WO2007103507A2 - Multi-pair cable with channeled jackets - Google Patents

Multi-pair cable with channeled jackets Download PDF

Info

Publication number
WO2007103507A2
WO2007103507A2 PCT/US2007/005941 US2007005941W WO2007103507A2 WO 2007103507 A2 WO2007103507 A2 WO 2007103507A2 US 2007005941 W US2007005941 W US 2007005941W WO 2007103507 A2 WO2007103507 A2 WO 2007103507A2
Authority
WO
WIPO (PCT)
Prior art keywords
jacket
cable
channels
cross
inches
Prior art date
Application number
PCT/US2007/005941
Other languages
French (fr)
Other versions
WO2007103507A3 (en
Inventor
Spring Stutzman
David Wiekhorst
Frederick W. Johnston
Kamlesh Patel
Original Assignee
Adc Telecommunications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adc Telecommunications, Inc. filed Critical Adc Telecommunications, Inc.
Publication of WO2007103507A2 publication Critical patent/WO2007103507A2/en
Publication of WO2007103507A3 publication Critical patent/WO2007103507A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/04Cables with twisted pairs or quads with pairs or quads mutually positioned to reduce cross-talk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/184Sheaths comprising grooves, ribs or other projections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/185Sheaths comprising internal cavities or channels

Definitions

  • the present disclosure relates generally to cables for use in the telecommunications industry, and various methods associated with such cables. More particularly, this disclosure relates to a telecommunications cable having twisted conductor pairs.
  • Twisted pairs cables include at least one pair of insulated conductors twisted about one another to form a two conductor pair. A number of two conductor pairs can be twisted about each other to define a twisted pair core. A plastic jacket is typically extruded over a twisted pair core to maintain the configuration of the core, and to function as a protective layer. Such cables are commonly referred to as multi-pair cables.
  • the telecommunications industry is continuously striving to increase the speed and/or volume of signal transmissions through multi-pair cables.
  • One problem that concerns the telecommunications industry is the increased occurrence of alien crosstalk associated with high-speed signal transmissions.
  • alien crosstalk problems are addressed by providing multi-pair cables having a layer of electrical shielding between the core of twisted pairs and the cable jacket. Such shielding however is expensive to manufacture; accordingly, unshielded twisted pair cables are more often used.
  • the double jacket is arranged and configured to reduce the occurrence of alien crosstalk with an adjacent cable, while still accommodating attachment of existing conventional cable connectors.
  • the double jacket includes two separate inner and outer jackets; the outer jacket increases the center-to-center distance between adjacent cables, yet the outer jacket can be stripped away for attachment of an existing cable connector to the inner jacket.
  • the inner and outer jackets can further include channels that also lessen the occurrence of alien crosstalk by reducing the overall dielectric constant of the multi-pair cable.
  • FIG. 1 is a perspective view of one embodiment of a cable according to the principles of the present disclosure
  • FIG. 2 is a cross-sectional view of the cable of FIG. 1, taken along line 2-2;
  • FIG. 3 is a partial view of an inner jacket of the cable of FIG. 2, shown in isolation;
  • FIG. 4 is a partial view of an outer jacket of the cable of FIG. 2, shown in isolation;
  • FIG. 5 is a perspective view of another embodiment of a cable according to the principles of the present disclosure;
  • FIG. 6 is a cross-sectional view of the cable of FIG. 5, taken along line 6-6;
  • FIG. 7 is a partial view of an inner jacket of the cable of FIG. 6, shown in isolation;
  • FIG. 8 is a partial view of an outer jacket of the cable of FIG. 6, shown in isolation.
  • FIG. 9 is a perspective view of still another embodiment of a cable according to the principles of the present disclosure. Detailed Description
  • FIGS. 1-9 illustrate embodiments of cables having features that are examples of how inventive aspects in accordance with the principles of the present disclosure may be practiced. Preferred features are adapted for reducing alien crosstalk between adjacent cables.
  • the cable 10 includes a plurality of twisted pairs 12.
  • the cable 10 includes four twisted pairs 12.
  • Each of the twisted pairs includes first and second conductors 14 (FIG. 2) twisted about one another along a central longitudinal axis.
  • Each of the conductors 14 is surrounded by an insulating layer 16 (FIG. 2).
  • the conductors 14 may be made of copper, aluminum, copper-clad steel and plated copper, for example. It has been found that copper is an optimal conductor material.
  • the conductor may be made of glass or plastic fiber such that a fiber optic cable is produced in accordance with the principles disclosed.
  • the insulating layer 16 can be made of known materials, such as fluoropolymers or other electrical insulating materials, for example.
  • the plurality of twisted pairs 12 defines a cable core 20.
  • the cable core 20 can include a separator, such as a flexible tape strip 22, to separate the twisted pairs 12.
  • a separator such as a flexible tape strip 22
  • Other types of separators including fillers defining pockets that separate and/or retain each of the twisted pairs, can also be used. Further details of example fillers that can be used are described in U.S. Patent Application Nos. 10/746,800 and 11/318,350; which applications are incorporated herein by reference.
  • Each of the conductors 14 of the individual twisted pairs 12 can be twisted about one another at a continuously changing twist rate, an incremental twist rate, or a constant twist rate.
  • Each of the twist rates of the twisted pairs 12 can further be the same as the twist rates of some or all of the other twisted pairs, or different from each of the other twisted pairs.
  • the core 20 of twisted pairs 12 can also be twisted about a central core axis.
  • the core 20 can be similarly twisted at any of a continuously changing, incremental, or constant twist rate.
  • the cable 10 includes a double jacket that surrounds the core 20 of twisted pairs 12.
  • the cable 10 preferably includes both a first inner jacket 24 and a second outer jacket 26.
  • the inner jacket 24 surrounds the core 20 of twisted pairs 12.
  • the outer jacket 26 surrounds the inner jacket 24.
  • the inner and outer jackets 24, 26 not only function to maintain the relative positioning of the twisted pairs 12, the inner and outer jackets 24, 26 also function to lessen the occurrence of alien crosstalk.
  • the addition of the outer jacket 26 reduces the capacitance of the cable 10 by increasing the center-to-ccntcr distance between the cable 10 and an adjacent cable.
  • the outer jacket 26 has an outer diameter ODl that distances the core 20 of twisted pairs 12 further from adjacent cables than conventional arrangements. Ideally, the cores 20 of twisted pairs 12 of adjacent cables are as far apart as possible to minimize the capacitance between adjacent cables.
  • the outer diameter ODl (FIG. 2) of the outer jacket 26 is between about .295 inches and .310 inches.
  • the disclosed double jacket is provided as two separate inner and outer jackets 24, 26, as opposed to a single, extra thick jacket layer.
  • This double jacket feature reduces alien crosstalk by distancing the cores of adjacent cables, while at the same time accommodating the design limitations of conventional cable connectors. That is, conventional cable connectors are typically designed to fit a standard size cable jacket.
  • the inner jacket 24 of the present cable 10 is preferably manufactured with an outer diameter OD2 (FIG. 2) that accommodates such existing standard connectors. In use of the present cable 10, a portion of the outer jacket 26 can be stripped away so that a conventional cable connector can be attached to the inner jacket 24.
  • the outer diameter OD2 of the inner jacket 24 is between about .236 and .250 inches.
  • each of the inner jacket 24 and the outer jacket 26 accommodate the practical aspects of standardized telecommunications components, while at the same time address the first factor associated with the capacitance of a cable to reduce the problem of alien crosstalk between adjacent cables.
  • the present cable 10 further lessens the occurrence of alien crosstalk by addressing the second factor associated with the capacitance of a cable. That is, the inner and outer jackets 24, 26 are designed to reduce an overall dielectric constant of the cable 10 to reduce alien crosstalk. What is meant by "overall" dielectric constant is the combined effective dielectric constant of the cable produced by the combination of the dielectric constants of the cable components.
  • the inner jacket 24 of the cable 10 defines an inner surface 30 (FIG. 3) and an outer surface 32.
  • a plurality of splines or channels 34 is formed in the inner surface 30 of the inner jacket 24.
  • the channels each have an open side or a side that is not enclosed by the structure defining the channel, as opposed to a through-hole or bore, for example.
  • each channel 34 has a generally square or splined cross-sectional shape. That is, each channel 34 is defined by three surfaces: a bottom surface 36 (FIG. 3), and two opposing side surfaces 38. The bottom surface 36 opposes the open side of the channel 34.
  • Other cross-sectional channel shapes such as partial-circle, rectangular, or trapezoidal cross-sectional shapes, can also be provided.
  • the channels 34 are equally spaced about the circumference of the core 20; that is, equally spaced about the inner surface 30 of the jacket 24.
  • the channels may be formed in a pattern or more randomly spaced about the inner surface 30 of the jacket 24.
  • the inner jacket 24 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12-degree intervals; more preferably the inner jacket 24 includes between 18 and 26 channels spaced at approximately 20-dcgrcc to 14-degree intervals. In the illustrated embodiment, 20 channels are provided at approximately 18-degree intervals. Other numbers of channels, and spatial arrangements, can be provided.
  • the number of channels 34 of the inner jacket 24 is such that a balance of structural stability and reduced overall dielectric constant is achieved. That is, the inner jacket 24 preferably has enough channels to reduce the overall dielectric constant of the cable, as will be described in greater detail hereinafter; yet still has enough structure to adequately support and retain the core 20 of twisted pairs 12.
  • the inner jacket 24 has an associated dielectric constant dictated by the type of material used to manufacture the jacket.
  • Common materials used for jackets include plastic materials, such as fiuoropolymers (e.g. ethylenechlorotrifluorothylene (ECTF) and Flurothylenepropylene (FEP)), polyvinyl chloride (PVC), polyethelene, or other electrically insulating materials, for example.
  • ECTF ethylenechlorotrifluorothylene
  • FEP Flurothylenepropylene
  • PVC polyvinyl chloride
  • polyethelene or other electrically insulating materials, for example.
  • Such materials commonly have a dielectric constant of approximately 2.0. Although a dielectric constant of 2.0 is not ideal, these materials are used because of their cost effectiveness and/or flame retardancy. Flame retardancy of the jacket material is important. Preferably, the material does not propagate flames or generate a significant amount of smoke.
  • each of the channels 34 has a cross-sectional area Al .
  • the cross sectional areas Al of each channel 34 are preferably sized to compensate for the less-than-ideal dielectric constant of the jacket material.
  • the generally square shaped channels 34 have a height Hl and a width Wl .
  • the height Hl is preferably between about .005 and .015 inches; and the width Wl is preferably between about .008 and .012 inches.
  • the total cross-sectional area Al defined by the height Hl and the width Wl of each channel 34 can be, accordingly, up to .0054 square inches.
  • the total cross-sectional area Al defined by a height Hl of .007 inches, a width Wl of .010 inches, and a total of 20 channels, is about .0014 square inches.
  • the inner jacket 24 has a primary thickness Tl defined between the inner surface 30 and the outer surface 32 of the jacket 24.
  • the thickness Tl is between about .030 and .036 inches. In the illustrated embodiment, the thickness Tl is approximately .033 inches. Subtracting the cross- sectional area Al of each of the channels 34 from the area defined by the primary thickness Tl defines the cross-sectional area A2 of the inner jacket 24. In the illustrated embodiment, the cross-sectional area A2 of the inner jacket 24 is approximately .022 square inches.
  • the cross-sectional area A2 of the inner jacket 24 and the cross- sectional area Al of the channels 34 both contribute to the overall dielectric constant of the cable 10.
  • the dielectric properties of the particular inner jacket 24 material taken as a solid
  • the dielectric properties of the material/medium contained within the channels 34 contribute to the overall dielectric constant of the cable 10.
  • the inner jacket 24 is configured such that a ratio of the cross-sectional area A2 of the inner jacket 24 and the cross-sectional area Al of the channels 34 provides a sufficient reduction in the overall dielectric properties of the cable 10 to reduce the occurrence of alien crosstalk.
  • the overall dielectric constant of the cable 10 is no greater than about 1.8 and as close as possible to 1.0. The closer the dielectric constant is to 1.0, the higher the frequencies at which the cable can be used without problematic alien crosstalk.
  • common jacket materials have a dielectric constant close to 2.0.
  • Air has a dielectric constant of 1.0.
  • the cross-sectional areas Al of the channels 34 of the inner jacket 24 preferably introduce as much air as possible. Yet, the inner jacket 24 must also have enough structure to protect and support the core 20 of twisted pairs 12.
  • the ratio of the cross-sectional areas A2/A1 is no greater than 20:1. In the illustrated embodiment, the ratio A2/A1 is approximately 16:1.
  • the ratio defined by the medium within the channels 34 (e.g., air having a dielectric constant of 1.0) and the structure of the inner jacket 24 reduces the dielectric constant contributed by the jacket 24. That is, the inclusion of channels 34 containing air having a lower dielectric constant than that of the jacket material lowers the overall dielectric constant of the cable 10. The reduction of the overall dielectric constant of the cable 10 in turn reduces the occurrence of alien crosstalk and improves the quality of high-speed signal transmission through the cable 10.
  • the channels 34 of the inner jacket 24 can include medium or materials other than air, such as other gases or polymers.
  • the material contained within the channels 34 has a different dielectric constant from that of the material of the jacket 24 (i.e., a lesser dielectric constant) to reduce the overall dielectric constant of the cable 10.
  • the outer jacket 26 of the cable 10 has a similar channeled construction as the inner jacket 24.
  • the outer jacket 26 defines an inner surface 40 (FIG. 4) and an outer surface 42.
  • a plurality of splines or channels 44 is formed in the inner surface 40 of the outer jacket 26.
  • the channels 44 of the outer jacket 26 have the same cross- sectional shape as the channels 34 of the inner jacket 24. That is, each channel 44 has a generally square or splined cross-sectional shape defined by a bottom surface 46 (FlG. 4), and two opposing side surfaces 48.
  • the channels 44 of the outer jacket 26 are equally spaced about the inner surface 40 of the jacket 26.
  • the channels may be formed in a pattern or more randomly spaced about the inner surface 40 of the jacket 26.
  • the outer jacket 26 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12-degree intervals; more preferably the outer jacket 26 includes between 18 and 26 channels spaced at approximately 20-degree to 14-degree intervals. In the illustrated embodiment, 20 channels are provided at approximately 18-degrcc intervals. Other numbers of channels, and spatial arrangements, can be provided.
  • the outer jacket 26 has an associated dielectric constant dictated by the type of material used to manufacture the jacket.
  • Materials that can be used for the outer jacket include plastic materials, such as fluoropolymers (e.g. ethylenechlorotrifluorothylene (ECTF) and Flurothylenepropylene (FEP)), polyvinyl chloride (PVC), polyethelene, or other electrically insulating materials, for example.
  • fluoropolymers e.g. ethylenechlorotrifluorothylene (ECTF) and Flurothylenepropylene (FEP)
  • PVC polyvinyl chloride
  • polyethelene or other electrically insulating materials, for example.
  • such materials commonly have a dielectric constant of approximately 2.0.
  • the material is flame retardant and does not propagate flames or generate a significant amount of smoke.
  • each of the channels 44 has a cross-sectional area A3.
  • the cross sectional areas A3 of each channel 44 are preferably sized to compensate for the less-than-ideal dielectric constant of the outer jacket material.
  • the generally square shaped channels 44 have a height H2 and a width W2.
  • the height H2 is preferably between about .005 and .015 inches; and the width W2 is preferably between about .010 and .014 inches.
  • the total cross-sectional area A3 defined by the height H2 and the width W2 of each channel 44 can be, accordingly, up to .0063 square inches.
  • the total cross-sectional area A3, defined by a height H2 of .007 inches, a width W2 of .012 inches, and a total of 20 channels is about .0017 square inches.
  • the outer jacket 26 has a primary thickness T2 defined between the inner surface 40 and the outer surface 42 of the jacket 26.
  • the thickness T2 is between about .030 and .036 inches. In the illustrated embodiment, the thickness T2 is approximately .034 inches. Subtracting the cross- sectional area A3 of each of the channels 44 from the area defined by the primary thickness T2 defines the cross-sectional area A4 of the outer jacket 26. In the illustrated embodiment, the cross-sectional area A4 of the outer jacket 26 is approximately .033 square inches.
  • the cross-sectional area A4 of the outer jacket 26 and the cross-sectional area A3 of the channels 44 both contribute to the overall dielectric constant of the cable 10.
  • the outer jacket 26 is configured such that a ratio of the cross-sectional area A4 of the outer jacket 26 and the cross- sectional area A3 of the channels 44 produces a sufficient reduction in the overall dielectric properties of the cable 10 to reduce the occurrence of alien crosstalk.
  • the ratio of the cross-sectional areas A4/A3 of the outer jacket 26 is no greater than 20: 1. In the illustrated embodiment, the ratio of A4/A3 is approximately 18: 1.
  • the ratio defined by the medium within the channels 44 e.g., air having a dielectric constant of 1.0
  • the structure of the outer jacket 26 reduces the dielectric constant contributed by the jacket 26. That is, the inclusion of channels 44 containing air having a lower dielectric constant than that of the jacket material lowers the overall dielectric constant of the cable 10.
  • the reduction of the overall dielectric constant of the cable 10 in turn reduces the occurrence of alien crosstalk and improves the quality of highspeed signal transmission through the cable 10.
  • the channels 44 of the outer jacket 26 can also include medium or materials other than air, such as other gases or polymers.
  • the channels 34 and 44 of each of the jackets 24, 26 can further contain materials that are the same or different from one another. Referring now to FlG.
  • the cable 100 includes a plurality of twisted pairs 112.
  • the plurality of twisted pairs 112 defines a cable core 120.
  • the cable core 120 further includes a flexible tape strip 122 that separates the twisted pairs 1 12.
  • the alternative twisting configurations of the core and the twisted pairs previously described with respect to the first embodiment apply similarly to the present embodiment.
  • the cable 100 includes a double jacket that surrounds the core 120 of twisted pairs 1 12.
  • the cable 100 preferably includes both a first inner jacket 124 and a second outer jacket 126.
  • the inner jacket 124 surrounds the core 120 of twisted pairs 1 12.
  • the outer jacket 126 surrounds the inner jacket 124.
  • the inner and outer jackets 124, 126 are similar in construction, material, and use, as described with respect to the inner and outer jackets 24, 26 of the first cable embodiment 10; with the exception of the shape of the jacket channels (i.e. 134, 144).
  • the outer jacket 126 has an outer diameter OD3 (FIG. 6) of between about .295 and .310 inches; and the inner jacket 124 has an outer diameter OD4 of between about .236 and .250 inches
  • the inner jacket 124 of the cable 100 defines an inner surface 130 (FIG. 7) and an outer surface 132.
  • a plurality of channels 134 is formed in the inner surface 130 of the inner jacket 124.
  • the channels 134 have a generally triangular cross-sectional shape. That is, each channel 134 is defined by two side surfaces 138 that join at an apex 136. The apex 136 opposes the open side (or base) of the triangular shaped channel 134.
  • the channels 134 are equally spaced about the circumference of the core 120; that is, equally spaced about the inner surface 130 of the jacket 124.
  • the channels may be formed in a pattern or more randomly spaced about the inner surface 130 of the jacket 124.
  • the inner jacket 124 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12-degree intervals; more preferably the inner jacket 124 includes between 18 and 26 channels spaced at approximately 20-degrce to 14- degree intervals.
  • 24 channels are provided at approximately 15-degree intervals. Other numbers of channels, and spatial arrangements, can be provided.
  • the number of channels 134 of the inner jacket 124 is such that a balance of structural stability and reduced overall dielectric constant is achieved. That is, the inner jacket 124 preferably has enough channels to reduce the overall dielectric constant of the cable; yet still has enough structure to adequately support and retain the core 120 of twisted pairs 1 12.
  • the generally triangular shaped channels 134 have a height H3 and a base or width W3.
  • the height H3 is preferably between about .006 and .010 inches; and the width W3 is preferably between about .020 and .030 inches.
  • the total cross-sectional area A5 defined by the height H3 and the width W3 of each channel 134 can be, accordingly, up to .0045 square inches.
  • the total cross-sectional area A5, defined by a height H3 of .008 inches, a width W3 of .025 inches, and a total of 24 channels, is about .0024 square inches.
  • the inner jacket 124 has a primary thickness T3 defined between the inner surface 130 and the outer surface 132 of the jacket 124.
  • the thickness T3 is between about .030 and .036 inches. In the illustrated embodiment, the thickness T3 is between approximately .034 inches. Subtracting the cross-sectional area A5 of each of the channels 134 from the area defined by the primary thickness T3 defines the cross-sectional area A6 of the inner jacket 124. In the illustrated embodiment, the cross-sectional area A6 of the inner jacket 124 is approximately .022 square inches.
  • the cross-sectional area A6 of the inner jacket 124 and the cross- sectional area A5 of the channels 134 both contribute to the overall dielectric constant of the cable 100.
  • the overall dielectric constant of the cable 100 is preferably no greater than about 1.8 and as close as possible to 1.0.
  • the inner jacket 124 is configured such that a ratio of the cross-sectional area A6 of the inner jacket 124 and the cross-sectional area A5 of the channels 134 provides a sufficient reduction in the overall dielectric properties of the cable 100 to reduce the occurrence of alien crosstalk.
  • the ratio of the cross-sectional areas A6/A5 is no greater than 20:1. In the illustrated embodiment, the ratio A6/A5 is approximately 9: 1.
  • the outer jacket 126 of the cable 100 has a similar channeled construction as the inner jacket 124.
  • the outer jacket 126 defines an inner surface 140 (FIG. 8) and an outer surface 142.
  • a plurality of channels 144 is formed in the inner surface 140 of the outer jacket 126.
  • the channels 144 of the outer jacket 126 have the same cross-sectional shape as the channels 134 of the inner jacket 124. That is, each channel 144 has a generally triangular cross-sectional shape defined by two opposing side surfaces 148 that join at an apex 146.
  • the channels 144 of the outer jacket 126 are equally spaced about the inner surface 140 of the jacket 126.
  • the channels may be formed in a pattern or more randomly spaced about the inner surface 140 of the jacket 126.
  • the outer jacket 126 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12- degree intervals; more preferably the outer jacket 126 includes between 18 and 26 channels spaced at approximately 20-degree to 14-degree intervals. In the illustrated embodiment, 24 channels are provided at approximately 15-degree intervals. Other numbers of channels, and spatial arrangements, can be provided. Referring to FIG. 8, each of the channels 144 has a cross-sectional area A7.
  • the cross sectional areas A7 of each channel 144 are preferably sized to compensate for the less-than-ideal dielectric constant of the outer jacket material.
  • the generally triangular shaped channels 144 have a height H4 and a base or width W4.
  • the height H4 is preferably between about .006 and .010 inches; and the width W4 is preferably between about .027 and .035 inches.
  • the total cross-sectional area A7 defined by the height H4 and the width W4 of each channel 144 can be, accordingly, up to .0053 square inches.
  • the total cross-sectional area A7, defined by a height H4 of .008 inches, a width W4 of .032 inches, and a total of 24 channels is about .003 square inches.
  • the outer jacket 126 has a primary thickness T4 defined between the inner surface 140 and the outer surface 142 of the jacket 126.
  • the thickness T4 is between about .030 and .036 inches. In the illustrated embodiment, the thickness T4 is approximately .033 inches.
  • Subtracting the cross- sectional area A7 of each of the channels 144 from the area defined by the primary thickness T4 defines the cross-sectional area A8 of the outer jacket 126. In the illustrated embodiment, the cross-sectional area A8 of the outer jacket 126 is approximately .029 square inches.
  • the cross -sectional area A8 of the outer jacket 126 and the cross-sectional area A7 of the channels 144 both contribute to the overall dielectric constant of the cable 100.
  • the outer jacket 126 is configured such that a ratio of the cross-sectional area A8 of the inner jacket 126 and the cross- sectional area A7 of the channels 144 produces a sufficient reduction in the overall dielectric properties of the cable 100 to reduce the occurrence of alien crosstalk.
  • the ratio of the cross-sectional areas A8/A7 is no greater than 20: 1. In the illustrated embodiment, the ratio A8/A7 is approximately 9:1.
  • the channels 34, 44, 134, 144 formed in the jackets of the presently disclose cables 10, 100 arc distinguished from other jacket or insulation layers that may contain air due to the porous property of the jacket or layer.
  • the presently described jackets having channels differ from foam insulation, which has closed-cell air pockets within the insulation. Foam insulation is difficult to work with and requires specialized, expensive equipment. Foam insulation also tends to be unstable because foaming does not produce uniform pockets throughout the insulation thereby producing unpredictable performance characteristics. The present cable overcomes these problems.
  • the cable 200 includes a plurality of twisted pairs 212.
  • the plurality of twisted pairs 212 defines a cable core 220.
  • the cable 200 includes a double jacket that surrounds the core 220 of twisted pairs 212.
  • the cable 200 preferably includes both a first inner jacket 224 and a second outer jacket 226.
  • the inner jacket 224 surrounds the core 220 of twisted pairs 212.
  • the outer jacket 226 surrounds the inner jacket 224.
  • the inner and outer jackets 224, 226 are similar in construction, material, and use, as described with respect to the inner and outer jackets of the first and second cable embodiments 10, 100; with the exception of the channels.
  • the double jacket of the cable 200 can include channels in only one of the inner and outer jackets 224, 226.
  • the channels 234, 236, shown as having a generally square or splined cross-sectional configuration, are represented in dashed line, as either one of the inner and outer jackets 234, 236 can be manufacture without the channels.
  • one of the inner and outer jackets 234, 236 can likewise be manufactured with triangular channels while the other is manufactured without any channels.
  • both of the inner and outer jackets 224, 226 can be manufactured without channels.
  • capacitance of the cable 200 is reduced simply by the increase in the centcr-to-center distance from an adjacent cable, to thereby reduce alien crosstalk between the adjacent cables.

Abstract

A multi-pair cable having a double jacket, including an inner jacket and an outer jacket. The inner and outer jackets each including channels formed on an inner surface. The channeled double jacket of the cable reducing the occurrence of alien crosstalk between adjacent cables by reducing the overall dielectric constant of the cable and increasing the center-to-center distance between adjacent cables. The channeled double jacket of the cable still accommodating existing standard cable connectors.

Description

MULTI-PAIR CABLE WITH CHANNELED JACKETS
Technical Field
The present disclosure relates generally to cables for use in the telecommunications industry, and various methods associated with such cables. More particularly, this disclosure relates to a telecommunications cable having twisted conductor pairs.
Background
Twisted pairs cables include at least one pair of insulated conductors twisted about one another to form a two conductor pair. A number of two conductor pairs can be twisted about each other to define a twisted pair core. A plastic jacket is typically extruded over a twisted pair core to maintain the configuration of the core, and to function as a protective layer. Such cables are commonly referred to as multi-pair cables. The telecommunications industry is continuously striving to increase the speed and/or volume of signal transmissions through multi-pair cables. One problem that concerns the telecommunications industry is the increased occurrence of alien crosstalk associated with high-speed signal transmissions. In some applications, alien crosstalk problems are addressed by providing multi-pair cables having a layer of electrical shielding between the core of twisted pairs and the cable jacket. Such shielding however is expensive to manufacture; accordingly, unshielded twisted pair cables are more often used.
Without electrical shielding, and with the increase in signal frequencies associated with high-speed transmissions, alien crosstalk can be problematic. Undesired crosstalk in a cable is primarily a function of cable capacitance. As a cable produces more capacitance, the amount of crosstalk increases. Capacitance of a cable is dependent on two factors: 1) the center-to- center distance between the twisted pairs of adjacent cables, and 2) the overall dielectric constant of the cables.
Summary
One aspect of the present disclosure relates to a multi-pair cable having a double jacket. The double jacket is arranged and configured to reduce the occurrence of alien crosstalk with an adjacent cable, while still accommodating attachment of existing conventional cable connectors. The double jacket includes two separate inner and outer jackets; the outer jacket increases the center-to-center distance between adjacent cables, yet the outer jacket can be stripped away for attachment of an existing cable connector to the inner jacket. The inner and outer jackets can further include channels that also lessen the occurrence of alien crosstalk by reducing the overall dielectric constant of the multi-pair cable.
A variety of examples of desirable product features or methods are set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing various aspects of the disclosure. The aspects of the disclosure may relate to individual features as well as combinations of features. It is to be understood that both the foregoing general description and the following detailed description are explanatory only, and are not restrictive of the claimed invention.
Brief Description of the Drawings
FIG. 1 is a perspective view of one embodiment of a cable according to the principles of the present disclosure;
FIG. 2 is a cross-sectional view of the cable of FIG. 1, taken along line 2-2;
FIG. 3 is a partial view of an inner jacket of the cable of FIG. 2, shown in isolation;
FIG. 4 is a partial view of an outer jacket of the cable of FIG. 2, shown in isolation; FIG. 5 is a perspective view of another embodiment of a cable according to the principles of the present disclosure;
FIG. 6 is a cross-sectional view of the cable of FIG. 5, taken along line 6-6;
FIG. 7 is a partial view of an inner jacket of the cable of FIG. 6, shown in isolation;
FIG. 8 is a partial view of an outer jacket of the cable of FIG. 6, shown in isolation; and
FIG. 9 is a perspective view of still another embodiment of a cable according to the principles of the present disclosure. Detailed Description
Reference will now be made in detail to various features of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
FIGS. 1-9 illustrate embodiments of cables having features that are examples of how inventive aspects in accordance with the principles of the present disclosure may be practiced. Preferred features are adapted for reducing alien crosstalk between adjacent cables.
Referring to FIG. 1, one embodiment of a cable 10 in accordance with the principles disclosed is illustrated. The cable 10 includes a plurality of twisted pairs 12. In the illustrated embodiment, the cable 10 includes four twisted pairs 12. Each of the twisted pairs includes first and second conductors 14 (FIG. 2) twisted about one another along a central longitudinal axis. Each of the conductors 14 is surrounded by an insulating layer 16 (FIG. 2).
The conductors 14 may be made of copper, aluminum, copper-clad steel and plated copper, for example. It has been found that copper is an optimal conductor material. In addition, the conductor may be made of glass or plastic fiber such that a fiber optic cable is produced in accordance with the principles disclosed. The insulating layer 16 can be made of known materials, such as fluoropolymers or other electrical insulating materials, for example.
The plurality of twisted pairs 12 defines a cable core 20. The cable core 20 can include a separator, such as a flexible tape strip 22, to separate the twisted pairs 12. Other types of separators, including fillers defining pockets that separate and/or retain each of the twisted pairs, can also be used. Further details of example fillers that can be used are described in U.S. Patent Application Nos. 10/746,800 and 11/318,350; which applications are incorporated herein by reference. Each of the conductors 14 of the individual twisted pairs 12 can be twisted about one another at a continuously changing twist rate, an incremental twist rate, or a constant twist rate. Each of the twist rates of the twisted pairs 12 can further be the same as the twist rates of some or all of the other twisted pairs, or different from each of the other twisted pairs. The core 20 of twisted pairs 12 can also be twisted about a central core axis. The core 20 can be similarly twisted at any of a continuously changing, incremental, or constant twist rate.
Referring still to FIG. 1, preferably, the cable 10 includes a double jacket that surrounds the core 20 of twisted pairs 12. In particular, the cable 10 preferably includes both a first inner jacket 24 and a second outer jacket 26. The inner jacket 24 surrounds the core 20 of twisted pairs 12. The outer jacket 26 surrounds the inner jacket 24. The inner and outer jackets 24, 26 not only function to maintain the relative positioning of the twisted pairs 12, the inner and outer jackets 24, 26 also function to lessen the occurrence of alien crosstalk. In particular, the addition of the outer jacket 26 reduces the capacitance of the cable 10 by increasing the center-to-ccntcr distance between the cable 10 and an adjacent cable. Reducing the capacitance by increasing the center- to-center distance between two adjacent cables reduces the occurrence of alien crosstalk between the cables. Accordingly, the outer jacket 26 has an outer diameter ODl that distances the core 20 of twisted pairs 12 further from adjacent cables than conventional arrangements. Ideally, the cores 20 of twisted pairs 12 of adjacent cables are as far apart as possible to minimize the capacitance between adjacent cables.
There are, however, limits to how far apart the double jacket can place one cable from an adjacent cable. Practical, as well as economical constraints, are imposed on the size of the resulting double jacket cable. A cable cannot be so large that it is impractical to use in an intended environment, and cannot be so large as to preclude use with existing standard connectors. In the illustrated embodiment, the outer diameter ODl (FIG. 2) of the outer jacket 26 is between about .295 inches and .310 inches.
The disclosed double jacket is provided as two separate inner and outer jackets 24, 26, as opposed to a single, extra thick jacket layer. This double jacket feature reduces alien crosstalk by distancing the cores of adjacent cables, while at the same time accommodating the design limitations of conventional cable connectors. That is, conventional cable connectors are typically designed to fit a standard size cable jacket. The inner jacket 24 of the present cable 10 is preferably manufactured with an outer diameter OD2 (FIG. 2) that accommodates such existing standard connectors. In use of the present cable 10, a portion of the outer jacket 26 can be stripped away so that a conventional cable connector can be attached to the inner jacket 24. In the illustrated embodiment, the outer diameter OD2 of the inner jacket 24 is between about .236 and .250 inches.
The diameters of each of the inner jacket 24 and the outer jacket 26 accommodate the practical aspects of standardized telecommunications components, while at the same time address the first factor associated with the capacitance of a cable to reduce the problem of alien crosstalk between adjacent cables. In addition, the present cable 10 further lessens the occurrence of alien crosstalk by addressing the second factor associated with the capacitance of a cable. That is, the inner and outer jackets 24, 26 are designed to reduce an overall dielectric constant of the cable 10 to reduce alien crosstalk. What is meant by "overall" dielectric constant is the combined effective dielectric constant of the cable produced by the combination of the dielectric constants of the cable components.
Referring now to FIGS. 2 and 3, the inner jacket 24 of the cable 10 defines an inner surface 30 (FIG. 3) and an outer surface 32. A plurality of splines or channels 34 is formed in the inner surface 30 of the inner jacket 24. The channels each have an open side or a side that is not enclosed by the structure defining the channel, as opposed to a through-hole or bore, for example.
In the illustrated embodiment, the channels 34 have a generally square or splined cross-sectional shape. That is, each channel 34 is defined by three surfaces: a bottom surface 36 (FIG. 3), and two opposing side surfaces 38. The bottom surface 36 opposes the open side of the channel 34. Other cross-sectional channel shapes, such as partial-circle, rectangular, or trapezoidal cross-sectional shapes, can also be provided.
As shown in FIG. 2, the channels 34 are equally spaced about the circumference of the core 20; that is, equally spaced about the inner surface 30 of the jacket 24. In alternative embodiments, the channels may be formed in a pattern or more randomly spaced about the inner surface 30 of the jacket 24. Preferably, the inner jacket 24 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12-degree intervals; more preferably the inner jacket 24 includes between 18 and 26 channels spaced at approximately 20-dcgrcc to 14-degree intervals. In the illustrated embodiment, 20 channels are provided at approximately 18-degree intervals. Other numbers of channels, and spatial arrangements, can be provided. Preferably, the number of channels 34 of the inner jacket 24 is such that a balance of structural stability and reduced overall dielectric constant is achieved. That is, the inner jacket 24 preferably has enough channels to reduce the overall dielectric constant of the cable, as will be described in greater detail hereinafter; yet still has enough structure to adequately support and retain the core 20 of twisted pairs 12.
The inner jacket 24 has an associated dielectric constant dictated by the type of material used to manufacture the jacket. Common materials used for jackets include plastic materials, such as fiuoropolymers (e.g. ethylenechlorotrifluorothylene (ECTF) and Flurothylenepropylene (FEP)), polyvinyl chloride (PVC), polyethelene, or other electrically insulating materials, for example. Such materials commonly have a dielectric constant of approximately 2.0. Although a dielectric constant of 2.0 is not ideal, these materials are used because of their cost effectiveness and/or flame retardancy. Flame retardancy of the jacket material is important. Preferably, the material does not propagate flames or generate a significant amount of smoke.
The inner jacket 24 is configured to reduce the overall dielectric constant of the cable 10. Referring now to FlG. 3, each of the channels 34 has a cross-sectional area Al . The cross sectional areas Al of each channel 34 are preferably sized to compensate for the less-than-ideal dielectric constant of the jacket material. In the illustrated embodiment, the generally square shaped channels 34 have a height Hl and a width Wl . The height Hl is preferably between about .005 and .015 inches; and the width Wl is preferably between about .008 and .012 inches. The total cross-sectional area Al defined by the height Hl and the width Wl of each channel 34 can be, accordingly, up to .0054 square inches. In the illustrated embodiment, the total cross-sectional area Al , defined by a height Hl of .007 inches, a width Wl of .010 inches, and a total of 20 channels, is about .0014 square inches.
As shown in FIG. 3, the inner jacket 24 has a primary thickness Tl defined between the inner surface 30 and the outer surface 32 of the jacket 24.
Preferably, the thickness Tl is between about .030 and .036 inches. In the illustrated embodiment, the thickness Tl is approximately .033 inches. Subtracting the cross- sectional area Al of each of the channels 34 from the area defined by the primary thickness Tl defines the cross-sectional area A2 of the inner jacket 24. In the illustrated embodiment, the cross-sectional area A2 of the inner jacket 24 is approximately .022 square inches.
The cross-sectional area A2 of the inner jacket 24 and the cross- sectional area Al of the channels 34 both contribute to the overall dielectric constant of the cable 10. For example, the dielectric properties of the particular inner jacket 24 material (taken as a solid) in combination with the dielectric properties of the material/medium contained within the channels 34 contribute to the overall dielectric constant of the cable 10.
The actual dielectric constants of the preferred jacket material and the preferred medium contained within the channels is described in greater detail hereinafter. The inner jacket 24 is configured such that a ratio of the cross-sectional area A2 of the inner jacket 24 and the cross-sectional area Al of the channels 34 provides a sufficient reduction in the overall dielectric properties of the cable 10 to reduce the occurrence of alien crosstalk. In general, preferably, the overall dielectric constant of the cable 10 is no greater than about 1.8 and as close as possible to 1.0. The closer the dielectric constant is to 1.0, the higher the frequencies at which the cable can be used without problematic alien crosstalk. As previously described, common jacket materials have a dielectric constant close to 2.0. Air has a dielectric constant of 1.0. To reduce the overall dielectric constant of the cable 10, the cross-sectional areas Al of the channels 34 of the inner jacket 24 preferably introduce as much air as possible. Yet, the inner jacket 24 must also have enough structure to protect and support the core 20 of twisted pairs 12. Preferably, the ratio of the cross-sectional areas A2/A1 is no greater than 20:1. In the illustrated embodiment, the ratio A2/A1 is approximately 16:1.
The ratio defined by the medium within the channels 34 (e.g., air having a dielectric constant of 1.0) and the structure of the inner jacket 24 reduces the dielectric constant contributed by the jacket 24. That is, the inclusion of channels 34 containing air having a lower dielectric constant than that of the jacket material lowers the overall dielectric constant of the cable 10. The reduction of the overall dielectric constant of the cable 10 in turn reduces the occurrence of alien crosstalk and improves the quality of high-speed signal transmission through the cable 10. The channels 34 of the inner jacket 24 can include medium or materials other than air, such as other gases or polymers. Preferably, the material contained within the channels 34 has a different dielectric constant from that of the material of the jacket 24 (i.e., a lesser dielectric constant) to reduce the overall dielectric constant of the cable 10.
Referring now to FIGS. 2 and 4, the outer jacket 26 of the cable 10 has a similar channeled construction as the inner jacket 24. The outer jacket 26 defines an inner surface 40 (FIG. 4) and an outer surface 42. A plurality of splines or channels 44 is formed in the inner surface 40 of the outer jacket 26. In the illustrated embodiment, the channels 44 of the outer jacket 26 have the same cross- sectional shape as the channels 34 of the inner jacket 24. That is, each channel 44 has a generally square or splined cross-sectional shape defined by a bottom surface 46 (FlG. 4), and two opposing side surfaces 48.
As shown in FlG. 2, the channels 44 of the outer jacket 26 are equally spaced about the inner surface 40 of the jacket 26. In alternative embodiments, the channels may be formed in a pattern or more randomly spaced about the inner surface 40 of the jacket 26. Preferably, the outer jacket 26 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12-degree intervals; more preferably the outer jacket 26 includes between 18 and 26 channels spaced at approximately 20-degree to 14-degree intervals. In the illustrated embodiment, 20 channels are provided at approximately 18-degrcc intervals. Other numbers of channels, and spatial arrangements, can be provided.
The outer jacket 26 has an associated dielectric constant dictated by the type of material used to manufacture the jacket. Materials that can be used for the outer jacket include plastic materials, such as fluoropolymers (e.g. ethylenechlorotrifluorothylene (ECTF) and Flurothylenepropylene (FEP)), polyvinyl chloride (PVC), polyethelene, or other electrically insulating materials, for example. As previously described, such materials commonly have a dielectric constant of approximately 2.0. Preferably, the material is flame retardant and does not propagate flames or generate a significant amount of smoke.
Similar to the inner jacket 24, the outer jacket 26 is configured to reduce the overall dielectric constant of the cable 10. Referring now to. FIG. 4, each of the channels 44 has a cross-sectional area A3. The cross sectional areas A3 of each channel 44 are preferably sized to compensate for the less-than-ideal dielectric constant of the outer jacket material. In the illustrated embodiment, the generally square shaped channels 44 have a height H2 and a width W2. The height H2 is preferably between about .005 and .015 inches; and the width W2 is preferably between about .010 and .014 inches. The total cross-sectional area A3 defined by the height H2 and the width W2 of each channel 44 can be, accordingly, up to .0063 square inches. In the illustrated embodiment, the total cross-sectional area A3, defined by a height H2 of .007 inches, a width W2 of .012 inches, and a total of 20 channels, is about .0017 square inches.
As shown in FIG. 4, the outer jacket 26 has a primary thickness T2 defined between the inner surface 40 and the outer surface 42 of the jacket 26.
Preferably, the thickness T2 is between about .030 and .036 inches. In the illustrated embodiment, the thickness T2 is approximately .034 inches. Subtracting the cross- sectional area A3 of each of the channels 44 from the area defined by the primary thickness T2 defines the cross-sectional area A4 of the outer jacket 26. In the illustrated embodiment, the cross-sectional area A4 of the outer jacket 26 is approximately .033 square inches.
As previously described, the cross-sectional area A4 of the outer jacket 26 and the cross-sectional area A3 of the channels 44 both contribute to the overall dielectric constant of the cable 10. The outer jacket 26 is configured such that a ratio of the cross-sectional area A4 of the outer jacket 26 and the cross- sectional area A3 of the channels 44 produces a sufficient reduction in the overall dielectric properties of the cable 10 to reduce the occurrence of alien crosstalk. Preferably, the ratio of the cross-sectional areas A4/A3 of the outer jacket 26 is no greater than 20: 1. In the illustrated embodiment, the ratio of A4/A3 is approximately 18: 1.
Similar to the ratio of the inner jacket 24, the ratio defined by the medium within the channels 44 (e.g., air having a dielectric constant of 1.0) and the structure of the outer jacket 26 reduces the dielectric constant contributed by the jacket 26. That is, the inclusion of channels 44 containing air having a lower dielectric constant than that of the jacket material lowers the overall dielectric constant of the cable 10. The reduction of the overall dielectric constant of the cable 10 in turn reduces the occurrence of alien crosstalk and improves the quality of highspeed signal transmission through the cable 10. The channels 44 of the outer jacket 26 can also include medium or materials other than air, such as other gases or polymers. The channels 34 and 44 of each of the jackets 24, 26 can further contain materials that are the same or different from one another. Referring now to FlG. 5, another embodiment of a cable 100 having features adapted for reducing alien crosstalk between adjacent cables is illustrated. Similar to the previous embodiment, the cable 100 includes a plurality of twisted pairs 112. The plurality of twisted pairs 112 defines a cable core 120. The cable core 120 further includes a flexible tape strip 122 that separates the twisted pairs 1 12. The alternative twisting configurations of the core and the twisted pairs previously described with respect to the first embodiment apply similarly to the present embodiment.
The cable 100 includes a double jacket that surrounds the core 120 of twisted pairs 1 12. In particular, the cable 100 preferably includes both a first inner jacket 124 and a second outer jacket 126. The inner jacket 124 surrounds the core 120 of twisted pairs 1 12. The outer jacket 126 surrounds the inner jacket 124. The inner and outer jackets 124, 126 are similar in construction, material, and use, as described with respect to the inner and outer jackets 24, 26 of the first cable embodiment 10; with the exception of the shape of the jacket channels (i.e. 134, 144). For example, the outer jacket 126 has an outer diameter OD3 (FIG. 6) of between about .295 and .310 inches; and the inner jacket 124 has an outer diameter OD4 of between about .236 and .250 inches
Referring now to FIGS. 6 and 7, the inner jacket 124 of the cable 100 defines an inner surface 130 (FIG. 7) and an outer surface 132. A plurality of channels 134 is formed in the inner surface 130 of the inner jacket 124. In the illustrated embodiment, the channels 134 have a generally triangular cross-sectional shape. That is, each channel 134 is defined by two side surfaces 138 that join at an apex 136. The apex 136 opposes the open side (or base) of the triangular shaped channel 134. As shown in FIG. 6, the channels 134 are equally spaced about the circumference of the core 120; that is, equally spaced about the inner surface 130 of the jacket 124. In alternative embodiments, the channels may be formed in a pattern or more randomly spaced about the inner surface 130 of the jacket 124. Preferably, the inner jacket 124 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12-degree intervals; more preferably the inner jacket 124 includes between 18 and 26 channels spaced at approximately 20-degrce to 14- degree intervals. In the illustrated embodiment, 24 channels are provided at approximately 15-degree intervals. Other numbers of channels, and spatial arrangements, can be provided.
Preferably, the number of channels 134 of the inner jacket 124 is such that a balance of structural stability and reduced overall dielectric constant is achieved. That is, the inner jacket 124 preferably has enough channels to reduce the overall dielectric constant of the cable; yet still has enough structure to adequately support and retain the core 120 of twisted pairs 1 12.
Still referring to FIG. 7, in the illustrated embodiment, the generally triangular shaped channels 134 have a height H3 and a base or width W3. The height H3 is preferably between about .006 and .010 inches; and the width W3 is preferably between about .020 and .030 inches. The total cross-sectional area A5 defined by the height H3 and the width W3 of each channel 134 can be, accordingly, up to .0045 square inches. In the illustrated embodiment, the total cross-sectional area A5, defined by a height H3 of .008 inches, a width W3 of .025 inches, and a total of 24 channels, is about .0024 square inches.
As shown in FIG. 7, the inner jacket 124 has a primary thickness T3 defined between the inner surface 130 and the outer surface 132 of the jacket 124.
Preferably, the thickness T3 is between about .030 and .036 inches. In the illustrated embodiment, the thickness T3 is between approximately .034 inches. Subtracting the cross-sectional area A5 of each of the channels 134 from the area defined by the primary thickness T3 defines the cross-sectional area A6 of the inner jacket 124. In the illustrated embodiment, the cross-sectional area A6 of the inner jacket 124 is approximately .022 square inches.
The cross-sectional area A6 of the inner jacket 124 and the cross- sectional area A5 of the channels 134 both contribute to the overall dielectric constant of the cable 100. In general, the overall dielectric constant of the cable 100 is preferably no greater than about 1.8 and as close as possible to 1.0. The inner jacket 124 is configured such that a ratio of the cross-sectional area A6 of the inner jacket 124 and the cross-sectional area A5 of the channels 134 provides a sufficient reduction in the overall dielectric properties of the cable 100 to reduce the occurrence of alien crosstalk. Preferably, the ratio of the cross-sectional areas A6/A5 is no greater than 20:1. In the illustrated embodiment, the ratio A6/A5 is approximately 9: 1.
Referring now to FIGS. 6 and 8, the outer jacket 126 of the cable 100 has a similar channeled construction as the inner jacket 124. The outer jacket 126 defines an inner surface 140 (FIG. 8) and an outer surface 142. A plurality of channels 144 is formed in the inner surface 140 of the outer jacket 126. In the illustrated embodiment, the channels 144 of the outer jacket 126 have the same cross-sectional shape as the channels 134 of the inner jacket 124. That is, each channel 144 has a generally triangular cross-sectional shape defined by two opposing side surfaces 148 that join at an apex 146.
As shown in FIG. 6, the channels 144 of the outer jacket 126 are equally spaced about the inner surface 140 of the jacket 126. In alternative embodiments, the channels may be formed in a pattern or more randomly spaced about the inner surface 140 of the jacket 126. Preferably, the outer jacket 126 includes between 6 and 30 channels spaced apart at approximately 60-degree to 12- degree intervals; more preferably the outer jacket 126 includes between 18 and 26 channels spaced at approximately 20-degree to 14-degree intervals. In the illustrated embodiment, 24 channels are provided at approximately 15-degree intervals. Other numbers of channels, and spatial arrangements, can be provided. Referring to FIG. 8, each of the channels 144 has a cross-sectional area A7. The cross sectional areas A7 of each channel 144 are preferably sized to compensate for the less-than-ideal dielectric constant of the outer jacket material. In the illustrated embodiment, the generally triangular shaped channels 144 have a height H4 and a base or width W4. The height H4 is preferably between about .006 and .010 inches; and the width W4 is preferably between about .027 and .035 inches. The total cross-sectional area A7 defined by the height H4 and the width W4 of each channel 144 can be, accordingly, up to .0053 square inches. In the illustrated embodiment, the total cross-sectional area A7, defined by a height H4 of .008 inches, a width W4 of .032 inches, and a total of 24 channels, is about .003 square inches.
As shown in FIG. 8, the outer jacket 126 has a primary thickness T4 defined between the inner surface 140 and the outer surface 142 of the jacket 126. Preferably, the thickness T4 is between about .030 and .036 inches. In the illustrated embodiment, the thickness T4 is approximately .033 inches. Subtracting the cross- sectional area A7 of each of the channels 144 from the area defined by the primary thickness T4 defines the cross-sectional area A8 of the outer jacket 126. In the illustrated embodiment, the cross-sectional area A8 of the outer jacket 126 is approximately .029 square inches. As previously described, the cross -sectional area A8 of the outer jacket 126 and the cross-sectional area A7 of the channels 144 both contribute to the overall dielectric constant of the cable 100. The outer jacket 126 is configured such that a ratio of the cross-sectional area A8 of the inner jacket 126 and the cross- sectional area A7 of the channels 144 produces a sufficient reduction in the overall dielectric properties of the cable 100 to reduce the occurrence of alien crosstalk. Preferably, the ratio of the cross-sectional areas A8/A7 is no greater than 20: 1. In the illustrated embodiment, the ratio A8/A7 is approximately 9:1.
The channels 34, 44, 134, 144 formed in the jackets of the presently disclose cables 10, 100 arc distinguished from other jacket or insulation layers that may contain air due to the porous property of the jacket or layer. For example, the presently described jackets having channels differ from foam insulation, which has closed-cell air pockets within the insulation. Foam insulation is difficult to work with and requires specialized, expensive equipment. Foam insulation also tends to be unstable because foaming does not produce uniform pockets throughout the insulation thereby producing unpredictable performance characteristics. The present cable overcomes these problems.
Referring now to FIG. 9, yet another embodiment of a cable 200 having features adapted for reducing alien crosstalk between adjacent cables is illustrated. Similar to the previous embodiment, the cable 200 includes a plurality of twisted pairs 212. The plurality of twisted pairs 212 defines a cable core 220. The cable 200 includes a double jacket that surrounds the core 220 of twisted pairs 212. In particular, the cable 200 preferably includes both a first inner jacket 224 and a second outer jacket 226. The inner jacket 224 surrounds the core 220 of twisted pairs 212. The outer jacket 226 surrounds the inner jacket 224. The inner and outer jackets 224, 226 are similar in construction, material, and use, as described with respect to the inner and outer jackets of the first and second cable embodiments 10, 100; with the exception of the channels. In particular, the double jacket of the cable 200 can include channels in only one of the inner and outer jackets 224, 226. In FIG. 9, the channels 234, 236, shown as having a generally square or splined cross-sectional configuration, are represented in dashed line, as either one of the inner and outer jackets 234, 236 can be manufacture without the channels. As can be understood, one of the inner and outer jackets 234, 236 can likewise be manufactured with triangular channels while the other is manufactured without any channels.
In yet another alternative embodiment, both of the inner and outer jackets 224, 226 can be manufactured without channels. In an embodiment having a double jacket without any channels, capacitance of the cable 200 is reduced simply by the increase in the centcr-to-center distance from an adjacent cable, to thereby reduce alien crosstalk between the adjacent cables.
The above specification provides a complete description of the present invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, certain aspects of the invention reside in the claims hereinafter appended.

Claims

WHAT IS CLAIMED IS:
1. A multi-pair cable, comprising: a) a plurality of twisted pairs, each of the twisted pairs including a first conductor surrounded by an insulating layer and a second conductor surrounded by an insulating layer, the first and second conductors being twisted about a longitudinal axis; b) an inner jacket surrounding the plurality of twisted pairs, the inner jacket including channels formed in an inner surface of the inner jacket; and c) an outer jacket surrounding the inner jacket, the outer jacket including channels formed in an inner surface of the outer jacket.
2. The cable of claim 1 , wherein the channels of the inner jacket and the channels of the outer jacket have the same cross-sectional shape.
3. The cable of claim 2, wherein the channels of the inner jacket and the channels of the outer jacket have a generally square cross-sectional shape.
4. The cable of claim 2, wherein the channels of the inner jacket and the channels of the outer jacket have a triangular cross-sectional shape.
5. The cable of claim 1 , wherein the channels of each of the inner and outer jackets are equally spaced about the inner surfaces of the inner and outer jackets.
6. The cable of claim 1 , wherein the channels of the inner jacket define a total cross-sectional area of at least .0014 square inches.
7. The cable of claim 6, wherein inner jacket defines a ratio of a cross-sectional area of the inner jacket to the cross-sectional area of the channels, the ratio being no greater than 20:1.
8. The cable of claim 1 , wherein the outer jacket has an outer diameter of between about .295 and .310 inches.
9. The cable of claim 7, wherein the inner jacket has an outer diameter of between about .236 and .250 inches.
10. The cable of claim 1 , wherein each of the inner jacket and the outer jacket has a thickness of between about .030 and .036 inches.
11. The cable of claim 1 , wherein the inner jacket includes between 18 and 26 channels formed in the inner surface of the inner jacket.
12. The cable of claim 1 1, wherein the outer jacket includes between 18 and 26 channels formed in the inner surface of the outer jacket.
13. The cable of claim 1 , wherein the plurality of twisted pairs defines a cable core, the cable core further including a separator that separates at least some of the twisted pairs from others of the twisted pairs.
14. The cable of claim 13, wherein the separator includes a flexible tape strip.
PCT/US2007/005941 2006-03-09 2007-03-07 Multi-pair cable with channeled jackets WO2007103507A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/373,819 US7271344B1 (en) 2006-03-09 2006-03-09 Multi-pair cable with channeled jackets
US11/373,819 2006-03-09

Publications (2)

Publication Number Publication Date
WO2007103507A2 true WO2007103507A2 (en) 2007-09-13
WO2007103507A3 WO2007103507A3 (en) 2007-12-06

Family

ID=38268875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/005941 WO2007103507A2 (en) 2006-03-09 2007-03-07 Multi-pair cable with channeled jackets

Country Status (2)

Country Link
US (2) US7271344B1 (en)
WO (1) WO2007103507A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441985A1 (en) 2017-08-08 2019-02-13 Sterlite Technologies Limited M-jacket for a telecommunications cable

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874736B1 (en) * 2004-08-27 2006-11-03 Nexans Sa DEVICE FOR MANUFACTURING AN ALVEOLED SHEATH AROUND A DRIVER
US7271344B1 (en) * 2006-03-09 2007-09-18 Adc Telecommunications, Inc. Multi-pair cable with channeled jackets
US7560646B2 (en) * 2007-05-31 2009-07-14 Nexans Profiled insulation and method for making the same
FR2927726A1 (en) * 2008-02-15 2009-08-21 Nexans Sa ELECTRICAL CABLE EASILY DEGAINABLE
US7674981B1 (en) * 2008-09-25 2010-03-09 Alcatel-Lucent Usa Inc. Structured dielectric for coaxial cable
FR2938111B1 (en) * 2008-11-06 2012-08-03 Axoncable ELECTRICAL WIRE WITH LOW DIELECTRIC CONECTANT PTFE SHEATH, AND METHOD AND TOOL FOR MANUFACTURING THE SAME
US8735726B2 (en) * 2009-01-14 2014-05-27 General Cable Technologies Corporation Jacket for data cable
US8344255B2 (en) * 2009-01-16 2013-01-01 Adc Telecommunications, Inc. Cable with jacket including a spacer
US8618418B2 (en) * 2009-04-29 2013-12-31 Ppc Broadband, Inc. Multilayer cable jacket
US9129727B2 (en) * 2009-05-04 2015-09-08 Panduit Corp. Communication cable with embossed tape having encapsulated gas
US20110005804A1 (en) * 2009-07-09 2011-01-13 Honeywell International Inc. Internally serrated insulation for electrical wire and cable
US20110048767A1 (en) * 2009-08-27 2011-03-03 Adc Telecommunications, Inc. Twisted Pairs Cable with Tape Arrangement
US20110132633A1 (en) * 2009-12-04 2011-06-09 John Mezzalingua Associates, Inc. Protective jacket in a coaxial cable
US8557358B1 (en) * 2011-08-22 2013-10-15 The United States Of America As Represented By The Secretary Of The Navy Rolling textile protective system for textile structural members
DE202014003291U1 (en) * 2014-04-16 2014-07-04 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg cable assembly
US10573431B2 (en) * 2016-08-24 2020-02-25 Ls Cable & System Ltd. Communication cable
CN107068256A (en) * 2017-04-25 2017-08-18 浙江舟电子科技股份有限公司 A kind of special-shaped 6A classes data center cable
US10573980B2 (en) 2017-07-31 2020-02-25 Ppc Broadband, Inc. Coaxial drop cable with circumferential segmented floodant locations
US10373740B2 (en) 2017-08-09 2019-08-06 Panduit Corp. Communications cable with improved isolation between wire-pairs and metal foil tape
US10741305B2 (en) * 2017-08-24 2020-08-11 Sterlite Technologies Limited Double P jacket for telecommunications cable
EP3754669A4 (en) * 2018-02-16 2021-10-13 Essex Furukawa Magnet Wire Japan Co., Ltd. Insulated wire, coil, and electric/electronic instrument
US11450454B1 (en) * 2018-07-20 2022-09-20 Southwire Company, Llc Oscillating fluted outer covering for reduced wind drag
CN112349455B (en) * 2019-08-08 2022-10-14 智英科技股份有限公司 Cable structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990419A (en) * 1996-08-26 1999-11-23 Virginia Patent Development Corporation Data cable
EP1548754A2 (en) * 2003-12-22 2005-06-29 Commscope Solutions Properties, LLC Finned jackets for lan cables
US7145080B1 (en) * 2005-11-08 2006-12-05 Hitachi Cable Manchester, Inc. Off-set communications cable

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US326021A (en) * 1885-09-08 cruickshank
US524452A (en) * 1894-08-14 Car-coupling
US504397A (en) * 1893-09-05 Electric conductor
US725624A (en) * 1903-02-16 1903-04-14 Indiana Mfg Co Pneumatic stacker.
US811703A (en) * 1905-02-07 1906-02-06 Spencer E Davis Draft-equalizer.
US1008370A (en) 1909-12-01 1911-11-14 Louis Robillot Automatic fire-alarm.
US1548754A (en) * 1923-11-28 1925-08-04 Gen Electric Regulating system for dynamo-electric machines
US2133453A (en) * 1935-10-07 1938-10-18 Stewart & Mcguire Inc Dispensing machine
US2386818A (en) * 1942-12-12 1945-10-16 Olin Ind Inc Coating method and apparatus
BE480485A (en) * 1945-09-07
US2583026A (en) * 1949-08-12 1952-01-22 Simplex Wire & Cable Co Cable with interlocked insulating layers
US2690592A (en) * 1951-04-27 1954-10-05 Goodrich Co B F Method of and apparatus for extruding tubing
US2708176A (en) * 1951-06-14 1955-05-10 Us Rubber Co Coaxial cable and method of making same
US2766481A (en) * 1952-08-28 1956-10-16 Western Electric Co Methods of and apparatus for extruding cellular plastics
US2804494A (en) * 1953-04-08 1957-08-27 Charles F Fenton High frequency transmission cable
US3086557A (en) * 1957-09-30 1963-04-23 Thomas F Peterson Conduit with preformed elements
US3035115A (en) * 1958-08-28 1962-05-15 Rea Magnet Wire Company Inc Electrical component having a serrated core construction and method of making the component
US3064073A (en) 1960-07-27 1962-11-13 Du Pont Insulated electrical conductor
US3422648A (en) * 1961-10-02 1969-01-21 Jerome H Lemelson Extrusion apparatus
US3315025A (en) * 1964-12-30 1967-04-18 Anaconda Wire & Cable Co Electric cable with improved resistance to moisture penetration
US3459877A (en) * 1965-01-18 1969-08-05 Anaconda Wire & Cable Co Electric cable
FR1500843A (en) * 1966-05-25 1967-11-10 Gen Alimentaire Machine for coating an elongated body with a perforated or reticulated sheath
US3650862A (en) * 1969-01-27 1972-03-21 Anaconda Wire & Cable Co Marking apparatus and method
US3771934A (en) 1969-02-18 1973-11-13 Int Standard Electric Corp Apparatus for extending water-blocked cartwheel cable
US3644659A (en) * 1969-11-21 1972-02-22 Xerox Corp Cable construction
US3905853A (en) * 1970-05-21 1975-09-16 Creators Ltd Reinforced plastics tubes
US3678177A (en) * 1971-03-29 1972-07-18 British Insulated Callenders Telecommunication cables
US3983313A (en) * 1972-09-05 1976-09-28 Lynenwerk Kg Electric cables
DE2261530C3 (en) * 1972-12-15 1976-01-02 Fraenkische Isolierrohr- & Metallwaren-Werke, Gebr. Kirchner, 8729 Koenigsberg Plastic insulating tube
US3812282A (en) * 1973-01-11 1974-05-21 Int Standard Electric Corp Tearable insulation sheath for cables
US3911070A (en) * 1973-04-25 1975-10-07 Grace W R & Co Profile extension process for thermoplastic resins and ceramic thermoplastic resin binder compositions
US3972970A (en) * 1974-02-07 1976-08-03 Western Electric Company, Inc. Method for extruding cellular thermoplastic products
US4132756A (en) * 1974-12-20 1979-01-02 Industrie Pirelli, S.P.A. Process for extruding plastomeric or elastomeric material on filaments
ES217858Y (en) * 1974-12-20 1977-01-01 Industrie Pirelli, S. P. A. FILMING MACHINE HEAD FOR EXTRUDING PLASTOMER OR ELASTOMER MATERIAL AROUND FILAMENTS.
US4138457A (en) * 1976-08-13 1979-02-06 Sherwood Medical Industries Inc. Method of making a plastic tube with plural lumens
GB1583957A (en) * 1977-03-10 1981-02-04 Bicc Ltd Electric cables
JPS53141486A (en) * 1977-05-17 1978-12-09 Sumitomo Electric Ind Ltd Manufacturing device of coaxial cable insulating body
NL178063C (en) * 1979-03-27 1986-01-16 Wavin Bv EXTRUSION HEAD WITH RING-SHAPED EXTRUSION CHANNEL AND A PLASTIC TUBE WITH LONG-WINDING HOLLOW CHANNELS OBTAINED IN THE WALL USING SUCH EXTRUSION HEAD.
US4394705A (en) * 1982-01-04 1983-07-19 The Polymer Corporation Anti-static hose assemblies
DE3447225C1 (en) * 1984-12-22 1986-02-06 Kabelwerke Reinshagen Gmbh, 5600 Wuppertal Floatable, flexible electrical and / or optical cable
US4755629A (en) * 1985-09-27 1988-07-05 At&T Technologies Local area network cable
US4731505A (en) * 1987-03-31 1988-03-15 General Instrument Corporation Impact absorbing jacket for a concentric interior member and coaxial cable provided with same
US4777325A (en) * 1987-06-09 1988-10-11 Amp Incorporated Low profile cables for twisted pairs
US5042904A (en) * 1990-07-18 1991-08-27 Comm/Scope, Inc. Communications cable and method having a talk path in an enhanced cable jacket
FR2669143B1 (en) * 1990-11-14 1995-02-10 Filotex Sa HIGH SPREAD SPEED ELECTRIC CABLE.
US5132488A (en) * 1991-02-21 1992-07-21 Northern Telecom Limited Electrical telecommunications cable
US5162609A (en) 1991-07-31 1992-11-10 At&T Bell Laboratories Fire-resistant cable for transmitting high frequency signals
US5216204A (en) * 1991-08-02 1993-06-01 International Business Machines Corp. Static dissipative electrical cable
US5220130A (en) * 1991-08-06 1993-06-15 Cooper Industries, Inc. Dual insulated data cable
US5162120A (en) 1991-11-29 1992-11-10 Northern Telecom Limited Method and apparatus for providing jackets on cable
CA2090053C (en) * 1992-03-24 1997-10-28 Lawrence Russell Dunn Hybrid communications cable for enhancement of transmission capability
US5514837A (en) * 1995-03-28 1996-05-07 Belden Wire & Cable Company Plenum cable
DK0642139T3 (en) * 1993-09-06 1997-09-01 Filotex Sa Cable with easily removable sheath
US5563377A (en) * 1994-03-22 1996-10-08 Northern Telecom Limited Telecommunications cable
US5956445A (en) * 1994-05-20 1999-09-21 Belden Wire & Cable Company Plenum rated cables and shielding tape
US5493071A (en) * 1994-11-10 1996-02-20 Berk-Tek, Inc. Communication cable for use in a plenum
US5541361A (en) * 1994-12-20 1996-07-30 At&T Corp. Indoor communication cable
US5742002A (en) * 1995-07-20 1998-04-21 Andrew Corporation Air-dielectric coaxial cable with hollow spacer element
CA2157322C (en) 1995-08-31 1998-02-03 Gilles Gagnon Dual insulated data communication cable
FR2738947B1 (en) * 1995-09-15 1997-10-17 Filotex Sa MULTI-PAIR CABLE, SHIELDED PER PAIR AND EASY TO CONNECT
US5767441A (en) * 1996-01-04 1998-06-16 General Cable Industries Paired electrical cable having improved transmission properties and method for making same
US5789711A (en) * 1996-04-09 1998-08-04 Belden Wire & Cable Company High-performance data cable
US6222130B1 (en) * 1996-04-09 2001-04-24 Belden Wire & Cable Company High performance data cable
FR2747832B1 (en) * 1996-04-23 1998-05-22 Filotex Sa METHOD AND DEVICE FOR MANUFACTURING A VENTILATED SHEATH IN AN INSULATING MATERIAL AROUND A CONDUCTOR, AND COAXIAL CABLE EQUIPPED WITH SUCH SHEATH
US5814768A (en) * 1996-06-03 1998-09-29 Commscope, Inc. Twisted pairs communications cable
US6441308B1 (en) * 1996-06-07 2002-08-27 Cable Design Technologies, Inc. Cable with dual layer jacket
US5796046A (en) * 1996-06-24 1998-08-18 Alcatel Na Cable Systems, Inc. Communication cable having a striated cable jacket
US5821467A (en) * 1996-09-11 1998-10-13 Belden Wire & Cable Company Flat-type communication cable
US5796044A (en) * 1997-02-10 1998-08-18 Medtronic, Inc. Coiled wire conductor insulation for biomedical lead
US6074503A (en) * 1997-04-22 2000-06-13 Cable Design Technologies, Inc. Making enhanced data cable with cross-twist cabled core profile
US7154043B2 (en) * 1997-04-22 2006-12-26 Belden Technologies, Inc. Data cable with cross-twist cabled core profile
FR2764104B1 (en) * 1997-06-02 1999-07-30 Alsthom Cge Alcatel HIGH FREQUENCY DATA TRANSMISSION CABLE, AND METHOD AND APPARATUS FOR MANUFACTURING THE SAME
US5969295A (en) 1998-01-09 1999-10-19 Commscope, Inc. Of North Carolina Twisted pair communications cable
US6150612A (en) 1998-04-17 2000-11-21 Prestolite Wire Corporation High performance data cable
FR2779866B1 (en) * 1998-06-11 2000-07-13 Alsthom Cge Alcatel CABLE FOR TRANSMITTING INFORMATION AND ITS MANUFACTURING METHOD
FR2783082B1 (en) 1998-09-09 2000-11-24 Siemens Automotive Sa OVER-MOLDED ELECTRIC CABLE AND METHOD FOR PRODUCING SUCH A CABLE
US6573456B2 (en) * 1999-01-11 2003-06-03 Southwire Company Self-sealing electrical cable having a finned inner layer
US6248954B1 (en) * 1999-02-25 2001-06-19 Cable Design Technologies, Inc. Multi-pair data cable with configurable core filling and pair separation
US6812408B2 (en) * 1999-02-25 2004-11-02 Cable Design Technologies, Inc. Multi-pair data cable with configurable core filling and pair separation
US6365836B1 (en) * 1999-02-26 2002-04-02 Nordx/Cdt, Inc. Cross web for data grade cables
US6162992A (en) 1999-03-23 2000-12-19 Cable Design Technologies, Inc. Shifted-plane core geometry cable
US6124551A (en) * 1999-04-15 2000-09-26 Adaptec, Inc. Ultra thin and flexible SCSI cable and method for making the same
FR2794477B1 (en) 1999-06-02 2001-09-14 Freyssinet Int Stup CONSTRUCTION OPENING STRUCTURE CABLE, SHEATH SECTION OF SUCH CABLE, AND LAYING METHOD
US6686537B1 (en) * 1999-07-22 2004-02-03 Belden Wire & Cable Company High performance data cable and a UL 910 plenum non-fluorinated jacket high performance data cable
US6534715B1 (en) * 1999-08-30 2003-03-18 Pirelli Cavi E Sistemi S.P.A. Electrical cable with self-repairing protection and apparatus for manufacturing the same
MXPA02002133A (en) * 1999-08-31 2002-09-18 Belden Wire & Cable Co High speed data cable having individually shielded twisted pairs.
US6506976B1 (en) * 1999-09-14 2003-01-14 Avaya Technology Corp. Electrical cable apparatus and method for making
JP3636001B2 (en) * 1999-09-27 2005-04-06 住友電装株式会社 Twisted pair cable
US6297454B1 (en) * 1999-12-02 2001-10-02 Belden Wire & Cable Company Cable separator spline
US6310295B1 (en) 1999-12-03 2001-10-30 Alcatel Low-crosstalk data cable and method of manufacturing
US6452105B2 (en) * 2000-01-12 2002-09-17 Meggitt Safety Systems, Inc. Coaxial cable assembly with a discontinuous outer jacket
CA2393811C (en) * 2000-01-19 2010-05-11 Jason Anthony Stipes A cable channel filler with imbedded shield and cable containing the same
US6800811B1 (en) 2000-06-09 2004-10-05 Commscope Properties, Llc Communications cables with isolators
WO2002068741A2 (en) 2001-02-26 2002-09-06 Federal-Mogul Powertrain, Inc. Rigidized protective sleeving
US20030168228A1 (en) * 2001-07-06 2003-09-11 Precision Interconnect Corporation Cable having annularly arranged set of twisted pair wires
US6639152B2 (en) 2001-08-25 2003-10-28 Cable Components Group, Llc High performance support-separator for communications cable
US20030106704A1 (en) * 2001-12-06 2003-06-12 Isley James A. Electrical cable apparatus
US6624359B2 (en) * 2001-12-14 2003-09-23 Neptco Incorporated Multifolded composite tape for use in cable manufacture and methods for making same
AU2003235790A1 (en) * 2002-01-07 2003-07-24 Conectl Corporation Improved communications cable and method for making same
US6815617B1 (en) 2002-01-15 2004-11-09 Belden Technologies, Inc. Serrated cable core
US6770819B2 (en) * 2002-02-12 2004-08-03 Commscope, Properties Llc Communications cables with oppositely twinned and bunched insulated conductors
US6818832B2 (en) 2002-02-26 2004-11-16 Commscope Solutions Properties, Llc Network cable with elliptical crossweb fin structure
US7196271B2 (en) * 2002-03-13 2007-03-27 Belden Cdt (Canada) Inc. Twisted pair cable with cable separator
US6717058B2 (en) * 2002-04-19 2004-04-06 Amphenol Corporation Multi-conductor cable with transparent jacket
US6809256B2 (en) * 2002-08-27 2004-10-26 John Garland Audio cable
JP2004146354A (en) * 2002-08-27 2004-05-20 Canon Inc Shield cable
US7214880B2 (en) * 2002-09-24 2007-05-08 Adc Incorporated Communication wire
US20040055777A1 (en) * 2002-09-24 2004-03-25 David Wiekhorst Communication wire
US7511225B2 (en) * 2002-09-24 2009-03-31 Adc Incorporated Communication wire
US7015397B2 (en) * 2003-02-05 2006-03-21 Belden Cdt Networking, Inc. Multi-pair communication cable using different twist lay lengths and pair proximity control
US20050061536A1 (en) * 2003-09-19 2005-03-24 Siemens Medical Solutions Usa, Inc. Reduced crosstalk ultrasound cable
US6875928B1 (en) * 2003-10-23 2005-04-05 Commscope Solutions Properties, Llc Local area network cabling arrangement with randomized variation
US7214884B2 (en) * 2003-10-31 2007-05-08 Adc Incorporated Cable with offset filler
US7202418B2 (en) * 2004-01-07 2007-04-10 Cable Components Group, Llc Flame retardant and smoke suppressant composite high performance support-separators and conduit tubes
US7271342B2 (en) * 2005-12-22 2007-09-18 Adc Telecommunications, Inc. Cable with twisted pair centering arrangement
US7271344B1 (en) * 2006-03-09 2007-09-18 Adc Telecommunications, Inc. Multi-pair cable with channeled jackets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990419A (en) * 1996-08-26 1999-11-23 Virginia Patent Development Corporation Data cable
EP1548754A2 (en) * 2003-12-22 2005-06-29 Commscope Solutions Properties, LLC Finned jackets for lan cables
US7145080B1 (en) * 2005-11-08 2006-12-05 Hitachi Cable Manchester, Inc. Off-set communications cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441985A1 (en) 2017-08-08 2019-02-13 Sterlite Technologies Limited M-jacket for a telecommunications cable

Also Published As

Publication number Publication date
US7629536B2 (en) 2009-12-08
US20080115959A1 (en) 2008-05-22
US7271344B1 (en) 2007-09-18
US20070209824A1 (en) 2007-09-13
WO2007103507A3 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US7271344B1 (en) Multi-pair cable with channeled jackets
US6596944B1 (en) Enhanced data cable with cross-twist cabled core profile
US7358436B2 (en) Dual-insulated, fixed together pair of conductors
US7534964B2 (en) Data cable with cross-twist cabled core profile
CA2669981C (en) Twister pair cable with cable separator
EP1683165B1 (en) Data cable with cross-twist cabled core profile
US7053310B2 (en) Bundled cable using varying twist schemes between sub-cables
AU2007261609B2 (en) Multi-pair cable with varying lay length
US8344255B2 (en) Cable with jacket including a spacer
JPH07134917A (en) Flame-retardant communication cable
US7084348B2 (en) Plenum communication cables comprising polyolefin insulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07752626

Country of ref document: EP

Kind code of ref document: A2