WO2007079059A2 - Heating element connector assembly with insert molded strips - Google Patents

Heating element connector assembly with insert molded strips Download PDF

Info

Publication number
WO2007079059A2
WO2007079059A2 PCT/US2006/049217 US2006049217W WO2007079059A2 WO 2007079059 A2 WO2007079059 A2 WO 2007079059A2 US 2006049217 W US2006049217 W US 2006049217W WO 2007079059 A2 WO2007079059 A2 WO 2007079059A2
Authority
WO
WIPO (PCT)
Prior art keywords
frame
terminals
connector assembly
portions
conductive
Prior art date
Application number
PCT/US2006/049217
Other languages
French (fr)
Other versions
WO2007079059A3 (en
Inventor
Charles Galauner
Gregory Menn
Richard Nelson
Hazelton Avery
Timothy Purkis
Rich Faje
Original Assignee
Molex Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molex Incorporated filed Critical Molex Incorporated
Publication of WO2007079059A2 publication Critical patent/WO2007079059A2/en
Publication of WO2007079059A3 publication Critical patent/WO2007079059A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/58Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/59Fixed connections for flexible printed circuits, flat or ribbon cables or like structures
    • H01R12/592Fixed connections for flexible printed circuits, flat or ribbon cables or like structures connections to contact elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • H01R13/405Securing in non-demountable manner, e.g. moulding, riveting

Definitions

  • the present invention relates generally to connectors, and more particularly to connector assemblies used in heating assemblies.
  • Heating elements are used in a variety of applications. Recently, heating elements have been used in drug delivery systems. In such systems, a heating element is provided as an assembly that has a plurality of individual conductive members held upon a frame. The individual elements are coated with a drug, so that when the elements are energized and heated to a specific temperature, the drug is vaporized and a patient can readily and easily inhale the drug.
  • the present invention is directed to a heating element connector structure of simplified and reliable construction that has a low cost of manufacture.
  • Yet another object of the present invention is to provide an improved heating element connector assembly including an insulative, rectangular frame with a central opening, a plurality of conductive terminals disposed in the frame, the terminals being spaced apart from each other lengthwise of two opposing sidewalls of the frame, the terminal further being aligned with each other as between the two sidewalls, and a plurality of conductive strips extending across the frame opening and interconnecting pairs of terminals together, the terminals including compliant pin tail portions for receipt by corresponding holes form in a circuit board associated with the assembly.
  • Yet a still further object of the present invention is to provide a heating element connector assembly of the type described above, wherein the terminals include contact portions in the form of out of plane bends, which contact portions may be inserted into engagement slots of the assembly in order to create bearing, or frictional, contact with the conductive strips.
  • an insulative frame in the form of an open rectangle.
  • the frame has two side walls that are interconnected by a pair of end walls, the end walls preferably being of a shorter length than the side walls to give the frame a rectangular configuration.
  • the frame side walls have a plurality of terminal-receiving cavities disposed in them. These cavities are arranged in an array that runs lengthwise of each frame side wall, and each such cavity only receives a single terminal.
  • the terminals are further aligned together across the frame opening in pairs of terminals.
  • the assembly also includes a plurality of conductive strips that extend across the frame opening and which interconnect aligned pairs of the terminals together.
  • These conductive strips are preferably formed from a conductive foil, and the foil is further preferably formed with an upward bow in it so that the central portions of the strips rise to a level above the top of the frame.
  • the strips are insert molded into two carrier members that also extend lengthwise of the frame. These carrier members fit into openings formed in the frame sidewalls as a single assembly and terminals are then inserted into cavities that communicate with portions .
  • the terminals may be inserted into cavities in the frame, and they have a vertical extent, with a body portion that runs generally horizontally and a tail portion in the form of a compliant pin.
  • the terminals include contact portions at ends of the terminal opposite to the tail portions.
  • the contact portions are disposed preferably above the body portions when the terminals are arranged in their vertical orientation, and the contact portions include at least one bend disposed therein that extends out of the plane of the terminal. This bend defines a contact surface of the contact portion.
  • the ends of the conductive strips are supported within the carriers and they are molded in place within the carriers.
  • the strip ends are supported in a position so that the terminal bends will impinge upon them when the terminals are inserted into the cavities in the frame of the assembly.
  • the terminal body portions have flat opposing ends.
  • the bottom ends form surfaces that may be used to insert the terminals into their receiving cavities and the top ends form' stop surfaces that limit the distance the terminals may be inserted into the frame cavities.
  • FIG. 1 is a perspective view of a heating element connector assembly constructed in accordance with the principles of the present invention
  • FIG. 2 is the same view as FIG. 1, but with the heating element assembly removed from its frame;
  • FIG. 3 is an exploded view of the heating element connector assembly of FIG. 1;
  • FIG. 4 is a perspective view of a terminal utilized in the heating element connector assembly of FIG. 1;
  • FIG. 5 is a perspective view of the heating element assembly, with the frame portion thereof illustrated partially in section;
  • FIG. 6 is an enlarged end view of a potion of FIG. 5;
  • FIG. 7 is a end elevational view of the end of the assembly of FIG. 5, illustrating the assembly in section:
  • FIG. 8 is a detail perspective view of the carrier strips of the assembly with three terminals in place in contact with the conductive strips;
  • FIG. 9 is a side elevational view of a portion of the carrier strip illustrating the ends of the conductive strips in place.
  • FIG. 10 is the same view as FIG. 9, but with terminal in place within the carrier strip foil holding portions.
  • FIG. 1 illustrates a heating element connector assembly 20 that is constructed in accordance with the principles of the present invention.
  • the assembly 20 is comprised of a plurality of individual conductive strips 22 that are supported by a frame 24, which is intended to be mounted to a circuit board (not shown).
  • the individual strips 22 are preferably formed from a conductive material such as a metal foil, or the like.
  • the strips 22 each define an individual heating element of the assembly 20, which can be heated when a current is passed through the strip 22.
  • the strips 22 are supported by an insulative frame 24, and the frame 24 contains a plurality of conductive terminals 26.
  • Each terminal 26 has a contact portion 27 that makes contact with the strips 22, and a tail portion 29 that extends out from the frame 24 and which provides a means of connecting the individual strips 22 to heating circuits on the circuit board 25 which provide a pass through current to energize the strips 22.
  • the terminal tail portions 29 are preferably received within plated through holes formed in the circuit board.
  • FIG. 3 illustrates the assembly 20 in exploded fashion
  • FIG- 4 illustrates the terminal 26.
  • the frame 24 is rectangular in shape having four sidewalls 30 that cooperatively define a central opening 32.
  • the frame sidewalls 30 include end walls 30a and longitudinal sidewalls 30b which in most instances will have a length longer than that of the end walls 30a in order to give the assembly its rectangular configuration shown.
  • the sidewalls 30b are spaced apart from each other and the opening 32 of the frame is spanned by the conductive strips 22.
  • the strips 22 are formed as part of an overall carrier strip or assembly 40 that is also configured to match the configuration of the frame 24 and which is shown as rectangular in the drawings.
  • the carrier strip 40 has a pair of carrier members 42 formed along opposite ends 43 of the conductive strips 22.
  • the individual strips 22 are separated from each other by intervening spaces which appear as slots 44 that extend transversely to a longitudinal axis of the assembly 20.
  • the carrier members 22 each have a cap portion 45 that extends horizontally and which is molded in place around the conductive strips 22.
  • a body portion 46 extends downwardly from the cap portions 45 and this body portion 46 encompasses the ends 43 of individual conductive strips 22.
  • the body portions 46 can be seen to include one or more ribs 47 that are disposed in the inner side of the carrier member body portions 45. These ribs 47 provide a reaction and pressing surface for the terminals 26 as explained in greater detail below.
  • One of the terminals 26 is shown illustrated in FIG. 4, and it can seen to extend generally vertically, and the terminals include a wide body portion 50.
  • the terminal contact portions 29 can be see in FIG. 4 to rise up from its associated terminal body portion 50.
  • the contact portions 29 include a bend 52 that extends outwardly toward the frame opening 32 and out of the plane of the terminal 26. The extent is shown in FIG. 4 as distance D.
  • the terminals 26 are received in cavities 60 of the frame 24 that are best shown in FIGS. 2 & 3, and which can be seen to receive individual insert portions 49 that serve to hold the ends 43 of the conductive strips 22 and which receive portions of the terminal 26 therein.
  • the terminal body portions 50 also can be seen to include opposing flat ends 57, 58.
  • the bottom ends form first reaction surfaces 58 against which a tool may press in order to insert the terminals 26 into the frame cavities 60.
  • the top flat ends 57 of the terminals 26 form stop surfaces which bear against the bottom edges 49a of the individual inserts 49. This is shown in FIG. 10. .

Abstract

An improved heating element connector assembly includes an insulative, rectangular frame with a central opening, and a plurality of conductive terminals which are press fit into openings in the frame. The terminals are spaced apart from each other lengthwise of two opposing sidewalls of the frame, and pairs of terminals are aligned with each other between the two sidewalls. A plurality of conductive strips are held together in an assembly and the ends of the strips are interconnected along two spaced apart lines by carrier members that may be molded over the ends of the conductive strips. The carrier memebers extend down into cavities on the frame and terminals are pused into the cavities to bear against the ends of the strips and effet an electrical connection between the terminals and the strips.

Description

HEATING ELEMENT CONNECTOR ASSEMBLY WITH INSERT MOLDED STRIPS
Chuck Galauner
Greg Menn Richard Nelson Hazelton Avery Timothy Purkis
Rich Faje
Reference to Related Applications
[0001] There are no related applications at this time.
Background Of The Invention
[0002] The present invention relates generally to connectors, and more particularly to connector assemblies used in heating assemblies.
[0003] Heating elements are used in a variety of applications. Recently, heating elements have been used in drug delivery systems. In such systems, a heating element is provided as an assembly that has a plurality of individual conductive members held upon a frame. The individual elements are coated with a drug, so that when the elements are energized and heated to a specific temperature, the drug is vaporized and a patient can readily and easily inhale the drug.
[0004] Current heating element assemblies use a frame and a series of conductive terminals that are mounted to a circuit board. Conductive foil strips are soldered to the circuit board in order to create electrical continuity. This manner of construction is expensive and difficult.
[0005] Accordingly, the present invention is directed to a heating element connector structure of simplified and reliable construction that has a low cost of manufacture.
Summary Of The Invention
[0006] Accordingly, it is a general object of the present invention to provide a new and improved heating element connector assembly of simplified construction and reduced cost. [0007] It is another object of the present invention to provide a reliable electrical contact structure for use in a heating element assembly that utilizes only mechanical connections rather than soldered connections and in which the mechanical connections serve to connect together individual conductive strips to conductive terminals.
[0008] Yet another object of the present invention is to provide an improved heating element connector assembly including an insulative, rectangular frame with a central opening, a plurality of conductive terminals disposed in the frame, the terminals being spaced apart from each other lengthwise of two opposing sidewalls of the frame, the terminal further being aligned with each other as between the two sidewalls, and a plurality of conductive strips extending across the frame opening and interconnecting pairs of terminals together, the terminals including compliant pin tail portions for receipt by corresponding holes form in a circuit board associated with the assembly.
[0009] Yet a still further object of the present invention is to provide a heating element connector assembly of the type described above, wherein the terminals include contact portions in the form of out of plane bends, which contact portions may be inserted into engagement slots of the assembly in order to create bearing, or frictional, contact with the conductive strips.
[0010] In accordance with the present invention, an insulative frame is provided in the form of an open rectangle. The frame has two side walls that are interconnected by a pair of end walls, the end walls preferably being of a shorter length than the side walls to give the frame a rectangular configuration. The frame side walls have a plurality of terminal-receiving cavities disposed in them. These cavities are arranged in an array that runs lengthwise of each frame side wall, and each such cavity only receives a single terminal. The terminals are further aligned together across the frame opening in pairs of terminals.
[0011] The assembly also includes a plurality of conductive strips that extend across the frame opening and which interconnect aligned pairs of the terminals together. These conductive strips are preferably formed from a conductive foil, and the foil is further preferably formed with an upward bow in it so that the central portions of the strips rise to a level above the top of the frame. The strips are insert molded into two carrier members that also extend lengthwise of the frame. These carrier members fit into openings formed in the frame sidewalls as a single assembly and terminals are then inserted into cavities that communicate with portions .
[0012] The terminals may be inserted into cavities in the frame, and they have a vertical extent, with a body portion that runs generally horizontally and a tail portion in the form of a compliant pin. The terminals include contact portions at ends of the terminal opposite to the tail portions. The contact portions are disposed preferably above the body portions when the terminals are arranged in their vertical orientation, and the contact portions include at least one bend disposed therein that extends out of the plane of the terminal. This bend defines a contact surface of the contact portion.
[0013] The ends of the conductive strips are supported within the carriers and they are molded in place within the carriers. The strip ends are supported in a position so that the terminal bends will impinge upon them when the terminals are inserted into the cavities in the frame of the assembly.
[0014] The terminal body portions have flat opposing ends. The bottom ends form surfaces that may be used to insert the terminals into their receiving cavities and the top ends form' stop surfaces that limit the distance the terminals may be inserted into the frame cavities.
[0015] These and other objects, features and advantages of the present invention will be clearly understood through a consideration of the following detailed description.
Brief Description Of The Drawings
[0016] In the course of this detailed description, the reference will be frequently made to the attached drawings in which:
[0017] FIG. 1 is a perspective view of a heating element connector assembly constructed in accordance with the principles of the present invention;
[0018] FIG. 2 is the same view as FIG. 1, but with the heating element assembly removed from its frame;
[0019] FIG. 3 is an exploded view of the heating element connector assembly of FIG. 1;
[0020] FIG. 4 is a perspective view of a terminal utilized in the heating element connector assembly of FIG. 1;
[0021] FIG. 5 is a perspective view of the heating element assembly, with the frame portion thereof illustrated partially in section;
[0022] FIG. 6 is an enlarged end view of a potion of FIG. 5;
[0025] FIG. 7 is a end elevational view of the end of the assembly of FIG. 5, illustrating the assembly in section: and,
[0026] FIG. 8 is a detail perspective view of the carrier strips of the assembly with three terminals in place in contact with the conductive strips;
[0027] FIG. 9 is a side elevational view of a portion of the carrier strip illustrating the ends of the conductive strips in place; and,
[0028] FIG. 10 is the same view as FIG. 9, but with terminal in place within the carrier strip foil holding portions.
Detailed Description Of The Preferred Embodiments
[0029] FIG. 1 illustrates a heating element connector assembly 20 that is constructed in accordance with the principles of the present invention. The assembly 20 is comprised of a plurality of individual conductive strips 22 that are supported by a frame 24, which is intended to be mounted to a circuit board (not shown). The individual strips 22 are preferably formed from a conductive material such as a metal foil, or the like. (0030] The strips 22 each define an individual heating element of the assembly 20, which can be heated when a current is passed through the strip 22. In this regards, the strips 22 are supported by an insulative frame 24, and the frame 24 contains a plurality of conductive terminals 26. Each terminal 26, as explained in greater detail to follow, has a contact portion 27 that makes contact with the strips 22, and a tail portion 29 that extends out from the frame 24 and which provides a means of connecting the individual strips 22 to heating circuits on the circuit board 25 which provide a pass through current to energize the strips 22. The terminal tail portions 29 are preferably received within plated through holes formed in the circuit board.
[0031] FIG. 3 illustrates the assembly 20 in exploded fashion, while FIG- 4 illustrates the terminal 26. As shown, the frame 24 is rectangular in shape having four sidewalls 30 that cooperatively define a central opening 32. The frame sidewalls 30 include end walls 30a and longitudinal sidewalls 30b which in most instances will have a length longer than that of the end walls 30a in order to give the assembly its rectangular configuration shown. The sidewalls 30b are spaced apart from each other and the opening 32 of the frame is spanned by the conductive strips 22.
[0032] The strips 22 are formed as part of an overall carrier strip or assembly 40 that is also configured to match the configuration of the frame 24 and which is shown as rectangular in the drawings. The carrier strip 40 has a pair of carrier members 42 formed along opposite ends 43 of the conductive strips 22. The individual strips 22 are separated from each other by intervening spaces which appear as slots 44 that extend transversely to a longitudinal axis of the assembly 20. The carrier members 22 each have a cap portion 45 that extends horizontally and which is molded in place around the conductive strips 22. A body portion 46 extends downwardly from the cap portions 45 and this body portion 46 encompasses the ends 43 of individual conductive strips 22. The body portions 46 can be seen to include one or more ribs 47 that are disposed in the inner side of the carrier member body portions 45. These ribs 47 provide a reaction and pressing surface for the terminals 26 as explained in greater detail below.
[0033] One of the terminals 26 is shown illustrated in FIG. 4, and it can seen to extend generally vertically, and the terminals include a wide body portion 50. The terminal contact portions 29 can be see in FIG. 4 to rise up from its associated terminal body portion 50. The contact portions 29 include a bend 52 that extends outwardly toward the frame opening 32 and out of the plane of the terminal 26. The extent is shown in FIG. 4 as distance D. [0034] The terminals 26 are received in cavities 60 of the frame 24 that are best shown in FIGS. 2 & 3, and which can be seen to receive individual insert portions 49 that serve to hold the ends 43 of the conductive strips 22 and which receive portions of the terminal 26 therein. [0035] The terminal body portions 50 also can be seen to include opposing flat ends 57, 58. The bottom ends form first reaction surfaces 58 against which a tool may press in order to insert the terminals 26 into the frame cavities 60. The top flat ends 57 of the terminals 26 form stop surfaces which bear against the bottom edges 49a of the individual inserts 49. This is shown in FIG. 10. .
[0036] The ends 43 of the conductive strips 22 are held in place in the carrier members 42 and the ribs 47 of the body portions 46 thereof support the strip ends 43. These ribs 47 occupy only a portion of the frame cavities 60, shown in FIG. 7 as about one-half the width of the cavity 60. The terminal contact portion 27, particularly the bend 52 will occupy the remaining space in the cavity 60. This bend provides an interference fit with the conductive strip 22 and provides a reliable mechanical and electrical connector that dispenses with the need for a soldered joint.
[0037] While the preferred embodiment of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by the appended claims.

Claims

PROVISIONAL PATENT CLAIMS:
1. An improved connector assembly, the assembly comprising: an insulative, rectangular frame, the frame including a pair of lengthwise side walls that are interconnected together by widthwise end walls, the side walls and end walls cooperatively defining a central opening of the frame; a plurality of conductive terminals supported by said frame, the terminals being spaced apart from each other in an array that runs lengthwise in each of said two sidewalls, said terminals being aligned with each other in pairs in said two sidewalls across the frame opening, each of said terminals including tail and contact portions disposed at opposite ends thereof, the terminal tail portions including compliant pin tail portions for receipt by corresponding holes in a circuit board and the terminal ■ contact portions including deformable lugs extending upwardly above a level of said frame sidewalls; and, a plurality of conductive strips extending across the frame opening and interconnecting the pairs of terminals together.
2. The connector assembly of claim 1, wherein each of said terminals includes a body portion interconnecting said tail and contact portions together.
3. The connector assembly of claim 2, wherein said body portions have a width that is greater than corresponding widths of any one of said tail or contact portions.
4. The connector assembly of claim 1, wherein said conductive strips are held together as a group by a pair of carrier members, free ends of individual conductive strips being held in position by the carrier members, said carrier member including individual body portions, each of which retains a conductive strip free end .
5. The connector assembly of claim I, wherein said frame includes a plurality of cavities, each of the cavities receiving a single terminal and a single one of said carrier member body portions in an interference fit therewithin.
6. The connector assembly of claim 5, wherein each of said terminals includes a body portion interconnecting said tail and contact portions together, and the terminal body portions press against said conductive strip free ends.
7. The connector assembly of claim 2, wherein said terminal body portions each include a pair of flat surfaces flanking said contact portions, the flat surface defining stop surfaces which bear against ends of said carrier member body portions.
8. The connector assembly of claim 1 , wherein said conductive strips are formed from a conductive foil and exhibit a crown with respect to said frame side walls.
PCT/US2006/049217 2005-12-29 2006-12-27 Heating element connector assembly with insert molded strips WO2007079059A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75471605P 2005-12-29 2005-12-29
US60/754,716 2005-12-29

Publications (2)

Publication Number Publication Date
WO2007079059A2 true WO2007079059A2 (en) 2007-07-12
WO2007079059A3 WO2007079059A3 (en) 2007-08-23

Family

ID=38109987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/049217 WO2007079059A2 (en) 2005-12-29 2006-12-27 Heating element connector assembly with insert molded strips

Country Status (1)

Country Link
WO (1) WO2007079059A2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB732905A (en) * 1951-10-23 1955-06-29 John Lawrence Drury Oakley Improvements in and relating to heating units for use in space heating installations
DE2449739A1 (en) * 1974-10-19 1976-04-29 Junghans Gmbh Geb Mounting for exchangeable, integrated circuit based blocks - insulating card has aperture fitting over building block and mounting plate
GB1567523A (en) * 1977-03-26 1980-05-14 Wolf A Heating element or frame antenna assembly
DE3245746A1 (en) * 1982-12-10 1984-06-14 Gronholz, Claus, Dipl.-Ing., 2000 Norderstedt Device for heating objects and personnel on, outside and in the motor vehicle
US4894015A (en) * 1988-08-31 1990-01-16 Delco Electronics Corporation Flexible circuit interconnector and method of assembly thereof
DE10100189A1 (en) * 2000-01-07 2001-07-12 Tyco Electronics Amp Gmbh Contact with elastic press in area for contacting circuit board with flat foil conductor, has elastically deformable, curved clamping plate for clamping between circuit board and widened part
DE10321184A1 (en) * 2003-05-12 2004-12-02 Conti Temic Microelectronic Gmbh Contacting device for flexible ribbon cables

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB732905A (en) * 1951-10-23 1955-06-29 John Lawrence Drury Oakley Improvements in and relating to heating units for use in space heating installations
DE2449739A1 (en) * 1974-10-19 1976-04-29 Junghans Gmbh Geb Mounting for exchangeable, integrated circuit based blocks - insulating card has aperture fitting over building block and mounting plate
GB1567523A (en) * 1977-03-26 1980-05-14 Wolf A Heating element or frame antenna assembly
DE3245746A1 (en) * 1982-12-10 1984-06-14 Gronholz, Claus, Dipl.-Ing., 2000 Norderstedt Device for heating objects and personnel on, outside and in the motor vehicle
US4894015A (en) * 1988-08-31 1990-01-16 Delco Electronics Corporation Flexible circuit interconnector and method of assembly thereof
DE10100189A1 (en) * 2000-01-07 2001-07-12 Tyco Electronics Amp Gmbh Contact with elastic press in area for contacting circuit board with flat foil conductor, has elastically deformable, curved clamping plate for clamping between circuit board and widened part
DE10321184A1 (en) * 2003-05-12 2004-12-02 Conti Temic Microelectronic Gmbh Contacting device for flexible ribbon cables

Also Published As

Publication number Publication date
WO2007079059A3 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
US7513781B2 (en) Heating element connector assembly with insert molded strips
US7494344B2 (en) Heating element connector assembly with press-fit terminals
US5374200A (en) Fully programmable din connector
EP0104013B1 (en) Multi-contact electrical connector
JPS6223031Y2 (en)
EP2416451B1 (en) Electrical connector
US4894018A (en) Low profile electrical connector
US7364434B2 (en) Electrical connector with improved terminal
US3315219A (en) Modular type terminal block
KR100347242B1 (en) Electrical connector with integrated support structure
US4521065A (en) Socket connector for parallel circuit boards
EP1147577B1 (en) Low profile electrical connector
US4029374A (en) Electrical connector for printed circuits
US5061209A (en) Wall plate jack and contact therefor
EP0082697B1 (en) Multi-contact connector
JP3418212B2 (en) Printed circuit board, outrigger edge connector assembly and method of assembling the same
US4052117A (en) Integrated circuit socket
US20060135003A1 (en) Connector with improved dual beam contacts
US6220892B1 (en) Low profile electrical connectors for microphones
JPH09204944A (en) Stacked electric connector assembly
US5194022A (en) Elecrical connector
WO2007079059A2 (en) Heating element connector assembly with insert molded strips
EP0339846A2 (en) Fuse box
US3173738A (en) Terminal block construction
US6254405B1 (en) Electrical connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06848126

Country of ref document: EP

Kind code of ref document: A2