WO2007086220A1 - Cata-dioptric imaging system, exposure device, and device manufacturing method - Google Patents

Cata-dioptric imaging system, exposure device, and device manufacturing method Download PDF

Info

Publication number
WO2007086220A1
WO2007086220A1 PCT/JP2006/325711 JP2006325711W WO2007086220A1 WO 2007086220 A1 WO2007086220 A1 WO 2007086220A1 JP 2006325711 W JP2006325711 W JP 2006325711W WO 2007086220 A1 WO2007086220 A1 WO 2007086220A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
imaging
concave
image
catadioptric
Prior art date
Application number
PCT/JP2006/325711
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Omura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38309021&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007086220(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007555871A priority Critical patent/JPWO2007086220A1/en
Priority to EP06835158A priority patent/EP1980890B1/en
Publication of WO2007086220A1 publication Critical patent/WO2007086220A1/en
Priority to US12/219,866 priority patent/US7990609B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0812Catadioptric systems using two curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption

Definitions

  • the present invention relates to a catadioptric imaging optical system, an exposure apparatus, and a method of manufacturing a device, and in particular, an exposure apparatus used when manufacturing a microdevice such as a semiconductor element or a liquid crystal display element by photolithographic process.
  • the present invention relates to a projection optical system suitable for
  • a photosensitive substrate (a wafer coated with a photoresist, a pattern image of a mask (or a reticle), a projection optical system, and the like, as in a photolithographic process for producing a semiconductor element, etc.
  • An exposure apparatus for projecting and exposing onto a glass plate or the like is used.
  • the resolution (resolution) required for the projection optical system is further increased.
  • Patent Document 1 International Publication No. WO 2005 Z069055 Pamphlet
  • Patent Document 1 In the conventional catadioptric imaging optical system disclosed in Patent Document 1, it is easy to secure a rectangular effective imaging area that makes it unnecessary to widely separate the off-axis field and the optical axis. .
  • Patent Document 1 in order to correct the spherical aberration of the pupil of the second imaging system, it is necessary to use a high-order aspheric surface as a reflecting mirror constituting the second imaging system, or 2) Use a reciprocating optical element (an optical element from which light rays enter and exit multiple times) between two reflecting mirrors in the imaging system! This is because, in the pupil plane of the second imaging system, a spherical aberration of the pupil that is too large to compensate for the first imaging system and the third imaging system occurs, and the telecentricity and distortion ) Is difficult to correct enough.
  • the optical system is caused by the absorption of the exposure light of the reciprocating optical element.
  • the imaging performance of the lens tends to fluctuate greatly.
  • it is intended to secure a large exposure area (effective imaging area)
  • it is easy to make the reciprocating optical element larger, which in turn tends to make the optical system larger.
  • the present invention has been made in view of the above problems, and has a high numerical aperture catadioptric aberration in which various aberrations are favorably corrected without using a high order aspheric reflecting surface and a reciprocating optical element.
  • An object of the present invention is to provide an imaging optical system.
  • the present invention also provides an exposure apparatus that can project and expose a fine pattern with high accuracy and high precision using a high numerical aperture catadioptric imaging optical system in which various aberrations are well corrected. To aim.
  • a catadioptric imaging optical system that forms an image of a first surface on a second surface, based on light from the first surface.
  • a first imaging system for forming a first intermediate image of the first surface and two concave reflecting mirrors, and a second intermediate image of the first surface is formed based on light from the first intermediate image
  • a third imaging system that forms a final image of the first surface on the second surface based on light from the second intermediate image
  • At least one concave reflector of the two concave reflectors provides a catadioptric imaging optical system characterized by having a long polar-shaped reflective surface.
  • the long prolate spheroid referred to in the invention is a spheroidal surface having a long axis on the optical axis, and the cone coefficient K is 1 when the long prolate surface is expressed by the equation (b) described later.
  • the first of the first surface is formed based on the light from the first surface.
  • a second imaging system having a first imaging system for forming an intermediate image, and two concave reflecting mirrors, and forming a second intermediate image of the first surface based on the light of the first intermediate image power; And a third imaging system that forms a final image of the first surface on the second surface based on light from the second intermediate image, and the two concave reflecting mirrors have the same shape as each other.
  • a catadioptric imaging optical system characterized by having a reflective surface of
  • a catadioptric connection comprising: a reflecting mirror; and a plurality of dioptric optical elements, wherein at least one of the two curved reflecting mirrors has a long aspheric reflecting surface.
  • a method for projecting an image of the pattern on the photosensitive substrate set on the second surface based on light from the predetermined pattern set on the first surface is used.
  • the fifth embodiment of the present invention includes an exposure step of exposing the photosensitive substrate to the predetermined pattern using the exposure apparatus of the fourth embodiment, and a developing step of developing the photosensitive substrate after the exposure step.
  • the second imaging system is configured of two concave reflecting mirrors having a long aspheric reflecting surface. It is done.
  • the long concave spherical reflecting surface of the first concave reflecting mirror has one focal point positioned at the pupil position of the first imaging system and the other focal point positioned at the pupil position of the second imaging system. Is located in The long concave spherical reflecting surface of the second concave reflecting mirror has one focal point located at the pupil position of the third imaging system and the other focal point located at the pupil position of the second imaging system.
  • various aberrations including telecentricity and distortion are substantially suppressed by substantially suppressing the occurrence of spherical aberration of the pupil without using a high order aspheric reflecting surface and a reciprocating optical element.
  • a well-corrected high numerical aperture catadioptric imaging system can be realized.
  • a fine pattern can be projected and exposed faithfully and with high accuracy using a high numerical aperture catadioptric imaging optical system in which various aberrations are well corrected.
  • the device can be manufactured with high precision.
  • FIG. 1 schematically shows a configuration of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing the positional relationship between a stationary exposure area formed on a wafer and an optical axis.
  • FIG. 3 is a view showing a configuration between a boundary lens and a wafer in each embodiment.
  • FIG. 4 is a view showing a lens configuration of a projection optical system according to the first embodiment.
  • FIG. 5 is a view showing a lens configuration of a projection optical system according to a second embodiment.
  • FIG. 6 is a view showing a lens configuration of a projection optical system according to a third embodiment.
  • FIG. 7 is a diagram showing a lens configuration of a projection optical system according to a fourth embodiment.
  • FIG. 8 shows transverse aberration in the projection optical system of the first embodiment.
  • FIG. 9 shows transverse aberration in the projection optical system of the second embodiment.
  • FIG. 10 shows transverse aberration in the projection optical system of the third embodiment.
  • FIG. 11 is a diagram showing lateral aberration in the projection optical system of the fourth embodiment.
  • FIG. 12 is a diagram showing distortion in each example.
  • FIG. 13 is a diagram showing an error of telecentricity in each example.
  • FIG. 14 is a diagram schematically illustrating the operation and effects of the present embodiment.
  • FIG. 15 is a flowchart of a method for obtaining a semiconductor device.
  • FIG. 16 is a flowchart of a method for obtaining a liquid crystal display element.
  • FIG. 1 is a view schematically showing the configuration of an exposure apparatus according to an embodiment of the present invention.
  • the X axis and the Y axis are set in a direction parallel to the wafer W, and the Z axis is set in a direction orthogonal to the wafer W. More specifically, the XY plane is set parallel to the horizontal plane, and the + Z axis is set upward along the vertical direction.
  • the exposure apparatus of this embodiment includes, for example, an illumination optical system 1 including an ArF excimer laser light source, which is an exposure light source, and configured as an optical integrator (field homogenizer), field stop, condenser lens and the like. Have.
  • the exposure light (exposure beam) IL which is also an ultraviolet pulse light power of wavelength 193 nm from which the light source power is also emitted passes through the illumination optical system 1 and illuminates the reticle (mask) R.
  • a rectangular (slit-like) pattern area having a long side along the X direction and a short side along the Y direction of the entire pattern area is formed on the reticle R. Is illuminated.
  • the light having passed through the reticle R is transferred to a predetermined exposure area on a wafer (photosensitive substrate) W coated with a photoresist through a projection optical system PL which is an immersion type catadioptric imaging optical system. Form a reticle pattern with reduced projection magnification.
  • a rectangular stationary exposure having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R.
  • a pattern image is formed in the area (effective exposure area; effective imaging area).
  • FIG. 2 is a view showing a positional relationship between a rectangular still exposure area (that is, an effective exposure area) formed on a wafer in the present embodiment and an optical axis.
  • a rectangular effective exposure area ER having a desired size is set.
  • X of the effective exposure area ER The length in the direction is LX, and the length in the Y direction is LY.
  • the effective exposure area ER is located at a distance from the optical axis AX in the Y direction by a distance corresponding to the off-axis amount A corresponding to the rectangular effective exposure area ER.
  • a rectangular illumination area (that is, an effective illumination area) having a corresponding size and shape is formed.
  • Reticle R is held on reticle stage RST in parallel to the XY plane, and reticle stage RST incorporates a mechanism for finely moving reticle R in the X direction, Y direction, and rotational direction.
  • reticle stage RST incorporates a mechanism for finely moving reticle R in the X direction, Y direction, and rotational direction.
  • the positions in the X direction, Y direction and rotational direction are measured and controlled in real time by a reticle laser interferometer (not shown).
  • Wafer W is fixed parallel to the XY plane on Z stage 9 via a wafer holder (not shown).
  • the Z stage 9 is fixed on an XY stage 10 which moves along an XY plane substantially parallel to the image plane of the projection optical system PL, and the focus position (position in the Z direction) of the wafer W and Control the tilt angle.
  • the Z stage 9 is measured and controlled in real time in the X direction, Y direction and rotational direction by a wafer laser interferometer
  • the XY stage 10 is mounted on the base 11, and controls the X direction, the Y direction, and the rotation direction of the wafer W.
  • the main control system 14 provided in the exposure apparatus of the present embodiment is based on the measurement values measured by the reticle laser interferometer, and the positions of the reticle R in the X direction, Y direction and rotation direction. Make adjustments. That is, the main control system 14 transmits a control signal to a mechanism incorporated in the reticle stage RST and moves the reticle stage RST finely to adjust the position of the reticle R.
  • the main control system 14 aligns the surface on the wafer W with the image plane of the projection optical system PL by the autofocus method and the auto leveling method, so the focus position (position in the Z direction) and tilt angle of the wafer W Adjust the That is, the main control system 14 transmits a control signal to the wafer stage drive system 15, and adjusts the focus position and the inclination angle of the wafer W by driving the Z stage 9 by the Ueno, stage drive system 15. .
  • the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotational direction based on the measurement values measured by the wafer laser interferometer 13. That is, the main control system 14 A control signal is sent to the wafer stage drive system 15 and the XY stage 10 is driven by the wafer stage drive system 15 to adjust the position of the wafer W in the X direction, Y direction and rotation direction. At the time of exposure, the main control system 14 transmits a control signal to the mechanism incorporated in the reticle stage RST, and transmits a control signal to the wafer stage drive system 15, and the speed ratio according to the projection magnification of the projection optical system PL.
  • the main control system 14 transmits a control signal to the wafer stage drive system 15 to drive the XY stage 10 by means of the stage drive system 15 to move another shot area on the wafer W to the exposure position. Step move.
  • the operation of scanning and exposing the pattern image of the reticle R onto the wafer W is repeated by the step 'and' scan method. That is, in the present embodiment, while controlling the position of reticle R and wafer W using wafer stage drive system 15 and wafer laser interferometer 13 etc., the short side direction of the rectangular static exposure area and static illumination area is detected.
  • the reticle stage RST and the XY stage 10 along the Y direction are moved (scanned) synchronously with the reticle scale and the wafer W, so that the long side of the still exposure area on the wafer W
  • a reticle pattern is scan-exposed to a region equal to LX and having a width and a length corresponding to the scanning amount (moving amount) of the wafer W.
  • FIG. 3 is a view schematically showing a configuration between the boundary lens and the wafer in each example of the present embodiment.
  • the light path between the boundary lens Lb and the wafer W is liquid Lm. be satisfied.
  • the optical path between the plane parallel plate Lp and the wafer W and the optical path between the boundary lens Lb and the plane parallel plate Lp are liquid L m Is filled with
  • the third embodiment as shown in FIG.
  • the pure water as the liquid Lm is circulated in the light path between the plane parallel plate Lp and the wafer W by using the first water supply and drainage mechanism 21, and the second water supply and drainage mechanism. 22 is used to circulate pure water as liquid Lm in the optical path between the boundary lens Lb and the plane parallel plate Lp.
  • the liquid supply and drainage mechanism (not shown) is used to set the liquid in the optical path between the boundary lens Lb and Ueno and W. Circulate pure water as Lm!
  • the aspheric surface has a height in the direction perpendicular to the optical axis as y, and the tangential force at the vertex of the aspheric surface is the optical axis up to the position on the aspheric surface at the height y.
  • Letting z be the distance (sag amount) along r, r be the radius of curvature of the apex, K be the conical coefficient, and C be the aspheric coefficient of order ⁇ , it is expressed by the following equation (b).
  • equation (b) an optical surface formed in an aspheric shape is given an * mark on the right side of the surface number.
  • the projection optical system PL is a first imaging system G1 that forms a first intermediate image of the pattern of the reticle R disposed on the object surface (first surface). And a second imaging system G2 for forming a second intermediate image (an image of the first intermediate image and a secondary image of a reticle pattern) of the reticle pattern based on the light of the first intermediate image, and the second imaging system G2 And a third imaging system G3 for forming a final image (a reduced image of the reticle pattern) of the reticle pattern on the wafer W disposed on the image plane (the second surface) based on the light of intermediate image power. .
  • the first imaging system G1 and the third imaging system G3 are both dioptric systems (optical systems that do not include a reflecting mirror), and the second imaging system G2 is a catoptric system in which only two concave reflecting mirrors can also act.
  • the first imaging system Gl, the second imaging system G2, and the third imaging system G3 extend along one optical axis AX linearly extending along the vertical direction. Each is arranged.
  • the projection optical system PL is substantially telecentric on both the object side and the image side !.
  • FIG. 4 is a view showing a lens configuration of a projection optical system according to the first example of the present embodiment.
  • the first imaging system G1 is composed of a plane parallel plate P1 and ten lenses L11 to L110 in order on the reticle side force.
  • the second imaging system G2 includes, in order from the light incident side, a first concave reflecting mirror CM21 having a long aspheric concave surface directed to the incident side (reticle side), and a long aspheric surface on the incident side (wafer side) And a second concave reflector CM22 with the concave surface facing the second concave mirror CM22.
  • the long concave spherical reflecting surface of the first concave reflecting mirror CM21 and the long concave spherical reflecting surface of the second concave reflecting mirror CM22 are part of an elliptical surface having a major axis on the optical axis AX. Each is configured.
  • the first concave reflector C The M 21 and the second concave reflecting mirror CM 22 have reflecting surfaces of the same shape.
  • the first concave reflecting mirror CM21 is disposed such that one focal point is located at the pupil position of the first imaging system G1 and the other focal point is located at the pupil position of the second imaging system G2.
  • the second concave reflecting mirror CM22 is disposed such that one focal point is located at the pupil position of the third imaging system G3 and the other focal point is located at the pupil position of the second imaging system G2, .
  • the third imaging system G3 is also configured by lenses L31 to L312 and a plano-convex lens L313 (boundary lens Lb) having a flat surface facing the wafer side in order on the reticle side (that is, the light incident side) force!
  • a variable aperture stop AS (not shown) for changing the numerical aperture of the projection optical system PL is provided between the lenses L39 and L310.
  • all light transmitting members including the boundary lens Lb are made of quartz (SiO 2) having a refractive index of 1.503261 with respect to the central wavelength of the used light.
  • Table 1 below shows values of specifications of the projection optical system PL that are the key to the first example.
  • is the central wavelength of the exposure light
  • j8 is the size of the projection magnification (imaging magnification of the whole system)
  • ⁇ A is the image side (wafer side) numerical aperture
  • B is Ueno.
  • A is the off-axis amount of the effective exposure area ER
  • LX is the dimension along the X direction of the effective exposure area ER (dimension of the long side)
  • LY represents the dimension (dimension of the short side) of the effective exposure region ER along the Y direction.
  • the surface number indicates the order of the reticle side force along the path of the light beam from the reticle plane, which is the object plane (first plane), to the wafer plane, which is the image plane (second plane).
  • the radius of curvature of the surface in the case of an aspheric surface, the vertex radius of curvature: mm
  • d indicates the on-axis spacing of each surface, ie, the surface spacing (mm)
  • n indicates the refractive index for the central wavelength.
  • Table (1) is the same as in the following Tables (2) to (4)
  • FIG. 5 is a view showing a lens configuration of a projection optical system according to a second example of the present embodiment.
  • the projection optical system PL of the second embodiment has a configuration similar to that of the projection optical system of the first embodiment.
  • the first imaging system G1 is composed of a plane parallel plate P1 and nine lenses L11 to L19. The points are different from the first embodiment.
  • the second embodiment is also provided between the variable aperture stop AS (not shown) force lens L39 and L310 for changing the numerical aperture of the projection optical system PL.
  • all the light transmitting members including the boundary lens Lb are made of quartz having a refractive index of 1.5603261 with respect to the central wavelength of the used light.
  • Table 2 below summarizes values of specifications of the projection optical system PL that are the key to the second example.
  • Lm pure water
  • Lb quartz having a refractive index of 1.5603261 with respect to the central wavelength of the used light.
  • FIG. 8 shows transverse aberration in the projection optical system of the first embodiment.
  • FIG. 9 is a diagram showing lateral aberration in the projection optical system of the second embodiment.
  • FIG. 10 is a diagram showing lateral aberration in the projection optical system of the third embodiment.
  • FIG. 11 shows transverse aberration in the projection optical system of the fourth embodiment.
  • Y indicates the image height.
  • FIG. 12 is a diagram showing distortion (distortion aberration; displacement amount from an ideal image position) in the projection optical system of each example.
  • FIG. 13 is a diagram showing an error of telecentricity (incident angle of a main light beam to the wafer W when the reticle side is ideally telecentric on the reticle side) in the projection optical system of each example.
  • the vertical axis is the displacement amount (nm) of the image
  • the vertical axis is the incident angle of the chief ray (rad: radian).
  • the horizontal axis is the image height (mm)
  • the solid line indicates the first embodiment
  • the alternate long and short dashed line indicates the second embodiment
  • the broken line indicates the third embodiment.
  • NA image-side numerical aperture
  • ER static exposure area
  • a high image-side numerical aperture of 1.3 is secured for ArF excimer laser light with a center wavelength of 193.306 nm
  • 26 mm ⁇ 5 mm Can secure a 26 mm x 5.4 mm rectangular effective exposure area (static exposure area) ER, for example, scan and expose a circuit pattern with high resolution in a 26 mm x 33 mm rectangular exposure area. be able to.
  • a catadioptric imaging optical system is adopted, so that the Petzval condition is almost satisfied despite the large image side numerical aperture to obtain the flatness of the image.
  • the effective visual field area (effective illumination area) and the effective projection area (effective exposure area ER) use an imaging optical system with an off-axis field of view type that does not include the optical axis, Can be secured.
  • one focal point of the long concave spherical reflecting surface of the first concave reflecting mirror CM21 is located at the pupil position of the first imaging system G1, and the other focal point is
  • the second imaging system G2 is located at the pupil position
  • the focal point of one of the long aspheric reflecting surfaces of the second concave reflecting mirror CM22 is located at the pupil position of the third imaging system G3 and the other
  • the focal point is located at the pupil position of the second imaging system G2. Therefore, as shown in FIG. 14 (a), a ray from point P1 on the optical axis of the pupil plane of the first imaging system G1 is reflected by the long aspheric surface of the first concave reflecting mirror CM21.
  • the light is condensed at a point P2 on the optical axis of the pupil plane of the second imaging system G2.
  • a ray from a point P2 on the optical axis of the pupil plane of the second imaging system G2 is reflected by the long concave spherical reflecting surface of the second concave reflecting mirror CM22. Focus on a point on the optical axis of the pupil plane of the imaging system G3. As a result, spherical aberration of the pupil substantially does not occur at the pupil plane of the second imaging system G2.
  • the point force on the optical axis of the pupil plane of the first imaging system is A ray of light generates a relatively large pupil spherical surface aberration that can not be condensed at a point on the optical axis of the pupil plane of the second imaging system through the concave reflecting mirror CM. Therefore, in the prior art, it is preferable to use a high-order aspheric surface (an aspheric surface having a high-order term (2nd or higher) of aspheric coefficient) for the reflecting mirror constituting the second imaging system or It was necessary to use a reciprocating optical element between the two reflectors.
  • a high-order aspheric surface an aspheric surface having a high-order term (2nd or higher) of aspheric coefficient
  • a pair of long aspheric spherical reflecting surfaces (high order terms of aspheric coefficients (second).
  • the introduction of aspheric surfaces (top) does not substantially reduce the occurrence of spherical aberration of the pupil without using reflecting surfaces of higher order aspheric shapes and reciprocating optical elements, thereby achieving telecentricity and distortion. It is possible to realize a high numerical aperture projection optical system in which various aberrations including those are well corrected.
  • the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have reflecting surfaces of the same shape, manufacturing of the concave reflecting mirrors CM21 and CM22 It is possible to reduce the cost and hence the manufacturing cost of the optical system.
  • the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have reflecting surfaces in the form of long aspheric surfaces different from each other.
  • both the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have an opening for transmitting the imaging light flux, and an effective reflection corresponding to a part of a curved surface substantially rotationally symmetric with respect to the optical axis AX. It has a face.
  • the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 are supported at a plurality of positions approximately at a distance from the optical axis AX, for example, at a plurality of substantially rotationally symmetric positions with respect to the optical axis AX.
  • both the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have openings for passing the imaging light beam
  • the first concave reflecting mirror is not limited to this.
  • a modification is also possible in which one of the CM 21 and the second concave reflecting mirror CM 22 has an opening.
  • the long aspheric spherical reflecting surface of the concave reflecting mirror CM21, CM22 has a high-order term (C 1, y 2) including the aspheric coefficient C from the above equation (b) representing an aspheric surface. It is expressed by the following equation (a) from which n ) is removed, and it is preferable that the conic coefficient K satisfies the following condition (1).
  • z (y Vr) Z [l + ⁇ 1-(l +)) ⁇ y / r 2 ⁇ 1 2 ] (a)
  • the two focal positions of the long aspheric reflective surface come too close to each other, and the long aspheric reflective surface approaches a spherical surface, so the first imaging
  • the exit pupil position of the system or the entrance pupil position of the third imaging system needs to approach the second imaging system.
  • the angle between the peripheral chief ray and the optical axis becomes large, which causes the enlargement of the concave reflecting mirror, which is not preferable.
  • conditional expression (1) If the lower limit value of conditional expression (1) is exceeded, the two focal positions of the long aspheric reflective surface will be too far apart, and the long aspheric reflective surface will approach the paraboloid, so The exit pupil position of the image system or the entrance pupil position of the third imaging system is far from the second imaging system. As a result, it is necessary to increase the refractive power of the second imaging system side field lens group in the first imaging system and the third imaging system, making it difficult to correct the spherical aberration of the pupil, As a result, the telecentricity and distortion can not be compatible and corrected, which is preferable. In order to obtain a better effect of the present invention, it is preferable to set the upper limit value of conditional expression (1) to ⁇ 0.35 and the lower limit value to 0.65.
  • the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have the long aspheric spherical reflecting surface
  • any one of the concave surfaces is not limited thereto.
  • the effect of the present invention can be obtained by making the reflecting surface of the reflecting mirror into a long, aspheric surface.
  • the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have reflecting surfaces of the same shape as each other, but the present invention is limited to this. If the reflecting surface of any one concave reflecting mirror has a long aspheric surface, the effect of the present invention can be obtained even when the two concave reflecting mirrors have reflecting surfaces of different shapes.
  • the two concave reflecting mirrors have reflecting surfaces in the form of long aspheric surfaces different from each other.
  • the manufacturing cost of the concave reflecting mirror can be reduced.
  • two concave reflecting mirrors having the same shape reflecting surfaces in the second imaging system are disposed. It is important to do.
  • the first imaging system G1 and the third imaging system G3 include reflecting mirrors.
  • the optical system is configured as a non-refractive type optical system, various modifications can be made to the configuration of the first imaging system G1 and the third imaging system G3 that can not be limited to this.
  • the second imaging system G2 is configured by only two concave reflecting mirrors, but various modifications may be made to the configuration of the second imaging system G2 which is not limited to this. It is possible.
  • the present invention is applied to the immersion type catadioptric imaging optical system in the above-described embodiment, the immersion liquid is used in the image side area which is not limited to this.
  • the present invention can be similarly applied to a non-dry-type catadioptric imaging optical system.
  • the present invention is applied to the off-axis type catadioptric imaging optical system in which the image is formed only in the area away from the optical axis in the above-described embodiment, the present invention is limited thereto.
  • the present invention can be similarly applied to a catadioptric imaging optical system that forms an image in a region including an optical axis which is not far away.
  • the present invention is applied to the three-time imaging type catadioptric imaging optical system, but the present invention is not limited to this.
  • the present invention can be similarly applied to an off-axis type catadioptric imaging optical system provided with a refractive optical element.
  • the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system.
  • microdevices semiconductor elements, imaging elements, liquid crystal display elements, thin film magnetic heads, etc.
  • FIG. 15 the flowchart of FIG. 15 is shown as an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer as a photosensitive substrate or the like using the exposure apparatus of the present embodiment. Refer to the description.
  • step 301 of FIG. 15 a metal film is vapor-deposited on one lot of wafers.
  • step 302 photoresist is applied on the metal film on the one lot wafer.
  • step 303 using the exposure apparatus of this embodiment, the image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of one lot through the projection optical system.
  • step 304 after development of the photoresist on the wafer of one lot is performed, in step 305, the resist on the wafer of one lot is registered.
  • the circuit pattern force corresponding to the pattern on the mask is formed in each shot area on each wafer by performing etching using the pattern as a mask.
  • a device such as a semiconductor element is manufactured.
  • a semiconductor device manufacturing method a semiconductor device having a very fine circuit pattern can be obtained with high throughput.
  • metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the force of performing each of the exposure, development, and etching steps is performed on the wafer prior to these steps. It is needless to say that after forming a silicon oxide film, a resist may be coated on the silicon oxide film, and then each process such as exposure, development and etching may be performed.
  • a liquid crystal display device as a microdevice can also be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a photosensitive substrate such as a glass substrate coated with a resist
  • Ru a photosensitive substrate
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G,
  • a color filter is formed by arranging a plurality of B stripe filters in the direction of horizontal scanning lines.
  • a cell assembly step 403 is performed.
  • a liquid crystal panel liquid crystal cell
  • the predetermined pattern obtained in the pattern forming step 401 is A liquid crystal is injected between a substrate having a turn and the color filter obtained in the color filter forming step 402 to manufacture a liquid crystal panel (liquid crystal cell). Thereafter, in a module assembling step 404, components such as an electric circuit for performing a display operation of the assembled liquid crystal panel (liquid crystal cell), a backlight and the like are attached to complete a liquid crystal display element. According to the above-described method of manufacturing a liquid crystal display device, a liquid crystal display device having a very fine circuit pattern can be obtained with high throughput.
  • the force using the ArF excimer laser light source is not limited to this, and another appropriate light source such as an F 2 laser light source can also be used.
  • F laser light when F laser light is used as the exposure light, F laser light can be transmitted as the liquid.
  • a fluorinated liquid such as fluorinated oil or perfluoropolyether (PFPE) is used.
  • PFPE perfluoropolyether

Abstract

Provided is a cata-dioptric imaging system of a highly numerical aperture, which has its various aberrations satisfactorily corrected by using neither a reflecting surface having an aspherical shape of a high order nor a reciprocal optical element. The cata-dioptric imaging system forms the image of a first plane (R) on a second plane (W), and is constituted to include a first focusing system (G1) for forming a first intermediate image of the first plane on the basis of a light from the first plane, a second focusing system (G2) having two concave reflecting mirrors (CM21, CM22) for forming a second intermediate image of the first plane on the basis of a light coming from the first intermediate image, and a third focusing system (G3) for forming the final image of the first plane on the second plane on the basis of a light coming from the second intermediate image. The two concave reflecting mirrors have long spheroidal reflecting surfaces.

Description

明 細 書  Specification
反射屈折結像光学系、露光装置、およびデバイスの製造方法  Catadioptric imaging optical system, exposure apparatus, and method of manufacturing device
技術分野  Technical field
[0001] 本発明は、反射屈折結像光学系、露光装置、およびデバイスの製造方法に関し、 特に半導体素子や液晶表示素子などのマイクロデバイスをフォトリソグラフイエ程で 製造する際に使用される露光装置に好適な投影光学系に関するものである。  The present invention relates to a catadioptric imaging optical system, an exposure apparatus, and a method of manufacturing a device, and in particular, an exposure apparatus used when manufacturing a microdevice such as a semiconductor element or a liquid crystal display element by photolithographic process. The present invention relates to a projection optical system suitable for
背景技術  Background art
[0002] 半導体素子等を製造するためのフォトリソグラフイエ程にぉ 、て、マスク (またはレチ クル)のパターン像を、投影光学系を介して、感光性基板 (フォトレジストが塗布され たウェハ、ガラスプレート等)上に投影露光する露光装置が使用されている。露光装 置では、半導体素子等の集積度が向上するにつれて、投影光学系に要求される解 像力 (解像度)が益々高まって ヽる。投影光学系の解像力に対する要求を満足する には、照明光 (露光光)の波長えを短くするとともに、投影光学系の像側開口数 NA を大きくする必要がある。そこで、投影光学系と感光性基板との間の光路中に屈折率 の高い液体のような媒質を満たすことにより像側開口数の増大を図る液浸技術が知 られている。  [0002] A photosensitive substrate (a wafer coated with a photoresist, a pattern image of a mask (or a reticle), a projection optical system, and the like, as in a photolithographic process for producing a semiconductor element, etc. An exposure apparatus for projecting and exposing onto a glass plate or the like is used. In the exposure apparatus, as the degree of integration of semiconductor elements and the like is improved, the resolution (resolution) required for the projection optical system is further increased. In order to satisfy the requirement for the resolution of the projection optical system, it is necessary to shorten the wavelength of the illumination light (exposure light) and to increase the image-side numerical aperture NA of the projection optical system. Therefore, there is known a liquid immersion technique for increasing the image-side numerical aperture by filling a medium such as a liquid having a high refractive index in the optical path between the projection optical system and the photosensitive substrate.
[0003] 一般に、像側開口数の大きな投影光学系では、液浸系に限定されることなく乾燥 系にお 、ても、ペッツバール条件を成立させて像の平坦性を得ると 、う観点力 反射 屈折結像光学系の採用が望ましぐあらゆる微細パターンへの対応力の観点力 有 効視野 (ひ!ヽては有効結像領域)が光軸を含まな!/ヽ軸外視野型の結像光学系の採 用が望ましい。従来、露光装置に好適な軸外視野型の反射屈折結像光学系として、 2枚の反射鏡を含む 3回結像型の光学系が提案されている(特許文献 1を参照)。  Generally, in a projection optical system having a large image-side numerical aperture, even if it is a drying system without being limited to the immersion system, it is possible to satisfy the Petzval condition to obtain the flatness of the image. Point of view of the ability to cope with any fine pattern for which it is desirable to adopt a catadioptric imaging optical system Forced field of view (in the case of an effective imaging area) does not include the optical axis! It is desirable to use an imaging optical system. Heretofore, as an off-axis type catadioptric imaging optical system suitable for an exposure apparatus, a three-time imaging type optical system including two reflecting mirrors has been proposed (see Patent Document 1).
[0004] 特許文献 1:国際公開第 WO2005Z069055号パンフレット  Patent Document 1: International Publication No. WO 2005 Z069055 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] 特許文献 1に開示された従来の反射屈折結像光学系では、軸外視野と光軸とを大 きく離間させる必要がなぐ矩形状の有効結像領域を確保することが容易である。し かしながら、特許文献 1の従来技術では、第 2結像系の瞳の球面収差を補正するた めに、第 2結像系中を構成する反射鏡に高次非球面を用いるか、第 2結像系中の 2 つの反射鏡間に往復光学素子 (光線が複数回入射出する光学素子)を用いて!/、る。 これは、第 2結像系の瞳面において第 1結像系と第 3結像系とでは補償できないほど 大きな瞳の球面収差が発生して 、ると、テレセントリシティおよびディストーション (歪 曲収差)を十分に補正することが困難になるからである。 In the conventional catadioptric imaging optical system disclosed in Patent Document 1, it is easy to secure a rectangular effective imaging area that makes it unnecessary to widely separate the off-axis field and the optical axis. . The However, in the prior art of Patent Document 1, in order to correct the spherical aberration of the pupil of the second imaging system, it is necessary to use a high-order aspheric surface as a reflecting mirror constituting the second imaging system, or 2) Use a reciprocating optical element (an optical element from which light rays enter and exit multiple times) between two reflecting mirrors in the imaging system! This is because, in the pupil plane of the second imaging system, a spherical aberration of the pupil that is too large to compensate for the first imaging system and the third imaging system occurs, and the telecentricity and distortion ) Is difficult to correct enough.
[0006] 一般に、高次非球面を加工する際の面計測技術は煩雑であり、高次非球面形状の 反射面を有する反射鏡を高精度に製造することは困難である。また、反射面は屈折 面に比して、波面収差への寄与が約 4倍であり、フレア光量への寄与が約 13倍であ る。したがって、反射面として高次非球面を用いる構成は、たとえば lOOnm以下の解 像力を実現するための光リソグラフィには好ましくない。一方、第 2結像系中の 2つの 反射鏡間に往復光学素子が介在する構成では、光が往復光学素子を 3回透過する ため、往復光学素子の露光光の吸収に起因して光学系の結像性能が大きく変動し 易い。また、大きな露光領域 (有効結像領域)を確保しょうとすると、往復光学素子が 大型化しし易ぐひいては光学系が大型化し易い。  In general, surface measurement technology in processing a high order aspheric surface is complicated, and it is difficult to manufacture a reflecting mirror having a high order aspheric reflective surface with high accuracy. In addition, the reflective surface has a contribution to wavefront aberration of about 4 times and a contribution to the amount of flare light of about 13 times that of a refractive surface. Therefore, a configuration using a high-order aspheric surface as a reflecting surface is not preferable for optical lithography for achieving a resolving power of, for example, 100 nm or less. On the other hand, in the configuration in which the reciprocating optical element intervenes between the two reflecting mirrors in the second imaging system, the light is transmitted through the reciprocating optical element three times. Therefore, the optical system is caused by the absorption of the exposure light of the reciprocating optical element. The imaging performance of the lens tends to fluctuate greatly. In addition, if it is intended to secure a large exposure area (effective imaging area), it is easy to make the reciprocating optical element larger, which in turn tends to make the optical system larger.
[0007] 本発明は、前述の課題に鑑みてなされたものであり、高次非球面形状の反射面お よび往復光学素子を用いることなく諸収差が良好に補正された高開口数の反射屈折 結像光学系を提供することを目的とする。また、本発明は、諸収差が良好に補正され た高開口数の反射屈折結像光学系を用いて、微細パターンを忠実に且つ高精度に 投影露光することのできる露光装置を提供することを目的とする。  The present invention has been made in view of the above problems, and has a high numerical aperture catadioptric aberration in which various aberrations are favorably corrected without using a high order aspheric reflecting surface and a reciprocating optical element. An object of the present invention is to provide an imaging optical system. The present invention also provides an exposure apparatus that can project and expose a fine pattern with high accuracy and high precision using a high numerical aperture catadioptric imaging optical system in which various aberrations are well corrected. To aim.
課題を解決するための手段  Means to solve the problem
[0008] 前記課題を解決するために、本発明の第 1形態では、第 1面の像を第 2面上に形成 する反射屈折結像光学系において、前記第 1面からの光に基づいて前記第 1面の第 1中間像を形成する第 1結像系と、 2つの凹面反射鏡を有し、前記第 1中間像からの 光に基づいて前記第 1面の第 2中間像を形成する第 2結像系と、前記第 2中間像か らの光に基づいて前記第 1面の最終像を前記第 2面上に形成する第 3結像系とによ り構成され、前記 2つの凹面反射鏡のうちの少なくとも 1つの凹面反射鏡は、長偏球 面状の反射面を有することを特徴とする反射屈折結像光学系を提供する。なお、本 発明でいう長偏球面 (prolate spheroid)とは、光軸上に長軸がある回転楕円面であつ て、後述の数式 (b)で当該長偏球面を表現するときに円錐係数 Kが— 1く Κく 0とな る ある。 [0008] In order to solve the above problems, in the first embodiment of the present invention, in a catadioptric imaging optical system that forms an image of a first surface on a second surface, based on light from the first surface. A first imaging system for forming a first intermediate image of the first surface and two concave reflecting mirrors, and a second intermediate image of the first surface is formed based on light from the first intermediate image And a third imaging system that forms a final image of the first surface on the second surface based on light from the second intermediate image, At least one concave reflector of the two concave reflectors provides a catadioptric imaging optical system characterized by having a long polar-shaped reflective surface. In addition, this The long prolate spheroid referred to in the invention is a spheroidal surface having a long axis on the optical axis, and the cone coefficient K is 1 when the long prolate surface is expressed by the equation (b) described later. Ku there that Do and Κ Ku 0.
[0009] 本発明の第 2形態では、第 1面の像を第 2面上に形成する反射屈折結像光学系に おいて、前記第 1面からの光に基づいて前記第 1面の第 1中間像を形成する第 1結 像系と、 2つの凹面反射鏡を有し、前記第 1中間像力 の光に基づいて前記第 1面の 第 2中間像を形成する第 2結像系と、前記第 2中間像からの光に基づいて前記第 1 面の最終像を前記第 2面上に形成する第 3結像系とにより構成され、前記 2つの凹面 反射鏡は、互いに同じ形状の反射面を有することを特徴とする反射屈折結像光学系 を提供する。  In a second embodiment of the present invention, in the catadioptric imaging optical system for forming an image of the first surface on the second surface, the first of the first surface is formed based on the light from the first surface. A second imaging system having a first imaging system for forming an intermediate image, and two concave reflecting mirrors, and forming a second intermediate image of the first surface based on the light of the first intermediate image power; And a third imaging system that forms a final image of the first surface on the second surface based on light from the second intermediate image, and the two concave reflecting mirrors have the same shape as each other. A catadioptric imaging optical system characterized by having a reflective surface of
[0010] 本発明の第 3形態では、第 1面の像を第 2面上において光軸力も離れた領域のみ に形成する軸外視野型の反射屈折結像光学系において、 2つの曲面状の反射鏡と 複数の屈折光学素子とを備え、前記 2つの曲面状の反射鏡のうちの少なくとも 1つの 曲面状の反射鏡は、長偏球面状の反射面を有することを特徴とする反射屈折結像 光学系を提供する。本発明の第 4形態では、前記第 1面に設定された所定のパター ンからの光に基づいて、前記パターンの像を前記第 2面に設定された感光性基板上 に投影するための第 1形態〜第 3形態の反射屈折結像光学系を備えていることを特 徴とする露光装置を提供する。本発明の第 5形態では、第 4形態の露光装置を用い て前記所定のパターンを前記感光性基板に露光する露光工程と、前記露光工程を 経た前記感光性基板を現像する現像工程とを含むことを特徴とするデバイスの製造 方法を提供する。  [0010] In the third embodiment of the present invention, in the off-axis catadioptric imaging optical system in which the image of the first surface is formed only on the area away from the optical axial force on the second surface, two curved surface shapes are provided. A catadioptric connection comprising: a reflecting mirror; and a plurality of dioptric optical elements, wherein at least one of the two curved reflecting mirrors has a long aspheric reflecting surface. Provide an image optical system. In a fourth aspect of the present invention, a method for projecting an image of the pattern on the photosensitive substrate set on the second surface based on light from the predetermined pattern set on the first surface is used. An exposure apparatus characterized by including the catadioptric imaging optical system of the first to third modes is provided. The fifth embodiment of the present invention includes an exposure step of exposing the photosensitive substrate to the predetermined pattern using the exposure apparatus of the fourth embodiment, and a developing step of developing the photosensitive substrate after the exposure step. Provide a method of manufacturing a device characterized by
発明の効果  Effect of the invention
[0011] 本発明の典型的な態様によれば、 3回結像型の反射屈折結像光学系において、第 2結像系が長偏球面状の反射面を有する 2つの凹面反射鏡により構成されている。 そして、第 1凹面反射鏡の長偏球面状の反射面は、一方の焦点が第 1結像系の瞳位 置に位置し、他方の焦点が第 2結像系の瞳位置に位置するように配置されている。ま た、第 2凹面反射鏡の長偏球面状の反射面は、一方の焦点が第 3結像系の瞳位置 に位置し、他方の焦点が第 2結像系の瞳位置に位置するように配置されている。 [0012] こうして、本発明では、高次非球面形状の反射面および往復光学素子を用いること なぐ瞳の球面収差の発生を実質的に抑えて、テレセントリシティおよびディストーショ ンを含む諸収差が良好に補正された高開口数の反射屈折結像光学系を実現するこ とができる。また、本発明の露光装置では、諸収差が良好に補正された高開口数の 反射屈折結像光学系を用いて、微細パターンを忠実に且つ高精度に投影露光する ことができ、ひいては良好なデバイスを高精度に製造することができる。 According to a typical aspect of the present invention, in the three-time imaging type catadioptric imaging optical system, the second imaging system is configured of two concave reflecting mirrors having a long aspheric reflecting surface. It is done. The long concave spherical reflecting surface of the first concave reflecting mirror has one focal point positioned at the pupil position of the first imaging system and the other focal point positioned at the pupil position of the second imaging system. Is located in The long concave spherical reflecting surface of the second concave reflecting mirror has one focal point located at the pupil position of the third imaging system and the other focal point located at the pupil position of the second imaging system. Is located in Thus, according to the present invention, various aberrations including telecentricity and distortion are substantially suppressed by substantially suppressing the occurrence of spherical aberration of the pupil without using a high order aspheric reflecting surface and a reciprocating optical element. A well-corrected high numerical aperture catadioptric imaging system can be realized. Further, in the exposure apparatus of the present invention, a fine pattern can be projected and exposed faithfully and with high accuracy using a high numerical aperture catadioptric imaging optical system in which various aberrations are well corrected. The device can be manufactured with high precision.
図面の簡単な説明  Brief description of the drawings
[0013] [図 1]本発明の実施形態に力かる露光装置の構成を概略的に示す図である。 FIG. 1 schematically shows a configuration of an exposure apparatus according to an embodiment of the present invention.
[図 2]ウェハ上に形成される静止露光領域と光軸との位置関係を示す図である。  FIG. 2 is a view showing the positional relationship between a stationary exposure area formed on a wafer and an optical axis.
[図 3]各実施例における境界レンズとウェハとの間の構成を示す図である。  FIG. 3 is a view showing a configuration between a boundary lens and a wafer in each embodiment.
[図 4]第 1実施例にカゝかる投影光学系のレンズ構成を示す図である。  FIG. 4 is a view showing a lens configuration of a projection optical system according to the first embodiment.
[図 5]第 2実施例にカゝかる投影光学系のレンズ構成を示す図である。  FIG. 5 is a view showing a lens configuration of a projection optical system according to a second embodiment.
[図 6]第 3実施例にカゝかる投影光学系のレンズ構成を示す図である。  FIG. 6 is a view showing a lens configuration of a projection optical system according to a third embodiment.
[図 7]第 4実施例にカゝかる投影光学系のレンズ構成を示す図である。  FIG. 7 is a diagram showing a lens configuration of a projection optical system according to a fourth embodiment.
[図 8]第 1実施例の投影光学系における横収差を示す図である。  FIG. 8 shows transverse aberration in the projection optical system of the first embodiment.
[図 9]第 2実施例の投影光学系における横収差を示す図である。  FIG. 9 shows transverse aberration in the projection optical system of the second embodiment.
[図 10]第 3実施例の投影光学系における横収差を示す図である。  FIG. 10 shows transverse aberration in the projection optical system of the third embodiment.
[図 11]第 4実施例の投影光学系における横収差を示す図である。  FIG. 11 is a diagram showing lateral aberration in the projection optical system of the fourth embodiment.
[図 12]各実施例におけるディストーションを示す図である。  FIG. 12 is a diagram showing distortion in each example.
[図 13]各実施例におけるテレセントリシティの誤差を示す図である。  FIG. 13 is a diagram showing an error of telecentricity in each example.
[図 14]本実施形態の作用および効果を概略的に説明する図である。  FIG. 14 is a diagram schematically illustrating the operation and effects of the present embodiment.
[図 15]半導体デバイスを得る際の手法のフローチャートである。  FIG. 15 is a flowchart of a method for obtaining a semiconductor device.
[図 16]液晶表示素子を得る際の手法のフローチャートである。  FIG. 16 is a flowchart of a method for obtaining a liquid crystal display element.
符号の説明  Explanation of sign
[0014] R レチクノレ R Reticule Nore
PL 投影光学系  PL projection optics
Lb 境界レンズ  Lb boundary lens
Lp 平行平面板 Lm 純水(液体) Lp plane parallel plate Lm Pure water (liquid)
W ウェハ  W wafer
1 照明光学系  1 Illumination optics
14 主制御系  14 Main control system
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の実施形態を、添付図面に基づいて説明する。図 1は、本発明の実施形態 にかかる露光装置の構成を概略的に示す図である。図 1では、 X軸および Y軸がゥェ ハ Wに対して平行な方向に設定され、 Z軸がウェハ Wに対して直交する方向に設定 されている。さらに具体的には、 XY平面が水平面に平行に設定され、 +Z軸が鉛直 方向に沿って上向きに設定されている。本実施形態の露光装置は、図 1に示すよう に、たとえば露光光源である ArFエキシマレーザ光源を含み、オプティカル 'インテグ レータ (ホモジナイザー)、視野絞り、コンデンサレンズ等力 構成される照明光学系 1 を備えている。 An embodiment of the present invention will be described based on the attached drawings. FIG. 1 is a view schematically showing the configuration of an exposure apparatus according to an embodiment of the present invention. In FIG. 1, the X axis and the Y axis are set in a direction parallel to the wafer W, and the Z axis is set in a direction orthogonal to the wafer W. More specifically, the XY plane is set parallel to the horizontal plane, and the + Z axis is set upward along the vertical direction. As shown in FIG. 1, the exposure apparatus of this embodiment includes, for example, an illumination optical system 1 including an ArF excimer laser light source, which is an exposure light source, and configured as an optical integrator (field homogenizer), field stop, condenser lens and the like. Have.
[0016] 光源力も射出された波長 193nmの紫外パルス光力もなる露光光 (露光ビーム) IL は、照明光学系 1を通過し、レチクル (マスク) Rを照明する。レチクル Rには転写すベ きパターンが形成されており、パターン領域全体のうち X方向に沿って長辺を有し且 つ Y方向に沿って短辺を有する矩形状 (スリット状)のパターン領域が照明される。レ チクル Rを通過した光は、液浸型の反射屈折結像光学系である投影光学系 PLを介 して、フォトレジストが塗布されたウェハ (感光性基板) W上の露光領域に所定の縮小 投影倍率でレチクルパターンを形成する。すなわち、レチクル R上での矩形状の照明 領域に光学的に対応するように、ウェハ W上では X方向に沿って長辺を有し且つ Y 方向に沿って短辺を有する矩形状の静止露光領域 (実効露光領域;有効結像領域) にパターン像が形成される。  The exposure light (exposure beam) IL which is also an ultraviolet pulse light power of wavelength 193 nm from which the light source power is also emitted passes through the illumination optical system 1 and illuminates the reticle (mask) R. A rectangular (slit-like) pattern area having a long side along the X direction and a short side along the Y direction of the entire pattern area is formed on the reticle R. Is illuminated. The light having passed through the reticle R is transferred to a predetermined exposure area on a wafer (photosensitive substrate) W coated with a photoresist through a projection optical system PL which is an immersion type catadioptric imaging optical system. Form a reticle pattern with reduced projection magnification. That is, on the wafer W, a rectangular stationary exposure having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R. A pattern image is formed in the area (effective exposure area; effective imaging area).
[0017] 図 2は、本実施形態においてウェハ上に形成される矩形状の静止露光領域 (すな わち実効露光領域)と光軸との位置関係を示す図である。本実施形態では、図 2に 示すように、光軸 AXを中心とした半径 Bを有する円形状の領域 (イメージサークル) I F内において、光軸 AXから Y方向に軸外し量 Aだけ離れた位置に所望の大きさを有 する矩形状の実効露光領域 ERが設定されている。ここで、実効露光領域 ERの X方 向の長さは LXであり、その Y方向の長さは LYである。したがって、図示を省略したが 、レチクル R上では、矩形状の実効露光領域 ERに対応して、光軸 AXから Y方向に 軸外し量 Aに対応する距離だけ離れた位置に実効露光領域 ERに対応した大きさお よび形状を有する矩形状の照明領域 (すなわち実効照明領域)が形成されていること になる。 FIG. 2 is a view showing a positional relationship between a rectangular still exposure area (that is, an effective exposure area) formed on a wafer in the present embodiment and an optical axis. In this embodiment, as shown in FIG. 2, a circular area having a radius B centered on the optical axis AX (image circle) in the IF, a position away from the optical axis AX by an off-axis amount A in the Y direction. A rectangular effective exposure area ER having a desired size is set. Here, X of the effective exposure area ER The length in the direction is LX, and the length in the Y direction is LY. Therefore, although not shown, on the reticle R, the effective exposure area ER is located at a distance from the optical axis AX in the Y direction by a distance corresponding to the off-axis amount A corresponding to the rectangular effective exposure area ER. A rectangular illumination area (that is, an effective illumination area) having a corresponding size and shape is formed.
[0018] レチクル Rはレチクルステージ RST上において XY平面に平行に保持され、レチク ルステージ RSTにはレチクル Rを X方向、 Y方向および回転方向に微動させる機構 が組み込まれている。レチクルステージ RSTは、レチクルレーザ干渉計(不図示)に よって X方向、 Y方向および回転方向の位置がリアルタイムに計測され、且つ制御さ れる。ウェハ Wは、ウェハホルダ(不図示)を介して Zステージ 9上において XY平面に 平行に固定されている。また、 Zステージ 9は、投影光学系 PLの像面と実質的に平行 な XY平面に沿って移動する XYステージ 10上に固定されており、ウェハ Wのフォー カス位置 (Z方向の位置)および傾斜角を制御する。 Zステージ 9は、 Zステージ 9上に 設けられた移動鏡 12を用いるウェハレーザ干渉計 13によって X方向、 Y方向および 回転方向の位置がリアルタイムに計測され、且つ制御される。  Reticle R is held on reticle stage RST in parallel to the XY plane, and reticle stage RST incorporates a mechanism for finely moving reticle R in the X direction, Y direction, and rotational direction. In reticle stage RST, the positions in the X direction, Y direction and rotational direction are measured and controlled in real time by a reticle laser interferometer (not shown). Wafer W is fixed parallel to the XY plane on Z stage 9 via a wafer holder (not shown). The Z stage 9 is fixed on an XY stage 10 which moves along an XY plane substantially parallel to the image plane of the projection optical system PL, and the focus position (position in the Z direction) of the wafer W and Control the tilt angle. The Z stage 9 is measured and controlled in real time in the X direction, Y direction and rotational direction by a wafer laser interferometer 13 using a movable mirror 12 provided on the Z stage 9.
[0019] また、 XYステージ 10は、ベース 11上に載置されており、ウェハ Wの X方向、 Y方向 および回転方向を制御する。一方、本実施形態の露光装置に設けられた主制御系 1 4は、レチクルレーザ干渉計により計測された計測値に基づ!/、てレチクル Rの X方向 、 Y方向および回転方向の位置の調整を行う。即ち、主制御系 14は、レチクルステー ジ RSTに組み込まれて ヽる機構に制御信号を送信し、レチクルステージ RSTを微動 させることによりレチクル Rの位置調整を行う。また、主制御系 14は、オートフォーカス 方式及びオートレべリング方式によりウェハ W上の表面を投影光学系 PLの像面に合 わせ込むため、ウェハ Wのフォーカス位置(Z方向の位置)および傾斜角の調整を行 う。即ち、主制御系 14は、ウェハステージ駆動系 15に制御信号を送信し、ウエノ、ステ ージ駆動系 15により Zステージ 9を駆動させることによりウェハ Wのフォーカス位置お よび傾斜角の調整を行う。  The XY stage 10 is mounted on the base 11, and controls the X direction, the Y direction, and the rotation direction of the wafer W. On the other hand, the main control system 14 provided in the exposure apparatus of the present embodiment is based on the measurement values measured by the reticle laser interferometer, and the positions of the reticle R in the X direction, Y direction and rotation direction. Make adjustments. That is, the main control system 14 transmits a control signal to a mechanism incorporated in the reticle stage RST and moves the reticle stage RST finely to adjust the position of the reticle R. Further, the main control system 14 aligns the surface on the wafer W with the image plane of the projection optical system PL by the autofocus method and the auto leveling method, so the focus position (position in the Z direction) and tilt angle of the wafer W Adjust the That is, the main control system 14 transmits a control signal to the wafer stage drive system 15, and adjusts the focus position and the inclination angle of the wafer W by driving the Z stage 9 by the Ueno, stage drive system 15. .
[0020] 更に、主制御系 14は、ウェハレーザ干渉計 13により計測された計測値に基づいて ウェハ Wの X方向、 Y方向および回転方向の位置の調整を行う。即ち、主制御系 14 は、ウェハステージ駆動系 15に制御信号を送信し、ウェハステージ駆動系 15により X Yステージ 10を駆動させることによりウェハ Wの X方向、 Y方向および回転方向の位 置調整を行う。露光時には、主制御系 14は、レチクルステージ RSTに組み込まれて いる機構に制御信号を送信すると共に、ウェハステージ駆動系 15に制御信号を送信 し、投影光学系 PLの投影倍率に応じた速度比でレチクルステージ RSTおよび XYス テージ 10を駆動させつつ、レチクル Rのパターン像をウェハ W上の所定のショット領 域内に投影露光する。その後、主制御系 14は、ウェハステージ駆動系 15に制御信 号を送信し、ウエノ、ステージ駆動系 15により XYステージ 10を駆動させることによりゥ ェハ W上の別のショット領域を露光位置にステップ移動させる。 Further, the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotational direction based on the measurement values measured by the wafer laser interferometer 13. That is, the main control system 14 A control signal is sent to the wafer stage drive system 15 and the XY stage 10 is driven by the wafer stage drive system 15 to adjust the position of the wafer W in the X direction, Y direction and rotation direction. At the time of exposure, the main control system 14 transmits a control signal to the mechanism incorporated in the reticle stage RST, and transmits a control signal to the wafer stage drive system 15, and the speed ratio according to the projection magnification of the projection optical system PL. At the same time, the reticle stage RST and the XY stage 10 are driven, and the pattern image of the reticle R is projected and exposed onto a predetermined shot area on the wafer W. After that, the main control system 14 transmits a control signal to the wafer stage drive system 15 to drive the XY stage 10 by means of the stage drive system 15 to move another shot area on the wafer W to the exposure position. Step move.
[0021] このように、ステップ'アンド'スキャン方式によりレチクル Rのパターン像をウェハ W 上に走査露光する動作を繰り返す。すなわち、本実施形態では、ウェハステージ駆 動系 15およびウェハレーザ干渉計 13などを用いてレチクル Rおよびウェハ Wの位置 制御を行いながら、矩形状の静止露光領域および静止照明領域の短辺方向すなわ ち Y方向に沿ってレチクルステージ RSTと XYステージ 10とを、ひ!、てはレチクル尺と ウェハ Wとを同期的に移動(走査)させることにより、ウェハ W上には静止露光領域の 長辺 LXに等し 、幅を有し且つウェハ Wの走査量 (移動量)に応じた長さを有する領 域に対してレチクルパターンが走査露光される。  In this manner, the operation of scanning and exposing the pattern image of the reticle R onto the wafer W is repeated by the step 'and' scan method. That is, in the present embodiment, while controlling the position of reticle R and wafer W using wafer stage drive system 15 and wafer laser interferometer 13 etc., the short side direction of the rectangular static exposure area and static illumination area is detected. The reticle stage RST and the XY stage 10 along the Y direction are moved (scanned) synchronously with the reticle scale and the wafer W, so that the long side of the still exposure area on the wafer W A reticle pattern is scan-exposed to a region equal to LX and having a width and a length corresponding to the scanning amount (moving amount) of the wafer W.
[0022] 図 3は、本実施形態の各実施例における境界レンズとウェハとの間の構成を模式的 に示す図である。本実施形態の第 1実施例、第 2実施例、第 3実施例および第 4実施 例では、図 3 (a)に示すように、境界レンズ Lbとウェハ Wとの間の光路が液体 Lmで満 たされている。本実施形態の第 3実施例では、図 3 (b)に示すように、平行平面板 Lp とウェハ Wとの間の光路および境界レンズ Lbと平行平面板 Lpとの間の光路が液体 L mで満たされている。第 3実施例では、図 1に示すように、第 1給排水機構 21を用い て平行平面板 Lpとウェハ Wとの間の光路中において液体 Lmとしての純水を循環さ せ、第 2給排水機構 22を用いて境界レンズ Lbと平行平面板 Lpとの間の光路中にお いて液体 Lmとしての純水を循環させている。第 1実施例、第 2実施例、第 3実施例お よび第 4実施例では、図示を省略した給排水機構を用いて、境界レンズ Lbとウエノ、 Wとの間の光路中にお 、て液体 Lmとしての純水を循環させて!/、る。 [0023] 本実施形態の各実施例において、非球面は、光軸に垂直な方向の高さを yとし、非 球面の頂点における接平面力 高さ yにおける非球面上の位置までの光軸に沿った 距離 (サグ量)を zとし、頂点曲率半径を rとし、円錐係数を Kとし、 η次の非球面係数 を Cとしたとき、以下の数式 (b)で表される。後述の表(1)〜(4)において、非球面形 状に形成された光学面には面番号の右側に *印を付している。 FIG. 3 is a view schematically showing a configuration between the boundary lens and the wafer in each example of the present embodiment. In the first embodiment, the second embodiment, the third embodiment and the fourth embodiment of the present embodiment, as shown in FIG. 3A, the light path between the boundary lens Lb and the wafer W is liquid Lm. be satisfied. In the third example of this embodiment, as shown in FIG. 3B, the optical path between the plane parallel plate Lp and the wafer W and the optical path between the boundary lens Lb and the plane parallel plate Lp are liquid L m Is filled with In the third embodiment, as shown in FIG. 1, the pure water as the liquid Lm is circulated in the light path between the plane parallel plate Lp and the wafer W by using the first water supply and drainage mechanism 21, and the second water supply and drainage mechanism. 22 is used to circulate pure water as liquid Lm in the optical path between the boundary lens Lb and the plane parallel plate Lp. In the first embodiment, the second embodiment, the third embodiment and the fourth embodiment, the liquid supply and drainage mechanism (not shown) is used to set the liquid in the optical path between the boundary lens Lb and Ueno and W. Circulate pure water as Lm! In each example of the present embodiment, the aspheric surface has a height in the direction perpendicular to the optical axis as y, and the tangential force at the vertex of the aspheric surface is the optical axis up to the position on the aspheric surface at the height y. Letting z be the distance (sag amount) along r, r be the radius of curvature of the apex, K be the conical coefficient, and C be the aspheric coefficient of order η, it is expressed by the following equation (b). In Tables (1) to (4) to be described later, an optical surface formed in an aspheric shape is given an * mark on the right side of the surface number.
z= (yVr) /[l + { l - (l + K ) -y2/r2}1 2] +C -y4+C -y6 z = (y Vr) / [l + {l-(l + K )-y 2 / r 2 } 1 2 ] + C-y 4 + C-y 6
4 6  4 6
+ C V + C -y10 + C -y12 + C 'y" + C -y16 (b) + CV + C-y 10 + C-y 12 + C ' y "+ C-y 16 (b)
8 10 12 14 16  8 10 12 14 16
[0024] また、本実施形態の各実施例において、投影光学系 PLは、物体面 (第 1面)に配 置されたレチクル Rのパターンの第 1中間像を形成する第 1結像系 G1と、第 1中間像 力もの光に基づいてレチクルパターンの第 2中間像 (第 1中間像の像であってレチク ルパターンの二次像)を形成する第 2結像系 G2と、第 2中間像力 の光に基づいて 像面 (第 2面)に配置されたウェハ W上にレチクルパターンの最終像 (レチクルパター ンの縮小像)を形成する第 3結像系 G3とを備えている。第 1結像系 G1および第 3結 像系 G3はともに屈折光学系(反射鏡を含まない光学系)であり、第 2結像系 G2は 2 つの凹面反射鏡のみ力もなる反射光学系である。各実施例の投影光学系 PLでは、 第 1結像系 Gl、第 2結像系 G2および第 3結像系 G3が、鉛直方向に沿って直線状に 延びる 1本の光軸 AXに沿ってそれぞれ配置されている。また、各実施例において、 投影光学系 PLは、物体側および像側の双方にほぼテレセントリックに構成されて!ヽ る。  Further, in each example of the present embodiment, the projection optical system PL is a first imaging system G1 that forms a first intermediate image of the pattern of the reticle R disposed on the object surface (first surface). And a second imaging system G2 for forming a second intermediate image (an image of the first intermediate image and a secondary image of a reticle pattern) of the reticle pattern based on the light of the first intermediate image, and the second imaging system G2 And a third imaging system G3 for forming a final image (a reduced image of the reticle pattern) of the reticle pattern on the wafer W disposed on the image plane (the second surface) based on the light of intermediate image power. . The first imaging system G1 and the third imaging system G3 are both dioptric systems (optical systems that do not include a reflecting mirror), and the second imaging system G2 is a catoptric system in which only two concave reflecting mirrors can also act. . In the projection optical system PL of each embodiment, the first imaging system Gl, the second imaging system G2, and the third imaging system G3 extend along one optical axis AX linearly extending along the vertical direction. Each is arranged. In each embodiment, the projection optical system PL is substantially telecentric on both the object side and the image side !.
[0025] [第 1実施例]  First Embodiment
図 4は、本実施形態の第 1実施例にカゝかる投影光学系のレンズ構成を示す図であ る。第 1実施例に力かる投影光学系 PLにおいて第 1結像系 G1は、レチクル側力も順 に、平行平面板 P1と、 10枚のレンズ L11〜L110とにより構成されている。第 2結像 系 G2は、光の入射側から順に、入射側(レチクル側)に長偏球面状の凹面を向けた 第 1凹面反射鏡 CM21と、入射側 (ウェハ側)に長偏球面状の凹面を向けた第 2凹面 反射鏡 CM22とにより構成されている。さらに詳細には、第 1凹面反射鏡 CM21の長 偏球面状の反射面および第 2凹面反射鏡 CM22の長偏球面状の反射面は、光軸 A X上に長軸を有する楕円面の一部をそれぞれ構成している。また、第 1凹面反射鏡 C M21と第 2凹面反射鏡 CM22とは、互いに同じ形状の反射面を有する。第 1凹面反 射鏡 CM21は、一方の焦点が第 1結像系 G1の瞳位置に位置し、他方の焦点が第 2 結像系 G2の瞳位置に位置するように配置されている。第 2凹面反射鏡 CM22は、一 方の焦点が第 3結像系 G3の瞳位置に位置し、他方の焦点が第 2結像系 G2の瞳位 置に位置するように配置されて 、る。 FIG. 4 is a view showing a lens configuration of a projection optical system according to the first example of the present embodiment. In the projection optical system PL which is applied to the first embodiment, the first imaging system G1 is composed of a plane parallel plate P1 and ten lenses L11 to L110 in order on the reticle side force. The second imaging system G2 includes, in order from the light incident side, a first concave reflecting mirror CM21 having a long aspheric concave surface directed to the incident side (reticle side), and a long aspheric surface on the incident side (wafer side) And a second concave reflector CM22 with the concave surface facing the second concave mirror CM22. More specifically, the long concave spherical reflecting surface of the first concave reflecting mirror CM21 and the long concave spherical reflecting surface of the second concave reflecting mirror CM22 are part of an elliptical surface having a major axis on the optical axis AX. Each is configured. Also, the first concave reflector C The M 21 and the second concave reflecting mirror CM 22 have reflecting surfaces of the same shape. The first concave reflecting mirror CM21 is disposed such that one focal point is located at the pupil position of the first imaging system G1 and the other focal point is located at the pupil position of the second imaging system G2. The second concave reflecting mirror CM22 is disposed such that one focal point is located at the pupil position of the third imaging system G3 and the other focal point is located at the pupil position of the second imaging system G2, .
[0026] 第 3結像系 G3は、レチクル側(すなわち光の入射側)力も順に、レンズ L31〜L312 と、ウェハ側に平面を向けた平凸レンズ L313 (境界レンズ Lb)とにより構成されて!ヽ る。第 1実施例では、投影光学系 PLの開口数を変更するための可変開口絞り AS ( 不図示)がレンズ L39と L310との間に設けられている。また、境界レンズ Lbとウェハ Wとの間の光路に、使用光 (露光光)である ArFエキシマレーザ光(中心波長え = 19 3. 306nm)に対して 1. 435876の屈折率を有する純水(Lm)が満たされている。ま た、境界レンズ Lbを含むすべての光透過部材力 使用光の中心波長に対して 1. 56 03261の屈折率を有する石英(SiO )により形成されている。 The third imaging system G3 is also configured by lenses L31 to L312 and a plano-convex lens L313 (boundary lens Lb) having a flat surface facing the wafer side in order on the reticle side (that is, the light incident side) force! Follow In the first embodiment, a variable aperture stop AS (not shown) for changing the numerical aperture of the projection optical system PL is provided between the lenses L39 and L310. Also, in the optical path between the boundary lens Lb and the wafer W, pure water having a refractive index of 1.435876 for ArF excimer laser light (center wavelength E = 19 3. 306 nm) which is the use light (exposure light) (Lm) is satisfied. In addition, all light transmitting members including the boundary lens Lb are made of quartz (SiO 2) having a refractive index of 1.503261 with respect to the central wavelength of the used light.
2  2
[0027] 次の表(1)に、第 1実施例に力かる投影光学系 PLの諸元の値を掲げる。表(1)に おいて、 λは露光光の中心波長を、 j8は投影倍率 (全系の結像倍率)の大きさを、 Ν Aは像側(ウェハ側)開口数を、 Bはウエノ、 W上でのイメージサークル IFの半径 (最大 像高)を、 Aは実効露光領域 ERの軸外し量を、 LXは実効露光領域 ERの X方向に沿 つた寸法 (長辺の寸法)を、 LYは実効露光領域 ERの Y方向に沿った寸法 (短辺の 寸法)をそれぞれ表している。また、面番号は物体面 (第 1面)であるレチクル面から 像面 (第 2面)であるウェハ面への光線の進行する経路に沿ったレチクル側力 の面 の順序を、 rは各面の曲率半径 (非球面の場合には頂点曲率半径: mm)を、 dは各 面の軸上間隔すなわち面間隔 (mm)を、 nは中心波長に対する屈折率をそれぞれ 示している。なお、表(1)における表記は、以降の表(2)〜 (4)においても同様である  Table 1 below shows values of specifications of the projection optical system PL that are the key to the first example. In Table (1), λ is the central wavelength of the exposure light, j8 is the size of the projection magnification (imaging magnification of the whole system), Ν A is the image side (wafer side) numerical aperture, and B is Ueno. The radius of the image circle IF (maximum image height) on W, A is the off-axis amount of the effective exposure area ER, and LX is the dimension along the X direction of the effective exposure area ER (dimension of the long side) LY represents the dimension (dimension of the short side) of the effective exposure region ER along the Y direction. The surface number indicates the order of the reticle side force along the path of the light beam from the reticle plane, which is the object plane (first plane), to the wafer plane, which is the image plane (second plane). The radius of curvature of the surface (in the case of an aspheric surface, the vertex radius of curvature: mm), d indicates the on-axis spacing of each surface, ie, the surface spacing (mm), and n indicates the refractive index for the central wavelength. In addition, the notation in Table (1) is the same as in the following Tables (2) to (4)
[0028] 表(1) Table (1)
(主要諸元)  (Major specifications)
= 193. 306nm  = 193. 306 nm
β = 1/4 n//v:.ss900ifcl£ O osiuAV β = 1/4 n // v: .ss 900 ifcl £ O osiuAV
Figure imgf000012_0001
Figure imgf000012_0001
/ O osiz-oozAV / O osiz-oozAV
ΐ0690寸 ττ· 690 0690 inch τ τ ·
()no寸 () no size
ΐ寸∞69寸 00000OS ΖS·  ΐ 69 69 00000 OS Ζ S ·
SS0寸∞9ΐ. οεοοοοοεss *,  SS0 寸 9ΐ. Εεο εss *,
οοοοοεΐ寸 3ΐε,  ΐεΐ size 3ΐε,
寸3·  Dimension 3 ·
(3 οοοοοεΐ98999 ΐε ΖΓΖΙ ,  (3 ΐεΐ 98999 ΐε ΖΓΖΙ,
(39寸 (39 inch size
§9ε * Ε 9ε *
Figure imgf000013_0001
() εΊ
Figure imgf000013_0001
() εΊ
()∞ε π∞寸06Ί3 · () Ε ε π∞ size 06 Ί 3 ·
0002η 06εε? ο寸.  0002η 06εε ο Dimensions.
(36 sosss ΐ寸r (36 sosss ΐ r
0= ¾ -Bsz 0 = ¾ -Bsz
0= o 0 = o
0IXZ99SI " g 0IX0S8^I · D 0IXZ99SI "g 0IX0S8 ^ I · D
OT  OT
12- '9= O
Figure imgf000014_0001
12-'9 = O
Figure imgf000014_0001
0= ¾ -B9Z0 = ¾ -B9Z
91 n 91 n
0= O 0= O 0 = -- D 0= O 0= O 0= O 0= O  0 = O 0 = O 0 =-D 0 = O 0 = O 0 = O 0 = O
t_0Tx6 ^i9 -= Ί¾α εζ  t_0Tx6 ^ i9-= Ί3⁄4α εζ
91 91
0= o n 0 = o n
οε- 0IXI9Z^Z 'Ζ 92 OIXO^OZO 'し- εε- 0IXI9Z ^ Z 'Ζ 92 OIXO ^ OZO' Shi-
OT OT
\z- oixxeszo O ZI_0lX98^Sg 'Z-\ z-oixxeszo O ZI _0 lX 98 ^ Sg 'Z-
01X009X9 P= D 8_OXXS9^IO '901X009X9 P = D 8 _OXXS 9 ^ IO '9
Figure imgf000014_0002
Figure imgf000014_0002
91 εε- οχχθζζεε 'ζ= o 91 ε ε θ ζζ ε ε ζ = o
82- 0XX968II D 0IXS69S9 'Z= O 82- 0XX968 II D 0 IX S 69 S 9 'Z = O
01  01
02- 0IX8S0S8 Έ 91 OI LZ LQ Έ = 802- 0IX8S0S8 Έ 91 OI LZ LQ Έ = 8 pieces
0IX08Z9S 8_0IX 90002 '8=つ
Figure imgf000014_0003
0IX08Z9S 8 _0IX 90002 '8 = One
Figure imgf000014_0003
n  n
oixtoo ·ε= o £2- 0ΙΧ^986Ζ 'ε— = ο oixtoo · ε = o £ 2-0ΙΧ ^ 986Ζ 'ε-= ο
61 01X88899 91 0ΙΧΖΤΤ96 '9= 361 01 X 888 99 91 0 ΙΧΖΤΤ 96 '9 = 3
01X09620 '6 D ,_0ΙΧ96 ^9 -= ο 01X09620 '6 D, _0 ΙΧ 96 ^ 9-= ο
0= :厘 6 ( — 厘翁^) (¾、/ェ )  0 =: 厘 6 (— 厘 翁 ^) (3⁄4, /)
(^Ί) 9 83ε^·ΐ 00000· ∞ IS (^1-£1£1 Ϊ93ε093·ΐ 86ΐεε·6 8£068'£6 09  (^ Ί) 9 83 ε ^ · ΐ 00000 · IS IS (^ 1-£ 1 £ Ϊ 93 ε 09 3 · ΐ 86 ΐ ε · 6 8 £ 068 '£ 6 09
00000· ΐ  00000 · ΐ
ll.Sif/900Zdf/X3d 0H980請 Z ΟΛ\ O ll.Sif / 900Zdf / X3d 0H980 request Z ΟΛ \ O
Figure imgf000015_0001
Figure imgf000015_0001
〇l〇 C2.6x = I 10.298^10 C3.3633XX = 〇 l o C 2.6 x = I 10. 298 ^ 10 C 3.3 633 XX =
C =-2.54603X10 C = -2.54603 X 10
16  16
49面: κ =0  49: κ = 0
C =5.39853X10—8 C =6.72332X10— 12 C = 5.39853X10- 8 C = 6.72332X10- 12
4 6  4 6
C =— 7.01770X10— 16 C =1.02255X10— 19 C = - 7.01770X10- 16 C = 1.02255X10- 19
8 10  8 10
C =— 9.46223X10— 24 C =6.48610 X 10— 28 C = - 9.46223X10- 24 C = 6.48610 X 10- 28
12 14  12 14
C =-1.97332X10— 32 C = -1.97332X10- 32
16  16
[0029] [第 2実施例]  Second Embodiment
図 5は、本実施形態の第 2実施例にカゝかる投影光学系のレンズ構成を示す図であ る。第 2実施例の投影光学系 PLは第 1実施例の投影光学系と類似の構成を有する 力 第 1結像系 G1が平行平面板 P1と 9枚のレンズ L11〜L19とにより構成されてい る点が第 1実施例と相違している。第 2実施例においても第 1実施例と同様に、投影 光学系 PLの開口数を変更するための可変開口絞り AS (不図示)力レンズ L39と L3 10との間に設けられている。また、境界レンズ Lbとウェハ Wとの間の光路に、使用光 の中心波長(λ =193.306nm)に対して 1.435876の屈折率を有する純水(Lm) が満たされている。また、境界レンズ Lbを含むすべての光透過部材力 使用光の中 心波長に対して 1.5603261の屈折率を有する石英により形成されている。次の表( 2)に、第 2実施例に力かる投影光学系 PLの諸元の値を掲げる。  FIG. 5 is a view showing a lens configuration of a projection optical system according to a second example of the present embodiment. The projection optical system PL of the second embodiment has a configuration similar to that of the projection optical system of the first embodiment. The first imaging system G1 is composed of a plane parallel plate P1 and nine lenses L11 to L19. The points are different from the first embodiment. As in the first embodiment, the second embodiment is also provided between the variable aperture stop AS (not shown) force lens L39 and L310 for changing the numerical aperture of the projection optical system PL. In addition, the optical path between the boundary lens Lb and the wafer W is filled with pure water (Lm) having a refractive index of 1.435876 with respect to the central wavelength (λ = 193.306 nm) of the used light. In addition, all the light transmitting members including the boundary lens Lb are made of quartz having a refractive index of 1.5603261 with respect to the central wavelength of the used light. Table 2 below summarizes values of specifications of the projection optical system PL that are the key to the second example.
[0030] 表(2)  Table (2)
(主要諸元)  (Major specifications)
=193.306nm  = 193.306 nm
β=1/4  β = 1/4
ΝΑ=1.3  ΝΑ = 1.3
Β= 15.3mm  Β = 15.3 mm
A=3mm  A = 3 mm
LX=26mm  LX = 26 mm
LY=5mm  LY = 5 mm
(光学部材諸元)  (Optical member specifications)
面番号 r d n 光学部材 //: O ϊϊ/¾ε9002τ1£ osi-oozAV Surface number rdn Optical member //: O ϊϊ / 3⁄4ε9002τ1 £ osi-oozAV
S) Ϊ 00000OSΛ/ヽ Ζ S) Ϊ 00000 OS Λ / ヽ Ζ
Ζ 6 * Ζ 6 *
Οΐ  Moth
Figure imgf000017_0001
Figure imgf000017_0001
Six
600OS 600 OS
ΐεεΐε9ζ·  ΐεεΐε9ζ ·
0002η οεοοοοοεs *, οοοοοεΐ, C.898〇l〇I.212610xX = I0002η εεε *, εεΐ, C. 898 l l. I. 212 610 x X = I
C9.6181〇 3.618l〇Xx = l C9.6 1813 3.618 l0 Xx = l
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000019_0001
c〇 =
Figure imgf000019_0001
c = =
l〇1.〇686 C x =^ 34面: κ =0 l 1. 1. 686 C x = ^ 34: κ = 0
Figure imgf000020_0001
Figure imgf000020_0001
c 8. 08755X10" c 8. 08755X10 "
16 16
心波長(λ = 193. 306nm)〖こ対して 1. 435876の屈折率を有する純水(Lm)が満 たされている。また、境界レンズ Lbおよび平行平面板 Lpを含むすべての光透過部材 力 使用光の中心波長に対して 1. 5603261の屈折率を有する石英により形成され ている。次の表(3)に、第 3実施例に力かる投影光学系 PLの諸元の値を掲げる。 Pure water (Lm) with a refractive index of 1.435876 is filled against the heart wavelength (λ = 193. 306 nm). Further, all light transmitting members including the boundary lens Lb and the plane parallel plate Lp are made of quartz having a refractive index of 1.5603261 with respect to the central wavelength of the light used. Table 3 below shows values of specifications of the projection optical system PL that are the key to the third example.
表(3)  Table (3)
(主要諸元)  (Major specifications)
= 193. 306nm  = 193. 306 nm
β = 1/4 β = 1/4
ΝΑ= 1. 3 ΝΑ = 1.3
Β= 15. 3mm Β = 15. 3 mm
A= 3mm A = 3 mm
LX= 26mm LX = 26 mm
LY= 5mm LY = 5 mm
(光学部材諸元) (Optical member specifications)
面番号 r d n 光学部材 Surface number r d n Optical member
(レチクル面) 60.59272  (Reticle plane) 60.59272
1 oo 8.00000 1, .5603261 (P1)  1 oo 8.00000 1, .5603261 (P1)
2 oo 3.00000  2 oo 3.00000
3 350.00000 25.01025 1.5603261 (L11)  3 350.00000 25.01025 1.5603261 (L11)
4 -1224.92925 1.00000  4-1224.92925 1.00000
5 206.91963 33.55065 1.5603261 (L12)  5 206.91963 33.55065 1.5603261 (L12)
6 -4382.64940 4.05890  6 -4382.64940 4.05890
7 128.14708 51.26364 1.5603261 (L13)  7 128.14708 51.26364 1.5603261 (L13)
8 -19008.21291 10.73486  8-19802.221291 10.73486
9* -10000.00000 21.70324 1.5603261 (L14)  9 *-10000.00000 21.70324 1.5603261 (L14)
10 227.01998 9.85859  10 227.01998 9.85859
11 536.14092 30.62633 1.5603261 (L15)  11 536.14092 30.62633 1.5603261 (L15)
12 -180.47868 31.92390 12-180.47868 31.92390
/ O osiz-oozAV 言) Ϊ92ε09ΐ3· / O osiz-oozAV words) Ϊ 92 ε 09 ΐ 3 ·
S6ss寸 ε寸 ΐrι  S6ss size ε size ΐrι
Ϊ92ε09ΐ寸 66000ε 6ε§ 9ΐ33·,.  Ε 92 ΐ 09 ΐ 66000 ε 6 § 9 ΐ 33 ·,.
¾) ΐ92§ΐ οοοοοεΐ £Ί3., 言) Ϊ92ε09ΐ S寸3 S S· 3⁄4) ΐ 92 ο ΐ ε Ί £ Ί 3. 言) Ϊ 92ε 09 ΐ S dimension 3 S S ·
寸S9O9 OS SZSI  S9O9 OS SZSI
( 5ヨ Ϊ92ε09ΐ3·,  (5 yo Ϊ 92ε09 ΐ 3 ·,
ο ο
σ)ε Ϊ92ε09ΐ SO寸 699SΊ3S·.
Figure imgf000022_0001
SO寸εεεssS * · ) 3 ΐ92§ΐ οοοοοεΐ3.,
σ) ε Ϊ 92 ε 09 ΐ SO dimension 699 S Ί 3 S ..
Figure imgf000022_0001
SO dimension εεεssS * ·) 3 ΐ 92 ο ΐ ε 3.
6ΐ寸6ΐ Ζ3· 6 pieces 6 pieces 3 pieces
()9 Ϊ92ε09ΐ Ί3· ) 3 Ϊ92ε09ΐ ∞ε 92ΐ3··  () 9 Ϊ 92 ΐ 09 Ί 3 3 3 Ϊ 92 ΐ 09 ΐ ΐ 92 ΐ 3 ·
0002η
Figure imgf000023_0001
0002η
Figure imgf000023_0001
()ゝノ  () Hino
() 41 3334.64266 45.38994 1.5603261L39
Figure imgf000024_0001
() 41 3334.64266 45.38994 1.5603261 L39
Figure imgf000024_0001
C C =-4. 53768X10— 35 C C =-4. 53768 X 10-35
Figure imgf000025_0001
Figure imgf000025_0001
c -24 -28 c -24 -28
5. 78534X10 C =3. 15579X105. 78534 X 10 C = 3. 15579 X 10
12 12
Wとの間の光路に、使用光の中'、波長(λ = 193. 306nm)に対して 1. 435876の 屈折率を有する純水(Lm)が満たされている。また、境界レンズ Lbを含むすべての 光透過部材が、使用光の中心波長に対して 1. 5603261の屈折率を有する石英に より形成されている。次の表 (4)に、第 4実施例に力かる投影光学系 PLの諸元の値 を揭げる。 The optical path to W is filled with pure water (Lm) having a refractive index of 1.435876 for the wavelength (λ = 193. 306 nm) in the used light. Further, all the light transmitting members including the boundary lens Lb are made of quartz having a refractive index of 1.5603261 with respect to the central wavelength of the used light. In the following Table (4), values of various items of the projection optical system PL, which are the components of the fourth embodiment, are listed.
表 (4)  Table (4)
(主要諸元)  (Major specifications)
= 193. 306nm  = 193. 306 nm
β = 1/4 β = 1/4
ΝΑ= 1. 3 ΝΑ = 1.3
Β= 15. 5mm Β = 15. 5 mm
A= 3mm A = 3 mm
LX= 26mm LX = 26 mm
LY= 5. 4mm LY = 5. 4 mm
(光学部材諸元)  (Optical member specifications)
面番号 r d n 光学部材 Surface number r d n Optical member
(レチクル面) 50.00000  (Reticle plane) 50.00000
1 oo 8.00000 1.5603261 (P1)  1 oo 8.00000 1.5603261 (P1)
2 oo 3.00000  2 oo 3.00000
3 350.00000 26.46669 1.5603261 (L11)  3 350.00000 26.46669 1.5603261 (L11)
4 -645.53379 1.00000  4-65.5 3379 1.00000
5 173.21612 35.96742 1.5603261 (L12)  5 173.21612 35.96742 1.5603261 (L12)
6 -4461.33635 17.43708  6 -4461.333635 17.43708
7 429.14439 29.48354 1.5603261 (L13)  7 429.14439 29.48354 1.5603261 (L13)
8 -275.94579 1.00000  8-275.94579 1.00000
9* -10000.00000 12.00000 1.5603261 (L14)  9 *-10000.00000 12.00000 1.5603261 (L14)
10 196.20422 8.94774  10 196.20422 8.94774
11 258.27992 39.92164 1.5603261 (L15) //:/ O ϊϊ/¾ε9002τ1£ osiz-oozAV 11 258.27992 39.92164 1.5603261 (L15) //: / O ϊϊ / 3⁄4ε9002τ1 £ osiz-oozAV
0002η Οΐΐΐ寸 ΐ- · 0002η Οΐΐΐ- · ·
(38 ΐ92§ΐ ο寸006ε3 Ζ., (38 ΐ 92 寸 006 006 3 3 Ζ.,
(36 ΐ92§ΐ寸 606023... (36 ΐ 92 ΐ size 606023 ...
οοοοοεΐ, ΐεΐ,
Figure imgf000027_0001
Figure imgf000027_0001
(3 ΐ92§ΐ οοοοοεΐ3.,  (3 ΐ 92 ο ΐ ε ΐ 3.,
()93 ΐ92§ΐ3. () 93 ΐ 92 ΐ 3.
(39 ΐ92§ΐ3. (39 ΐ 92 ΐ 3.
s寸^εΐs ·  s 寸 ^ εΐ ·
()卜 ε Ϊ92ε09ΐΊ3.  () Ε ε Ϊ 92 ε 09 ΐΊ 3.
()∞ε ΐ92§ΐ 09寸6επεΊ3 ζ. · () Ϊ́ ε ΐ 92 ΐ 09π6επεΊ 3 ζ. ·
()63 ΐ92§ΐ3. =
Figure imgf000028_0001
() 63 ΐ 92 ΐ 3. =
Figure imgf000028_0001
 Yes
^〜 ^ ~
8 8
Figure imgf000029_0001
Figure imgf000029_0001
〇 C =C C =
9102.1767 CX = l〇〇77212102.053^x CX = 45面: K =0 9102.1767 CX = l 772 07721212.053 ^ x CX = 45: K = 0
C =5.41768X10—9 C =— 1. 25187X10 C = 5.41768X10- 9 C = - 1. 25187X10
4  Four
C =-2.46535X10— 17 C =2. 91835X10—: C = -2.46535X10- 17 C = 2 91835X10- .:
8 10  8 10
C =-1. 30286X10— 21 C =2.86312X10 C = -1. 30286X10- 21 C = 2.86312X10
12  12
C =-2. 57739X10— 31 C = -2. 57739X10- 31
16  16
47面: K =0  47: K = 0
C =5. 72850X10—8 C =5. 35881X10 C = 5. 72850X10- 8 C = 5. 35881X10
4  Four
C =-3. 99564X10— 16 C =4. 99873X10—: . C = -3 99564X10- 16 C = 4 99873X10-.:
8 10  8 10
C =-2. 75405X10—2 C =1. 34776X10 C = -2. 75405X10- 2 C = 1. 34776X10
12  12
C =-6.81632X10—3' C = -6.81632X10- 3 '
16  16
[0035] 図 8は、第 1実施例の投影光学系における横収差を示す図である。図 9は、第 2実 施例の投影光学系における横収差を示す図である。図 10は、第 3実施例の投影光 学系における横収差を示す図である。図 11は、第 4実施例の投影光学系における横 収差を示す図である。図 8〜図 11の収差図において、 Yは像高を示している。図 12 は、各実施例の投影光学系におけるディストーション (歪曲収差;理想像位置からの 位置ずれ量)を示す図である。図 13は、各実施例の投影光学系におけるテレセントリ シティの誤差(レチクル側が理想的にテレセントリックであるときのウェハ Wへの主光 線の入射角)を示す図である。図 12にお 、て縦軸は像の位置ずれ量 (nm)であり、 図 13にお 、て縦軸は主光線の入射角(rad:ラジアン)である。  FIG. 8 shows transverse aberration in the projection optical system of the first embodiment. FIG. 9 is a diagram showing lateral aberration in the projection optical system of the second embodiment. FIG. 10 is a diagram showing lateral aberration in the projection optical system of the third embodiment. FIG. 11 shows transverse aberration in the projection optical system of the fourth embodiment. In the aberration diagrams of FIG. 8 to FIG. 11, Y indicates the image height. FIG. 12 is a diagram showing distortion (distortion aberration; displacement amount from an ideal image position) in the projection optical system of each example. FIG. 13 is a diagram showing an error of telecentricity (incident angle of a main light beam to the wafer W when the reticle side is ideally telecentric on the reticle side) in the projection optical system of each example. In FIG. 12, the vertical axis is the displacement amount (nm) of the image, and in FIG. 13, the vertical axis is the incident angle of the chief ray (rad: radian).
[0036] 図 12および図 13において、横軸は像高 (mm)であり、実線は第 1実施例を、一点 鎖線は第 2実施例を、破線は第 3実施例をそれぞれ示している。図 8〜図 13を参照 すると、各実施例では、非常に大きな像側開口数 (NA=1. 3)および比較的大きな 静止露光領域 ER (26mm X 5mmまたは 26mm X 5.4mm)を確保しているにも力 かわらず、波長が 193. 306nmのエキシマレーザ光に対して、テレセントリシティおよ びディストーションを含む諸収差が良好に補正されていることがわかる。なお、図 12 および図 13において、第 4実施例におけるディストーションおよびテレセントリシティ の誤差の表示を省略している力 第 4実施例においても他の実施例と同様にテレセ ントリシティおよびディストーションを含む諸収差が良好に補正されていることを確認 している。 12 and 13, the horizontal axis is the image height (mm), the solid line indicates the first embodiment, the alternate long and short dashed line indicates the second embodiment, and the broken line indicates the third embodiment. Referring to FIGS. 8 to 13, in each embodiment, a very large image-side numerical aperture (NA = 1.3) and a relatively large static exposure area ER (26 mm × 5 mm or 26 mm × 5.4 mm) are secured. It can be seen that aberrations, including telecentricity and distortion, are well corrected for excimer laser light with a wavelength of 193. 306 nm. In FIGS. 12 and 13, force that omits the display of the error of distortion and telecentricity in the fourth example also in the fourth example as in the other examples, various aberrations including telecentricity and distortion. Make sure that is well corrected doing.
[0037] このように、本実施形態の各実施例では、中心波長が 193. 306nmの ArFエキシ マレーザ光に対して、 1. 3の高い像側開口数を確保するとともに、 26mm X 5mmま たは 26mm X 5. 4mmの矩形状の実効露光領域 (静止露光領域) ERを確保するこ とができ、たとえば 26mm X 33mmの矩形状の露光領域内に回路パターンを高解像 度で走査露光することができる。また、本実施形態の各実施例では、反射屈折型の 結像光学系を採用しているので、大きな像側開口数にもかかわらずペッツバール条 件をほぼ成立させて像の平坦性を得ることができる。さらに、有効視野領域 (実効照 明領域)および有効投影領域 (実効露光領域 ER)が光軸を含まな ヽ軸外視野型の 結像光学系を採用しているので、あらゆるパターンへの対応力を確保することができ る。  As described above, in each example of the present embodiment, a high image-side numerical aperture of 1.3 is secured for ArF excimer laser light with a center wavelength of 193.306 nm, and 26 mm × 5 mm Can secure a 26 mm x 5.4 mm rectangular effective exposure area (static exposure area) ER, for example, scan and expose a circuit pattern with high resolution in a 26 mm x 33 mm rectangular exposure area. be able to. Further, in each example of the present embodiment, a catadioptric imaging optical system is adopted, so that the Petzval condition is almost satisfied despite the large image side numerical aperture to obtain the flatness of the image. Can. Furthermore, since the effective visual field area (effective illumination area) and the effective projection area (effective exposure area ER) use an imaging optical system with an off-axis field of view type that does not include the optical axis, Can be secured.
[0038] 特に、本実施形態の各実施例では、第 1凹面反射鏡 CM21の長偏球面状の反射 面の一方の焦点が第 1結像系 G1の瞳位置に位置し且つ他方の焦点が第 2結像系 G 2の瞳位置に位置するとともに、第 2凹面反射鏡 CM22の長偏球面状の反射面の一 方の焦点が第 3結像系 G3の瞳位置に位置し且つ他方の焦点が第 2結像系 G2の瞳 位置に位置している。したがって、図 14 (a)に示すように、第 1結像系 G1の瞳面の光 軸上の点 P1からの光線が第 1凹面反射鏡 CM21の長偏球面状の反射面で反射さ れて、第 2結像系 G2の瞳面の光軸上の点 P2に集光する。また、図示を省略したが、 第 2結像系 G2の瞳面の光軸上の点 P2からの光線は、第 2凹面反射鏡 CM22の長 偏球面状の反射面で反射されて、第 3結像系 G3の瞳面の光軸上の点に集光する。 その結果、第 2結像系 G2の瞳面において瞳の球面収差が実質的に発生しない。  In particular, in each example of the present embodiment, one focal point of the long concave spherical reflecting surface of the first concave reflecting mirror CM21 is located at the pupil position of the first imaging system G1, and the other focal point is The second imaging system G2 is located at the pupil position, and the focal point of one of the long aspheric reflecting surfaces of the second concave reflecting mirror CM22 is located at the pupil position of the third imaging system G3 and the other The focal point is located at the pupil position of the second imaging system G2. Therefore, as shown in FIG. 14 (a), a ray from point P1 on the optical axis of the pupil plane of the first imaging system G1 is reflected by the long aspheric surface of the first concave reflecting mirror CM21. The light is condensed at a point P2 on the optical axis of the pupil plane of the second imaging system G2. Although illustration is omitted, a ray from a point P2 on the optical axis of the pupil plane of the second imaging system G2 is reflected by the long concave spherical reflecting surface of the second concave reflecting mirror CM22. Focus on a point on the optical axis of the pupil plane of the imaging system G3. As a result, spherical aberration of the pupil substantially does not occur at the pupil plane of the second imaging system G2.
[0039] これに対して、図 14 (b)に示すように、球面状の反射面を有する凹面反射鏡 CMを 用いる構成では、第 1結像系の瞳面の光軸上の点力 の光線は凹面反射鏡 CMを 介して第 2結像系の瞳面の光軸上の点に集光することがなぐ比較的大きな瞳の球 面収差が発生する。そこで、従来技術では、第 2結像系中を構成する反射鏡に高次 非球面 (非球面係数の高次項 (2次以上)を有する非球面)を用いるか、第 2結像系 中の 2つの反射鏡間に往復光学素子を用いる必要があった。本実施形態の各実施 例では、第 2結像系中に一対の長偏球面状の反射面 (非球面係数の高次項 (2次以 上)を含まない非球面)を導入することにより、高次非球面形状の反射面および往復 光学素子を用いることなぐ瞳の球面収差の発生を実質的に抑えて、テレセントリシテ ィおよびディストーションを含む諸収差が良好に補正された高開口数の投影光学系 を実現することができる。 On the other hand, as shown in FIG. 14 (b), in the configuration using the concave reflecting mirror CM having a spherical reflecting surface, the point force on the optical axis of the pupil plane of the first imaging system is A ray of light generates a relatively large pupil spherical surface aberration that can not be condensed at a point on the optical axis of the pupil plane of the second imaging system through the concave reflecting mirror CM. Therefore, in the prior art, it is preferable to use a high-order aspheric surface (an aspheric surface having a high-order term (2nd or higher) of aspheric coefficient) for the reflecting mirror constituting the second imaging system or It was necessary to use a reciprocating optical element between the two reflectors. In each example of the present embodiment, a pair of long aspheric spherical reflecting surfaces (high order terms of aspheric coefficients (second The introduction of aspheric surfaces (top) does not substantially reduce the occurrence of spherical aberration of the pupil without using reflecting surfaces of higher order aspheric shapes and reciprocating optical elements, thereby achieving telecentricity and distortion. It is possible to realize a high numerical aperture projection optical system in which various aberrations including those are well corrected.
[0040] 長偏球面状の反射面を有する凹面反射鏡 CM21, CM22の面計測では、 2焦点を 利用した球面計測技術を用いることができる。すなわち、ヌル素子などを用いる比較 的複雑な非球面計測技術ではなぐ図 14 (c)に示すように、フィゾー光学系 100およ び折返し球面反射鏡 101を用いる比較的単純な球面計測技術に基づいて、長偏球 面状の反射面を有する凹面反射鏡 CM21, CM22を高精度に製造することができる 。特に、本実施形態の第 1実施例〜第 3実施例では、第 1凹面反射鏡 CM21と第 2 凹面反射鏡 CM22とが互いに同じ形状の反射面を有するので、凹面反射鏡 CM21 , CM22の製造コストの低減を、ひいては光学系の製造コストの低減を図ることがで きる。  In the surface measurement of the concave reflecting mirrors CM21 and CM22 having a long-aspheric spherical reflecting surface, it is possible to use a spherical surface measurement technique using two focal points. That is, as shown in FIG. 14 (c), which is a relatively complex aspheric measurement technique using a null element etc., it is based on a relatively simple spherical measurement technique using Fizeau optical system 100 and folded spherical reflector 101. Thus, concave reflecting mirrors CM21 and CM22 having long spherical surface-like reflecting surfaces can be manufactured with high accuracy. In particular, in the first to third examples of the present embodiment, since the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have reflecting surfaces of the same shape, manufacturing of the concave reflecting mirrors CM21 and CM22 It is possible to reduce the cost and hence the manufacturing cost of the optical system.
[0041] 一方、本実施形態の第 4実施例では、第 1凹面反射鏡 CM21と第 2凹面反射鏡 C M22とは、互いに異なる長偏球面状の反射面を有する。ただし、第 1凹面反射鏡 C M21および第 2凹面反射鏡 CM22はともに、結像光束を通過させるための開口部を 有し、光軸 AXに関してほぼ回転対称な曲面の一部に対応する有効反射面を有する 。その結果、第 1凹面反射鏡 CM21および第 2凹面反射鏡 CM22を、光軸 AXからほ ぼ等 、距離にある複数の位置で、例えば光軸 AXに関してほぼ回転対称な複数の 位置で支持することが可能になり、従来の手法を用いて光学系の組立ておよび調整 を容易に且つ高精度に行うことができる。なお、第 4実施例では、第 1凹面反射鏡 C M21および第 2凹面反射鏡 CM22がともに結像光束を通過させるための開口部を 有するが、これに限定されることなぐ第 1凹面反射鏡 CM21および第 2凹面反射鏡 CM22のうちの一方が開口部を有する変形例も可能である。  On the other hand, in the fourth example of the present embodiment, the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have reflecting surfaces in the form of long aspheric surfaces different from each other. However, both the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have an opening for transmitting the imaging light flux, and an effective reflection corresponding to a part of a curved surface substantially rotationally symmetric with respect to the optical axis AX. It has a face. As a result, the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 are supported at a plurality of positions approximately at a distance from the optical axis AX, for example, at a plurality of substantially rotationally symmetric positions with respect to the optical axis AX. Can be used to easily and precisely assemble and adjust the optical system using conventional techniques. In the fourth embodiment, although both the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have openings for passing the imaging light beam, the first concave reflecting mirror is not limited to this. A modification is also possible in which one of the CM 21 and the second concave reflecting mirror CM 22 has an opening.
[0042] ところで、本実施形態では、凹面反射鏡 CM21, CM22における長偏球面状の反 射面が、非球面を表わす前述の数式 (b)から非球面係数 Cを含む高次項 (C ,yn)を 取り除いた次の数式 (a)で表され、円錐係数 Kが次の条件式(1)を満足することが好 ましい。 z = (yVr) Z[l + { 1—(l + κ ) · y /r2 } 1 2] (a) By the way, in the present embodiment, the long aspheric spherical reflecting surface of the concave reflecting mirror CM21, CM22 has a high-order term (C 1, y 2) including the aspheric coefficient C from the above equation (b) representing an aspheric surface. It is expressed by the following equation (a) from which n ) is removed, and it is preferable that the conic coefficient K satisfies the following condition (1). z = (y Vr) Z [l + {1-(l +)) · y / r 2 } 1 2 ] (a)
-0. 75< K < -0. 25 (1)  -0. 75 <K <-0. 25 (1)
[0043] 条件式(1)の上限値を上回ると、長偏球面状の反射面の 2つの焦点位置が互いに 近づきすぎて、長偏球面状の反射面が球面に近づくため、第 1結像系の射出瞳位置 または第 3結像系の入射瞳位置が第 2結像系に近づく必要が生じる。その結果、周 辺主光線と光軸とのなす角度が大きくなり、凹面反射鏡の大型化を招くので好ましく ない。条件式(1)の下限値を下回ると、長偏球面状の反射面の 2つの焦点位置が互 いに離れすぎて、長偏球面状の反射面が放物面に近づくため、第 1結像系の射出瞳 位置または第 3結像系の入射瞳位置が第 2結像系から遠くなる。その結果、第 1結像 系および第 3結像系にお 、て第 2結像系側フィールドレンズ群の屈折力を大きくする ことが必要になって、瞳の球面収差の補正が難しくなり、ひいてはテレセントリシティと ディストーションとを両立させて補正することができなくなるので好ましくな 、。なお、 本発明のさらに良好な効果を得るには、条件式(1)の上限値を— 0. 35とし、下限値 を 0. 65にすることが好ましい。  If the upper limit value of the conditional expression (1) is exceeded, the two focal positions of the long aspheric reflective surface come too close to each other, and the long aspheric reflective surface approaches a spherical surface, so the first imaging The exit pupil position of the system or the entrance pupil position of the third imaging system needs to approach the second imaging system. As a result, the angle between the peripheral chief ray and the optical axis becomes large, which causes the enlargement of the concave reflecting mirror, which is not preferable. If the lower limit value of conditional expression (1) is exceeded, the two focal positions of the long aspheric reflective surface will be too far apart, and the long aspheric reflective surface will approach the paraboloid, so The exit pupil position of the image system or the entrance pupil position of the third imaging system is far from the second imaging system. As a result, it is necessary to increase the refractive power of the second imaging system side field lens group in the first imaging system and the third imaging system, making it difficult to correct the spherical aberration of the pupil, As a result, the telecentricity and distortion can not be compatible and corrected, which is preferable. In order to obtain a better effect of the present invention, it is preferable to set the upper limit value of conditional expression (1) to −0.35 and the lower limit value to 0.65.
[0044] なお、上述の実施形態では、第 1凹面反射鏡 CM21および第 2凹面反射鏡 CM22 の双方が長偏球面状の反射面を有するが、これに限定されることなぐいずれか一方 の凹面反射鏡の反射面を長偏球面状にすることにより本発明の効果を得ることがで きる。また、上述の実施形態の第 1実施例〜第 3実施例では、第 1凹面反射鏡 CM2 1と第 2凹面反射鏡 CM22とが互いに同じ形状の反射面を有するが、これに限定され ることなぐいずれか一方の凹面反射鏡の反射面が長偏球面状であれば、 2つの凹 面反射鏡が互いに異なる形状の反射面を有する場合にも本発明の効果を得ることが できる。ちなみに、上述の実施形態の第 4実施例では、 2つの凹面反射鏡が互いに 異なる長偏球面状の反射面を有する。ただし、上述したように、第 1凹面反射鏡 CM2 1と第 2凹面反射鏡 CM22とが互いに同じ形状の反射面を有する構成では、凹面反 射鏡の製造コストの低減を図ることができる。この観点によれば、たとえば 3回結像型 の反射屈折結像光学系にお 、て、第 2結像系中に互 、に同じ形状の反射面を有す る 2つの凹面反射鏡を配置することは重要である。  In the above embodiment, although both the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have the long aspheric spherical reflecting surface, any one of the concave surfaces is not limited thereto. The effect of the present invention can be obtained by making the reflecting surface of the reflecting mirror into a long, aspheric surface. In the first to third examples of the above-described embodiment, the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have reflecting surfaces of the same shape as each other, but the present invention is limited to this. If the reflecting surface of any one concave reflecting mirror has a long aspheric surface, the effect of the present invention can be obtained even when the two concave reflecting mirrors have reflecting surfaces of different shapes. Incidentally, in the fourth example of the above-mentioned embodiment, the two concave reflecting mirrors have reflecting surfaces in the form of long aspheric surfaces different from each other. However, as described above, in the configuration in which the first concave reflecting mirror CM21 and the second concave reflecting mirror CM22 have reflecting surfaces of the same shape, the manufacturing cost of the concave reflecting mirror can be reduced. According to this point of view, for example, in a three-time imaging type catadioptric imaging optical system, two concave reflecting mirrors having the same shape reflecting surfaces in the second imaging system are disposed. It is important to do.
[0045] また、上述の実施形態では、第 1結像系 G1および第 3結像系 G3が反射鏡を含ま ない屈折型の光学系として構成されているが、これに限定されることなぐ第 1結像系 G1および第 3結像系 G3の構成については様々な変形例が可能である。また、上述 の実施形態では、第 2結像系 G2が 2つの凹面反射鏡のみにより構成されているが、 これに限定されることなぐ第 2結像系 G2の構成については様々な変形例が可能で ある。 In the above-described embodiment, the first imaging system G1 and the third imaging system G3 include reflecting mirrors. Although the optical system is configured as a non-refractive type optical system, various modifications can be made to the configuration of the first imaging system G1 and the third imaging system G3 that can not be limited to this. In the above-described embodiment, the second imaging system G2 is configured by only two concave reflecting mirrors, but various modifications may be made to the configuration of the second imaging system G2 which is not limited to this. It is possible.
[0046] また、上述の実施形態では、液浸型の反射屈折結像光学系に対して本発明を適 用しているが、これに限定されることなぐ像側の領域に浸液を用いない乾燥型の反 射屈折結像光学系に対しても同様に本発明を適用することができる。また、上述の実 施形態では、光軸から離れた領域のみに像を形成する軸外視野型の反射屈折結像 光学系に対して本発明を適用しているが、これに限定されることなぐ光軸を含む領 域に像を形成する反射屈折結像光学系に対しても同様に本発明を適用することがで きる。また、上述の実施形態では、 3回結像型の反射屈折結像光学系に対して本発 明を適用しているが、これに限定されることなぐ 2つの曲面状の反射鏡と複数の屈折 光学素子とを備えた軸外視野型の反射屈折結像光学系に対しても同様に本発明を 適用することができる。  Further, although the present invention is applied to the immersion type catadioptric imaging optical system in the above-described embodiment, the immersion liquid is used in the image side area which is not limited to this. The present invention can be similarly applied to a non-dry-type catadioptric imaging optical system. Further, although the present invention is applied to the off-axis type catadioptric imaging optical system in which the image is formed only in the area away from the optical axis in the above-described embodiment, the present invention is limited thereto. The present invention can be similarly applied to a catadioptric imaging optical system that forms an image in a region including an optical axis which is not far away. Further, in the above embodiment, the present invention is applied to the three-time imaging type catadioptric imaging optical system, but the present invention is not limited to this. The present invention can be similarly applied to an off-axis type catadioptric imaging optical system provided with a refractive optical element.
[0047] 上述の実施形態の露光装置では、照明装置によってレチクル (マスク)を照明し (照 明工程)、投影光学系を用いてマスクに形成された転写用のパターンを感光性基板 に露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表 示素子、薄膜磁気ヘッド等)を製造することができる。以下、本実施形態の露光装置 を用いて感光性基板としてのウェハ等に所定の回路パターンを形成することによって 、マイクロデバイスとしての半導体デバイスを得る際の手法の一例につき図 15のフロ 一チャートを参照して説明する。  In the exposure apparatus of the above-described embodiment, the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system. By the (exposure step), microdevices (semiconductor elements, imaging elements, liquid crystal display elements, thin film magnetic heads, etc.) can be manufactured. Hereinafter, the flowchart of FIG. 15 is shown as an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer as a photosensitive substrate or the like using the exposure apparatus of the present embodiment. Refer to the description.
[0048] 先ず、図 15のステップ 301において、 1ロットのウェハ上に金属膜が蒸着される。次 のステップ 302において、その 1ロットのウェハ上の金属膜上にフォトレジストが塗布さ れる。その後、ステップ 303において、本実施形態の露光装置を用いて、マスク上の パターンの像がその投影光学系を介して、その 1ロットのウェハ上の各ショット領域に 順次露光転写される。その後、ステップ 304において、その 1ロットのウェハ上のフォト レジストの現像が行われた後、ステップ 305において、その 1ロットのウェハ上でレジス トパターンをマスクとしてエッチングを行うことによって、マスク上のパターンに対応す る回路パターン力 各ウェハ上の各ショット領域に形成される。 First, in step 301 of FIG. 15, a metal film is vapor-deposited on one lot of wafers. In the next step 302, photoresist is applied on the metal film on the one lot wafer. Thereafter, in step 303, using the exposure apparatus of this embodiment, the image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of one lot through the projection optical system. Thereafter, in step 304, after development of the photoresist on the wafer of one lot is performed, in step 305, the resist on the wafer of one lot is registered. The circuit pattern force corresponding to the pattern on the mask is formed in each shot area on each wafer by performing etching using the pattern as a mask.
[0049] その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子 等のデバイスが製造される。上述の半導体デバイス製造方法によれば、極めて微細 な回路パターンを有する半導体デバイスをスループット良く得ることができる。なお、 ステップ 301〜ステップ 305では、ウェハ上に金属を蒸着し、その金属膜上にレジスト を塗布、そして露光、現像、エッチングの各工程を行っている力 これらの工程に先 立って、ウェハ上にシリコンの酸ィ匕膜を形成後、そのシリコンの酸ィ匕膜上にレジストを 塗布、そして露光、現像、エッチング等の各工程を行っても良いことはいうまでもない  Thereafter, by further forming the circuit pattern of the upper layer and the like, a device such as a semiconductor element is manufactured. According to the above-described semiconductor device manufacturing method, a semiconductor device having a very fine circuit pattern can be obtained with high throughput. In steps 301 to 305, metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the force of performing each of the exposure, development, and etching steps is performed on the wafer prior to these steps. It is needless to say that after forming a silicon oxide film, a resist may be coated on the silicon oxide film, and then each process such as exposure, development and etching may be performed.
[0050] また、本実施形態の露光装置では、プレート (ガラス基板)上に所定のパターン(回 路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶 表示素子を得ることもできる。以下、図 16のフローチャートを参照して、このときの手 法の一例につき説明する。図 16において、パターン形成工程 401では、本実施形態 の露光装置を用いてマスクのパターンを感光性基板 (レジストが塗布されたガラス基 板等)に転写露光する、所謂光リソグラフイエ程が実行される。この光リソグラフィー工 程によって、感光性基板上には多数の電極等を含む所定パターンが形成される。そ の後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各工程 を経ることによって、基板上に所定のパターンが形成され、次のカラーフィルタ一形 成工程 402へ移行する。 In addition, in the exposure apparatus of the present embodiment, a liquid crystal display device as a microdevice can also be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). . An example of the method will be described below with reference to the flowchart of FIG. In FIG. 16, in the pattern forming step 401, a so-called photolithographic process is performed in which a mask pattern is transferred and exposed onto a photosensitive substrate (such as a glass substrate coated with a resist) using the exposure apparatus of this embodiment. Ru. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to steps such as a developing step, an etching step and a resist removing step to form a predetermined pattern on the substrate, and the process proceeds to the next color filter forming step 402. .
[0051] 次に、カラーフィルター形成工程 402では、 R (Red)、 G (Green)、 B (Blue)に対応し た 3つのドットの組がマトリックス状に多数配列されたり、または R、 G、 Bの 3本のストラ イブのフィルターの組を複数水平走査線方向に配列されたりしたカラーフィルターを 形成する。そして、カラーフィルター形成工程 402の後に、セル組み立て工程 403が 実行される。セル組み立て工程 403では、パターン形成工程 401にて得られた所定 パターンを有する基板、およびカラーフィルター形成工程 402にて得られたカラーフ ィルター等を用いて液晶パネル (液晶セル)を組み立てる。  Next, in the color filter formation step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a plurality of B stripe filters in the direction of horizontal scanning lines. Then, after the color filter formation step 402, a cell assembly step 403 is performed. In the cell assembling step 403, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like.
[0052] セル組み立て工程 403では、例えば、パターン形成工程 401にて得られた所定パ ターンを有する基板とカラーフィルター形成工程 402にて得られたカラーフィルターと の間に液晶を注入して、液晶パネル (液晶セル)を製造する。その後、モジュール組 み立て工程 404にて、組み立てられた液晶パネル (液晶セル)の表示動作を行わせ る電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。上 述の液晶表示素子の製造方法によれば、極めて微細な回路パターンを有する液晶 表示素子をスループット良く得ることができる。 In the cell assembling step 403, for example, the predetermined pattern obtained in the pattern forming step 401 is A liquid crystal is injected between a substrate having a turn and the color filter obtained in the color filter forming step 402 to manufacture a liquid crystal panel (liquid crystal cell). Thereafter, in a module assembling step 404, components such as an electric circuit for performing a display operation of the assembled liquid crystal panel (liquid crystal cell), a backlight and the like are attached to complete a liquid crystal display element. According to the above-described method of manufacturing a liquid crystal display device, a liquid crystal display device having a very fine circuit pattern can be obtained with high throughput.
なお、上述の実施形態では、 ArFエキシマレーザ光源を用いている力 これに限定 されることなく、たとえば F レーザ光源のような他の適当な光源を用いることもできる。  In the above-described embodiment, the force using the ArF excimer laser light source is not limited to this, and another appropriate light source such as an F 2 laser light source can also be used.
2  2
ただし、露光光として Fレーザ光を用いる場合は、液体としては Fレーザ光を透過可 However, when F laser light is used as the exposure light, F laser light can be transmitted as the liquid.
2 2  twenty two
能な例えばフッ素系オイルや過フッ化ポリエーテル(PFPE)等のフッ素系の液体を 用いることになる。また、上述の実施形態では、露光装置に搭載される投影光学系に 対して本発明を適用しているが、これに限定されることなぐ他の適当な反射屈折結 像光学系に対して本発明を適用することができる。 For example, a fluorinated liquid such as fluorinated oil or perfluoropolyether (PFPE) is used. In the above-described embodiment, the present invention is applied to the projection optical system mounted on the exposure apparatus, but the present invention is not limited to this, and the present invention is not limited to this. The invention can be applied.

Claims

請求の範囲 The scope of the claims
[1] 第 1面の像を第 2面上に形成する反射屈折結像光学系において、  [1] In a catadioptric imaging optical system for forming an image of a first surface on a second surface,
前記第 1面からの光に基づいて前記第 1面の第 1中間像を形成する第 1結像系と、 2つの凹面反射鏡を有し、前記第 1中間像力 の光に基づいて前記第 1面の第 2中 間像を形成する第 2結像系と、  A first imaging system for forming a first intermediate image of the first surface based on the light from the first surface; and two concave reflecting mirrors, the first imaging system based on the light of the first intermediate image force A second imaging system that forms a second intermediate image of the first surface;
前記第 2中間像からの光に基づいて前記第 1面の最終像を前記第 2面上に形成す る第 3結像系とにより構成され、  And a third imaging system that forms a final image of the first surface on the second surface based on light from the second intermediate image,
前記 2つの凹面反射鏡のうちの少なくとも 1つの凹面反射鏡は、長偏球面状の反射 面を有することを特徴とする反射屈折結像光学系。  A catadioptric imaging optical system characterized in that at least one concave reflector of the two concave reflectors has a long aspheric reflective surface.
[2] 前記長偏球面状の反射面は、一方の焦点が前記第 1結像系あるいは前記第 3結像 系の瞳位置またはその近傍に位置し、他方の焦点が前記第 2結像系の瞳位置また はその近傍に位置するように配置されて 、ることを特徴とする請求項 1に記載の反射 屈折結像光学系。 [2] One of the focal points of the long aspheric reflecting surface is located at or near the pupil position of the first imaging system or the third imaging system, and the other focal point is the second imaging system The catadioptric imaging optical system according to claim 1, wherein the catoptric lens is disposed so as to be located at or near a pupil position of the lens.
[3] 前記 2つの凹面反射鏡はともに長偏球面状の反射面を有することを特徴とする請求 項 1または 2に記載の反射屈折結像光学系。  [3] The catadioptric imaging optical system according to Claim 1 or 2, wherein the two concave reflecting mirrors both have a long aspheric spherical reflecting surface.
[4] 前記 2つの凹面反射鏡は互いに同じ形状の反射面を有することを特徴とする請求項[4] The two concave reflectors have reflecting surfaces of the same shape.
1乃至 3のいずれか 1項に記載の反射屈折結像光学系。 The catadioptric imaging optical system according to any one of 1 to 3.
[5] 第 1面の像を第 2面上に形成する反射屈折結像光学系において、 [5] In the catadioptric imaging optical system for forming an image of the first surface on the second surface,
前記第 1面からの光に基づいて前記第 1面の第 1中間像を形成する第 1結像系と、 2つの凹面反射鏡を有し、前記第 1中間像力 の光に基づいて前記第 1面の第 2中 間像を形成する第 2結像系と、  A first imaging system for forming a first intermediate image of the first surface based on the light from the first surface; and two concave reflecting mirrors, the first imaging system based on the light of the first intermediate image force A second imaging system that forms a second intermediate image of the first surface;
前記第 2中間像からの光に基づいて前記第 1面の最終像を前記第 2面上に形成す る第 3結像系とにより構成され、  And a third imaging system that forms a final image of the first surface on the second surface based on light from the second intermediate image,
前記 2つの凹面反射鏡は、互いに同じ形状の反射面を有することを特徴とする反射 屈折結像光学系。  A catadioptric imaging optical system characterized in that the two concave reflectors have reflecting surfaces of the same shape.
[6] 前記 2つの凹面反射鏡は、長偏球面状の反射面を有することを特徴とする請求項 5 に記載の反射屈折結像光学系。  [6] The catadioptric imaging optical system according to Claim 5, wherein the two concave reflecting mirrors have long spherical-shaped reflecting surfaces.
[7] 前記第 1結像系および前記第 3結像系は、反射鏡を含まない屈折型の光学系である ことを特徴とする請求項 1乃至 6のいずれか 1項に記載の反射屈折結像光学系。 [7] The first imaging system and the third imaging system are refractive optical systems that do not include a reflecting mirror. The catadioptric imaging optical system according to any one of claims 1 to 6, wherein
[8] 前記第 2結像系は、前記 2つの凹面反射鏡のみにより構成されていることを特徴とす る請求項 1乃至 7のいずれ力 1項に記載の反射屈折結像光学系。 8. The catadioptric imaging optical system according to any one of claims 1 to 7, wherein the second imaging system is constituted only by the two concave reflecting mirrors.
[9] 第 1面の像を第 2面上において光軸から離れた領域のみに形成する軸外視野型の 反射屈折結像光学系にお!、て、 [9] An off-axis type catadioptric imaging optical system in which the image of the first surface is formed only on the area away from the optical axis on the second surface.
2つの曲面状の反射鏡と複数の屈折光学素子とを備え、  Comprising two curved reflectors and a plurality of refractive optical elements,
前記 2つの曲面状の反射鏡のうちの少なくとも 1つの曲面状の反射鏡は、長偏球面 状の反射面を有することを特徴とする反射屈折結像光学系。  A catadioptric imaging optical system characterized in that at least one curved reflector of the two curved reflectors has a long aspheric reflective surface.
[10] 前記 2つの曲面状の反射鏡と前記複数の屈折光学素子とは、前記光軸と共軸に配 置されていることを特徴とする請求項 9に記載の反射屈折結像光学系。 10. The catadioptric imaging optical system according to claim 9, wherein the two curved reflecting mirrors and the plurality of dioptric optical elements are disposed coaxially with the optical axis. .
[11] 前記 2つの曲面状の反射鏡は、凹面反射鏡であることを特徴とする請求項 9または 1[11] The two curved reflecting mirrors are concave reflecting mirrors.
0に記載の反射屈折結像光学系。 The catadioptric imaging optical system described in 0.
[12] 前記 2つの凹面反射鏡はともに長偏球面状の反射面を有することを特徴とする請求 項 11に記載の反射屈折結像光学系。 [12] The catadioptric imaging optical system according to Claim 11, wherein the two concave reflecting mirrors both have a long aspheric spherical reflecting surface.
[13] 前記 2つの曲面状の反射鏡は互いに同じ形状の反射面を有することを特徴とする請 求項 9乃至 12のいずれか 1項に記載の反射屈折結像光学系。 [13] The catadioptric imaging optical system according to any one of claims 9 to 12, wherein the two curved reflecting mirrors have reflecting surfaces of the same shape.
[14] 前記長偏球面状の反射面は、光軸に垂直な方向の高さを yとし、反射面の頂点にお ける接平面力 高さ yにおける反射面上の位置までの光軸に沿った距離 (サグ量)を z とし、頂点曲率半径 とし、円錐係数を Kとするとき、以下の数式 (a)で表され、 z = (yVr) Z[l + { 1—(l + κ ) · y /r2 } 1 2] (a) [14] The long aspheric reflecting surface has a height in the direction perpendicular to the optical axis as y, and the tangential force at the apex of the reflecting surface is at the optical axis up to the position on the reflecting surface at the height y. Assuming that the distance along the distance (sag amount) is z, the vertex radius of curvature is K, and the conical coefficient is K , z is represented by the following equation (a): z = (y Vr) Z [l + {1-(l + κ) · Y / r 2 } 1 2 ] (a)
前記円錐係数 κは、 -0. 75< κ < 0. 25の条件を満足することを特徴とする請 求項 1乃至 4および請求項 6乃至 13のいずれか 1項に記載の反射屈折結像光学系。  The catadioptric imaging according to any one of claims 1 to 4 and any one of claims 6 to 13, wherein the conical coefficient κ satisfies the condition of -0.75 <κ <0.25. Optical system.
[15] 前記 2つの凹面反射鏡のうちの少なくとも 1つの凹面反射鏡は、結像光束を通過させ るための開口部を有し、光軸からほぼ等しい距離にある複数の位置で支持されてい ることを特徴とする請求項 1乃至 14のいずれか 1項に記載の反射屈折結像光学系。 [15] At least one concave reflector of the two concave reflectors has an opening for passing an imaging light beam, and is supported at a plurality of positions approximately at the same distance from the optical axis. The catadioptric imaging optical system according to any one of claims 1 to 14, characterized in that:
[16] 前記 2つの凹面反射鏡のうちの少なくとも 1つの凹面反射鏡は、前記光軸に関してほ ぼ回転対称な複数の位置で支持されていることを特徴とする請求項 15に記載の反 射屈折結像光学系。 [16] The reflector according to claim 15, characterized in that at least one concave reflector of the two concave reflectors is supported at a plurality of positions substantially rotationally symmetric with respect to the optical axis. Refractive imaging optics.
[17] 前記 2つの凹面反射鏡のうちの少なくとも 1つの凹面反射鏡は、光軸に関してほぼ回 転対称な曲面の一部に対応する有効反射面を有することを特徴とする請求項 1乃至 16のいずれか 1項に記載の反射屈折結像光学系。 [17] At least one concave reflector of the two concave reflectors has an effective reflection surface corresponding to a part of a curved surface substantially rotationally symmetric with respect to the optical axis. The catadioptric imaging optical system of any one of the above.
[18] 前記第 1面に設定された所定のパターン力 の光に基づいて、前記パターンの像を 前記第 2面に設定された感光性基板上に投影するための請求項 1乃至 17のいずれ 力 1項に記載の反射屈折結像光学系を備えていることを特徴とする露光装置。  [18] Any one of claims 1 to 17 for projecting an image of the pattern on the photosensitive substrate set on the second surface based on light of a predetermined pattern force set on the first surface. An exposure apparatus comprising the catadioptric imaging optical system according to item 1.
[19] 請求項 18に記載の露光装置を用いて前記所定のパターンを前記感光性基板に露 光する露光工程と、  [19] An exposure step of exposing the predetermined pattern to the photosensitive substrate using the exposure apparatus according to claim 18.
前記露光工程を経た前記感光性基板を現像する現像工程とを含むことを特徴とす るデバイスの製造方法。  And d. Developing the photosensitive substrate that has undergone the exposing step.
PCT/JP2006/325711 2006-01-30 2006-12-25 Cata-dioptric imaging system, exposure device, and device manufacturing method WO2007086220A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007555871A JPWO2007086220A1 (en) 2006-01-30 2006-12-25 Catadioptric imaging optical system, exposure apparatus, and device manufacturing method
EP06835158A EP1980890B1 (en) 2006-01-30 2006-12-25 Cata-dioptric imaging system, exposure device, and device manufacturing method
US12/219,866 US7990609B2 (en) 2006-01-30 2008-07-29 Catadioptric imaging system with prolate spheroidal-shaped mirrors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-020516 2006-01-30
JP2006020516 2006-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/219,866 Continuation US7990609B2 (en) 2006-01-30 2008-07-29 Catadioptric imaging system with prolate spheroidal-shaped mirrors

Publications (1)

Publication Number Publication Date
WO2007086220A1 true WO2007086220A1 (en) 2007-08-02

Family

ID=38309021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325711 WO2007086220A1 (en) 2006-01-30 2006-12-25 Cata-dioptric imaging system, exposure device, and device manufacturing method

Country Status (5)

Country Link
US (1) US7990609B2 (en)
EP (1) EP1980890B1 (en)
JP (1) JPWO2007086220A1 (en)
KR (1) KR20080091182A (en)
WO (1) WO2007086220A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177934A1 (en) 2008-10-17 2010-04-21 Carl Zeiss SMT AG High transmission, high aperture catadioptric projection objective and projection exposure apparatus
US7755839B2 (en) 2003-12-19 2010-07-13 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US8126669B2 (en) 2008-06-09 2012-02-28 Carl Zeiss Smt Gmbh Optimization and matching of optical systems by use of orientation Zernike polynomials
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375263B (en) * 2014-11-20 2017-01-18 中国科学院光电技术研究所 Large-numerical-aperture projection optical system comprising two reflecting mirrors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333761A (en) * 2003-05-06 2004-11-25 Nikon Corp Catadioptric projection optical system, projection aligner, and exposure method
JP2005233979A (en) * 2000-02-09 2005-09-02 Nikon Corp Catadioptric system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142641A (en) * 1998-06-18 2000-11-07 Ultratech Stepper, Inc. Four-mirror extreme ultraviolet (EUV) lithography projection system
JP2002050011A (en) * 2000-08-03 2002-02-15 Nec Corp Magnetoresistive effect element, magnetoresistive effect head, magnetoresistive conversion system, and magnetic recording system
WO2002099905A1 (en) * 2001-05-31 2002-12-12 National Institute Of Advanced Industrial Science And Technology Tunnel magnetoresistance element
US7262064B2 (en) * 2001-10-12 2007-08-28 Sony Corporation Magnetoresistive effect element, magnetic memory element magnetic memory device and manufacturing methods thereof
FR2830971B1 (en) * 2001-10-12 2004-03-12 Commissariat Energie Atomique MAGNETORESISTIVE DEVICE WITH IMPROVED PERFORMANCE SPIN VALVE
JP2003152239A (en) * 2001-11-12 2003-05-23 Fujitsu Ltd Magnetoresistive effect element and read head and drive having the same
US6760966B2 (en) * 2002-04-30 2004-07-13 Headway Technologies, Inc. Process of manufacturing a side reading reduced GMR for high track density
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7038846B2 (en) * 2003-11-24 2006-05-02 Electronic Scripting Products, Inc. Solid catadioptric lens with a single viewpoint
US7466489B2 (en) * 2003-12-15 2008-12-16 Susanne Beder Projection objective having a high aperture and a planar end surface
CN102169226B (en) * 2004-01-14 2014-04-23 卡尔蔡司Smt有限责任公司 Catadioptric projection objective
WO2005098504A1 (en) * 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US7270896B2 (en) * 2004-07-02 2007-09-18 International Business Machines Corporation High performance magnetic tunnel barriers with amorphous materials
JP4954067B2 (en) * 2004-07-14 2012-06-13 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233979A (en) * 2000-02-09 2005-09-02 Nikon Corp Catadioptric system
JP2004333761A (en) * 2003-05-06 2004-11-25 Nikon Corp Catadioptric projection optical system, projection aligner, and exposure method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1980890A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US7755839B2 (en) 2003-12-19 2010-07-13 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US8126669B2 (en) 2008-06-09 2012-02-28 Carl Zeiss Smt Gmbh Optimization and matching of optical systems by use of orientation Zernike polynomials
EP2177934A1 (en) 2008-10-17 2010-04-21 Carl Zeiss SMT AG High transmission, high aperture catadioptric projection objective and projection exposure apparatus
EP2372404A1 (en) 2008-10-17 2011-10-05 Carl Zeiss SMT GmbH High transmission, high aperture projection objective and projection exposure apparatus
US8345222B2 (en) 2008-10-17 2013-01-01 Carl Zeiss Smt Gmbh High transmission, high aperture catadioptric projection objective and projection exposure apparatus

Also Published As

Publication number Publication date
US7990609B2 (en) 2011-08-02
JPWO2007086220A1 (en) 2009-06-18
EP1980890A1 (en) 2008-10-15
EP1980890A4 (en) 2009-06-10
EP1980890B1 (en) 2011-09-28
US20090027768A1 (en) 2009-01-29
KR20080091182A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US7177099B2 (en) Deep ultraviolet unit-magnification projection optical system and projection exposure apparatus
KR101455551B1 (en) Projection optical system, exposure apparatus and exposure method
WO2007086220A1 (en) Cata-dioptric imaging system, exposure device, and device manufacturing method
JP2004333761A (en) Catadioptric projection optical system, projection aligner, and exposure method
WO2007091463A1 (en) Catadioptric imaging system, exposure device, and device manufacturing method
JP4706171B2 (en) Catadioptric projection optical system, exposure apparatus and exposure method
JP2005003982A (en) Projection optical system, and device and method of exposure
JP2005115127A (en) Catadioptric projection optical system, exposure device and exposing method
JP2005195713A (en) Projection optical system, exposure device, and exposure method
JP4482874B2 (en) Projection optical system, exposure apparatus, and exposure method
JP4239212B2 (en) Projection optical system, exposure apparatus, and exposure method
JP2004219501A (en) Projection optical system, exposure device and exposure method
JP6525069B2 (en) Exposure apparatus, exposure method and device manufacturing method
WO2007132619A1 (en) Imaging optical system, exposure system, and device production method
JP5786919B2 (en) Projection optical system, exposure apparatus and exposure method
JP2004354555A (en) Reflection refraction type projection optical system, exposing device and exposing method
JP2011049571A (en) Catadioptric projection optical system, exposure device and exposure method
JP2014194552A (en) Cata-dioptric type projection optical system, exposure device, and exposure method
JP5664697B2 (en) Catadioptric projection optical system, exposure apparatus, and exposure method
JP2018010303A (en) Light exposure device and device manufacturing method
JP2019091057A (en) Exposure apparatus and device manufacturing method
JP2019082711A (en) Projection optical system, exposure device, exposure method, and device manufacturing method
JP2004342711A (en) Optical illumination apparatus, aligner, and exposure method
JPH11352404A (en) Projection exposing device, manufacture of device, and catadioptric system
JP2016136273A (en) Projection optical system, exposure device, exposure method and device fabrication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007555871

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006835158

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087018848

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE