WO2007083434A1 - 非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
WO2007083434A1
WO2007083434A1 PCT/JP2006/322714 JP2006322714W WO2007083434A1 WO 2007083434 A1 WO2007083434 A1 WO 2007083434A1 JP 2006322714 W JP2006322714 W JP 2006322714W WO 2007083434 A1 WO2007083434 A1 WO 2007083434A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
active material
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2006/322714
Other languages
English (en)
French (fr)
Inventor
Motoharu Saito
Hideyuki Koga
Katsutoshi Takeda
Masahisa Fujimoto
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to CN2006800506731A priority Critical patent/CN101371382B/zh
Priority to EP06832645A priority patent/EP1981102A4/en
Priority to US12/161,747 priority patent/US8178243B2/en
Publication of WO2007083434A1 publication Critical patent/WO2007083434A1/ja
Priority to US13/369,431 priority patent/US8349496B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • Non-aqueous electrolyte secondary battery and manufacturing method thereof are non-aqueous electrolyte secondary battery and manufacturing method thereof.
  • the present invention relates to a nonaqueous electrolyte secondary battery including a positive electrode including a positive electrode active material made of sodium oxide, a negative electrode, and a nonaqueous electrolyte, and a method for manufacturing the same.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for mobile information terminals as described above.
  • the non-aqueous electrolyte secondary battery generally includes a positive electrode provided with a positive electrode active material made of a lithium-containing transition metal composite oxide, and a negative electrode active material made of carbon material such as graphite capable of occluding and releasing lithium.
  • charging / discharging is performed by moving lithium ions between the positive and negative electrodes along with charging / discharging.
  • lithium-containing layered compounds such as LiCoO, LiNiO, and LiNi Co Mn O have been proposed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-220231
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-328818
  • Non-patent literature l Akihisa kajiyama et al, Solid State Ionics 149 (2002) 39 -45
  • Non-Patent Document 2 F. Tournadre et al J. Solid State Chem. 177 (2004) 279 0-2802
  • lithium is more than half.
  • the discharge capacity density that can be used with LiCoO is about 160mAhZg.
  • LiNi Co Mn O 1/3 1/3 1/3 2 etc. have the same problem.
  • a lithium layered oxide obtained by chemically ion exchange of sodium and lithium in a known sodium layered compound has a discharge capacity density of about 130 mAhZg, so that it is a high-engineering energy single density material. The expectation is low.
  • Patent Document 1 Patent Document 2, and Non-Patent Document 1 are the same inventors, but from Non-Patent Document 1, the samples ion-exchanged by the authors are in space group R3. It is shown that the discharge capacity is about 130mAhZg, which is attributed to —m (it changes to the 03 structure when the P3 structure sodium oxide is ion-exchanged with lithium). . Furthermore, the authors mentioned that there are different structures of P2 and P3 in sodium oxide, indicating that it is not easy to ion-exchange sodium in the P2 structure sample to lithium. . Here, the theoretical capacity of LiCo Mn O is about 280mAhZg
  • the present invention has been made in view of the above, and is a high-power battery having a large discharge capacity.
  • the objective is to provide a non-aqueous electrolyte secondary battery that has a stable structure and good cycle characteristics even when lithium is extracted to the extent possible.
  • the present invention provides a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material made of sodium oxide, a negative electrode, and a nonaqueous electrolyte,
  • the sodium oxide compound contains lithium and is regulated so that the molar amount of lithium is less than the molar amount of sodium.
  • the positive electrode active material is considered to be capable of exerting a role as a positive electrode active material without ion exchange, as described below. Therefore, hereinafter, the positive electrode active material that has not been subjected to ion exchange may be referred to as a positive electrode active material before ion exchange, and a positive electrode active material that has been subjected to ion exchange described later may be referred to as a positive electrode active material after ion exchange. .
  • such a non-aqueous electrolyte secondary battery has good cycle characteristics in which the decomposition of the electrolyte solution is small even when charged to 5. OV.
  • the reason is that the film formed by the reaction between sodium ions and the electrolytic solution in the initial stage is more stable than the film formed by the reaction between lithium ions and the electrolytic solution. It may be due to the reason.
  • the sodium oxide compound contains at least one selected from the group consisting of manganese, iron, cobalt, and nickel power.
  • M ab X 0 (0. 5 ⁇ a ⁇ l.0, 0 ⁇ b ⁇ 0. 5, 0.6 ⁇ a + b ⁇ l. 1, 0. 90 ⁇ x ⁇ l. 10, 0 ⁇
  • a preferred composition is Na L a
  • the positive electrode active material before ion exchange having the above configuration is used, the charge / discharge capacity is increased and the structure is stable, so that it can withstand high voltage.
  • oxygen content generally formula Na Li a
  • the sodium oxide containing lithium includes titanium, vanadium, chromium, copper, zinc, aluminum, zirconium, not limited to manganese, iron, cobalt, and nickel.
  • niobium, molybdenum, tantalum, tungsten, cerium, neodymium, etc. may be used.
  • the general formula Na Li MO (0 ⁇ a ⁇ l.0, 0 ⁇ babx 2 ⁇ a
  • M Titanium, vanadium, chromium, manganese, iron And at least one of conol, nickel, copper, zinc, aluminum, zirconium, niobium, molybdenum, tantalum, tungsten, cerium, and neodymium).
  • a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material made of sodium oxide, a negative electrode, and a non-aqueous electrolyte, wherein the sodium oxide contains lithium.
  • the sodium oxide has a general formula Na Li MO (0 ⁇ a ⁇ 0.7, 0 abx 2 ⁇ a
  • M is from the group consisting of manganese, iron, cobalt and nickel forces At least one selected).
  • the positive electrode active material after ion exchange having the above-described configuration is produced by ion exchange between sodium and lithium.
  • This positive electrode active material is In addition, since lithium is added together with sodium in the positive electrode active material before ion exchange, the crystal structure is not destroyed even when charged to 5. OV with respect to the lithium metal, and the capacity of the positive electrode can be significantly increased.
  • the value includes both the value in the electric state and the value in the discharge state.
  • Na Li Mn Co O (0 ⁇ a ⁇ 0.7, 0 ⁇ b ⁇ 1.0, 0.
  • the potential of the positive electrode at the end of charging is 4.5 V or more with respect to the lithium metal, and the positive electrode active material crystal even when charged until the potential of the positive electrode is 4.5 V or more with respect to the lithium metal Since the structure is not destroyed, the capacity of the positive electrode can be remarkably increased, and the cycle characteristics are also improved because this state is maintained even after repeated charging and discharging.
  • the negative electrode active material used for the negative electrode lithium metal, silicon, carbon, tin, germanium, aluminum, lead, indium, gallium, a lithium-containing alloy, a carbon material previously stored with lithium, and previously stored with lithium. Desirably, at least one selected from the group consisting of a silicon material and a compound containing lithium and carbon is used.
  • Examples of the compound containing lithium and carbon include a graphite intercalation compound in which lithium is sandwiched between graphite layers.
  • lithium and sodium raw materials for sodium oxide containing lithium include lithium, sodium carbonate, bicarbonate, oxalate, acetate, kenate, formate, nitrate. , Hydroxides, oxides, peroxides, and the like.
  • the lithium-containing sodium oxide can be partially or almost completely ion-exchanged in a carbonate solvent containing a lithium salt. Also, it is speculated that the speed of the ion exchange reaction is fast.
  • a step of producing a positive electrode active material comprising a sodium oxide containing lithium that is regulated so that the molar amount of lithium is less than the molar amount of sodium; and the positive electrode active material is added to a carbonate-based solvent containing a lithium salt.
  • a positive electrode active material slurry including the step of immersing, the positive electrode active material and the noinder; and then applying the positive electrode active material slurry to a positive electrode current collector; and the positive electrode
  • the power generation element is manufactured by disposing a separator between the negative electrode, the power generation element is housed in the exterior body, and a nonaqueous electrolyte is injected into the exterior body.
  • a positive electrode active material comprising a sodium oxide containing lithium, which is regulated such that the molar amount of lithium is less than the molar amount of sodium by firing using at least a sodium compound and a lithium compound as raw materials.
  • non-aqueous electrolyte and the carbonate solvent containing the lithium salt have the same composition.
  • LiPF is used as the lithium salt, and ethylene carbonate is used as the carbonate solvent.
  • a positive electrode active material comprising a sodium oxide containing lithium, which is regulated so that the molar amount of lithium is smaller than the molar amount of sodium by firing using at least a sodium compound and a lithium compound as raw materials.
  • a step of producing a power generation element by placing a separator between and a step of housing the power generation element in the exterior body and injecting a non-aqueous electrolyte into the exterior body.
  • the manufacturing cost of the non-aqueous electrolyte secondary battery equipped with the positive electrode active material after ion exchange increases. Can be suppressed.
  • the conductive agent added to the positive electrode functions as the positive electrode even if it is not added when an active material with excellent conductivity is used, but it contains an active material with low conductivity. It is desirable to use a conductive agent.
  • a conductive agent any material having electrical conductivity may be used, and at least one of oxides, carbides, nitrides, and carbon materials having particularly excellent electrical conductivity can be used. Examples of the oxide include tin oxide and indium oxide. Examples of the carbide include tungsten carbide and zirconium carbide. Examples of the nitride include titanium nitride and tantalum nitride.
  • the amount of the conductive agent is in the range of 0% by mass to 30% by mass, preferably 0% by mass to 20% by mass, and more preferably 0% by mass to 10% by mass with respect to the whole positive electrode. To regulate.
  • the noinder added to the positive electrode is polytetrafluoroethylene, poly (vinylidene fluoride), polyethylene oxide, polybutyrate, polymetatalylate, polyatalylate, At least one selected from polyacrylonitrile, polybulal alcohol, styrene butadiene rubber, and carboxymethylcellulose strength can be used.
  • the amount of the binder added to the positive electrode is large, the proportion of the active material contained in the positive electrode is reduced, so that the energy density of the positive electrode is reduced. Therefore, the amount of the binder is in the range of 0% by mass to 30% by mass, preferably 0% by mass to 20% by mass, and more preferably 0% by mass to 10% by mass of the whole positive electrode. .
  • the non-aqueous electrolyte solvent used in the present invention includes cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides, and the like.
  • cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate and the like, and those in which some or all of these hydrogens are fluorinated can also be used. Examples thereof include trifluoropropylene carbonate and fluorethyl carbonate.
  • chain carbonate examples include dimethyl carbonate, ethyl methyl carbonate, ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, etc., and some or all of these hydrogens are fluorinated. Can also be used.
  • esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl ethyl propionate, and ⁇ -butyrolatathone.
  • cyclic ethers examples include 1,3 dioxolane, 4-methyl-1,1,3 dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2 butylene oxide, 1,4 dioxane, 1,3,5 trioxane, and furan. , 2-methylfuran, 1,8 cineole, crown ether and the like.
  • chain ethers examples include 1,2-dimethoxyethane, jetyl ether, dipropyl etherenole, diisopropino enoate, dibutino enoate, dihexino ethenore, ethynole vinyl ether, butyl vinyl ether, methyl phenyl Ether, ethenylphenyl etherenole, butinolevenoleethenore, pentinolevenoleethenore, methoxytonolene, benzenoretinoreethenore, dipheninoreethenore, dipenzinoreethenore, 0-dimethoxybenzene, 1, 2-diethoxyethane, 1,2-dibutoxetane, diethylene glycol dimethinole ether, diethylene glycol jetinole ether, diethylene glycol dibu
  • tilether l, 1-dimethoxymethane
  • lithium salt to be added to the non-aqueous solvent those commonly used as electrolytes in conventional non-aqueous electrolyte secondary batteries can be used, for example, LiBF, LiPF, L
  • Lithium borate power At least one selected can be used.
  • nonaqueous electrolyte secondary battery according to the present invention will be described with reference to FIG.
  • the nonaqueous electrolyte secondary battery in the present invention is not limited to the one shown in the following embodiment, and can be implemented with appropriate modifications within a range not changing the gist thereof.
  • Manganese (Mn 2 O 3) and acid-cobalt (Co 2 O 3) are prepared, sodium, lithium and manganese
  • the mixed powder is formed into pellets, calcined at 700 ° C in air for 10 hours, and further calcined at 800 ° C in air for 20 hours, so that the positive electrode active material before ion exchange (containing lithium) Sodium oxide).
  • the positive electrode active material was 80% by mass, and acetylene black as a conductive agent was 10 quality.
  • a counter electrode 2 and a reference electrode 4 were produced by cutting a lithium metal plate into a predetermined size and attaching it to a tab.
  • LiPF lithium hexafluorophosphate
  • a nonaqueous electrolyte was prepared by dissolving to 6 Z liters.
  • the nonaqueous electrolyte is placed in the test cell container 5.
  • the test cell shown in Fig. 1 was prepared by pouring the liquid. A part of the lead 6 protrudes from the test cell container 5.
  • the positive electrode active material sodium and lithium before ion exchange are ion-exchanged, and the positive electrode active material after ion exchange is produced. .
  • test cell of Example 1 As the test cell of Example 1, the same test cell as that described in the best mode for carrying out the invention was used.
  • the cell thus produced is hereinafter referred to as the present invention cell A1.
  • a test cell was produced in the same manner as in Example 1 except that the molar ratio of sodium, lithium, manganese, and cobalt was changed to the values shown in Tables 1 and 2 when the working electrode was produced. Positive The amount of oxygen in the polar active materials was assumed to be 2 mol. The same applies to all the examples and comparative examples shown below.
  • invention cells A2 to A18 are hereinafter referred to as invention cells A2 to A18, respectively.
  • Example 1 Prepare sodium carbonate, manganese oxide, and cobalt oxide as starting materials at the time of preparation of the working electrode, and monolithic it power of sodiumcum, manganese, and nonreed. 0.7: 0. 5: 0.5.
  • a test cell was prepared in the same manner as in Example 1 except that these were mixed so as to be different from the above Examples 1 to 18 in that lithium carbonate was not used.
  • comparative cell Z The cell thus fabricated is hereinafter referred to as comparative cell Z.
  • the cells A1 to A18 of the present invention and the comparative cell Z are charged / discharged under the following charging / discharging conditions!
  • the charging end potential is 4.5 V (vs. LiZLi +), and the charging end potential is 5
  • the discharge capacity density and average potential at 0.0 V were examined, and the results are shown in Tables 1 and 2.
  • the discharge capacity density is the current flow divided by the mass of the positive electrode active material, and the average potential is the charge / discharge range 2.5 to 5.
  • OV vs. Li / Li + Is the result.
  • the charging current is 0.125 mA / cm 2 (equivalent to 0.2 It) and the charging is terminated to 4.5 V (Vs.Li/Li + ).
  • the discharge current is 0.125 mA / cm 2 (equivalent to about 0.2 It) and the discharge discharge potential is 2.5 V (Vs.Li/Li + ).
  • the condition is that the battery is charged to the end-of-charge potential of 5.
  • OV Vs ⁇ iZLi +
  • Tables 3 and 4 show the changes in the composition of the positive electrode active material due to the initial charge and the changes in the composition due to immersion in the electrolyte. In Table 3, (1) to (5) are performed in order.
  • the composition analysis was performed using a flame photometric method.
  • the positive electrode active material used in the present invention cell A7 [sodium, lithium, manganese, and cobalt when mixing sodium carbonate, lithium carbonate, manganese oxide, and cobalt oxide] Molar specific force
  • Electrolyte 1 mol / lit of LiPF in an electrolyte mixture of EC and DEC in a volume ratio of 3: 7 What was melt
  • Counter electrode negative electrode
  • Charging current during initial charging lZ20It [Table 3]
  • Preparation composition ratio for producing a raw electrode as described above (mixing sodium carbonate, lithium carbonate, etc.)
  • composition of cobalt and manganese was almost 1: 1 as prepared, and this was the same in the following (2) to (7).
  • the composition ratio of sodium and lithium is significantly different from that of the sample (1), the total amount of sodium and lithium in the samples (1) and (6) is about 0.8. It was almost constant. Therefore, it is understood that the sodium in the raw electrode is ion-exchanged to lithium by immersing the raw electrode in an electrolyte containing about 1M lithium ion.
  • Electrodes charged to 25%, 50%, 75%, and 100% of the battery capacity shown in samples (2) to (5) in Table 3 (hereinafter sometimes referred to as charging electrodes)
  • the amount of sodium is approximately constant. It can be seen that the amount of lithium decreases with increasing depth of charge. Therefore, it can be seen that the battery is charged smoothly.
  • An electrode in which the raw electrode shown in the sample (7) in Table 4 is left for 24 hours in the state of a battery (cell) (hereinafter may be referred to as an in-battery electrode)
  • the total amount of sodium and lithium is about 0.8, similar to the above sample (6), but the amount of sodium is decreased while the amount of lithium is increased compared to sample (6). This is allowed. This is because the lithium metal used in the negative electrode elutes and the sodium ions in the electrolyte are deposited, so that the lithium ion concentration in the electrolyte is maintained and the ion exchange between sodium and lithium is carried out continuously. It is considered a thing.
  • the ratio of the above mixture to 0.7 i Mn Co O] is not limited to the above ratio.
  • the above mixture may be added in an amount of about 5 to 10 moles relative to sodium oxalate.
  • the sample taken out of the furnace was washed with water, filtered and vacuum dried, and then XRD measurement was performed.
  • the above peak is also present in samples (8) and (9), it is a peak peculiar to the positive electrode active material used in the present invention, and is not a peak derived from a binder, a conductive agent, etc. Talking.
  • sodium carbonate, lithium carbonate and cobalt oxide are prepared as starting materials at the time of preparation of the working electrode, and the molar ratio of sodium, lithium and cobalt is 0.6: 0.4: 1. These were mixed in the same manner as in Example 1 of the first example except that these were mixed so that they were different from the examples of the first example in that no acid or manganese was used. A test cell was made.
  • the cell thus produced is hereinafter referred to as the present invention cell B1.
  • Example 1 of the first example Sodium carbonate, lithium carbonate, and manga oxide as starting materials during the production of the working electrode These were mixed so that the molar specific power of sodium, lithium, and manganese was 0.7: 0.3: 1.0 (without using cobalt oxide).
  • the test cell was fabricated in the same manner as in Example 1 of the first example, except that the examples were different.
  • the cell thus produced is hereinafter referred to as the present invention cell B2.
  • Example 1 At the time of preparation of the working electrode, sodium carbonate and cobalt oxide were prepared as starting materials, and these were mixed so that the molar specific power of sodium and cobalt was 1.0: 1.0 (do not use lithium carbonate.
  • the test cell was fabricated in the same manner as in Example 1 except that this was different from Example 1 above.
  • the cell thus produced is hereinafter referred to as comparative cell Y1.
  • Example 2 When preparing the working electrode, sodium carbonate and manganese oxide were prepared as starting materials, and these were mixed so that the molar specific power of sodium and manganese was 1.0: 1.0 (lithium carbonate was added). A test cell was fabricated in the same manner as in Example 2 except that this was different from Example 2 in the above points.
  • the cell thus produced is hereinafter referred to as comparative cell Y2.
  • the cells of the present invention Bl and B2 and the comparative cells Yl and ⁇ 2 are charged and discharged under the same conditions as in the experiment of the first embodiment, and the discharge capacity density at a charge end potential of 4.5 V (vs. LiZLi +) is obtained.
  • the discharge capacity density and the average potential when the end-of-charge potential was 5.
  • OV vs. LiZLi +
  • Table 5 shows the results. In Table 5, the discharge capacity density is the current flow divided by the mass of the positive electrode active material, and the average potential is the result in the charge / discharge range of 2.5 to 5. OV (vs. Li ZLi +). It is.
  • the cells Bl and B2 of the present invention have higher discharge capacity density than the comparative cells Yl and ⁇ 2. For this reason, lithium It can be seen that it is preferable to use a positive electrode active material that is contained so that the amount of lithium is regulated to be smaller than the amount of sodium.
  • Example 1 of the first example A test cell was fabricated in the same manner as in Example 1 of the first example, except that each of the first examples was different.
  • the cell thus produced is hereinafter referred to as the present invention cell C1.
  • a test cell was prepared in the same manner as in Example 1 except that the molar specific force of sodium, lithium, manganese, cobalt, and nickel was changed to the values shown in Table 6 when the positive electrode active material was prepared.
  • the cells thus fabricated are hereinafter referred to as the present invention cells C2 and C3, respectively.
  • the cells C1 to C3 of the present invention were charged and discharged under the same conditions as in the experiment of the first example, and the discharge capacity density at a charge end potential of 4.5 V (vs. LiZLi +) and the charge end potential of 5 were obtained.
  • the discharge capacity density and average potential at 0.0 V (vs. LiZLi +) were examined, and the results are shown in Table 6.
  • the discharge capacity density is the current flow divided by the mass of the positive electrode active material, and the average potential is the result in the charge / discharge range of 2.5 to 5.0 V (vs. LiZLi +). is there.
  • a positive electrode active material in which lithium is contained in the sodium oxide and the amount of lithium is regulated to be smaller than the amount of sodium.
  • the cell A7 of the present invention shown in the first example was used.
  • LiCoO acidic substance belonging to R3-m space group
  • test cell was produced in the same manner as in the example.
  • the cell thus produced is hereinafter referred to as comparative cell X.
  • Table 7 shows the results of examining the cycle characteristics (capacity retention ratio) of the cell A7 of the present invention and the comparative cell X.
  • the charging / discharging conditions are as follows: 0.125 mA / cm 2 (equivalent to 0.2 It) to a charging potential of 5. OV (vsLiZLi +), then 0.125 Zcm 2 (equivalent to about 0.2 It).
  • the discharge potential is 2.5 V (vsLiZLi +).
  • FIG. 5 shows a graph of the charge / discharge characteristics in the cell A7 of the present invention.
  • the cell A7 of the present invention shows stable discharge characteristics, and it is recognized that the capacity retention rate in the cycle characteristic test is also high. On the other hand, it is recognized that the capacity maintenance rate in the cycle characteristic test is low in the comparison cell X. Therefore, it can be seen that it is preferable to use the positive electrode active material described above.
  • the characteristics of this material are that the initial charge capacity density is 80 mAhZg and 170 mAh / g at charge potentials of 4.5 V (vsLiZL +) and 5. OV (vsLiZL +), respectively, and each discharge capacity density is 157 mAhZg (initial Charging / discharging efficiency 196%) and 215mAhZg (initial charging / discharging efficiency 126%).
  • the initial discharge capacity density is 69 mAhZg at a discharge potential of 2.5 V (vsLiZL +).
  • the present invention can be applied to, for example, a driving power source of a mobile information terminal such as a mobile phone, a notebook computer, and a PDA.
  • a mobile information terminal such as a mobile phone, a notebook computer, and a PDA.
  • FIG. 1 is a cross-sectional view of a test cell according to the best mode of the present invention.
  • FIG. 2 is a graph showing the results of XRD measurement for each charge depth of the positive electrode active material used in the cell A7 of the present invention.
  • FIG. 3 is a graph showing the results of XRD measurement of the positive electrode active material used in the cell A7 of the present invention and a sample obtained by ion exchange of the positive electrode active material.
  • FIG. 4 is a partially enlarged graph of FIG.
  • FIG. 5 is a graph showing charge / discharge characteristics of the cell A7 of the present invention.

Abstract

 放電容量が大きく、高電位までリチウムを引き抜いても構造が安定でサイクル特性の良い非水電解質二次電池、特に正極が改良された非水電解質二次電池を提供することを目的とする。  ナトリウム酸化物から成る正極活物質を有する正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、上記ナトリウム酸化物にはリチウムが含まれており、且つ、このリチウムのモル量がナトリウムのモル量より少なくなるように規制されることを特徴とする。

Description

非水電解質二次電池及びその製造方法
技術分野
[0001] 本発明は、ナトリウム酸化物から成るから成る正極活物質を含む正極と、負極と、非 水電解質とを備えた非水電解質二次電池及びその製造方法に関する。
背景技術
[0002] 近年、携帯電話、ノートパソコン、 PDA等の移動情報端末の小型化等が急速に進 展しており、その駆動電源としての電池にはさらなる高容量ィ匕が要求され、特に、体 積容量密度の増大が望まれて ヽる。リチウムイオン二次電池に代表される非水電解 質二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動 情報端末の駆動電源として広く利用されている。
[0003] 上記非水電解質二次電池は、通常、リチウム含有遷移金属複合酸化物からなる正 極活物質を備えた正極と、リチウムの吸蔵'放出が可能な黒鉛等の炭素材料力 なる 負極活物質を備えた負極と、エチレンカーボネートゃジェチルカーボネート等の有 機溶媒に LiBFや LiPF等のリチウム塩からなる電解質を溶解させた非水電解質と
4 6
が用いられている。このような電池では、充放電に伴い、リチウムイオンが正、負極間 を移動することにより充放電を行う。
[0004] 近年、上記移動情報端末の多機能化による消費電力の増加に伴って、さらに高い エネルギー密度の非水電解質二次電池が要望されている。
上記非水電解質二次電池の高エネルギー化のためには、負極活物質のみならず 正極活物質をも高エネルギー密度なものを用いる必要がある。このようなことを考慮し て、 LiCoO、 LiNiO、 LiNi Co Mn O等のリチウム含有層状化合物が提案さ
2 2 1/3 1/3 1/3 2
れている。また、リチウム酸化物では合成が困難な多くの層状化合物がナトリウム酸 化物では合成が容易である事から、ナトリウム酸ィ匕物についても注目を受けている。 中でも、 Na CoOや NaCo Mn Oはナトリウムをリチウムにイオン交換すること
0. 7 2 1/2 1/2 2
で、非水電解質電池の正極活物質として利用できるため、合成法、化学的手法によ るイオン交換法の研究が行なわれている(下記特許文献 1, 2及び下記非特許文献 1 , 2参照)。
[0005] 特許文献 1 :特開 2002— 220231号公報
特許文献 2 :特開 2001— 328818号公報
非特許文献 l :Akihisa kajiyama et al, Solid State Ionics 149 (2002) 39 -45
非特許文献 2 :F. Tournadre et al J. Solid State Chem. 177(2004)279 0- 2802
発明の開示
発明が解決しょうとする課題
[0006] ここで、例えば、上記 LiCoOを正極活物質として用いた場合、リチウムを半分以上
2
引き抜くと (Li CoOにおいて、 x≥0. 5になると)、結晶構造が崩れ、可逆性が低
1-x 2
下する。そのため、 LiCoOで利用できる放電容量密度は、 160mAhZg程度となり
2
、高エネルギー密度化することが困難である。また、 LiNiO
2、LiNi Co Mn O 1/3 1/3 1/3 2 等であっても同様の問題がある。
[0007] 一方、既知ナトリウム層状ィ匕合物のナトリウムとリチウムとをィ匕学的にイオン交換した リチウム層状酸ィ匕物は、放電容量密度が 130mAhZg程度であるため、高工ネルギ 一密度材料としての期待は薄 ヽ。
[0008] 具体的には、上記特許文献 1、上記特許文献 2、及び、上記非特許文献 1は同一 発明人であるが、非特許文献 1より、著者らがイオン交換した試料は空間群 R3—m ( P3構造のナトリウム酸ィ匕物をリチウムでイオン交換すると 03構造に変化するが、この ときの空間群である)に帰属し、その放電容量は約 130mAhZgであることが示され ている。さらに、当該著者らはナトリウム酸ィ匕物には P2、 P3という異なった構造が存 在することに触れ、 P2構造の試料のナトリウムをリチウムにイオン交換することは容易 ではないことを示している。ここで、 LiCo Mn Oの理論容量は約 280mAhZg
0. 5 0. 5 2
であると ヽうことから、上述の発明では理論容量の 50%程度しカゝ発揮することができ ない。以上のことから、従来の発明では放電容量の増大を図ることができないという 課題を有している。
[0009] 本発明は、このようなことを考慮してなされたものであって、放電容量が大きぐ高電 位までリチウムを引き抜いても構造が安定でサイクル特性の良い非水電解質二次電 池を提供することを目的とする。
課題を解決するための手段
[0010] 上記目的を達成するために、本発明は、ナトリウム酸化物から成る正極活物質を有 する正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、上記ナト リウム酸ィ匕物にはリチウムが含まれており、且つ、このリチウムのモル量がナトリウムの モル量より少なくなるように規制されることを特徴とする。
[0011] 上述の化学試薬を用いたイオン交換法では、試薬近傍のナトリウムイオンとリチウム イオンの交換反応が起こり、略全てのナトリウムイオンがリチウムイオンに交換されるた め、結晶構造に無理がかかる。一方、上記構成の如ぐ正極活物質であるナトリウム 酸化物にリチウムを含め且つリチウムのモル量が上記ナトリウムのモル量より少なくな るように規制すれば、理由は定かではないが、正極活物質作製後にナトリウムとリチウ ムとがイオン交換される際、結晶構造への負荷力 、さくなると考えられる。特に、リチ ゥムの量がナトリウムの量より少なくなるように規制されているので、上記作用が一層 発揮される。これらのことから、放電容量が大きぐ高電位までリチウムを引き抜いても 構造が安定でサイクル特性の良い非水電解質二次電池を提供できる。
[0012] 尚、上記正極活物質は、後述の如くナトリウムとリチウムとをイオン交換して使用する ことができる力 イオン交換しなくても正極活物質としての役割を発揮しうるものと考え られる。そこで、以下、イオン交換を行なっていない上記正極活物質をイオン交換前 正極活物質と称するときがあり、後述のイオン交換を行なった正極活物質をイオン交 換後正極活物質と称するときがある。
また、このような非水電解質二次電池においては、 5. OVまで充電しても電解液の 分解が少なぐサイクル特性が良い。その理由としては、初期にナトリウムイオンと電 解液等とが反応することによって生成する被膜が、リチウムイオンと電解液等とが反 応することによって生成する被膜より安定であると 、うことに理由によるものとも考えら れる。
[0013] 上記ナトリウム酸ィ匕物には、マンガン、鉄、コバルト、及びニッケル力 成る群より選 択される少なくとも 1種が含まれているのが好ましぐ具体的には、一般式 Na Li M a b X 0 (0. 5≤a≤l.0、 0<b<0. 5、 0.6≤a+b≤l. 1、 0. 90≤x≤l. 10、 0≤
2± a
a≤0. 1であり、 Mは、マンガン、鉄、コノ レト、及びニッケルから成る群より選択され る少なくとも 1種である)で表わされるものが例示される。好ましい組成としては、 Na L a
1 Mn Co O (0. 5<a≤l.0、 0<b<0. 5、 0.6≤a+b≤l. 1、 0.45≤v≤0. b y z 2±a
55、 0.45≤z≤0. 55、 0. 90≤y+z≤l. 10、 0≤ a≤0. 1)力 Sある。
[0014] 上記構成のイオン交換前正極活物質を用いれば、充放電容量が増大し、且つ、構 造が安定であるため、高電圧にまで耐えるからである。ここで、酸素量(一般式 Na Li a
M O における α)を、 0≤ ≤0. 1の範囲に限定するのは、電荷のバランスや、 b X 2士 a
酸素欠損及び酸素過剰な状況が生じるのを加味したためである。このことは、後述の 正極活物質にぉ 、ても同様である。
[0015] 尚、リチウムを含有するナトリウム酸ィ匕物に含まれるものとしては、マンガン、鉄、コ バルト、及びニッケルに限定するものではなぐチタン、バナジウム、クロム、銅、亜鉛 、アルミニウム、ジルコニウム、ニオブ、モリブデン、タンタル、タングステン、セリウム、 ネオジム等であっても良ぐ具体的には、一般式 Na Li MO (0≤a≤l.0、 0<b a b x 2±a
<0. 5、a>b、0. 6≤a+b≤l. 1、 0. 90≤x≤l. 10, 0≤ a≤0. 1、M:チタン、 バナジウム、クロム、マンガン、鉄、コノルト、ニッケル、銅、亜鉛、アルミニウム、ジル コニゥム、ニオブ、モリブデン、タンタル、タングステン、セリウム、ネオジムの少なくとも 一つ以上)で表わされるものが例示される。
[0016] ナトリウム酸化物から成る正極活物質を有する正極と、負極と,非水電解質とを備え た非水電解質二次電池であって、上記ナトリウム酸ィ匕物にはリチウムが含まれており 、且つ、当該ナトリウム酸ィ匕物の X線粉末結晶回折 (Cuka)において、 20 =17. 5 ° 〜19.0° にメインピークを、 35. 5° 〜37. 5° と 66.0° 〜67. 5° とに各々サ ブピークを有すると共に、ナトリウム酸化物は一般式 Na Li MO (0<a≤0. 7、 0 a b x 2±a
<b<l.0、 0.6≤a+b≤l. 1、 0. 90≤x≤l. 10、 0≤ a≤0. 1、 Mは、マンガン 、鉄、コバルト、及びニッケル力も成る群より選択される少なくとも 1種である)で表され ることを特徴とする。
[0017] 上述したイオン交換前正極活物質において、ナトリウムとリチウムとをイオン交換す ることにより、上記構成のイオン交換後正極活物質が作製される。この正極活物質は 、イオン交換前正極活物質においてナトリウムと共にリチウムが添加されているため、 対リチウム金属基準で 5. OVまで充電しても結晶構造が破壊されず、正極の容量を 格段に増大させることができる。
尚、上記一般式 Na Li M O で表されるナトリウム酸ィ匕物における bの値は、充 a b x 2士 α
電状態における値と放電状態における値とを共に含む値としている。
[0018] 上記ナトリウム酸ィ匕物として、 Na Li Mn Co O (0< a≤0. 7、 0< b< 1. 0、 0.
a b y z 2士 a
6≤a+b≤l . 1、 0. 45≤y≤0. 55、 0. 45≤z≤0. 55、 0. 90≤y+z≤l . 10、 0 ≤ a≤0. 1)を用いることが望ましぐ特に、 Na Li Mn Co O (0. 024≤a≤0. 7 a b y z 2士 a
、 0. 17< b< 0. 8、 0. 49≤y≤0. 51、 0. 49≤z≤0. 51、 0. 98≤y+z≤l . 02、 0≤ a≤0. 1)を用いることがより好ましい。
[0019] 充電終了時の正極の電位が対リチウム金属基準で 4. 5V以上であることが望ましい 正極の電位が対リチウム金属基準で 4. 5V以上となるまで充電しても正極活物質 の結晶構造が破壊されないので、正極の容量を格段に増大させることができ、且つ 充放電を繰り返してもこの状態が維持されるのでサイクル特性も向上する。
[0020] 上記負極に用いる負極活物質として、リチウム金属、珪素、炭素、錫、ゲルマニウム 、アルミニウム、鉛、インジウム、ガリウム、リチウム含有合金、予めリチウムを吸蔵させ た炭素材料、予めリチウムを吸蔵させた珪素材料、及び、リチウムと炭素とを含む化 合物から成る群から選択される少なくとも 1種が用いられて 、ることが望ま 、。
尚、上記リチウムと炭素とを含む化合物としては、例えば、黒鉛の層間にリチウムを 挟みこんだグラフアイト層間化合物が挙げられる。
[0021] また、上記リチウムを含有するナトリウム酸ィ匕物のリチウムやナトリウムの原料として は、リチウムやナトリウムの炭酸塩、炭酸水素塩、シユウ酸塩、酢酸塩、クェン酸塩、 蟻酸塩、硝酸塩、水酸化物、酸化物、過酸化物等が考えられる。
[0022] さらに、上記リチウムを含有するナトリウム酸ィ匕物はリチウム塩を含んだカーボネート 溶媒中でナトリウムの一部、若しくはほぼ完全にイオン交換することが可能である。ま た、そのイオン交換反応の速度は力なり速 、ことが推測される。
[0023] 原料として少なくともナトリウム化合物とリチウム化合物とを用いて焼成することにより 、リチウムのモル量がナトリウムのモル量より少なくなるように規制されたリチウムを含 有するナトリウム酸化物から成る正極活物質を作製するステップと、リチウム塩を含ん だカーボネート系溶媒に上記正極活物質を浸漬するステップと、上記正極活物質と ノインダ一とを含む正極活物質スラリーを作製した後、この正極活物質スラリーを正 極集電体に塗布することにより正極を作製するステップと、上記正極と負極との間に セパレータを配置して発電要素を作製するステップと、上記発電要素を外装体内に 収納すると共に、外装体内に非水電解質を注液するステップと、を有することを特徴 とする。
上記構成の如ぐリチウム塩を含んだカーボネート系溶媒にイオン交換前正極活物 質を浸漬するだけで、ナトリウムとリチウムとのイオン交換が行なわれるので、イオン交 換後正極活物質を備えた非水電解質二次電池を容易に作製することができる。
[0024] 原料として少なくともナトリウム化合物とリチウム化合物とを用いて焼成することにより 、リチウムのモル量がナトリウムのモル量より少なくなるように規制されたリチウムを含 有するナトリウム酸化物から成る正極活物質を作製するステップと、上記正極活物質 とバインダーとを含む正極活物質スラリーを作製した後、この正極活物質スラリーを正 極集電体に塗布することにより正極を作製するステップと、リチウム塩を含んだカーボ ネート系溶媒に上記正極を浸漬するステップと、上記正極と負極との間にセパレータ を配置して発電要素を作製するステップと、上記発電要素を外装体内に収納すると 共に、外装体内に非水電解質を注液するステップと、を有することを特徴とする。 上記構成の如ぐリチウム塩を含んだカーボネート系溶媒に上記正極を浸漬するだ けで、ナトリウムとリチウムとのイオン交換が行なわれるので、イオン交換後正極活物 質を備えた非水電解質二次電池を一層容易に作製することができる。
[0025] 上記非水電解質と上記リチウム塩を含んだカーボネート系溶媒とが同一の組成で あることが望ましい。
このような構成であれば、異なる電解質が混じることによって、電池性能が低下する 等の不都合を回避できる。
[0026] 上記リチウム塩として LiPFを用い、上記カーボネート系溶媒としてエチレンカーボ
6
ネートとジェチルカーボネートとを含む混合溶媒を用いることが望ましい。 このような方法であれば、ナトリウムとリチウムとのイオン交換を容易に行なうことがで きる。
[0027] 原料として少なくともナトリウム化合物とリチウム化合物とを用いて焼成することにより 、リチウムのモル量がナトリウムのモル量より少なくなるように規制されたリチウムを含 有するナトリウム酸化物から成る正極活物質を作製するステップと、上記正極活物質 とバインダーとを含む正極活物質スラリーを作製した後、この正極活物質スラリーを正 極集電体に塗布することにより正極を作製するステップと、上記正極と負極との間に セパレータを配置して発電要素を作製するステップと、上記発電要素を外装体内に 収納すると共に、外装体内に非水電解質を注液するステップと、を有することを特徴 とする。
上記構成の如ぐ外装体内に非水電解質を注液するだけで、ナトリウムとリチウムと のイオン交換が行なわれるので、イオン交換後正極活物質を備えた非水電解質二次 電池の製造コストが高騰するのを抑制できる。
[0028] (その他の事項)
(1)正極に添加する導電剤は、導電性の優れた活物質を用いる場合には、添加しな くても正極として機能するが、導電性の低い活物質が含まれている場合には、導電 剤を用いることが望ましい。導電剤としては、導電性を有する材料であればよぐ特に 導電性が優れている酸化物、炭化物、窒化物、炭素材料の少なくとも一種を用いるこ とができる。上記酸ィ匕物としては、酸化スズ、酸化インジウム等が挙げられる。上記炭 化物としては、炭化タングステン、炭化ジルコニウムが挙げられる。上記窒化物として は、窒化チタン、窒化タンタル等が挙げられる。なお、このように導電剤を添加する場 合、その添加量が少ないと、正極における導電性を充分に向上させることができない 一方、その添加量が多くなり過ぎると、正極における活物質の割合が少なくなつてェ ネルギー密度が低下する。このため、導電剤の量が正極全体の 0質量%以上 30質 量%以下、好ましくは、 0質量%以上 20質量%以下、より好ましくは、 0質量%以上 1 0質量%以下の範囲になるように規制する。
[0029] (2)正極に添加するノインダ一は、ポリテトラフルォロエチレン、ポリフッ化ビ-リデン 、ポリエチレンオキサイド、ポリビュルアセテート、ポリメタタリレート、ポリアタリレート、 ポリアクリロニトリル、ポリビュルアルコール、スチレン ブタジエンラバー、カルボキシ メチルセルロース力も選択される少なくとも一種を用いることができる。また、正極に添 加するバインダーの量が多いと、正極に含まれる活物質の割合が小さくなるため、正 極のエネルギー密度が低下する。そのため、バインダーの量が正極全体の 0質量% 以上 30質量%以下、好ましくは、 0質量%以上 20質量%以下、より好ましくは、 0質 量%以上 10質量%以下の範囲になるようにする。
(3)また,本発明で用いる非水電解質の溶媒としては、環状炭酸エステル、鎖状炭 酸エステル、エステル類、環状エーテル類、鎖状エーテル類、二トリル類、アミド類等 が挙げられる。上記環状炭酸エステルとしては、エチレンカーボネート、プロピレン力 ーボネート、ブチレンカーボネートなどが挙げられ、また、これらの水素の一部または 全部をフッ素化されているものも用いることが可能で、このようなものとしては、トリフル ォロプロピレンカーボネートやフルォロェチルカーボネートなどが例示される。上記鎖 状炭酸エステルとしては、ジメチルカーボネート、ェチルメチルカーボネート、ジェチ ルカーボネート、メチルプロピルカーボネート、ェチルプロピルカーボネート、メチルイ ソプロピルカーボネートなどが挙げられ、これらの水素の一部または全部をフッ素化 されているものも用いることが可能である。上記エステル類としては、酢酸メチル、酢 酸ェチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸ェチル、 γ ブチロラタ トンなどが挙げられる。上記環状エーテル類としては、 1, 3 ジォキソラン、 4ーメチ ル一 1, 3 ジォキソラン、テトラヒドロフラン、 2—メチルテトラヒドロフラン、プロピレン ォキシド、 1, 2 ブチレンォキシド、 1, 4 ジォキサン、 1, 3, 5 トリオキサン、フラ ン、 2—メチルフラン、 1, 8 シネオール、クラウンエーテルなどが挙げられる。上記 鎖状エーテル類としては、 1, 2—ジメトキシェタン、ジェチルエーテル、ジプロピルェ ーテノレ、ジイソプロピノレエーテノレ、ジブチノレエーテノレ、ジへキシノレエーテノレ、ェチノレ ビニルエーテル、ブチルビニルエーテル、メチルフエニルエーテル、ェチルフエニル エーテノレ、ブチノレフエニノレエーテノレ、ペンチノレフエニノレエーテノレ、メトキシトノレェン、 ベンジノレエチノレエーテノレ、ジフエニノレエーテノレ、ジペンジノレエーテノレ、 0—ジメトキシ ベンゼン、 1, 2—ジエトキシェタン、 1, 2—ジブトキシェタン、ジエチレングリコールジ メチノレエーテル、ジエチレングリコールジェチノレエーテル、ジエチレングリコールジブ チルエーテル、 l, 1ージメトキシメタン、 1, 1ージエトキシェタン、トリエチレングリコー ルジメチルエーテル、テトラエチレングリコールジメチルなどが挙げられる。上記-トリ ル類としては、ァセトニトリル等、上記アミド類としては、ジメチルホルムアミド等が挙げ られる。そして、これらの中力も選択される少なくとも 1種を用いることができる。
[0031] (4)非水溶媒に加えるリチウム塩としては、従来の非水電解質二次電池にぉ 、て電 解質として一般に使用されているものを用いることができ、例えば、 LiBF、 LiPF、 L
4 6 iCF SO、 LiC F SO、 LiN (CF SO ) 、 LiN (C F SO ) 、 LiAsF、ジフルォロ(
3 3 4 9 3 3 2 2 2 5 2 2 6 ォキサラト)ホウ酸リチウム力 選択される少なくとも 1種を用いることができる。
[0032] (5)電池作製前に、正極活物質又は正極活物質を含む正極を電解液へ浸漬してナ トリウムとリチウムとのイオン交換を行なう場合 (イオン交換後正極活物質を用いる場 合)、当該の溶媒、リチウム塩としては、上記(3) (4)に示したもの(実際の電池におけ る電解液)と同様のものを用いることが可能である。
発明の効果
[0033] 本発明によれば、放電容量が大きぐ高電位までリチウムを引き抜いても構造が安 定でサイクル特性の良い非水電解質二次電池を提供することができるという優れた 効果を奏する。
発明を実施するための最良の形態
[0034] 以下、この発明に係る非水電解質二次電池を、図 1に基づいて説明する。なお、こ の発明における非水電解質二次電池は、下記の形態に示したものに限定されず、そ の要旨を変更しない範囲において適宜変更して実施できるものである。
[0035] 〔作用極の作製〕
先ず、出発原料として炭酸ナトリウム (Na CO )と、炭酸リチウム (Li CO )と、酸ィ匕
2 3 2 3 マンガン(Mn O )と、酸ィ匕コバルト(Co O )とを用意し、ナトリウムとリチウムとマンガ
2 3 3 4
ンとコバルトとのモル比力 0. 6 : 0. 1 : 0. 5 : 0. 5となるようにこれらを混合した。次に 、混合した粉末をペレット成型した後、空気中 700°Cで 10時間仮焼成を行い、更に 空気中 800°Cで 20時間本焼成することにより、イオン交換前正極活物質 (リチウムを 含有するナトリウム酸化物)を作製した。
[0036] この後、上記正極活物質が 80質量%、導電剤としてのアセチレンブラックが 10質 量0 /0、結着剤としてのポリフッ化ビ-リデンが 10質量%となるように、これらを混合し、 更に、この混合物に N -メチル 2—ピロリドンを添加することによりスラリーを作製し た。最後に、このスラリー^^電体上に塗布した後、 110°Cで真空乾燥、成形して作 用極を得た。
[0037] 〔対極と参照極との作製〕
リチウム金属板を所定のサイズに切り取り、これにタブ付けすることにより、対極 2と 参照極 4とを作製した。
[0038] 〔非水電解質の調製〕
エチレンカーボネート (EC)とジェチルカーボネート(DEC)とを 3: 7の体積比で混合 した電解質に、六フッ化リン酸リチウム (LiPF )を 1モル
6 Zリットルとなるように溶解さ せることにより非水電解質を調製した。
[0039] 〔試験セルの作製〕
不活性雰囲気下において、ラミネートフィルム力 成る試験セル容器 5内に、対極 2 、セパレータ 3、作用極 1、セパレータ 3、及び参照極 4を配置した後、試験セル容器 5 内に上記非水電解質を注液することにより、図 1に示す試験セルを作製した。尚、リ ード 6の一部が試験セル容器 5から突出している。
尚、試験セル容器 5内に上記非水電解質を注液することにより、イオン交換前正極 活物質のナトリウムとリチウムとがイオン交換されて、イオン交換後正極活物質が作製 されること〖こなる。
実施例
[0040] 〔第 1実施例〕
(実施例 1)
実施例 1の試験セルとしては、上記発明を実施するための最良の形態で説明した 試験セルと同様に作製したものを用いた。
このようにして作製したセルを、以下、本発明セル A1と称する。
[0041] (実施例 2〜18)
作用極の作製時に、ナトリウムとリチウムとマンガンとコバルトとのモル比を、表 1、表 2に示すような値とした他は、上記実施例 1と同様にして試験セルを作製した。尚、正 極活物質における酸素量は全て 2molと仮定した。このことは、下記に示す全ての実 施例、及び比較例においても同様である。
このようにして作製したセルを、以下それぞれ、本発明セル A2〜A18と称する。
[0042] (比較例)
作用極の作製時に、出発原料として炭酸ナトリウムと、酸化マンガンと、酸化コバル 卜とを用意し、ナ卜リクムとマンガンと ノ ノレ卜とのモノレ it力 0. 7 : 0. 5 : 0. 5となるよう にこれらを混合した (炭酸リチウムを用いな 、点で上記実施例 1〜 18とは異なる)他 は、上記実施例 1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、比較セル Zと称する。
[0043] (実験 1)
上記本発明セル A1〜A18及び比較セル Zを、下記の充放電条件で充放電を行!、 、充電終止電位が 4. 5V (vs. LiZLi+)での放電容量密度と、充電終止電位が 5. 0 V (vs. LiZLi+)での放電容量密度と、平均電位とを調べたので、その結果を表 1及 び表 2に示す。尚、表 1及び表 2において、放電容量密度は、流した電流を正極活物 質の質量で除したものであり、平均電位は充放電範囲 2. 5〜5. OV(vs. Li/Li+) での結果である。
[0044] [1〜3サイクル目]
•充電条件
充電電流 0. 125mA/cm2 (0. 2It相当)で、充電終止電位 4. 5V (Vs.Li/Li+) まで充電するという条件。
[0045] ,放電条件
放電電流 0. 125mA/cm2 (約 0. 2It相当)で、放電終止電位 2. 5V (Vs.Li/Li+ )まで放電するという条件。
[0046] [4〜6サイクル目 ]
•充電条件
1〜3サイクル目と同様の充電電流で、充電終止電位 5. OV(Vs丄 iZLi+)まで充 電するという条件。
[0047] ,放電条件
Figure imgf000014_0001
Figure imgf000014_0002
〔〕0048 l
Figure imgf000015_0001
¾004 [0050] 表 1及び表 2から明らかなように、本発明セル A1〜A18は比較セル Zに比べて、放 電容量密度が高くなつていることが認められる。但し、本発明セル A14では比較セル Zに比べて、充電終止電位が 4. 5Vでの放電容量密度が低くなつている力 充電終 止電位が 5. OV (電池にとって、一層望まれる電位)での放電容量密度は高くなつて いることが認められる。これらのことから、ナトリウム酸ィ匕物にリチウムが含まれ、且つ、 リチウムの量がナトリウムの量より少なくなるように規制される正極活物質 (イオン交換 前正極活物質)を用いるのが好ま 、ことがわかる。
[0051] また、正極活物質(ィォン交換前正極活物質)の組成比をNa :Li: Mn: Co = a :b :y : zとすると、 0. 5≤a≤l . 0、 0<b≤0. 5、 a>b、 0. 6≤a+b≤l. 1、 0. 90≤y≤l . 10、 0≤z≤l. 0力好まし!/ヽ(本発明セノレ A1〜A18)。より好ましく ίま、 0. 6≤a≤0 . 8、 0<b≤0. 4、 a>b、 0. 8≤a+b≤l. 1、 0. 90<y≤l. 10、 0< z≤l. 0である (本発明セル A3等)。さらに 0. 65≤a≤0. 75、 0<b≤0. 3、 a>b、 0. 8≤a+b≤l . 0、0. 90<y< l. 10, 0< z≤0. 5の範囲力 ^最も好まし!/ヽ(本発明セノレ A6等)。
[0052] (実験 2)
本実験 2では、正極活物質における組成変化、及び、当該組成変化が生じた場合 の XRD測定試験を行なった。
〔A〕正極活物質における組成変化
正極活物の初期充電による組成変化及び電解液への浸漬による組成変化を調べ たので、その結果を表 3、表 4に示す。尚、表 3においては、(1)〜(5)を順に行なつ た。
[0053] 尚、組成分析は、炎光光度法を用いて行なった。また、正極活物質としては、本発 明セル A7に用いた正極活物質 [炭酸ナトリウムと、炭酸リチウムと、酸化マンガンと、 酸ィ匕コバルトとを混合する際のナトリウムとリチウムとマンガンとコバルトとのモル比力
0. 7 : 0. 2 : 0. 5 : 0. 5のもの]を用いた。但し、当該正極活物質においては、合成後 、不純物の除去を目的として水洗処理を施した。
[0054] ,実験条件
電解液: ECと DECとを 3 : 7の体積比で混合した電解質に、 LiPFを 1モル/リット ルとなるように溶解させたものを用いた。 対極 (負極):リチウム金属を用いた。 初期充電時の充電電流: lZ20It [表 3]
Figure imgf000018_0001
Figure imgf000019_0001
lLZZ£/900Zd /13d L V Z ZWLmZ OAV
Figure imgf000020_0001
[0057] ,実験結果
a.表 3の試料(1)に示す作製直後の電極 (以下、生電極と称する場合がある) 上述の如ぐ生電極を作製する際の仕込み組成比 (炭酸ナトリウム、炭酸リチウム等 を混合する際の組成比)は、ナトリウム:リチウム =0. 7 : 0. 2 (モル比)としたが、焼成 後は、表 3から明らかなように、リチウムは 0. 196で仕込み組成と略同じであつたが、 ナトリウム 0. 614で仕込み組成より少なくなつていることが認められた。
尚、コバルトとマンガンとの組成は仕込み通りほぼ 1: 1の組成比であり、また、このこ とは、下記(2)〜(7)でも同様であった。
[0058] b.表 4の試料 (6)に示す生電極を電解液中に 24時間浸漬した電極
このような電極では、ナトリウムとリチウムの組成比は上記試料(1)とは大きく異なつ ているものの、試料(1)及び試料 (6)において、ナトリウムとリチウムとの総量は約 0. 8とほぼ一定であった。したがって、 1M程度のリチウムイオンが含まれた電解液に生 電極を浸漬することで、生電極中のナトリウムはリチウムにイオン交換することがわか る。
[0059] c表 3の試料(2)〜(5)に示す、電池容量の 25%、 50%、 75%、 100%まで充電し た電極 (以下、充電電極と称する場合がある)
このような電極では、ナトリウムの量は略一定である力 充電深度が高まるにつれて リチウムの量が減少していることが認められる。したがって、円滑に充電されているこ とがわかる。
[0060] d.表 4の試料 (7)に示す生電極を電池(セル)の状態で 24時間放置した電極(以下 、電池内電極と称する場合がある)
このような電極では、上記試料 (6)と同様、ナトリウムとリチウムとの総量は約 0. 8で あるが、試料 (6)に比べてナトリウム量が減少する一方、リチウム量は増加しているこ とが認められる。これは、負極に用いたリチウム金属が溶出し、電解液中のナトリウム イオンが析出することで電解液中のリチウムイオン濃度が維持され、ナトリウムとリチウ ムのイオン交換が持続的に行われることによるものと考えられる。
[0061] (まとめ) リチウム塩を溶解させた電解液を利用してナトリウムをリチウムにイオン交換する方 法は室温以上の温度においても進行する力 上述の如ぐ室温(25°C程度)でも進 行し、且つ、このイオン交換反応速度はかなり速と予想される。したがって、上記方法 であれば、安全且つ経済的に正極活物質を作製することができる。また、上記方法 では、ナトリウムを含む多様な酸ィ匕物において、ナトリウムとリチウムとをイオン交換す ることが可能である。
[0062] ナトリウムを含む多様な酸ィ匕物をリチウムイオン電池の正極材料とする際、ナトリウム をリチウムにイオン交換した後、正極活物質として用いることはもちろん可能である。 更に、上述の如ぐ電池内電極においてもイオン交換することができる。したがって 、電池にリチウム塩を含んだ電解液を注入するだけで、ナトリウムとリチウムとをイオン 交換することが可能であるので、電池の生産性の低下を抑制できる。
[0063] 〔B〕XRD測定試験
本発明セル A7に用いた正極活物質、上記〔A〕における試料(1)〜(5)について、 XRD測定 (線源は CuK a、測定範囲 2 Θ = 10° 〜80° )を行なったので、その結 果を図 2に示す。試料はポリエチレンの袋に入れ、アルゴン封入して測定した。ポリエ チレンのピークは 2 0 = 21〜23° にブロードなピークを持つことは予めわかっている 。また、電池容量の 50%まで充電した電極の XRDプロファイル〔図 2の(3)〕で、 16 ° のピーク強度が相対的に大き 、のは実験誤差と考えて!/、る。
[0064] 尚、上記試料(1)、 (6)、 (7)の XRD測定は極板の状態で行なったため、正極活物 質以外のもの (バインダーや導電剤等)由来のピークが出現する。そこで、本願の特 徴的ピークを判別するために、(8)イオン交換前の正極活物質粉末を電解液に 24時 間浸潰してイオン交換した正極活物質粉末、及び、(9)下記に示す溶融塩法を用い てイオン交換前の正極活物質粉末をイオン交換した正極活物質粉末の XRDデータ について、図 3及び図 4 (2 0 = 30° 〜80° の範囲で図 3の強度を拡大した図)に示 す。 (8)の XRDデータのみならず(9)の XRDデータをも示すのは、図 3及び図 4から 明らかなように、(8)の XRDデータのピークは明瞭でないため、ピークの明瞭化を図 るためである。
[0065] ,溶融塩法の内容 予め硝酸リチウムと塩化リチウムとをモル比で 88 : 12の割合で混合しておく。 Na
0. 7
Li Mn Co O 3gと上記混合物 lOg加え、これらを乳鉢で混合し、大気中、炉
0. 2 0. 5 0. 5 2
内温度 290°Cで 10時間保持した (但し、ナトリウム酸ィ匕物 [上述の場合には、 Na L
0. 7 i Mn Co O ]に対する上記混合物の割合は、上記の割合に限定するものでは
0. 2 0. 5 0. 5 2
なぐナトリウム酸ィ匕物に対して上記混合物を 5〜10倍モル程度加えれば良い)。次 に、炉より取り出した試料を水洗、ろ過、真空乾燥した後、 XRD測定を行った。
[0066] ,実験結果
試料(1)ではメインピークが 2 0 = 15. 9° 〜16. 9° にあった力 ナトリウムとリチウ ムとのイオン交換された試料(2)、 (3)ではこのピークは減少し、新たにメインピーク 力 ^2 0 = 17. 5〜18. 5° に出現し、 2 0 = 35. 5° 〜37. 5° 、 38. 0° 〜40. 0° 、 44. 0° 〜46. 0° 、 48. 0° 〜49. 0° 、 55. 0° 〜57. 0° 、 66. 0° 〜67. 5° 、 69. 0° 〜70. 5° 、 77. 0° 〜78. 0° にも回折ピーク(本発明において特徴的な のは、 2 0 = 35. 5° 〜37. 5° 、 66. 0° 〜67. 5° のピークである)が見られた。こ のことから判断するに、イオン交換した試料は、従来品のような空間群 R3—mに属す る構造ではな 、と推定できる。
尚、上記ピークは、試料 (8) (9)においても存在することから、本発明に用いる正極 活物質に特有のピークであり、バインダーや導電剤等に由来するピークでな 、こと力 S ゎカゝる。
[0067] 〔第 2実施例〕
(実施例 1)
作用極の作製時に、作用極の作製時に、出発原料として炭酸ナトリウムと、炭酸リチ ゥムと、酸化コバルトとを用意し、ナトリウムとリチウムとコバルトとのモル比力 0. 6 : 0 . 4 : 1. 0となるようにこれらを混合した (酸ィ匕マンガンを用いない点で前記第 1実施例 の各実施例とは異なる)他は、上記第 1実施例の実施例 1と同様にして試験セルを作 製した。
このようにして作製したセルを、以下、本発明セル B1と称する。
[0068] (実施例 2)
作用極の作製時に、出発原料として炭酸ナトリウムと、炭酸リチウムと、酸化マンガ ンとを用意し、ナトリウムとリチウムとマンガンとのモル比力 0. 7:0. 3 : 1. 0となるよう にこれらを混合した (酸ィ匕コバルトを用いな 、点で前記第 1実施例の各実施例とは異 なる)他は、上記第 1実施例の実施例 1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、本発明セル B2と称する。
[0069] (比較例 1)
作用極の作製時に、出発原料として炭酸ナトリウムと、酸化コバルトとを用意し、ナト リウムとコバルトとのモル比力 1. 0 : 1. 0となるようにこれらを混合した (炭酸リチウム を用いな 、点で上記実施例 1とは異なる)他は、上記実施例 1と同様にして試験セル を作製した。
このようにして作製したセルを、以下、比較セル Y1と称する。
[0070] (比較例 2)
作用極の作製時に、出発原料として炭酸ナトリウムと、酸ィ匕マンガンとを用意し、ナト リウムとマンガンとのモル比力 1. 0: 1. 0となるようにこれらを混合した (炭酸リチウム を用いな 、点で上記実施例 2とは異なる)他は、上記実施例 2と同様にして試験セル を作製した。
このようにして作製したセルを、以下、比較セル Y2と称する。
[0071] (実験)
上記本発明セル Bl、 B2及び比較セル Yl、 Υ2を、前記第 1実施例の実験と同様 の条件で充放電を行い、充電終止電位が 4. 5V(vs. LiZLi+)での放電容量密度と 、充電終止電位が 5. OV(vs. LiZLi+)での放電容量密度と、平均電位とを調べた ので、その結果を表 5に示す。尚、表 5において、放電容量密度は、流した電流を正 極活物質の質量で除したものであり、平均電位は充放電範囲 2. 5〜5. OV(vs. Li ZLi+)での結果である。
[0072] [表 5] 電終電位位充終電が止が止 00 寸 卜 CM
極成物質均組平壩正活比の ^
種 ()) (類/+/+セでiiで 5ルの 5 OV LLのの 4 LiLiVvs 3v;....
C) (l Livmos. O O CO
密度放容)度)量 (匱密(放電容電//hhAAmgrag
本明発セ B 1ル 本明発セル B 2
ο LC 寸
Oi 較比セル Y 1O
00 較比セル Y 2
〇 O 〇
00
CO 寸
ο
O
* ' 寸 〇 」
コ * ' o , · o II
表 5から明らかなように、本発明セル Bl、 B2は比較セル Yl、 Υ2に比べて、放電容 量密度が高くなつていることが認められる。このことから、ナトリウム酸ィ匕物にリチウム が含まれ、且つ、リチウムの量がナトリウムの量より少なくなるように規制される正極活 物質を用いるのが好まし 、ことがわかる。
[0074] 〔第 3実施例〕
(実施例 1)
作用極の作製時に、出発原料として炭酸ナトリウムと、炭酸リチウムと、酸化マンガ ンと、酸ィ匕コノ レトと、水酸ィ匕ニッケル [Ni(OH) ]とを用意し、ナトリウムとリチウムと
2
マンガンとコノ ノレ卜とニッケノレとのモノ ktt力 0. 5 :0. 5 :0. 5 :0. 25 :0. 25となるよう にこれらを混合した (水酸ィ匕ニッケルを加えた点で前記第 1実施例の各実施例とは異 なる)他は、上記第 1実施例の実施例 1と同様にして試験セルを作製した。
このようにして作製したセルを、以下、本発明セル C1と称する。
[0075] (実施例 2、 3)
正極活物質の作製時に、ナトリウムとリチウムとマンガンとコバルトとニッケルとのモ ル比力 表 6に示すような値とした他は、上記実施例 1と同様にして試験セルを作製 した。
このようにして作製したセルを、以下それぞれ、本発明セル C2、 C3と称する。
[0076] (実験)
上記本発明セル C1〜C3を、前記第 1実施例の実験と同様の条件で充放電を行い 、充電終止電位が 4. 5V(vs. LiZLi+)での放電容量密度と、充電終止電位が 5. 0 V(vs. LiZLi+)での放電容量密度と、平均電位とを調べたので、その結果を表 6に 示す。尚、表 6において、放電容量密度は、流した電流を正極活物質の質量で除し たものであり、平均電位は充放電範囲 2. 5〜5. 0V(vs. LiZLi+)での結果である。
[0077] [表 6] 0078^ふ^:^,
Figure imgf000027_0002
Figure imgf000027_0001
が認められる。このことから、ナトリウム酸ィ匕物にリチウムが含まれ、且つ、リチウムの量 がナトリウムの量より少なくなるように規制される正極活物質を用いるのが好ま 、こと がわカゝる。
[0079] 〔第 4実施例〕
(実施例)
本実施例としては、上記第 1実施例で示した本発明セル A7を用いた。
[0080] (比較例)
正極活物質として、 LiCoO (R3—m空間群に属する酸ィ匕物)を用いた他は、上記
2
実施例と同様にして試験セルを作製した。
このようにして作製したセルを、以下、比較セル Xと称する。
[0081] (実験)
上記本発明セル A7及び比較セル Xのサイクル特性 (容量維持率)を調べたので、 その結果を表 7に示す。尚、充放電条件は、 0. 125mA/cm2 (0. 2It相当)の電流 で充電電位 5. OV(vsLiZLi+)まで充電した後、 0. 125Zcm2 (約 0. 2It相当)の電 流で放電電位 2. 5V(vsLiZLi+)まで放電するという条件である。また、本発明セル A7における充放電特性のグラフを図 5に示す。
[0082] [表 7]
Figure imgf000029_0001
[0083] 表 7及び図 5から明らかなように、本発明セル A7は安定した放電特性を示し、しか も、サイクル特性試験における容量維持率も高いことが認められる。これに対して、比 較セル Xではサイクル特性試験における容量維持率が低 ヽことが認められる。したが つて、上述した正極活物質を用いるのが好まし 、ことがわかる。
尚、表 7には示していないが、充電電位を 4. 5V(vsLiZL+)以下の電位で数回サイ クルさせた後、 5. OV(vsLiZL+)まで充電するようにすれば、サイクル特性が更に向 上することが認められた〔(2. 5-5. OV)3サイクル目の容量維持率 98%〕。
[0084] また、この材料の特徴は、初期充電時容量密度は、充電電位 4. 5V(vsLiZL+)、 5. OV(vsLiZL+)でそれぞれ 80mAhZg、 170mAh/g,各放電容量密度は 157 mAhZg (初期充放電効率 196%)、 215mAhZg (初期充放電効率 126%)となる ことである。
さらに、この材料を放電カゝら始めると、放電電位 2. 5V(vsLiZL+)で初期放電容量 密度 69mAhZgを示す。
産業上の利用可能性
[0085] 本発明は、例えば携帯電話、ノートパソコン、 PDA等の移動情報端末の駆動電源 等に適用することができる。
図面の簡単な説明
[0086] [図 1]本発明の最良の形態に係る試験セルの断面図である。
[図 2]本発明セル A7に用いた正極活物質の各充電深度 XRD測定結果を示すグラフ である。
[図 3]本発明セル A7に用いた正極活物質とこれをイオン交換した試料の XRD測定 結果を示すグラフである。
[図 4]図 2を部分的に拡大したグラフである。
[図 5]本発明セル A7における充放電特性を示すグラフである。
符号の説明
[0087] 1 :作用極
2:対極 :セパレータ:参照極:試験セル:リード

Claims

請求の範囲
[1] ナトリウム酸化物から成る正極活物質を有する正極と、負極と、非水電解質とを備え た非水電解質二次電池であって、
上記ナトリウム酸ィ匕物にはリチウムが含まれており、且つ、このリチウムのモル量が ナトリウムのモル量より少なくなるように規制されることを特徴とする非水電解質二次 電池。
[2] 上記ナトリウム酸ィ匕物には、マンガン、鉄、コバルト、及びニッケル力 成る群より選 択される少なくとも 1種が含まれている、請求項 1記載の非水電解質二次電池。
[3] 上記ナトリウム酸化物として、一般式 Na Li M O (0. 5≤a≤l . 0, 0< b< 0. 5 a b x 2± a
、 0. 90≤x≤l . 10、 0≤ a≤0. 1であり、 Miま、マンガン、鉄、コノ ノレ卜、及び-ッケ ルカも成る群より選択される少なくとも 1種である)で表わされるものが用いられる、請 求項 2記載の非水電解質二次電池。
[4] ナトリウム酸化物から成る正極活物質を有する正極と、負極と、非水電解質とを備え た非水電解質二次電池であって、
上記ナトリウム酸ィ匕物にはリチウムが含まれており、且つ、当該ナトリウム酸化物の X 線粉末結晶回折(Cuk a )において、 2 Θ = 17. 5° 〜19. 0° にメインピークを、 35 . 5° 〜37. 5° と 66. 0° 〜67. 5° とに各々サブピークを有すると共に、ナトリウム 酸ィ匕物は一般式 Na Li M O (0< a≤0. 7、 0< b< l . 0、 0. 6≤a+b≤l . 1、 0 a b x 2± a
. 90≤x≤l . 10, 0≤ a≤0. 1, Miま、マンガン、鉄、コノ ノレ卜、及び-ッケノレ力ら成 る群より選択される少なくとも 1種である)で表されることを特徴とする非水電解質二次 電池。
[5] 上記ナトリウム酸ィ匕物として、 Na Li Mn Co O (0< a≤0. 7、 0< b< 1. 0、 0.
a b y z 2士 a
6≤a+b≤l . 1、0. 45≤y≤0. 55、 0. 45≤z≤0. 55、 0. 90≤y+z≤l . 10、 0
≤ a≤0. 1)を用いる、請求項 4記載の非水電解質二次電池。
[6] 充電終了時の正極の電位が対リチウム金属基準で 4. 5V以上である、請求項 4記 載の非水電解質二次電池。
[7] 充電終了時の正極の電位が対リチウム金属基準で 4. 5V以上である、請求項 5記 載の非水電解質二次電池。
[8] 上記負極に用いる負極活物質として、リチウム金属、珪素、炭素、錫、ゲルマニウム 、アルミニウム、鉛、インジウム、ガリウム、リチウム含有合金、予めリチウムを吸蔵させ た炭素材料、予めリチウムを吸蔵させた珪素材料、及び、リチウムと炭素とを含む化 合物から成る群力も選択される少なくとも 1種以上力も成る、請求項 4記載の非水電 解質二次電池。
[9] 上記負極に用いる負極活物質として、リチウム金属、珪素、炭素、錫、ゲルマニウム 、アルミニウム、鉛、インジウム、ガリウム、リチウム含有合金、予めリチウムを吸蔵させ た炭素材料、予めリチウムを吸蔵させた珪素材料、及び、リチウムと炭素とを含む化 合物から成る群力 選択される少なくとも 1種以上力 成る、請求項 5記載の非水電 解質二次電池。
[10] 上記負極に用いる負極活物質として、リチウム金属、珪素、炭素、錫、ゲルマニウム 、アルミニウム、鉛、インジウム、ガリウム、リチウム含有合金、予めリチウムを吸蔵させ た炭素材料、予めリチウムを吸蔵させた珪素材料、及び、リチウムと炭素とを含む化 合物から成る群力 選択される少なくとも 1種以上力 成る、請求項 6記載の非水電 解質二次電池。
[11] 上記負極に用いる負極活物質として、リチウム金属、珪素、炭素、錫、ゲルマニウム 、アルミニウム、鉛、インジウム、ガリウム、リチウム含有合金、予めリチウムを吸蔵させ た炭素材料、予めリチウムを吸蔵させた珪素材料、及び、リチウムと炭素とを含む化 合物から成る群力 選択される少なくとも 1種以上力 成る、請求項 7記載の非水電 解質二次電池。
[12] 原料として少なくともナトリウム化合物とリチウム化合物とを用いて焼成することにより 、リチウムのモル量がナトリウムのモル量より少なくなるように規制されたリチウムを含 有するナトリウム酸化物から成る正極活物質を作製するステップと、
リチウム塩を含んだカーボネート系溶媒に上記正極活物質を浸漬するステップと、 上記正極活物質とバインダーとを含む正極活物質スラリーを作製した後、この正極 活物質スラリーを正極集電体に塗布することにより正極を作製するステップと、 上記正極と負極との間にセパレータを配置して発電要素を作製するステップと、 上記発電要素を外装体内に収納すると共に、外装体内に非水電解質を注液する ステップと、
を有することを特徴とする非水電解質二次電池の製造方法。
[13] 上記非水電解質と上記リチウム塩を含んだカーボネート系溶媒とが同一の組成で ある、請求項 12記載の非水電解質二次電池の製造方法。
[14] 上記リチウム塩として LiPFを用い、上記カーボネート系溶媒としてエチレンカーボ
6
ネートとジェチルカーボネートとを含む混合溶媒を用いる、請求項 12記載の非水電 解質二次電池の製造方法。
[15] 上記リチウム塩として LiPFを用い、上記カーボネート系溶媒としてエチレンカーボ
6
ネートとジェチルカーボネートとを含む混合溶媒を用いる、請求項 13記載の非水電 解質二次電池の製造方法。
[16] 原料として少なくともナトリウム化合物とリチウム化合物とを用いて焼成することにより
、リチウムのモル量がナトリウムのモル量より少なくなるように規制されたリチウムを含 有するナトリウム酸化物から成る正極活物質を作製するステップと、
上記正極活物質とバインダーとを含む正極活物質スラリーを作製した後、この正極 活物質スラリーを正極集電体に塗布することにより正極を作製するステップと、 リチウム塩を含んだカーボネート系溶媒に上記正極を浸漬するステップと、 上記正極と負極との間にセパレータを配置して発電要素を作製するステップと、 上記発電要素を外装体内に収納すると共に、外装体内に非水電解質を注液する ステップと、
を有することを特徴とする非水電解質二次電池の製造方法。
[17] 上記非水電解質と上記リチウム塩を含んだカーボネート系溶媒とが同一の組成で ある、請求項 16記載の非水電解質二次電池の製造方法。
[18] 上記リチウム塩として LiPFを用い、上記カーボネート系溶媒としてエチレンカーボ
6
ネートとジェチルカーボネートとを含む混合溶媒を用いる、請求項 16記載の非水電 解質二次電池の製造方法。
[19] 上記リチウム塩として LiPFを用い、上記カーボネート系溶媒としてエチレンカーボ
6
ネートとジェチルカーボネートとを含む混合溶媒を用いる、請求項 17記載の非水電 解質二次電池の製造方法。 原料として少なくともナトリウム化合物とリチウム化合物とを用いて焼成することにより 、リチウムのモル量がナトリウムのモル量より少なくなるように規制されたリチウムを含 有するナトリウム酸化物から成る正極活物質を作製するステップと、
上記正極活物質とバインダーとを含む正極活物質スラリーを作製した後、この正極 活物質スラリーを正極集電体に塗布することにより正極を作製するステップと、 上記正極と負極との間にセパレータを配置して発電要素を作製するステップと、 上記発電要素を外装体内に収納すると共に、外装体内に非水電解質を注液する ステップと、
を有することを特徴とする非水電解質二次電池の製造方法。
PCT/JP2006/322714 2006-01-23 2006-11-15 非水電解質二次電池及びその製造方法 WO2007083434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800506731A CN101371382B (zh) 2006-01-23 2006-11-15 非水电解质二次电池及其制造方法
EP06832645A EP1981102A4 (en) 2006-01-23 2006-11-15 NONAQUEOUS ELECTROLYTE BATTERY AND METHOD FOR PRODUCING THE SAME
US12/161,747 US8178243B2 (en) 2006-01-23 2006-11-15 Non-aqueous electrolyte secondary battery and method of manufacturing the same
US13/369,431 US8349496B2 (en) 2006-01-23 2012-02-09 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-013744 2006-01-23
JP2006013744 2006-01-23
JP2006-248071 2006-09-13
JP2006248071A JP4832229B2 (ja) 2006-01-23 2006-09-13 非水電解質二次電池

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/161,747 A-371-Of-International US8178243B2 (en) 2006-01-23 2006-11-15 Non-aqueous electrolyte secondary battery and method of manufacturing the same
US13/369,431 Division US8349496B2 (en) 2006-01-23 2012-02-09 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2007083434A1 true WO2007083434A1 (ja) 2007-07-26

Family

ID=38287394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322714 WO2007083434A1 (ja) 2006-01-23 2006-11-15 非水電解質二次電池及びその製造方法

Country Status (6)

Country Link
US (2) US8178243B2 (ja)
EP (1) EP1981102A4 (ja)
JP (1) JP4832229B2 (ja)
KR (1) KR20080086434A (ja)
CN (1) CN101944631B (ja)
WO (1) WO2007083434A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083848A1 (ja) * 2012-11-30 2014-06-05 三洋電機株式会社 非水電解質二次電池
WO2014083834A1 (ja) * 2012-11-29 2014-06-05 三洋電機株式会社 非水電解質二次電池

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832229B2 (ja) * 2006-01-23 2011-12-07 三洋電機株式会社 非水電解質二次電池
JP5142544B2 (ja) * 2006-03-20 2013-02-13 三洋電機株式会社 非水電解質二次電池
JP5100069B2 (ja) * 2006-09-15 2012-12-19 三洋電機株式会社 非水電解質二次電池およびその製造方法
US8067118B2 (en) 2006-12-27 2011-11-29 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5515306B2 (ja) * 2008-02-06 2014-06-11 住友化学株式会社 複合金属酸化物およびナトリウム二次電池
JP5436898B2 (ja) 2009-03-23 2014-03-05 三洋電機株式会社 非水電解質二次電池及びその製造方法
KR101097244B1 (ko) * 2009-09-02 2011-12-21 삼성에스디아이 주식회사 리튬 전지용 음극 및 이를 구비한 리튬 전지
JP5758720B2 (ja) * 2010-09-30 2015-08-05 三洋電機株式会社 非水電解質二次電池及びその製造方法
US8835041B2 (en) * 2011-01-14 2014-09-16 Uchicago Argonne, Llc Electrode materials for sodium batteries
JP2012204307A (ja) * 2011-03-28 2012-10-22 Kyushu Univ 正極活物質およびその製造方法
US11283104B2 (en) * 2012-06-01 2022-03-22 Global Graphene Group, Inc. Rechargeable dual electroplating cell
JP6174047B2 (ja) 2012-12-27 2017-08-02 三洋電機株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
US10193134B2 (en) 2013-02-27 2019-01-29 Umicore Doped sodium manganese oxide cathode material for sodium ion batteries
JP6486653B2 (ja) 2014-01-31 2019-03-20 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6624885B2 (ja) 2015-02-19 2019-12-25 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2016156447A1 (en) 2015-04-01 2016-10-06 Fundación Centro De Investigación Cooperativa De Energías Alternativas Cic Energigune Fundazioa Positive electrode active material for sodium-ion batteries
HUE051976T2 (hu) 2015-05-26 2021-04-28 Umicore Nv Bivalens fémekkel dópolt nátrium-mangán-oxid nátriumion-akkumulátorokhoz való katódanyagként
US10109854B2 (en) 2015-09-30 2018-10-23 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP6908368B2 (ja) 2016-02-29 2021-07-28 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN105932260B (zh) * 2016-06-30 2020-10-30 中南大学 一种钠离子电池氧化物正极材料及其制备方法和应用
KR102003709B1 (ko) * 2016-08-23 2019-10-17 주식회사 엘지화학 전극 특성 테스트에 대한 신뢰성이 높은 테스트 셀
KR102412587B1 (ko) * 2018-11-29 2022-06-23 주식회사 엘지에너지솔루션 셀 성능 측정방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142057A (ja) * 1993-11-18 1995-06-02 Sanyo Electric Co Ltd 非水電解質電池
JPH08171900A (ja) * 1994-12-16 1996-07-02 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JP2000040513A (ja) * 1998-05-20 2000-02-08 Fuji Elelctrochem Co Ltd 非水電解液2次電池、およびその製造方法
JP2000203844A (ja) * 1998-05-22 2000-07-25 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムマンガン複合酸化物、その製造方法、およびそれを正極活物質に用いたリチウム二次電池
JP2002313337A (ja) 2001-04-13 2002-10-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531920A (en) * 1994-10-03 1996-07-02 Motorola, Inc. Method of synthesizing alkaline metal intercalation materials for electrochemical cells
US6306542B1 (en) * 1998-05-22 2001-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium manganese composite oxide for lithium secondary battery cathode active material, manufacturing method thereof, and lithium secondary battery using the composite oxide as cathode active material
JP2001328818A (ja) 2000-05-19 2001-11-27 National Institute For Materials Science 層状リチウムコバルトマンガン酸化物粒子粉末、およびその製造方法
EP1209124A1 (en) * 2000-11-27 2002-05-29 National Institute for Materials Science Lamellar sodium-cobalt-manganese oxide and method for manufacturing the same
JP2002220231A (ja) 2000-11-27 2002-08-09 National Institute For Materials Science 層状ナトリウムコバルトマンガン酸化物及びその製造方法
US20040016632A1 (en) * 2002-07-26 2004-01-29 Jeremy Barker Methods of making transition metal compounds useful as cathode active materials using electromagnetic radiation
JP4832229B2 (ja) * 2006-01-23 2011-12-07 三洋電機株式会社 非水電解質二次電池
JP5142544B2 (ja) * 2006-03-20 2013-02-13 三洋電機株式会社 非水電解質二次電池
US8067118B2 (en) * 2006-12-27 2011-11-29 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5014218B2 (ja) * 2007-03-22 2012-08-29 三洋電機株式会社 非水電解質二次電池
JP4823275B2 (ja) * 2007-06-25 2011-11-24 三洋電機株式会社 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142057A (ja) * 1993-11-18 1995-06-02 Sanyo Electric Co Ltd 非水電解質電池
JPH08171900A (ja) * 1994-12-16 1996-07-02 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JP2000040513A (ja) * 1998-05-20 2000-02-08 Fuji Elelctrochem Co Ltd 非水電解液2次電池、およびその製造方法
JP2000203844A (ja) * 1998-05-22 2000-07-25 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムマンガン複合酸化物、その製造方法、およびそれを正極活物質に用いたリチウム二次電池
JP2002313337A (ja) 2001-04-13 2002-10-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIHISA. KAJIYAMA ET AL., SOLID STATE IONICS, vol. 149, 2002, pages 39 - 45
F. TOURNADRE ET AL., J. SOLID STATE CHEM., vol. 177, 2004, pages 2790 - 2802
See also references of EP1981102A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083834A1 (ja) * 2012-11-29 2014-06-05 三洋電機株式会社 非水電解質二次電池
WO2014083848A1 (ja) * 2012-11-30 2014-06-05 三洋電機株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
US8178243B2 (en) 2012-05-15
JP4832229B2 (ja) 2011-12-07
US20100248040A1 (en) 2010-09-30
EP1981102A1 (en) 2008-10-15
CN101944631B (zh) 2014-11-05
EP1981102A4 (en) 2012-05-02
US20120135319A1 (en) 2012-05-31
JP2007220650A (ja) 2007-08-30
US8349496B2 (en) 2013-01-08
KR20080086434A (ko) 2008-09-25
CN101944631A (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4832229B2 (ja) 非水電解質二次電池
JP5425504B2 (ja) 非水電解質電池
JP5014218B2 (ja) 非水電解質二次電池
JP2003282055A (ja) 非水電解液二次電池
KR20120030774A (ko) 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 전지
JP2010232038A (ja) リチウムイオン二次電池
JP2006236830A (ja) リチウム二次電池
WO2007029659A1 (ja) 非水電解質二次電池
JP2010092824A (ja) 非水電解質二次電池用正極活物質、それを用いた非水電解質二次電池及び非水電解質二次電池用正極活物質の製造方法
JP2011243585A (ja) 非水電解質二次電池及びその製造方法
JP4651279B2 (ja) 非水電解質二次電池
JP4776186B2 (ja) 非水電解質二次電池
US20100081056A1 (en) Non-aqueous electrolyte secondary battery, positive electrode active material used for the battery, and manufacturing method of the positive electrode active material
JP4901089B2 (ja) 非水電解質二次電池
JP5436898B2 (ja) 非水電解質二次電池及びその製造方法
JP4738039B2 (ja) 黒鉛系炭素材料の製造方法
US10305095B2 (en) Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005259629A (ja) 非水電解質電池用正極及びその製造方法、並びに、この正極を用いた電池及びその製造方法
KR101886323B1 (ko) 리튬 망간 복합 산화물, 이의 제조 방법 및 이를 이용한 비수전해질 이차 전지
JP3961514B2 (ja) Li−Ni−Ti複合酸化物電極材料の製造方法およびその電極材料を用いた電池
JP2005276612A (ja) 非水電解質電池用正極及びその製造方法、並びに、この正極を用いた電池及びその製造方法
JP2010218834A (ja) 非水電解質二次電池及びその製造方法
JP2007273260A (ja) 非水電解質二次電池の製造方法
JP2005267853A (ja) 非水電解質電池用正極及びこの正極を用いた電池
JP2006127931A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020087011671

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680050673.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006832645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12161747

Country of ref document: US