WO2007070424A1 - Enhanced multi-bit non-volatile memory device with resonant tunnel barrier - Google Patents

Enhanced multi-bit non-volatile memory device with resonant tunnel barrier Download PDF

Info

Publication number
WO2007070424A1
WO2007070424A1 PCT/US2006/047031 US2006047031W WO2007070424A1 WO 2007070424 A1 WO2007070424 A1 WO 2007070424A1 US 2006047031 W US2006047031 W US 2006047031W WO 2007070424 A1 WO2007070424 A1 WO 2007070424A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
formed over
substrate
amorphous
gate
Prior art date
Application number
PCT/US2006/047031
Other languages
French (fr)
Inventor
Arup Bhattacharyya
Original Assignee
Micron Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology, Inc. filed Critical Micron Technology, Inc.
Priority to CN200680050557XA priority Critical patent/CN101356627B/en
Priority to KR1020087013876A priority patent/KR101056543B1/en
Publication of WO2007070424A1 publication Critical patent/WO2007070424A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Definitions

  • the present invention relates generally to memory devices and in particular the present invention relates to non-volatile memory devices.
  • RAM random-access memory
  • ROM read only memory
  • DRAM dynamic random access memory
  • Flash memories may use floating gate technology or trapping technology.
  • Floating gate cells include source and drain regions that may be laterally spaced apart to form an intermediate channel region. The source and drain regions are formed in a common horizontal plane of a silicon substrate.
  • the floating gate typically made of doped polysilicon, is disposed over the channel region and is electrically isolated from the other cell elements by oxide.
  • the non-volatile memory function for the floating gate technology is created by the absence or presence of charge stored on the isolated floating gate.
  • the floating gate cell may be a single level cell (SLC) or a multiple level cell (MLC).
  • the trapping technology functions as a non- volatile memory and can be implemented in a silicon-oxide-nitride-oxide-silicon (SONOS) architecture as illustrated in Figure 1.
  • the nitride trap layer can capture and store electrons or holes in order to act as a non-volatile memory.
  • the cell may be an SLC or an MLC.
  • Each cell's threshold voltage (V t h) determines the data that is stored in the cell.
  • a V th of 0.5V might indicate a programmed cell while a V th of —0.5V might indicate an erased cell.
  • the multilevel cell may have multiple V th windows that each indicate a different state.
  • Multilevel cells take advantage of the analog nature of a traditional flash cell by assigning a bit pattern to a specific voltage range stored on the cell. This technology permits the storage of two or more bits per cell, depending on the quantity of voltage ranges assigned to the cell and the stability of the assigned voltage ranges during the lifetime operation of the memory cell. For example, a cell may be assigned four different voltage ranges of 200 mV for each range. Typically, a dead space or margin of 0.2 V to 0.4V is between each range.
  • the cell is storing a 00. If the voltage is within the second range, the cell is storing a 01. This continues for as many ranges that are used for the cell provided these voltage ranges remain stable during the lifetime operation of the memory cell.
  • MLC requires tight control of the threshold voltage ranges and stability of these voltage ranges in order to achieve multiple memory states and associated ranges of threshold levels per cell.
  • the spread in the threshold level (when programmed by a defined set of conditions) of the memory state is affected by several factors.
  • the key factors are: (a) the statistical variations of tunnel oxide thickness and cell coupling coefficient from cell-to-cell; (b) the variation of the trapped charge centroid in density and depth; (c) cell-to-cell variation in trapped charge losses during stand-by (retention), during reading (read disturb), during partial programming (inhibit) and; (d) cell-to-cell variation in endurance (write/erase cycling) characteristics. Additionally, variations in capacitance coupling between adjacent cells creates variation in program disturb differently from cell-to-cell and contribute to the threshold spread.
  • a resonant tunnel barrier transistor as illustrated in Figure 2.
  • Such a transistor is comprised of a normal SiN trapping layer 201, a SiO 2 charge blocking layer 202, and a polysilicon gate 203.
  • the tunnel dielectric 200 is comprised of a layer of SiO 2 210, a layer of amorphous silicon 211, and another layer OfSiO 2 212.
  • Figure 3 shows the electron band for the tunnel dielectric 320 that is comprised of the first SiO 2 layer 307, the amorphous silicon layer 306, and the second SiO 2 layer 305.
  • FIG. 4 illustrates a typical prior art threshold voltage distribution for a conventional SONOS-type structure.
  • Va threshold voltage
  • This diagram shows that each state has a relatively large threshold window. Such a large window might result in interference from adjacent states as well as limiting the quantity of possible states.
  • each distribution can be +/- 0.5V.
  • designing such a multi-level memory system requires that each state be separated from the other states by a margin. However, the margin is so small that program disturb conditions may still cause the programming of an undesired state.
  • FIG. 5 illustrates a typical prior art resonant tunnel barrier threshold voltage distribution. This diagram shows that each threshold voltage distribution has been substantially reduced from the prior art distributions.
  • the present invention encompasses a non-volatile memory cell comprising a substrate having a pair of source/drain regions.
  • a resonant tunnel barrier is formed over the substrate and substantially between the pair of source/drain regions.
  • the tunnel barrier preferably comprises two layers of either HfSiON or LaAlCb high-k dielectric with an amorphous layer of either silicon or germanium between the two layers.
  • An optional embodiment may substitute one or the other above high-k layers with SiO 2 .
  • a charge trapping layer is formed over the resonant tunnel barrier.
  • a high-k charge blocking layer is formed over the charge trapping layer.
  • a gate is formed over the charge blocking layer.
  • Figure 1 shows a cross-sectional view of a typical prior art SONOS structure.
  • Figure 2 shows a cross-sectional view of a typical prior art resonant tunnel barrier SONOSOS structure.
  • Figures 3 shows a prior art electron band energy diagram in accordance with the prior art structure of Figure 2.
  • Figure 4 shows a typical prior art threshold voltage distribution for a conventional SONOS-type structure.
  • Figure 5 shows a typical prior art threshold voltage distribution in accordance with the resonant tunnel barrier structure of Figure 2.
  • Figure 6 shows a cross-sectional view of one embodiment of a mono-level resonant tunnel barrier floating gate transistor architecture of the present invention.
  • Figure 7 shows a cross-sectional view of one embodiment of a bi-level resonant tunnel barrier floating gate transistor architecture of the present invention.
  • Figure 8 shows an electron band energy level diagram of the bi-level resonant tunnel barrier transistor of Figure 7.
  • Figure 9 shows a cross-sectional view of one embodiment of a high-k resonant tunnel barrier transistor of the present invention with an embedded trap layer.
  • Figure 10 shows a cross-sectional view of another embodiment of a high-k resonant barrier transistor of the present invention with an embedded trap layer.
  • Figure 11 shows an electron band energy level diagram in accordance with the structure of Figure 9.
  • Figure 12 shows an electron band energy level diagram in accordance with the structure of Figure 10.
  • Figure 13 shows a block diagram of one embodiment of a chip architecture of a memory device and memory system of the present invention.
  • Figure 14 shows a block diagram of one embodiment of a memory module of the present invention.
  • SOS silicon-on-sapphire
  • SOI silicon-on-insulator
  • TFT thin film transistor
  • doped and undoped semiconductors epitaxial layers of a silicon supported by a base semiconductor structure, as well as other semiconductor structures well known to one skilled in the art.
  • wafer or substrate when reference is made to a wafer or substrate in the following description, previous process steps may have been utilized to form regions/junctions in the base semiconductor structure, and terms wafer or substrate include the underlying layers containing such regions/junctions.
  • Figure 6 illustrates a cross-sectional view of one embodiment of a floating gate memory cell of the present invention using a mono-level resonant tunnel barrier 600.
  • the one transistor cell is formed on a substrate 601 that has doped source/drain areas 602, 603.
  • the function of each active region 602, 603 depends on the direction of biasing of the cell.
  • the source/drain regions 602, 603 may be n-type regions 602, 603 doped into a p- type substrate 601. In an alternate embodiment, the source/drain regions 602, 603 are p-type regions 602, 603 doped into an n-type substrate 601.
  • the resonant tunnel barrier 600 is formed over the substrate 601 substantially between the pair of source/drain regions 602, 603.
  • the tunnel barrier 600 is comprised of a single amorphous layer 611 of material between two dielectric layers 610, 612.
  • the dielectric layers 610, 612 are an oxide such as SiO 2 .
  • the amorphous layer 611 may be a layer of silicon (a-Si).
  • Alternate embodiments may use germanium (a-Ge) or some other amorphous material.
  • Each of the layers of the resonant tunnel barrier 600 may be formed to a thickness in the range of 1 — 3 nm.
  • the above materials may result in a total effective oxide thickness of the barrier 600 of approximately 3.5 nm. Alternate embodiments can use other material thicknesses.
  • the resonant tunnel barrier 600 provides benefits as discussed subsequently as a result of the electrons or holes having a preferred resident state after crossing the barrier at a certain energy level. In other words, under certain energy conditions, the electronic carriers have a higher probability to tunnel and once they have tunneled through the barrier, they remain in a certain well defined quantum state.
  • a floating gate layer 620 is formed over the resonant tunnel barrier 600.
  • the floating gate layer 620 in one embodiment, is silicon. Alternate embodiments can use other materials.
  • the floating gate layer 620 in one embodiment, is formed to a thickness in the range of 3 — 6 nm.
  • the floating gate material 620 usually consists of silicon as stated above with a dielectric constant of nearly 12.
  • a charge blocking layer 621 is formed over the floating gate layer 620.
  • the charge blocking layer 621 prevents the leakage of the charge from the floating gate 620 to the gate 623.
  • the blocking layer 621 is comprised of HfSiON or LaAlO 3 and is formed to a thickness in the range of 5 — 10 nm.
  • the materials used in the blocking layer 621 may provide an effective oxide thickness of approximately 1 nm.
  • An ultra-thin layer (e.g., 1 - 2 nm) of conductive metal nitride 622 may be formed over the charge blocking layer 621 and is comprised of tantalum nitride (TaN), or titanium nitride (TiN), or some other metal nitride material.
  • This layer 622 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants.
  • the passivation layer 622 is not required for proper operation of the memory cell of the present invention.
  • the gate 623 is formed over the passivation layer 622 or charge blocking layer 621.
  • the gate 623 can be comprised of heavily doped polycrystalline silicon or some other conducting material.
  • the entire memory cell stack illustrated in Figure 6, depending on chosen materials, may have an effective oxide thickness in the range of 5 — 6 nm compared to a stack as illustrated in Figure 2 having an effective oxide thickness of 10 — 12 nm.
  • the embodiment of Figure 6, therefore, provides a memory cell with substantially reduced voltage requirements for programming.
  • Figure 7 illustrates a cross-sectional view of one embodiment of a floating gate memory cell of the present invention using a bi-level resonant tunnel barrier 700.
  • the one transistor cell is formed on a substrate 701 that has doped source/drain areas 702, 703.
  • the function of each active region 702, 703 depends on the direction of biasing of the cell.
  • the source/drain regions 702, 703 may be n-type regions 702, 703 doped into a p- type substrate 701. In an alternate embodiment, the source/drain regions 702, 703 are p-type regions 702, 703 doped into an n-type substrate 701.
  • the bi-level resonant tunnel barrier 700 is formed over the channel region of the substrate 701 substantially between the pair of source/drain regions 702, 703.
  • the tunnel barrier 700 is comprised of a single amorphous silicon layer 711 over a single amorphous germanium layer 712 between two dielectric layers 710, 713.
  • An alternate embodiment forms the amorphous germanium layer over the amorphous silicon layer.
  • the dielectric layers 710, 713 are an oxide such as SiO 2 .
  • Each of the layers of the resonant tunnel barrier 700 may be formed to a thickness in the range of 1 — 3 nm. The materials result in a total effective oxide thickness of the barrier 700 of approximately 3.5 nm. Alternate embodiments can use other material thicknesses.
  • a floating gate layer 720 is formed over the resonant tunnel barrier 700.
  • the floating gate layer 720 in one embodiment, is silicon. Alternate embodiments can use other materials.
  • the floating gate layer 720 in one embodiment, is formed to a thickness in the range of 3 — 6 ran.
  • the floating gate material 720 usually consists of silicon as stated above with a dielectric constant of approximately 12.
  • a charge blocking layer 721 is formed over the floating gate layer 720.
  • the charge blocking layer 721 prevents the leakage of the charge from the floating gate 720 to the gate 723.
  • the blocking layer 721 is comprised of HfSiON or LaAlC> 3 and is formed to a thickness in the range of 5 — 10 nm.
  • the materials used in the blocking layer 721 may provide an effective oxide thickness of approximately 1 nm.
  • An ultra-thin layer (e.g., 1 — 2 nm) of conductive metal nitride 722 may be formed over the charge blocking layer 621 and is comprised of tantalum nitride (TaN), titanium nitride (TiN), or some other metal nitride material.
  • This layer 722 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants.
  • the passivation layer 722 is not required for proper operation of the memory cell of the present invention.
  • the gate 723 is formed over the passivation layer 722 or charge blocking layer 721.
  • the gate 723 can be comprised of heavily doped polycrystalline silicon or some other conducting material.
  • the entire memory cell stack illustrated in Figure 7, depending on chosen materials, may have an effective oxide thickness again in the range of 5 — 6 nm. Similar to the illustration of Figure 6, this one also provides a floating gate memory cell with substantially reduced voltage requirements for programming by nearly a factor of 2.
  • Figure 8 illustrates an electron band energy level diagram of the bi-level resonant tunnel barrier memory cell of Figure 7.
  • This diagram shows the tunnel barrier 800 energy levels for the first oxide layer 810, the amorphous silicon layer 811, the amorphous germanium layer 812, and the second oxide layer 813. These levels are shown in relation to the channel 801, floating gate 820, charge blocking layer 821, and control gate 823 levels.
  • the resonant tunnel barrier states are illustrated as vi and V 2 .
  • the standard Fowler- Nordheim tunneling state is illustrated as v 3 . This diagram shows the reduced energy and, therefore, the reduced programming voltages necessary, to tunnel through the resonant tunnel barrier.
  • Figure 9 illustrates a cross-sectional view of one embodiment of an embedded trap memory cell of the present invention using a mono-level resonant tunnel barrier 900.
  • the one transistor cell is formed on a substrate 901 that has doped source/drain areas 902, 903.
  • the function of each active region 902, 903 depends on the direction of biasing of the cell.
  • the source/drain regions 902, 903 may be n-type regions 902, 903 doped into a p- type substrate 901. In an alternate embodiment, the source/drain regions 902, 903 are p-type regions 902, 903 doped into an n-type substrate 901.
  • the resonant tunnel barrier 900 is formed over the channel region of the substrate 901 substantially between the pair of source/drain regions 902, 903.
  • the tunnel barrier 900 is comprised of a single amorphous silicon layer 911 between two dielectric layers 910, 912.
  • the dielectric layers 910, 913 are an oxide such as SiO 2 .
  • Each of the layers of the resonant tunnel barrier 900 maybe formed to a thickness in the range of 1 - 3 nm.
  • the materials result in a total effective oxide thickness of the barrier 900 of approximately 3.5 nm. Alternate embodiments can use other material thicknesses.
  • a charge trapping layer 920 is formed over the resonant tunnel barrier 900.
  • the trap layer 920 in one embodiment, is nitride. Alternate embodiments can use other high-k materials.
  • the trapping layer 920 in one embodiment, is formed to a thickness in the range of 3 — 6 nm.
  • the choice of charge trapping material yields an effective oxide thickness of approximately 2.5 nm. Alternate embodiments can use other thicknesses and materials that result in alternate effective oxide thicknesses.
  • a high-k charge blocking layer 921 is formed over the trap layer 920.
  • the charge blocking layer 921 prevents the leakage of the charge from the floating gate 920 to the gate 923.
  • the blocking layer 921 is comprised of HfSiON or LaAlO 3 and is formed to a thickness in the range of 5 — 10 run.
  • the materials used in the blocking layer 921 may provide an effective oxide thickness of approximately 1 — 2 nm.
  • the high-k charge blocking layer 921 when comprised of the above materials, has a dielectric constant approximately in the range of 14 — 17.
  • An ultra-thin layer (e.g., 1 — 2 nm) of conductive metal nitride 922 may be formed over the charge blocking layer 921 and is comprised of tantalum nitride (TaN), titanium nitride (TiN), or some other metal nitride material.
  • This layer 922 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants.
  • the passivation layer 922 is not required for proper operation of the memory cell of the present invention.
  • the gate 923 is formed over the passivation layer 922 or charge blocking layer 921.
  • the gate 923 can be comprised of polycrystalline silicon or some other material.
  • the entire memory cell stack illustrated in Figure 9, depending on chosen materials, may have an effective oxide thickness in the range of 7 - 8 nm.
  • Such a thin EOT provides a memory cell with substantially reduced voltage requirements for programming when compared to the device illustrated in the prior art of Figure 2.
  • Figure 10 illustrates a cross-sectional view of one embodiment of the memory cell of the present invention using a resonant tunnel barrier 1000.
  • the one transistor cell is formed on a substrate 1001 that has doped source/drain areas 1002, 1003.
  • the function of each active region 1002, 1003 depends on the direction of biasing of the cell.
  • the source/drain regions 1002, 1003 may be n-type regions 1002, 1003 doped into a p-type substrate 1001. In an alternate embodiment, the source/drain regions 1002, 1003 are p-type regions 1002, 1003 doped into an n-type substrate 1001.
  • the resonant tunnel barrier 1000 is formed over the channel region in the substrate 1001 substantially between the pair of source/drain regions 1002, 1003.
  • the resonant tunnel barrier 1000 is comprised of an amorphous layer 1011 of material between two high-k dielectric layers 1010, 1012.
  • the amorphous layer 1011 may be a layer of silicon (a-Si). Alternate embodiments may use germanium (a-Ge) or some other amorphous material. In one embodiment, the amorphous layer 1011 is formed between high-k layers 1010, 1012 of HfSiON or LaAlO 3 . Alternate embodiments may use other high dielectric constant materials around the amorphous layer 1011.
  • Each of the layers of the resonant tunnel barrier 1000 may be formed to a thickness in the range of 1 — 3 nm.
  • the materials result in a total effective oxide thickness of the barrier 1000 of approximately 1.5 nm. Alternate embodiments can use other material thicknesses.
  • a high-k charge trapping layer 1020 is formed over the resonant tunnel barrier 1000.
  • the high-k charge trapping layer 1020 is comprised of an efficient trapping material such as SiN, AlN, or some other nitride. When comprised of AlN, the trapping layer 1020 has a dielectric constant of approximately 10.
  • the charge trapping layer 1020 in one embodiment, is formed to a thickness in the range of 3 — 6 nm.
  • the choice of charge trapping material yields an effective oxide thickness of approximately 2.0 run. Alternate embodiments can use other thicknesses and materials that result in alternate effective oxide thicknesses.
  • a charge blocking layer 1021 is formed over the charge trapping layer 1020.
  • the charge blocking layer 1021 prevents the leakage of the charge from the charge trapping layer 1020 to the gate 1023.
  • the blocking layer 1021 is comprised of HfSiON or LaAlO 3 and is formed to a thickness in the range of 5 — 10 nm.
  • the materials used in the blocking layer 1021 may provide an effective oxide thickness of approximately 1 ran.
  • the high-k charge blocking layer has a dielectric constant of approximately 27.5.
  • An ultra-thin layer (e.g., 1 — 2 nm) of conductive metal nitride 1022 may be formed over the charge blocking layer 112 and is comprised of tantalum nitride (TaN), titanium nitride (TiN), or some other metal nitride material.
  • This layer 1022 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants.
  • the passivation layer 1022 is not required for proper operation of the memory cell of the present invention.
  • the gate 1023 is formed over the passivation layer 1022 or charge blocking layer 1021.
  • the gate 1023 can be comprised of polycrystalline silicon or some other material.
  • the entire memory cell stack illustrated in Figure 10, depending on chosen materials, may have an effective oxide thickness in the range of 4 — 5 nm. This illustration provides a memory cell that can be programmed at a reduced voltage level of one-third (factor of 3) when compared with the device of Figure 2.
  • Figure 11 illustrates an electron band energy level diagram for the resonant tunnel barrier transistor embodiment of Figure 9. This diagram shows the required energy levels for the tunnel barrier 1 100 in relation to the trapping layer 1120, charge blocking layer 1121, and control gate 1123.
  • the tunnel barrier 1100 is further comprised of the three layers 1110 - 1112.
  • the resonant tunnel barrier states are illustrated as Vi and V 2 .
  • the standard Fowler- Nordheim tunneling state is illustrated as v 3 . This diagram shows the reduced energy and, therefore, the reduced programming voltages necessary, to tunnel through the resonant tunnel barrier.
  • Figure 12 illustrates an electron band energy level diagram for the resonant tunnel barrier transistor embodiment of Figure 10. This diagram shows the required energy levels for the tunnel barrier 1200 in relation to the trapping layer 1220, charge blocking layer 1221, and control gate 1223.
  • the tunnel barrier 1200 is further comprised of the three layers 1210 —
  • the resonant tunnel barrier states are illustrated as vi and V 2 -
  • the standard Fowler- Nordheim tunneling state is illustrated as v 3 .
  • This diagram shows further reduction in energy levels and, therefore, the significantly reduced programming voltages necessary to tunnel through the resonant tunnel barrier for such a device.
  • Figure 13 illustrates a functional block diagram of a memory device 1300 and memory system 1320 of one embodiment of the present invention.
  • the system has a processor 1310 or other controlling circuitry, for generating memory signals, that is coupled to the memory device 1300.
  • the memory device 1300 has been simplified to focus on features of the memory that are helpful in understanding the present invention.
  • the memory device includes an array of non- volatile memory cells 1330 as discussed previously with reference to Figure 1.
  • the memory cells may be flash cells or some other non- volatile memory technology.
  • the memory array 1530 is arranged in banks of rows and columns along word lines and bit lines, respectively.
  • the array may be formed in a NAND architecture, a NOR architecture, or some other array architecture.
  • An address buffer circuit 1340 is provided to latch address signals provided on address input connections AO-Ax 1342. Address signals are received and decoded by a row decoder 1344 and a column decoder 1346 to access the memory array 1330. It will be appreciated by those skilled in the art, with the benefit of the present description, that the number of address input connections depends on the density and architecture of the memory array 1330. That is, the number of addresses increases with both increased memory cell counts and increased bank and block counts.
  • the memory device 1300 reads data in the memory array 1330 by sensing voltage or current changes in the memory array columns using sense/latch circuitry 1350.
  • the sense/latch circuitry in one embodiment, is coupled to read and latch a row of data from the memory array 1330.
  • Data input and output buffer circuitry 1360 is included for bi-directional data communication over a plurality of data connections 1362 with the controller 1310.
  • Write circuitry 1355 is provided to write data to the memory array.
  • Control circuitry 1370 decodes signals provided on control connections 1372 from the processor 1310. These signals are used to control the operations on the memory array
  • control circuitry 1370 may be a state machine, a sequencer, or some other type of controller.
  • Non- volatile memory device illustrated in Figure 13 has been simplified to facilitate a basic understanding of the features of the memory. A more detailed understanding of internal circuitry and functions of flash memories are known to those skilled in the art.
  • FIG 14 is an illustration of a memory module 1400 that incorporates the memory cell embodiments as discussed previously.
  • memory module 1400 is illustrated as a memory card, the concepts discussed with reference to memory module 1400 are applicable to other types of removable or portable memory, e.g., USB flash drives.
  • FIG 14 shows one example form factor as depicted in Figure 14, these concepts are applicable to other form factors as well.
  • Memory module 1400 includes a housing 1405 to enclose one or more memory devices 1410 of the present invention.
  • the housing 1405 includes one or more contacts 1415 for communication with a host device.
  • host devices include digital cameras, digital recording and playback devices, PDAs, personal computers, memory card readers, interface hubs and the like.
  • the contacts 1415 are in the form of a standardized interface.
  • the contacts 1415 might be in the form of a USB Type- A male connector.
  • the contacts 1415 are in the form of a semi-proprietary interface, such as might be found on COMPACTFLASH memory cards licensed by SANDISK Corporation, MEMORY STICK memory cards licensed by SONY Corporation, SD SECURE DIGITAL memory cards licensed by
  • contacts 1415 provide an interface for passing control, address and/or data signals between the memory module 1400 and a host having compatible receptors for the contacts 1415.
  • the memory module 1400 may optionally include additional circuitry 1420.
  • the additional circuitry 1420 may include a memory controller for controlling access across multiple memory devices 1410 and/or for providing a translation layer between an external host and a memory device 1410.
  • a memory controller could selectively couple an I/O connection (not shown in Figure 14) of a memory device 1410 to receive the appropriate signal at the appropriate I/O connection at the appropriate time or to provide the appropriate signal at the appropriate contact 1415 at the appropriate time.
  • the communication protocol between a host and the memory module 1400 may be different than what is required for access of a memory device 1410.
  • a memory controller could then translate the command sequences received from a host into the appropriate command sequences to achieve the desired access to the memory device 1410. Such translation may further include changes in signal voltage levels in addition to command sequences.
  • the additional circuitry 1420 may further include functionality unrelated to control of a memory device 1410.
  • the additional circuitry 1420 may include circuitry to restrict read or write access to the memory module 1400, such as password protection, biometrics or the like.
  • the additional circuitry 1420 may include circuitry to indicate a status of the memory module 1400.
  • the additional circuitry 1420 may include functionality to determine whether power is being supplied to the memory module 1400 and whether the memory module 1400 is currently being accessed, and to display an indication of its status, such as a solid light while powered and a flashing light while being accessed.
  • the additional circuitry 1420 may further include passive devices, such as decoupling capacitors to help regulate power requirements within the memory module 1400.
  • the memory cells of the present invention utilize s resonant tunnel barrier to provide tighter threshold voltage levels and greater voltage scalability.
  • High dielectric constant materials are used in the insulator stack, the charge blocking layer, and the charge trap layer in order to reduce the operating voltages of the cell.
  • a deeper and more efficient trapping layer material similarly reduces the required programming voltages.

Abstract

A non-volatile memory cell uses a resonant tunnel barrier (600) that has an amorphous silicon and/or amorphous germanium layer (611) between two layers (610, 612)of either HfSiON or LaAlO3. A charge trapping layer (620) is formed over the tunnel barrier. A high-k charge blocking layer is formed over the charge trapping layer. A control gate (623) is formed over the charge blocking layer. Another embodiment forms a floating gate (620) over the tunnel barrier (600) that is comprised of two oxide layers (610, 612) with an amorphous layer (611) of silicon and/or germanium between the oxide layers.

Description

ENHANCED MULTI-BIT NON-VOLATILE MEMORY DEVICE WITH RESONANT
TUNNEL BARRIER
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to memory devices and in particular the present invention relates to non-volatile memory devices.
BACKGROUND OF THE INVENTION
Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic devices. There are many different types of memory including random-access memory (RAM), read only memory (ROM), non-volatile, floating gate NOR/NAND flash memory, and dynamic random access memory (DRAM).
Flash memories may use floating gate technology or trapping technology. Floating gate cells include source and drain regions that may be laterally spaced apart to form an intermediate channel region. The source and drain regions are formed in a common horizontal plane of a silicon substrate. The floating gate, typically made of doped polysilicon, is disposed over the channel region and is electrically isolated from the other cell elements by oxide. The non-volatile memory function for the floating gate technology is created by the absence or presence of charge stored on the isolated floating gate. The floating gate cell may be a single level cell (SLC) or a multiple level cell (MLC).
The trapping technology functions as a non- volatile memory and can be implemented in a silicon-oxide-nitride-oxide-silicon (SONOS) architecture as illustrated in Figure 1. The nitride trap layer can capture and store electrons or holes in order to act as a non-volatile memory. The cell may be an SLC or an MLC. Each cell's threshold voltage (Vth) determines the data that is stored in the cell.
For example, in a single bit per cell, a Vth of 0.5V might indicate a programmed cell while a Vth of —0.5V might indicate an erased cell. The multilevel cell may have multiple Vth windows that each indicate a different state. Multilevel cells take advantage of the analog nature of a traditional flash cell by assigning a bit pattern to a specific voltage range stored on the cell. This technology permits the storage of two or more bits per cell, depending on the quantity of voltage ranges assigned to the cell and the stability of the assigned voltage ranges during the lifetime operation of the memory cell. For example, a cell may be assigned four different voltage ranges of 200 mV for each range. Typically, a dead space or margin of 0.2 V to 0.4V is between each range. If the voltage stored on the cell is within the first range, the cell is storing a 00. If the voltage is within the second range, the cell is storing a 01. This continues for as many ranges that are used for the cell provided these voltage ranges remain stable during the lifetime operation of the memory cell.
MLC requires tight control of the threshold voltage ranges and stability of these voltage ranges in order to achieve multiple memory states and associated ranges of threshold levels per cell. For a conventional floating gate or SONOS flash memory cell, the spread in the threshold level (when programmed by a defined set of conditions) of the memory state is affected by several factors. The key factors are: (a) the statistical variations of tunnel oxide thickness and cell coupling coefficient from cell-to-cell; (b) the variation of the trapped charge centroid in density and depth; (c) cell-to-cell variation in trapped charge losses during stand-by (retention), during reading (read disturb), during partial programming (inhibit) and; (d) cell-to-cell variation in endurance (write/erase cycling) characteristics. Additionally, variations in capacitance coupling between adjacent cells creates variation in program disturb differently from cell-to-cell and contribute to the threshold spread.
The above-mentioned factors are critical not only to SLC cell design but considerably more so for the MLC cell design. This is due to the fact that for the flash cell design, the number of well defined logic states to be created within the available programming window (taking all possible Vt spread into consideration) is given by 2n, where n is the number of stored memory bits per cell. For SLC, n=l; for MLC, n=2 (2 bits storage per cell) requires four logic states, and for n=3 (3 bits per cell), nine stable logic states are required within the available programming window. Conventional MLC floating gate and flash memory cells are not voltage scalable since these cells employ Siθ2 as the tunneling and charge blocking media which has a dielectric constant of 3.9.
One way to reduce the threshold voltage dispersion is to use a resonant tunnel barrier transistor as illustrated in Figure 2. Such a transistor is comprised of a normal SiN trapping layer 201, a SiO2 charge blocking layer 202, and a polysilicon gate 203. However, the tunnel dielectric 200 is comprised of a layer of SiO2 210, a layer of amorphous silicon 211, and another layer OfSiO2 212. This results in an electron band energy level diagram as illustrated in Figure 3. Figure 3 shows the electron band for the tunnel dielectric 320 that is comprised of the first SiO2 layer 307, the amorphous silicon layer 306, and the second SiO2 layer 305. The electron bands for the SiN trapping layer 304, SiO2 charge blocking layer 303, and gate 301 are also shown. Figure 4 illustrates a typical prior art threshold voltage distribution for a conventional SONOS-type structure. Each state, OO' '01 ' ' 10' and '11 ', is shown along the threshold voltage (Va) axis. This diagram shows that each state has a relatively large threshold window. Such a large window might result in interference from adjacent states as well as limiting the quantity of possible states. For example, if the '11' state has a peak point of the distribution at 4 V, ' 10' might have a peak point at 3 V, '01 ' might have a peak point at 2 V, and '00' might have a peak distribution point of IV. Each distribution can be +/- 0.5V. Additionally, designing such a multi-level memory system requires that each state be separated from the other states by a margin. However, the margin is so small that program disturb conditions may still cause the programming of an undesired state.
Figure 5 illustrates a typical prior art resonant tunnel barrier threshold voltage distribution. This diagram shows that each threshold voltage distribution has been substantially reduced from the prior art distributions.
The problem with the prior art materials of Figure 2 is the lack of voltage scalability that they provide. These types of materials still require large voltages for memory cell operation.
For the reasons stated above, and for other reasons stated below that will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for multiple level memory cells to achieve minimal threshold voltage dispersion in programmed states while providing highly scalable cell design.
SUMMARY
The above-mentioned problems and other problems are addressed by the present invention and will be understood by reading and studying the following specification. The present invention encompasses a non-volatile memory cell comprising a substrate having a pair of source/drain regions. A resonant tunnel barrier is formed over the substrate and substantially between the pair of source/drain regions. The tunnel barrier preferably comprises two layers of either HfSiON or LaAlCb high-k dielectric with an amorphous layer of either silicon or germanium between the two layers. An optional embodiment may substitute one or the other above high-k layers with SiO2. A charge trapping layer is formed over the resonant tunnel barrier. A high-k charge blocking layer is formed over the charge trapping layer. A gate is formed over the charge blocking layer.
Further embodiments of the invention include methods and apparatus of varying scope.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a cross-sectional view of a typical prior art SONOS structure.
Figure 2 shows a cross-sectional view of a typical prior art resonant tunnel barrier SONOSOS structure.
Figures 3 shows a prior art electron band energy diagram in accordance with the prior art structure of Figure 2.
Figure 4 shows a typical prior art threshold voltage distribution for a conventional SONOS-type structure.
Figure 5 shows a typical prior art threshold voltage distribution in accordance with the resonant tunnel barrier structure of Figure 2. Figure 6 shows a cross-sectional view of one embodiment of a mono-level resonant tunnel barrier floating gate transistor architecture of the present invention.
Figure 7 shows a cross-sectional view of one embodiment of a bi-level resonant tunnel barrier floating gate transistor architecture of the present invention.
Figure 8 shows an electron band energy level diagram of the bi-level resonant tunnel barrier transistor of Figure 7.
Figure 9 shows a cross-sectional view of one embodiment of a high-k resonant tunnel barrier transistor of the present invention with an embedded trap layer.
Figure 10 shows a cross-sectional view of another embodiment of a high-k resonant barrier transistor of the present invention with an embedded trap layer. Figure 11 shows an electron band energy level diagram in accordance with the structure of Figure 9.
Figure 12 shows an electron band energy level diagram in accordance with the structure of Figure 10. Figure 13 shows a block diagram of one embodiment of a chip architecture of a memory device and memory system of the present invention.
Figure 14 shows a block diagram of one embodiment of a memory module of the present invention.
DETAILED DESCRIPTION
In the following detailed description of the invention, reference is made to the accompanying drawings that form a part hereof and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims and equivalents thereof. The terms wafer or substrate used in the following description include any base semiconductor structure. Both are to be understood as including silicon-on-sapphire (SOS) technology, silicon-on-insulator (SOI) technology, thin film transistor (TFT) technology, doped and undoped semiconductors, epitaxial layers of a silicon supported by a base semiconductor structure, as well as other semiconductor structures well known to one skilled in the art. Furthermore, when reference is made to a wafer or substrate in the following description, previous process steps may have been utilized to form regions/junctions in the base semiconductor structure, and terms wafer or substrate include the underlying layers containing such regions/junctions.
Figure 6 illustrates a cross-sectional view of one embodiment of a floating gate memory cell of the present invention using a mono-level resonant tunnel barrier 600. The one transistor cell is formed on a substrate 601 that has doped source/drain areas 602, 603. The function of each active region 602, 603 depends on the direction of biasing of the cell.
The source/drain regions 602, 603 may be n-type regions 602, 603 doped into a p- type substrate 601. In an alternate embodiment, the source/drain regions 602, 603 are p-type regions 602, 603 doped into an n-type substrate 601.
The resonant tunnel barrier 600 is formed over the substrate 601 substantially between the pair of source/drain regions 602, 603. The tunnel barrier 600 is comprised of a single amorphous layer 611 of material between two dielectric layers 610, 612. In one embodiment, the dielectric layers 610, 612 are an oxide such as SiO2. In one embodiment, the amorphous layer 611 may be a layer of silicon (a-Si).
Alternate embodiments may use germanium (a-Ge) or some other amorphous material.
Each of the layers of the resonant tunnel barrier 600 may be formed to a thickness in the range of 1 — 3 nm. The above materials may result in a total effective oxide thickness of the barrier 600 of approximately 3.5 nm. Alternate embodiments can use other material thicknesses.
The resonant tunnel barrier 600 provides benefits as discussed subsequently as a result of the electrons or holes having a preferred resident state after crossing the barrier at a certain energy level. In other words, under certain energy conditions, the electronic carriers have a higher probability to tunnel and once they have tunneled through the barrier, they remain in a certain well defined quantum state.
A floating gate layer 620 is formed over the resonant tunnel barrier 600. The floating gate layer 620, in one embodiment, is silicon. Alternate embodiments can use other materials.
The floating gate layer 620, in one embodiment, is formed to a thickness in the range of 3 — 6 nm. The floating gate material 620 usually consists of silicon as stated above with a dielectric constant of nearly 12.
A charge blocking layer 621 is formed over the floating gate layer 620. The charge blocking layer 621 prevents the leakage of the charge from the floating gate 620 to the gate 623. In one embodiment, the blocking layer 621 is comprised of HfSiON or LaAlO3 and is formed to a thickness in the range of 5 — 10 nm. The materials used in the blocking layer 621 may provide an effective oxide thickness of approximately 1 nm.
An ultra-thin layer (e.g., 1 - 2 nm) of conductive metal nitride 622 may be formed over the charge blocking layer 621 and is comprised of tantalum nitride (TaN), or titanium nitride (TiN), or some other metal nitride material. This layer 622 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants. The passivation layer 622 is not required for proper operation of the memory cell of the present invention.
The gate 623 is formed over the passivation layer 622 or charge blocking layer 621. The gate 623 can be comprised of heavily doped polycrystalline silicon or some other conducting material.
The entire memory cell stack illustrated in Figure 6, depending on chosen materials, may have an effective oxide thickness in the range of 5 — 6 nm compared to a stack as illustrated in Figure 2 having an effective oxide thickness of 10 — 12 nm. The embodiment of Figure 6, therefore, provides a memory cell with substantially reduced voltage requirements for programming.
Figure 7 illustrates a cross-sectional view of one embodiment of a floating gate memory cell of the present invention using a bi-level resonant tunnel barrier 700. The one transistor cell is formed on a substrate 701 that has doped source/drain areas 702, 703. The function of each active region 702, 703 depends on the direction of biasing of the cell.
The source/drain regions 702, 703 may be n-type regions 702, 703 doped into a p- type substrate 701. In an alternate embodiment, the source/drain regions 702, 703 are p-type regions 702, 703 doped into an n-type substrate 701.
The bi-level resonant tunnel barrier 700 is formed over the channel region of the substrate 701 substantially between the pair of source/drain regions 702, 703. The tunnel barrier 700 is comprised of a single amorphous silicon layer 711 over a single amorphous germanium layer 712 between two dielectric layers 710, 713. An alternate embodiment forms the amorphous germanium layer over the amorphous silicon layer. In one embodiment, the dielectric layers 710, 713 are an oxide such as SiO2. Each of the layers of the resonant tunnel barrier 700 may be formed to a thickness in the range of 1 — 3 nm. The materials result in a total effective oxide thickness of the barrier 700 of approximately 3.5 nm. Alternate embodiments can use other material thicknesses.
A floating gate layer 720 is formed over the resonant tunnel barrier 700. The floating gate layer 720, in one embodiment, is silicon. Alternate embodiments can use other materials.
The floating gate layer 720, in one embodiment, is formed to a thickness in the range of 3 — 6 ran. The floating gate material 720 usually consists of silicon as stated above with a dielectric constant of approximately 12. A charge blocking layer 721 is formed over the floating gate layer 720. The charge blocking layer 721 prevents the leakage of the charge from the floating gate 720 to the gate 723. In one embodiment, the blocking layer 721 is comprised of HfSiON or LaAlC>3 and is formed to a thickness in the range of 5 — 10 nm. The materials used in the blocking layer 721 may provide an effective oxide thickness of approximately 1 nm. An ultra-thin layer (e.g., 1 — 2 nm) of conductive metal nitride 722 may be formed over the charge blocking layer 621 and is comprised of tantalum nitride (TaN), titanium nitride (TiN), or some other metal nitride material. This layer 722 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants. The passivation layer 722 is not required for proper operation of the memory cell of the present invention.
The gate 723 is formed over the passivation layer 722 or charge blocking layer 721. The gate 723 can be comprised of heavily doped polycrystalline silicon or some other conducting material.
The entire memory cell stack illustrated in Figure 7, depending on chosen materials, may have an effective oxide thickness again in the range of 5 — 6 nm. Similar to the illustration of Figure 6, this one also provides a floating gate memory cell with substantially reduced voltage requirements for programming by nearly a factor of 2.
Figure 8 illustrates an electron band energy level diagram of the bi-level resonant tunnel barrier memory cell of Figure 7. This diagram shows the tunnel barrier 800 energy levels for the first oxide layer 810, the amorphous silicon layer 811, the amorphous germanium layer 812, and the second oxide layer 813. These levels are shown in relation to the channel 801, floating gate 820, charge blocking layer 821, and control gate 823 levels.
The resonant tunnel barrier states are illustrated as vi and V2. The standard Fowler- Nordheim tunneling state is illustrated as v3. This diagram shows the reduced energy and, therefore, the reduced programming voltages necessary, to tunnel through the resonant tunnel barrier.
Figure 9 illustrates a cross-sectional view of one embodiment of an embedded trap memory cell of the present invention using a mono-level resonant tunnel barrier 900. The one transistor cell is formed on a substrate 901 that has doped source/drain areas 902, 903. The function of each active region 902, 903 depends on the direction of biasing of the cell.
The source/drain regions 902, 903 may be n-type regions 902, 903 doped into a p- type substrate 901. In an alternate embodiment, the source/drain regions 902, 903 are p-type regions 902, 903 doped into an n-type substrate 901.
The resonant tunnel barrier 900 is formed over the channel region of the substrate 901 substantially between the pair of source/drain regions 902, 903. The tunnel barrier 900 is comprised of a single amorphous silicon layer 911 between two dielectric layers 910, 912. In one embodiment, the dielectric layers 910, 913 are an oxide such as SiO2.
Each of the layers of the resonant tunnel barrier 900 maybe formed to a thickness in the range of 1 - 3 nm. The materials result in a total effective oxide thickness of the barrier 900 of approximately 3.5 nm. Alternate embodiments can use other material thicknesses.
A charge trapping layer 920 is formed over the resonant tunnel barrier 900. The trap layer 920, in one embodiment, is nitride. Alternate embodiments can use other high-k materials.
The trapping layer 920, in one embodiment, is formed to a thickness in the range of 3 — 6 nm. The choice of charge trapping material yields an effective oxide thickness of approximately 2.5 nm. Alternate embodiments can use other thicknesses and materials that result in alternate effective oxide thicknesses.
A high-k charge blocking layer 921 is formed over the trap layer 920. The charge blocking layer 921 prevents the leakage of the charge from the floating gate 920 to the gate 923. In one embodiment, the blocking layer 921 is comprised of HfSiON or LaAlO3 and is formed to a thickness in the range of 5 — 10 run. The materials used in the blocking layer 921 may provide an effective oxide thickness of approximately 1 — 2 nm. The high-k charge blocking layer 921, when comprised of the above materials, has a dielectric constant approximately in the range of 14 — 17. An ultra-thin layer (e.g., 1 — 2 nm) of conductive metal nitride 922 may be formed over the charge blocking layer 921 and is comprised of tantalum nitride (TaN), titanium nitride (TiN), or some other metal nitride material. This layer 922 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants. The passivation layer 922 is not required for proper operation of the memory cell of the present invention.
The gate 923 is formed over the passivation layer 922 or charge blocking layer 921. The gate 923 can be comprised of polycrystalline silicon or some other material.
The entire memory cell stack illustrated in Figure 9, depending on chosen materials, may have an effective oxide thickness in the range of 7 - 8 nm. Such a thin EOT provides a memory cell with substantially reduced voltage requirements for programming when compared to the device illustrated in the prior art of Figure 2.
Figure 10 illustrates a cross-sectional view of one embodiment of the memory cell of the present invention using a resonant tunnel barrier 1000. The one transistor cell is formed on a substrate 1001 that has doped source/drain areas 1002, 1003. The function of each active region 1002, 1003 depends on the direction of biasing of the cell.
The source/drain regions 1002, 1003 may be n-type regions 1002, 1003 doped into a p-type substrate 1001. In an alternate embodiment, the source/drain regions 1002, 1003 are p-type regions 1002, 1003 doped into an n-type substrate 1001.
The resonant tunnel barrier 1000 is formed over the channel region in the substrate 1001 substantially between the pair of source/drain regions 1002, 1003. The resonant tunnel barrier 1000 is comprised of an amorphous layer 1011 of material between two high-k dielectric layers 1010, 1012. In one embodiment, high-k refers to a material that has a dielectric constant greater than SiO2 (i.e., k = 3.9).
In one embodiment, the amorphous layer 1011 may be a layer of silicon (a-Si). Alternate embodiments may use germanium (a-Ge) or some other amorphous material. In one embodiment, the amorphous layer 1011 is formed between high-k layers 1010, 1012 of HfSiON or LaAlO3. Alternate embodiments may use other high dielectric constant materials around the amorphous layer 1011.
Each of the layers of the resonant tunnel barrier 1000 may be formed to a thickness in the range of 1 — 3 nm. The materials result in a total effective oxide thickness of the barrier 1000 of approximately 1.5 nm. Alternate embodiments can use other material thicknesses.
A high-k charge trapping layer 1020 is formed over the resonant tunnel barrier 1000. The high-k charge trapping layer 1020 is comprised of an efficient trapping material such as SiN, AlN, or some other nitride. When comprised of AlN, the trapping layer 1020 has a dielectric constant of approximately 10.
The charge trapping layer 1020, in one embodiment, is formed to a thickness in the range of 3 — 6 nm. The choice of charge trapping material yields an effective oxide thickness of approximately 2.0 run. Alternate embodiments can use other thicknesses and materials that result in alternate effective oxide thicknesses. A charge blocking layer 1021 is formed over the charge trapping layer 1020. The charge blocking layer 1021 prevents the leakage of the charge from the charge trapping layer 1020 to the gate 1023. Li one embodiment, the blocking layer 1021 is comprised of HfSiON or LaAlO3 and is formed to a thickness in the range of 5 — 10 nm. The materials used in the blocking layer 1021 may provide an effective oxide thickness of approximately 1 ran. When comprised of the above-described materials, the high-k charge blocking layer has a dielectric constant of approximately 27.5.
An ultra-thin layer (e.g., 1 — 2 nm) of conductive metal nitride 1022 may be formed over the charge blocking layer 112 and is comprised of tantalum nitride (TaN), titanium nitride (TiN), or some other metal nitride material. This layer 1022 acts as an appropriate passivation layer and diffusion barrier for undesirable impurities and dopants. The passivation layer 1022 is not required for proper operation of the memory cell of the present invention.
The gate 1023 is formed over the passivation layer 1022 or charge blocking layer 1021. The gate 1023 can be comprised of polycrystalline silicon or some other material. The entire memory cell stack illustrated in Figure 10, depending on chosen materials, may have an effective oxide thickness in the range of 4 — 5 nm. This illustration provides a memory cell that can be programmed at a reduced voltage level of one-third (factor of 3) when compared with the device of Figure 2.
Figure 11 illustrates an electron band energy level diagram for the resonant tunnel barrier transistor embodiment of Figure 9. This diagram shows the required energy levels for the tunnel barrier 1 100 in relation to the trapping layer 1120, charge blocking layer 1121, and control gate 1123. The tunnel barrier 1100 is further comprised of the three layers 1110 - 1112.
The resonant tunnel barrier states are illustrated as Vi and V2. The standard Fowler- Nordheim tunneling state is illustrated as v3. This diagram shows the reduced energy and, therefore, the reduced programming voltages necessary, to tunnel through the resonant tunnel barrier.
Figure 12 illustrates an electron band energy level diagram for the resonant tunnel barrier transistor embodiment of Figure 10. This diagram shows the required energy levels for the tunnel barrier 1200 in relation to the trapping layer 1220, charge blocking layer 1221, and control gate 1223. The tunnel barrier 1200 is further comprised of the three layers 1210 —
1212.
The resonant tunnel barrier states are illustrated as vi and V2- The standard Fowler- Nordheim tunneling state is illustrated as v3. This diagram shows further reduction in energy levels and, therefore, the significantly reduced programming voltages necessary to tunnel through the resonant tunnel barrier for such a device.
Figure 13 illustrates a functional block diagram of a memory device 1300 and memory system 1320 of one embodiment of the present invention. The system has a processor 1310 or other controlling circuitry, for generating memory signals, that is coupled to the memory device 1300. The memory device 1300 has been simplified to focus on features of the memory that are helpful in understanding the present invention.
The memory device includes an array of non- volatile memory cells 1330 as discussed previously with reference to Figure 1. The memory cells may be flash cells or some other non- volatile memory technology. The memory array 1530 is arranged in banks of rows and columns along word lines and bit lines, respectively. The array may be formed in a NAND architecture, a NOR architecture, or some other array architecture. An address buffer circuit 1340 is provided to latch address signals provided on address input connections AO-Ax 1342. Address signals are received and decoded by a row decoder 1344 and a column decoder 1346 to access the memory array 1330. It will be appreciated by those skilled in the art, with the benefit of the present description, that the number of address input connections depends on the density and architecture of the memory array 1330. That is, the number of addresses increases with both increased memory cell counts and increased bank and block counts.
The memory device 1300 reads data in the memory array 1330 by sensing voltage or current changes in the memory array columns using sense/latch circuitry 1350. The sense/latch circuitry, in one embodiment, is coupled to read and latch a row of data from the memory array 1330. Data input and output buffer circuitry 1360 is included for bi-directional data communication over a plurality of data connections 1362 with the controller 1310. Write circuitry 1355 is provided to write data to the memory array.
Control circuitry 1370 decodes signals provided on control connections 1372 from the processor 1310. These signals are used to control the operations on the memory array
1330, including data read, data write, and erase operations. The control circuitry 1370 may be a state machine, a sequencer, or some other type of controller.
The non- volatile memory device illustrated in Figure 13 has been simplified to facilitate a basic understanding of the features of the memory. A more detailed understanding of internal circuitry and functions of flash memories are known to those skilled in the art.
Figure 14 is an illustration of a memory module 1400 that incorporates the memory cell embodiments as discussed previously. Although memory module 1400 is illustrated as a memory card, the concepts discussed with reference to memory module 1400 are applicable to other types of removable or portable memory, e.g., USB flash drives. In addition, although one example form factor is depicted in Figure 14, these concepts are applicable to other form factors as well.
Memory module 1400 includes a housing 1405 to enclose one or more memory devices 1410 of the present invention. The housing 1405 includes one or more contacts 1415 for communication with a host device. Examples of host devices include digital cameras, digital recording and playback devices, PDAs, personal computers, memory card readers, interface hubs and the like. For some embodiment, the contacts 1415 are in the form of a standardized interface. For example, with a USE} flash drive, the contacts 1415 might be in the form of a USB Type- A male connector. For some embodiments, the contacts 1415 are in the form of a semi-proprietary interface, such as might be found on COMPACTFLASH memory cards licensed by SANDISK Corporation, MEMORY STICK memory cards licensed by SONY Corporation, SD SECURE DIGITAL memory cards licensed by
TOSHIBA Corporation and the like. In general, however, contacts 1415 provide an interface for passing control, address and/or data signals between the memory module 1400 and a host having compatible receptors for the contacts 1415.
The memory module 1400 may optionally include additional circuitry 1420. For some embodiments, the additional circuitry 1420 may include a memory controller for controlling access across multiple memory devices 1410 and/or for providing a translation layer between an external host and a memory device 1410. For example, there may not be a one-to-one correspondence between the number of contacts 1415 and a number of I/O connections to the one or more memory devices 1410. Thus, a memory controller could selectively couple an I/O connection (not shown in Figure 14) of a memory device 1410 to receive the appropriate signal at the appropriate I/O connection at the appropriate time or to provide the appropriate signal at the appropriate contact 1415 at the appropriate time. Similarly, the communication protocol between a host and the memory module 1400 may be different than what is required for access of a memory device 1410. A memory controller could then translate the command sequences received from a host into the appropriate command sequences to achieve the desired access to the memory device 1410. Such translation may further include changes in signal voltage levels in addition to command sequences.
The additional circuitry 1420 may further include functionality unrelated to control of a memory device 1410. The additional circuitry 1420 may include circuitry to restrict read or write access to the memory module 1400, such as password protection, biometrics or the like. The additional circuitry 1420 may include circuitry to indicate a status of the memory module 1400. For example, the additional circuitry 1420 may include functionality to determine whether power is being supplied to the memory module 1400 and whether the memory module 1400 is currently being accessed, and to display an indication of its status, such as a solid light while powered and a flashing light while being accessed. The additional circuitry 1420 may further include passive devices, such as decoupling capacitors to help regulate power requirements within the memory module 1400.
Conclusion
In summary, the memory cells of the present invention utilize s resonant tunnel barrier to provide tighter threshold voltage levels and greater voltage scalability. High dielectric constant materials are used in the insulator stack, the charge blocking layer, and the charge trap layer in order to reduce the operating voltages of the cell. A deeper and more efficient trapping layer material similarly reduces the required programming voltages. By taking advantage of high-k material properties, enhanced memory cells with lower operating voltages and enhanced endurance are created as compared to typical prior art SONOS-type and typical prior art resonant tunnel barrier structures.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. Many adaptations of the invention will be apparent to those of ordinary skill in the art. Accordingly, this application is intended to cover any adaptations or variations of the invention. It is manifestly intended that this invention be limited only by the following claims and equivalents thereof.

Claims

What is claimed is:
1. A non-volatile memory cell comprising a substrate having a pair of source/drain regions; a gate insulator stack formed over the substrate and substantially between the pair of source/drain regions, the insulator stack comprising: a first layer of one of HfSiON or LaAlO3 formed over the substrate; an amorphous layer of either silicon or germanium over the first layer; and a second layer of one of HfSiON or LaAlθ3 formed over the amorphous layer; a charge trapping layer formed over the gate insulator stack; a charge blocking layer formed over the charge trapping layer; and a gate formed over the charge blocking layer.
2. The cell of claim 1 and further including a passivation layer formed between the charge blocking layer and the gate.
3. The cell of claim 1 wherein the charge trapping layer is comprised of nitride.
4. The cell of claim 1 wherein the charge blocking layer is comprised of either HfSiON or LaAlO3.
5. The cell of claim 2 wherein the passivation layer is comprised of TaN.
6. The cell of claim 1 wherein the charge blocking layer is comprised of a high-k material.
7. A flash memory cell in a silicon substrate, the cell comprising a pair of source/drain regions doped into the substrate; a resonant tunnel barrier formed over the substrate and substantially between the pair of source/drain regions, the tunnel barrier comprising: a first layer of one of HfSiON or LaAlO3 formed over the substrate; a layer of either amorphous silicon or amorphous germanium formed over the first layer; and a second layer of one of HfSiON or LaAlθ3 formed over the amorphous layer, the second layer being the same as the first layer; a high-k charge trapping layer formed over the gate insulator stack; a high-k dielectric charge blocking layer formed over the charge trapping layer; a passivation layer formed over the charge blocking layer; and a gate formed over the passivation layer.
8. The cell of claim 7 wherein the substrate is a p-type substrate and the source/drain regions are n-type regions.
9. The cell of claim 7 wherein the charge trapping layer is comprised of one of SiN or
AlN.
10. A non- volatile memory device comprising: a memory array having a plurality of non- volatile memory cells formed in a substrate and arranged in a row and column architecture, each memory cell comprising: a pair of source/drain regions doped into the substrate; a resonant tunnel barrier formed over the substrate and substantially between the pair of source/drain regions, the resonant tunnel barrier comprising: a first layer of one of HfSiON or LaAlO3 formed over the substrate; a layer of either amorphous silicon or amorphous germanium formed over the first layer; and a second layer of one of HfSiON or LaAlO3 formed over the amorphous layer, the second layer being the same as the first layer; a charge trapping layer formed over the gate insulator stack; a high-k dielectric charge blocking layer formed over the charge trapping layer; a passivation layer formed over the charge blocking layer; and a gate formed over the passivation layer.
11. The device of claim 10 wherein the memory array is arranged in a NAND architecture.
121 The device of claim 10 wherein the memory array is arranged in a NOR architecture.
13. The device of claim 10 wherein the passivation layer is comprised of one of TaN or TiN, the charge trapping layer is comprised of a nitride, and the high-k dielectric charge blocking layer is comprised of one of HfSiON or LaAlO3.
14. A memory system comprising: a processor that generates control signals; and a non-volatile memory device coupled to the processor and operating in response to the control signals, the memory device comprising: a memory array having a plurality of non-volatile memory cells formed in a substrate and arranged in a row and column architecture, each memory cell comprising: a pair of source/drain regions doped into the substrate; a resonant tunnel barrier formed over the substrate and substantially between the pair of source/drain regions, the resonant tunnel barrier comprising: a first layer of one of HfSiON or LaAl O3 formed over the substrate; a layer of either amorphous silicon or amorphous germanium formed over the first layer; and a second layer of one of HfSiON or LaAlO3 formed over the amorphous layer, the second layer being the same as the first layer; a high-k charge trapping layer formed over the gate insulator stack; a high-k dielectric charge blocking layer formed over the charge trapping layer; a passivation layer formed over the charge blocking layer; and a gate formed over the passivation layer.
15. The memory system, of claim 14 wherein the memory device further includes control circuitry for performing memory operations in response to the processor control signals.
16. The memory system of claim 14 wherein the plurality of non-volatile memory cells of the array are coupled in one of a NAND architecture or a NOR architecture.
17. A memory modul e comprising: a memory device comprising: control circuitry that controls operation of the memory device; and a memory array coupled to the control circuitry and comprising a plurality of non-volatile memory cells formed in a substrate, each memory cell comprising: a pair of source/drain regions doped into the substrate; a resonant tunnel barrier formed over the substrate and substantially between the pair of source/drain regions, the resonant tunnel barrier comprising: a first layer of one of HfSiON or LaAlO3 formed over the substrate; a layer of either amorphous silicon or amorphous germanium formed over the first layer; and a second layer of one of HfSiON or LaAlO3 formed over the amorphous layer, the second layer being the same as the first layer; a high-k charge trapping layer formed over the gate insulator stack; a high-k dielectric charge blocking layer formed over the charge trapping layer; a passivation layer formed over the charge blocking layer; and a gate formed over the passivation layer; and a plurality of contacts configured to provide selective contact between the memory device and a host system.
18. The module of claim 17 and further including a memory controller coupled to the memory device for controlling operation of the memory device in response to the host system.
19. The module of claim 17 wherein the plurality of non- volatile memory cells are flash memory cells.
20. A method for fabricating a non- volatile memory cell in a substrate, the method comprising: doping a pair of source/drain regions in the substrate; forming a first layer of a resonant tunnel barrier over the substrate, the first layer comprising HfSiON; forming a second layer of one of amorphous silicon or amorphous germanium over the first layer; forming a third layer of the resonant tunnel barrier over the amorphous layer, the third layer comprising HfSiON; forming a charge trapping layer over the resonant tunnel barrier; forming a charge blocking layer over the charge trapping layer; and forming a gate over the charge blocking layer.
21. The method of claim 20 wherein the doping comprises doping n+ regions in a p-type substrate.
22. The method of claim 20 wherein forming the charge trapping layer comprises forming a layer of high-k material.
23. The method of claim 22 wherein the high-k dielectric layer comprises one of HfSiON or LaAlO3.
24. A method for fabricating a non- volatile memory cell in a substrate, the method comprising: doping a pair of source/drain regions in the substrate; forming a first layer of a resonant tunnel barrier over the substrate, the first layer comprising LaAlO3; forming a second layer of one of amorphous silicon or amorphous germanium over the first layer; forming a third layer of the resonant tunnel barrier over the amorphous layer, the third layer comprising LaAlO3; forming a charge trapping layer over the resonant tunnel barrier; forming a high-k charge blocking layer over the charge trapping layer; and forming a control gate over the charge blocking layer.
25. The method of claim 24 wherein forming the charge trapping layer comprises forming a layer of either SiN or AlN.
26. The method of claim 24 and further including forming a passivation layer between the charge blocking layer and the gate.
27. The method of claim 26 wherein the passivation layer is comprised of either TaN or
TiN.
28. The method of claim 24 wherein the gate is comprised of polysilicon.
29. A non-volatile memory cell comprising a substrate having a pair of source/drain regions; a gate insulator stack formed over the substrate and substantially between the pair of source/drain regions, the insulator stack comprising: a first oxide layer formed over the substrate; an amorphous layer of either silicon or germanium over the first layer; and a second oxide layer formed over the amorphous layer; a high-k charge trapping layer formed over the gate insulator stack; a high-k charge blocking layer formed over the charge trapping layer; and a gate formed over the charge blocking layer.
30. The cell of claim 29 wherein the high-k charge trapping layer is comprised of a nitride material and the high-k charge blocking layer is comprised of one of HfSiON or LaAlO3.
31. A non- volatile memory cell comprising a substrate having a pair of source/drain regions; a gate insulator stack formed over the substrate and substantially between the pair of source/drain regions, the insulator stack comprising: a first oxide layer formed over the substrate; a first amorphous layer of either silicon or germanium over the first oxide layer; a second amorphous layer of either germanium or silicon formed over the first amorphous layer, wherein the second amorphous layer is different than the first amorphous layer; and . a second oxide layer formed over the amorphous layer; a floating gate formed over the gate insulator stack; a high-k charge blocking layer formed over the floating gate; and a control gate formed over the charge blocking layer.
32. A non-volatile memory cell comprising a substrate having a pair of source/drain regions; a gate insulator stack formed over the substrate and substantially between the pair of source/drain regions, the insulator stack comprising: a first oxide layer formed over the substrate; an amorphous layer of either silicon or germanium over the first layer; and a second oxide layer formed over the amorphous layer; a floating gate formed over the gate insulator stack; a high-k charge blocking layer comprised of one of HfSiON or LaAlθ3 formed over the floating gate; and a control gate formed over the charge blocking layer.
PCT/US2006/047031 2005-12-09 2006-12-08 Enhanced multi-bit non-volatile memory device with resonant tunnel barrier WO2007070424A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200680050557XA CN101356627B (en) 2005-12-09 2006-12-08 Enhanced multi-volatile memory device with resonant tunnel barrier
KR1020087013876A KR101056543B1 (en) 2005-12-09 2006-12-08 Improved Multi-bit Nonvolatile Memory Device with Resonant Tunnel Barrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/298,884 2005-12-09
US11/298,884 US7482651B2 (en) 2005-12-09 2005-12-09 Enhanced multi-bit non-volatile memory device with resonant tunnel barrier

Publications (1)

Publication Number Publication Date
WO2007070424A1 true WO2007070424A1 (en) 2007-06-21

Family

ID=37890147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/047031 WO2007070424A1 (en) 2005-12-09 2006-12-08 Enhanced multi-bit non-volatile memory device with resonant tunnel barrier

Country Status (4)

Country Link
US (2) US7482651B2 (en)
KR (1) KR101056543B1 (en)
CN (1) CN101356627B (en)
WO (1) WO2007070424A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818989A3 (en) * 2006-02-10 2010-12-01 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor storage device and manufacturing method thereof
EP1837917A1 (en) * 2006-03-21 2007-09-26 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
KR101488516B1 (en) * 2006-03-21 2015-02-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Nonvolatile semiconductor memory device
TWI416738B (en) * 2006-03-21 2013-11-21 Semiconductor Energy Lab Nonvolatile semiconductor memory device
EP1837900A3 (en) * 2006-03-21 2008-10-15 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
US8022460B2 (en) * 2006-03-31 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
US7554854B2 (en) * 2006-03-31 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for deleting data from NAND type nonvolatile memory
EP1840947A3 (en) * 2006-03-31 2008-08-13 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
US7786526B2 (en) * 2006-03-31 2010-08-31 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
US7579646B2 (en) * 2006-05-25 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Flash memory with deep quantum well and high-K dielectric
US8816422B2 (en) * 2006-09-15 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-trapping layer flash memory cell
US8294197B2 (en) * 2006-09-22 2012-10-23 Taiwan Semiconductor Manufacturing Company, Ltd. Program/erase schemes for floating gate memory cells
JP4976796B2 (en) * 2006-09-25 2012-07-18 株式会社東芝 Semiconductor device
JP5221065B2 (en) * 2007-06-22 2013-06-26 株式会社東芝 Nonvolatile semiconductor memory device
KR20090025629A (en) * 2007-09-06 2009-03-11 삼성전자주식회사 Nonvolatile memory device and method of forming the same
US7898850B2 (en) * 2007-10-12 2011-03-01 Micron Technology, Inc. Memory cells, electronic systems, methods of forming memory cells, and methods of programming memory cells
US7759715B2 (en) * 2007-10-15 2010-07-20 Micron Technology, Inc. Memory cell comprising dynamic random access memory (DRAM) nanoparticles and nonvolatile memory (NVM) nanoparticle
KR20090052682A (en) * 2007-11-21 2009-05-26 삼성전자주식회사 Non-volatile memory device, and memory card and system including the same
JP5208537B2 (en) * 2008-02-19 2013-06-12 株式会社東芝 Nonvolatile memory element
US7875923B2 (en) * 2008-05-15 2011-01-25 Seagate Technology Llc Band engineered high-K tunnel oxides for non-volatile memory
US8735963B2 (en) * 2008-07-07 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Flash memory cells having leakage-inhibition layers
JP2010040994A (en) * 2008-08-08 2010-02-18 Toshiba Corp Semiconductor memory device, and method of manufacturing the same
US7968406B2 (en) * 2009-01-09 2011-06-28 Micron Technology, Inc. Memory cells, methods of forming dielectric materials, and methods of forming memory cells
US8680629B2 (en) 2009-06-03 2014-03-25 International Business Machines Corporation Control of flatband voltages and threshold voltages in high-k metal gate stacks and structures for CMOS devices
US8274116B2 (en) 2009-11-16 2012-09-25 International Business Machines Corporation Control of threshold voltages in high-k metal gate stack and structures for CMOS devices
JP2013214553A (en) * 2012-03-30 2013-10-17 Toshiba Corp Method for manufacturing semiconductor device and semiconductor device
GB201418888D0 (en) 2014-10-23 2014-12-10 Univ Lancaster Improvements relating to electronic memory devices
KR102247914B1 (en) 2014-10-24 2021-05-06 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US9812545B2 (en) 2014-10-30 2017-11-07 City University Of Hong Kong Electronic device for data storage and a method of producing an electronic device for data storage
US10411026B2 (en) 2017-07-05 2019-09-10 Micron Technology, Inc. Integrated computing structures formed on silicon
US10297493B2 (en) 2017-07-05 2019-05-21 Micron Technology, Inc. Trench isolation interfaces
US10276576B2 (en) 2017-07-05 2019-04-30 Micron Technology, Inc. Gated diode memory cells
US10153348B1 (en) 2017-07-05 2018-12-11 Micron Technology, Inc. Memory configurations
US10153039B1 (en) 2017-07-05 2018-12-11 Micron Technology, Inc. Memory cells programmed via multi-mechanism charge transports
US20190013387A1 (en) 2017-07-05 2019-01-10 Micron Technology, Inc. Memory cell structures
US10374101B2 (en) 2017-07-05 2019-08-06 Micron Technology, Inc. Memory arrays
US10176870B1 (en) 2017-07-05 2019-01-08 Micron Technology, Inc. Multifunctional memory cells
US10153381B1 (en) 2017-07-05 2018-12-11 Micron Technology, Inc. Memory cells having an access gate and a control gate and dielectric stacks above and below the access gate
US10262736B2 (en) 2017-07-05 2019-04-16 Micron Technology, Inc. Multifunctional memory cells
CN111341864A (en) * 2020-04-03 2020-06-26 扬州工业职业技术学院 Thin-film solar cell based on ultrathin germanium quantum dots and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562491B1 (en) * 2001-10-15 2003-05-13 Advanced Micro Devices, Inc. Preparation of composite high-K dielectrics
US20030132432A1 (en) * 1999-06-04 2003-07-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US6630383B1 (en) * 2002-09-23 2003-10-07 Advanced Micro Devices, Inc. Bi-layer floating gate for improved work function between floating gate and a high-K dielectric layer
US6690059B1 (en) * 2002-08-22 2004-02-10 Atmel Corporation Nanocrystal electron device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270298A (en) * 1992-03-05 1993-12-14 Bell Communications Research, Inc. Cubic metal oxide thin film epitaxially grown on silicon
KR100247919B1 (en) 1996-12-31 2000-03-15 윤종용 Capacitor having ferroelectric film
US6407435B1 (en) * 2000-02-11 2002-06-18 Sharp Laboratories Of America, Inc. Multilayer dielectric stack and method
US7253467B2 (en) * 2001-06-28 2007-08-07 Samsung Electronics Co., Ltd. Non-volatile semiconductor memory devices
CN1188913C (en) * 2001-10-18 2005-02-09 旺宏电子股份有限公司 High-performance grid nitride ROM structure
US6897522B2 (en) * 2001-10-31 2005-05-24 Sandisk Corporation Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements
US6617639B1 (en) 2002-06-21 2003-09-09 Advanced Micro Devices, Inc. Use of high-K dielectric material for ONO and tunnel oxide to improve floating gate flash memory coupling
JP2004158810A (en) 2002-09-10 2004-06-03 Fujitsu Ltd Nonvolatile semiconductor memory
JP3987418B2 (en) 2002-11-15 2007-10-10 株式会社東芝 Semiconductor memory device
JP3984209B2 (en) 2003-07-31 2007-10-03 株式会社東芝 Semiconductor memory device
JP2005085822A (en) * 2003-09-04 2005-03-31 Toshiba Corp Semiconductor device
US7217643B2 (en) * 2005-02-24 2007-05-15 Freescale Semiconductors, Inc. Semiconductor structures and methods for fabricating semiconductor structures comprising high dielectric constant stacked structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030132432A1 (en) * 1999-06-04 2003-07-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US6562491B1 (en) * 2001-10-15 2003-05-13 Advanced Micro Devices, Inc. Preparation of composite high-K dielectrics
US6690059B1 (en) * 2002-08-22 2004-02-10 Atmel Corporation Nanocrystal electron device
US6630383B1 (en) * 2002-09-23 2003-10-07 Advanced Micro Devices, Inc. Bi-layer floating gate for improved work function between floating gate and a high-K dielectric layer

Also Published As

Publication number Publication date
US20090155970A1 (en) 2009-06-18
US20070132010A1 (en) 2007-06-14
US7867850B2 (en) 2011-01-11
CN101356627A (en) 2009-01-28
KR101056543B1 (en) 2011-08-11
CN101356627B (en) 2011-09-28
KR20080066090A (en) 2008-07-15
US7482651B2 (en) 2009-01-27

Similar Documents

Publication Publication Date Title
US7482651B2 (en) Enhanced multi-bit non-volatile memory device with resonant tunnel barrier
US7629641B2 (en) Band engineered nano-crystal non-volatile memory device utilizing enhanced gate injection
US9564221B2 (en) Non-volatile memory device having vertical structure and method of operating the same
US7429767B2 (en) High performance multi-level non-volatile memory device
US7525149B2 (en) Combined volatile and non-volatile memory device with graded composition insulator stack
US8288264B2 (en) Scalable multi-function and multi-level nano-crystal non-volatile memory device
US7072223B2 (en) Asymmetric band-gap engineered nonvolatile memory device
US8415715B2 (en) Discrete trap non-volatile multi-functional memory device
US20100038701A1 (en) Integrated two device non-volatile memory
US7838920B2 (en) Trench memory structures and operation
US10374101B2 (en) Memory arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200680050557.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 06845110

Country of ref document: EP

Kind code of ref document: A1