WO2007086154A1 - 電池端子検査装置、検査方法および筒形乾電池 - Google Patents

電池端子検査装置、検査方法および筒形乾電池 Download PDF

Info

Publication number
WO2007086154A1
WO2007086154A1 PCT/JP2006/312584 JP2006312584W WO2007086154A1 WO 2007086154 A1 WO2007086154 A1 WO 2007086154A1 JP 2006312584 W JP2006312584 W JP 2006312584W WO 2007086154 A1 WO2007086154 A1 WO 2007086154A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
terminal
battery
measurement
measured
Prior art date
Application number
PCT/JP2006/312584
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Kuniya
Yuji Tsuchida
Tatsuya Yamazaki
Original Assignee
Fdk Energy Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk Energy Co., Ltd. filed Critical Fdk Energy Co., Ltd.
Priority to US12/223,220 priority Critical patent/US8040109B2/en
Priority to EP06767234A priority patent/EP1993157A4/en
Publication of WO2007086154A1 publication Critical patent/WO2007086154A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5083Testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes

Definitions

  • the present invention relates to a battery terminal inspection device and an inspection method for detecting electrical contact on the outer surfaces of a positive electrode terminal and a negative electrode terminal of a dry battery, and a cylindrical dry battery. It relates to batteries that are effective when applied to cylindrical batteries such as alkaline batteries.
  • Cylindrical alkaline batteries such as LR6 are loaded with a positive electrode mixture, a separator, and a gel negative electrode mixture together with an alkaline electrolyte in a bottomed cylindrical positive electrode can also serving as a positive electrode current collector. And the opening of the positive electrode can is sealed using a negative electrode terminal plate and a gasket.
  • This type of alkaline battery has a positive electrode terminal and a negative electrode terminal formed on both ends of a cylinder, and is accommodated in a battery holder (or battery case) of the device. Both the positive electrode and the negative electrode terminal are terminals on the device side. Used in contact. The terminal on the device side is normally panel-biased so as to be pressed against the terminal on the battery side. If the terminal surface on the battery side forms a good conductive surface, the electrical connection between the battery and the device will be good.
  • the electromotive force of a dry battery is a low voltage such as 1.5 V
  • the conduction state between the battery and the device tends to become unstable due to high contact resistance. Therefore, in order to ensure the conduction, it has also been proposed that the battery terminal surface is subjected to, for example, a roughened caulking process or the like (for example, Japanese Patent Application Laid-Open No. 2002-124218, JP 2000-138056 A and JP 2000 48799 A).
  • the electromotive force of a dry cell is a force with a low voltage of 1.5 V. In such a low voltage region, it cannot be solved only with the conductive material forming the surface of the terminal! Good is likely to occur. In other words, there are many instability factors in electrical contact in the low voltage range of several volts. Good electrical contact cannot be guaranteed only with the terminal surface material.
  • the contact failure of the battery terminal is unstable and lacks reproducibility. For example, even when the test by measuring the electromotive force is normal, the failure of the contact failure often occurs for the first time in actual use. .
  • the cause of this uncertain contact failure is that the electromotive force of the dry cell is low, and the contact resistance is increased due to dirt on the surface of the dry cell terminal such as oxide film and oil. Can be considered.
  • alkaline dry batteries capable of discharging a large current by using, for example, oxyhydroxide-nickel as a positive electrode active substance have been provided.
  • these In high-performance batteries, the quality of electrical contact on the battery terminal surface is a particularly serious problem. Problems such as deterioration of discharge performance due to the use of discharge equipment could not be reliably prevented.
  • Alkaline batteries that are on the market are mass-produced, and are shipped to the secondary market in large quantities.
  • the performance of the battery is important as a single battery, but the statistical performance as a group of batteries, that is, as a battery group, is also important.
  • the failure rate is particularly regarded as a problem in the performance of this battery group.
  • the conventional battery group has a problem that the failure rate of electrical contact due to an acid film or oil is high.
  • the present invention has been made in view of the above problems, and an object of the present invention is to dry a low electromotive force. Another object of the present invention is to provide a battery terminal inspection device and an inspection method capable of accurately and highly efficiently inspecting and suppressing contact failure on a terminal surface. Another object of the present invention is to provide a cylindrical dry battery in which contact failure on the terminal surface is reliably suppressed.
  • An apparatus for inspecting electrical contact on the outer surfaces of a positive electrode terminal and a negative electrode terminal of a dry battery the light projecting means for making light incident on a measurement site on the battery terminal surface, A light receiving means for detecting the light reflection state, and a measurement processing means for digitizing the light reflection state of the measurement site based on the detection of the light receiving means, and evaluating the electrical contact property based on the measured value of the light reflection state.
  • a battery terminal inspection device characterized by obtaining data.
  • the glossiness is measured by the amount of reflected light received as the light reflection state from the measurement site, and the electrical contact evaluation data is obtained from the measured amount of received light.
  • a battery terminal inspection device In the above means (1), the glossiness is measured by the amount of reflected light received as the light reflection state from the measurement site, and the electrical contact evaluation data is obtained from the measured amount of received light.
  • a battery terminal inspection method characterized in that a digital color discrimination sensor is used as the device described in the means (1) or (2), and the amount of reflected light received is measured under the following measurement conditions. Law.
  • Light source color Red LED, Green LED, Blue LED.
  • Sensor type Red, green, blue with LED amplifier LED light source reflection type photoelectric sensor. Distance from sensor head to specimen: 20mm.
  • Measurement time 0.5 to 1 minute.
  • Standard color plane setting Specular surface receives 300 light.
  • the average glossiness on the outer surface of the positive electrode terminal and the negative electrode terminal is in the range of 20 to 60 in terms of the amount of received light (specular surface is 300) measured by the inspection method described in the above means (4).
  • FIG. 1 is a conceptual diagram showing an embodiment of a battery terminal inspection device, an inspection method, and a cylindrical dry battery according to the present invention.
  • FIG. 2 is a side view showing a specific embodiment of a battery terminal inspection apparatus and inspection method according to the present invention.
  • FIG. 1 shows an embodiment of a battery terminal inspection device 50 and an inspection method and a cylindrical dry battery 50 to which the technology of the present invention is applied.
  • a cylindrical dry battery 10 shown in the figure is an LR6 type alkaline dry battery, and comprises a positive electrode mixture 21, a separator 22, and a negative electrode mixture 23 in a bottomed cylindrical metal positive electrode can 11.
  • Power generation element
  • the positive electrode can 11 serves as a positive electrode current collector and a positive electrode terminal, and a convex positive electrode terminal portion 12 is integrally formed on the bottom by a press carriage.
  • the opening of the positive electrode can 11 is sealed with a negative electrode terminal plate 32 and a resin gasket 35.
  • a rod-shaped negative electrode current collector 31 is fixed inside the negative electrode terminal plate 32, and the current collector 31 is inserted into the gel-like negative electrode mixture 23.
  • the positive electrode mixture 21 is a ring-shaped solid body formed by cylindrically forming a mixture in which a conductive additive lead such as graphite is added to a positive electrode active substance, and the positive electrode active substance includes a diacid salt.
  • a conductive additive lead such as graphite
  • the positive electrode active substance includes a diacid salt.
  • Manganese (EMD) and Z or EMD and nickel oxyhydroxide (NiOOH) are used.
  • the battery terminal inspection device 50 includes a light projecting unit 51, a light receiving unit 52, a beam splitter 53, an imaging optical system 54, a gloss measurement processing circuit 55, a determination device 56, and the like.
  • the light projecting unit 51 uses a semiconductor laser or a light emitting diode as a light source, and The spot light L 1 is incident on the measurement site on the terminal surface of the battery 10 (in the illustrated example, the outer surface of the negative electrode terminal plate 32) via the liter 53 and the imaging optical system 54.
  • the light receiving unit 52 uses one or a plurality of optical sensors or an image sensor such as a CCD, and the spot light L1 incident on the measurement site via the imaging optical system 54 and the beam splitter 53. Receives and detects the reflection state of the light. L2 indicates the reflected light.
  • the reflected light L2 includes regular reflected light and diffused light.
  • the optical system 54 and the light receiving unit 52 are configured to selectively receive and detect only the regular reflected light. By selectively measuring only the amount of specularly reflected light, it is possible to determine the level of gloss at the measured light-receiving power level.
  • the gloss measurement processing circuit 55 performs a process of converting the reflection state of the measurement location into a glossiness based on the light reception / detection of the light receiving unit 52. By this gloss measurement processing circuit 55, the reflection state at the measurement location is digitized and output as the glossiness. The determination device 56 determines whether or not the digitized data is within a predetermined range.
  • the battery terminal inspection device 50 is configured using a glossiness measuring device, and measures the light reflection state of the battery terminal surface as the glossiness, and this glossiness reflects the quality of electrical contact very well. It has been learned by the present inventors. In other words, the decrease in electrical contact due to contamination of deposits such as oxide film and oil produced on the outer surface of the battery terminal can be accurately determined by the measured value of gloss.
  • the electrical contact properties on the outer surfaces of the positive electrode terminal portion 12 and the negative electrode terminal plate 32 of the dry battery 10 can be detected by measuring the light reflection state on the outer surface, particularly the glossiness. it can. Therefore, in the case of dry batteries that are prepared and Z or sorted so that the average light intensity on the outer surface of the positive electrode terminal and the negative electrode terminal, that is, the amount of reflected light received is within a specific range, the contact failure rate of the terminal is greatly reduced. be able to.
  • the glossiness measuring device constituting the battery terminal inspection device 50 a commercially available ready-made product can be used.
  • a digital color discrimination sensor (amplifier: CZ-1, sensor head: CZ-10) manufactured by KEYENCE can be suitably used.
  • FIG. 2 shows an outline of an inspection apparatus 50 using a digital color discrimination sensor 500 manufactured by Keyence Corporation.
  • This digital color discrimination sensor 500 includes an amplifier (CZ-VI) 501, a sensor head (CZ-10) 502, and a connection optical fiber 503, and is installed on a suitable base 60.
  • a light projecting unit that makes the spot light L1 incident on the terminal (32) surface of the dry battery 10 and a light receiving unit that receives the reflected light L2 are integrated. Yes. Measure the received light amount of the reflected light of the surface to be measured (32) with the distance D1 between the sensor head (CZ-10) 502 and the surface to be measured (32) kept constant (20 mm). Thus, whether or not the amount of received light is within a certain range (20 to 60) can accurately determine the quality of electrical contact on the surface of the terminal to be measured (32).
  • the electrical contact quality can be determined in a non-contact manner. As a result, a large amount of dry cells can be detected with high efficiency at the mass production site.
  • the amount of reflected light is measured using a KEYENCE digital color discrimination sensor (amplifier: CZ-1; sensor head: CZ-10) in 1 (light / dark) mode. Two negative electrode terminals were measured. The amount of received light was measured under the following conditions.
  • Light source color Red LED, Green LED, Blue LED.
  • Sensor type Red, green, blue with LED amplifier LED light source reflection type photoelectric sensor. Distance from sensor head to specimen: 20mm.
  • Measurement time 0.5 to 1 minute.
  • Reference color plane setting Specular surface (completely specular reflection surface) is assumed to receive 300 light.
  • the evaluation test was implemented in a digital camera and the number of possible shots was measured.
  • a digital camera “DSC-Hl” manufactured by SONY was used.
  • the test conditions and shooting method were based on the CIPA standard “Battery Life Measurement Method” (CIPA DC-002-2003), and the number of shots was counted at 21 ° C.
  • the brightness at the time of shooting was about 750 lux, and the shooting procedure was as follows (1) to (3).
  • Table 1 shows the results of the above test.
  • Table 1 Amount of received light on terminal surface and number of possible shots
  • the present invention has been described based on the representative examples, the present invention can have various modes other than those described above.
  • the battery terminal inspection device 50 of the present invention can be used even if it is not a dedicated device originally prepared as a glossiness measurement device, as long as it can measure the light reflection state of the measured location by numerical values. It is.

Abstract

 起電力の低い乾電池においてとくに生じやすい端子面の接触不良を的確に検査して抑制することを可能にする。しかも、その検査は非接触で高効率に行えるようにする。また、端子面の接触不良が確実に抑制された筒形乾電池を提供する。乾電池10の正極端子12および負極端子32の外表面における電気接触性を検査する装置50であって、電池端子面の被測定個所に光を入射させる投光手段51と、被測定個所からの光反射状態を検出する受光手段52と、この受光手段52の検出に基づいて被測定個所の光沢度を定量化する測定処理手段55とを備え、上記光沢度の測定値によって上記電気接触性の評価データを得る。

Description

明 細 書
電池端子検査装置、検査方法および筒形乾電池
技術分野
[0001] 本発明は、乾電池の正極端子および負極端子の外表面における電気接触性を検 查する電池端子検査装置および検査方法および筒形乾電池に関し、とくに重負荷 放電用途に使用される乾電池、たとえばアルカリ乾電池などの筒形乾電池に適用し て有効なものに関する。
背景技術
[0002] = =関連出願の相互参照 = =
この出願は、 2006年 1月 25日付で出願した日本特許出願、特願 2006— 16780 号に基づく優先権を主張し、その内容を本願に援用する。
[0003] LR6などの筒形アルカリ乾電池は、正極集電体を兼ねる有底筒状の正極缶内に、 正極合剤、セパレータ、ゲル状負極合剤がアルカリ電解液と共に装填されて発電要 素が形成されるとともに、負極端子板およびガスケットを用いて正極缶の開口部が封 口された構造を有する。
[0004] この種のアルカリ乾電池は筒の両端に正極端子と負極端子が形成され、機器の電 池ホルダ (あるいは電池ケース)に収容されて、正極と負極の両端子がその機器側の 端子に接触した状態で使用される。機器側の端子は通常、電池側の端子に圧接す るようパネ付勢されている。電池側の端子面が良好な導電面を形成していれば、電 池と機器間の導通状態も良好となる。
[0005] し力し、一般に、乾電池の起電力はたとえば 1. 5Vといった低電圧であるため、電 池と機器間の導通状態は接触抵抗が高くなつたりして不安定になりやすい。そこで、 その導通を確実にさせるために、電池の端子面に、たとえば粗面化カ卩ェゃメツキ処 理等を施すことが従来力も提案されている(たとえば、特開 2002— 124218号公報、 特開 2000— 138056号公報、および特開 2000— 48799号公報)。
発明の開示
発明が解決しょうとする課題 [0006] 上述した従来技術には次のような問題のあることが本発明者等によって明ら力とさ れた。
[0007] すなわち、乾電池の端子面は、たとえば粗面化カ卩ェゃメツキ処理等を施しても、そ れだけでは必ずしも良好な電気接触性を保証できないことが、本発明者等の長年の 研究および経験により知得されている。このことは、今現在もなお、乾電池の端子面 に対する加工や処理に関する改良開発が続けられていることからも裏付けられる。
[0008] 上述したように、一般に、乾電池の起電力は 1. 5Vという低電圧である力 このよう な低電圧領域では、端子の表面を形成する導電材質だけでは解決し得な!ヽ通電不 良が生じやすい。つまり、数 Vの低電圧領域での電気接触には不安定要因が多ぐ 端子の表面材質だけでは良好な電気接触性を保証することができない。
[0009] このため、粗面化カ卩ェゃメツキ処理等によって端子面の電気接触性の改善をはか つた従来の乾電池では、機器に装填して実際に使用する段階にて端子の接触不良 が生じることを確実に回避させることができな力つた。
[0010] この電池端子の接触不良は不安定で再現性に乏しぐたとえば起電力の測定によ る検査では正常であっても、実際の使用時にはじめて接触不良の不具合が発生する といったことが多い。この不確実な接触不良の発生原因としては、乾電池の起電力が 低電圧であることに加えて、その乾電池の端子表面に生成される酸化皮膜や油分な どの付着物の汚れによる接触抵抗の上昇が考えられる。
[0011] 端子面の酸ィ匕皮膜や汚れは、その端子面の粗面化加工によって多少は破る効果 があるが、これも完全ではなぐ接触抵抗を確実に低減させるまでには至らないことが 判明した。しかし、従来の乾電池では、酸化皮膜や油分などによる電気接触性の不 良については的確な検査が行われておらず、したがって実際の使用時に接触不良 が生じやす 、と 、つた問題を有して!/、た。
[0012] 一方、近年は、たとえばデジタルカメラように、消費電流の大きな携帯用電子機器 が普及して来た。これにともない、その機器で使用する乾電池も重負荷放電性能が 重視されるようになって来た。
[0013] これに応じるため、正極作用物質としてォキシ水酸ィ匕ニッケルを用いることなどによ り大電流放電を可能にしたアルカリ乾電池が提供されるようになって来た。これらの 高性能乾電池では、電池の端子面における電気接触性の良否がとくに大きな問題と なるが、酸ィ匕皮膜や油分などによる電気接触性の不良については、的確な検査が行 えないため、重負荷放電機器使用での放電性能低下等のトラブルを確実に防止させ ることができなかった。
[0014] また、巿場に出回っているアルカリ乾電池は大量生産されたものであって、多量の まとまった数を単位にして流通市場へ出荷される。この場合、その電池の性能は、単 品電池としての性能も重要であるが、数がまとまった状態すなわち電池群としての統 計的性能も重要である。この電池群の性能では不良率がとくに問題視されるが、従 来の電池群では、酸ィ匕皮膜や油分などによる電気接触性の不良率が高いという問題 かあつた。
[0015] 本発明は以上のような問題を鑑みてなされたもので、その目的は、起電力の低い乾
Figure imgf000004_0001
、端子面の接触不良を的確かつ高効率に検査して抑 制することが可能な電池端子検査装置および検査方法を提供することにある。また、 端子面の接触不良が確実に抑制された筒形乾電池を提供することにある。
[0016] 本発明の上記以外の目的および構成については、本明細書の記述および添付図 面からあきらかになるであろう。
課題を解決するための手段
[0017] 本発明が提供する解決手段は以下のとおりである。
[0018] (1)乾電池の正極端子および負極端子の外表面における電気接触性を検査する 装置であって、電池端子面の被測定個所に光を入射させる投光手段と、被測定個所 からの光反射状態を検出する受光手段と、この受光手段の検出に基づいて被測定 個所の光反射状態を数値化する測定処理手段とを備え、上記光反射状態の測定値 によって上記電気接触性の評価データを得ることを特徴とする電池端子検査装置。
[0019] (2)上記手段(1)において、被測定個所からの光反射状態として光沢度を反射光 の受光量により測定し、この測定受光量によって上記電気接触性の評価データを得 ることを特徴とする電池端子検査装置。
[0020] (3)乾電池の正極端子および負極端子につ!、て、その外表面に生成される酸ィ匕皮 膜や油分などの付着物の汚れによる接触抵抗の上昇を、上記手段(1)または(2)に 記載の装置を用いて検査することを特徴する電池端子検査方法。
[0021] (4)上記手段(1)または(2)に記載の装置としてデジタルカラー判別センサを使用 し、下記測定条件にて反射光の受光量を測定することを特徴とする電池端子検査方 法。
[測定条件]
光源色:赤色 LED、緑色 LED、青色 LED。
センサ種類:アンプ付属赤色、緑色、青色 LED光源反射型光電センサ。 センサヘッドから検体までの距離: 20mm。
角度:センサヘッドに対して直角。
測定スポット径: 3. 5mm0
測定時間: 0. 5〜1分。
基準色面設定:鏡面を受光量 300とする。
測定条件:静止。
[0022] (5)正極端子および負極端子の外表面における平均光沢度が、上記手段 (4)に記 載の検査方法によって測定される受光量 (鏡面を 300とする)で 20〜60の範囲であ ることを特徴とする筒形乾電池。
発明の効果
[0023] 起電力の低 、乾電池にぉ 、てとくに生じやす 、端子面の接触不良を的確に検査し て抑制することができる。し力も、その検査は非接触で高効率に行うことができる。ま た、端子面の接触不良が確実に抑制された筒形乾電池を提供することができる。
[0024] 上記以外の作用 Z効果については、本明細書の記述および添付図面力 あきらか になるであろう。
図面の簡単な説明
[0025] [図 1]本発明による電池端子検査装置および検査方法および筒形乾電池の実施形 態を示す概念図である。
[図 2]本発明による電池端子検査装置および検査方法の具体的な実施形態を示す 側面図である。
符号の説明 [0026] 11 正極缶, 12 正極端子部
20 発電要素, 21 正極合剤
22 セパレータ, 23 負極合剤
31 負極集電子, 32 負極端子板
35 ガスケット, 50 電池端子検査装置
51 投光部, 52 受光部
53 ビームスプリッタ, 54 結像光学系
55 光沢測定処理回路, 56 判定装置
60 基台, 500 キーエンス社製デジタルカラー判別センサ
501 センサ本体, 502 投受光部
503 接続ケーブル, L1 入射光, L2 反射光
発明を実施するための最良の形態
[0027] 図 1は、本発明の技術が適用された電池端子検査装置 50および検査方法および 筒形乾電池 50の実施形態を示す。
[0028] まず、同図に示す筒形乾電池 10は LR6型のアルカリ乾電池であって、有底筒状の 金属製正極缶 11内に、正極合剤 21、セパレータ 22、負極合剤 23からなる発電要素
20がアルカリ電解液と共に収容されて 、る。
[0029] 正極缶 11は正極集電体および正極端子を兼ねていて、その底部には凸状の正極 端子部 12がプレスカ卩ェにより一体形成されている。この正極缶 11の開口部は負極 端子板 32と榭脂製ガスケット 35を用いて封止されている。負極端子板 32の内側に は棒状の負極集電子 31が固設され、この集電子 31がゲル状の負極合剤 23中に挿 入されている。
[0030] 正極合剤 21は、正極作用物質に黒鉛等の導電助剤鉛が添加された合剤を筒状に 成形した環状固形体であって、その正極作用物質には、二酸ィ匕マンガン (EMD)お よび Zまたは EMDとォキシ水酸化ニッケル (NiOOH)が使用されて 、る。
[0031] 電池端子検査装置 50は、投光部 51、受光部 52、ビームスプリッタ 53、結像光学系 54、光沢測定処理回路 55、および判定装置 56などにより構成されている。
[0032] 投光部 51は、半導体レーザまたは発光ダイオードを光源として使用し、ビームスプ リツタ 53および結像光学系 54を介して、電池 10の端子表面(図示例では負極端子 板 32の外表面)上の被測定個所にスポット光 L1を入射させる。
[0033] 受光部 52は、 1または複数の光センサ、あるいは CCDなどの撮像素子を使用し、 結像光学系 54およびビームスプリッタ 53を介して、上記被測定個所に入射されたス ポット光 L1の反射状態を受光 ·検出する。 L2はその反射光を示す。
[0034] 反射光 L2には正反射光と拡散光があるが、その正反射光だけを選択的に受光 -検 出するように光学系 54および受光部 52が構成されている。この正反射光の受光量 だけを選択的に測定することにより、その測定受光量力 被測定個所での光沢度を 柳』定することができる。
[0035] 光沢測定処理回路 55は、受光部 52の受光 ·検出に基づいて被測定個所の反射 状態を光沢度に数値化する処理を行う。この光沢測定処理回路 55により、被測定個 所での反射状態が光沢度として数値化されて出力される。判定装置 56は、その数値 化データが所定の範囲にある力否かを判定する。
[0036] 上記電池端子検査装置 50は光沢度測定装置を用いて構成され、電池端子面の光 反射状態を光沢度として測定するが、この光沢度が電気接触性の良否を非常に良く 反映することが本発明者らにより知得された。すなわち、電池端子の外表面に生成さ れる酸化皮膜や油分などの付着物の汚れによる電気接触性の低下は、光沢度の測 定値によって的確に判定することができる。
[0037] 上記のように、乾電池 10の正極端子部 12および負極端子板 32の外表面における 電気接触性は、その外表面での光反射状態とくに光沢度を測定することによって検 查することができる。したがって、正極端子および負極端子の外表面における平均光 沢度すなわち反射光の受光量が特定の範囲となるように調製および Zまたは選別さ れた乾電池では、端子の接触不良率を大幅に低減させることができる。
[0038] 上記電池端子検査装置 50を構成する光沢度測定装置は、市販の既製品を流用 することができる。その既製の光沢度測定装置としては、キーエンス (KEYENCE) 社製デジタルカラー判別センサ(アンプ: CZ— 1、センサヘッド: CZ— 10)が好適に 使用することができる。
[0039] このキーエンス社製デジタルカラー判別センサによって測定される反射光の受光量 が 20〜60 (鏡面を 300とする)の範囲となる電池端子面は電気接触性が確実に良好 であることが確認された。これは、電気接触性を損なう原因となっている酸化皮膜や、 油分などの付着物汚れの状態が、端子面の光反射状態とくに光沢度に再現性良く 反映されるためと考えられる。
[0040] したがって、上記電池端子検査装置 50としてキーエンス社製デジタルカラー判別 センサを使用する場合は、正極端子および負極端子の外表面における平均受光量 が 20〜60の範囲となるように調製および/または選別することで、乾電池の接触不 良率を確実に抑制することができる。
[0041] 図 2は、キーエンス社製デジタルカラー判別センサ 500を用いた検査装置 50の概 要を示す。このデジタルカラー判別センサ 500は、アンプ(CZ— VI) 501、センサへ ッド(CZ— 10) 502、接続光ファイバ 503からなり、適当な基台 60上に設置されてい る。
[0042] センサヘッド(CZ— 10) 502には、乾電池 10の端子(32)面上にスポット光 L1を入 射させる投光部と、その反射光 L2を受光する受光部とが集約されている。このセンサ ヘッド (CZ— 10) 502と被測定端子(32)面との間隔 D1を一定(20mm)に保った状 態で、被測定端子 (32)面力 の反射光の受光量を測定することにより、その受光量 が一定範囲(20〜60)内にあるか否かでもって、被測定端子(32)面での電気接触 性の良否を的確に判定することができる。
[0043] ここで、注目すべきは、上記検査装置 50を用いる検査方法では、電気接触性の良 否を非接触で行えることである。これにより、量産現場で多量の乾電池を高効率に検 查することができる。
実施例
[0044] 電気容量が同じに構成された LR6型のアルカリ乾電池において、負極端子および 正極端子の外表面における反射受光量 (反射光の受光量)だけが異なる複数種類 の乾電池 (サンプル 1〜11)を作製し、それぞれに端子の電気接触性を評価する試 験を行った。
[0045] 反射受光量の測定は、キーエンス (KEYENCE)社製デジタルカラー判別センサ( アンプ: CZ— 1、センサヘッド: CZ— 10)を 1 (明暗)モードで使用し、正極端子および 負極端子をそれぞれ 2箇所ずつ測定した。受光量測定は下記条件で行った。
[0046] [測定条件]
光源色:赤色 LED、緑色 LED、青色 LED。
センサ種類:アンプ付属赤色、緑色、青色 LED光源反射型光電センサ。 センサヘッドから検体までの距離: 20mm。
角度:センサヘッドに対して直角。
測定スポット径: 3. 5mm0
測定時間: 0. 5〜1分。
基準色面設定:鏡面 (完全正反射面)を受光量 300とする。
測定条件:静止。
[0047] 評価試験はデジタルカメラに実装して撮影可能枚数を計測した。デジタルカメラは 、 SONY社製「DSC— Hl」を使用した。試験条件および撮影方法は、 CIPA規格「 電池寿命測定法」(CIPA DC— 002— 2003)に準拠し、 21°Cにて撮影枚数を計 数した。撮影時の明るさは約 750ルクスで、撮影方法は、次の手順(1)〜(3)で行つ た。
(1)起動。
(2)ズーム、フラッシュ撮影、ズーム、無フラッシュ撮影を 5回繰り返す。所要時間は 5分とした。
(3) 10分間の休止期間を置く。
(2) (3)を繰り返して撮影できた枚数を計数した。
[0048] 表 1は上記試験の結果を示す。
[表 1] 表 1 :端子面の受光量と撮影可能枚数
Figure imgf000010_0001
[0049] 表 1に示されるように、端子面からの反射受光量 (鏡面を 300とする)が 20〜60の 範囲内にある本発明の乾電池群 (サンプル 3〜5)では、反射受光量がその範囲外の 乾電池群 (サンプル 1, 2および 6〜 11)に比べて、撮影可能な枚数力 0%程度増加 していることが確認できた。
[0050] 以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以 外にも種々の態様が可能である。たとえば、本発明の電池端子検査装置 50は、被測 定個所の光反射状態を数値化して測定できるものであれば、最初から光沢度測定装 置として作製された専用装置でなくても使用可能である。
産業上の利用可能性
[0051] 起電力の低 、乾電池にぉ 、てとくに生じやす 、端子面の接触不良を的確に検査し て抑制することができる。し力も、その検査は非接触で高効率に行うことができる。ま た、端子面の接触不良が確実に抑制された筒形乾電池を提供することができる。

Claims

請求の範囲
[1] 乾電池の正極端子および負極端子の外表面における電気接触性を検査する装置 であって、電池端子面の被測定個所に光を入射させる投光手段と、被測定個所から の光反射状態を検出する受光手段と、この受光手段の検出に基づいて被測定個所 の光反射状態を数値化する測定処理手段とを備え、上記光反射状態の測定値によ つて上記電気接触性の評価データを得ることを特徴とする電池端子検査装置。
[2] 請求項 1にお!、て、被測定個所からの光反射状態として光沢度を反射光の受光量 により測定し、この測定受光量によって上記電気接触性の評価データを得ることを特 徴とする電池端子検査装置。
[3] 乾電池の正極端子および負極端子について、その外表面に生成される酸化被膜 や油分などの付着物の汚れによる接触抵抗の上昇を、請求項 1または 2に記載の装 置を用いて検査することを特徴する電池端子検査方法。
[4] 請求項 1または 2に記載の装置としてデジタルカラー判別センサを使用し、下記測 定条件にて反射光の受光量を測定することを特徴とする電池端子検査方法。
[測定条件]
光源色:赤色 LED、緑色 LED、青色 LED。
センサ種類:アンプ付属赤色、緑色、青色 LED光源反射型光電センサ。 センサヘッドから検体までの距離: 20mm。
角度:センサヘッドに対して直角。
測定スポット径: 3. 5mm0
測定時間: 0. 5〜1分。
基準色面設定:鏡面を受光量 300とする。
測定条件:静止。
[5] 正極端子および負極端子の外表面における平均受光量が、請求項 4に記載の検 查方法によって測定される受光量 (鏡面を 300とする)で 20〜60の範囲であることを 特徴とする筒形乾電池。
PCT/JP2006/312584 2006-01-25 2006-06-23 電池端子検査装置、検査方法および筒形乾電池 WO2007086154A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/223,220 US8040109B2 (en) 2006-01-25 2006-06-23 Battery terminal inspection apparatus, inspection method, and cylindrical dry battery
EP06767234A EP1993157A4 (en) 2006-01-25 2006-06-23 CELL TERMINATION TESTING DEVICE, TESTING METHOD AND CYLINDRICAL DRY CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-016780 2006-01-25
JP2006016780A JP5118814B2 (ja) 2006-01-25 2006-01-25 電池端子検査装置、検査方法および筒形乾電池

Publications (1)

Publication Number Publication Date
WO2007086154A1 true WO2007086154A1 (ja) 2007-08-02

Family

ID=38308963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312584 WO2007086154A1 (ja) 2006-01-25 2006-06-23 電池端子検査装置、検査方法および筒形乾電池

Country Status (4)

Country Link
US (1) US8040109B2 (ja)
EP (1) EP1993157A4 (ja)
JP (1) JP5118814B2 (ja)
WO (1) WO2007086154A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479277U (ja) * 1990-11-26 1992-07-10
JP2000048799A (ja) 1998-07-28 2000-02-18 Matsushita Electric Ind Co Ltd 電 池
JP2000138056A (ja) 1998-11-02 2000-05-16 Japan Storage Battery Co Ltd 非水電解質電池
JP2001118609A (ja) * 1999-10-18 2001-04-27 Toshiba Battery Co Ltd 電池の電圧測定装置
JP2002124218A (ja) 2000-10-16 2002-04-26 Toshiba Battery Co Ltd 円筒形電池
JP2006016780A (ja) 2004-06-30 2006-01-19 Takiron Co Ltd 床下配管の通気構造

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875404A (en) * 1973-12-28 1975-04-01 Nasa Wide angle sun sensor
US4981764A (en) * 1988-09-20 1991-01-01 Dattilo Donald P Method of providing a indication signal to indicate a level of electrolyte in a wet cell
WO1990013018A1 (en) * 1989-04-25 1990-11-01 Tatsuta Electric Wire And Cable Co., Ltd. Optical liquid sensor, its production method and car oil-and-battery checker using the same
US5014549A (en) * 1990-02-09 1991-05-14 Cummins Engine Company, Inc. Test apparatus for air intake manifold heater system
JP3185031B2 (ja) * 1991-06-17 2001-07-09 株式会社キーエンス 光沢検出器
US5510644A (en) * 1992-03-23 1996-04-23 Martin Marietta Corporation CDTE x-ray detector for use at room temperature
JPH0587816U (ja) * 1992-04-30 1993-11-26 バンドー化学株式会社 電池チェッカー
US5739916A (en) * 1995-12-04 1998-04-14 University Of Alabama At Huntsville Apparatus and method for determining the concentration of species in a substance
US6127797A (en) * 1997-11-26 2000-10-03 Walker; Mary Ann Light-operated telephone and method of operation thereof
US5949219A (en) * 1998-07-24 1999-09-07 The United States Of America As Represented By The United States Department Of Energy Optical state-of-charge monitor for batteries
JP2000069520A (ja) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd 無線呼出受信機
US6536318B1 (en) * 2000-07-03 2003-03-25 Tempel Steel Company Loose lamination die with rotating blanking station
JP2002117911A (ja) * 2000-10-06 2002-04-19 Nec Mobile Energy Kk 電池搭載機器
US6520018B1 (en) * 2000-11-17 2003-02-18 Enertec Mexico, S.R.L. De C.V. Ultrasonic inspection method for lead-acid battery terminal posts
US6941234B2 (en) * 2001-10-17 2005-09-06 Midtronics, Inc. Query based electronic battery tester
US7190171B2 (en) * 2002-10-11 2007-03-13 Canon Kabushiki Kaisha Detecting method and detecting apparatus for detecting internal of rechargeable battery, rechargeable battery pack having said detecting apparatus therein, apparatus having said detecting apparatus therein, program in which said detecting method is incorporated, and medium in which said program is stored
US7129706B2 (en) * 2003-06-11 2006-10-31 Bright Solutions, Inc. Part tester and method
US6911803B2 (en) * 2003-06-27 2005-06-28 Lsi Logic Corporation Systems and methods for evaluating a charge state of a battery based on optical properties of the battery electrolyte material
US6919725B2 (en) * 2003-10-03 2005-07-19 Midtronics, Inc. Electronic battery tester/charger with integrated battery cell temperature measurement device
US7202689B2 (en) * 2005-04-15 2007-04-10 International Business Machines Corporation Sensor differentiated fault isolation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479277U (ja) * 1990-11-26 1992-07-10
JP2000048799A (ja) 1998-07-28 2000-02-18 Matsushita Electric Ind Co Ltd 電 池
JP2000138056A (ja) 1998-11-02 2000-05-16 Japan Storage Battery Co Ltd 非水電解質電池
JP2001118609A (ja) * 1999-10-18 2001-04-27 Toshiba Battery Co Ltd 電池の電圧測定装置
JP2002124218A (ja) 2000-10-16 2002-04-26 Toshiba Battery Co Ltd 円筒形電池
JP2006016780A (ja) 2004-06-30 2006-01-19 Takiron Co Ltd 床下配管の通気構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1993157A4

Also Published As

Publication number Publication date
EP1993157A1 (en) 2008-11-19
US20100103423A1 (en) 2010-04-29
US8040109B2 (en) 2011-10-18
JP5118814B2 (ja) 2013-01-16
EP1993157A4 (en) 2011-01-05
JP2007200666A (ja) 2007-08-09

Similar Documents

Publication Publication Date Title
KR101182822B1 (ko) 발광소자 검사장치 및 방법
US7573394B2 (en) Internal short circuit detection based on detection of open circuit voltages of battery modules
US20060137175A1 (en) Method for manufacturing battery
US11757139B2 (en) Battery electrode inspection system
CN102213683A (zh) X射线透射检查装置及x射线透射检查方法
EP1542306A1 (en) Method for testing precursor of secondary cell, its testing instrument, and method for manufacturing secondary cell using the method
KR20220033865A (ko) 전극 탭 - 리드 용접부의 용접 품질 검사방법
KR102094539B1 (ko) 배터리 비파괴 검사 장치
JP5118814B2 (ja) 電池端子検査装置、検査方法および筒形乾電池
TW202008001A (zh) 電池管理系統
US8441647B2 (en) Apparatus for detecting foreign material in pouch type battery
JP2000195565A (ja) 二次電池の検査方法
CN115453373A (zh) 一种动力电池机械损伤在线探测方法
JP2011133288A (ja) 筒状物品の画像検査用照明方法およびその照明装置
JP2001283935A (ja) 電池の封止構造検査方法および電池の封止構造検査装置
EP4199180A1 (en) Method for determining the electrolyte level in a battery
JP6375841B2 (ja) ガスセンサの製造方法および組付装置
CN117091489B (zh) 一种复合结构的顶膜厚度检测装置及检测方法
KR0165606B1 (ko) 밧데리 조립 불량상태 검출장치 및 그 제어방법
US20220373493A1 (en) Welding quality inspection device
KR20220095318A (ko) 파우치형 전지 셀의 균열 검사를 위한 와전류 센서 및 이를 이용한 전지 셀의 균열 검사 방법
KR20230033529A (ko) 파우치형 전지 셀의 전기적 특성 측정을 위한 전지 셀의 검사 장비 및 검사 방법
KR20220060880A (ko) 전지 셀의 균열 검사를 위한 와전류 센서 및 이를 포함하는 전지 셀의 균열 검출 시스템
JP2024507548A (ja) 非破壊方式を用いるワイヤボンディング検査方法
KR20220095294A (ko) 전지 셀의 균열 검사를 위한 와전류 센서 및 이를 이용한 전지 셀의 균열 검사 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006767234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12223220

Country of ref document: US