymer, ethylene (meth) acrylate ethyl copolymer, ethylene (meth) acrylic acid copolymer, ethylene (meth) methyl acrylate copolymer A soft component composed of a coagulant or a coagulant mixture comprising at least one selected from a coalesced styrene elastomer
[8] 前記(A)成分の D,L比力 1Z99〜15Z85又は 99Zl〜85Zl5である請求項[8] The D, L specific force of the component (A) is 1Z99 to 15Z85 or 99Zl to 85Zl5.
7記載の熱収縮性空孔含有フィルム。 7. The heat-shrinkable pore-containing film according to 7.
[9] 前記熱収縮性空孔含有フィルムの 240nm以上、 800nm以下の範囲における光線 透過率が 50%以下である請求項 7又は 8に記載の熱収縮性空孔含有フィルム。 [9] The heat-shrinkable hole-containing film according to [7] or [8], wherein the heat-shrinkable hole-containing film has a light transmittance of 50% or less in a range of 240 nm or more and 800 nm or less.
[10] 前記熱収縮性空孔含有フィルムの嵩比重が、熱収縮性空孔含有フィルムに用いる 榭脂の真比重に対して 50%以上 90%以下である請求項 7乃至 9のいずれかに記載 の熱収縮性空孔含有フィルム。 [10] The bulk specific gravity of the heat-shrinkable pore-containing film is 50% or more and 90% or less with respect to the true specific gravity of the resin used in the heat-shrinkable pore-containing film. Description Heat shrinkable pore-containing film.
[11] 前記熱収縮性空孔含有フィルム中に分散する前記 (B)成分の短軸方向の最大軸 長力 0. 1 m以上 5 m以下である、請求項 7乃至 10のいずれかに記載の熱収縮 性空孔含有フィルム。 [11] The maximum axial length force in the minor axis direction of the component (B) dispersed in the heat-shrinkable pore-containing film is not less than 0.1 m and not more than 5 m. Heat shrinkable pore-containing film.
[12] JIS K7127による 0°Cにおける引張破断伸度が 100%以上である、請求項 7乃至 [12] The tensile elongation at break at 0 ° C according to JIS K7127 is 100% or more.
11の 、ずれかに記載の熱収縮性空孔含有フィルム。 11. The heat-shrinkable pore-containing film described in any one of 11 above.
[13] 前記の (A)成分、(B)成分、(C)成分に、さらに充填剤からなる (D)成分を含有す る請求項 7又は 8に記載の熱収縮性空孔含有フィルム。 [13] The heat-shrinkable pore-containing film according to [7] or [8], wherein the component (A), the component (B), and the component (C) further contain a component (D) composed of a filler.
[14] 前記 (D)成分は、炭酸カルシウム、硫酸バリウム、酸化チタン、及び酸化亜鉛から なる群力も選ばれる少なくとも 1種の充填剤である請求項 13に記載の熱収縮性空孔 含有フィルム。 14. The heat-shrinkable pore-containing film according to claim 13, wherein the component (D) is at least one filler selected from the group force consisting of calcium carbonate, barium sulfate, titanium oxide, and zinc oxide.
[15] 前記 (D)成分が酸ィ匕チタンであり、波長 240nm以上 400nm以下の範囲における 光線透過率が 20%以下である請求項 14に記載の熱収縮性空孔含有フィルム。  15. The heat-shrinkable pore-containing film according to claim 14, wherein the component (D) is titanium oxide and has a light transmittance of 20% or less in a wavelength range of 240 nm to 400 nm.
[16] (A)成分と (B)成分の合計 100質量部に対して、 (D)成分の含有量が 1質量部以 上 25質量部以下である請求項 13乃至 15のいずれかに記載の熱収縮性空孔含有フ イノレム。  [16] The content of (D) component is 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass in total of component (A) and component (B). A heat shrinkable pore-containing finolem.
[17] 波長 240nm以上 800nm以下の範囲における光線透過率が 40%以下であり、 つ 80°C温水中に 10秒間浸漬したときの主収縮方向の収縮率力 0%以上である請 求項 13乃至 16のいずれかに記載の熱収縮性空孔含有フィルム。  [17] The light transmittance in the wavelength range of 240 nm to 800 nm is 40% or less, and the contraction rate force in the main shrinkage direction is 0% or more when immersed in warm water at 80 ° C for 10 seconds. Claim 13 The heat-shrinkable pore-containing film according to any one of 1 to 16.
[18] 請求項 1乃至 6のいずれかに記載の熱収縮性空孔含有積層フィルム、又は請求項 7乃至 17のいずれかに記載の熱収縮性空孔含有フィルムを基材として用いた成形 [18] Molding using the heat-shrinkable pore-containing laminated film according to any one of claims 1 to 6 or the heat-shrinkable pore-containing film according to any one of claims 7 to 17 as a substrate
PP
PPo PPo
[19] 請求項 1乃至 6のいずれかに記載の熱収縮性空孔含有積層フィルム、又は請求項 7乃至 17のいずれかに記載の熱収縮性空孔含有フィルムを基材として用いた熱収 縮性ラベル。  [19] Heat recovery using the heat-shrinkable pore-containing laminated film according to any one of claims 1 to 6 or the heat-shrinkable pore-containing film according to any one of claims 7 to 17 as a substrate. Shrinkable label.
[20] 請求項 18に記載の成形品を用いた、又は請求項 19に記載の熱収縮性ラベルを装 した谷器。  [20] A trough using the molded article according to claim 18 or equipped with the heat-shrinkable label according to claim 19.
PCT/JP2006/324781 2005-12-12 2006-12-12 Thermally shrinkable void-containing laminate film and thermally shrinkable void-containing film WO2007069615A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005358102A JP5033326B2 (en) 2005-12-12 2005-12-12 Heat-shrinkable pore-containing film, molded article using the film, heat-shrinkable label, and container
JP2005-358102 2005-12-12
JP2005-358095 2005-12-12
JP2005358095A JP4772491B2 (en) 2005-12-12 2005-12-12 Heat-shrinkable pore-containing film, molded article using this heat-shrinkable pore-containing film, heat-shrinkable label, and container using or mounting this molded article
JP2006-222667 2006-08-17
JP2006222667 2006-08-17

Publications (1)

Publication Number Publication Date
WO2007069615A1 true WO2007069615A1 (en) 2007-06-21

Family

ID=38162923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324781 WO2007069615A1 (en) 2005-12-12 2006-12-12 Thermally shrinkable void-containing laminate film and thermally shrinkable void-containing film

Country Status (1)

Country Link
WO (1) WO2007069615A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221573B2 (en) 2010-01-28 2015-12-29 Avery Dennison Corporation Label applicator belt system
WO2018020888A1 (en) * 2016-07-25 2018-02-01 三菱ケミカル株式会社 White poly(lactic acid)-based resin layer, layered product, card base, card, and process for producing white poly(lactic acid)-based resin layer
CN113912879A (en) * 2021-08-20 2022-01-11 山东亿隆薄膜材料有限责任公司 Environment-friendly heat shrinkable film
CN116278297A (en) * 2023-05-09 2023-06-23 合肥长阳新材料科技有限公司 Composite polyester film and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058586A (en) * 2002-07-31 2004-02-26 Mitsubishi Plastics Ind Ltd Polylactic acid heat-shrinkable film
JP2004268372A (en) * 2003-03-07 2004-09-30 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic acid laminated film
JP2006045296A (en) * 2004-08-03 2006-02-16 Mitsubishi Plastics Ind Ltd Heat-shrinkable void-containing film
JP2006117775A (en) * 2004-10-21 2006-05-11 Mitsubishi Plastics Ind Ltd Heat-shrinkable hole-containing film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058586A (en) * 2002-07-31 2004-02-26 Mitsubishi Plastics Ind Ltd Polylactic acid heat-shrinkable film
JP2004268372A (en) * 2003-03-07 2004-09-30 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic acid laminated film
JP2006045296A (en) * 2004-08-03 2006-02-16 Mitsubishi Plastics Ind Ltd Heat-shrinkable void-containing film
JP2006117775A (en) * 2004-10-21 2006-05-11 Mitsubishi Plastics Ind Ltd Heat-shrinkable hole-containing film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221573B2 (en) 2010-01-28 2015-12-29 Avery Dennison Corporation Label applicator belt system
US9637264B2 (en) 2010-01-28 2017-05-02 Avery Dennison Corporation Label applicator belt system
WO2018020888A1 (en) * 2016-07-25 2018-02-01 三菱ケミカル株式会社 White poly(lactic acid)-based resin layer, layered product, card base, card, and process for producing white poly(lactic acid)-based resin layer
JPWO2018020888A1 (en) * 2016-07-25 2018-12-27 三菱ケミカル株式会社 White polylactic acid resin layer, laminate, card substrate, card, and white polylactic acid resin layer production method
CN113912879A (en) * 2021-08-20 2022-01-11 山东亿隆薄膜材料有限责任公司 Environment-friendly heat shrinkable film
CN116278297A (en) * 2023-05-09 2023-06-23 合肥长阳新材料科技有限公司 Composite polyester film and preparation method and application thereof
CN116278297B (en) * 2023-05-09 2023-08-08 合肥长阳新材料科技有限公司 Composite polyester film and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5072077B2 (en) Light-shielding heat-shrinkable film, molded product using this light-shielding heat-shrinkable film, heat-shrinkable label, and container using this molded product or attached with this label
KR100967336B1 (en) Heat-shrinkable film, moldings and heat-shrinkable labels made by using the film, and containers made by using the moldings or fitted with the labels
JP5033326B2 (en) Heat-shrinkable pore-containing film, molded article using the film, heat-shrinkable label, and container
TWI406888B (en) A heat-shrinkable film and a molded article using the heat-shrinkable film, a heat-shrinkable label, and a container using the molded product or the container
JP5160257B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP4953587B2 (en) Heat-shrinkable film and molded article and container using the film
JP4297911B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP2008255134A (en) Heat shrinkage film, formed article and heat shrinkage label using heat shrinkage film, and container using the formed article or having the label attached thereto
JP5209380B2 (en) Laminated body, stretched film, heat-shrinkable film, molded article using the laminated body, and container equipped with the film
JP4878837B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP2007320194A (en) Heat-shrinkable hole-containing film, molded article using the film, heat-shrinkable label, and container
JP5354848B2 (en) Heat-shrinkable pore-containing film, molded product based on the film, heat-shrinkable label, and container
JP4334555B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP5383011B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP4815214B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
WO2007069615A1 (en) Thermally shrinkable void-containing laminate film and thermally shrinkable void-containing film
JP4964537B2 (en) Heat-shrinkable pore-containing film, molded product based on the film, heat-shrinkable label, and container
JP4772491B2 (en) Heat-shrinkable pore-containing film, molded article using this heat-shrinkable pore-containing film, heat-shrinkable label, and container using or mounting this molded article
JP5037249B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP2007090877A (en) Heat shrinkable laminated film, and molded article, heat shrinkable label and container using the film
WO2008001917A1 (en) Film, heat shrinkable film, molded article using the heat shrinkable film, heat shrinkable label, and container using the molded article or attached with the label
JP5095168B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP2008030476A (en) Heat shrinkable laminated film, formed article using the film and heat shrinkable label and container
JP2008087181A (en) Easily openable laminated film, laminated film and lid material
JP2008087180A (en) Easily openable laminated film, laminated film and lid material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834536

Country of ref document: EP

Kind code of ref document: A1