WO2007111279A1 - 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体 - Google Patents

接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体 Download PDF

Info

Publication number
WO2007111279A1
WO2007111279A1 PCT/JP2007/056106 JP2007056106W WO2007111279A1 WO 2007111279 A1 WO2007111279 A1 WO 2007111279A1 JP 2007056106 W JP2007056106 W JP 2007056106W WO 2007111279 A1 WO2007111279 A1 WO 2007111279A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
bonding material
bonding
joining
honeycomb
Prior art date
Application number
PCT/JP2007/056106
Other languages
English (en)
French (fr)
Inventor
Takahiro Tomita
Kenji Morimoto
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP07739547.3A priority Critical patent/EP2006265B1/en
Priority to JP2008507479A priority patent/JP5367363B2/ja
Publication of WO2007111279A1 publication Critical patent/WO2007111279A1/ja
Priority to US12/235,379 priority patent/US8088702B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • C04B38/0019Honeycomb structures assembled from subunits characterised by the material used for joining separate subunits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/12Absence of mineral fibres, e.g. asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet

Definitions

  • the present invention relates to a ceramic structure for joining a plurality of ceramic members, in particular, a joined body preferably used for a honeycomb structure that integrally joins a plurality of two-cam segments, a bonding material composition, and
  • the present invention relates to a bonded honeycomb segment assembly.
  • a honeycomb structure is used as a collection filter for exhaust gas, for example, in order to capture and remove particulate matter (particulates) contained in the exhaust gas of a diesel engine or the like.
  • a filter As a filter (DPF), it is incorporated into the exhaust system of diesel engines.
  • a honeycomb structure for example, a plurality of cells that are partitioned and formed by porous partition walls made of silicon carbide (SiC) or the like and that serve as fluid flow paths are parallel to each other in the central axis direction.
  • the structure is arranged as described above.
  • the edges of adjacent cells are alternately plugged (in a checkered pattern). That is, one end of one cell is open at the other end and the other end is sealed, and the other end adjacent to this is sealed at one end and the other end is open. is doing.
  • the exhaust gas that has flowed into a predetermined cell (inflow cell) from one end is allowed to pass through a porous partition wall, thereby adjacent to the inflow cell (outflow cell).
  • the exhaust gas can be purified by allowing the particulate matter in the exhaust gas to be trapped by the partition when passing through the partition and passing through the partition.
  • Each of the honeycomb structures having such a divided structure has a shape that constitutes a part of the entire structure, and a shape that constitutes the entire structure by being assembled in a direction perpendicular to the central axis.
  • the honeycomb segment bonded body is formed such that the plurality of honeycomb segments are integrally bonded by the bonding material layer, and the entire cross-sectional shape cut by a plane perpendicular to the central axis has a predetermined shape such as a circle. After molding, the outer peripheral surface is covered with a coating material.
  • the bonding material for integrally bonding a plurality of honeycomb segments is composed of inorganic fibers (fibers), organic binders, inorganic binders, and inorganic particles.
  • a sealant with an orientation degree of 70% or more, the effect of suppressing expansion and contraction in the longitudinal direction of the filter (ceramic structure) can be obtained, and the filter (ceramic structure) can be used even under severe conditions of use. It is disclosed that the applied thermal stress can be released (see Patent Document 1).
  • the sealing agent disclosed in Patent Document 1 contains an anisotropic filler such as an inorganic fiber, the Young's modulus after curing is anisotropic. Sexuality arises. That is, the sealing agent has a low Young's modulus in the direction perpendicular to the joint surface with the honeycomb segment, but has a relatively high Young's modulus in the in-joint surface direction (particularly the longitudinal direction). That is, the above-mentioned sealing agent restrains the honeycomb segment too much against the thermal stress in the mode of expanding and contracting in the longitudinal direction between the honeycomb segments, and as a result, cracks are formed on the end surfaces of the honeycomb structure obtained. There was a problem that it became easy to enter. [0009] Further, the sealing agent disclosed in Patent Document 1 is a bonding material, and it is indispensable to control its characteristics by the thickness, width and length of the inorganic fiber (fiber) which is a filler. Therefore, there was a problem of high cost.
  • the sealing agent disclosed in Patent Document 1 uses inorganic fibers (fibers) as a filler of the bonding material, it has a power that is not harmful to the human body.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-177719
  • an object of the present invention is to provide a bonding material composition and a bonded body that can greatly suppress the occurrence of cracks in the end face of the obtained honeycomb structure without excessively restricting the honeycomb segment.
  • the following bonded body a bonding material composition used therefor, a honeycomb segment bonded body using the same, and a honeycomb structure using the same.
  • a joined body in which two or more objects to be joined are integrated via a joining material layer, and the Young's modulus in a direction perpendicular to the joining surface of the joining material layer is Ez,
  • Ez Young's modulus in a direction perpendicular to the joining surface of the joining material layer
  • the relational expression of 0.5 ⁇ / ⁇ ⁇ 1.5 is satisfied, and the porosity of the bonding material layer is 25 Conjugate that is ⁇ 85%.
  • the bonding material composition for forming the bonding material layer includes 40 to 100% by volume of a filler having a circularity of 0.7 to!:! Relative to the entire filler. Joined body.
  • a bonding material layer having a thickness of 0.25t from the interface between the workpiece (A) and the bonding material layer is a bonding material layer (1), and a thickness of 0.25t from the interface between the bonding object (B) and the bonding material layer.
  • the joining material layer is the joining material layer (3) and the joining material layer of thickness 0.5t between the joining material layer (1) and the joining material layer (3) is the joining material layer (2) If the average porosity of the material layers (1) and (3) is ⁇ 1, and the porosity of the bonding material layer (2) is ⁇ 2, then 0.9 and ⁇ 2 / ⁇ 1 ⁇ 1.4
  • the joined body according to any one of [1] to [4], which satisfies the formula.
  • a bonded honeycomb segment assembly manufactured by bonding a plurality of honeycomb segments with the bonding material composition according to any one of [10] to [: 12].
  • the bonding material composition of the present invention can be obtained by using an isotropic filler without using inorganic fibers (fibers) that are costly and not harmful to the human body. Reduces the Young's modulus anisotropy after curing of the composition and bonds between honeycomb segments It is possible to greatly suppress cracks in the end face of the obtained honeycomb structure without restraining the honeycomb segment too much against the thermal stress of the mode in which the material layer expands and contracts in the longitudinal direction.
  • Fig. 1 is a perspective view schematically showing one embodiment of a honeycomb structure according to the present invention (the entire cross-sectional shape cut by a plane perpendicular to the central axis is circular).
  • Fig. 2 is a front view of a part of another embodiment of a honeycomb structure according to the present invention (a whole cross-sectional shape cut by a plane perpendicular to the central axis is square) viewed from the end surface side.
  • FIG. 3 is a perspective view schematically showing a honeycomb segment used in another embodiment of a honeycomb structure according to the present invention.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • the bonded body according to the present invention is a bonded body in which two or more objects to be bonded are integrated via a bonding material layer, and has a Young's modulus in a direction perpendicular to the bonding surface of the bonding material layer.
  • Ez where the Young's modulus in the direction parallel to the joint surface and parallel to the longitudinal direction of the joint surface is Ex, the relational expression of 0.5 ⁇ Ez / E ⁇ ⁇ 1.5 is satisfied and the joint material layer
  • the porosity is 25-85%.
  • the bonding material layer of the bonded body according to the present invention 0.5 ⁇ / ⁇ ⁇ 1.5, and more preferably 0.6 ⁇ Ez / Ex ⁇ 1.3. .
  • the bonding material layer of the present invention has a porosity of 25 to 85%, more preferably 30 to 80%. This is because if the porosity is less than 25%, the Young's modulus becomes too high, and the object to be joined is too constrained, so that stress relaxation cannot be achieved.
  • the bonding material composition forming the bonding material layer of the present invention, 40 a filler circularity of from 0.7 to 1, the total FILLER one: 100 volume 0/0 ( More preferably, it is preferable to include 50 to 100 volume%).
  • the average pore diameter of the bonding material layer in the present invention is preferably 0.5 to 50 111 (preferably 1 to 40 zm).
  • the proportion of total pores is 50 Q / o or more, preferably 60. / o or more). This is because if the pores are too large, the strength will be reduced and bonding may not be possible.
  • the interface between the joining object (A) and the joining material layer when joining objects (A) and (B) via a joining material layer having a thickness t, the interface between the joining object (A) and the joining material layer.
  • the bonding material layer having a thickness of 0.5 t between the bonding material layer (1) and the bonding material layer (3) is defined as the bonding material layer (2)
  • the average of the bonding material layers (1) and (3) If the porosity is ⁇ 1 and the porosity of the bonding material layer (2) is ⁇ 2, 0.9 ⁇ 2 / ⁇ 1 ⁇ 1.4 (more preferably 1 ⁇ ⁇ 2 / ⁇ 1 ⁇ 1 It is preferable to satisfy the relationship of 3). This is because if 0.9 or less, cracks are likely to occur near the joint surface, and if it is 4.4 or more, pores are concentrated in the center of the bonding material layer, and
  • the Young's modulus ( ⁇ ) is 0.:! To 20% of the Young's modulus of the workpiece.
  • the bonding material layer in the present invention preferably has an average linear thermal expansion coefficient of 0.:! To 70% (more preferably 0.2 to 65%) of an object to be bonded.
  • the bonding material layer of the present invention preferably has a thermal conductivity of 0.:! To 20 WZmK (more preferably 0.15 to: 15 W / mK).
  • the bonding material composition according to the present invention includes a filler and a matrix as main components and an additive such as an organic binder and water.
  • the proportion of the filler in the bonding material composition is preferably 10 to 95% by volume (more preferably 20 to 90% by volume), and the proportion of Matritus is preferably 5 to 90% by volume. 10-80% by volume) Les.
  • the filler used in the present invention is preferably at least one selected from the group consisting of oxides, nitrides, carbides, and metals, and among them, silica, alumina, mullite, diene, and the like. More preferably, it is at least one selected from the group consisting of Norrequoia, cordierite, silicon carbide, siliceous glass, and alumina siliceous glass.
  • the matrix used in the present invention needs to be appropriately bonded between filler particles and between an object to be bonded and a filler, it is preferable to use an inorganic bonding agent, colloidal shear force, colloidal alumina, Ethyl silicate, water glass, silica polymer, aluminum phosphate, bentonite, and the like are examples. Particularly, colloidal silica is more preferable. This is because it has excellent bonding strength, ease of compatibility with fillers, chemical stability, heat resistance, and the like.
  • the bonding material composition of the present invention is prepared by mixing the above filler and optionally containing an organic binder (for example, methyl cellulose (MC), carboxymethyl cellulose (CMC), etc.), foaming resin and dispersant. Further, as a matrix, an inorganic bonding agent (for example, colloidanol silica), and in some cases, water is mixed, and kneading is performed for a predetermined time in a mixer, whereby a bonding material composition (a paste-like composition) Bonding material) can be produced.
  • an organic binder for example, methyl cellulose (MC), carboxymethyl cellulose (CMC), etc.
  • foaming resin and dispersant for example, methyl cellulose (MC), carboxymethyl cellulose (CMC), etc.
  • foaming resin for example, methyl cellulose (MC), carboxymethyl cellulose (CMC), etc.
  • foaming resin for example, methyl cellulose (MC), carboxymethyl cellulose (CMC), etc.
  • foaming resin for example,
  • the amount of applied force of the foamed resin is preferably 0.:! To 2.5% by mass, and more preferably 0.5 to 2.0% by mass. If it is less than 0.1% by mass, sufficient porosity may not be obtained and the Young's modulus may be increased. If it exceeds 2.5% by mass, the porosity may be too high to obtain sufficient bonding strength. .
  • the bonding temperature with the objects to be bonded is 1000 ° C or less, preferably 50 ° C or more and 900 ° C or less, More preferably, the temperature is 100 ° C. or higher and 800 ° C. or lower) from the viewpoint that sufficient strength and bonding state can be exhibited. Even if it exceeds 1000 ° C, it can be joined without any problem, but it is not preferable because it is difficult to obtain desired properties (such as Young's modulus and thermal expansion coefficient).
  • the honeycomb structure 1 of the present invention has a plurality of cells 5 which are the flow paths of the fluid partitioned and formed by the porous partition walls 6.
  • each has a structure arranged so as to be parallel to each other in the axial direction, each has a shape forming a part of the entire structure, and is assembled in a direction perpendicular to the central axis of the honeycomb structure 1
  • a plurality of honeycomb segments 2 having a shape that constitutes the entire structure are integrally bonded by a bonding material layer 9 formed from the bonding material composition (bonding material) of the present invention. It is configured as a body.
  • the overall cross-sectional shape cut along a plane perpendicular to the central axis of the honeycomb structure 1 is circular, elliptical, triangular, square, It is ground to have other shapes, and the outer peripheral surface is covered with the coating material 4.
  • this honeycomb structure 1 is used as a DPF, it is possible to capture particulate matter (particulates) including soot discharged from the diesel engine power by arranging it in the exhaust system of the diesel engine.
  • each honeycomb segment 2 has a shape constituting a part of the entire structure of the honeycomb structure 1 (see FIG. 1) and the honeycomb structure 1 (see FIG. 1). It has a shape that constitutes the entire structure when assembled in a direction perpendicular to the central axis.
  • the cells 5 are arranged so as to be parallel to each other in the central axis direction of the honeycomb structure 1, and the respective end portions of the adjacent cells 5 are alternately sealed with the fillers 7.
  • the left end side in FIGS. 3 to 4 is open, while the right end side is sealed with the filler 7, and another cell 5 adjacent thereto is sealed.
  • the left end side is sealed by the filler 7, but the right end side is open. Due to such plugging, as shown in FIG. 2, the end face of the honeycomb segment 2 has a pine pattern.
  • FIG. 4 shows a case where the left side of the honeycomb segment 2 serves as an exhaust gas inlet.
  • the gas flows into the honeycomb segment 2 from the open cell 5 (inflow cell) without being sealed.
  • the exhaust gas flowing into the cell 5 (inflow cell) passes through the porous partition wall 6 and flows out from the other cell 5 (outflow cell).
  • particulate matter (particulates) containing soot in the exhaust gas is captured by the partition walls 6.
  • exhaust gas can be purified.
  • particulate matter (particulates) containing soot accumulates with time in the honeycomb segment 2 and the pressure loss increases, so that regeneration is performed by burning soot and the like.
  • the cross-sectional shape of the cell 5 may also be a triangle, a hexagon, a circle, an ellipse, or other shapes.
  • the bonding material layer 9 is formed from the bonding material composition (bonding material) of the present invention, and is applied to the outer peripheral surface of the honeycomb segment 2 to bond the honeycomb segment 2. It works as follows.
  • the bonding material layer 9 may be applied to the outer peripheral surface of each adjacent honeycomb segment 2, but between the adjacent honeycomb segments 2, only one of the corresponding outer peripheral surfaces is applied. May be. Such application to only one side of the corresponding surface is preferable in that the amount of the bonding material layer 9 used can be saved.
  • the direction in which the bonding material layer 9 is applied is not particularly limited, such as the longitudinal direction in the honeycomb segment outer peripheral surface, the direction perpendicular to the longitudinal length in the honeycomb segment outer peripheral surface, and the direction perpendicular to the honeycomb segment outer peripheral surface. It is preferable to apply toward the longitudinal direction in the outer peripheral surface of the segment.
  • the thickness of the bonding material layer 9 is determined in consideration of the bonding force between the honeycomb segments 2 and is appropriately selected within the range of 0.5 to 3. Omm, for example.
  • the material of the honeycomb segment 2 used in the present embodiment includes silicon carbide (SiC) and silicon carbide (SiC) as an aggregate and silicon (Si) as a binder from the viewpoint of strength and heat resistance.
  • SiC silicon carbide
  • SiC silicon carbide
  • SiC silicon carbide
  • SiC silicon carbide
  • SiC silicon carbide
  • Si silicon carbide
  • SiC silicon carbide
  • Si silicon carbide
  • SiC silicon carbide
  • Honeycomb segment 2 can be produced, for example, by appropriately selecting a material such as methenoresenorelose, hydroxypropoxynoresenorelose, hydroxyethenoresenorelose, carboxymethylcellulose, polyvinyl alcohol, etc. Add water, etc., as an activator and solvent to form a plastic clay. Extrude the clay into the shape described above, then dry it with microwaves, hot air, etc., then sinter This can be done.
  • a material such as methenoresenorelose, hydroxypropoxynoresenorelose, hydroxyethenoresenorelose, carboxymethylcellulose, polyvinyl alcohol, etc.
  • Add water, etc., as an activator and solvent to form a plastic clay. Extrude the clay into the shape described above, then dry it with microwaves, hot air, etc., then sinter This can be done.
  • the filler 7 used for plugging the cells 5 it is possible to use the same material as that of the honeycomb segment 2 as the force S.
  • the plugging with the filler 7 is performed by filling the cells 5 that are opened by immersing the end face of the honeycomb segment 2 in the slurry-like filler 7 in a state where the cells 5 that are not plugged are masked. It can be carried out. Filling with the filler 7 may be performed before or after firing after the formation of the honeycomb segment 2, but is preferably performed before firing because the firing process is completed once. .
  • a paste-like bonding material (bonding material composition) is applied to the outer peripheral surface of the honeycomb segment 2 to form the bonding material layer 9, and a predetermined three-dimensional shape is formed.
  • a plurality of honeycomb segments 2 are assembled so as to be (the entire structure of the honeycomb structure 1), and after being crimped in this assembled state, they are dried by heating. In this way, a joined body is produced in which a plurality of honeycomb segments 2 are joined together. Thereafter, the joined body is ground into the shape described above, and the outer peripheral surface is covered with the coating material 4 and dried by heating. In this way, the honeycomb structure 1 shown in FIG. 1 is manufactured.
  • the material of the coating material 4 the same material as the bonding material layer 9 can be used.
  • the thickness of the coating material 4 is appropriately selected within the range of, for example, 0.1 to 1.5 mm.
  • honeycomb segment raw material SiC powder and metal Si powder are mixed at a mass ratio of 80:20, and a pore former, an organic binder, a surfactant and water are added to the mixture to thereby improve plasticity. Soil was made. This clay is extruded and dried to form a square with a partition wall thickness of 310 ⁇ , a cell density of approximately 46.5 cells / cm 2 (300 cells / square inch), a cross-section of 35 mm square, and a length force A honeycomb segment formed body of S 152 mm was obtained. In this honeycomb segment formed body, both end faces of the cells were sealed so that the end faces had a checkered pattern. In other words, sealing was performed so that adjacent cells were sealed at opposite ends.
  • the same material as the honeycomb segment material was used. Both ends of the cell are sealed and dried, then degreased at about 400 ° C in an air atmosphere, and then sintered at about 1450 ° C in an Ar inert atmosphere to bond SiC crystal particles with Si. In addition, a honeycomb segment having a porous structure was obtained.
  • the circularity of the filler was calculated using the following formula by analyzing the projected image of the filler particles using a flow type particle image analyzer. The results are shown in Table 1.
  • Circularity (Equal to projected particle area, circumference of circle) / (Projected particle circumference) [0062] (Preparation of honeycomb structure)
  • the bonding material No. 1 is coated with the coating direction as the longitudinal direction of the honeycomb segment so as to have a thickness of about 1 mm to form a bonding material layer, and another honeycomb segment is placed thereon.
  • This process was repeated to produce a honeycomb segment laminate composed of 16 double cam segments combined in 4 x 4, and after joining the whole by applying pressure from the outside as appropriate, 140 ° C And dried for 2 hours to obtain a bonded honeycomb segment assembly.
  • the outer periphery of the obtained bonded honeycomb segment assembly was cut into a cylindrical shape, and the outer peripheral surface was coated with a coating material and dried and cured at 700 ° C. for 2 hours to obtain a honeycomb structure. [0063] (Evaluation of bonding material layer)
  • the Young's modulus is obtained by cutting the bonding material portion of the honeycomb structure to cut a sample of a predetermined shape, measuring the displacement when a predetermined compressive load is applied to the sump nore, and using the stress-strain diagram. Calculated. (The Young's modulus of the workpiece was calculated from the load-displacement curve in a three-point bending test according to IS R1601.)
  • the average thermal expansion coefficient, porosity, thermal conductivity, and average pore diameter are Samples of a predetermined shape are cut out, the average linear thermal expansion coefficient according to JIS R1618, the thermal conductivity according to JIS R1611, the porosity by Archimedes method, and the average by mercury porosimetry The pore diameter was measured.
  • ⁇ 1, which is the average porosity of the bonding material layers (1) and (3), and ⁇ 2, which is the porosity of the bonding material layer (2), are cross sections perpendicular to the bonding surface of the bonding material. It observed with the microscope and measured by image analysis. The results are shown in Table 2.
  • honeycomb structures were produced in the same manner as in Example 1 except that the bonding material 1 in Example 1 was changed to the bonding materials No. 2 to 12 shown in Table 1.
  • Comparative Examples:! To 3 honeycomb structures were produced in the same manner as in Example 1 except that the bonding materials No. 13 to 15 were changed.
  • Comparative Example 4 a honeycomb structure was produced in the same manner as in Comparative Example 1 except that the coating method of bonding material No. 13 was changed in Comparative Example 1.
  • Each obtained honeycomb The structure (Examples 2 to: 12, Comparative examples:! To 4) was evaluated and tested in the same manner as in Example 1. The results are shown in Tables 2 and 3.
  • Natural glass B 0.88 B: 20 Foamed resin: 0.5 B: Silicon carbide Organic binder 0.1
  • the examples:! To 12 include 40 to 100% by volume of the filler having a circularity of 0.7 to 1 in the total filler, and the additive Therefore, the bonding material layer is evaluated well, the bonding state between the honeycomb segments is also good, and rapid heating is performed. Even after testing, cracks do not occur at the end and outer periphery of the honeycomb structure. It was a good product. In particular, since Examples 1 and 2 had Ez / Ex values close to 1, even in a high-temperature rapid heating test, they were non-defective products that did not cause cracks at the end of the honeycomb structure.
  • Comparative Example 1 less than 40% by volume (33% by volume) of the bonding material composition was used with a filler having a circularity of 0.7 to 1 in all the fillers. Therefore, Ez / Ex is less than 0.5, and the ratio of 5-50 xm pores to the total pores is extremely low at 5%. ⁇ 2 / ⁇ 1 also exceeds 1.4 (1.61 After the rapid heating test, cracks were generated at the end of the honeycomb structure. Further, in Comparative Example 2, since the porosity after curing exceeded 85%, it was impossible to join the honeycomb segments. Furthermore, in Comparative Example 3, the porosity after curing was 25.
  • the bonding material composition and the bonded body of the present invention are a collection filter for exhaust gas, and in particular, a diesel particulate filter (DPF) that collects particulate matter (particulates) in exhaust gas from diesel engines. ) Can be suitably used at the time of preparation.
  • DPF diesel particulate filter

Abstract

 無機繊維(ファイバー)を用いることなく、等方的なフィラーを用いることにより、セラミックスセメントの硬化後のヤング率の異方性を低減し、得られたハニカム構造体の端面にクラックが入ることを大幅に抑制することができる接合材組成物を提供する。二つ以上の被接合物が接合材層を介して一体化されてなる接合体であって、接合材層の接合面に垂直な方向のヤング率をEz、接合面に平行で、接合面の長手方向に平行な方向のヤング率をExとしたとき、0.5<Ez/Ex<1.5の関係式を満たし、且つ、接合材層の気孔率が25~85%である。

Description

明 細 書
接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いた ハニカム構造体
技術分野
[0001] 本発明は、セラミックス部材の複数を接合するセラミックス構造体、特に、ノ、二カムセ グメントの複数を一体的に接合するハニカム構造体に好ましく用いられる接合体、と 接合材組成物、及びハニカムセグメント接合体に関する。
背景技術
[0002] ハニカム構造体が、排ガス用の捕集フィルタとして、例えば、ディーゼルエンジン等 力、らの排ガスに含まれている粒子状物質 (パティキュレート)を捕捉して除去するため に、ディーゼルパティキュレートフィルタ(DPF)として、ディーゼルエンジンの排気系 等に組み込まれて用いられている。
[0003] このようなハニカム構造体は、例えば、炭化珪素(SiC)等からなる多孔質の隔壁に よって区画、形成された流体の流路となる複数のセルが中心軸方向に互いに並行す るように配設された構造を有している。また、隣接したセルの端部は、交互に(市松模 様状に)目封じされている。すなわち、一のセルは、一方の端部が開口し、他方の端 部が目封じされており、これと隣接する他のセルは、一方の端部が目封じされ、他方 の端部が開口している。
[0004] このような構造とすることにより、一方の端部から所定のセル (流入セル)に流入させ た排ガスを、多孔質の隔壁を通過させることによって流入セルに隣接したセル (流出 セル)を経由して流出させ、隔壁を通過させる際に排ガス中の粒子状物質 (パティキ ュレート)を隔壁に捕捉させることによって、排ガスの浄化をすることができる。
[0005] このようなハニカム構造体(フィルタ)を長期間継続して使用するためには、フィルタ を再生させる必要がある。すなわち、フィルタ内部に経時的に堆積したパティキユレ ートによる圧力損失の増大を取り除くため、フィルタ内部に堆積したパティキュレート を燃焼させて除去する必要がある。このフィルタ再生時には大きな熱応力が発生し、 この熱応力がハニカム構造体にクラックや破壊等の欠陥を発生させるという問題があ つた。このような熱応力に対する耐熱衝撃性の向上の要請に対応して、複数のハニ カムセグメントを接合材層によって一体的に接合することによって熱応力を分散、緩 和する機能を持たせた分割構造のハニカム構造体が提案され、その耐熱衝撃性を ある程度改善することができるようになった。このような分割構造のハニカム構造体は 、それぞれが全体構造の一部を構成する形状を有するとともに、中心軸に対して垂 直な方向に組み付けられることによって全体構造を構成することになる形状を有する 複数のハニカムセグメントが、接合材層によって一体的に接合されて、中心軸に対し て垂直な平面で切断した全体の断面形状が円形等の所定の形状となるように、ハニ カムセグメント接合体を成形した後、その外周面をコーティング材により被覆された構 造となっている。
[0006] しかし、近年、フィルタはさらに大型化の要請が高まり、再生時に発生する熱応力も 増大することになり、上述の欠陥を防止するため、構造体としての耐熱衝撃性の向上 が強く望まれるようになった。中でも、複数のハニカムセグメントを一体的に接合する ための接合材層には、優れた応力緩和機能と接合強度とを実現することによって耐 熱衝撃性に優れたハニカム構造体を実現することが望まれている。
[0007] このような問題に対応して、複数のハニカムセグメントを一体的に接合するための接 合材として、無機繊維 (ファイバー)、有機バインダー、無機バインダー、無機粒子か らなり、無機繊維の配向度が 70%以上であるシール剤を用いることにより、フィルタ 一 (セラミック構造体)の長手方向に対する伸縮を抑制する効果が得られ、過酷な使 用条件の下でもフィルター(セラミック構造体)に加わる熱応力を開放することができ ることが開示されている (特許文献 1参照)。
[0008] し力、しながら、特許文献 1に開示されたシール剤は、無機繊維 (ファイバー)のような 異方的な形状のフィラーが含有されているため、硬化後のヤング率に異方性が生じ る。即ち、上記シール剤は、ハニカムセグメントとの接合面に垂直な方向では低ヤン グ率であるが、接合面内方向(特に、長手方向)では比較的高ヤング率となる。即ち、 ハニカムセグメント間における長手方向に伸縮しょうとするモードの熱応力に対して、 上記シール剤がハニカムセグメントを拘束しすぎてしまレ、、その結果、得られたハニ カム構造体の端面にクラックが入りやすくなるという問題点があった。 [0009] また、特許文献 1に開示されたシール剤は、接合材であり、その特性をフイラ一であ る無機繊維 (ファイバー)の厚さ、幅及び長さで制御することが必要不可欠であるため 、高コストであるという問題点があった。
[0010] 更に、特許文献 1に開示されたシール剤は、接合材のフイラ一として無機繊維 (ファ ィバー)を用いているため、人体に無害とはいえな力、つた。
特許文献 1 :特開 2002— 177719号公報
発明の開示
[0011] 本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とす るところは、高コストで且つ人体に無害とはレ、えなレ、無機繊維 (ファイバー)を用いるこ となぐ等方的なフィラーを用いることにより、接合材の硬化後のヤング率の異方性を 低減し、ハニカムセグメント間の接合材層における長手方向に伸縮しょうとするモード の熱応力に対して、ハニカムセグメントを拘束しすぎることなぐ得られたハニカム構 造体の端面にクラックが入ることを大幅に抑制することができる接合材組成物及び接 合体を提供することにある。
[0012] 上記目的を達成するため、本発明によれば、下記の接合体、それに用いる接合材 組成物、それを用いたハニカムセグメント接合体、並びにそれを用いたハニカム構造 体が提供される。
[0013] [1] 二つ以上の被接合物が接合材層を介して一体化されてなる接合体であって、 接合材層の接合面に垂直な方向のヤング率を Ez、接合面に平行で、接合面の長手 方向に平行な方向のヤング率を Exとしたとき、 0. 5< Εζ/Εχ< 1. 5の関係式を満 たし、且つ、接合材層の気孔率が 25〜85%である接合体。
[0014] [2] 前記接合材層を形成する接合材組成物に円形度が 0. 7〜:!であるフィラーを、 全フイラ一に対して 40〜 100体積%含む [ 1 ]に記載の接合体。
[0015] [3] 前記接合材層の平均気孔径が、 0. 5〜50 x mである [1]又は [2]に記載の接 合体。
[0016] [4] 前記接合材層の 0. 5〜50 / mの気孔が全気孔に占める割合が、 50%以上で ある [ 1]〜 [3]のレ、ずれかに記載の接合体。
[0017] [5] 被接合物 (A)および被接合物 (B)を厚さ tの接合材層を介して接合する場合、 被接合物 (A)と接合材層の界面から 0. 25tの厚さの接合材層を接合材層(1)、被接 合物(B)と接合材層の界面から 0. 25tの厚さの接合材層を接合材層(3)、接合材層 (1)と接合材層(3)の間の厚さ 0. 5tの接合材層を接合材層(2)としたとき、接合材層 (1)と(3)の平均の気孔率を ε 1、接合材層(2)の気孔率を ε 2とするならば、 0. 9く ε 2/ ε 1 < 1. 4の関係式を満たす [1]〜 [4]のいずれかに記載の接合体。
[0018] [6] 前記接合材層のヤング率(Εζ)力 被接合物のヤング率の 0.:!〜 20%である [ 1]〜 [5]のレ、ずれかに記載の接合体。
[0019] [7] 前記接合材層の平均線熱膨張係数が、被接合物の 0.:!〜 70%である [1]〜[ 6]のレ、ずれかに記載の接合体。
[0020] [8] 前記接合材層の熱伝導率が、 0.:!〜 20WZmKである [1]〜[7]のいずれか に記載の接合体。
[0021] [9] 前記フイラ一力 シリカ、アルミナ、ムライト、ジルコユア、コーディエライト、炭化 珪素、シリカ質ガラス、アルミナシリカ質ガラスの群から選択された少なくとも 1種以上 である [ 1]〜 [8]のレ、ずれかに記載の接合体。
[0022] [10] [1]〜 [9]のいずれかに記載の接合体に用いられる接合材層を形成するため の接合材組成物であって、フィラーと無機接合剤を主成分とする接合材組成物。
[0023] [11] 前記フイラ一力 シリカ、アルミナ、ムライト、ジノレコニァ、 コーディエライト、炭化 珪素、シリカ質ガラス、アルミナシリカ質ガラスの群から選択された少なくとも 1種以上 である [10]に記載の接合材組成物。
[0024] [12] 発泡樹脂を 0.:!〜 2.5質量%含む [10]又は [11]に記載の接合材組成物。
[0025] [13] [10]〜[: 12]のいずれかに記載の接合材組成物により形成される接合材層を 有する接合体。
[0026] [14] [10]〜[: 12]のいずれかに記載の接合材組成物で、複数のハニカムセグメン ト同士を接合して作製されたハニカムセグメント接合体。
[0027] [15] [14]に記載のハニカムセグメント接合体から作製されたハニカム構造体。
[0028] 以上説明したように、本発明の接合材組成物は、高コストで且つ人体に無害とはい えない無機繊維 (ファイバー)を用いることなぐ等方的なフィラーを用いることにより、 接合材組成物の硬化後のヤング率の異方性を低減し、ハニカムセグメント間の接合 材層における長手方向に伸縮しょうとするモードの熱応力に対して、ハニカムセグメ ントを拘束しすぎることなぐ得られたハニカム構造体の端面にクラックが入ることを大 幅に抑制することができる。
図面の簡単な説明
[0029] [図 1]本発明に係るハニカム構造体の一の実施形態(中心軸に対して垂直な平面で 切断した全体の断面形状が円形)を模式的に示す斜視図である。
[図 2]本発明に係るハニカム構造体の他の実施形態(中心軸に対して垂直な平面で 切断した全体の断面形状が正方形)の一部を端面側から見た正面図である。
[図 3]本発明に係るハニカム構造体の他の実施形態に用いられるハニカムセグメント を模式的に示す斜視図である。
[図 4]図 3における A— A線断面図である。
符号の説明
[0030] 1 :ハニカム構造体、 2 :ハニカムセグメント、 4 :コーティング材、 5 :セル、 6 :隔壁、 7 : 充填材、 9 :接合材層。
発明を実施するための最良の形態
[0031] 以下、本発明を具体的な実施形態に基づき詳細に説明するが、本発明は、これに 限定されて解釈されるもではなぐ本発明の範囲を逸脱しない限りにおいて、当業者 の知識に基づいて、種々の変更、修正、改良を加え得るものである。
[0032] 本発明に係る接合体は、二つ以上の被接合物が接合材層を介して一体化されて なる接合体であって、接合材層の接合面に垂直な方向のヤング率を Ez、接合面に 平行で、接合面の長手方向に平行な方向のヤング率を Exとしたとき、 0. 5< Ez/E χ< 1. 5の関係式を満たし、且つ、接合材層の気孔率が 25〜85%である。
[0033] ここで、本発明に係る接合体の接合材層においては、 0. 5< Εζ/Εχ< 1. 5であり 、より好ましくは、 0. 6く Ez/Exく 1. 3である。
[0034] また、本発明の接合材層は、気孔率が 25〜85%、より好ましくは、 30〜80%であ る。これは、気孔率が 25%未満ではヤング率が高くなりすぎ、被接合物を拘束しすぎ るため応力緩和ができなくなり、一方 85%より大きいと強度が不足して接合できない からである。 [0035] このとき、本発明の接合材層を形成する接合材組成物には、円形度が 0. 7〜1で あるフィラーを、全フイラ一に対して 40〜: 100体積0 /0 (より好ましくは、 50〜: 100体積 %)含むことが好ましい。これは、円形度が 0. 7〜1であるフィラーの割合が全フイラ 一に対して 40体積%未満であると、円形度が 0. 7未満のフィラーの割合が増え、そ れらの配向による、特性の異方性が顕著になるためである。
[0036] また、本発明における接合材層の平均気孔径は、 0. 5〜50 111 (ょり好ましくは1 〜40 z m)であることが好ましぐ 0. 5〜50 μ ΐηの気孔が全気孔に占める割合が 50 Q/o以上はり好ましくは、 60。/o以上)であることが好ましい。これは、気孔が大きすぎる と強度が低下し、接合できなレ、ことがあるためである。
[0037] 更に、本発明の接合体においては、被接合物 (A)および (B)を厚さ tの接合材層を 介して接合する場合、被接合物 (A)と接合材層の界面から 0. 25tの厚さの接合材層 を接合材層(1)、被接合物(B)と接合材層の界面から 0. 25tの厚さの接合材層を接 合材層(3)、接合材層(1)と接合材層(3)の間の厚さ 0. 5tの接合材層を接合材層( 2)としたとき、接合材層(1)と(3)の平均の気孔率を ε 1、接合材層(2)の気孔率を ε 2とするならば、 0. 9 < ε 2/ ε 1 < 1. 4 (より好ましくは、 1≤ ε 2/ ε 1 < 1. 3)の関 係式を満たすことが好ましい。これは、 0. 9以下では、接合面に近いところでクラック が発生しやすくなることがあり、 1. 4以上では接合材層の中央に気孔が集中し、その 面で接合部が破断することがあるからである。
[0038] 本発明における接合材層は、ヤング率 (Εζ)が被接合物のヤング率の 0.:!〜 20%
(より好ましくは、 0. 15〜: 15%)であることが好ましい。
[0039] また、本発明における接合材層は、平均線熱膨張係数が被接合物の 0.:!〜 70% ( より好ましくは、 0. 2〜65%)であることが好ましい。
[0040] 更に、本発明における接合材層は、熱伝導率が 0.:!〜 20WZmK (より好ましくは 、0. 15〜: 15W/mK)であることが好ましい。
[0041] 尚、本発明に係る接合材組成物は、フィラーとマトリックスが主成分であり、有機バイ ンダーや水等の添加物を含有するものである。接合材組成物中に占めるフィラーの 割合は、 10〜95体積% (より好ましくは、 20〜90体積%)であることが好ましぐマトリ ッタスの割合は、 5〜90体積%はり好ましくは、 10〜80体積%)であることが好まし レ、。
[0042] 尚、本発明で用いるフイラ一は、酸化物、窒化物、炭化物、金属、の群から選択さ れた少なくとも 1種以上であることが好ましいが、中でも、シリカ、アルミナ、ムライト、ジ ノレコユア、コーディエライト、炭化珪素、シリカ質ガラス、アルミナシリカ質ガラスの群か ら選択された少なくとも 1種以上であることがより好ましい。
[0043] また、本発明で用いるマトリックスは、フィラー粒子同士および被接合物とフイラ一間 を適度に接合する必要があるため、無機接合剤であることが好ましぐコロイダルシリ 力、コロイダルアルミナ、ェチルシリケート、水ガラス、シリカポリマー、リン酸アルミユウ ム、ベントナイト、などが例として挙げられる力 特に、コロイダルシリカであることがより 好ましレ、。これは、接合力、フィラーとのなじみやすさ、化学的安定性、耐熱性等に優 れているからである。
[0044] 尚、本発明の接合材組成物は、上記フィラーを混合し、場合によって、有機バイン ダー(例えば、メチルセルロース(MC)、カルボキシメチルセルロース(CMC)等)、発 泡樹脂及び分散剤をカ卩え、更に、マトリックスとして、無機接合剤(例えば、コロイダノレ シリカ等)、場合によっては、水を混合し、ミキサーにて、所定時間の混練を行うことに より、接合材組成物 (ペースト状の接合材)を作製することができる。
[0045] 本発明の接合材組成物において、発泡樹脂の添力卩量は 0.:!〜 2.5質量%が好まし く、 0.5〜2.0質量%がより好ましい。 0.1質量%未満では、十分な気孔率が得られず ヤング率が高くなることがあり、 2.5質量%を超えると、気孔率が大きくなりすぎて十分 な接合強度が得られなレ、場合がある。
[0046] また、本発明の接合材組成物を用いて被接合物同士を接合させる際、被接合物と の接合温度が、 1000°C以下はり好ましくは、 50°C以上 900°C以下、さらに好ましく は 100°C以上 800°C以下)であることが、十分な強度や接合状態を発現できるという 観点から望ましい。 1000°Cを超過した場合であっても問題なく接合させることができ るが、所望の特性 (ヤング率や熱膨張係数など)が得られ難くなるため、好ましくない
[0047] 次に、本発明の接合材組成物 (接合材)を適用したハニカム構造体の構造の一例 を具体的に説明する。 [0048] 本発明のハニカム構造体 1は、図 1及び図 2に示すように、多孔質の隔壁 6によって 区画、形成された流体の流路となる複数のセル 5がハニカム構造体 1の中心軸方向 に互いに並行するように配設された構造を有し、それぞれが全体構造の一部を構成 する形状を有するとともに、ハニカム構造体 1の中心軸に対して垂直な方向に組み付 けられることによって全体構造を構成することになる形状を有する複数のハニカムセ グメント 2が、本発明の接合材組成物 (接合材)から形成された接合材層 9によって一 体的に接合されたハニカムセグメント接合体として構成されてなるものである。
[0049] ここで、接合材層 9によるハニカムセグメント 2の接合の後、ハニカム構造体 1の中心 軸に対して垂直な平面で切断した全体の断面形状が円形、楕円形、三角形、正方 形、その他の形状となるように研削加工され、外周面がコーティング材 4によって被覆 される。このハニカム構造体 1を DPFとして用いる場合、ディーゼルエンジンの排気 系等に配置することにより、ディーゼルエンジン力 排出されるスートを含む粒子状物 質 (パティキュレート)を捕捉すること力 Sできる。
[0050] また、図 1においては、一つのハニカムセグメント 2においてのみ、セル 5及び隔壁 6 を示している。それぞれのハニカムセグメント 2は、図 3〜4に示すように、ハニカム構 造体 1 (図 1参照)の全体構造の一部を構成する形状を有するとともに、ハニカム構造 体 1 (図 1参照)の中心軸に対して垂直な方向に組み付けられることによって全体構 造を構成することになる形状を有している。セル 5はハニカム構造体 1の中心軸方向 に互いに並行するように配設されており、隣接しているセル 5におけるそれぞれの端 部が交互に充填材 7によって目封じされている。
[0051] 所定のセル 5 (流入セル)においては、図 3〜4における左端部側が開口している一 方、右端部側が充填材 7によって目封じされており、これと隣接する他のセル 5 (流出 セル)においては、左端部側が充填材 7によって目封じされるが、右端部側が開口し ている。このような目封じにより、図 2に示すように、ハニカムセグメント 2の端面が巿松 模様状を呈するようになる。このような複数のハニカムセグメント 2が接合されたハニカ ム構造体 1を排ガスの排気系内に配置した場合、排ガスは図 4における左側から各 ハニカムセグメント 2のセル 5内に流入して右側に移動する。
[0052] 図 4におレ、ては、ハニカムセグメント 2の左側が排ガスの入口となる場合を示し、排 ガスは、 目封じされることなく開口しているセル 5 (流入セル)からハニカムセグメント 2 内に流入する。セル 5 (流入セル)に流入した排ガスは、多孔質の隔壁 6を通過して他 のセル 5 (流出セル)から流出する。そして、隔壁 6を通過する際に排ガス中のスート を含む粒子状物質 (パティキュレート)が隔壁 6に捕捉される。このようにして、排ガス の浄化を行うことができる。このような捕捉によって、ハニカムセグメント 2の内部には スートを含む粒子状物質 (パティキュレート)が経時的に堆積して圧力損失が大きくな るため、スート等を燃焼させる再生が行われる。なお、図 2〜4には、全体の断面形状 が正方形のハニカムセグメント 2を示す力 三角形、六角形等の形状であってもよい。 また、セル 5の断面形状も、三角形、六角形、円形、楕円形、その他の形状であって あよい。
[0053] 図 2に示すように、接合材層 9は、本発明の接合材組成物 (接合材)から形成されて おり、ハニカムセグメント 2の外周面に塗布されて、ハニカムセグメント 2を接合するよう に機能する。接合材層 9の塗布は、隣接しているそれぞれのハニカムセグメント 2の 外周面に行ってもよいが、隣接したハニカムセグメント 2の相互間においては、対応し た外周面の一方に対してだけ行ってもよい。このような対応面の片側だけへの塗布 は、接合材層 9の使用量を節約できる点で好ましい。接合材層 9の塗布する方向は、 ハニカムセグメント外周面内の長手方向、ハニカムセグメント外周面内の長手に垂直 な方向、ハニカムセグメント外周面に垂直な方向など、特に限定されるものではない 1S ハニカムセグメント外周面内の長手方向に向かって塗布するのが好ましい。接合 材層 9の厚さは、ハニカムセグメント 2の相互間の接合力を勘案して決定され、例えば 、 0. 5〜3. Ommの範囲で適宜選択される。
[0054] 本実施の形態に用いられるハニカムセグメント 2の材料としては、強度、耐熱性の観 点から、炭化珪素(SiC)、炭化珪素(SiC)を骨材としてかつ珪素(Si)を結合材として 形成された珪素一炭化珪素系複合材料、窒化珪素、コージエライト、ムライト、アルミ ナ、スピネル、炭化珪素—コージヱライト系複合材、リチウムアルミニウムシリケート、 チタン酸アルミニウム、 Fe_Cr_Al系金属からなる群から選択される少なくとも一種 力 構成された物を挙げることができる。中でも、炭化珪素(SiC)又は珪素—炭化珪 素系複合材料力 構成されてなるものが好ましい。 [0055] ハニカムセグメント 2の作製は、例えば、上述の材料力 適宜選択したものに、メチ ノレセノレロース、ヒドロキシプロポキシノレセノレロース、ヒドロキシェチノレセノレロース、カル ボキシメチルセルロース、ポリビニルアルコール等のバインダー、界面活性剤、溶媒と しての水等を添加して、可塑性の坏土とし、この坏土を上述の形状となるように押出 成形し、次いで、マイクロ波、熱風等によって乾燥した後、焼結することにより行うこと ができる。
[0056] セル 5の目封じに用いる充填材 7としては、ハニカムセグメント 2と同様な材料を用い ること力 Sできる。充填材 7による目封じは、 目封じをしないセル 5をマスキングした状態 で、ハニカムセグメント 2の端面をスラリー状の充填材 7に浸漬することにより開口して レ、るセル 5に充填することにより行うことができる。充填材 7の充填は、ハニカムセグメ ント 2の成形後における焼成前に行っても、焼成後に行ってもよいが、焼成前に行うこ との方が、焼成工程が 1回で終了するため好ましい。
[0057] 以上のようなハニカムセグメント 2の作製の後、ハニカムセグメント 2の外周面にぺー スト状の接合材 (接合材組成物)を塗布し、接合材層 9を形成し、所定の立体形状( ハニカム構造体 1の全体構造)となるように複数のハニカムセグメント 2を組み付け、こ の組み付けた状態で圧着した後、加熱乾燥する。このようにして、複数のハニカムセ グメント 2がー体的に接合された接合体が作製される。その後、この接合体を上述の 形状に研削加工し、外周面をコーティング材 4によって被覆し、加熱乾燥する。このよ うにして、図 1に示すハニカム構造体 1が作製される。コーティング材 4の材質としては 、接合材層 9と同様のものを用いることができる。コーティング材 4の厚さは、例えば、 0. 1〜: 1. 5mmの範囲で適宜選択される。
実施例
[0058] 以下、本発明を実施例によってさらに具体的に説明するが、本発明は、これらの実 施例によっていかなる制限を受けるものではない。
[0059] (実施例 1)
(ハニカムセグメントの作製)
ハニカムセグメント原料として、 SiC粉末及び金属 Si粉末を 80 : 20の質量割合で混 合し、これに造孔材、有機バインダー、界面活性剤及び水を添加して、可塑性の坏 土を作製した。この坏土を押出成形し、乾燥して隔壁の厚さが 310 μ ΐη、セル密度が 約 46. 5セル/ cm2 (300セル/平方インチ)、断面が一辺 35mmの正四角形、長さ 力 S 152mmのハニカムセグメント成形体を得た。このハニカムセグメント成形体を、端 面が市松模様状を呈するように、セルの両端面を目封じした。すなわち、隣接するセ ルが、互いに反対側の端部で封じられるように目封じを行った。 目封じ材としては、ハ 二カムセグメント原料と同様な材料を用いた。セルの両端面を目封じし、乾燥させた 後、大気雰囲気中約 400°Cで脱脂し、その後、 Ar不活性雰囲気で約 1450°Cで焼 成して、 SiC結晶粒子を Siで結合させた、多孔質構造を有するハニカムセグメントを 得た。
[0060] (接合材組成物の調製)
表 1に示す条件で、各フイラ一を混合したものに、分散剤、発泡樹脂及び有機バイ ンダー(CMCと MC)を添加し、更にマトリックスとしてコロイダルシリカを混合し、ミキ サ一にて 30分間混練を行レ、、種類及び組成比の異なるペースト状の接合材 (接合 材 No.:!〜 12)をそれぞれ得た。尚、表 1では、フィラーとマトリックスの体積0 /0 (vol% )は、その合計が 100%となるように表示し、その他の添加剤は、フィラーとマトリックス を 100%としたときの外配の質量%で表示した。
[0061] (フイラ一の円形度測定)
尚、フィラーの円形度は、フロー式粒子像分析装置を用い、フィラー粒子の投影像 を解析し、下記式を用いて算出した。その結果を表 1に示す。
円形度 = (投影された粒子面積と等しレ、円の周囲長) / (投影された粒子周囲長) [0062] (ハニカム構造体の作製)
ハニカムセグメントの外壁面に、厚さ約 lmmとなるように接合材 No. 1を塗布方向 をハニカムセグメントの長手方向としてコーティングして接合材層を形成し、その上に 別のハニカムセグメントを載置する工程を繰り返し、 4 X 4に組み合わした 16個のハ 二カムセグメントからなるハニカムセグメント積層体を作製し、適宜、外部より圧力を加 えるなどして、全体を接合させた後、 140°C、 2時間乾燥してハニカムセグメント接合 体を得た。得られたハニカムセグメント接合体の外周を円筒状に切断後、その外周面 をコーティング材で塗布し、 700°C、 2時間、乾燥硬化させ、ハニカム構造体を得た。 [0063] (接合材層の評価)
ヤング率は、ハニカム構造体の接合材部分を切断して所定の形状のサンプルを切 り出し、サンプノレに対して所定の圧縮荷重を負荷したときの変位を計測し、その応力 -歪線図から算出した。 (被接合物のヤング率 fお IS R1601に準じた 3点曲げ試験 における荷重-変位曲線から算出した。)また、平均熱膨張係数、気孔率、熱伝導率 、平均気孔径は、ハニカム構造体の接合材部分を切断して所定の形状のサンプルを 切り出し、 JIS R1618に準じた平均線熱膨張係数を、 JIS R1611に準じた熱伝導 率を、アルキメデス法により気孔率を、水銀ポロシメトリーにより平均気孔径を測定し た。また、 5〜50 z mの気孔が全気孔に占める割合は水銀ポロシメトリーによって得 られた気孔径分布をもとに算出した。尚、接合材層(1)と(3)の平均の気孔率である ε 1、接合材層(2)の気孔率である ε 2は、接合材の接合面に対して垂直な断面を 電子顕微鏡にて観察し、画像解析により計測した。結果を表 2に示す。
[0064] (ハニカム構造体の評価)
得られたハニカム構造体の接合後の状態を確認するとともに、急速加熱試験 (バー ナースポーリング試験)を試験温度 900°C、 1000°Cにて行った。試験後のハニカム 構造体のクラックの発生状況を観察した。結果を表 3に示す。
[0065] [バーナースポーリング試験 (急速加熱試験) ]
ハニカム構造体にバーナーで加熱した空気を流すことにより中心部分と外側部分と の温度差をつくり、ハニカム構造体のクラックの発生しない温度により耐熱衝撃性を 評価する試験(温度が高いほど耐熱衝撃性が高い)である。尚、表 3の表示では、 X の場合、試験温度 900°Cでクラック発生あり、〇の場合、試験温度 900°Cでクラック 発生なし、◎の場合、試験温度 1000°Cでクラック発生なしを意味する。
[0066] (実施例 2〜: 12、比較例:!〜 4)
実施例 2〜: 12は、実施例 1において、接合材 1を、表 1に示す接合材 No. 2〜: 12に 変えたこと以外、実施例 1と同様に、ハニカム構造体を作製した。また、比較例:!〜 3 は、接合材 No. 13〜: 15に変えたこと以外は実施例 1と同様に、ハニカム構造体を作 製した。比較例 4は、比較例 1において、接合材 No. 13のコーティング方法を変えた こと以外は比較例 1と同様にハニカム構造体を作製した。それぞれ得られたハニカム 構造体 (実施例 2〜: 12、比較例:!〜 4)について、実施例 1と同様の評価及び試験を 行った。その結果を表 2及び表 3に示す。
[表 1]
接 合 フイラ一種 フイラ一 フイラ 全フイラ一中の マ卜り その他添加剤 材 No. の円形度 一 割 円形度 0.7以上 ックス (質量%)
a 1 以下のフイラ 割 合
(vol%) —の割合 (vol¾) (vol%)
1 A: シリカ質ガ A: 0.95 A: 45 100 45 分散剤: 0.15 ラス B: 0.85 B: 10 発泡樹脂: 0.5
B: 炭化珪素 有機バインダー : 0.1
2 A: コーデイエ A: 0.86 A: 45 100 45 分散剤: 0.15 ライ卜 B: 0.85 B: 10 発泡樹脂: 0.5
B: 炭化珪素 有機バインダー : 0.1
3 A: 炭化珪素 A: 0.88 A: 45 100 45 分散剤: 0.15 B: 炭化珪素 B: 0.85 B: 10 発泡榭脂: 0.5 有機バインダー : 0.1
4 A: 炭化珪素 A: 0.85 A: 40 91 45 分散剤: 0.15 B: 炭化珪素 B: 0.89 B: 10 発泡樹脂: 0.5
C: シリカアル C: 0.62 C: 5 有機バインダ一 : 0.1 ミナ質ガラス
5 A: シリカ質ガ A: 0.95 A: 30 100 40 分散剤: 0.15 ラス B: 0.85 B: 30 発泡樹脂: 0.5
B: 炭化珪素 有機バインダー : 0.1
6 A: コ一デイエ A: 0.87 A: 30 100 40 分散剤: 0.15 ライ卜 B: 0.85 B: 30 発泡樹脂: 0.5
B: 炭化珪素 有機バインダー : 0.1
7 A: 炭化珪素 A: 0.88 A: 30 100 40 分散剤 : 0.15 B: 炭化珪素 B: 0.85 B: 30 発泡樹脂 :0.5 有機パインダ一 :0.1
8 A: 炭化珪素 A: 0.85 A: 25 91 40 分散剤: 0.15 B: 炭化珪素 B: 0.88 B: 30 発泡樹脂: 0.5
C: シリカアル C: 0.62 C: 5 有機バインダー .0.1 ミナ質ガラス
9 A: 炭化珪素 A: 0.85 A: 25 91 40 分散剤: 0.15 B: 炭化珪素 B: 0.88 B: 30 発泡樹脂: 0.5
C: シリカアル C: 0.62 C: 5 有機バインダー 0.5 ミナ質ガラス
10 A: シリカ質ガ A: 0.95 A: 45 100 45 分散剤 :0.15
ラス B: 0.85 B: 10 発泡樹脂 :0.1
B: 炭化珪素 有機バインダー 0.5
1 1 A: シリカ質ガ A: 0.95 A: 45 100 45 分散剤: 0.15
ラス B: 0.85 B: 10 発泡樹脂: 2
B: 炭化珪素 有機バインダー 0.5
12 A: シリカ質ガ A: 0.95 A: 45 100 45 分散剤: 0.15
ラス B: 0.85 B: 10 発泡樹脂: 2.5
B: 炭化珪素 有機バインダ一 0.5
13 A: シリカアルミ A: 0.62 A: 40 33 40 分散剤: 0.15
ナ質ガラス B: 0.88 B: 20 発泡樹脂: 0.5 B: 炭化珪素 有機バインダー 0.1
14 A: シリカ質ガ A: 0.95 A: 45 100 45 分散剤: 0.15
ラス B: 0.85 B: 10 発泡樹脂: 3
B: 炭化珪素 有機バインダー 0.5
15 A: シリカ質ガ A: 0.95 A: 45 100 45 分散剤: 0.2
ラス B: 0.85 B: 10 発泡樹脂: 0.001
B: 炭化珪素 有機バインダ
0.01 接 Ez/E 接合材 平 均 5 ~ 5 0 U ε 2 / 被接合物 被接合物に 接合材 ム X 層の気 気 孔 m の気孔 ε 1 に対する接 対する接合 層の熱 材 孔率 (《 径^ が全気孔 合材層の 材層の平均 伝導率
No. m) 占める割 ヤング率の 線熱膨張係 (W/mK
合(%) 割合 (W 数の割合 )
)
実施例 1 1 0.92 51 11 65 1.07 0.8 45 0.6 実施例 2 2 0.90 52 9 68 1.10 1.1 40 0.7 実施例 3 3 0.83 48 10 70 1.03 1.3 86 0.6 実施例 4 4 0.79 46 12 63 1.10 1.0 72 0.6 実施例 5 5 0.91 53 13 55 1.14 0.6 43 0.5 実施例 6 6 0.87 55 11 58 1.20 0.9 41 1.4 実施例 7 7 0.81 50 15 62 1.18 1.3 85 0.6 実施例 8 8 0.80 51 13 60 1.19 0.6 72 0.5 実施例 9 9 0.77 67 16 48 1.22 0.4 70 1.2 実施例 1 0 1 0 0.89 45 9 60 1.08 1.3 45 0.9 実施例 1 1 1 1 0.90 60 11 65 1.10 0.7 44 0.4 実施例 1 2 1 2 0.91 63 12 64 1.12 0.5 42 0.3 比較例 1 1 3 0.48 50 0.2 5 1.61 0.3 69 0.4 比較例 2 14 0.88 87 53 23 1.27 0.3 43 0.5 比較例 3 1 5 0.83 22 8 12 1.08 26 47 0.6 比較例 4 1 3 1.52 52 0.2 6 1.09 11 68 0.4 [表 3]
Figure imgf000017_0001
(考察:実施例:!〜 12、比較例 1〜4)
表 2及び表 3の結果から、実施例:!〜 12は、全フイラ一中の円形度 0. 7〜1のフイラ 一を全フイラ一に対して、 40〜100体積%含み、且つ添加剤である分散剤、発泡樹 脂及び有機バインダーが最適化された接合材組成物を用いているため、接合材層 の評価が良好であり、ハニカムセグメント間の接合状態も良好であり、且つ急速加熱 試験後であっても、ハニカム構造体の端部及び外周部にクラックが発生することなぐ 良品であった。特に、実施例 1及び 2は、 Ez/Exの値が 1に近いため、さらに高温の 急速加熱試験であっても、ハニカム構造体の端部にクラックが発生することなぐ良品 であった。
[0071] 一方、比較例 1では、全フイラ一中の円形度 0. 7〜1のフイラ一を全フイラ一に対し て、 40体積%未満(33体積%)の接合材組成物を用いているため、 Ez/Exが 0. 5未 満であるとともに、 5〜50 x mの気孔が全気孔に占める割合が 5%と極めて低ぐ ε 2 / ε 1も 1. 4を超過(1. 61)しており、急速加熱試験後、ハニカム構造体の端部にク ラックが発生していた。また、比較例 2では、硬化後の気孔率が 85%を超過している ため、ハニカムセグメント間の接合をすることができな力、つた。更に、比較例 3では、硬 化後の気孔率が 25。/0に満たないため、ハニカムセグメント間の接合状態は良好であ つたが、急速加熱試験後、ハニカム構造体の端部および外周部にクラックが発生し ていた。比較例 4では、全フイラ一中の円形度 0. 7〜1のフイラ一を全フイラ一に対し て、 40体積%未満(33体積%)の接合材組成物を用いているため、 Ez/Exが 1. 5 を越えるとともに、 5〜50 / mの気孔が全気孔に占める割合が 6%と極めて低ぐ急 速加熱試験後、ハニカム構造体の外周部にクラックが発生していた。
産業上の利用可能性
[0072] 本発明の接合材組成物及び接合体は、排ガス用の捕集フィルタ、中でも、ディーゼ ルエンジンの排ガス中の粒子状物質 (パティキュレート)等を捕集するディーゼルパテ ィキュレートフィルタ(DPF)の作製時に好適に用いることができる。

Claims

請求の範囲
[1] 二つ以上の被接合物が接合材層を介して一体化されてなる接合体であって、接合 材層の接合面に垂直な方向のヤング率を Ez、接合面に平行で、接合面の長手方向 に平行な方向のヤング率を Exとしたとき、 0. 5く Ez/Exく 1. 5の関係式を満たし、 且つ、接合材層の気孔率が 25〜85%である接合体。
[2] 前記接合材層を形成する接合材組成物に円形度が 0. 7〜1であるフィラーを、全 フィラーに対して 40〜100体積%含む請求項 1に記載の接合体。
[3] 前記接合材層の平均気孔径が、 0. 5〜50 β mである請求項 1又は 2に記載の接 合体。
[4] 前記接合材層の 0. 5〜50 / mの気孔が全気孔に占める割合力 50%以上である 請求項:!〜 3のいずれか 1項に記載の接合体。
[5] 被接合物 (A)および被接合物 (B)を厚さ tの接合材層を介して接合する場合、被接 合物 (A)と接合材層の界面から 0. 25tの厚さの接合材層を接合材層(1 )、被接合物 (B)と接合材層の界面から 0. 25tの厚さの接合材層を接合材層(3)、接合材層(1 ) と接合材層(3)の間の厚さ 0. 5tの接合材層を接合材層(2)としたとき、接合材層(1 ) と(3)の平均の気孔率を ε 1、接合材層(2)の気孔率を ε 2とするならば、 0. 9 < ε 2 / ε 1 < 1. 4の関係式を満たす請求項:!〜 4のいずれか 1項に記載の接合体。
[6] 前記接合材層のヤング率 (Εζ)が、被接合物のヤング率の 0.:!〜 20%である請求 項:!〜 5のいずれか 1項に記載の接合体。
[7] 前記接合材層の平均線熱膨張係数が、被接合物の 0.:!〜 70%である請求項:!〜 6のレ、ずれか 1項に記載の接合体。
[8] 前記接合材層の熱伝導率が、 0. :!〜 20WZmKである請求項 1〜7のいずれか 1 項に記載の接合体。
[9] 前記フイラ一力 シリカ、アルミナ、ムライト、ジノレコユア、コーディエライト、炭化珪素 、シリカ質ガラス、アルミナシリカ質ガラスの群から選択された少なくとも 1種以上であ る請求項 1〜8のいずれ力 1項に記載の接合体。
[10] 請求項 1〜9のいずれ力 1項に記載の接合体に用いられる接合材層を形成するた めの接合材組成物であって、フィラーと無機接合剤を主成分とする接合材組成物。
[11] 前記フイラ一力 シリカ、アルミナ、ムライト、ジノレコユア、コーディエライト、炭化珪素 、シリカ質ガラス、アルミナシリカ質ガラスの群から選択された少なくとも 1種以上であ る請求項 10に記載の接合材組成物。
[12] 発泡樹脂を 0.:!〜 2.5質量%含む請求項 10又は 11に記載の接合材組成物。
[13] 請求項 10〜: 12のいずれか 1項に記載の接合材組成物により形成される接合材層 を有する接合体。
[14] 請求項 10〜: 12のいずれか 1項に記載の接合材組成物で、複数のハニカムセグメ ント同士を接合して作製されたハニカムセグメント接合体。
[15] 請求項 14に記載のハニカムセグメント接合体から作製されたハニカム構造体。
PCT/JP2007/056106 2006-03-24 2007-03-23 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体 WO2007111279A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07739547.3A EP2006265B1 (en) 2006-03-24 2007-03-23 Bonded body
JP2008507479A JP5367363B2 (ja) 2006-03-24 2007-03-23 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体
US12/235,379 US8088702B2 (en) 2006-03-24 2008-09-22 Bonded body, bonding material composition, honeycomb segment bonded body, and honeycomb structure using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006082103 2006-03-24
JP2006-082103 2006-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/235,379 Continuation US8088702B2 (en) 2006-03-24 2008-09-22 Bonded body, bonding material composition, honeycomb segment bonded body, and honeycomb structure using the same

Publications (1)

Publication Number Publication Date
WO2007111279A1 true WO2007111279A1 (ja) 2007-10-04

Family

ID=38541196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056106 WO2007111279A1 (ja) 2006-03-24 2007-03-23 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体

Country Status (5)

Country Link
US (1) US8088702B2 (ja)
EP (1) EP2006265B1 (ja)
JP (1) JP5367363B2 (ja)
KR (1) KR101066503B1 (ja)
WO (1) WO2007111279A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009095982A1 (ja) * 2008-01-28 2009-08-06 Ibiden Co., Ltd. ハニカム構造体
US7964263B2 (en) 2006-03-30 2011-06-21 Ngk Insulators, Ltd. Bonded element, honeycomb segment bonded element, and honeycomb structure using the same
US7981228B2 (en) 2006-12-25 2011-07-19 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
US8039086B2 (en) 2005-12-14 2011-10-18 Ngk Insulators, Ltd. Bonding material, process for producing the same, and honeycomb structure made with the same
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
JP5244619B2 (ja) * 2007-02-08 2013-07-24 日本碍子株式会社 接合材組成物及びその製造方法並びに接合体及びその製造方法
WO2013125713A1 (ja) * 2012-02-24 2013-08-29 日本碍子株式会社 ハニカム構造体
JP5317959B2 (ja) * 2008-05-20 2013-10-16 イビデン株式会社 ハニカム構造体
JP2015086117A (ja) * 2013-10-31 2015-05-07 京セラ株式会社 セラミック接合体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2730079T3 (es) 2008-12-15 2019-11-08 Unifrax I Llc Revestimiento de cerámica pelicular de estructura en panal
US8187353B2 (en) * 2009-01-21 2012-05-29 Corning Incorporated Filtration structures for improved particulate filter performance
CN102665854B (zh) * 2009-11-11 2015-11-25 陶氏环球技术有限责任公司 用于制备耐热冲击性陶瓷蜂窝状结构体的改良接合剂及其制备方法
JP5650022B2 (ja) * 2010-03-12 2015-01-07 日本碍子株式会社 外周コート材、外周コートハニカム構造体及びその製造方法
JP5872572B2 (ja) * 2011-09-30 2016-03-01 日本碍子株式会社 ハニカム構造体
JP5992857B2 (ja) * 2013-03-29 2016-09-14 日本碍子株式会社 ハニカム構造体
JP6111122B2 (ja) * 2013-03-29 2017-04-05 日本碍子株式会社 ハニカム構造体及びその製造方法
JP6022985B2 (ja) * 2013-03-29 2016-11-09 日本碍子株式会社 ハニカム構造体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162119A (ja) * 1999-09-29 2001-06-19 Ibiden Co Ltd セラミックフィルタ集合体
JP2001190916A (ja) * 2000-01-13 2001-07-17 Ngk Insulators Ltd ハニカム構造体
JP2002177719A (ja) 2000-12-11 2002-06-25 Ibiden Co Ltd セラミック構造体
WO2003067041A1 (fr) * 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nid d'abeille pour la decontamination des gaz d'echappement, matiere adhesive et de revetement, et procede d'obtention dudit filtre

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20023989U1 (de) 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Keramische Filteranordnung
JP2002293660A (ja) * 2001-04-02 2002-10-09 Ibiden Co Ltd 多孔質炭化珪素部材の製造方法
EP1479882B2 (en) * 2002-02-05 2012-08-22 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination
KR100608034B1 (ko) * 2003-11-12 2006-08-08 니뽄 가이시 가부시키가이샤 허니컴 구조체
JP2006027946A (ja) * 2004-07-15 2006-02-02 Toshiba Corp 炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置
EP2008985B1 (en) 2006-03-30 2015-06-24 NGK Insulators, Ltd. Bonded element and honeycomb sutructure using the same
US8092624B2 (en) * 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162119A (ja) * 1999-09-29 2001-06-19 Ibiden Co Ltd セラミックフィルタ集合体
JP2001190916A (ja) * 2000-01-13 2001-07-17 Ngk Insulators Ltd ハニカム構造体
JP2002177719A (ja) 2000-12-11 2002-06-25 Ibiden Co Ltd セラミック構造体
WO2003067041A1 (fr) * 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nid d'abeille pour la decontamination des gaz d'echappement, matiere adhesive et de revetement, et procede d'obtention dudit filtre

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039086B2 (en) 2005-12-14 2011-10-18 Ngk Insulators, Ltd. Bonding material, process for producing the same, and honeycomb structure made with the same
US7964263B2 (en) 2006-03-30 2011-06-21 Ngk Insulators, Ltd. Bonded element, honeycomb segment bonded element, and honeycomb structure using the same
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
US7981228B2 (en) 2006-12-25 2011-07-19 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
JP5244619B2 (ja) * 2007-02-08 2013-07-24 日本碍子株式会社 接合材組成物及びその製造方法並びに接合体及びその製造方法
WO2009095982A1 (ja) * 2008-01-28 2009-08-06 Ibiden Co., Ltd. ハニカム構造体
US7993740B2 (en) 2008-01-28 2011-08-09 Ibiden Co., Ltd. Honeycomb structure
JP5317959B2 (ja) * 2008-05-20 2013-10-16 イビデン株式会社 ハニカム構造体
WO2013125713A1 (ja) * 2012-02-24 2013-08-29 日本碍子株式会社 ハニカム構造体
US9045372B2 (en) 2012-02-24 2015-06-02 Ngk Insulators, Ltd. Honeycomb structure body
JPWO2013125713A1 (ja) * 2012-02-24 2015-07-30 日本碍子株式会社 ハニカム構造体
JP2015086117A (ja) * 2013-10-31 2015-05-07 京セラ株式会社 セラミック接合体

Also Published As

Publication number Publication date
EP2006265A1 (en) 2008-12-24
EP2006265A4 (en) 2010-08-04
US8088702B2 (en) 2012-01-03
EP2006265B1 (en) 2018-01-03
KR101066503B1 (ko) 2011-09-21
JPWO2007111279A1 (ja) 2009-08-13
JP5367363B2 (ja) 2013-12-11
KR20090007346A (ko) 2009-01-16
US20090022943A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5367363B2 (ja) 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体
KR101081638B1 (ko) 접합체, 허니컴 세그먼트 접합체, 및 그것을 이용한 허니컴 구조체
JP5524924B2 (ja) ハニカム構造体
EP2644580B1 (en) Honeycomb structure
JP5469305B2 (ja) 接合材とその製造方法、及びそれを用いたハニカム構造体
JP4927710B2 (ja) ハニカム構造体
WO2001023069A1 (fr) Filtre en nid d&#39;abeilles et ensemble de filtres ceramiques
JP5244619B2 (ja) 接合材組成物及びその製造方法並びに接合体及びその製造方法
US8053054B2 (en) Honeycomb structure
JP4997068B2 (ja) 接合体及びその製造方法
WO2013125713A1 (ja) ハニカム構造体
KR100966317B1 (ko) 접합재 조성물과 그 제조 방법 및 접합체와 그 제조 방법
JP5478243B2 (ja) 接合材組成物及びその製造方法並びに接合体及びその製造方法
JPWO2008126485A1 (ja) 接合体及びその製造方法並びに接合材組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008507479

Country of ref document: JP

Ref document number: 2007739547

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087025695

Country of ref document: KR