WO2007124953A1 - Method for space-resolved, nondestructive analysis of work pieces - Google Patents

Method for space-resolved, nondestructive analysis of work pieces Download PDF

Info

Publication number
WO2007124953A1
WO2007124953A1 PCT/EP2007/003876 EP2007003876W WO2007124953A1 WO 2007124953 A1 WO2007124953 A1 WO 2007124953A1 EP 2007003876 W EP2007003876 W EP 2007003876W WO 2007124953 A1 WO2007124953 A1 WO 2007124953A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
measuring sensor
measuring
sensor
local
Prior art date
Application number
PCT/EP2007/003876
Other languages
German (de)
French (fr)
Inventor
Ludwig Von Bernus
Michael KRÖNING
Andrei Bulavinov
Krishna Mohan Reddy
Olga Yastrebova
Vidaydhar Kudalkar
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102006027182A external-priority patent/DE102006027182A1/en
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2007124953A1 publication Critical patent/WO2007124953A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer

Definitions

  • the invention relates to a method for spatially resolved non-destructive workpiece examination by means of at least one measuring sensor, which is guided over a technical surface of the workpiece to be examined and within the workpiece existing local material inhomogeneities, local material dances and / or local material structure is able to detect.
  • a number of different measurement methods are available, such as ultrasonic, eddy current and magnetic field measuring method in which a suitably assembled test or measuring sensor is moved on the surface of the workpiece to be examined, to location-dependent information from the volume interior of the workpiece receive.
  • ultrasonic, eddy current and magnetic field measuring method in which a suitably assembled test or measuring sensor is moved on the surface of the workpiece to be examined, to location-dependent information from the volume interior of the workpiece receive.
  • eddy current and magnetic field measuring method in which a suitably assembled test or measuring sensor is moved on the surface of the workpiece to be examined, to location-dependent information from the volume interior of the workpiece receive.
  • ultrasound test the previous examination practice is to be explained in more detail, which, however, can also be transferred to other measuring or test methods in which, for example, appropriately designed eddy-current or magnetic sensors are used.
  • the ultrasonic wave testing method known per se is based on the pulse-echo principle in which ultrasonic wave transit times are measured between the event of the ultrasonic wave coupling over the workpiece surface and the ultrasonic wave reception after at least one single reflection event within the workpiece to be examined.
  • the measuring sensor to be traversed over the surface of the workpiece to be examined is moved by means of mechanical systems in which displacement encoders are integrated which are capable of measuring the respective sensor position, which ultimately permits location-related measurement signal data acquisition.
  • displacement encoders are integrated which are capable of measuring the respective sensor position, which ultimately permits location-related measurement signal data acquisition.
  • This forms the basis for a spatially resolved measurement data evaluation and pictorial representation of the test or measurement results for the scanned area within the workpiece.
  • Hand-held tests are also used for determining the position of each measuring sensor in use Weggebersysteme with which a spatially resolved and ultimately pictorial representation of the measured signals can be obtained because in the example of the above-cited ultrasonic test itself the usual image reconstruction in the form of B-, C- and D-pictures only with knowledge of the respective Meßsensorposition is possible.
  • Such Weggebersysteme usually require a physical contact with the surface of the workpiece to be examined, for example by means of a rolling body, which is used for a similar purpose in known per se computer mice with integrated ball.
  • Such or similar Distance measuring systems entail additional expense, both constructively and financially.
  • Non-contact path measuring systems are also known for detecting the position of a manually guided measuring sensor along the surface of a workpiece to be examined, in which the hand-held measuring sensor is detected optically by means of an image-processing camera unit or by means of a logger system based on radar or infrared technology.
  • the cost factors associated with these systems also account for a considerable proportion of the total cost of such measurement system.
  • the material and workpiece inspection are required for holistic volume detection of the workpiece to be examined as well as for a pictorial representation of the test or measurement results for each scanned or scanned workpiece area location information with which the respective measurement signals are to be included. It is therefore the object to realize the position detection of each measuring sensor used relative to the surface of the workpiece to be examined in the simplest and most cost-effective manner possible.
  • hitherto known displacement sensor systems which detect the position of measuring sensors have to be replaced by more cost-effective solutions, which, however, likewise enable an exact position detection of the respective measuring sensor.
  • a method for spatially resolved non-destructive workpiece inspection by means of at least one measuring sensor which is guided over a technical surface of the workpiece to be examined and existing within the workpiece, local material inhomogeneities, local material dances and / or local Matehalge Suite able to detect, is designed such starting from a starting position at which the at least one measuring sensor is positioned on the surface of the workpiece and a first volume region of the workpiece which can be detected by the measuring sensor, which is represented by a first measuring signal, by moving the measuring sensor along the workpiece surface into a second position, a movement trajectory based on a comparison of the first measurement signal with a second measurement signal obtained at the second position, which represents a second volume region, wherein the first and second te volume range at least partially overlap, is determined.
  • the spatial relative position of the second position on the workpiece surface relative to the starting position is determined and thus a relative location information of the individual measuring locations at which the workpiece is examined with the aid of the
  • the solution according to the method thus requires no additional systems or additional sensors whose task is the location of the measuring sensor in use, as is the case in the prior art.
  • the method according to the solution makes use of the measuring signals already obtained for the purpose of workpiece inspection, which are additionally evaluated by means of suitable algorithms for geometry calculations. It is thus possible, based on simple trigonometric relationships on the surface of the workpiece, to make changes in position of the measuring sensor on the basis of different viewing angles of at least one defect located within the workpiece, for example in the form of a material inhomogeneity or material dancings.
  • the ultrasonic waves emitted by an ultrasound transducer are reflected back to the ultrasound transducer seated on the surface of the workpiece on a material dancer formed, for example, by material rupture.
  • the positional offset between the two measuring positions on the surface of the workpiece to be examined can be determined.
  • so-called time signals or A-pictures or reconstructed pictures so-called C- or sector images can be evaluated via fast signal processors to obtain the required location information.
  • C- or sector images can be evaluated via fast signal processors to obtain the required location information.
  • the acoustic noise contained in the received signal for location determination due to the location information contained in the noise is possible.
  • the method according to the solution can be applied both to non-destructive workpiece investigations by means of ultrasound technology and by means of eddy current or magnetic field measurement technology.
  • the method can also be transferred to microwave measurement technology.
  • FIG. 2a, b schematized and experimentally determined cross-sectional view through a workpiece in a second position, as well
  • Fig. 3a, b experimentally determined time signals at two different positions of a workpiece.
  • FIG. 1 a shows a schematic cross section through a workpiece 1 in which local material inhomogeneities 2 are present at different points.
  • a measuring sensor 4 is shown in a first position X1.
  • the defects represented diagrammatically in FIG. 1a are shown in the form of experimentally determined reflection events ZB1 to ZB4.
  • the sector image gem Fig. 1 b, the rear wall R and a side edge K of the through-sounded workpiece as pictorially representable measuring signals.
  • the relative position of the individual defects 2 changes to the newly positioned measuring sensor 4.
  • the sector image recorded by the measuring sensor 4 is shown in FIG. 2b. It can be seen from the sector image according to FIG. 2b that all the reflection images have a changed spatial position to the position sensor located in position 2. For example, the measuring sensor 4 in position 2 no longer detects the defect 1 (see ZB1), whereas a new defect ZB5 is detected in the sector image according to position 2.
  • the reflected in position 1 reflex events ZB2 to ZB4, but also found in a different position in the sector image in position 2, serve as a basis for the calculation of the position position of the measuring sensor 4 in position 2.
  • test signal example illustrated in FIGS. 1 and 2 is intended to clarify that stationary, local reflectors present within the workpiece serve to determine the position of the measuring sensor. Nevertheless, it is possible to obtain location information also from the remaining noise signal with optimized methods of image and signal processing.
  • the abscissa corresponds to a distance measure measured from the surface of the workpiece in the depth of the workpiece, along the ordinate are shown according to receiving amplitudes. Nevertheless, location information for determining the position of the measuring sensor can be extracted on the basis of the noise signal which can be detected differently between the two positions.
  • the method according to the solution also makes it possible to carry out an imaging quality similar to that achievable with previously automated tests, even when the workpiece inspection is carried out manually.
  • the solution according to the method helps to significantly reduce costs due to unnecessary encoder or positioning systems.

Abstract

The invention relates to a method for a space-resolved, nondestructive analysis of work pieces by means of at least one measuring sensor which is guided across a technical surface area of the work piece to be analyzed and is able to detect the presence of local material inhomogeneities, local material irregularities, and/or local material structure inside the work piece. The invention is characterised in that, starting from a start position, the at least one measuring sensor is positioned on the surface area of the work piece and a first ascertainable portion of volume of the work piece is detected, which is represented by a first measuring signal. By moving the measuring sensor in the longitudinal direction of the surface area of the work piece into a second position, a displacement path is detected, based on a comparison between the first measuring signal and a second measuring signal received from the second position, which represents a second portion of volume, wherein the first and second portion of volume overlap at least partially. Based on the displacement path, the relative position of the second position is detected in relation to the starting position on the surface area of the work piece.

Description

Verfahren zur ortsaufgelösten, zerstörungsfreien Werkstückuntersuchung Method for spatially resolved, non-destructive workpiece inspection
Technisches GebietTechnical area
Die Erfindung bezieht sich auf ein Verfahren zur ortsaufgelösten zerstörungsfreien Werkstückuntersuchung mittels wenigstens eines Messsensors, der über eine technische Oberfläche des zu untersuchenden Werkstückes geführt wird und innerhalb des Werkstückes vorhandene lokale Materialinhomogenitäten, lokale Materialungänzen und/oder lokale Materialgefüge in der Lage ist zu detektieren.The invention relates to a method for spatially resolved non-destructive workpiece examination by means of at least one measuring sensor, which is guided over a technical surface of the workpiece to be examined and within the workpiece existing local material inhomogeneities, local material dances and / or local material structure is able to detect.
Stand der TechnikState of the art
Zur zerstörungsfreien Werkstückuntersuchung stehen eine Reihe unterschiedlicher Messverfahren zur Verfügung, wie beispielsweise Ultraschall-, Wirbelstrom- sowie Magnetfeldmessverfahren, bei denen ein geeignet konfektionierter Prüf- bzw. Messsensor auf der Oberfläche des zu untersuchenden Werkstückes verschoben wird, um ortsabhängige Informationen aus dem Volumeninneren des Werkstückes zu erhalten. Am Beispiel einer an sich bekannten Ultraschallprüfung soll die bisherige Untersuchungspraxis näher erläutert werden, die sich jedoch gleichfalls auch für andere Mess- bzw. Prüfverfahren übertragen lässt, in denen bspw. entsprechend ausgebildete Wirbelstrom- oder magnetische Sensoren zum Einsatz kommen.For nondestructive workpiece inspection, a number of different measurement methods are available, such as ultrasonic, eddy current and magnetic field measuring method in which a suitably assembled test or measuring sensor is moved on the surface of the workpiece to be examined, to location-dependent information from the volume interior of the workpiece receive. Using the example of a known ultrasound test, the previous examination practice is to be explained in more detail, which, however, can also be transferred to other measuring or test methods in which, for example, appropriately designed eddy-current or magnetic sensors are used.
So basiert das an sich bekannte Ultraschallwellenprüfverfahren auf dem Puls-Echo- Prinzip, bei dem Ultraschallwellenlaufzeiten gemessen werden, zwischen dem Ereignis der Ultraschallwelleneinkopplung über die Werkstückoberfläche und dem Ultraschallwellenempfang nach wenigstens einem einmaligen Reflexionsereignis innerhalb des zu untersuchenden Werkstückes. Die auf diese Weise erhaltenen, vom jeweiligen Einkoppelort des Ultraschallwandlers abhängigen Messsignale, man spricht in diesem Zusammenhang auch von Zeitsignalen oder A-Bildern, geben Aufschluß über das Reflexionsverhalten innerhalb des Werkstückes, jeweils in „Blickrichtung" des auf der Werkstückoberfläche aufsitzenden Ultraschallwandlers, den es gilt zur Erfassung möglichst des gesamten Volumens des Werkstückes längs der Werkstückoberfläche in geeigneter Weise zu verschieben. Um hierbei eine örtliche Zuordenbarkeit zwischen den einzelnen mit Hilfe des Ultraschallwandlers aufgenommenen Zeitmesssignalen und den auf der Werkstückoberfläche befindlichen Lagepunkten, an denen der Messsensor zur Messsignalaufnahme jeweils positioniert ist, herstellen zu können, bedarf es der zusätzlichen Lageinformation des Messsensors relativ zur Oberfläche des zu untersuchenden Werkstückes während der Messdurchführung.Thus, the ultrasonic wave testing method known per se is based on the pulse-echo principle in which ultrasonic wave transit times are measured between the event of the ultrasonic wave coupling over the workpiece surface and the ultrasonic wave reception after at least one single reflection event within the workpiece to be examined. The obtained in this way, from the respective Einkoppelort the ultrasonic transducer dependent measurement signals, one speaks in this context of time signals or A-pictures, provide information about the reflection behavior within the workpiece, respectively in the "direction of view" of the seated on the workpiece surface ultrasonic transducer, which applies to capture as possible the entire volume In order to be able to produce a local assignability between the individual time measuring signals recorded with the aid of the ultrasonic transducer and the position points on the workpiece surface where the measuring sensor for measuring signal recording is respectively positioned, it is necessary to additional position information of the measuring sensor relative to the surface of the workpiece to be examined during the measurement implementation.
Typischerweise wird hierzu der über die Oberfläche des zu untersuchenden Werkstückes zu verfahrende Messsensor mit Hilfe mechanischer Systeme bewegt, in denen Weggeber integriert sind, die die jeweilige Sensorposition zu messen in der Lage sind, wodurch letztlich eine ortsbezogene Messsignaldatenerfassung ermöglich wird. Diese erlaubt wiederum bildet die Grundlage für eine ortsaufgelöste Messdatenauswertung und bildhafte Darstellung der Prüf- bzw. Messergebnisse für den abgetasteten Bereich innerhalb des Werkstückes.Typically, for this purpose, the measuring sensor to be traversed over the surface of the workpiece to be examined is moved by means of mechanical systems in which displacement encoders are integrated which are capable of measuring the respective sensor position, which ultimately permits location-related measurement signal data acquisition. This, in turn, forms the basis for a spatially resolved measurement data evaluation and pictorial representation of the test or measurement results for the scanned area within the workpiece.
Bei handgeführten Prüfungen werden zur Positionsbestimmung des jeweils im Einsatz befindlichen Messsensors gleichfalls Weggebersysteme eingesetzt, mit denen eine ortsaufgelöste und letztlich bildhafte Darstellung der Messsignale erhalten werden kann, da im Beispiel der vorstehend zitierten Ultraschallprüfung selbst die übliche Bildrekonstruktion in Form von B-, C- und D-Bildern ausschließlich unter Kenntnis der jeweiligen Messsensorposition möglich ist.Hand-held tests are also used for determining the position of each measuring sensor in use Weggebersysteme with which a spatially resolved and ultimately pictorial representation of the measured signals can be obtained because in the example of the above-cited ultrasonic test itself the usual image reconstruction in the form of B-, C- and D-pictures only with knowledge of the respective Meßsensorposition is possible.
Derartige Weggebersysteme bedürfen zumeist eines mit der Oberfläche des zu untersuchenden Werkstückes körperlichen Kontaktes, beispielsweise mittels eines Rollkörpers, der zu vergleichbarem Zweck auch in an sich bekannten Computermäusen mit integrierter Kugel eingesetzt wird. Derartige oder ähnliche Wegmesssysteme haben jedoch einen zusätzlichen Aufwand zur Folge, sowohl in konstruktiver als auch in finanzieller Hinsicht. Auch sind kontaktfreie Wegmesssysteme zur Erfassung der Lage eines manuell geführten Messsensors längs zur Oberfläche eines zu untersuchenden Werkstückes bekannt, bei denen der handgeführte Messsensor optisch mittels einer bildverarbeitenden Kameraeinheit oder mittels eines auf Radar- oder Infrarottechnik beruhenden Loggersystems räumlich erfaßt wird. Es liegt jedoch auf der Hand, dass die auch mit diesen Systemen verbundenen Kostenfaktoren einen beachtlich Anteil an den Gesamtaufwendungen derartiger Mess- bzw. Prüfsystems ausmachen. So entfallen typischerweise 70% der gesamten Systemkosten lediglich auf die Handhabungstechnik, die in vielen Fällen aufgrund des Platzbedarfes nicht oder nur problematisch einsetzbar ist. Dies mag auch der Grund dafür sein, dass sich bei der Durchführung manueller Prüftechniken, die typischerweise 70% aller Ultraschallprüfungen ausmachen, Weggebersysteme bzw. Systeme, die die Position des Messsensors zu orten vermögen, aufgrund praktischer Probleme nicht weiter durchsetzen können.Such Weggebersysteme usually require a physical contact with the surface of the workpiece to be examined, for example by means of a rolling body, which is used for a similar purpose in known per se computer mice with integrated ball. Such or similar Distance measuring systems, however, entail additional expense, both constructively and financially. Non-contact path measuring systems are also known for detecting the position of a manually guided measuring sensor along the surface of a workpiece to be examined, in which the hand-held measuring sensor is detected optically by means of an image-processing camera unit or by means of a logger system based on radar or infrared technology. However, it is obvious that the cost factors associated with these systems also account for a considerable proportion of the total cost of such measurement system. Thus, typically accounts for 70% of the total system cost only on the handling technique that is not or only problematic in many cases due to space requirements. This may also be the reason that due to practical problems, implementing manual testing techniques, which typically make up 70% of all ultrasound examinations, can not enforce tracker systems or systems that can locate the position of the measurement sensor.
Darstellung der ErfindungPresentation of the invention
In vielen Fällen der Werkstoff- und Werkstückprüfung sind zur gesamtheitlichen Volumenerfassung des zu untersuchenden Werkstückes sowie für eine bildhafte Darstellung der Prüf- bzw. Messergebnisse für den jeweils abgetasteten bzw. abgerasterten Werkstückbereich Ortsinformationen erforderlich, mit denen die jeweiligen Messsignale aufzunehmen sind. Es besteht daher die Aufgabe, die Lageerfassung des jeweils eingesetzten Messsensors relativ zur Oberfläche des zu untersuchenden Werkstückes auf möglichst einfache und kostengünstige Weise zu realisieren. So gilt es bis anhin bekannte Weggebersysteme, die die Position von Messsensoren erfassen, durch kostengünstigere Lösungen zu ersetzen, die jedoch gleichfalls eine exakte Lageerfassung des jeweiligen Messsensors ermöglichen.In many cases, the material and workpiece inspection are required for holistic volume detection of the workpiece to be examined as well as for a pictorial representation of the test or measurement results for each scanned or scanned workpiece area location information with which the respective measurement signals are to be included. It is therefore the object to realize the position detection of each measuring sensor used relative to the surface of the workpiece to be examined in the simplest and most cost-effective manner possible. For example, hitherto known displacement sensor systems which detect the position of measuring sensors have to be replaced by more cost-effective solutions, which, however, likewise enable an exact position detection of the respective measuring sensor.
Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie den Erläuterungen unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen.The solution of the problem underlying the invention is specified in claim 1. The concept of the invention advantageously further-forming features The subject of the dependent claims and the explanations with reference to the exemplary embodiments.
Lösungsgemäß wird ein Verfahren zur ortsaufgelösten zerstörungsfreien Werkstückuntersuchung mittels wenigstens eines Messsensors, der über eine technische Oberfläche des zu untersuchenden Werkstückes geführt wird und innerhalb des Werkstückes vorhandene, lokale Materialinhomogenitäten, lokale Materialungänzen und/oder lokale Matehalgefüge in der Lage zu detektieren ist, derart ausgebildet, dass ausgehend von einer Startposition, an der der wenigstens eine Messsensor auf der Oberfläche des Werkstückes positioniert und ein erster vom Messsensor erfaßbarer Volumenbereich des Werkstückes detektiert wird, der durch ein erstes Messsignal repräsentiert wird, durch Verschieben des Messsensors längs der Werkstückoberfläche in eine zweite Position, eine Bewegungstrajektorie auf der Grundlage eines Vergleiches des ersten Messsignals mit einem an der zweiten Position erhaltenen zweiten Messsignal, dass einen zweiten Volumenbereich repräsentiert, wobei sich der erste und zweite Volumenbereich zumindest teilweise überlappen, ermittelt wird. Durch die Ermittlung der Bewegungstrajektorie wird die räumliche Relativlage der zweiten Position auf der Werkstückoberfläche relativ zur Startposition ermittelt und somit eine relative Ortsinformation der einzelnen Messorte, an denen das Werkstück mit Hilfe des Messsensors untersucht werden, gewonnen.According to the invention, a method for spatially resolved non-destructive workpiece inspection by means of at least one measuring sensor, which is guided over a technical surface of the workpiece to be examined and existing within the workpiece, local material inhomogeneities, local material dances and / or local Matehalgefüge able to detect, is designed such starting from a starting position at which the at least one measuring sensor is positioned on the surface of the workpiece and a first volume region of the workpiece which can be detected by the measuring sensor, which is represented by a first measuring signal, by moving the measuring sensor along the workpiece surface into a second position, a movement trajectory based on a comparison of the first measurement signal with a second measurement signal obtained at the second position, which represents a second volume region, wherein the first and second te volume range at least partially overlap, is determined. By determining the movement trajectory, the spatial relative position of the second position on the workpiece surface relative to the starting position is determined and thus a relative location information of the individual measuring locations at which the workpiece is examined with the aid of the measuring sensor is obtained.
Das lösungsgemäße Verfahren bedarf somit keinerlei Zusatzsysteme bzw. Zusatzsensoren, deren Aufgabe die Ortsbestimmung des im Einsatz befindlichen Messsensors ist, wie es beim Stand der Technik der Fall ist. Demgegenüber bedient sich das lösungsgemäße Verfahren den ohnehin zum Zwecke der Werkstückuntersuchung gewonnenen Messsignalen, die zusätzlich mittels geeigneter Algorithmen für Geometrieberechnungen ausgewertet werden. So ist es möglich, aufgrund einfacher trigonometrischer Beziehungen an der Oberfläche des Werkstückes vorgenommene Lageveränderungen des Messsensors auf der Grundlage unterschiedlicher Blickwinkelbetrachtungen wenigstens einer innerhalb des Werkstückes befindlichen Fehlstelle, beispielsweise in Form einer Materialinhomogenität oder Materialungänze, zu ermitteln. Beispielsweise im Falle der Werkstückuntersuchung mittels Ultraschallmesstechnik werden die seitens eines Ultraschallwandlers ausgesandten Ultraschallwellen an einer beispielsweise durch Materialriss gebildeten Materialungänze zurück an den an der Oberfläche des Werkstückes aufsitzenden Ultraschallwandlers reflektiert. Anhand der veränderlichen Messsignale, die von ein und derselben Fehlstelle innerhalb des Werkstückes stammen und aus unterschiedlichen Positionen an der Werkstückoberfläche gewonnen werden, kann der Lageversatz zwischen den beiden Messpositionen an der Oberfläche des zu untersuchenden Werkstückes ermittelt werden. Durch Verwendung effizienter Rechnerstrukturen, beispielsweise in Form hochintegrierter Bauelemente sowie der Nutzung optimierter Berechnungsalgorithmen können die zur Werkstückuntersuchung gewonnenen Messsignale in nahezu Echtzeit, d.h. auch bei schneller Sensorbewegung hinsichtlich ihres Informationsinhaltes über Position und Positionsänderung ausgewertet werden. Die Ortsinformationen können gemeinsam mit den erfaßten Messsignalen abgespeichert und für eine nachträgliche Auswertung zur Verfügung gestellt werden.The solution according to the method thus requires no additional systems or additional sensors whose task is the location of the measuring sensor in use, as is the case in the prior art. In contrast, the method according to the solution makes use of the measuring signals already obtained for the purpose of workpiece inspection, which are additionally evaluated by means of suitable algorithms for geometry calculations. It is thus possible, based on simple trigonometric relationships on the surface of the workpiece, to make changes in position of the measuring sensor on the basis of different viewing angles of at least one defect located within the workpiece, for example in the form of a material inhomogeneity or material dancings. For example, in the case of workpiece examination by means of ultrasound measurement, the ultrasonic waves emitted by an ultrasound transducer are reflected back to the ultrasound transducer seated on the surface of the workpiece on a material dancer formed, for example, by material rupture. Based on the variable measurement signals, which come from one and the same defect within the workpiece and are obtained from different positions on the workpiece surface, the positional offset between the two measuring positions on the surface of the workpiece to be examined can be determined. By using efficient computer structures, for example in the form of highly integrated components and the use of optimized calculation algorithms, the measurement signals obtained for workpiece examination can be evaluated in almost real time, ie even with rapid sensor movement in terms of their information content about position and position change. The location information can be stored together with the detected measurement signals and made available for subsequent evaluation.
So können bei der Werkstückuntersuchung mittels Ultraschallmesstechnik sogenannte Zeitsignale bzw. A-Bilder oder rekonstruierte Bilder, sogenannte C- bzw. Sektorbilder über schnelle Signalprozessoren zum Erhalt der erforderlichen Ortsinformationen ausgewertet werden. Hierfür dienen in erster Linie Reflexionsereignisse an diskreten Streuern innerhalb des Werkstückes, beispielsweise in Form von Fehlstellen, darüber hinaus ist jedoch auch das im Empfangssignal enthaltene akustische Rauschen zur Ortsbestimmung aufgrund der im Rauschen enthaltenen Ortsinformation möglich.Thus, in the workpiece examination by means of ultrasound measuring technology, so-called time signals or A-pictures or reconstructed pictures, so-called C- or sector images can be evaluated via fast signal processors to obtain the required location information. For this serve primarily reflection events on discrete scatterers within the workpiece, for example in the form of defects, in addition, however, the acoustic noise contained in the received signal for location determination due to the location information contained in the noise is possible.
Das lösungsgemäße Verfahren läßt sich aufgrund der Messsystemunabhängigkeit sowohl auf zerstörungsfreie Werkstückuntersuchungen mittels Ultraschalltechnik als auch mittels Wirbelstrom- oder Magnetfeldmesstechnik anwenden. Für bestimmte Werkstoffgruppen kann das Verfahren auch auf Mikrowellenmesstechnik übertragen werden. Kurze Beschreibung der ErfindungDue to the measuring system independence, the method according to the solution can be applied both to non-destructive workpiece investigations by means of ultrasound technology and by means of eddy current or magnetic field measurement technology. For certain material groups, the method can also be transferred to microwave measurement technology. Brief description of the invention
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawings. Show it:
Fig. 1a, b schematisierte sowie experimentell ermittelte Querschnittsdarstellung durch ein Werkstück in einer ersten Position,1a, b schematically and experimentally determined cross-sectional representation through a workpiece in a first position,
Fig. 2a, b schematisierte sowie experimentell ermittelte Querschnittsdarstellung durch ein Werkstück in einer zweiten Position, sowieFig. 2a, b schematized and experimentally determined cross-sectional view through a workpiece in a second position, as well
Fig. 3a, b experimentell ermittelte Zeitsignale an zwei unterschiedlichen Positionen eines Werkstückes.Fig. 3a, b experimentally determined time signals at two different positions of a workpiece.
Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWays to carry out the invention, industrial usability
In Figur 1a ist ein schematisierter Querschnitt durch ein Werkstück 1 dargestellt, in dem an verschiedenen Stellen lokale Materialinhomogenitäten 2 vorhanden sind. An der Oberfläche 3 des Werkstückes 1 ist ein Messsensor 4 in einer ersten Position X1 dargestellt. In dem in Figur 1b gezeigten Sektorbild (C-BiId), sind die in Figur 1a schematisiert dargestellten Fehlstellen in Form experimentell ermittelter Reflexereignisse ZB1 bis ZB4 gezeigt. Ferner zeichnen sich im Sektorbild gem. Fig. 1 b die Rückwand R sowie eine Seitenkante K des durchschallten Werkstückes als bildlich darstellbare Messsignale ab.FIG. 1 a shows a schematic cross section through a workpiece 1 in which local material inhomogeneities 2 are present at different points. On the surface 3 of the workpiece 1, a measuring sensor 4 is shown in a first position X1. In the sector image (C-frame) shown in FIG. 1b, the defects represented diagrammatically in FIG. 1a are shown in the form of experimentally determined reflection events ZB1 to ZB4. Furthermore, in the sector image gem. Fig. 1 b, the rear wall R and a side edge K of the through-sounded workpiece as pictorially representable measuring signals.
Wird nun der Messsensor 4 längs der Oberfläche 3 des Werkstückes 1 verschoben in eine Position 2 gemäß Bilddarstellung in Figur 2a, so verändert sich die Relativlage der einzelnen Fehlstellen 2 zum neupositionierten Messsensor 4. Das vom Messsensor 4 aufgenommene Sektorbild ist in Figur 2b dargestellt. Aus dem Sektorbild gemäß Figur 2b ist zu entnehmen, dass sämtliche Reflexbilder eine veränderte räumliche Lage zu dem in Position 2 befindlichen Messsensor einnehmen. So erfaßt beispielsweise der Messsensor 4 in Position 2 die Störstelle 1 (siehe ZB1 ) nicht mehr, wohingegen eine neue Störstelle ZB5 im Sektorbild gemäß Position 2 detektiert wird. Die bereits in Position 1 erfaßten Reflexereignisse ZB2 bis ZB4, die sich ebenfalls jedoch in veränderter Position im Sektorbild in Position 2 wiederfinden, dienen als Grundlage für die Berechnung der Lageposition des Messsensors 4 in Position 2.If the measuring sensor 4 is now displaced along the surface 3 of the workpiece 1 into a position 2 as shown in FIG. 2a, the relative position of the individual defects 2 changes to the newly positioned measuring sensor 4. The sector image recorded by the measuring sensor 4 is shown in FIG. 2b. It can be seen from the sector image according to FIG. 2b that all the reflection images have a changed spatial position to the position sensor located in position 2. For example, the measuring sensor 4 in position 2 no longer detects the defect 1 (see ZB1), whereas a new defect ZB5 is detected in the sector image according to position 2. The reflected in position 1 reflex events ZB2 to ZB4, but also found in a different position in the sector image in position 2, serve as a basis for the calculation of the position position of the measuring sensor 4 in position 2.
Das in Figur 1 und 2 dargestellte Messsignalbeispiel soll verdeutlichen, dass zur Positionsbestimmung des Messsensors ortsfeste, lokale innerhalb des Werkstückes vorhandene Reflektoren dienen. Gleichwohl ist es möglich, Ortsinformationen auch aus dem übrigen Rauschsignal mit optimierten Methoden der Bild- und Signalverarbeitung zu gewinnen. Hierzu sei auf die Figuren 3a und b hingewiesen, die ein akustisches Hintergrundsignal an zwei unterschiedlichen Positionen an einem Werkstück darstellen. Die Abszisse entspricht einem Abstandmaß gemessen von der Oberfläche des Werkstückes in die Tiefe des Werkstückes, längs der Ordinate sind entsprechend Empfangsamplituden dargestellt. Anhand des zwischen den beiden Positionen unterschiedlich detektierbaren Rauschsignals können gleichwohl Ortsinformationen zur Lagebestimmung des Messsensors extrahiert werden.The test signal example illustrated in FIGS. 1 and 2 is intended to clarify that stationary, local reflectors present within the workpiece serve to determine the position of the measuring sensor. Nevertheless, it is possible to obtain location information also from the remaining noise signal with optimized methods of image and signal processing. Reference is made to Figures 3a and b, which represent an acoustic background signal at two different positions on a workpiece. The abscissa corresponds to a distance measure measured from the surface of the workpiece in the depth of the workpiece, along the ordinate are shown according to receiving amplitudes. Nevertheless, location information for determining the position of the measuring sensor can be extracted on the basis of the noise signal which can be detected differently between the two positions.
Durch den Einsatz des lösungsgemäßen Verfahrens ergeben sich grundsätzlich zwei Vorteile. Zum einen ermöglicht das lösungsgemäße Verfahren auch bei der manuellen Durchführung der Werkstückprüfung eine bildgebende Qualität ähnlich jener, die bei bisher automatisiert durchgeführten Prüfungen erreichbar ist. Insbesondere unter erschwerten Bedingungen, durch die die Montage von Manipulatoren nicht gestattet oder durch Zugangszeiten begrenzt sind, beispielsweise in kerntechnischen Anlagen aufgrund herrschender Strahlenschutzvorschriften oder bei Unterwasserprüfungen oder vieles mehr, kann eine schnelle, einfach durchführbare manuelle Prüfung mit quantifizierbaren, d.h. bildhaften Ergebnissen als praktikable Alternative eingesetzt werden. Zum anderen verhilft das lösungsgemäße Verfahren zu einer deutlichen Kostensenkung aufgrund nicht erforderlicher Weggeber oder Ortungssysteme. By using the method according to the invention, there are basically two advantages. On the one hand, the method according to the solution also makes it possible to carry out an imaging quality similar to that achievable with previously automated tests, even when the workpiece inspection is carried out manually. In particular, under difficult conditions, by which the installation of manipulators are not permitted or limited by access times, for example in nuclear facilities due to prevailing radiation protection regulations or underwater tests or much more, can be a quick, easy to carry out manual test with quantifiable, ie pictorial results as a viable alternative be used. On the other hand, the solution according to the method helps to significantly reduce costs due to unnecessary encoder or positioning systems.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Werkstück1 workpiece
2 Fehlstelle2 defect
3 Oberfläche3 surface
4 Messsenor R Rückseite K Kante4 Measuring sensor R Back K edge
ZB 1 bis ZB5 detektierte Reflexionsereignisse For example, 1 to ZB5 detected reflection events

Claims

Patentansprüche claims
1. Verfahren zur ortsaufgelösten zerstörungsfreien Werkstückuntersuchung mittels wenigstens eines Messsensors, der über eine technische Oberfläche des zu untersuchenden Werkstückes geführt wird und innerhalb des Werkstückes vorhandene lokale Materialinhomogenitäten, lokale Materialungänzen und/oder lokale Materialgefüge in der Lage ist zu detektieren, dadurch gekennzeichnet, dass ausgehend von einer Startposition, an der der wenigstens eine Messsensor auf der Oberfläche des Werkstückes positioniert und ein erster vom Messsensor erfassbarer Volumenbereich des Werkstückes detektiert wird, der durch ein erstes Messsignal repräsentiert wird, durch Verschieben des Messsensors längs der Werkstückoberfläche in einer zweite Position eine Bewegungstrajektorie, auf der Grundlage eines Vergleiches des ersten Messsignals mit einem an der zweiten Position erhaltenen zweiten Messsignal, das einen zweiten Volumenbereich repräsentiert, wobei sich der erste und zweite Volumenbereich zumindest teilweise überlappen, ermittelt wird, und dass anhand der Bewegungstrajektorie die Relativlage der zweiten Position relativ zur Startposition auf der Oberfläche des Werkstückes ermittelt wird.1. A method for spatially resolved non-destructive workpiece inspection by means of at least one measuring sensor, which is guided over a technical surface of the workpiece to be examined and within the workpiece existing local material inhomogeneities, local material dances and / or local material structure is able to detect, characterized in that starting from a starting position at which the at least one measuring sensor is positioned on the surface of the workpiece and a first volume region of the workpiece detectable by the measuring sensor is represented by a first measuring signal, by moving the measuring sensor along the workpiece surface in a second position a movement trajectory, on the basis of a comparison of the first measurement signal with a second measurement signal obtained at the second position, which represents a second volume region, wherein the first and second volume regions at least partially overlap, is determined, and that based on the movement trajectory, the relative position of the second position relative to the starting position on the surface of the workpiece is determined.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass durch wiederholtes Ausführen des Verschiebens des wenigstens einen Messsensors auf der Oberfläche des Werkstückes und der jeweiligen Ermittlung der Bewegungstrajektorie zwischen zwei Positionen, an denen jeweils sich wenigstens teilweise überlappende Volumenbereiche repräsentierende Messsignale gewonnen werden, eine Vielzahl von Bewegungstrajektorien gewonnen werden, auf deren Grundlage die örtliche Lage des Messsensors auf der Oberfläche des Werkstückes relativ zur Startposition ermittelt wird. 2. The method according to claim 1, characterized in that by repeated execution of the displacement of the at least one measuring sensor on the surface of the workpiece and the respective determination of the movement trajectory between two positions, at each of which at least partially overlapping volume regions representative measuring signals are obtained, a plurality are obtained by Bewegungsstrajektorien, based on which the local position of the measuring sensor is determined on the surface of the workpiece relative to the starting position.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Messsensor ein Ultraschallwandler, vorzugsweise ein piezoelektrischer oder ein elektromagnetischer Ultraschallwandler (EMUS), ein Wirbelstromsensor, ein Magnetfeldsensor und/oder ein Mikrowellenmesstechnischer Sensor verwendet werden.3. The method according to claim 1 or 2, characterized in that the measuring sensor, an ultrasonic transducer, preferably a piezoelectric or an electromagnetic ultrasonic transducer (EMUS), an eddy current sensor, a magnetic field sensor and / or a Mikrowellenmesstechnischer sensor are used.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur Ortsbestimmung des wenigstens einen Messsensors auf der Oberfläche des Werkstückes Messsignale aus wenigstens zwei unterschiedlichen Positionen verwendet werden, dass bei Vorhandensein wenigstens einer durch den Messsensor detektierbaren ortsfesten Materialinhomogenität und/oder lokalen Materialungänze und/oder lokalen Materialgefüge die wenigstens zwei Messsignale Lage-abhängige Ortsinformationen über die Materialinhomogenität und/oder lokale Materialungänze und/oder lokales Materialgefüge enthalten, die einer Geometrieberechnung unterzogen werden.4. The method according to any one of claims 1 to 3, characterized in that for determining the location of the at least one measuring sensor on the surface of the workpiece measuring signals from at least two different positions are used that in the presence of at least one detectable by the measuring sensor stationary material inhomogeneity and / or local Materialungänze and / or local material structure containing at least two measurement signals location-dependent location information about the material inhomogeneity and / or local material dances and / or local material structures that are subjected to a Geometrieberechnung.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Geometrieberechnung als Teil einer Bildverarbeitung eingesetzt wird, bei der die einzelnen Messsignale als Bildsignale, die Schnitt- oder Volumenbilder repräsentieren, ausgewertet werden.5. The method according to claim 4, characterized in that the geometry calculation is used as part of image processing in which the individual measurement signals are evaluated as image signals representing sectional or volume images.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Messsignalanteile, die nicht von ortsfesten Materialinhomogenitäten und/oder lokalen Materialungänzen herrühren zur Ortsbestimmung des wenigstens einen Messsensors verwendet werden.6. The method according to any one of claims 1 to 5, characterized in that measurement signal components which are not derived from stationary material inhomogeneities and / or local material dances are used for determining the location of the at least one measuring sensor.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der wenigstens eine Messsensor manuell oder roboterunterstützt längs der Oberfläche des zu untersuchenden Werkstückes bewegt wird. 7. The method according to any one of claims 1 to 6, characterized in that the at least one measuring sensor is moved manually or robot-assisted along the surface of the workpiece to be examined.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass unter Verwendung der Ultraschallmesstechnik mittels wenigstens eines Ultraschallwandlers gewonnene Zeitsignale, so genannte A- Bilder, und/oder Sektorbilder, so genannte B-Bilder, zur Ortsbestimmung verwendet werden.8. The method according to any one of claims 1 to 7, characterized in that using the ultrasonic measurement by means of at least one ultrasonic transducer obtained time signals, so-called A-pictures, and / or sector images, so-called B-pictures, are used for location.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass eine Auswertung der B-Bilder zur Ortsbestimmung des Messsensors auf der Oberfläche des Werkstückes in Echtzeit oder nahezu in Echtzeit erfolgt. 9. The method according to claim 8, characterized in that an evaluation of the B-pictures for determining the position of the measuring sensor on the surface of the workpiece is carried out in real time or almost in real time.
PCT/EP2007/003876 2006-05-02 2007-05-02 Method for space-resolved, nondestructive analysis of work pieces WO2007124953A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006020194 2006-05-02
DE102006020194.9 2006-05-02
DE102006027182.3 2006-06-12
DE102006027182A DE102006027182A1 (en) 2006-05-02 2006-06-12 Workpiece testing method, involves determining movement trajectory on basis of comparison of measuring signals received at position with respect to initial position, at which volume area of workpiece is detected

Publications (1)

Publication Number Publication Date
WO2007124953A1 true WO2007124953A1 (en) 2007-11-08

Family

ID=38331695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/003876 WO2007124953A1 (en) 2006-05-02 2007-05-02 Method for space-resolved, nondestructive analysis of work pieces

Country Status (1)

Country Link
WO (1) WO2007124953A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566674A (en) * 1995-06-30 1996-10-22 Siemens Medical Systems, Inc. Method and apparatus for reducing ultrasound image shadowing and speckle
DE19827460A1 (en) * 1997-06-19 1998-12-24 Medinol Ltd Improved intravascular ultrasound image and signal processing
US20030114755A1 (en) * 2001-12-18 2003-06-19 Jing-Ming Jong High frame rate extended field of view ultrasound imaging system and method
DE102005037806A1 (en) * 2004-08-13 2006-02-23 General Electric Co. Method and device for enlarging the field of view in ultrasound imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566674A (en) * 1995-06-30 1996-10-22 Siemens Medical Systems, Inc. Method and apparatus for reducing ultrasound image shadowing and speckle
DE19827460A1 (en) * 1997-06-19 1998-12-24 Medinol Ltd Improved intravascular ultrasound image and signal processing
US20030114755A1 (en) * 2001-12-18 2003-06-19 Jing-Ming Jong High frame rate extended field of view ultrasound imaging system and method
DE102005037806A1 (en) * 2004-08-13 2006-02-23 General Electric Co. Method and device for enlarging the field of view in ultrasound imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOSKALIK A ET AL: "REGISTRATION OF THREE-DIMENSIONAL COMPOUND ULTRASOUND SCANS OF THE BREAST FOR REFRACTION AND MOTION CORRECTION", ULTRASOUND IN MEDICINE AND BIOLOGY, NEW YORK, NY, US, vol. 21, no. 6, 1995, pages 769 - 778, XP002060900, ISSN: 0301-5629 *

Similar Documents

Publication Publication Date Title
DE102009047317A1 (en) Method and apparatus for ultrasonic testing
EP2051070A1 (en) Method and device for non-destructive materials testing of a test specimen with ultrasonic waves
DE1648637A1 (en) Ultrasonic testing device for weld seams or the like.
WO2007048479A1 (en) Method and device for an imaging ultrasonic inspection of a three-dimensional workpiece
DE102015108480A1 (en) System and method for a dynamic gating process in nondestructive weld inspection
DE102010019477A1 (en) Method and device for nondestructive material examination by means of ultrasound
DE102012112121B4 (en) Method and device for non-destructive testing of a rotationally symmetrical workpiece which has sections of different diameters
EP2603791B1 (en) Method and device for determining an orientation of a defect present within a mechanical component
EP3853586A1 (en) Thz measuring device and thz measuring method for determining defects in measuring objects
DE102012202279B4 (en) Ensuring a test cover during a manual inspection
DE102006027182A1 (en) Workpiece testing method, involves determining movement trajectory on basis of comparison of measuring signals received at position with respect to initial position, at which volume area of workpiece is detected
DE102017207331A1 (en) Method for evaluating a test data set of an ultrasonic test
DE112009000944T5 (en) System and method for testing welds
EP1576364B1 (en) Method for evaluating ultrasonic signals of a flaw in a workpiece
EP1390737B1 (en) Non-destructive ultrasound test method for detection of damage
EP2623952B1 (en) Method and device for detecting surface cracks
WO2007124953A1 (en) Method for space-resolved, nondestructive analysis of work pieces
DE2939132C2 (en) Procedure for the non-destructive testing of tubes and rods using ultrasound
EP2821783B1 (en) Device and method for determining material faults in rotationally symmetrical test samples by means of ultrasound
WO2008131722A1 (en) Ultrasound measuring system
DE102019116142A1 (en) Device for the tomographic ultrasound inspection of an internal structure of a metal slab and method for in-situ quality inspection of metal slabs
EP3455618B1 (en) Device having a protective device for examining a pipe wall or other workpiece
DE102009050160A1 (en) Method for ultrasonic inspection of test object e.g. steel product, involves determining entropy value for phase value, and obtaining weighting of amplitude value, where weighting represents amplitude values determined at spatial points
DE102016122230A1 (en) Method and device for inspecting an object for defects
DE102016221730A1 (en) Method for the detection of material inhomogeneities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07724802

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07724802

Country of ref document: EP

Kind code of ref document: A1