WO2007105494A1 - Conductive composite fiber and method for producing same - Google Patents

Conductive composite fiber and method for producing same Download PDF

Info

Publication number
WO2007105494A1
WO2007105494A1 PCT/JP2007/053909 JP2007053909W WO2007105494A1 WO 2007105494 A1 WO2007105494 A1 WO 2007105494A1 JP 2007053909 W JP2007053909 W JP 2007053909W WO 2007105494 A1 WO2007105494 A1 WO 2007105494A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
weight
spinning
elongation
composite
Prior art date
Application number
PCT/JP2007/053909
Other languages
French (fr)
Japanese (ja)
Inventor
Tadayoshi Koizumi
Kazuhiko Tanaka
Masao Kawamoto
Hitoshi Nakatsuka
Nobuhiro Koga
Kenichi Yoshioka
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US12/282,411 priority Critical patent/US20090047516A1/en
Priority to JP2008505046A priority patent/JP4859916B2/en
Priority to EP07737589A priority patent/EP1995359A4/en
Publication of WO2007105494A1 publication Critical patent/WO2007105494A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Definitions

  • the present invention relates to a conductive conjugate fiber, and particularly to a conductive conjugate fiber in which a conductive layer made of thermoplastic resin and conductive particles and a protective layer made of a polyester cover are combined. Further, the present invention relates to a suitable method for producing such a conductive conjugate fiber.
  • a conductive layer composed of a thermoplastic resin composition containing conductive particles such as carbon black, and conductive particles.
  • Conductive conjugate fibers having a protective layer made of a thermoplastic rosin that does not contain any are widely used. This is obtained by composite spinning of a thermoplastic resin composition containing conductive particles and a thermoplastic resin containing no conductive particles, and the conductive layer is formed on the surface or inside of the fiber. It arrange
  • Such conductive composite fibers are described in, for example, Patent Documents 1 to 4.
  • Patent Document 5 polyethylene terephthalate and polyethylene naphthalate are blended.
  • a highly shrinkable polyester fiber made from the prepared polyester rosin composition is described. It is described that the high-shrinkage polyester fiber exhibits a high shrinkage rate and shrinkage stress and is excellent in storage stability at a high temperature of 70 ° C or higher.
  • Patent Document 5 describes a high-shrinkable fiber consisting of only the above-mentioned polyester resin composition, and is a fiber made of a resin composition containing only a large amount of conductive particles. It is not described, but it is not described as a composite fiber.
  • Patent Document 1 Japanese Patent Laid-Open No. 57-29611
  • Patent Document 2 JP-A-58-132119
  • Patent Document 3 Japanese Patent Laid-Open No. 9-279416
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-278031
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-288618
  • the present invention has been made to solve the above-described problems, and has excellent conductivity that lasts for a long period of time, and has a strength equal to or greater than a certain level, but also during transportation and storage. It is an object of the present invention to provide a conductive conjugate fiber having a small change in mechanical properties such as elongation and contraction rate of boiling water with time. Another object of the present invention is to provide a method for producing such a conductive conjugate fiber.
  • the above-mentioned problems include a conductive layer (A) comprising 60 to 80% by weight of thermoplastic resin and 20 to 40% by weight of conductive particles, 50 to 95% by weight of polyethylene terephthalate and polyethylene 2, 6-naphthalate 5
  • A a conductive layer
  • B a protective layer
  • DE elongation
  • the thermoplastic resin constituting the conductive layer (A) is polybutylene terephthalate or polyamide. It is also preferable that the weight ratio (AZB) of the conductive layer (A) to the protective layer (B) is 5Z9 5 to 50Z50. It is also preferable that the boiling water shrinkage (Wsr) is 20 to 60%.
  • the elongation (DE) force after 60 days from spinning and the elongation (DE) after 1 day after spinning should be 1.3 times or less, 60 days after spinning
  • the boiling water shrinkage (Wsr) after the spinning is 0.3 times higher than the boiling water shrinkage (Wsr) one day after spinning.
  • boiling water shrinkage (Wsr) after 60 days from spinning is not less than 10%.
  • a carpet using a fiber obtained by stretching such a conductive conjugate fiber is a preferred embodiment of the present invention.
  • a resin composition (b) comprising a composite spinning, comprising a molten resin composition (a) and a molten resin composition
  • the conductive conjugate fiber of the present invention has excellent conductivity that lasts for a long period of time, and also has a certain degree of elongation, but the elongation and boiling water shrinkage during transportation and storage.
  • the change of physical properties over time is small. Therefore, the physical properties of the fiber are stable even in long-distance transportation such as international transportation and long-term storage, and the subsequent process such as blending, twisting, weaving, knitting, etc. is good. A homogeneous product can be obtained.
  • FIG. 1 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Example 1.
  • FIG. 2 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Example 2.
  • FIG. 3 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and conductivity performance over time for the composite fiber obtained in Example 3.
  • FIG. 4 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Example 4.
  • FIG. 5 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Comparative Example 1.
  • the conductive conjugate fiber of the present invention comprises a conductive layer (A) comprising 60 to 80% by weight of thermoplastic resin and 20 to 40% by weight of conductive particles, 50 to 95% by weight of polyethylene terephthalate and polyethylene-2. , in which 6-naphthalate 5-50 0/0 also force the protective layer (B) and is formed by a composite.
  • the thermoplastic resin contained in the conductive layer (A) is not particularly limited as long as it is a fiber-forming thermoplastic resin. Usually, a thermoplastic polyester or a thermoplastic polyamide is preferably used. Further, the melting point of the resin constituting the conductive layer (A) is preferably 200 ° C. or more, and the point of practical durability is also preferable. The melting point is more preferably 210 ° C or higher and 250 ° C or lower.
  • the thermoplastic polyester used in the conductive layer (A) includes, for example, terephthalic acid, isophthalic acid, naphthalene 2,6 dicarboxylic acid, 4,4'-dicarboxydiphenyl, 5-sodium sulfo Aromatic dicarboxylic acids such as isophthalic acid; dicarboxylic acid components such as azelaic acid, sebacic acid and other aliphatic dicarboxylic acids, and ethylene glycol, polyethylene glycol, propylene glycol, 1,4 butanediol, polyethylene glycol, polytetramethylene Fiber-forming polymers formed using diol components such as aliphatic diols such as glycol; aromatic diols such as ethylene oxide adducts of bisphenol A or bisphenol S; and alicyclic diols such as cyclohexanedimethanol.
  • Aromatic dicarboxylic acids such as isophthalic acid
  • dicarboxylic acid components such
  • esters Mention may be made of esters. Among them ethylene terephthalate units or butylene terephthalate units is a general purpose polyester 80 mole 0/0 or more, especially 90 mol 0/0 or more content Polyester that prefers U ⁇ .
  • polybutylene terephthalate that is, a polyester containing 80 mol% or more of butylene terephthalate units is preferable because conductive particles can be easily kneaded and easily crystallized, so that high conductive performance can be obtained.
  • Force that polyethylene terephthalate can be used Addition of a large amount of conductive particles will lower the spinnability during melt spinning, and it may be possible to use copolymerized polyethylene terephthalate to improve spinnability. When copolymerized polyethylene terephthalate is used, the crystallinity is generally lowered, and the conductive performance is lowered. From the above, polybutylene terephthalate, which is a polyester that easily forms crystals, is particularly excellent. Polyethylene 2, 6 naphthalate may be blended with polybutylene terephthalate.
  • thermoplastic polyamide used in the conductive layer (A) is polyhexamethylene adipate.
  • nylon 6, 6 poly ⁇ -force prolatatam (nylon 6) or a copolymer thereof is preferably used.
  • a thermoplastic polyamide is suitably used like polybutylene terephthalate because it is easy to knead a large amount of conductive particles.
  • the conductive particles contained in the conductive layer ( ⁇ ) are not particularly limited as long as they are conductive particles, and conductive carbon black, conductive metal oxide particles, metal particles, and the like can be used. . Of these, conductive carbon black is preferably employed from the viewpoint of the balance between conductive performance and cost.
  • the particle diameter of the conductive particles is not particularly limited as long as it can be spun, but an average particle diameter of 0.01 to 1 ⁇ m is preferable.
  • the conductive carbon black used in the present invention 10 one 3 ⁇ 10 3 ⁇ ⁇ «Monogayo having an inherent electrical resistance of the eta,.
  • the conductivity is generally poor, and when a chain structure called a structure is formed, the conductivity is improved and the conductive carbon black is improved. It will be called. Therefore, in conducting the polymer with conductive carbon black, it is important to disperse the carbon black without destroying the structure. For this reason, even when a sufficient stretching operation cannot be performed, a fiber having a large dimensional stability is likely to be obtained.
  • the conductive metal oxide particles are not black unlike carbon black! It is also possible to impart conductivity to the colored fiber, which is useful in terms of design.
  • the conductive metal oxide particles used in the present invention are white or colorless fine particles of metal oxide, or a state in which the metal oxide is coated on the surface with inorganic fine particles as nuclei. A fine particle.
  • Many metal oxides are semiconductors close to insulators and often do not exhibit sufficient conductivity.
  • a conductivity enhancer (doping agent) for metal oxides antimony oxide for tin oxide, aluminum, potassium, etc. for zinc oxide are known.
  • the specific resistance of acid ⁇ tin with an average particle size of 0: m is about 10 3 ⁇ 'cm, but the specific resistance of the solid solution of acid ⁇ antimony and acid ⁇ tin is 1 ⁇ : ⁇ ⁇ 'cm and enhanced conductivity.
  • the ratio of acid-antimony in the solid is 0.01 to 0.10 (weight ratio). If the coating amount of antimony and antimony is small, the electrical conductivity is insufficient, and conversely if it is large, it tends to move away from the direction of the target white system.
  • the coated zinc oxide and tin oxide are preferable because of their excellent conductivity, whiteness, etc., but other metal oxides are used. In
  • one type or a mixture of two or more types of conductive particles can be used.
  • conductive carbon black and conductive metal oxide particles may be used in combination.
  • metal particles or the like may be used.
  • various additives may be blended within a range not impairing the effects of the present invention.
  • the conductive layer (A) of the present invention comprises 60 to 80% by weight of thermoplastic resin and 20 to 40% by weight of conductive particles. If the content of conductive particles is less than 20% by weight, the conductivity may be insufficient. The content of the conductive particles is preferably 23% by weight or more, and at this time, the content of the thermoplastic resin is 77% by weight or less. On the other hand, if the content of the conductive particles exceeds 40% by weight, spinnability and stretchability may be deteriorated. The content of the conductive particles is preferably 33% by weight or less, and at this time, the content of the thermoplastic resin is 67% by weight or more.
  • the protective layer (B) of the present invention are those made of polyethylene terephthalate 50 to 95 wt% and Poryechire down one 2, 6-naphthalate 5-50 0/0.
  • the protective layer (B) is composed mainly of polyethylene terephthalate and polyethylene 2, 6 naphthalate. Therefore, it is possible to suppress changes in fiber properties with time after spinning.
  • the resin composition used in the conductive layer contains a large amount of conductive particles, so the contribution of the conductive layer to the overall mechanical performance of the composite fiber is much smaller.
  • the mechanical properties of the protective layer are particularly important.
  • the polyethylene terephthalate used in the protective layer (B) is a polyester containing 80 mol% or more, preferably 90 mol% or more of ethylene terephthalate units.
  • the third component may be copolymerized within the range without hindering the object of the present invention.
  • the copolymer component preferably used include acid components such as isophthalic acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, sulfoisophthalic acid sodium salt, and sulfoisophthalic acid tetrabutyl phosphate salt, and diethylene glycol.
  • the polyethylene 1,2 naphthalate used in the protective layer (B) is a polyester containing 80 mol% or more, preferably 90 mol% or more of ethylene 1,2,6-naphthalate units. Even if the third component is copolymerized within the range not impairing the object of the present invention, there is no problem.
  • the copolymer component preferably used those described in the description of the polyethylene terephthalate can be used in addition to terephthalic acid.
  • Polyethylene terephthalate or polyethylene 2,6-naphthalate used for the protective layer (B) contains inorganic fine particles having an average particle diameter of 0.01 to 1 / ⁇ ⁇ at a ratio of 0.05 to 10% by weight. It is preferable from the viewpoint of spinnability or knitting. That is, when the content of the inorganic fine particles is less than 0.05% by weight, loops, fluff, fineness spots, etc. are likely to occur in the obtained conductive fiber. It causes thread. More preferably, the inorganic fine particles are contained at a ratio of 0.2 to 5% by weight.
  • inorganic fine particles there are no particular restrictions on the method of adding the inorganic fine particles, and it is possible to add and mix the inorganic fine particles so that they are uniformly mixed in the polyester at any stage up to just before melt spinning.
  • Oh A typical example of such inorganic fine particles is titanium oxide.
  • protective layer (beta) is polyethylene terephthalate 50-95 wt 0/0 and polyethylene 2, 6 - but also made naphthalate 5 to 50 weight 0/0 force. If the polyethylene 1, 2, 6 naphthalate content is less than 5% by weight, changes in fiber properties with time after spinning cannot be sufficiently suppressed.
  • the content of polyethylene 2,6 naphthalate is preferably 10% by weight or more, and more preferably 15% by weight or more. At this time, the content of polyethylene terephthalate is preferably 90% by weight or less, and more preferably 85% by weight or less.
  • polyethylene - 2, 6 when the amount of naphthalate exceeds 50 weight 0/0, the filter pressure when spinning Nag only production cost increases is high, reeling is difficult, resulting conductive The elongation of the composite fiber also decreases.
  • the content of polyethylene 2,6 naphthalate is preferably 40% by weight or less, and more preferably 30% by weight or less.
  • the content of polyethylene terephthalate is preferably Ri der 60 weight 0/0 or more, and more preferably 70 wt% or more.
  • the conductive conjugate fiber of the present invention comprises 60 to 80% by weight of thermoplastic resin and conductive particles 20
  • composition comprising 40 wt 0/0 (a), polyethylene terephthalate 50-95 wt 0/0 ⁇ beauty polyethylene - 2, 6-naphthalate 5-50 0/0 consisting ⁇ composition (b) It is manufactured by spinning together. That is, the melted resin composition (a) and the melted resin composition (b) are merged and melt-discharged from the composite spinneret to produce a conductive composite fiber.
  • the method for producing a conductive conjugate fiber of the present invention can use a general melt spinning apparatus used for producing a conjugate fiber.
  • a general melt spinning apparatus used for producing a conjugate fiber.
  • Point power is also preferable.
  • polyethylene terephthalate and polyethylene 2,6 naphthalate may be previously melt-kneaded to obtain pellets of the resin composition (b) and supplied to a force melt spinning apparatus to form the protective layer (B).
  • the protective layer (B) may be formed after supplying each pellet to the melt spinning apparatus and obtaining the resin composition (b) in the apparatus! / ⁇ .
  • the winding speed at this time is preferably 1500 to 3000 mZ.
  • the winding speed is more preferably 1800 mZ or more, and even more preferable Is over 2000mZ.
  • the winding speed exceeds 3000 mZ, yarn breakage may occur during spinning, and both elongation and boiling water shrinkage will be too small.
  • it is preferable to reduce the winding speed. More preferably, it is 2600 mZ or less, and more preferably 2400 mZ or less.
  • the spinning yarn may be cooled by blowing cold air or the like to wind up the force, but in order to effectively prevent cutting of the conductive layer (A), It is preferable to employ the following spinning method. That is, the following (1) to (5) are performed in that order, and the following (2) and (3) are preferably performed before the discharge yarn first contacts the roller or guide. .
  • a feature of the above method is that the melted and discharged composite polyester filament is cooled and then heated and stretched using a heating zone such as a tube heater, and from the melt discharging to the heating and stretching. Without any substantial contact with the rollers or guides.
  • a heating zone such as a tube heater
  • the draw ratio is automatically adjusted in the zone in the heating device from the discharged molten polymer, where the conductive fibers are not drawn forcibly between the rollers or the guide rollers. Therefore, the conductive layer (A) is not stretched so as to be cut.
  • the conductive layer (A) is stretched and crystallized appropriately, and the amorphous portion is in a state where molecular motion is possible, and as a result, tension is applied to the conductive layer (A).
  • the heating temperature at the time of heat stretching is in the temperature range from the glass transition temperature of the resin constituting the resin composition (a) to the melting point and below, and the resin composition (b) It is preferable that the temperature is higher than the glass transition temperature and lower than the melting point of polyethylene terephthalate, which is the main component of
  • the cooling method of (2) above is that the temperature of the cooling air is about 20 to 30 ° C, the humidity of the cooling air is about 20 to 60% RH, and the blowing speed of the cooling air is 0.4 to lmZ. By setting it to about 2 seconds, it is possible to obtain high-quality fibers without causing fineness spots and performance spots. Further, the length of the heating zone used in the above (3) is 0.6 m or more and 4 m or less, and the temperature of the heating zone is in the range of 150 ° C. or more and 220 ° C. or less for uniform and smooth stretching. Desirable above.
  • the weight ratio (AZB) of the conductive layer (A) to the protective layer (B) is preferably 5Z95 to 50Z50.
  • the weight ratio ( ⁇ ) is more preferably 10Z90 or more, and further preferably 15Z85 or more.
  • the weight ratio ( ⁇ ) is more preferably 40 to 60 or less, and further preferably 30 to 70 or less.
  • the elongation (DE) of the conductive conjugate fiber of the present invention is 100 to 350%. If the elongation (DE) is less than 100%, the stretching may be too strong and the conductive layer (wrinkles) may be cut, and the required elongation or boiling water may be required when used as a mixed yarn. Can not have shrinkage.
  • the elongation (DE) is preferably 150% or more, more preferably 180% or more, and even more preferably 200% or more.
  • the degree of elongation (DE) exceeds 350%, when the combined yarn is drawn with other fibers, stretch spots are formed and it is easy to cut in the subsequent processing step.
  • the elongation (DE) is preferably 300% or less, and more preferably 250% or less.
  • the elongation (DE) is a value measured according to JIS L1013.
  • the boiling water shrinkage (Wsr) of the conductive conjugate fiber of the present invention is preferably 20 to 60%.
  • the boiling water shrinkage (Wsr) is more preferably 25% or more, and further preferably 30% or more.
  • the boiling water shrinkage rate (Wsr) exceeds 60%, for example, when a woven fabric is used, streaks due to shrinkage spots are generated and the texture is poor.
  • the boiling water shrinkage (Wsr) is more preferably 50% or less, and even more preferably 40% or less. It is below.
  • the boiling water shrinkage (Wsr) is a value measured according to JIS L1013.
  • the conductive conjugate fiber of the present invention has a certain degree of elongation, but has little change over time in fiber properties such as elongation and boiling water shrinkage during transportation and storage. In particular, the change in fiber properties is small even when kept at high temperatures.
  • the spinning force is also the elongation (DE) force after 60 days 1.3 times the elongation (DE) after one day from spinning. Is preferably: 1
  • the reason for starting from one day after spinning is to cancel the change in the degree of elongation (DE) due to the absorption of water and the temperature change, and to grasp the change in fiber properties over time more accurately.
  • the elongation (DE) is 0.9 of the elongation (DE).
  • the (Wsr) force is not less than 0.3 times the boiling water shrinkage (Wsr) one day after spinning.
  • boiling water shrinkage (Wsr) is 1.05 times or less of boiling water shrinkage (Wsr).
  • the spinning force is preferably 10% or more after boiling water reduction (Wsr), more preferably 15% or more.
  • the conductive conjugate fiber of the present invention is used in various forms and for applications that require various static elimination properties.
  • the conductive multifilament of the present invention is mixed with the nonconductive multifilament, and the conductive multifilament is 1 to 30 so that the conductive multifilament becomes the side yarn and the nonconductive multifilament becomes the core yarn.
  • the yarn can be mixed and used to increase the yarn length.
  • As the core yarn a polyester-based multifilament is preferable.
  • the total thickness of the non-conductive multifilament used as the core yarn is preferably in the range of 20 to 120 dtex.
  • entanglement is generally applied so that the core yarn and the side yarn are not separated. After the entanglement is imparted, twist may be imparted to the blended yarn.
  • a non-conductive multifilament may be used as a core yarn, and a conductive multifilament may be wound around the spiral.
  • the thickness of the core yarn is the same as that of the above mixed fiber It is also the same that polyester multifilament is suitable as the core yarn. Multifilament yarns using such conductive fibers can be used for fabrics such as woven fabrics and knitted fabrics.
  • a mixed yarn having excellent performance can be obtained by having an appropriate elongation (DE) and boiling water shrinkage (Wsr). And since the change over time of fiber properties over a long period of time, such as during transportation and storage, is small, fiber properties are stable during long-distance transportation such as international transportation and long-term storage. For example, it is possible to obtain a homogeneous product with good process passability such as mixed fiber, twisted yarn, weaving, and knitting.
  • DE elongation
  • Wsr boiling water shrinkage
  • the knitted or knitted fabric obtained as described above is used for applications that require long-term static elimination, for example, as a dust-proof garment worn in a clean room or in a chemical plant. It can be used as static proof working wear for workers engaged in workplaces that may explode due to static electricity, such as workers and workers handling chemicals.
  • the conductive fiber of the present invention can be used as a part of a pile of a pet for removing electricity and further as a removing brush for a copying machine.
  • An application in which the conductive conjugate fiber of the present invention is particularly preferably used is a carpet that is liable to generate static electricity.
  • the conductive conjugate fiber of the present invention is suitably used as a neutralizing fiber for carpets.
  • a neutralizing fiber for carpets For example, in the case of a nylon carpet, add 2 to 10 conductive composite fibers of the present invention to an unstretched or semi-stretched nylon multifilament yarn of about 1000 to 10000 dtex and align it, and the aligned yarn is 2 to 4 times.
  • the drawn yarn thus obtained is made into a woven fabric or a knitted fabric, into a cut pile carpet or a loop pile carpet.
  • the conductive conjugate fiber of the present invention has an appropriate degree of elongation (DE) and has little change with time in the fiber physical properties, so that the process passability in the drawing process is good. It takes a lot of time to produce a conductive conjugate fiber and produce a carpet with a lot of force, and it is often transported over a long distance. Therefore, the conductive conjugate fiber of the present invention is preferably used. . In particular, it is suitable for a so-called tufted carpet in which the drawn yarn is laid into a base fabric as a pile yarn, a latex is applied to the back surface to prevent the pile from coming off, and a makeup lining is attached. Example Hereinafter, the present invention will be described in more detail using examples. The test method in this example is as follows.
  • the elongation (DE) was measured according to JIS L1013. Measure the elongation (DE) immediately after spinning
  • the elongation was calculated as a linear change between the elongation measured before and the elongation measured thereafter.
  • Boiling water shrinkage was measured according to JIS L1013. After measuring the boiling water shrinkage (W sr) immediately after spinning, store it under the conditions of 60 ° C and 80% RH, and collect boiling water one day after spinning.
  • the shrinkage rate (Wsr) was measured, and after that, it was stored under the above conditions, and measured until about 90 days after an appropriate period.
  • the elongation was calculated as linearly changing between the elongation measured before and the elongation measured after that.
  • the conductive performance was determined as follows based on the period during which the composite fiber stored under the conditions of 60 ° C and 80% RH maintained a resistance value of 10 " 8 ⁇ Zcm or less. Was determined by Toa Denpa Kogyo Co., Ltd.'s super insulation meter “SM8220” and “SME8350”.
  • The above resistance value is maintained for at least one year after spinning.
  • the resistance value can only be maintained for less than 6 months after spinning! /.
  • pellets of the resin composition (a) containing 25% by weight of conductive carbon black and having a polyethylene terephthalate (PBT) force were used.
  • the conductive layer (A) and the protective layer are formed such that the conductive layer (A) made of the resin composition (a) forms a sheath and the protective layer (B) made of the resin composition (b) forms a core.
  • Composite spinning was performed at a weight ratio (AZB) to (B) of 20Z80, and spinning was performed at a spinning temperature of 285 ° C. to obtain a conductive multifilament of 38 dtexZ2f.
  • the melt of the resin composition (a) and the resin composition (b) are merged and melt-discharged from the composite spinneret, and the discharged molten polymer is-less than the glass transition point. Then, it is run in a heating device, stretched and heat treated, and then an oil agent is applied, and then the above-mentioned discharge yarn is first used as a roller or a roller by winding at a speed of 2200 mZ. The stretching heat treatment was performed before contacting the guide.
  • a cooling air of 25 ° C. and 60% RH was blown against the fiber immediately under the nozzle at a speed of 0.5 mZ seconds.
  • a heating tube having a diameter of 3 cm and a length of lm was provided at a position 1.5 m immediately below the nozzle, and the inside of the tube was kept at 180 ° C.
  • the fiberization processability was good and no problem.
  • the composite fiber thus obtained was measured over time for elongation (DE), boiling water shrinkage (Wsr), and conductive performance. The results are shown in Fig. 1, and the composition and evaluation results of the composite fibers are summarized in Table 1.
  • Example 1 as the raw material for the protective layer (B), 80 parts by weight of the same polyethylene terephthalate pellets as used in Example 1 were used for the same polyethylene-2,6-nana as used in Example 1. A conductive multifilament was obtained in the same manner as in Example 1 except that 20 parts by weight of phthalate pellets were blended and used. The composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in Fig. 2 and Table 1.
  • Example 1 As the raw material for the protective layer (B), 70 parts by weight of the same polyethylene terephthalate pellets used in Example 1 were used for the same polyethylene-2,6-nana as used in Example 1. A conductive multifilament was obtained in the same manner as in Example 1 except that 30 parts by weight of phthalate pellets were blended and used. The composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in Fig. 3 and Table 1. [0052] Example 4
  • Example 1 as the raw material for the protective layer (B), the same polyethylene-2,6-nana as used in Example 1 was used for 50 parts by weight of the same polyethylene terephthalate pellets used in Example 1. A conductive multifilament was obtained in the same manner as in Example 1 except that 50 parts by weight of phthalate pellets were blended and used. The composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in Fig. 4 and Table 1.
  • Example 1 conductive multifilaments were obtained in the same manner as in Example 1 except that only the same polyethylene terephthalate pellets used in Example 1 were used as the raw material for the protective layer (B).
  • the composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in FIG. 5 and Table 1.
  • Example 2 conductive multifilaments were obtained in the same manner as in Example 2 except that the spinning speed was changed from 2200 mZ to 1800 mZ.
  • the composite fiber obtained in this way was measured for elongation (DE) and boiling water shrinkage (Wsr) immediately after spinning.
  • a conductive multifilament was obtained in the same manner as in Example 2 except that the spinning speed was changed from 2200 mZ to 2900 mZ in Example 2.
  • the composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the configuration of the composite fibers.
  • Example 2 instead of using polyethylene terephthalate pellets as the raw material for the protective layer (B), modified polyethylene terephthalate pellets containing 8 mol% of isophthalic acid component with respect to the total dicarboxylic acid component were used, and the spinning speed was 2200 mZ. A conductive multifilament was obtained in the same manner as in Example 2 except that the component force was changed to 2500 mZ. The results of evaluating the composite fibers thus obtained in the same manner as in Example 5 are shown in Table 2 together with the configuration of the composite fibers.
  • Example 8 In Example 1, as a raw material for the conductive layer (A), a pellet of a resin composition (a) having a nylon 1-6 (NY) strength containing 35% by weight of conductive carbon black was used, and the protective layer (B) The same polyethylene terephthalate pellets used in Example 1 as 85 parts by weight of the same polyethylene terephthalate pellets as used in Example 1, and 15 parts by weight of the same polyethylene 2,6-naphthalate pellets used in Example 1 are used as raw materials. Then, a conductive multifilament was obtained in the same manner as in Example 1 except that the spinning speed was changed from 2200 mZ to 2500 mZ. The composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the composition of the composite fibers.
  • Example 1 the spinning speed was changed from 2200 mZ to 2500 mZ, so that the conductive layer (A) having the same composition as in Example 1 forms a core, and the same protective layer (B) as in Example 1 forms a sheath.
  • a conductive multifilament was obtained in the same manner as in Example 1 except that the composite spinning was performed with the weight ratio (AZB) of the conductive layer (A) to the protective layer (B) being 45Z55.
  • the composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the composition of the composite fibers.
  • Example 1 the spinning speed was changed from 2200 mZ to 2500 mZ, the conductive layer (A) with the same composition as in Example 1 formed an island, and the protective layer (B) with the same composition as in Example 1 formed the sea.
  • Example 1 except that composite spinning was performed with a weight ratio (AZB) of the conductive layer (A) to the protective layer (B) of 20Z80 to obtain a sea-island type composite fiber having four islands.
  • a conductive multifilament was obtained.
  • the composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the configuration of the composite fibers.
  • Example 1 As the raw material for the protective layer (B), 97 parts by weight of the same polyethylene terephthalate pellets used in Example 1, and the same polyethylene-2,6-nana as used in Example 1 were used. Conductive multifilaments were obtained in the same manner as in Example 1 except that 3 parts by weight of phthalate pellets were blended and the spinning speed was changed from 2200 mZ to 2500 mZ. The composite fiber thus obtained was evaluated in the same manner as in Example 5. Table 2 shows the composition of the fibers.
  • Example 1 as the raw material for the protective layer (B), the same polyethylene-2,6-nana as used in Example 1 was used for 40 parts by weight of the same polyethylene terephthalate pellets used in Example 1.
  • a conductive multifilament was obtained in the same manner as in Example 1 except that 60 parts by weight of phthalate pellets were blended and the spinning speed was changed to 2200 mZ and 2500 mZ.
  • the results of evaluating the composite fibers thus obtained in the same manner as in Example 5 are shown in Table 2 together with the configuration of the composite fibers.
  • Example 1 as the raw material for the protective layer (B), only the same polyethylene terephthalate pellets used in Example 1 were used, and the spinning speed was changed from 2200 mZ to 2900 mZ. Thus, a conductive multifilament was obtained.
  • the composite fiber thus obtained was evaluated in the same manner as in Example 5, and the result of the composite fiber composition
  • Table 1 and Table 2 Karawaryokuru so on, ⁇ composition constituting the protective layer (B) (b) is, Poryechi terephthalate 50 95 weight 0/0 and polyethylene 2, 6 naphthalate 5 50 fold J %, The changes over time in the elongation (DE), boiling water shrinkage (Wsr), and conductive performance of the conductive composite fiber are reduced (Examples 1 to 10).
  • Conductive multifilament yarn obtained in Example 1 (38dtexZ2f) and 3500dtex unstretched multifilament yarn with nylon 6 and 6 force are drawn together and stretched 2.6 times to produce drawn multifilament yarn. did.
  • a base fabric was produced using the conductive multifilament yarn obtained in Example 1 as a component.
  • the stretched multifilament yarn was stabbed into the base fabric as a pile yarn, a synthetic rubber latex was applied to the back surface, and a decorative lining was attached to produce a tufted carpet.
  • no breakage of the conductive composite fiber was observed, and it was strong that the conductive composite fiber would not cause trouble in the manufacturing process. Even if the resulting carpet was laid on the floor surface of a dry room in winter and walked repeatedly on it, no static electricity was generated. In addition, there was no discomfort due to static electricity even when touching the carpet.

Abstract

Disclosed is a conductive composite fiber having an elongation (DE) of 100-350%, wherein a conductive layer (A) composed of 60-80% by weight of a thermoplastic resin and 20-40% by weight of a conductive particle, and a protective layer (B) composed of 50-95% by weight of polyethylene terephthalate and 5-50% by weight of polyethylene-2,6-naphthalate are combined. Consequently, this conductive composite fiber has excellent conductivity. In addition, this conductive composite fiber is small in changes over time in fiber properties such as elongation and boiling water shrinkage during transportation or storage, although it has a certain or more elongation.

Description

明 細 書  Specification
導電性複合繊維及びその製造方法  Conductive conjugate fiber and method for producing the same
技術分野  Technical field
[0001] 本発明は、導電性複合繊維、特に、熱可塑性榭脂及び導電性粒子からなる導電 層と、ポリエステルカゝらなる保護層とが複合されてなる導電性複合繊維に関する。ま た、そのような導電性複合繊維の好適な製造方法に関する。  [0001] The present invention relates to a conductive conjugate fiber, and particularly to a conductive conjugate fiber in which a conductive layer made of thermoplastic resin and conductive particles and a protective layer made of a polyester cover are combined. Further, the present invention relates to a suitable method for producing such a conductive conjugate fiber.
背景技術  Background art
[0002] 従来から、導電性繊維としては様々なものが知られている力 中でも、カーボンブラ ックなどの導電性粒子を含有する熱可塑性榭脂組成物からなる導電層と、導電性粒 子を含有しない熱可塑性榭脂からなる保護層とを有する導電性複合繊維が広く使用 されている。これは、導電性粒子を含有する熱可塑性榭脂組成物と、導電性粒子を 含有しない熱可塑性榭脂とを複合紡糸して得られるものであり、前記導電層は繊維 の表面や内部に繊維長方向に連続するように配置される。このような導電性複合繊 維については、例えば、特許文献 1〜4などに記載されている。  [0002] Conventionally, among various known conductive fibers, a conductive layer composed of a thermoplastic resin composition containing conductive particles such as carbon black, and conductive particles. Conductive conjugate fibers having a protective layer made of a thermoplastic rosin that does not contain any are widely used. This is obtained by composite spinning of a thermoplastic resin composition containing conductive particles and a thermoplastic resin containing no conductive particles, and the conductive layer is formed on the surface or inside of the fiber. It arrange | positions so that it may continue in a longitudinal direction. Such conductive composite fibers are described in, for example, Patent Documents 1 to 4.
[0003] 導電性粒子を含有する熱可塑性榭脂組成物からなる導電層によって十分な導電 性能を得るためには、熱可塑性榭脂組成物中に導電性粒子を多量に配合する必要 力 Sある。ところが、多量の導電性粒子を配合すると、紡糸性や延伸性が急激に悪ィ匕 するという問題点を有している。無理に延伸した場合には、導電層が繊維中で切断さ れたり、あるいは切断されなカゝつたとしても、導電性カーボンブラックのストラクチャー が破壊されたり、さらには実際の使用時に、導電性繊維にわずかな外力が力かること で導電層が容易に切断され、導電性能が失われたりする場合があった。したがって、 導電性複合繊維を製造する際に、必ずしも十分に延伸できない場合も多ぐ伸度や 沸水収縮率などの糸物性が経時的に変化するおそれがあった。特に、混繊糸などと して使用するために、一定以上の伸度や沸水収縮率を有することが求められる導電 性複合繊維を製造する場合には、経時的な物性変化が一段と顕著であり問題であつ た。  [0003] In order to obtain sufficient conductive performance by a conductive layer comprising a thermoplastic resin composition containing conductive particles, it is necessary to mix a large amount of conductive particles in the thermoplastic resin composition. . However, when a large amount of conductive particles are blended, there is a problem that the spinnability and stretchability deteriorate rapidly. If it is forcibly stretched, the conductive carbon black structure will be destroyed even if the conductive layer is cut in the fiber or if it is not cut, and the conductive fiber will be damaged during actual use. When a slight external force is applied to the conductive layer, the conductive layer may be easily cut and the conductive performance may be lost. Therefore, when producing a conductive conjugate fiber, there are fears that the yarn properties such as elongation and boiling water shrinkage may change over time even when the fiber cannot be sufficiently drawn. In particular, when producing conductive composite fibers that are required to have a certain degree of elongation or boiling water shrinkage for use as a blended yarn, the change in physical properties over time is more remarkable. It was a problem.
[0004] 特許文献 5には、ポリエチレンテレフタレートとポリエチレンナフタレートとをブレンド したポリエステル榭脂組成物からなる高収縮性ポリエステル繊維が記載されている。 当該高収縮性ポリエステル繊維は、高い収縮率及び収縮応力を示し、かつ 70°C以 上の高温下での保存安定性に優れていることが記載されている。しかしながら、特許 文献 5には、上記ポリエステル榭脂組成物のみカゝらなる高収縮性繊維が記載されて V、るだけであって、多量の導電性粒子を含有する榭脂組成物からなる繊維につ!、て 記載されて 、るわけではな 、し、複合繊維にっ 、て記載されて 、るわけでもな 、。 [0004] In Patent Document 5, polyethylene terephthalate and polyethylene naphthalate are blended. A highly shrinkable polyester fiber made from the prepared polyester rosin composition is described. It is described that the high-shrinkage polyester fiber exhibits a high shrinkage rate and shrinkage stress and is excellent in storage stability at a high temperature of 70 ° C or higher. However, Patent Document 5 describes a high-shrinkable fiber consisting of only the above-mentioned polyester resin composition, and is a fiber made of a resin composition containing only a large amount of conductive particles. It is not described, but it is not described as a composite fiber.
[0005] 特許文献 1 :特開昭 57— 29611号公報 Patent Document 1: Japanese Patent Laid-Open No. 57-29611
特許文献 2:特開昭 58— 132119号公報  Patent Document 2: JP-A-58-132119
特許文献 3:特開平 9 - 279416号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-279416
特許文献 4:特開 2003— 278031号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2003-278031
特許文献 5:特開 2001— 288618号公報  Patent Document 5: Japanese Patent Laid-Open No. 2001-288618
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は上記課題を解決するためになされたものであり、長期間持続する優れた 導電性を有し、し力も一定以上の伸度を有しながらも、輸送中や保管中において、伸 度や沸水収縮率などの力学物性の経時変化が小さい導電性複合繊維を提供するこ とを目的とするものである。また、そのような導電性複合繊維の製造方法を提供するこ とを目的とするものである。 [0006] The present invention has been made to solve the above-described problems, and has excellent conductivity that lasts for a long period of time, and has a strength equal to or greater than a certain level, but also during transportation and storage. It is an object of the present invention to provide a conductive conjugate fiber having a small change in mechanical properties such as elongation and contraction rate of boiling water with time. Another object of the present invention is to provide a method for producing such a conductive conjugate fiber.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題は、熱可塑性榭脂 60〜80重量%及び導電性粒子 20〜40重量%からな る導電層(A)と、ポリエチレンテレフタレート 50〜95重量%及びポリエチレン 2, 6 —ナフタレート 5〜50重量%からなる保護層(B)とが複合され、伸度 (DE)が 100〜 350%であることを特徴とする導電性複合繊維を提供することによって解決される。  [0007] The above-mentioned problems include a conductive layer (A) comprising 60 to 80% by weight of thermoplastic resin and 20 to 40% by weight of conductive particles, 50 to 95% by weight of polyethylene terephthalate and polyethylene 2, 6-naphthalate 5 This is solved by providing a conductive conjugate fiber characterized in that it is composited with a protective layer (B) of ˜50% by weight and has an elongation (DE) of 100 to 350%.
[0008] このとき、導電層 (A)を構成する熱可塑性榭脂がポリブチレンテレフタレート又はポ リアミドであることが好適である。導電層 (A)と保護層(B)との重量比 (AZB)が 5Z9 5〜50Z50であることも好適である。沸水収縮率 (Wsr)が 20〜60%であることも好 適である。また、 60°C、 80%RHの条件下で保管した場合に、紡糸から 60日後の伸 度 (DE )力、紡糸から 1日後の伸度 (DE )の 1. 3倍以下であること、紡糸から 60日 後の沸水収縮率 (Wsr )が、紡糸から 1日後の沸水収縮率 (Wsr )の 0. 3倍以上で [0008] At this time, it is preferable that the thermoplastic resin constituting the conductive layer (A) is polybutylene terephthalate or polyamide. It is also preferable that the weight ratio (AZB) of the conductive layer (A) to the protective layer (B) is 5Z9 5 to 50Z50. It is also preferable that the boiling water shrinkage (Wsr) is 20 to 60%. In addition, when stored under conditions of 60 ° C and 80% RH, the elongation (DE) force after 60 days from spinning and the elongation (DE) after 1 day after spinning should be 1.3 times or less, 60 days after spinning The boiling water shrinkage (Wsr) after the spinning is 0.3 times higher than the boiling water shrinkage (Wsr) one day after spinning.
60 1  60 1
あること、及び紡糸から 60日後の沸水収縮率 (Wsr )が 10%以上であることがいず  And that the boiling water shrinkage (Wsr) after 60 days from spinning is not less than 10%.
60  60
れも好適である。また、このような導電性複合繊維を延伸した繊維が用いられたカー ペットが、本発明の好適な実施態様である。  This is also suitable. Further, a carpet using a fiber obtained by stretching such a conductive conjugate fiber is a preferred embodiment of the present invention.
[0009] また上記課題は、熱可塑性榭脂 60〜80重量%及び導電性粒子 20〜40重量%か らなる樹脂組成物(a)と、ポリエチレンテレフタレート 50〜95重量0 /0及びポリエチレン - 2, 6—ナフタレート 5〜50重量%からなる榭脂組成物 (b)とを複合紡糸する導電 性複合繊維の製造方法であって、溶融した榭脂組成物 (a)と溶融した榭脂組成物 (b )とを合流させて複合紡糸口金より溶融吐出させ、 1500〜3000mZ分の速度で卷 き取ることを特徴とする導電性複合繊維の製造方法を提供することによつても解決さ れる。このとき、下記(1)〜(5)をその順序で行い、かつ下記(2)及び(3)を、吐出糸 条が最初にローラー又はガイドに接する前に行うことが好ましい。 [0009] The above-mentioned problems, thermoplastic榭脂60-80 wt% and the conductive particles 20 to 40 wt% or Ranaru resin composition and (a), polyethylene terephthalate 50-95 wt 0/0 and polyethylene - 2 , 6-Naphthalate 5% to 50% by weight of a resin composition (b) comprising a composite spinning, comprising a molten resin composition (a) and a molten resin composition This can also be solved by providing a method for producing a conductive conjugate fiber characterized in that (b) is merged, melted and discharged from a composite spinneret, and wound at a speed of 1500 to 3000 mZ. At this time, the following (1) to (5) are preferably performed in that order, and the following (2) and (3) are preferably performed before the discharge yarn first contacts the roller or guide.
(1)溶融した榭脂組成物 (a)と溶融した榭脂組成物 (b)とを合流させて複合紡糸口 金より溶融吐出させる  (1) The melted resin composition (a) and the melted resin composition (b) are merged and melted and discharged from the composite spinneret.
(2)吐出された溶融榭脂組成物を、一旦ガラス転移点未満の温度に冷却する (2) The discharged molten resin composition is once cooled to a temperature below the glass transition point.
(3)次いで加熱装置内を走行させて延伸熱処理する (3) Next, run in the heating device and heat-treat
(4)その後に油剤を付与する  (4) Add oil afterwards
(5) 1500〜3000mZ分の速度で巻き取る  (5) Winding up at a speed of 1500-3000mZ
発明の効果  The invention's effect
[0010] 本発明の導電性複合繊維は、長期間持続する優れた導電性を有し、しかも一定以 上の伸度を有しながらも、輸送中や保管中において、伸度や沸水収縮率などの力学 物性の経時変化が小さい。したがって、国際輸送など遠距離の輸送や、長期間の保 管においても繊維物性が安定していて、その後の工程、例えば混繊、撚糸、製織、 製編などの工程通過性が良好であるとともに、均質な製品を得ることができる。また、 本発明の製造方法によれば、そのような導電性複合繊維を得ることが容易である。 図面の簡単な説明  [0010] The conductive conjugate fiber of the present invention has excellent conductivity that lasts for a long period of time, and also has a certain degree of elongation, but the elongation and boiling water shrinkage during transportation and storage. The change of physical properties over time is small. Therefore, the physical properties of the fiber are stable even in long-distance transportation such as international transportation and long-term storage, and the subsequent process such as blending, twisting, weaving, knitting, etc. is good. A homogeneous product can be obtained. Moreover, according to the manufacturing method of this invention, it is easy to obtain such an electroconductive composite fiber. Brief Description of Drawings
[0011] [図 1]実施例 1で得られた複合繊維について、伸度 (DE)、沸水収縮率 (Wsr)及び導 電性能について経時的に測定した結果を示したグラフである。 [図 2]実施例 2で得られた複合繊維について、伸度 (DE)、沸水収縮率 (Wsr)及び導 電性能について経時的に測定した結果を示したグラフである。 FIG. 1 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Example 1. FIG. 2 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Example 2.
[図 3]実施例 3で得られた複合繊維について、伸度 (DE)、沸水収縮率 (Wsr)及び導 電性能について経時的に測定した結果を示したグラフである。  FIG. 3 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and conductivity performance over time for the composite fiber obtained in Example 3.
[図 4]実施例 4で得られた複合繊維について、伸度 (DE)、沸水収縮率 (Wsr)及び導 電性能について経時的に測定した結果を示したグラフである。  FIG. 4 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Example 4.
[図 5]比較例 1で得られた複合繊維について、伸度 (DE)、沸水収縮率 (Wsr)及び導 電性能について経時的に測定した結果を示したグラフである。  FIG. 5 is a graph showing the results of measuring the elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity performance over time for the composite fiber obtained in Comparative Example 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の導電性複合繊維は、熱可塑性榭脂 60〜80重量%及び導電性粒子 20 〜40重量%からなる導電層 (A)と、ポリエチレンテレフタレート 50〜95重量%及び ポリエチレン— 2, 6 ナフタレート 5〜50重量0 /0力もなる保護層(B)とが複合されて なるものである。 [0012] The conductive conjugate fiber of the present invention comprises a conductive layer (A) comprising 60 to 80% by weight of thermoplastic resin and 20 to 40% by weight of conductive particles, 50 to 95% by weight of polyethylene terephthalate and polyethylene-2. , in which 6-naphthalate 5-50 0/0 also force the protective layer (B) and is formed by a composite.
[0013] 導電層 (A)に含まれる熱可塑性榭脂は、繊維形成性の熱可塑性榭脂であればよく 、その種類は特に限定されない。通常、熱可塑性ポリエステルや熱可塑性ポリアミド が好適に用いられる。また、導電層(A)を構成する榭脂の融点は 200°C以上である ことが実用耐久性の点力も好ましい。融点は、より好ましくは 210°C以上であり、 250 °C以下である。  [0013] The thermoplastic resin contained in the conductive layer (A) is not particularly limited as long as it is a fiber-forming thermoplastic resin. Usually, a thermoplastic polyester or a thermoplastic polyamide is preferably used. Further, the melting point of the resin constituting the conductive layer (A) is preferably 200 ° C. or more, and the point of practical durability is also preferable. The melting point is more preferably 210 ° C or higher and 250 ° C or lower.
[0014] 導電層 (A)に使用される熱可塑性ポリエステルとしては、例えば、テレフタル酸、ィ ソフタル酸、ナフタレン 2, 6 ジカルボン酸、 4, 4'ージカルボキシジフエ-ル、 5 —ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸;ァゼライン酸、セバシン 酸等の脂肪族ジカルボン酸などのジカルボン酸成分と、エチレングリコール、ジェチ レングリコール、プロピレングリコール、 1, 4 ブタンジオール、ポリエチレングリコー ル、ポリテトラメチレングリコール等の脂肪族ジオール;ビスフエノール Aまたはビスフ ェノール Sのエチレンオキサイド付加物等の芳香族ジオール;シクロへキサンジメタノ ール等の脂環族ジオールなどのジオール成分を用いて形成された繊維形成性ポリ エステルを挙げることができる。中でも汎用ポリエステルであるエチレンテレフタレート 単位あるいはブチレンテレフタレート単位を 80モル0 /0以上、特に 90モル0 /0以上含有 するポリエステルが好ま Uヽ。 [0014] The thermoplastic polyester used in the conductive layer (A) includes, for example, terephthalic acid, isophthalic acid, naphthalene 2,6 dicarboxylic acid, 4,4'-dicarboxydiphenyl, 5-sodium sulfo Aromatic dicarboxylic acids such as isophthalic acid; dicarboxylic acid components such as azelaic acid, sebacic acid and other aliphatic dicarboxylic acids, and ethylene glycol, polyethylene glycol, propylene glycol, 1,4 butanediol, polyethylene glycol, polytetramethylene Fiber-forming polymers formed using diol components such as aliphatic diols such as glycol; aromatic diols such as ethylene oxide adducts of bisphenol A or bisphenol S; and alicyclic diols such as cyclohexanedimethanol. Mention may be made of esters. Among them ethylene terephthalate units or butylene terephthalate units is a general purpose polyester 80 mole 0/0 or more, especially 90 mol 0/0 or more content Polyester that prefers U ヽ.
[0015] 特に、ポリブチレンテレフタレート、すなわちブチレンテレフタレート単位を 80モル %以上含有するポリエステルが、導電性粒子を練り込みやすく結晶化しやす ヽことか ら、高い導電性能が得られるので好ましい。ポリエチレンテレフタレートも使用可能で ある力 導電性粒子を多量に添加すると溶融紡糸の際の紡糸性が低下することとなり 、紡糸性を高めるために共重合ポリエチレンテレフタレートを用いると 、うことも考えら れるが、共重合ポリエチレンテレフタレートを使用すると一般に結晶性が低下し、導 電性能が低下することとなる。以上のことから、結晶を形成しやすいポリエステルであ るポリブチレンテレフタレートが特に優れている。ポリブチレンテレフタレートに対して ポリエチレン 2, 6 ナフタレートを配合しても良い。  [0015] In particular, polybutylene terephthalate, that is, a polyester containing 80 mol% or more of butylene terephthalate units is preferable because conductive particles can be easily kneaded and easily crystallized, so that high conductive performance can be obtained. Force that polyethylene terephthalate can be used Addition of a large amount of conductive particles will lower the spinnability during melt spinning, and it may be possible to use copolymerized polyethylene terephthalate to improve spinnability. When copolymerized polyethylene terephthalate is used, the crystallinity is generally lowered, and the conductive performance is lowered. From the above, polybutylene terephthalate, which is a polyester that easily forms crystals, is particularly excellent. Polyethylene 2, 6 naphthalate may be blended with polybutylene terephthalate.
[0016] 導電層 (A)に使用される熱可塑性ポリアミドとしては、ポリへキサメチレンアジペート  [0016] The thermoplastic polyamide used in the conductive layer (A) is polyhexamethylene adipate.
(ナイロン 6, 6)、ポリ ε—力プロラタタム(ナイロン 6)あるいはこれらの共重合体 が好適に使用される。このような熱可塑性ポリアミドは導電性粒子を多量に練り込み 易いという理由で、ポリブチレンテレフタレート同様に好適に使用される。  (Nylon 6, 6), poly ε-force prolatatam (nylon 6) or a copolymer thereof is preferably used. Such a thermoplastic polyamide is suitably used like polybutylene terephthalate because it is easy to knead a large amount of conductive particles.
[0017] 導電層 (Α)に含まれる導電性粒子は、導電性を有する粒子であれば特に限定され ず、導電性カーボンブラック、導電性金属酸化物粒子、金属粒子などを使用すること ができる。なかでも、導電性能やコストのバランスなどから、導電性カーボンブラックが 好ましく採用される。導電性粒子の粒径も、紡糸することの可能な寸法であれば特に 限定されないが、平均粒子径 0.01〜1 μ mであることが好適である。  [0017] The conductive particles contained in the conductive layer (Α) are not particularly limited as long as they are conductive particles, and conductive carbon black, conductive metal oxide particles, metal particles, and the like can be used. . Of these, conductive carbon black is preferably employed from the viewpoint of the balance between conductive performance and cost. The particle diameter of the conductive particles is not particularly limited as long as it can be spun, but an average particle diameter of 0.01 to 1 μm is preferable.
[0018] 本発明において用いられる導電性カーボンブラックは、 10一3〜 103Ω ·«ηの固有 電気抵抗を有するものがょ 、。カーボンブラックが完全に粒子状分散をして 、る場合 は一般に導電性が不良であって、ストラクチャーと呼ばれる連鎖構造を形成して ヽる 場合には、導電性能が向上して導電性カーボンブラックと称されるものになる。したが つて、導電性カーボンブラックによってポリマーを導電ィ匕するに当たっては、このスト ラクチャ一を破壊しな 、でカーボンブラックを分散させることが重要である。そのため 、十分な延伸操作を行うことができない場合も多ぐ寸法安定性が不十分な繊維とな りやすい。 [0018] The conductive carbon black used in the present invention, 10 one 3 ~ 10 3 Ω · «Monogayo having an inherent electrical resistance of the eta,. When carbon black is completely dispersed in the form of particles, the conductivity is generally poor, and when a chain structure called a structure is formed, the conductivity is improved and the conductive carbon black is improved. It will be called. Therefore, in conducting the polymer with conductive carbon black, it is important to disperse the carbon black without destroying the structure. For this reason, even when a sufficient stretching operation cannot be performed, a fiber having a large dimensional stability is likely to be obtained.
[0019] また、導電性金属酸化物粒子は、カーボンブラックと異なり黒色でな!、ために、白 色の繊維に導電性を付与することも可能であり、意匠面で有用である。本発明にお いて用いられる導電性金属酸ィ匕物粒子は、白色または無色の金属酸ィ匕物の微粒子 、あるいは該金属酸ィ匕物が無機微粒子を核としてその表面に被覆された状態の微粒 子をいう。金属酸ィ匕物の多くのものは絶縁体に近い半導体であって充分な導電性を 示さないことが多い。しかしながら、金属酸化物に対する導電性強化剤 (ドーピング剤 )として、酸化錫に対して酸化アンチモン、酸ィ匕亜鉛に対してアルミニウム、カリウム等 が知られている。例えば、平均粒子径 0.: mの酸ィ匕錫の比抵抗は約 103 Ω ' cmで あるが、酸ィ匕アンチモンと酸ィ匕錫との固容体の比抵抗は 1〜: ίΟ Ω ' cmであり導電性 が強化されている。該固容体中に占める酸ィ匕アンチモンの割合は 0. 01〜0. 10 (重 量比)とすることが総合的な性能からいって必要である。酸ィ匕アンチモンの被覆量が 少ないと、導電性が不足し、逆に多いと目的の白色系の方向から遠ざ力つてしまう。 本発明において使用される導電性粒子としては、上記の被覆された酸化亜鉛、酸ィ匕 錫が導電性、白色度等に優れ好適であるが、これら以外の金属酸ィ匕物を用いること ちでさる。 [0019] In addition, the conductive metal oxide particles are not black unlike carbon black! It is also possible to impart conductivity to the colored fiber, which is useful in terms of design. The conductive metal oxide particles used in the present invention are white or colorless fine particles of metal oxide, or a state in which the metal oxide is coated on the surface with inorganic fine particles as nuclei. A fine particle. Many metal oxides are semiconductors close to insulators and often do not exhibit sufficient conductivity. However, as a conductivity enhancer (doping agent) for metal oxides, antimony oxide for tin oxide, aluminum, potassium, etc. for zinc oxide are known. For example, the specific resistance of acid 匕 tin with an average particle size of 0: m is about 10 3 Ω 'cm, but the specific resistance of the solid solution of acid 匕 antimony and acid 匕 tin is 1 ~: ίΟ Ω 'cm and enhanced conductivity. From the standpoint of overall performance, it is necessary that the ratio of acid-antimony in the solid is 0.01 to 0.10 (weight ratio). If the coating amount of antimony and antimony is small, the electrical conductivity is insufficient, and conversely if it is large, it tends to move away from the direction of the target white system. As the conductive particles used in the present invention, the coated zinc oxide and tin oxide are preferable because of their excellent conductivity, whiteness, etc., but other metal oxides are used. In
[0020] 本発明においては、導電性粒子を 1種類又は 2種類以上混合して用いることができ る。このとき、導電性カーボンブラックと導電性金属酸ィ匕物粒子とを併用しても構わな い。さらに金属粒子などを用いても構わない。また、本発明の効果を阻害しない範囲 において、各種の添加剤を配合しても構わない。  [0020] In the present invention, one type or a mixture of two or more types of conductive particles can be used. At this time, conductive carbon black and conductive metal oxide particles may be used in combination. Furthermore, metal particles or the like may be used. In addition, various additives may be blended within a range not impairing the effects of the present invention.
[0021] 本発明の導電層 (A)は、熱可塑性榭脂 60〜80重量%及び導電性粒子 20〜40 重量%からなるものである。導電性粒子の含有量が 20重量%未満の場合には、導 電性が不十分になるおそれがある。導電性粒子の含有量は、好適には 23重量%以 上であり、このとき、熱可塑性榭脂の含有量は 77重量%以下である。一方、導電性 粒子の含有量が 40重量%を超える場合には、紡糸性や延伸性が悪化するおそれが ある。導電性粒子の含有量は、好適には 33重量%以下であり、このとき、熱可塑性 榭脂の含有量は 67重量%以上である。  [0021] The conductive layer (A) of the present invention comprises 60 to 80% by weight of thermoplastic resin and 20 to 40% by weight of conductive particles. If the content of conductive particles is less than 20% by weight, the conductivity may be insufficient. The content of the conductive particles is preferably 23% by weight or more, and at this time, the content of the thermoplastic resin is 77% by weight or less. On the other hand, if the content of the conductive particles exceeds 40% by weight, spinnability and stretchability may be deteriorated. The content of the conductive particles is preferably 33% by weight or less, and at this time, the content of the thermoplastic resin is 67% by weight or more.
[0022] 本発明の保護層(B)は、ポリエチレンテレフタレート 50〜95重量%及びポリェチレ ン一 2, 6 ナフタレート 5〜50重量0 /0からなるものである。保護層(B)が、ポリエチレ ンテレフタレートを主成分として、それにポリエチレン 2, 6 ナフタレートを配合し たものであることによって、紡糸後の繊維物性の経時変化を抑制することができる。 導電性複合繊維の場合には、導電層に使用される榭脂組成物は大量の導電性粒子 を含有しているために、複合繊維全体の力学性能に対する導電層の寄与はそれほ ど大きくなぐ保護層の力学物性が特に重要である。 [0022] The protective layer (B) of the present invention are those made of polyethylene terephthalate 50 to 95 wt% and Poryechire down one 2, 6-naphthalate 5-50 0/0. The protective layer (B) is composed mainly of polyethylene terephthalate and polyethylene 2, 6 naphthalate. Therefore, it is possible to suppress changes in fiber properties with time after spinning. In the case of conductive composite fibers, the resin composition used in the conductive layer contains a large amount of conductive particles, so the contribution of the conductive layer to the overall mechanical performance of the composite fiber is much smaller. The mechanical properties of the protective layer are particularly important.
[0023] 保護層(B)に用いられるポリエチレンテレフタレートは、エチレンテレフタレート単位 を 80モル%以上、好適には 90モル%以上含有するポリエステルである。本発明の目 的を阻害しな 、範囲で第三成分が共重合されて 、ても力まわな 、。好ましく用いられ る共重合成分としては、例えば、イソフタル酸、アジピン酸、セバシン酸、ドデカンジ 酸、ダイマー酸、スルホイソフタル酸ナトリウム塩、スルホイソフタル酸テトラブチルホス ホ -ゥム塩などの酸成分、ジエチレングリコール、 1, 4 ブタンジオール、 1, 6 へ キサンジオール、ネオペンチルグリコール、シクロへキサン 1, 4ージメタノール、 2, 2 ビス [4 (2 ヒドロキシエトキシ)フエ-ル]プロパンなどのグリコール成分が挙げら れる。  [0023] The polyethylene terephthalate used in the protective layer (B) is a polyester containing 80 mol% or more, preferably 90 mol% or more of ethylene terephthalate units. The third component may be copolymerized within the range without hindering the object of the present invention. Examples of the copolymer component preferably used include acid components such as isophthalic acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, sulfoisophthalic acid sodium salt, and sulfoisophthalic acid tetrabutyl phosphate salt, and diethylene glycol. 1, 4 butanediol, 1,6 hexanediol, neopentyl glycol, cyclohexane 1,4-dimethanol, 2,2 bis [4 (2 hydroxyethoxy) phenol] propane, etc. .
[0024] 保護層(B)に用いられるポリエチレン一 2, 6 ナフタレートは、エチレン一 2, 6— ナフタレート単位を 80モル%以上、好適には 90モル%以上含有するポリエステルで ある。本発明の目的を阻害しない範囲で第三成分が共重合されていても力まわない 。好ましく用いられる共重合成分としては、テレフタル酸のほか、上記ポリエチレンテ レフタレートの説明で記載したものが使用できる。  [0024] The polyethylene 1,2 naphthalate used in the protective layer (B) is a polyester containing 80 mol% or more, preferably 90 mol% or more of ethylene 1,2,6-naphthalate units. Even if the third component is copolymerized within the range not impairing the object of the present invention, there is no problem. As the copolymer component preferably used, those described in the description of the polyethylene terephthalate can be used in addition to terephthalic acid.
[0025] 保護層(B)に用いられるポリエチレンテレフタレートあるいはポリエチレン 2, 6— ナフタレートには、平均粒子径 0.01〜1 /ζ πιの無機微粒子が 0. 05〜10重量%の割 合で含有されていることが紡糸性あるいは製編織性の点で好ましい。すなわち、無機 微粒子の含有量が 0. 05重量%未満の場合には、得られた導電性繊維にループ、 毛羽、繊度斑等を生じ易くなり、 10重量%を超えると工程通過性が悪く断糸の原因と なる。より好ましくは 0. 2〜5重量%の割合で無機微粒子を含有する。無機微粒子の 添加方法にっ 、ては特に制限されず、ポリエステルの重合時力 溶融紡出直前まで の任意の段階でポリエステル中に無機微粒子が均一に混合されて ヽるように添加、 混合すればょ 、。このような無機微粒子としては酸ィ匕チタンが代表的である。  [0025] Polyethylene terephthalate or polyethylene 2,6-naphthalate used for the protective layer (B) contains inorganic fine particles having an average particle diameter of 0.01 to 1 / ζ πι at a ratio of 0.05 to 10% by weight. It is preferable from the viewpoint of spinnability or knitting. That is, when the content of the inorganic fine particles is less than 0.05% by weight, loops, fluff, fineness spots, etc. are likely to occur in the obtained conductive fiber. It causes thread. More preferably, the inorganic fine particles are contained at a ratio of 0.2 to 5% by weight. There are no particular restrictions on the method of adding the inorganic fine particles, and it is possible to add and mix the inorganic fine particles so that they are uniformly mixed in the polyester at any stage up to just before melt spinning. Oh ,. A typical example of such inorganic fine particles is titanium oxide.
[0026] 保護層(Β)は、ポリエチレンテレフタレート 50〜95重量0 /0及びポリエチレン 2, 6 —ナフタレート 5〜50重量0 /0力もなるものである。ポリエチレン一 2, 6 ナフタレート の含有量が 5重量%未満である場合には、紡糸後の繊維物性の経時変化を十分に 抑制することができない。ポリエチレン 2, 6 ナフタレートの含有量は、好適には 1 0重量%以上であり、より好適には 15重量%以上である。このとき、ポリエチレンテレ フタレートの含有量は、好適には 90重量%以下であり、より好適には 85重量%以下 である。一方、ポリエチレン— 2, 6 ナフタレートの含有量が 50重量0 /0を超える場合 には、製造コストが上昇するだけでなぐ紡糸の際にフィルター圧が高くなり、製糸が 難しくなり、得られる導電性複合繊維の伸度も低下する。ポリエチレン 2, 6 ナフ タレートの含有量は、好適には 40重量%以下であり、より好適には 30重量%以下で ある。このとき、ポリエチレンテレフタレートの含有量は、好適には 60重量0 /0以上であ り、より好適には 70重量%以上である。 [0026] protective layer (beta) is polyethylene terephthalate 50-95 wt 0/0 and polyethylene 2, 6 - but also made naphthalate 5 to 50 weight 0/0 force. If the polyethylene 1, 2, 6 naphthalate content is less than 5% by weight, changes in fiber properties with time after spinning cannot be sufficiently suppressed. The content of polyethylene 2,6 naphthalate is preferably 10% by weight or more, and more preferably 15% by weight or more. At this time, the content of polyethylene terephthalate is preferably 90% by weight or less, and more preferably 85% by weight or less. On the other hand, polyethylene - 2, 6 when the amount of naphthalate exceeds 50 weight 0/0, the filter pressure when spinning Nag only production cost increases is high, reeling is difficult, resulting conductive The elongation of the composite fiber also decreases. The content of polyethylene 2,6 naphthalate is preferably 40% by weight or less, and more preferably 30% by weight or less. In this case, the content of polyethylene terephthalate is preferably Ri der 60 weight 0/0 or more, and more preferably 70 wt% or more.
[0027] 本発明の導電性複合繊維は、熱可塑性榭脂 60〜80重量%及び導電性粒子 20[0027] The conductive conjugate fiber of the present invention comprises 60 to 80% by weight of thermoplastic resin and conductive particles 20
〜40重量0 /0からなる榭脂組成物(a)と、ポリエチレンテレフタレート 50〜95重量0 /0及 びポリエチレン— 2, 6 ナフタレート 5〜50重量0 /0からなる榭脂組成物 (b)とを複合 紡糸することによって製造される。すなわち、溶融した榭脂組成物 (a)と溶融した榭脂 組成物 (b)とを合流させて複合紡糸口金より溶融吐出させて、導電性複合繊維が製 造される。 榭脂composition comprising 40 wt 0/0 (a), polyethylene terephthalate 50-95 wt 0/0 及beauty polyethylene - 2, 6-naphthalate 5-50 0/0 consisting榭脂composition (b) It is manufactured by spinning together. That is, the melted resin composition (a) and the melted resin composition (b) are merged and melt-discharged from the composite spinneret to produce a conductive composite fiber.
[0028] 本発明の導電性複合繊維の製造方法は複合繊維を製造するために使用される一 般的な溶融紡糸装置を使用することができる。このとき、熱可塑性榭脂及び導電性 粒子を予め溶融混練して得られた榭脂組成物(a)のペレットを溶融紡糸装置に供給 して導電層(A)を形成することが分散性の点力も好ましい。また、ポリエチレンテレフ タレートとポリエチレン 2, 6 ナフタレートとを予め溶融混練して榭脂組成物(b)の ペレットを得て力 溶融紡糸装置に供給して保護層(B)を形成してもよいが、それぞ れのペレットを同時に溶融紡糸装置に供給して当該装置内で榭脂組成物 (b)を得て から保護層 (B)を形成してもよ!/ヽ。  [0028] The method for producing a conductive conjugate fiber of the present invention can use a general melt spinning apparatus used for producing a conjugate fiber. At this time, it is possible to form a conductive layer (A) by supplying pellets of a resin composition (a) obtained by previously melt-kneading thermoplastic resin and conductive particles to a melt spinning apparatus to form a conductive layer (A). Point power is also preferable. In addition, polyethylene terephthalate and polyethylene 2,6 naphthalate may be previously melt-kneaded to obtain pellets of the resin composition (b) and supplied to a force melt spinning apparatus to form the protective layer (B). The protective layer (B) may be formed after supplying each pellet to the melt spinning apparatus and obtaining the resin composition (b) in the apparatus! / ヽ.
[0029] このときの巻き取り速度は、 1500〜3000mZ分であることが好ましい。巻き取り速 度が 1500mZ分未満の場合、伸度、沸水収縮率ともに大きくなりすぎ、寸法安定性 の低下が著しい。巻き取り速度は、より好適には 1800mZ分以上であり、さらに好適 には 2000mZ分以上である。一方、巻き取り速度が 3000mZ分を超える場合、紡 糸時の糸切れが発生するおそれがあるとともに、伸度、沸水収縮率ともに小さくなり すぎる。特に、混繊糸などとして使用するために、一定以上の伸度や沸水収縮率を 有することが求められる導電性複合繊維を製造する場合には、巻き取り速度を遅くす ることが好ましぐより好適には 2600mZ分以下であり、さらに好適には 2400mZ分 以下である。 [0029] The winding speed at this time is preferably 1500 to 3000 mZ. When the winding speed is less than 1500 mZ, both the elongation and the boiling water shrinkage rate become too large, and the dimensional stability is significantly reduced. The winding speed is more preferably 1800 mZ or more, and even more preferable Is over 2000mZ. On the other hand, if the winding speed exceeds 3000 mZ, yarn breakage may occur during spinning, and both elongation and boiling water shrinkage will be too small. In particular, when producing a conductive composite fiber that is required to have a certain degree of elongation or boiling water shrinkage for use as a blended fiber yarn, it is preferable to reduce the winding speed. More preferably, it is 2600 mZ or less, and more preferably 2400 mZ or less.
[0030] 紡糸するに際しては、紡出された糸条に対して冷風を吹き付けるなどして冷却して 力も巻き取るだけでもよいが、導電層(A)の切断を効果的に防止するには、以下のよ うな紡糸方法を採用することが好ましい。すなわち、下記(1)〜(5)をその順序で行 い、かつ下記(2)及び(3)を、吐出糸条が最初にローラー又はガイドに接する前に行 う方法が好適に採用される。  [0030] At the time of spinning, the spinning yarn may be cooled by blowing cold air or the like to wind up the force, but in order to effectively prevent cutting of the conductive layer (A), It is preferable to employ the following spinning method. That is, the following (1) to (5) are performed in that order, and the following (2) and (3) are preferably performed before the discharge yarn first contacts the roller or guide. .
(1)溶融した榭脂組成物 (a)と溶融した榭脂組成物 (b)とを合流させて複合紡糸口 金より溶融吐出させる  (1) The melted resin composition (a) and the melted resin composition (b) are merged and melted and discharged from the composite spinneret.
(2)吐出された溶融榭脂組成物を、一旦ガラス転移点未満の温度に冷却する (2) The discharged molten resin composition is once cooled to a temperature below the glass transition point.
(3)次いで加熱装置内を走行させて延伸熱処理する (3) Next, run in the heating device and heat-treat
(4)その後に油剤を付与する  (4) Add oil afterwards
(5) 1500〜3000mZ分の速度で巻き取る  (5) Winding up at a speed of 1500-3000mZ
[0031] 上記方法の特徴点は、溶融吐出した複合ポリエステルフィラメントを、ー且冷却した 後、チューブヒーターなどの加熱帯域を用いて加熱延伸処理するものであり、しかも 、上記溶融吐出から加熱延伸までをローラーやガイドに実質的に接触させることなく 行うものである。このような方法を用いることにより、導電性繊維はローラー間やガイド ローラー間で無理やり延伸されるのではなぐ吐出された溶融ポリマーから加熱装 置内のゾーンにおいて、延伸倍率が自動的に調節されることとなるため、導電層 (A) が切断されるほど延伸されることがない。し力も、導電層(A)も適度に延伸されて結 晶化されており、且つその非晶部分は、分子運動が可能な状態となっており、その結 果、導電層 (A)に張力が力かっても、導電層 (A)は切断せずに伸びる余地が大きく 導電性能を失うことがない。加熱延伸する際の加熱温度は、榭脂組成物 (a)を構成 する樹脂のガラス転移温度以上で融点以下の温度範囲にあり、かつ榭脂組成物 (b) を構成する主成分であるポリエチレンテレフタレートのガラス転移温度以上で融点以 下の温度範囲にあることが好まし 、。 [0031] A feature of the above method is that the melted and discharged composite polyester filament is cooled and then heated and stretched using a heating zone such as a tube heater, and from the melt discharging to the heating and stretching. Without any substantial contact with the rollers or guides. By using such a method, the draw ratio is automatically adjusted in the zone in the heating device from the discharged molten polymer, where the conductive fibers are not drawn forcibly between the rollers or the guide rollers. Therefore, the conductive layer (A) is not stretched so as to be cut. In addition, the conductive layer (A) is stretched and crystallized appropriately, and the amorphous portion is in a state where molecular motion is possible, and as a result, tension is applied to the conductive layer (A). Even if a force is applied, the conductive layer (A) has a large room for extending without being cut, and the conductive performance is not lost. The heating temperature at the time of heat stretching is in the temperature range from the glass transition temperature of the resin constituting the resin composition (a) to the melting point and below, and the resin composition (b) It is preferable that the temperature is higher than the glass transition temperature and lower than the melting point of polyethylene terephthalate, which is the main component of
[0032] 上記(2)の冷却方法としては、冷却風の温度を約 20〜30°C、冷却風の湿度を約 2 0〜60%RH、冷却風の吹付け速度を 0. 4〜lmZ秒程度とすることにより、繊度斑、 性能斑を起こすことなく高品質の繊維を得ることができる。また、上記(3)で用いる加 熱帯域の長さとしては 0. 6m以上 4m以下、加熱帯域の温度は 150°C以上 220°C以 下の範囲にあることが均一かつ円滑に延伸を行う上で望ましい。  [0032] The cooling method of (2) above is that the temperature of the cooling air is about 20 to 30 ° C, the humidity of the cooling air is about 20 to 60% RH, and the blowing speed of the cooling air is 0.4 to lmZ. By setting it to about 2 seconds, it is possible to obtain high-quality fibers without causing fineness spots and performance spots. Further, the length of the heating zone used in the above (3) is 0.6 m or more and 4 m or less, and the temperature of the heating zone is in the range of 150 ° C. or more and 220 ° C. or less for uniform and smooth stretching. Desirable above.
[0033] こうして得られる本発明の導電性複合繊維における、導電層 (A)と保護層(B)との 重量比(AZB)は 5Z95〜50Z50であることが好ましい。重量比(ΑΖΒ)が 5/95 未満の場合には、導電性が不十分になりやすぐ導電層 (Α)の切断も発生しやすい 。重量比 (ΑΖΒ)は、より好適には、 10Z90以上であり、さらに好適には 15Z85以 上である。一方、重量比 (ΑΖΒ)が 50Ζ50を超える場合には、強度が不十分になり やすぐ繊維物性の経時変化も大きくなりやすい。重量比 (ΑΖΒ)は、より好適には 4 0Ζ60以下であり、さらに好適には 30Ζ70以下である。  [0033] In the conductive conjugate fiber of the present invention thus obtained, the weight ratio (AZB) of the conductive layer (A) to the protective layer (B) is preferably 5Z95 to 50Z50. When the weight ratio (ΑΖΒ) is less than 5/95, the conductivity becomes insufficient and the conductive layer (Α) is likely to be cut immediately. The weight ratio (ΑΖΒ) is more preferably 10Z90 or more, and further preferably 15Z85 or more. On the other hand, when the weight ratio (ΑΖΒ) exceeds 50Ζ50, the strength becomes insufficient and the change in fiber properties with time tends to increase. The weight ratio (ΑΖΒ) is more preferably 40 to 60 or less, and further preferably 30 to 70 or less.
[0034] 本発明の導電性複合繊維の伸度(DE)は 100〜350%である。伸度(DE)が 100 %未満の場合には、延伸が強すぎて導電層 (Α)が切断されるおそれがあるとともに、 混繊糸などとして使用する際に、要求される伸度や沸水収縮率を有することができな い。伸度(DE)は、好適には 150%以上であり、より好適には 180%以上であり、さら に好適には 200%以上である。一方、伸度 (DE)が 350%を超える場合には、他の 繊維と合糸延伸する際に、延伸斑を生じやすぐその後の加工工程で切断し易くなる 。伸度(DE)は、好適には 300%以下であり、より好適には 250%以下である。ここで 、伸度(DE)は、 JIS L1013に準じて測定した値である。  [0034] The elongation (DE) of the conductive conjugate fiber of the present invention is 100 to 350%. If the elongation (DE) is less than 100%, the stretching may be too strong and the conductive layer (wrinkles) may be cut, and the required elongation or boiling water may be required when used as a mixed yarn. Can not have shrinkage. The elongation (DE) is preferably 150% or more, more preferably 180% or more, and even more preferably 200% or more. On the other hand, when the degree of elongation (DE) exceeds 350%, when the combined yarn is drawn with other fibers, stretch spots are formed and it is easy to cut in the subsequent processing step. The elongation (DE) is preferably 300% or less, and more preferably 250% or less. Here, the elongation (DE) is a value measured according to JIS L1013.
[0035] また、本発明の導電性複合繊維の沸水収縮率 (Wsr)は 20〜60%であることが好 ましい。沸水収縮率 (Wsr)が 20%未満の場合には、混繊糸などとして使用する際に 、合糸して加工する際の加工性が低下する。沸水収縮率 (Wsr)は、より好適には 25 %以上であり、さらに好適には 30%以上である。一方、沸水収縮率 (Wsr)が 60%を 超える場合には、例えば織物にした場合に収縮斑による筋が発生し、風合いが悪ィ匕 する。沸水収縮率 (Wsr)は、より好適には 50%以下であり、さらに好適には 40%以 下である。ここで、沸水収縮率 (Wsr)は、 JIS L1013に準じて測定した値である。 [0035] Further, the boiling water shrinkage (Wsr) of the conductive conjugate fiber of the present invention is preferably 20 to 60%. When the boiling water shrinkage rate (Wsr) is less than 20%, the workability of the combined yarn is lowered when used as a blended yarn. The boiling water shrinkage (Wsr) is more preferably 25% or more, and further preferably 30% or more. On the other hand, when the boiling water shrinkage rate (Wsr) exceeds 60%, for example, when a woven fabric is used, streaks due to shrinkage spots are generated and the texture is poor. The boiling water shrinkage (Wsr) is more preferably 50% or less, and even more preferably 40% or less. It is below. Here, the boiling water shrinkage (Wsr) is a value measured according to JIS L1013.
[0036] 本発明の導電性複合繊維は、一定以上の伸度を有しながらも、輸送中や保管中に おいて、伸度や沸水収縮率など繊維物性の経時変化が小さい。特に、高温化に保 持されても繊維物性の変化が小さいことが特徴である。 [0036] The conductive conjugate fiber of the present invention has a certain degree of elongation, but has little change over time in fiber properties such as elongation and boiling water shrinkage during transportation and storage. In particular, the change in fiber properties is small even when kept at high temperatures.
[0037] 具体的には、 60°C、 80%RHの条件下で保管した場合に、紡糸力も 60日後の伸 度 (DE )力 紡糸から 1日後の伸度 (DE )の 1. 3倍以下であることが好適であり、 1[0037] Specifically, when stored under conditions of 60 ° C and 80% RH, the spinning force is also the elongation (DE) force after 60 days 1.3 times the elongation (DE) after one day from spinning. Is preferably: 1
60 1 60 1
. 2倍以下であることがより好適である。ここで、紡糸から 1日後を起点とするのは、水 分の吸収や温度変化による伸度 (DE)の変化をキャンセルして、経時的な繊維物性 の変化をより正確に把握するためである。通常、伸度 (DE )は、伸度 (DE )の 0. 9  It is more preferable that it is 2 times or less. Here, the reason for starting from one day after spinning is to cancel the change in the degree of elongation (DE) due to the absorption of water and the temperature change, and to grasp the change in fiber properties over time more accurately. . Usually, the elongation (DE) is 0.9 of the elongation (DE).
60 1 倍以上である。  60 1 or more times.
[0038] また、 60°C、 80%RHの条件下で保管した場合に、紡糸から 60日後の沸水収縮率  [0038] When stored under conditions of 60 ° C and 80% RH, boiling water shrinkage 60 days after spinning
(Wsr )力、紡糸から 1日後の沸水収縮率 (Wsr )の 0. 3倍以上であることが好適で It is preferable that the (Wsr) force is not less than 0.3 times the boiling water shrinkage (Wsr) one day after spinning.
60 1 60 1
あり、 0. 5倍以上であることがより好適であり、 0. 7倍以上であることがさらに好ましい 。ここで、紡糸から 1日後を起点とする理由は、上記伸度についての場合と同じ理由 力 である。通常、沸水収縮率 (Wsr )は、沸水収縮率 (Wsr )の 1. 05倍以下であ  Yes, it is more preferably 0.5 times or more, and even more preferably 0.7 times or more. Here, the reason for starting one day after spinning is the same reasoning force as in the case of the above elongation. Usually, boiling water shrinkage (Wsr) is 1.05 times or less of boiling water shrinkage (Wsr).
60 1  60 1
る。そして、 60°C、 80%RHの条件下で保管した場合に、紡糸力も 60日後の沸水収 縮率 (Wsr )が 10%以上であることが好ましぐ 15%以上であることがより好ましぐ 2  The When stored under conditions of 60 ° C and 80% RH, the spinning force is preferably 10% or more after boiling water reduction (Wsr), more preferably 15% or more. Masugu 2
60  60
0%以上であることがさらに好ましい。  More preferably, it is 0% or more.
[0039] 本発明の導電性複合繊維は、色々な形態で、種々の除電性が要求される用途に 用いられる。例えば、本発明の導電性マルチフィラメントと非導電性マルチフィラメント を混繊し、かつ導電性マルチフィラメントが側糸、非導電性マルチフィラメントが芯糸 となるように、導電性マルチフィラメントに 1〜30%糸長が長くなるように混繊して用い ることができる。芯糸としてはポリエステル系のマルチフィラメントが好ましい。芯糸とな る非導電性マルチフィラメントのトータル太さとしては 20〜120デシテックスの範囲が 好ましい。混繊糸とする場合には、芯糸と側糸が分離しないように交絡を付与するの が一般的であり、交絡を付与した後、混繊糸に撚を付与しても良い。  [0039] The conductive conjugate fiber of the present invention is used in various forms and for applications that require various static elimination properties. For example, the conductive multifilament of the present invention is mixed with the nonconductive multifilament, and the conductive multifilament is 1 to 30 so that the conductive multifilament becomes the side yarn and the nonconductive multifilament becomes the core yarn. % The yarn can be mixed and used to increase the yarn length. As the core yarn, a polyester-based multifilament is preferable. The total thickness of the non-conductive multifilament used as the core yarn is preferably in the range of 20 to 120 dtex. In the case of a blended yarn, entanglement is generally applied so that the core yarn and the side yarn are not separated. After the entanglement is imparted, twist may be imparted to the blended yarn.
[0040] また、非導電性のマルチフィラメントを芯糸とし、その周りに導電性マルチフィラメン トを螺旋状に巻きつけても良い。芯糸の太さとしては上記混繊糸の場合と同様のもの が用いられ、芯糸としてポリエステル系マルチフィラメントが好適であることも同様であ る。このような導電性繊維を使用したマルチフィラメント糸は、織物や編物等の布帛に[0040] Further, a non-conductive multifilament may be used as a core yarn, and a conductive multifilament may be wound around the spiral. The thickness of the core yarn is the same as that of the above mixed fiber It is also the same that polyester multifilament is suitable as the core yarn. Multifilament yarns using such conductive fibers can be used for fabrics such as woven fabrics and knitted fabrics.
、 5mn!〜 50mmに一本の割合で経糸及び Z又は緯糸の一部として打ち込まれる。 その結果、得られる織編物は除電性能を有するものとなる。 , 5mn! It is driven as a part of warp and Z or weft at a rate of ~ 50mm. As a result, the resulting woven or knitted fabric has a charge removal performance.
[0041] このように混繊する際に、適度な伸度 (DE)及び沸水収縮率 (Wsr)を有することで 性能に優れた混繊糸を得ることができる。そして、輸送中や保管中など、長時間に亘 つて繊維物性の経時変化が小さいので、国際輸送など遠距離の輸送や、長期間の 保管においても繊維物性が安定していて、その後の工程、例えば混繊、撚糸、製織 、製編などの工程通過性が良好であるとともに、均質な製品を得ることができる。  [0041] When the fibers are mixed in this way, a mixed yarn having excellent performance can be obtained by having an appropriate elongation (DE) and boiling water shrinkage (Wsr). And since the change over time of fiber properties over a long period of time, such as during transportation and storage, is small, fiber properties are stable during long-distance transportation such as international transportation and long-term storage. For example, it is possible to obtain a homogeneous product with good process passability such as mixed fiber, twisted yarn, weaving, and knitting.
[0042] 以上のようにして得られた織編物は、長期間に亘る除電性が要求される用途に用 いられ、例えば、クリーンルームで着用される防塵衣として、また、化学プラントで従 事する作業者やィ匕学薬品を扱う作業者のように、静電気により爆発の可能性のある 職場で従事する労働者の除電用ワーキングウェアーとして使用することができる。更 に、本発明の導電性繊維は、除電力一ペットのパイルの一部として、さらに複写機の 除電ブラシとしても用いることができる。  [0042] The knitted or knitted fabric obtained as described above is used for applications that require long-term static elimination, for example, as a dust-proof garment worn in a clean room or in a chemical plant. It can be used as static proof working wear for workers engaged in workplaces that may explode due to static electricity, such as workers and workers handling chemicals. Furthermore, the conductive fiber of the present invention can be used as a part of a pile of a pet for removing electricity and further as a removing brush for a copying machine.
[0043] 本発明の導電性複合繊維が特に好適に用いられる用途は、静電気が発生しやす いカーペットである。本発明の導電性複合繊維は、カーペットにおける除電繊維とし て好適に用いられる。例えばナイロンカーペットであれば、 1000〜10000dtex程度 の未延伸又は半延伸のナイロンマルチフィラメント糸に、本発明の導電性複合繊維を 2〜10本加えて引き揃え、そして引き揃え糸を 2〜4倍に延伸し、得られた延伸糸を 織物又は編物にし、カットパイルカーペット又はループパイルカーペットにする。本発 明の導電性複合繊維は適度な伸度 (DE)を有するとともに、繊維物性の経時変化が 小さいので、上記延伸工程における工程通過性が良好である。導電性複合繊維を 製造して力もカーペットを製造するまでには、時間が力かる場合が多いし、長距離の 輸送を行うことも多いので、本発明の導電性複合繊維が好適に使用される。特に、上 記延伸糸をパイル糸として基布に刺し込み、裏面にパイルの抜けを防ぐためのラテツ タスを塗り、化粧裏地を貼り付けた、いわゆるタフテッドカーペットに適している。 実施例 [0044] 以下、実施例を用いて本発明をより詳細に説明する。本実施例における試験方法 は以下のとおりである。 [0043] An application in which the conductive conjugate fiber of the present invention is particularly preferably used is a carpet that is liable to generate static electricity. The conductive conjugate fiber of the present invention is suitably used as a neutralizing fiber for carpets. For example, in the case of a nylon carpet, add 2 to 10 conductive composite fibers of the present invention to an unstretched or semi-stretched nylon multifilament yarn of about 1000 to 10000 dtex and align it, and the aligned yarn is 2 to 4 times. The drawn yarn thus obtained is made into a woven fabric or a knitted fabric, into a cut pile carpet or a loop pile carpet. The conductive conjugate fiber of the present invention has an appropriate degree of elongation (DE) and has little change with time in the fiber physical properties, so that the process passability in the drawing process is good. It takes a lot of time to produce a conductive conjugate fiber and produce a carpet with a lot of force, and it is often transported over a long distance. Therefore, the conductive conjugate fiber of the present invention is preferably used. . In particular, it is suitable for a so-called tufted carpet in which the drawn yarn is laid into a base fabric as a pile yarn, a latex is applied to the back surface to prevent the pile from coming off, and a makeup lining is attached. Example Hereinafter, the present invention will be described in more detail using examples. The test method in this example is as follows.
[0045] (1)伸度 (DE)の経時変化 [0045] (1) Time course of elongation (DE)
伸度 (DE)は、 JIS L1013に準じて測定した。紡糸直後の伸度 (DE )を測定して  The elongation (DE) was measured according to JIS L1013. Measure the elongation (DE) immediately after spinning
0  0
から、 60°C、 80%RHの条件下で保管し、紡糸から 1日後の伸度 (DE )を測定すると ともに、その後も上記条件下で保管し、適当な期間を空けて 90日後くらいまで測定し た。紡糸から 60日後の伸度(DE )については、ちょうど 60日後に測定したデータが  And store under the conditions of 60 ° C and 80% RH, measure the degree of elongation (DE) after one day from spinning, and then store under the above conditions, and after about 90 days after an appropriate period. It was measured. For the elongation (DE) 60 days after spinning, the data measured just 60 days later
60  60
ない場合、その前に測定した伸度とその後に測定した伸度との間で、伸度が直線的 に変化するとして算出した。  If not, the elongation was calculated as a linear change between the elongation measured before and the elongation measured thereafter.
[0046] (2)沸水収縮率 (Wsr)の経時変化 [0046] (2) Time course of boiling water shrinkage (Wsr)
沸水収縮率 (Wsr)は、 JIS L1013に準じて測定した。紡糸直後の沸水収縮率 (W sr )を測定してから、 60°C、 80%RHの条件下で保管し、紡糸から 1日後の沸水収 Boiling water shrinkage (Wsr) was measured according to JIS L1013. After measuring the boiling water shrinkage (W sr) immediately after spinning, store it under the conditions of 60 ° C and 80% RH, and collect boiling water one day after spinning.
0 0
縮率 (Wsr )を測定するとともに、その後も上記条件下で保管し、適当な期間を空け て 90日後くらいまで測定した。紡糸から 60日後の沸水収縮率 (Wsr )については、  The shrinkage rate (Wsr) was measured, and after that, it was stored under the above conditions, and measured until about 90 days after an appropriate period. About boiling water shrinkage (Wsr) 60 days after spinning,
60  60
ちょうど 60日後に測定したデータがない場合、その前に測定した伸度とその後に測 定した伸度との間で、伸度が直線的に変化するとして算出した。  When there was no data measured after 60 days, the elongation was calculated as linearly changing between the elongation measured before and the elongation measured after that.
[0047] (3)導電性能 [0047] (3) Conductive performance
導電性能については、 60°C、 80%RHの条件下で保管した複合繊維が、 10"8 Ω Zcm以下の抵抗値を維持する期間に基づき、以下のように判定した。複合繊維の 抵抗値は、東亜電波工業株式会社製超絶縁計「SM8220」及び「SME8350」によ つて柳』定した。 The conductive performance was determined as follows based on the period during which the composite fiber stored under the conditions of 60 ° C and 80% RH maintained a resistance value of 10 " 8 Ω Zcm or less. Was determined by Toa Denpa Kogyo Co., Ltd.'s super insulation meter “SM8220” and “SME8350”.
〇:紡糸から 1年以上の間、上記抵抗値を維持する。  ○: The above resistance value is maintained for at least one year after spinning.
紡糸から 6ヶ月以上、 1年未満の間上記抵抗値を維持する。  Maintain the above resistance for 6 months or more and less than 1 year after spinning.
X:紡糸から 6ヶ月未満の間しか上記抵抗値を維持できな!/、。  X: The resistance value can only be maintained for less than 6 months after spinning! /.
[0048] 実施例 1 [0048] Example 1
導電層(A)用の原料として、導電性カーボンブラックを 25重量%含有したポリプチ レンテレフタレート (PBT)力もなる榭脂組成物(a)のペレットを用いた。また、保護層( B)用の原料として、平均粒子径 0. 4 mの酸ィ匕チタンを 3重量%含有するポリェチ レンテレフタレート(PET)ペレット 90重量部に対し、ポリエチレン 2, 6 ナフタレー ト(PEN)ペレット 10重量部を配合して使用した。榭脂組成物(a)からなる導電層 (A) が鞘を形成し、榭脂組成物 (b)からなる保護層 (B)が芯を形成するように、導電層 (A )と保護層(B)との重量比 (AZB)を 20Z80として複合紡糸を行 、、紡糸温度 285 °Cで紡出し、 38dtexZ2fの導電性マルチフィラメントを得た。 As a raw material for the conductive layer (A), pellets of the resin composition (a) containing 25% by weight of conductive carbon black and having a polyethylene terephthalate (PBT) force were used. Further, as a raw material for the protective layer (B), a polyester containing 3% by weight of titanium oxide with an average particle diameter of 0.4 m. 10 parts by weight of polyethylene 2,6 naphthalate (PEN) pellets were blended with 90 parts by weight of terephthalate (PET) pellets. The conductive layer (A) and the protective layer are formed such that the conductive layer (A) made of the resin composition (a) forms a sheath and the protective layer (B) made of the resin composition (b) forms a core. Composite spinning was performed at a weight ratio (AZB) to (B) of 20Z80, and spinning was performed at a spinning temperature of 285 ° C. to obtain a conductive multifilament of 38 dtexZ2f.
[0049] 紡糸方法として、榭脂組成物 (a)と榭脂組成物 (b)の溶融物を合流して複合紡糸 口金より溶融吐出し、吐出された溶融ポリマーを、ー且ガラス転移点未満の温度に冷 却し、次いで加熱装置内を走行させて延伸熱処理し、その後に油剤を付与し、そし て 2200mZ分の速度で巻き取る方法を用い、上記吐出糸条が最初にローラーある いはガイドに接する以前に上記延伸熱処理を行った。なお、上記冷却方法として、 2 5°C、 60%RHの冷却風を 0. 5mZ秒の速度でノズル直下の繊維に吹き当てた。ま た、延伸熱処理方法として、ノズル直下 1. 5mの位置に、直径 3cm、長さ lmの加熱 チューブを設け、チューブ内を 180°Cに保つ方法を用いた。繊維化工程性は良好で 問題なかった。こうして得られた複合繊維について、伸度 (DE)、沸水収縮率 (Wsr) 及び導電性能について経時的に測定した。その結果を図 1に示すとともに、複合繊 維の構成と評価結果にっ 、て表 1にまとめて示した。  [0049] As the spinning method, the melt of the resin composition (a) and the resin composition (b) are merged and melt-discharged from the composite spinneret, and the discharged molten polymer is-less than the glass transition point. Then, it is run in a heating device, stretched and heat treated, and then an oil agent is applied, and then the above-mentioned discharge yarn is first used as a roller or a roller by winding at a speed of 2200 mZ. The stretching heat treatment was performed before contacting the guide. As the cooling method, a cooling air of 25 ° C. and 60% RH was blown against the fiber immediately under the nozzle at a speed of 0.5 mZ seconds. As a stretching heat treatment method, a heating tube having a diameter of 3 cm and a length of lm was provided at a position 1.5 m immediately below the nozzle, and the inside of the tube was kept at 180 ° C. The fiberization processability was good and no problem. The composite fiber thus obtained was measured over time for elongation (DE), boiling water shrinkage (Wsr), and conductive performance. The results are shown in Fig. 1, and the composition and evaluation results of the composite fibers are summarized in Table 1.
[0050] 実施例 2  [0050] Example 2
実施例 1において、保護層(B)用の原料として、実施例 1で用いたのと同じポリェチ レンテレフタレートペレット 80重量部に対し、実施例 1で用いたのと同じポリエチレン - 2, 6-ナフタレートペレット 20重量部を配合して使用した以外は実施例 1と同様に して導電性マルチフィラメントを得た。こうして得られた複合繊維について、実施例 1と 同様に評価した。その結果と複合繊維の構成について、図 2及び表 1に示した。  In Example 1, as the raw material for the protective layer (B), 80 parts by weight of the same polyethylene terephthalate pellets as used in Example 1 were used for the same polyethylene-2,6-nana as used in Example 1. A conductive multifilament was obtained in the same manner as in Example 1 except that 20 parts by weight of phthalate pellets were blended and used. The composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in Fig. 2 and Table 1.
[0051] 実施例 3 [0051] Example 3
実施例 1において、保護層(B)用の原料として、実施例 1で用いたのと同じポリェチ レンテレフタレートペレット 70重量部に対し、実施例 1で用いたのと同じポリエチレン - 2, 6-ナフタレートペレット 30重量部を配合して使用した以外は実施例 1と同様に して導電性マルチフィラメントを得た。こうして得られた複合繊維について、実施例 1と 同様に評価した。その結果と複合繊維の構成について、図 3及び表 1に示した。 [0052] 実施例 4 In Example 1, as the raw material for the protective layer (B), 70 parts by weight of the same polyethylene terephthalate pellets used in Example 1 were used for the same polyethylene-2,6-nana as used in Example 1. A conductive multifilament was obtained in the same manner as in Example 1 except that 30 parts by weight of phthalate pellets were blended and used. The composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in Fig. 3 and Table 1. [0052] Example 4
実施例 1において、保護層(B)用の原料として、実施例 1で用いたのと同じポリェチ レンテレフタレートペレット 50重量部に対し、実施例 1で用いたのと同じポリエチレン - 2, 6-ナフタレートペレット 50重量部を配合して使用した以外は実施例 1と同様に して導電性マルチフィラメントを得た。こうして得られた複合繊維について、実施例 1と 同様に評価した。その結果と複合繊維の構成について、図 4及び表 1に示した。  In Example 1, as the raw material for the protective layer (B), the same polyethylene-2,6-nana as used in Example 1 was used for 50 parts by weight of the same polyethylene terephthalate pellets used in Example 1. A conductive multifilament was obtained in the same manner as in Example 1 except that 50 parts by weight of phthalate pellets were blended and used. The composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in Fig. 4 and Table 1.
[0053] 比較例 1 [0053] Comparative Example 1
実施例 1において、保護層(B)用の原料として、実施例 1で用いたのと同じポリェチ レンテレフタレートペレットのみを使用した以外は実施例 1と同様にして導電性マルチ フィラメントを得た。こうして得られた複合繊維について、実施例 1と同様に評価した。 その結果と複合繊維の構成について、図 5及び表 1に示した。  In Example 1, conductive multifilaments were obtained in the same manner as in Example 1 except that only the same polyethylene terephthalate pellets used in Example 1 were used as the raw material for the protective layer (B). The composite fiber thus obtained was evaluated in the same manner as in Example 1. The results and the composition of the composite fiber are shown in FIG. 5 and Table 1.
[0054] 実施例 5 [0054] Example 5
実施例 2において、紡糸速度を 2200mZ分から 1800mZ分に変更した以外は実 施例 2と同様にして導電性マルチフィラメントを得た。こうして得られた複合繊維につ いて、紡糸直後の伸度 (DE )及び沸水収縮率 (Wsr )を測定し、導電性能について  In Example 2, conductive multifilaments were obtained in the same manner as in Example 2 except that the spinning speed was changed from 2200 mZ to 1800 mZ. The composite fiber obtained in this way was measured for elongation (DE) and boiling water shrinkage (Wsr) immediately after spinning.
0 0  0 0
経時的に測定した。評価結果を、複合繊維の構成とともに表 2に示した。  Measured over time. The evaluation results are shown in Table 2 together with the composition of the composite fiber.
[0055] 実施例 6 [0055] Example 6
実施例 2において、紡糸速度を 2200mZ分から 2900mZ分に変更した以外は実 施例 2と同様にして導電性マルチフィラメントを得た。こうして得られた複合繊維につ いて、実施例 5と同様に評価した結果を、複合繊維の構成とともに表 2に示した。  A conductive multifilament was obtained in the same manner as in Example 2 except that the spinning speed was changed from 2200 mZ to 2900 mZ in Example 2. The composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the configuration of the composite fibers.
[0056] 実施例 7 [0056] Example 7
実施例 2において、保護層(B)用の原料として、ポリエチレンテレフタレートペレット を用いる代わりに、全ジカルボン酸成分に対してイソフタル酸成分を 8モル%含む変 性ポリエチレンテレフタレートペレットを用い、紡糸速度を 2200mZ分力ら 2500mZ 分に変更した以外は、実施例 2と同様にして導電性マルチフィラメントを得た。こうし て得られた複合繊維について、実施例 5と同様に評価した結果を、複合繊維の構成 とともに表 2に示した。  In Example 2, instead of using polyethylene terephthalate pellets as the raw material for the protective layer (B), modified polyethylene terephthalate pellets containing 8 mol% of isophthalic acid component with respect to the total dicarboxylic acid component were used, and the spinning speed was 2200 mZ. A conductive multifilament was obtained in the same manner as in Example 2 except that the component force was changed to 2500 mZ. The results of evaluating the composite fibers thus obtained in the same manner as in Example 5 are shown in Table 2 together with the configuration of the composite fibers.
[0057] 実施例 8 実施例 1において、導電層(A)用の原料として、導電性カーボンブラックを 35重量 %含有したナイロン一 6 (NY)力もなる榭脂組成物(a)のペレットを用い、保護層(B) 用の原料として、実施例 1で用いたのと同じポリエチレンテレフタレートペレット 85重 量部に対し、実施例 1で用いたのと同じポリエチレン一 2, 6—ナフタレートペレット 15 重量部を配合して使用し、紡糸速度を 2200mZ分から 2500mZ分に変更した以外 は、実施例 1と同様にして導電性マルチフィラメントを得た。こうして得られた複合繊 維について、実施例 5と同様に評価した結果を、複合繊維の構成とともに表 2に示し た。 [0057] Example 8 In Example 1, as a raw material for the conductive layer (A), a pellet of a resin composition (a) having a nylon 1-6 (NY) strength containing 35% by weight of conductive carbon black was used, and the protective layer (B) The same polyethylene terephthalate pellets used in Example 1 as 85 parts by weight of the same polyethylene terephthalate pellets as used in Example 1, and 15 parts by weight of the same polyethylene 2,6-naphthalate pellets used in Example 1 are used as raw materials. Then, a conductive multifilament was obtained in the same manner as in Example 1 except that the spinning speed was changed from 2200 mZ to 2500 mZ. The composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the composition of the composite fibers.
[0058] 実施例 9  [0058] Example 9
実施例 1において、紡糸速度を 2200mZ分から 2500mZ分に変更し、実施例 1と 同じ組成の導電層 (A)が芯を形成し、実施例 1と同じ保護層(B)が鞘を形成するよう に、導電層 (A)と保護層(B)との重量比 (AZB)を 45Z55として複合紡糸を行った 以外は、実施例 1と同様にして導電性マルチフィラメントを得た。こうして得られた複 合繊維について、実施例 5と同様に評価した結果を、複合繊維の構成とともに表 2〖こ 示した。  In Example 1, the spinning speed was changed from 2200 mZ to 2500 mZ, so that the conductive layer (A) having the same composition as in Example 1 forms a core, and the same protective layer (B) as in Example 1 forms a sheath. In addition, a conductive multifilament was obtained in the same manner as in Example 1 except that the composite spinning was performed with the weight ratio (AZB) of the conductive layer (A) to the protective layer (B) being 45Z55. The composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the composition of the composite fibers.
[0059] 実施例 10 [0059] Example 10
実施例 1において、紡糸速度を 2200mZ分から 2500mZ分に変更し、実施例 1と 同じ組成の導電層 (A)が島を形成し、実施例 1と同じ組成の保護層(B)が海を形成 するように、導電層 (A)と保護層(B)との重量比 (AZB)を 20Z80として複合紡糸を 行って、 4島を有する海島型の複合繊維を得た以外は、実施例 1と同様にして導電 性マルチフィラメントを得た。こうして得られた複合繊維について、実施例 5と同様に 評価した結果を、複合繊維の構成とともに表 2に示した。  In Example 1, the spinning speed was changed from 2200 mZ to 2500 mZ, the conductive layer (A) with the same composition as in Example 1 formed an island, and the protective layer (B) with the same composition as in Example 1 formed the sea. As in Example 1, except that composite spinning was performed with a weight ratio (AZB) of the conductive layer (A) to the protective layer (B) of 20Z80 to obtain a sea-island type composite fiber having four islands. In the same manner, a conductive multifilament was obtained. The composite fibers thus obtained were evaluated in the same manner as in Example 5. The results are shown in Table 2 together with the configuration of the composite fibers.
[0060] 比較例 2 [0060] Comparative Example 2
実施例 1において、保護層(B)用の原料として、実施例 1で用いたのと同じポリェチ レンテレフタレートペレット 97重量部に対し、実施例 1で用いたのと同じポリエチレン - 2, 6—ナフタレートペレット 3重量部を配合して使用し、紡糸速度を 2200mZ分か ら 2500mZ分に変更した以外は実施例 1と同様にして導電性マルチフィラメントを得 た。こうして得られた複合繊維について、実施例 5と同様に評価した結果を、複合繊 維の構成とともに表 2に示した。 In Example 1, as the raw material for the protective layer (B), 97 parts by weight of the same polyethylene terephthalate pellets used in Example 1, and the same polyethylene-2,6-nana as used in Example 1 were used. Conductive multifilaments were obtained in the same manner as in Example 1 except that 3 parts by weight of phthalate pellets were blended and the spinning speed was changed from 2200 mZ to 2500 mZ. The composite fiber thus obtained was evaluated in the same manner as in Example 5. Table 2 shows the composition of the fibers.
[0061] 比較例 3 [0061] Comparative Example 3
実施例 1において、保護層(B)用の原料として、実施例 1で用いたのと同じポリェチ レンテレフタレートペレット 40重量部に対し、実施例 1で用いたのと同じポリエチレン - 2, 6—ナフタレートペレット 60重量部を配合して使用し、紡糸速度を 2200mZ分 力も 2500mZ分に変更した以外は実施例 1と同様にして導電性マルチフィラメントを 得た。こうして得られた複合繊維について、実施例 5と同様に評価した結果を、複合 繊維の構成とともに表 2に示した。  In Example 1, as the raw material for the protective layer (B), the same polyethylene-2,6-nana as used in Example 1 was used for 40 parts by weight of the same polyethylene terephthalate pellets used in Example 1. A conductive multifilament was obtained in the same manner as in Example 1 except that 60 parts by weight of phthalate pellets were blended and the spinning speed was changed to 2200 mZ and 2500 mZ. The results of evaluating the composite fibers thus obtained in the same manner as in Example 5 are shown in Table 2 together with the configuration of the composite fibers.
[0062] 比較例 4 [0062] Comparative Example 4
実施例 1において、保護層(B)用の原料として、実施例 1で用いたのと同じポリェチ レンテレフタレートペレットのみを使用し、紡糸速度を 2200mZ分から 2900mZ分 に変更した以外は実施例 1と同様にして導電性マルチフィラメントを得た。こうして得 られた複合繊維について、実施例 5と同様に評価した結果を、複合繊維の構成ととも In Example 1, as the raw material for the protective layer (B), only the same polyethylene terephthalate pellets used in Example 1 were used, and the spinning speed was changed from 2200 mZ to 2900 mZ. Thus, a conductive multifilament was obtained. The composite fiber thus obtained was evaluated in the same manner as in Example 5, and the result of the composite fiber composition
Ϊ ^した ο Ϊ ^ ο
[0063] [表 1]  [0063] [Table 1]
Figure imgf000019_0001
[0064] [表 2]
Figure imgf000019_0001
[0064] [Table 2]
^耱蝴懊^体*霸^副 ¾ (2* ^ 耱 蝴 懊 ^ body * 霸 ^ deputy ¾ (2 *
Figure imgf000020_0001
Figure imgf000020_0001
[0065] 表 1及び表 2からわ力るように、保護層(B)を構成する榭脂組成物 (b)が、ポリェチ レンテレフタレート 50 95重量0 /0及びポリエチレン 2, 6 ナフタレート 5 50重 J %からなることによって、導電性複合繊維の伸度 (DE)、沸水収縮率 (Wsr)及び導 電性能の経時変化が小さくなる(実施例 1〜10)。これに対し、保護層(B)を構成す る榭脂糸且成物 (b)のポリエチレン 2, 6 ナフタレートの含有量が 5重量0 /0未満であ る場合には、導電性複合繊維の伸度 (DE)、沸水収縮率 (Wsr)及び導電性能の経 時変化が大きくなる (比較例 1、 2及び 4)。すなわち、保護層 (B)を構成する榭脂組 成物(b)のポリエチレン 2, 6 ナフタレートの添加効果が明らかである。 [0065] Table 1 and Table 2 Karawaryokuru so on,榭脂composition constituting the protective layer (B) (b) is, Poryechi terephthalate 50 95 weight 0/0 and polyethylene 2, 6 naphthalate 5 50 fold J %, The changes over time in the elongation (DE), boiling water shrinkage (Wsr), and conductive performance of the conductive composite fiber are reduced (Examples 1 to 10). In contrast, when the content of polyethylene 2, 6 naphthalate protective layer (B) that make up the榭脂yarn且成product (b) is Ru 5 wt 0/0 less Dare, the conductive composite fibers Changes over time in elongation (DE), boiling water shrinkage (Wsr), and electrical conductivity increase (Comparative Examples 1, 2, and 4). That is, the effect of adding polyethylene 2, 6 naphthalate to the resin composition (b) constituting the protective layer (B) is clear.
実施例 1で得られた導電性マルチフィラメント糸(38dtexZ2f)と、ナイロン 6, 6 力もなる 3500dtexの未延伸マルチフィラメント糸を引き揃え、それを 2. 6倍に延伸し て延伸マルチフィラメント糸を製造した。また、実施例 1で得られた導電性マルチフィ ラメント糸を一成分として用いて基布を製造した。この基布に、上記延伸マルチフイラ メント糸をパイル糸として刺し込み、裏面に合成ゴムラテックスを塗布し、さらに化粧裏 地を貼り付けてタフテッドカーペットを製造した。この製造工程、特に延伸工程におい て、導電性複合繊維の破断は全く見られず、導電性複合繊維が原因で製造工程に トラブルを招くことはな力つた。得られたカーペットを冬場の特に乾燥した室内の床面 に敷いて、その上を繰り返し歩行しても静電気は全く発生しな力つた。また、カーぺッ トに手を触れても静電気による不快感は全くなカゝつた。  Conductive multifilament yarn obtained in Example 1 (38dtexZ2f) and 3500dtex unstretched multifilament yarn with nylon 6 and 6 force are drawn together and stretched 2.6 times to produce drawn multifilament yarn. did. A base fabric was produced using the conductive multifilament yarn obtained in Example 1 as a component. The stretched multifilament yarn was stabbed into the base fabric as a pile yarn, a synthetic rubber latex was applied to the back surface, and a decorative lining was attached to produce a tufted carpet. In this manufacturing process, particularly the drawing process, no breakage of the conductive composite fiber was observed, and it was strong that the conductive composite fiber would not cause trouble in the manufacturing process. Even if the resulting carpet was laid on the floor surface of a dry room in winter and walked repeatedly on it, no static electricity was generated. In addition, there was no discomfort due to static electricity even when touching the carpet.

Claims

請求の範囲 The scope of the claims
[1] 熱可塑性榭脂 60〜80重量%及び導電性粒子 20〜40重量%からなる導電層 (A) と、ポリエチレンテレフタレート 50〜95重量0 /0及びポリエチレン 2, 6 ナフタレート 5〜50重量%からなる保護層(B)とが複合され、伸度 (DE)が 100〜350%であるこ とを特徴とする導電性複合繊維。 [1] Conductive layer (A) comprising 60 to 80% by weight of thermoplastic resin and 20 to 40% by weight of conductive particles, 50 to 95% of polyethylene terephthalate and 0 to 0 of polyethylene 2,6 5 to 50% by weight of naphthalate And a protective layer (B) comprising a conductive composite fiber characterized by having an elongation (DE) of 100 to 350%.
[2] 導電層 (A)を構成する熱可塑性榭脂がポリブチレンテレフタレート又はポリアミドで ある請求項 1記載の導電性複合繊維。  [2] The conductive conjugate fiber according to claim 1, wherein the thermoplastic resin constituting the conductive layer (A) is polybutylene terephthalate or polyamide.
[3] 導電層 (A)と保護層(B)との重量比 (AZB)が 5Z95〜50Z50である請求項 1又 は 2記載の導電性複合繊維。  [3] The conductive conjugate fiber according to claim 1 or 2, wherein the weight ratio (AZB) of the conductive layer (A) to the protective layer (B) is 5Z95 to 50Z50.
[4] 沸水収縮率 (Wsr)が 20〜60%である請求項 1〜3の 、ずれか記載の導電性複合 繊維。  [4] The conductive conjugate fiber according to any one of claims 1 to 3, wherein the boiling water shrinkage (Wsr) is 20 to 60%.
[5] 60°C、 80%RHの条件下で保管した場合に、紡糸力も 60日後の伸度 (DE )が、  [5] When stored under conditions of 60 ° C and 80% RH, the spinning force also shows the elongation (DE) after 60 days.
60 紡糸から 1日後の伸度 (DE )の 1. 3倍以下である請求項 1〜4のいずれか記載の導 電性複合繊維。  60. The conductive conjugate fiber according to any one of claims 1 to 4, which is not more than 1.3 times the degree of elongation (DE) one day after spinning.
[6] 60°C、 80%RHの条件下で保管した場合に、紡糸から 60日後の沸水収縮率 (Wsr  [6] Boiling water shrinkage (Wsr) 60 days after spinning when stored at 60 ° C and 80% RH
)力 紡糸から 1日後の沸水収縮率 (Wsr )の 0. 3倍以上である請求項 1〜5のいず The force according to any one of claims 1 to 5, which is not less than 0.3 times the boiling water shrinkage (Wsr) one day after spinning.
60 1 60 1
れか記載の導電性複合繊維。  A conductive composite fiber as described above.
[7] 60°C、 80%RHの条件下で保管した場合に、紡糸から 60日後の沸水収縮率 (Wsr [7] Boiling water shrinkage (Wsr) 60 days after spinning when stored at 60 ° C and 80% RH
)が 10%以上である請求項 1〜6の!、ずれか記載の導電性複合繊維。  The conductive composite fiber according to any one of claims 1 to 6, which is 10% or more.
60  60
[8] 請求項 1〜7の ヽずれか記載の導電性複合繊維を延伸した繊維が用いられたカー ペット。  [8] A carpet using a fiber obtained by stretching the conductive conjugate fiber according to any one of claims 1 to 7.
[9] 熱可塑性榭脂 60〜80重量%及び導電性粒子 20〜40重量%からなる榭脂組成 物(a)と、ポリエチレンテレフタレート 50〜95重量0 /0及びポリエチレン 2, 6 ナフタ レート 5〜50重量%からなる榭脂組成物 (b)とを複合紡糸する導電性複合繊維の製 造方法であって、溶融した榭脂組成物 (a)と溶融した榭脂組成物 (b)とを合流させて 複合紡糸口金より溶融吐出させ、 1500〜3000mZ分の速度で巻き取ることを特徴 とする導電性複合繊維の製造方法。 [9] The thermoplastic榭脂60-80 wt% and the conductive particles 20 to 40% by weight consists榭脂composition and (a), polyethylene terephthalate 50-95 wt 0/0 and polyethylene 2, 6 naphthalate 5 A method for producing a conductive composite fiber comprising a composite spinning of 50% by weight of a resin composition (b), comprising: a molten resin composition (a) and a molten resin composition (b). A method for producing a conductive composite fiber, characterized in that the composite composite fiber is melted and discharged from a composite spinneret and wound up at a speed of 1500 to 3000 mZ.
[10] 下記(1)〜(5)をその順序で行い、かつ下記(2)及び(3)を、吐出糸条が最初に口 一ラー又はガイドに接する前に行うことを特徴とする請求項 9記載の導電性複合繊維 の製造方法: [10] The following (1) to (5) are performed in that order, and the following (2) and (3) The method for producing a conductive conjugate fiber according to claim 9, wherein the method is performed before contact with one roller or a guide:
(1)溶融した榭脂組成物 (a)と溶融した榭脂組成物 (b)とを合流させて複合紡糸口 金より溶融吐出させる  (1) The melted resin composition (a) and the melted resin composition (b) are merged and melted and discharged from the composite spinneret.
(2)吐出された溶融榭脂組成物を、一旦ガラス転移点未満の温度に冷却する (2) The discharged molten resin composition is once cooled to a temperature below the glass transition point.
(3)次いで加熱装置内を走行させて延伸熱処理する (3) Next, run in the heating device and heat-treat
(4)その後に油剤を付与する  (4) Add oil afterwards
(5) 1500〜3000mZ分の速度で巻き取る。  (5) Wind up at a speed of 1500-3000mZ.
PCT/JP2007/053909 2006-03-10 2007-03-01 Conductive composite fiber and method for producing same WO2007105494A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/282,411 US20090047516A1 (en) 2006-03-10 2007-03-01 Conductive composite fiber and method for producing same
JP2008505046A JP4859916B2 (en) 2006-03-10 2007-03-01 Conductive conjugate fiber and method for producing the same
EP07737589A EP1995359A4 (en) 2006-03-10 2007-03-01 Conductive composite fiber and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006066797 2006-03-10
JP2006-066797 2006-03-10

Publications (1)

Publication Number Publication Date
WO2007105494A1 true WO2007105494A1 (en) 2007-09-20

Family

ID=38509330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053909 WO2007105494A1 (en) 2006-03-10 2007-03-01 Conductive composite fiber and method for producing same

Country Status (6)

Country Link
US (1) US20090047516A1 (en)
EP (1) EP1995359A4 (en)
JP (1) JP4859916B2 (en)
CN (1) CN101437992A (en)
TW (1) TW200745394A (en)
WO (1) WO2007105494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053484A (en) * 2008-08-29 2010-03-11 Kuraray Co Ltd High-shrinkage polyester fiber, method for producing the same and use of the same
WO2023080124A1 (en) * 2021-11-02 2023-05-11 日本エステル株式会社 Sheath-core type polyester composite fiber and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730782B2 (en) * 2009-12-04 2015-06-10 株式会社クラレ Normal pressure dyeable polyester fiber and method for producing the same
JP2012000148A (en) * 2010-06-14 2012-01-05 Panasonic Electric Works Co Ltd Brush body and toothbrush including the same
CN109627672A (en) * 2018-12-05 2019-04-16 深圳市飞荣达科技股份有限公司 Conducting masterbatch and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803453A (en) * 1972-07-21 1974-04-09 Du Pont Synthetic filament having antistatic properties
JPS5729611A (en) 1980-07-28 1982-02-17 Kuraray Co Ltd Multicore type sheath-core conjugate fiber with high antistatic properties
JPS58132119A (en) 1982-01-25 1983-08-06 Kuraray Co Ltd Multicore type sheath-core composite fiber having improved antistatic performance
JPH09279416A (en) 1996-04-16 1997-10-28 Nippon Ester Co Ltd Electroconductive conjugated fiber
JP2001288618A (en) 2000-04-04 2001-10-19 Teijin Ltd Highly shrinkable polyester fiber and string-like material comprising the same
JP2003278031A (en) 2002-03-18 2003-10-02 Toray Ind Inc Highly durable conductive fiber
JP2004270051A (en) * 2003-03-06 2004-09-30 Kuraray Co Ltd Cord having high elastic modulus and method for producing the same
WO2007037174A1 (en) * 2005-09-28 2007-04-05 Toray Industries, Inc. Polyester fiber and textile product comprising the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898426A (en) * 1981-12-07 1983-06-11 Teijin Ltd Sheath-core type composite fiber
US5318845A (en) * 1988-05-27 1994-06-07 Kuraray Co., Ltd. Conductive composite filament and process for producing the same
US5059482A (en) * 1988-09-13 1991-10-22 Kuraray Company, Ltd. Composite fiber and process for producing the same
US5248468A (en) * 1988-10-20 1993-09-28 Toyo Boseki Kabushiki Kaisha Method of making electrically conductive fibers
US5026085A (en) * 1989-04-13 1991-06-25 Ducote Edgar A Remote-steering trailer
JP2801386B2 (en) * 1990-10-09 1998-09-21 株式会社クラレ Conductive fiber
JP2977679B2 (en) * 1992-09-25 1999-11-15 帝人株式会社 Core-sheath type composite fiber and method for producing the same
US5851668A (en) * 1992-11-24 1998-12-22 Hoechst Celanese Corp Cut-resistant fiber containing a hard filler
ES2232367T3 (en) * 1999-10-06 2005-06-01 Kuraray Co., Ltd. FIBER OF ELECTRICALLY CONDUCTING COMPOSITE MATERIAL.
US6811874B2 (en) * 2001-06-15 2004-11-02 Kuraray Co., Ltd. Composite fiber
MY136551A (en) * 2001-07-03 2008-10-31 Performance Fibers Inc High-strength chemically resistant thin sheath fibers and methods of manufacture
FI121603B (en) * 2004-10-20 2011-01-31 Ionphase Oy fibers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803453A (en) * 1972-07-21 1974-04-09 Du Pont Synthetic filament having antistatic properties
JPS5729611A (en) 1980-07-28 1982-02-17 Kuraray Co Ltd Multicore type sheath-core conjugate fiber with high antistatic properties
JPS58132119A (en) 1982-01-25 1983-08-06 Kuraray Co Ltd Multicore type sheath-core composite fiber having improved antistatic performance
JPH09279416A (en) 1996-04-16 1997-10-28 Nippon Ester Co Ltd Electroconductive conjugated fiber
JP2001288618A (en) 2000-04-04 2001-10-19 Teijin Ltd Highly shrinkable polyester fiber and string-like material comprising the same
JP2003278031A (en) 2002-03-18 2003-10-02 Toray Ind Inc Highly durable conductive fiber
JP2004270051A (en) * 2003-03-06 2004-09-30 Kuraray Co Ltd Cord having high elastic modulus and method for producing the same
WO2007037174A1 (en) * 2005-09-28 2007-04-05 Toray Industries, Inc. Polyester fiber and textile product comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995359A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053484A (en) * 2008-08-29 2010-03-11 Kuraray Co Ltd High-shrinkage polyester fiber, method for producing the same and use of the same
WO2023080124A1 (en) * 2021-11-02 2023-05-11 日本エステル株式会社 Sheath-core type polyester composite fiber and method for producing same
JP7340183B1 (en) 2021-11-02 2023-09-07 日本エステル株式会社 Core-sheath type polyester composite fiber and its manufacturing method

Also Published As

Publication number Publication date
EP1995359A4 (en) 2009-07-08
JP4859916B2 (en) 2012-01-25
EP1995359A1 (en) 2008-11-26
US20090047516A1 (en) 2009-02-19
CN101437992A (en) 2009-05-20
TW200745394A (en) 2007-12-16
JPWO2007105494A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4902545B2 (en) Conductive conjugate fiber and method for producing the same
JP4902652B2 (en) Conductive core-sheath type composite fiber and method for producing the same
KR100901325B1 (en) Polylatic acid fiber
JP2008231654A (en) Electroconductive strand, fabric obtained from the same and use thereof
WO2007105494A1 (en) Conductive composite fiber and method for producing same
WO2008007803A1 (en) Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn
JP4954955B2 (en) High-shrinkage polyester fiber and production method and use thereof
JP4818004B2 (en) Antistatic polyester false twisted yarn and method for producing the same
JP2008194329A (en) Rotating brush for vacuum cleaner
JP7332693B2 (en) Conductive composite fiber and fiber structure using the same
JP5662643B2 (en) Abrasion resistant polyester fiber and method for producing the same
JP2004204395A (en) Conductive combined filament yarn and fabric
JP2008214847A (en) Electrically conductive strands, fabrics produced therefrom and use thereof
WO2001023650A1 (en) Poly(trimethylene terephthalate) multifilament yarn
JP2008075204A (en) Thermobondable filament
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JP5661400B2 (en) Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure
JP5882435B2 (en) Abrasion resistant polyester fiber and method for producing the same
JP6420141B2 (en) Conductive yarn and method for producing the same
JP2012012747A (en) Polyester combined filament yarn excellent in antistaticity and wrinkle recovery
JP2010196179A (en) Antistatic polyester blended yarn having excellent wrinkle recovery
JPH05179510A (en) Electrically conductive conjugate fiber
JP2008106394A (en) Core-sheath type conjugated polyester fiber and woven/knitted fabric
JP2005264424A (en) Polytrimethylene terephthalate multifilament yarn
JP2009114604A (en) Antistatic polyester combined filament yarn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008505046

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007737589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12282411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200780015891.6

Country of ref document: CN