WO2007113351A1 - Low-cost solar collector - Google Patents

Low-cost solar collector Download PDF

Info

Publication number
WO2007113351A1
WO2007113351A1 PCT/ES2007/000165 ES2007000165W WO2007113351A1 WO 2007113351 A1 WO2007113351 A1 WO 2007113351A1 ES 2007000165 W ES2007000165 W ES 2007000165W WO 2007113351 A1 WO2007113351 A1 WO 2007113351A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
solar collector
cost solar
low cost
pipes
Prior art date
Application number
PCT/ES2007/000165
Other languages
Spanish (es)
French (fr)
Inventor
José María ABRIL HERNÁNDEZ
Arturo Granged Pascual
Valeriano RUIZ HERNÁNDEZ
José Maria CÁMARA ZAPATA
Antonio MARTÍNEZ GABARRÓN
Original Assignee
Universidad De Sevilla
Universidad Miguel Hernández
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla, Universidad Miguel Hernández filed Critical Universidad De Sevilla
Publication of WO2007113351A1 publication Critical patent/WO2007113351A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/243Collecting solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/73Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being of plastic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the present invention aims at a low cost solar collector arranged horizontally on the ground, which is basically composed of: a) an insulating material in the lower part, covered with black plastic whose mission is that of absorber; on which b) several pipes are placed in circular arrangement along the collector connected to each other at their ends and connected to a hydraulic circuit by means of an inverted return arrangement, which ensures adequate hydraulic behavior of the collector and c) a cover with Circular arc-shaped cross section of transparent plastic material, to reduce heat losses by convection.
  • the solar energy collector object of the invention has been developed to support conventional greenhouse heating mainly and reduce the consumption of fossil fuels.
  • the solar collector was built with long-lasting polyethylene tube (LDT), transparent and black bags. Horizontal ducts were constructed on the bags by welding, so that when they are placed in an upright position, the water that enters through the upper part falls by gravity and circulates inside it through the zigzag-shaped channel.
  • Another prototype successfully used for the heating of greenhouses with hydroponic cultivation consists in the use of a ' heat accumulator formed by packages of water bottles arranged inside the greenhouse, on which a flow of air collected in the Ia is circulated upper part of the interior of the greenhouse. The air transmits the heat transported through the wall of the container.
  • the accumulators are mounted on the ground and serve as support for the cultivation tables (Saravia et al., 2000).
  • Figure 1. Scheme of a tunnel tunnel sensor, with small elevation of the ground for water evacuation, thermal insulation layer, and cover.
  • the arrangement of the windings of the PE lines (connected in parallel to the input and output heads) is indicated below.
  • FIG 2. General view of the collector field next to the greenhouse whose heating needs to be contributed.
  • the collectors are oriented from East to West to maximize the use of solar radiation.
  • the outer feed pipe of the collectors with inverted return is appreciated to improve the behavior of the hydraulic circuit.
  • Figure 3. Detail of the assembly process of the collector field.
  • the invention that concerns us is a low-cost solar energy collector to save energy in greenhouse heating characterized in that the working fluid (water) circulates inside several plastic pipes with small diameter (12-16 mm) and large length (up to 10-15 m of line per linear meter of collector) located in curls on top of a black plastic absorber and an insulator on the ground and has a plastic cover of high transparency and low thermalness, in configuration of tunnel
  • the insulator is made of polystyrene plates lined with black plastic to avoid possible heat losses as a result of the wetting of the insulator. It is evident that the floor surface must be slightly smoothed before placing the insulator, although it is not necessary that the leveling is very precise.
  • the absorber is a black plastic on which the plastic pipes are placed through which it circulates in water. As for its thickness, it is convenient that it has a certain consistency so that if the plastic used is thin, it can be arranged in two or four layers.
  • the width of the absorber must coincide with that of the insulator, so that to ensure its support the absorber is buried slightly on the sides and the front of the sensor.
  • the pipes through which water circulates inside the collector have a circular arrangement along the absorber, which allows the pipes to cover the entire base of the collector and the shade between them is minimal. In this way the solar radiation collection is maximum and in the pieces of pipe where the solar radiation does not affect, the heat is transferred by conduction.
  • the configuration of diameters, lengths and numbers of lines in parallel is adjustable depending on the specific applications, being able to design tunnel collectors from 3-4m 2 to more than 5Om 2 ,
  • the recommended width is 1m, to facilitate the tasks of assembly Limitation to size is given for the tolerable load loss (according to applications, but 7 mca - water column meters - in the primary for conventional solar thermal installations).
  • the selection of larger diameters and the increase in the number of lines in parallel allows the configuration to be adapted to the tolerable load loss in each case (tables can be provided to assist in the selection of the configuration, with option between 3 and 8 lines in parallel) . It also highlights the ease of assembly, without requiring specific knowledge or skills.
  • the preferred orientation should be EW to reduce reflection losses. For a 27.5m 2 sensor with 6 lines of 16mm polyethylene pipes, the yield curve is characterized by an optical factor of 0.53 and a loss coefficient of 4.82 Wm -20 C, with average daily yields close to 30% .
  • the collector cover is made of transparent plastic with a circular arc shape and arranged along the sensor. To facilitate its fastening, they are placed along the sensor on metal joists in the form of circumference arches joined together with metal wire. The sides and the front of the roof are buried carefully to prevent the wind from causing damage to the solar collector.
  • the water that circulates through the different plastic pipes comes and goes to thermally insulated tanks where solar thermal energy is stored in the form of hot water to be used in the greenhouse heating system, consisting of a water distribution network through plastic pipes
  • the object of this invention can also be used in other activities with heating requirements and they can not cope with the cost of the sensors flat plate domestic hot water, such as' the pig farms, among others.
  • the collectors object of the invention can be constructed with cork plates of 2 mx 1m, that is, with a width of 1 m and a length of 24 m using 12 insulating plates.
  • the insulator is previously protected with black plastic material to enhance the effect of the absorber and ' prevent the cork from It can get wet and heat losses occur.
  • the absorber can be made with thin black plastic although it is necessary to use several layers of it.
  • To conduct the water inside the collector six pipes of 14 mm internal diameter and 125 m long each conveniently arranged so as to cover the entire base of the collector can be used. In this case, each pipe must extend over the absorber occupying 4 m in length.
  • the six pipes can be joined at the ends by a copper head, so that at one end a temperature probe can be included in the head.
  • the transparent cover is installed after checking the tightness of the hydraulic circuit. To facilitate clamping, they are placed along the sensor on metal joists in the form of circumferential arcs separated 2 m from each other and connected to each other with metallic wire. The maximum height of the roof over the pipes must not exceed 50 cm. The sides and the front of the roof are buried carefully to prevent the wind from causing damage to the solar collector. The separation between two sensors can be approximately 50 cm.

Abstract

The present invention relates to a low-cost solar collector arranged horizontally on the ground, which is composed basically of: a) an insulating material in the lower part, covered with black plastic whose function is that of absorber; on which are placed b) a number of pipes in a circular arrangement along the collector, connected to one another via their ends and connected to a hydraulic circuit by means of an inverted return arrangement, which guarantees suitable hydraulic behaviour on the part of the collector; and c) a cover with a transverse section in the form of a circular arc, made from transparent plastic material, for reducing losses of heat through convection. The solar energy collector that is the subject of the invention has been developed basically to boost the conventional heating of greenhouses and to reduce the consumption of fossil fuels.

Description

TítuloTitle
Captador solar de bajo costeLow cost solar collector
Objeto de Ia invenciónObject of the invention
La presente invención tiene por objeto un captador solar de bajo coste dispuesto horizontalmente sobre el suelo, que se compone básicamente de: a)un material aislante en Ja parte inferior, cubierto de plástico negro cuya misión es Ia de absorbedor; sobre el que se sitúan b) varias tuberías en disposición circular a Io largo del captador conectadas entre sí por sus extremos y conectadas a un circuito hidráulico mediante una disposición de retorno invertido, Io que asegura un adecuado comportamiento hidráulico del captador y c) una cubierta con sección transversal en forma de arco circular de material plástico transparente, para reducir las pérdidas de calor por convección.The present invention aims at a low cost solar collector arranged horizontally on the ground, which is basically composed of: a) an insulating material in the lower part, covered with black plastic whose mission is that of absorber; on which b) several pipes are placed in circular arrangement along the collector connected to each other at their ends and connected to a hydraulic circuit by means of an inverted return arrangement, which ensures adequate hydraulic behavior of the collector and c) a cover with Circular arc-shaped cross section of transparent plastic material, to reduce heat losses by convection.
El captador de energía solar objeto de Ia invención ha sido desarrollado para apoyar Ia calefacción convencional de invernaderos fundamentalmente y reducir el consumo de combustibles fósiles.The solar energy collector object of the invention has been developed to support conventional greenhouse heating mainly and reduce the consumption of fossil fuels.
Estado de Ia técnicaState of the art
La calefacción de invernaderos a. partir de energía solar ha sido estudiada en numerosos países. Así, en Ia región de Salta (Argentina), Iriarte eí al. (1981 ) iniciaron el desarrollo de un intercambiador de calor agua - aire con superficie plástica de bajo espesor. Los primeros ensayos se realizaron utilizando una solución salina caliente de una poza solar para el secado de productos agrícolas y calefacción auxiliar de un invernadero (Iriarte eí al. 1981 , Lesino eí al., 1983). Modificaciones posteriores (Saravia eí al., 1992, Iriarte eí al., 1993) lograron un sistema que cumplía Ia doble función: colector - intercambiador durante las horas diurnas e intercambiador durante las nocturnas. El captador solar estaba construido con bolsas tipo tubo de polietileno de larga duración térmica (LDT), transparentes y negras. Sobre las bolsas se construyeron conductos horizontales mediante soldaduras, de forma que cuando se sitúan en posición vertical, el agua que ingresa por Ia parte superior, cae por gravedad y circula dentro de Ia misma por el canal construido en forma de zig - zag. Otro prototipo empleado con éxito para Ia calefacción de invernaderos con cultivo hidropónico consiste en el empleo de un ' acumulador de calor formado por paquetes de botellas de agua dispuestos éñ el interior del invernadero, sobre los que se hace circular un flujo de aire recogido en Ia parte superior del interior del invernadero. El aire transmite el calor transportado a través de Ia pared del recipiente. Los acumuladores se montan sobre el suelo y sirven de soporte para las mesas de cultivo (Saravia et al., 2000).Greenhouse heating a. Starting from solar energy has been studied in numerous countries. Thus, in the region of Salta (Argentina), Iriarte eí al. (1981) began the development of a water-air heat exchanger with a thin plastic surface. The first tests were carried out using a hot saline solution from a solar well for drying agricultural products and auxiliary heating of a greenhouse (Iriarte eí al. 1981, Lesino eí al., 1983). Subsequent modifications (Saravia eí al., 1992, Iriarte eí al., 1993) achieved a system that fulfilled the dual function: collector - exchanger during daytime hours and exchanger during nighttime. The solar collector was built with long-lasting polyethylene tube (LDT), transparent and black bags. Horizontal ducts were constructed on the bags by welding, so that when they are placed in an upright position, the water that enters through the upper part falls by gravity and circulates inside it through the zigzag-shaped channel. Another prototype successfully used for the heating of greenhouses with hydroponic cultivation consists in the use of a ' heat accumulator formed by packages of water bottles arranged inside the greenhouse, on which a flow of air collected in the Ia is circulated upper part of the interior of the greenhouse. The air transmits the heat transported through the wall of the container. The accumulators are mounted on the ground and serve as support for the cultivation tables (Saravia et al., 2000).
Por otro lado, . Ia Universidad de Rutgers (New Yersey, EEUU) desarrolló un sistema de apoyo a Ia calefacción de invernaderos mediante energía solar basado en un colector inclinado que almacenaba por término medio el 50% de Ia energía solar disponible y presentaba un tiempo de retorno de diez años (NRAES, 1992).On the other hand, . The University of Rutgers (New Yersey, USA) developed a system to support the heating of greenhouses by solar energy based on an inclined collector that stored on average 50% of the available solar energy and had a return time of ten years (NRAES, 1992).
En España se han construido y evaluado una serie de instalaciones solares para invernaderos. En Ia provincia de Almería se construyó durante 1981 una instalación de 90 m2 de paneles situados fuera del invernadero. El absorbente de los colectores era de caucho EPDM (monómero de etileno, propileno y dieno) en forma de pequeños tubos por los que circulaba el agua. El absorbente quedaba cubierto por una película de polietileno termoaislante y aislado en su parte posterior por 3 cm de poliestireno. Los colectores estaban orientados al Sur. con una pendiente de 55°. El agua caliente se almacenó en un depósito calorifugado de 20 m2. La calefacción de los invernaderos se hizo por medio de tuberías enterradas con una densidad de 2 m de tubo/m2 de suelo.In Spain, a series of solar installations for greenhouses have been built and evaluated. In the province of Almería, an installation of 90 m 2 of panels outside the greenhouse was built during 1981. The collector absorbent was made of EPDM rubber (ethylene, propylene and diene monomer) in the form of small tubes through which water circulated. The absorbent was covered by a thermal insulating polyethylene film and insulated on its back by 3 cm of polystyrene. The collectors were facing south. with a slope of 55 °. The hot water stored in a reservoir lagging 20 m 2. The heating of the greenhouses was done by means of buried pipes with a density of 2 m of tube / m 2 of soil.
Para simplificar al máximo los sistemas solares de calefacción se han desarrollado equipos de captación situados dentro del propio invernadero. El más sencillo de estos equipos consiste en una serie de tubos de polietileno transparente llenos de agua y dispuestos entre las líneas de cultivo. Se trata de captar radiación solar durante el día, calentar el agua de las bolsas y ceder ese calor lentamente al invernadero aprovechando Ia inercia térmica del agua. En Grecia se usan tubos de 30 cm de diámetro de polietileno de 250 mieras de espesor. Aproximadamente, el 35-40% del suelo del invernadero queda cubierto con tubos, de modo que cada 1.000 m2 de invernadero contienen entre 80 y 100 m3 de agua. En España se han medido resultados más modestos, en parte debido a que nunca se llegó a cubrir el 40% de suelo del invernadero y en parte "por aplicarse esta calefacción solar a estructuras poco estancas. En Almería, con bolsas negras con agua, que son peores que las transparentes para esta aplicación, se aumentaron las temperaturas mínimas en 10C. Cuando el cultivo se desarrolló, las bolsas quedaron sombreadas y el efecto sobre Ia temperatura nocturna fue despreciable. En Cabrils (Barcelona) se dispusieron bolsas transparentes cubriendo el 20% del suelo de un túnel empleado para cultivar en pendiente. Con este dispositivo se logró salvar una helada que ocurrió en una noche despejada, pues el sistema solar pasivo mantuvo un salto térmico de 20C respecto a un invernadero similar sin bolsas de agua (Matallana y Montero, 1995).To simplify solar heating systems to the maximum, collection equipment located within the greenhouse itself has been developed. The simplest of these equipments consists of a series of transparent polyethylene tubes filled with water and arranged between the crop lines. It involves capturing solar radiation during the day, heating the water in the bags and slowly giving that heat to the greenhouse, taking advantage of the thermal inertia of the water. In Greece, tubes 30 cm in diameter of 250 microns thick polyethylene are used. Approximately 35-40% of the greenhouse soil is covered with pipes, so that every 1,000 m 2 of greenhouse contains between 80 and 100 m 3 of water. In Spain, more modest results have been measured, partly because 40% of the greenhouse soil was never covered and partly " because this solar heating is applied to poorly sealed structures. In Almería, with black bags with water, which they are worse than the transparent ones for this application, the minimum temperatures were increased by 1 0 C. When the crop was developed, the bags they were shaded and the effect on the night temperature was negligible. In Cabrils (Barcelona) transparent bags were arranged covering 20% of the soil of a tunnel used to cultivate on a slope. With this device it was possible to save a frost that occurred on a clear night, since the passive solar system maintained a thermal jump of 2 0 C compared to a similar greenhouse without water bags (Matallana and Montero, 1995).
Más recientemente, se ensayó con un captador - acumulador, en forma de balsa cubierta, situado en el interior de un invernadero sometido a climas fríos y concluyeron que Ia instalación puede reducir los costes de calefacción durante un largo periodo de tiempo (Al-Hussaini y Suen, 1998). En Marruecos también se han ensayado captadores metálicos de placa plana y se han comparado con un sistema que emplea azul de metileno para realizar una absorción selectiva de Ia radiación solar (Tadili y Dahman, 1997; Bargach et al., 2004). En Turquía se han empleado captadores de placa plana con agua y material de cambio de fase como fluido de trabajo para calefacción de invernaderos con resultados satisfactorios (Kürklü y Bilgin, 2004). En estos y otros trabajos se concluye positivamente sobre Ia posibilidad de emplear energía solar para calefacción de invernaderos. Uno de los principales problemas de Ia utilización de Ia energía solar térmica para reducir el consumo de combustibles derivados del petróleo es el de Ia acumulación (Sen, 2004).More recently, it was tested with a collector-accumulator, in the form of a covered raft, located inside a greenhouse subjected to cold climates and concluded that the installation can reduce heating costs for a long period of time (Al-Hussaini and Suen, 1998). In Morocco, flat plate metal collectors have also been tested and compared with a system that uses methylene blue to perform a selective absorption of solar radiation (Tadili and Dahman, 1997; Bargach et al., 2004). In Turkey, flat plate collectors with water and phase change material have been used as a working fluid for heating greenhouses with satisfactory results (Kürklü and Bilgin, 2004). In these and other works, the possibility of using solar energy for greenhouse heating is positively concluded. One of the main problems of the use of solar thermal energy to reduce the consumption of petroleum-derived fuels is that of accumulation (Sen, 2004).
Referencias:References:
Al-Hussaini, H. y Suen, K. O. 1998. Using shallow solar ponds as a heating source for greenhouses in cold climates. Energy Convers. Mgmt. VoI. 39, N0 13. pág. 1369-1376. Bargach, M. N., Tadili, R. Dahman, A. S. y Boukallouch, M. 2004. Comparison of the performance of two solar heating systems used to improve the microclimate of agricultural greenhouses in Morocco. Renewable Energy 29. pág. 1073-1083.Al-Hussaini, H. and Suen, KO 1998. Using shallow solar ponds as a heating source for greenhouses in cold climates. Energy Convers. Mgmt VoI 39, N 0 13. p. 1369-1376. Bargach, MN, Tadili, R. Dahman, AS and Boukallouch, M. 2004. Comparison of the performance of two solar heating systems used to improve the microclimate of agricultural greenhouses in Morocco. Renewable Energy 29. p. 1073-1083.
Iriarte, A.; Luna, D. y Saravia, L. 1981. Desarrollo de intercambiadores agua-aire para su uso en secadero solar. Acta 7a. Reunión de ASADES Rosario, pág. 30 - 34.Iriarte, A .; Luna, D. and Saravia, L. 1981. Development of water-air exchangers for use in solar dryers. Minutes 7 a . ASADES Rosario meeting, p. 30-34.
Iriarte, A.; Biagi, S. y Saravia, L. 1993. Caracterización de un intercambiador de calor para calefacción de invernaderos". Acta 16a. Reunión ASADES La Plata, pág. 461 - 466, Tomo I. Kürklü, A. y Bilgin, S. 2004. Cooling of a polyethylene tunnel type greenhouse by means of a rock bed. Renewable Energy 29. pág. 2077-2086.Iriarte, A .; Biagi, S. and Saravia, L. 1993. Characterization of a heat exchanger for greenhouse heating. "Minutes 16 a . ASADES La Plata Meeting, p. 461 - 466, Volume I. Kürklü, A. and Bilgin, S. 2004. Cooling of a polyethylene tunnel type greenhouse by means of a rock bed. Renewable Energy 29. p. 2077-2086.
Lesino, G.; Saravia, L.; Castro, P.L. y Blasco, D. 1983. Construcción y monitoreo de un invernáculo y local adyacente con calefacción auxiliar por poza solar. Acta 8a reunión de ASADES, La Pampa, pág. 9-16.Lesino, G .; Saravia, L .; Castro, PL and Blasco, D. 1983. Construction and monitoring of a greenhouse and adjacent premises with auxiliary heating by solar well. Acta 8 meeting ASADES, La Pampa, p. 9-16.
Matallana, A. y Montero, J. I. Invernaderos: diseño, construcción y ambientaciόn. 1995. Mundiprensa.Matallana, A. and Montero, J. I. Greenhouses: design, construction and setting. 1995. Mundiprensa.
Natural Resource, Agriculture, and Engineering Service (NRAES) 1992. Greenhouse engineering. Cooperative extensión, pp: 212. Saravia, L.; Echazú, R.; Cadena, C. y Cabanillas, CL. 1992. Calentamiento solar de invernaderos en Ia Provincia de Salta. Actas 15va. Reunión Nacional de ASADES, Tomo I, pág. 371 - 375.Natural Resource, Agriculture, and Engineering Service (NRAES) 1992. Greenhouse engineering. Cooperative extension, pp: 212. Saravia, L .; Echazú, R .; Cadena, C. and Cabanillas, CL. 1992. Solar heating of greenhouses in the Province of Salta. Acts 15th. ASADES National Meeting, Volume I, p. 371-375.
Saravia, L., Echazú, R., Quiroga, M. y Robredo, P. 2000. Acumulador de agua para climatización de invernaderos armado con botellas de PET. Revista Averma, VoI. 4.Saravia, L., Echazú, R., Quiroga, M. and Robredo, P. 2000. Water accumulator for greenhouse air conditioning armed with PET bottles. Averma Magazine, VoI. Four.
Sen, Z. 2004. Solar energy in progress and future research trends. .Progress in Energy and Combustión Science 30. pág. 367-416.Sen, Z. 2004. Solar energy in progress and future research trends. .Progress in Energy and Combustion Science 30. p. 367-416.
Tadili, R. y Dahman, A. S. 1997. Effects of a solar heating and climatisation system on agricultural greenhouse microclimate. Renewable Energy, VoI. 10, N0 4. pág. 569-576.Tadili, R. and Dahman, AS 1997. Effects of a solar heating and climatization system on agricultural greenhouse microclimate. Renewable Energy, VoI. 10, N 0 4. p. 569-576.
Descripción de las figurasDescription of the figures
Figura 1.-. Esquema de un captador de tunelillo, con pequeña elevación del terreno para evacuación de aguas, capa de aislante térmico, y cubierta. Abajo se indica Ia disposición de los enrollamientos de las líneas de PE (conectadas en paralelo a los cabezales de entrada y salida).Figure 1.-. Scheme of a tunnel tunnel sensor, with small elevation of the ground for water evacuation, thermal insulation layer, and cover. The arrangement of the windings of the PE lines (connected in parallel to the input and output heads) is indicated below.
Figura 2.- Vista general del campo de captadores junto al invernadero cuyas necesidades de calefacción se quiere aportar. Los captadores están orientados de Este a Oeste para maximizar el aprovechamiento de Ia radiación solar. Se aprecian Ia tubería exterior de alimentación de los captadores con retorno invertido para mejorar el comportamiento del circuito hidráulico. Figura 3.- Detalle del proceso de montaje del campo de captadores.Figure 2.- General view of the collector field next to the greenhouse whose heating needs to be contributed. The collectors are oriented from East to West to maximize the use of solar radiation. The outer feed pipe of the collectors with inverted return is appreciated to improve the behavior of the hydraulic circuit. Figure 3.- Detail of the assembly process of the collector field.
Figura 4.- Detalle del campo de captadoresFigure 4.- Detail of the collector field
Figura 5.- Curva de rendimiento de un captador de tunelillo.Figure 5.- Performance curve of a tunnel sensor.
Descripción de Ia invenciónDescription of the invention
La invención que nos ocupa es un captador de energía solar de bajo coste para ahorrar energía en Ia calefacción de invernaderos caracterizado porque el fluido de trabajo (agua) circula por el interior de varias tuberías de plástico con pequeño diámetro (12-16 mm) y gran longitud (hasta 10-15 m de línea por metro lineal de captador) situadas en enrollamientos encima de un absorbedor de plástico negro y un aislante sobre el suelo y tiene por encima una cubierta de plástico de alta transparencia y baja termicidad, en configuración de tunelillo. El aislante se realiza a base de placas de poliestireno forradas con plástico negro para evitar posibles pérdidas de calor como consecuencia de que el aislante se humedezca. Es evidente que Ia superficie del suelo debe allanarse ligeramente antes de situar el aislante, aunque no es necesario que Ia nivelación sea muy precisa.The invention that concerns us is a low-cost solar energy collector to save energy in greenhouse heating characterized in that the working fluid (water) circulates inside several plastic pipes with small diameter (12-16 mm) and large length (up to 10-15 m of line per linear meter of collector) located in curls on top of a black plastic absorber and an insulator on the ground and has a plastic cover of high transparency and low thermalness, in configuration of tunnel The insulator is made of polystyrene plates lined with black plastic to avoid possible heat losses as a result of the wetting of the insulator. It is evident that the floor surface must be slightly smoothed before placing the insulator, although it is not necessary that the leveling is very precise.
El absorbedor es un plástico de color negro sobre el que se sitúan las tuberías de plásticos por las que circula en agua. En cuanto a su espesor, es conveniente que tenga cierta consistencia de modo que en caso de que el plástico empleado sea de poco espesor, se puede disponer en dos o cuatro capas. La anchura del absorbedor debe coincidir con Ia del aislante por Io que para asegurar su sujeción el absorbedor se entierra ligeramente en los laterales y los frontales del captador. Las tuberías por donde circula el agua en el interior del captador tienen una disposición circular a Io largo del absorbedor, Io que posibilita que las tuberías cubran Ia totalidad de Ia base del captador y el sombreo entre ellas sea mínimo. De este modo Ia captación de Ia radiación solar es máxima y en los trozos de tubería donde no incida Ia radiación solar, el calor se transfiere por conducción. La configuración de diámetros, longitudes" y números de líneas en paralelo es ajustable en función de las aplicaciones específicas, pudiéndose diseñar captadores de tunelillo desde 3-4m2 hasta más de 5Om2, La anchura recomendada es de 1m, para facilitar las tareas de montaje. La limitación al tamaño viene dada por la pérdida de carga tolerable (según aplicaciones, pero 7 m.c.a. - metros columna de agua - en el primario para instalaciones termosolares convencionales). La selección de diámetros mayores y el incremento del número de líneas en paralelo permite adaptar Ia configuración a Ia pérdida de carga tolerable en cada caso (pueden proporcionarse tablas para ayudar a Ia selección de Ia configuración, con opción entre 3 y 8 líneas en paralelo). Se destaca igualmente Ia facilidad de montaje, sin requerir conocimientos o habilidades específicas. La orientación preferente debe ser E-W para disminuir las pérdidas por reflexión. Para un captador de 27.5m2 con 6 líneas de tuberías de polietileno de 16mm, Ia curva de rendimiento se caracteriza por un factor óptico de 0.53 y un coeficiente de pérdidas de 4.82 Wm-20C, con unos rendimientos medios diarios próximos al 30%.The absorber is a black plastic on which the plastic pipes are placed through which it circulates in water. As for its thickness, it is convenient that it has a certain consistency so that if the plastic used is thin, it can be arranged in two or four layers. The width of the absorber must coincide with that of the insulator, so that to ensure its support the absorber is buried slightly on the sides and the front of the sensor. The pipes through which water circulates inside the collector have a circular arrangement along the absorber, which allows the pipes to cover the entire base of the collector and the shade between them is minimal. In this way the solar radiation collection is maximum and in the pieces of pipe where the solar radiation does not affect, the heat is transferred by conduction. The configuration of diameters, lengths and numbers of lines in parallel is adjustable depending on the specific applications, being able to design tunnel collectors from 3-4m 2 to more than 5Om 2 , The recommended width is 1m, to facilitate the tasks of assembly Limitation to size is given for the tolerable load loss (according to applications, but 7 mca - water column meters - in the primary for conventional solar thermal installations). The selection of larger diameters and the increase in the number of lines in parallel allows the configuration to be adapted to the tolerable load loss in each case (tables can be provided to assist in the selection of the configuration, with option between 3 and 8 lines in parallel) . It also highlights the ease of assembly, without requiring specific knowledge or skills. The preferred orientation should be EW to reduce reflection losses. For a 27.5m 2 sensor with 6 lines of 16mm polyethylene pipes, the yield curve is characterized by an optical factor of 0.53 and a loss coefficient of 4.82 Wm -20 C, with average daily yields close to 30% .
La cubierta del captador es de plástico transparente con forma transversal de arco circular y dispuesta a Io largo del captador. Para facilitar su sujeción, se sitúan a Io largo del captador sobre unas viguetas metálicas con forma de arcos de circunferencia unidas entre si con alambre metálico. Los laterales y los frontales de Ia cubierta se entierran cuidadosamente para evitar que el viento pueda causar daños al captador solar.The collector cover is made of transparent plastic with a circular arc shape and arranged along the sensor. To facilitate its fastening, they are placed along the sensor on metal joists in the form of circumference arches joined together with metal wire. The sides and the front of the roof are buried carefully to prevent the wind from causing damage to the solar collector.
El agua que circula por las distintas tuberías de plástico proviene y se dirige a depósitos aislados térmicamente donde se almacena Ia energía solar térmica en forma de agua caliente para ser utilizada en el sistema de calefacción del invernadero, consistente en una red de distribución de agua mediante tuberías de plástico.The water that circulates through the different plastic pipes comes and goes to thermally insulated tanks where solar thermal energy is stored in the form of hot water to be used in the greenhouse heating system, consisting of a water distribution network through plastic pipes
El objeto de esta invención también se puede emplear en otras actividades con necesidades de calefacción y que no puedan hacer frente al coste de los captadores de placa plana para producción de agua caliente sanitaria, tales como ' las explotaciones de ganado porcino, entre otras.The object of this invention can also be used in other activities with heating requirements and they can not cope with the cost of the sensors flat plate domestic hot water, such as' the pig farms, among others.
Modo de realización de Ia invenciónEmbodiment of the invention
Los captadores objeto de Ia invención se pueden construir con placas de corcho de 2 m x 1m, esto es, con una anchura de 1 m y una longitud de 24 m empleando 12 placas de aislante. El aislante se protege previamente con material plástico de color negro para potenciar el efecto del absorbedor y' evitar que el corcho se pueda mojar y que se produzcan pérdidas de calor. El absorbedor se puede realizar con plástico negro de poco espesor aunque sea necesario utilizar varias capas del mismo. Para conducir el agua en el interior del captador se pueden emplear seis tuberías de 14 mm de diámetro interior y 125 m de longitud cada una dispuestas convenientemente de modo que se cubra Ia totalidad de Ia base del captador. En este caso, cada tubería se debe extender sobre el absorbedor ocupando 4 m de longitud. Las seis tuberías se pueden unir en los extremos mediante un cabezal de cobre, de modo que en uno de los extremos se puede incluir en el cabezal una sonda de temperatura. La cubierta transparente se instala después de comprobar Ia estanqueidad del circuito hidráulico. Para facilitar su sujeción, se sitúan a Io largo del captador sobre unas viguetas metálicas con forma de arcos de circunferencia separadas 2 m entre si y unidas unas a otras con alambre metálico. La altura máxima de Ia cubierta sobre las tuberías no debe superar los 50 cm. Los laterales y los frontales de Ia cubierta se entierran cuidadosamente para evitar que el viento pueda causar daños al captador solar. La separación entre dos captadores puede ser de unos 50 cm aproximadamente. The collectors object of the invention can be constructed with cork plates of 2 mx 1m, that is, with a width of 1 m and a length of 24 m using 12 insulating plates. The insulator is previously protected with black plastic material to enhance the effect of the absorber and ' prevent the cork from It can get wet and heat losses occur. The absorber can be made with thin black plastic although it is necessary to use several layers of it. To conduct the water inside the collector, six pipes of 14 mm internal diameter and 125 m long each conveniently arranged so as to cover the entire base of the collector can be used. In this case, each pipe must extend over the absorber occupying 4 m in length. The six pipes can be joined at the ends by a copper head, so that at one end a temperature probe can be included in the head. The transparent cover is installed after checking the tightness of the hydraulic circuit. To facilitate clamping, they are placed along the sensor on metal joists in the form of circumferential arcs separated 2 m from each other and connected to each other with metallic wire. The maximum height of the roof over the pipes must not exceed 50 cm. The sides and the front of the roof are buried carefully to prevent the wind from causing damage to the solar collector. The separation between two sensors can be approximately 50 cm.

Claims

Reivindicaciones Claims
1. Captador solar de bajo coste caracterizado porque se dispone horizontalmente sobre el suelo y comprende tuberías de polietileno con un diámetro que oscila entre 12-16 mm y una. longitud de 10-15 m por metro lineal de captador, situadas en enrollamientos encima de un absorbedor de plástico negro y un aislante sobre el suelo, y tiene por encima una cubierta de plástico de alta transparencia y baja termicidad, en configuración de tunelillo.1. Low cost solar collector characterized in that it is arranged horizontally on the ground and comprises polyethylene pipes with a diameter that ranges between 12-16 mm and one. 10-15 m length per linear meter of collector, located in curls on top of a black plastic absorber and an insulator on the ground, and has a plastic cover with high transparency and low thermality, in tunnel configuration.
2. Captador solar de bajo coste según reivindicación 1 caracterizado porque el tamaño oscila entre 3 y hasta 50 m2 con una anchura de 1 m preferentemente, para facilitar tareas de montaje.2. Low cost solar collector according to claim 1 characterized in that the size ranges from 3 to 50 m 2 with a width of 1 m preferably, to facilitate assembly tasks.
3. Captador solar de bajo coste según reivindicaciones anteriores, caracterizado porque las tuberías por donde circula el fluido de trabajo, preferentemente agua, tiene una disposición circular entre 3 y 8 líneas en paralelo a Io largo del absorbedor que cubren Ia totalidad de Ia base del captador.3. Low cost solar collector according to previous claims, characterized in that the pipes through which the working fluid circulates, preferably water, has a circular arrangement between 3 and 8 lines parallel to the length of the absorber covering the entire base of the collector
4. Captador solar de bajo coste según reivindicaciones anteriores, caracterizado por rendimientos medios diarios próximos al 30%, para un captador de 27.5 m2 con 6 líneas de tuberías de polietileno de 16 mm de diámetro.4. Low cost solar collector according to previous claims, characterized by average daily yields close to 30%, for a 27.5 m 2 collector with 6 lines of 16 mm diameter polyethylene pipes.
5. Captador solar de bajo coste según reivindicaciones anteriores, caracterizado porque el aislante se realiza a base de placas de poli estireno expandido de dimensiones 2 x 1 m2 preferentemente, forradas con plástico negro para evitar posibles pérdidas de calor como consecuencia de que el aislante se humedezca.5. Low cost solar collector according to previous claims, characterized in that the insulator is made of expanded polystyrene plates of dimensions 2 x 1 m 2 preferably, lined with black plastic to avoid possible heat losses as a result of the insulator get wet.
6. Captador solar de bajo coste según reivindicaciones anteriores para su uso en el sistema de calefacción de invernaderos, fundamentalmente. 6. Low cost solar collector according to previous claims for use in the greenhouse heating system, essentially.
PCT/ES2007/000165 2006-03-30 2007-03-27 Low-cost solar collector WO2007113351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200600891 2006-03-30
ES200600891A ES2304289B1 (en) 2006-03-30 2006-03-30 LOW COST SOLAR RECEIVER.

Publications (1)

Publication Number Publication Date
WO2007113351A1 true WO2007113351A1 (en) 2007-10-11

Family

ID=38563136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000165 WO2007113351A1 (en) 2006-03-30 2007-03-27 Low-cost solar collector

Country Status (2)

Country Link
ES (1) ES2304289B1 (en)
WO (1) WO2007113351A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029676A1 (en) 2008-06-24 2009-12-31 Pommersheim, Rainer, Dr. Solar collector e.g. solar thermal collector, for heating e.g. industrial water, has fluid channels packed in absorber surface in sealed manner and running parallel to each other, where channels completely grip absorber surface
US9206997B2 (en) 2008-07-29 2015-12-08 Syenergy Integrated Energy Solutions Inc. Curved transpired solar air heater and conduit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091800A (en) * 1975-06-27 1978-05-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar pond
US4111186A (en) * 1977-01-24 1978-09-05 Ross Donald K Flat plate solar collector
US4257481A (en) * 1975-06-05 1981-03-24 Dobson Michael J Cement panel heat exchangers
FR2629677A1 (en) * 1988-04-12 1989-10-13 Commissariat Energie Atomique Greenhouse installation with recuperation of solar energy
DE4017322A1 (en) * 1990-05-30 1991-12-19 Handwerkskammer Hamburg Solar collector for heating heat conducting liq. - consists of pipework system laid in black screen containing metal fragments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257481A (en) * 1975-06-05 1981-03-24 Dobson Michael J Cement panel heat exchangers
US4091800A (en) * 1975-06-27 1978-05-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar pond
US4111186A (en) * 1977-01-24 1978-09-05 Ross Donald K Flat plate solar collector
FR2629677A1 (en) * 1988-04-12 1989-10-13 Commissariat Energie Atomique Greenhouse installation with recuperation of solar energy
DE4017322A1 (en) * 1990-05-30 1991-12-19 Handwerkskammer Hamburg Solar collector for heating heat conducting liq. - consists of pipework system laid in black screen containing metal fragments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029676A1 (en) 2008-06-24 2009-12-31 Pommersheim, Rainer, Dr. Solar collector e.g. solar thermal collector, for heating e.g. industrial water, has fluid channels packed in absorber surface in sealed manner and running parallel to each other, where channels completely grip absorber surface
US9206997B2 (en) 2008-07-29 2015-12-08 Syenergy Integrated Energy Solutions Inc. Curved transpired solar air heater and conduit

Also Published As

Publication number Publication date
ES2304289A1 (en) 2008-10-01
ES2304289B1 (en) 2009-07-27

Similar Documents

Publication Publication Date Title
Kooli et al. The effect of nocturnal shutter on insulated greenhouse using a solar air heater with latent storage energy
Bouadila et al. Improvement of the greenhouse climate using a solar air heater with latent storage energy
ES2710354T3 (en) A power transmission panel for invisible incorporation into a building and a cassette comprising such a panel
ES2727278T3 (en) Concentrate solar energy with greenhouses
ES2760915T3 (en) Solid state thermal solar energy collector
CN103411262B (en) A kind of new type solar energy heat pipe heat-collection and heat-accumulation radiant heating system
Lazaar et al. Conditioning of the tunnel greenhouse in the north of Tunisia using a calcium chloride hexahydrate integrated in polypropylene heat exchanger
ES2468340T3 (en) Device for the absorption of electromagnetic radiation
ES2743939T3 (en) Heat exchange apparatus and method for energy storage
CN105209834A (en) Tube type solar air heater
CN102829556A (en) Wind-resistant solar water heater
ES2304289B1 (en) LOW COST SOLAR RECEIVER.
CN104918868A (en) Water supply and heating system comprises flexible tank and heating
WO1994023251A1 (en) Shower apparatus heated by solar radiation
ES2525196A1 (en) Thermally-insulated tubular-tower solar receiver comprising a system for harnessing energy losses
KR200389779Y1 (en) The Heating Plant using Solar Hot Water
Bouadil et al. Solar energy storage application in Tunisian greenhouse by means of phase change materials
KR100682580B1 (en) Heat collector and heat-collection system using the same
WO2018122870A1 (en) Curved surface absorber type solar fluid heater
ES2656552T3 (en) Combined solar module
Hamood et al. Experimental study on the performance of a prism-shaped integrated collector-storage solar water heater
CN201866950U (en) Spherical solar device with visible light spectrum thermal effect
KR101051760B1 (en) Heating plant using solar hot water
JP2013116096A (en) Agricultural pipe house installation type solar heat heating system
CN211378909U (en) Soil intensification tree case system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07730406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07730406

Country of ref document: EP

Kind code of ref document: A1