WO2007130091A1 - Integration of vacuum microelectronic device with integrated circuit - Google Patents

Integration of vacuum microelectronic device with integrated circuit Download PDF

Info

Publication number
WO2007130091A1
WO2007130091A1 PCT/US2006/022777 US2006022777W WO2007130091A1 WO 2007130091 A1 WO2007130091 A1 WO 2007130091A1 US 2006022777 W US2006022777 W US 2006022777W WO 2007130091 A1 WO2007130091 A1 WO 2007130091A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
resonant structure
small resonant
small
dielectric layer
Prior art date
Application number
PCT/US2006/022777
Other languages
French (fr)
Inventor
Jonathan Gorrell
Original Assignee
Virgin Islands Microsystems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virgin Islands Microsystems, Inc. filed Critical Virgin Islands Microsystems, Inc.
Publication of WO2007130091A1 publication Critical patent/WO2007130091A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/34Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00253Processes for integrating an electronic processing unit with a micromechanical structure not provided for in B81C1/0023 - B81C1/00246
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons

Definitions

  • This relates to ultra-small electronic devices, and, more particularly, integrating such devices with integrated circuits.
  • Integrated circuits are ubiquitous. While it is desirable to add functionality (such as inter-chip optical communications) to existing ICs, this is typically done through external devices and connections.
  • Various ultra-small resonant structures have been described in the related applications to perform a variety of functions, including optical data transfer functions. These ultra-smail resonant devices are functionally compatible with standard ICs.
  • FIGS. 1, 2,3 A, 3B, and 4-7 show ICs integrated with ultra-small resonant structures.
  • Fig. 1 shows an integrated structure 100 in which IC 102 is integrated with an ultra-small resonant structure (RS) 104.
  • the ultra-small resonant structure 104 can be formed on an external surface of the IC, e.g., on the top of the upper layer dielectric or polymer layer 106 of the IC 102.
  • the ultra-small resonant structure 104 can have any (direct or indirect) electrical connection to the IC 102, and it may operated independently of the IC 102.
  • Grounding may be achieved, e.g., as shown in the integrated structure 200 in Fig. 2, by electrically connecting the ultra-small resonant structure 104 to an appropriate pin 108 that is used to connect the IC 102 to a circuit board or other surface.
  • the electrical connection can be achieved, e.g., by providing an appropriately shaped grounded region 112, formed on the IC, and then electrically connecting the ultra-small resonant structure 104 to the grounded region 112 (e.g., using connection 114).
  • the ultra-small resonant structure may be connected to a region of some known potential.
  • the grounded region 112 and connection 114 may be formed of a metal such as, e.g., silver (Ag), and the structure 104 may be formed directly on the metal.
  • a metal such as, e.g., silver (Ag)
  • the structure 104 may be formed directly on the metal.
  • the IC may be any IC formed, e.g., with conventional semiconductor processing.
  • the ultra-small resonant structure(s) may be any ultra-small resonant structure(s). Exemplary ultra-small resonant structures are described in the various related applications which have been incorporated herein by reference.
  • the ultra-small resonant structures may be made, e.g., using techniques such as described in U.S. Patent Application No. 10/917,51 1, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching” and/or U.S. Application No. 11/203,407, entitled “Method Of Patterning Ultra-Small Structures,” both of which have been incorporated herein by reference.
  • the ultra-small resonant structure may comprise any number of resonant microstructures constructed and adapted to produce EMR, e.g., as described above and/or in U.S. Application no. 11/325,448, entitled “Selectable Frequency Light Emitter from Single Metal Layer,” filed January 5, 2006 [Atty. Docket 2549-0060], U.S. Application No. 11/325,432, entitled, “Matrix Array Display,” filed January 5, 2006, and U.S. Application No. 11/243,476 [Atty. Docket 2549-0058], filed on October 5, 2005, entitled “Structures And Methods For Coupling Energy From An Electromagnetic Wave"; U.S. Application No.
  • the ultra-small resonant structures may emit light (such as infrared light, visible light or ultraviolet light or any other electromagnetic radiation (EMR) at a wide range of frequencies, and often at a frequency higher than that of microwave).
  • EMR electromagnetic radiation
  • the EMR is emitted when the resonant structure is exposed to a beam of charged particles ejected from or emitted by a source of charged particles.
  • the source may be controlled by applying a signal on data input.
  • the source can be any desired source of charged particles such as an ion gun, a Thermionic filament, tungsten filament, a cathode, a vacuum triode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a field emission cathode, a chemical ionizer, a thermal ionizer, an ion-impact ionizer, an electron source from a scanning electron microscope, etc.
  • the particles may be positive ions, negative ions, electrons, and protons and the like.
  • Fig. 3A is a side view of a system 300A which includes ultra-small resonant structures 304 formed on a grounded region 314 on a (top) surface of an IC 302.
  • One or more sources of charged particles 306 are positioned so that the emitted beam(s) of particles 308 cause the structures 304 to resonate.
  • Fig. 3B is a top view of an exemplary system as shown in Fig. 3A.
  • the structures 304 comprise a plurality of arrays of structures 304-B1, 304-B2, . . ., 304-Bn, formed on the grounded region 314.
  • Corresponding charged particle emitters 306-1, 306-2, . . ., 306-n are formed on a different surface, perhaps on an IC.
  • Each particle emitter 306-/r emits a beam of charged particles to a corresponding array of ultra-small resonant structures 304-BAr.
  • a deflector mechanism 307-k may be associated with some or all of the particle emitters 306-& to control the direction of the emitted beam. Control of the deflectors is not shown. For example, the beam emitted by particle emitter 306-2 has been deflected by emitter(s) 307-2.
  • deflector(s) may be formed on the same surface as the resonant structures.
  • FIG. 4 shows an integrated structure 400 in which IC 402 is integrated with various ultra-small resonant structures 404-1, 404-2, 404-3 (collectively ultra-small resonant structures 404). While Fig. 4 shows three ultra-small resonant structures, those skilled in the art will immediately understand upon review of this disclosure that the number of ultra-small resonant structures will vary by their function and application, and that more or less than three may be used.
  • a dielectric (insulation) layer 406 is formed on a surface of IC
  • a conducting (metal) layer 408, (e.g., silver or copper) is formed on the dielectric layer 406, and a second dielectric layer 410 is formed on the conducting layer 408.
  • Another substrate layer 412 may then be formed on the second dielectric layer 410.
  • the first and second dielectric layers 406, 410 may be formed using, e.g.,
  • the metal layer 408 may be formed using gold (Au), copper (Cu), aluminum (Al), tungsten (W) or the like.
  • the conducting/metal layer 408 does not cover the entire dielectric layer below it. Those skilled in the art will understand, upon review of this disclosure, that the conducting/metal layer 408 covers a sufficient portion or portions of the first dielectric layer 406 to enable appropriate electrical contact(s) between one or more of the ultra-small resonant structures 404 and the IC 402. [0024] The ultra-small resonant structures 404 may then be formed on the substrate 412.
  • One or more of the ultra-small resonant structures communicates with the
  • Fig. 4 also shows a deflection mechanism (plate 409) coupled to the IC at
  • the plate 409 may be used to control a beam of charged particles, causing the beam to travel along path Pl (when not deflected) or path P2 (when deflected).
  • the interaction of the beam of charged particles with the various resonant structures, e.g., with resonant structure 404-3, may be controlled by the IC.
  • the source of the beam of charged particles is not shown.
  • the ultra-small resonant structures can be formed at temperatures of less than 12O 0 C, the process of integrating an IC with ultra-small resonant structures will not damage the IC.
  • Fig. 5 shows an exemplary circuit 500 without a substrate layer, and in which the ultra-small resonant structures are formed directly on the second dielectric layer 550.
  • Fig. 7 shows an exemplary circuit 700 in which the ultra-small resonant structures 704 are formed directly on the conducting (metal) layer 708.
  • the ultra-small resonant structure should not include a source of charged particles.
  • the source of charged particles for each ultra-small resonant structure should, instead, be located off-chip.
  • the ultra-small resonant structures described are preferably under vacuum conditions during operation. Accordingly, in each of the exemplary embodiments described herein, the entire integrated package / circuit (which includes the IC and ultra-small resonant structures) may be vacuum packaged. Alternatively, the portion of the package containing at least the ultra-small resonant structure(s) should be vacuum packaged. Our invention does not require any particular kind of evacuation structure. Many known hermetic sealing techniques can be employed to ensure the vacuum condition remains during a reasonable lifespan of operation. We anticipate that the devices can be operated in a pressure up to atmospheric pressure if .the mean free path of the electrons is -longer than the device length at the operating pressure.

Abstract

A device includes an integrated circuit (IC) and at least one ultra-small resonant structure formed on said IC. At least the ultra-small resonant structure portion of the device is vacuum packaged. The ultra-small resonant structure portion of the device may be grounded or connected to a known electrical potential. The ultra-small resonant structure may be electrically connected to the underlying IC, or not.

Description

INTEGRATION OF VACUUM MICROELECTRONIC DEVICE WITH
INTEGRATED CIRCUIT
COPYRIGHT NOTICE
[0001] A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.
CROSS-REFERENCE TO RELATED APPLICATIONS
[0002] The present invention is related to the following co-pending U.S. Patent applications which are all commonly owned with the present application, the entire contents of each of which are incorporated herein by reference:
(1) U.S. Patent Application No. 11/238,991 [atty. docket 2549-0003], filed
September 30, 2005, entitled "Ultra-Small Resonating Charged Particle Beam Modulator";
(2) U.S. Patent Application No. 10/917,511 , filed on August 13, 2004, entitled "Patterning Thin Metal Film by Dry Reactive Ion Etching";
(3) U.S. Application No. 11/203,407, filed on August 15, 2005, entitled "Method Of Patterning Ultra-Small Structures";
(4) U.S. Application No. 1 1/243,476 [Atty. Docket 2549-0058], filed on October 5, 2005, entitled "Structures And Methods For Coupling Energy From An Electromagnetic Wave";
(5) U.S. Application No. 11/243,477 [Atty. Docket 2549-0059], filed on
October 5, 2005, entitled "Electron beam induced resonance,"
(6) U.S. Application no. 11/325,448, entitled "Selectable Frequency Light Emitter from Single Metal Layer," filed January 5, 2006 [Atty. Docket 2549-0060]; (7) U.S. Application No. 11/325,432, entitled, "Matrix Array Display," filed January 5, 2006 [Atty. Docket 2549-0021],
(8) U.S. Application No. 11/410,905, entitled, "Coupling Light of Light Emitting Resonator to Waveguide," and filed April 26, 2006 [Atty. Docket 2549-0077];
(9) U.S. Application No. 11/411, 120, entitled "Free Space Interchip Communication," and filed April 26, 2006 [Arty. Docket 2549-0079];
(10) U.S. Application No. 1 1/410,924, entitled, "Selectable Frequency EMR Emitter," filed April 26, 2006 [Atty. Docket 2549-0010];
(11) U.S. Application No. 11/ , , entitled, "Multiplexed Optical
Communication between Chips on A Multi-Chip Module," and filed on even date herewith [atty. docket 2549-0035];
(12) U.S. Patent Application No. 11/400,280, titled "Micro Resonant Detector for Optical Signals on a Chip," filed April 10, 2006, [Atty. Docket No. 2549-0068]; and
(13) U.S. Patent Application No. 11/ , , entitled "Coupling energy in a plasmon wave to an electron beam," and filed on even date herewith [Atty. Docket No. 2549-0072].
FIELD OF THE DISCLOSURE
[0003] This relates to ultra-small electronic devices, and, more particularly, integrating such devices with integrated circuits.
INTRODUCTION
[0004] Integrated circuits (ICs) are ubiquitous. While it is desirable to add functionality (such as inter-chip optical communications) to existing ICs, this is typically done through external devices and connections. [0005] Various ultra-small resonant structures have been described in the related applications to perform a variety of functions, including optical data transfer functions. These ultra-smail resonant devices are functionally compatible with standard ICs. [0006] It is desirable to integrate ultra-small resonant structures with ICs.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The following description, given with respect to the attached drawings, may be better understood with reference to the non-limiting examples of the drawings, wherein:
[0008] FIGS. 1, 2,3 A, 3B, and 4-7 show ICs integrated with ultra-small resonant structures.
THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS
[0009] Fig. 1 shows an integrated structure 100 in which IC 102 is integrated with an ultra-small resonant structure (RS) 104. The ultra-small resonant structure 104 can be formed on an external surface of the IC, e.g., on the top of the upper layer dielectric or polymer layer 106 of the IC 102. There is no need for the ultra-small resonant structure 104 to have any (direct or indirect) electrical connection to the IC 102, and it may operated independently of the IC 102.
[0010] It may, however, be desirable to ground the ultra-small resonant structure
104 (or to connect it to some known potential). Grounding may be achieved, e.g., as shown in the integrated structure 200 in Fig. 2, by electrically connecting the ultra-small resonant structure 104 to an appropriate pin 108 that is used to connect the IC 102 to a circuit board or other surface. The electrical connection can be achieved, e.g., by providing an appropriately shaped grounded region 112, formed on the IC, and then electrically connecting the ultra-small resonant structure 104 to the grounded region 112 (e.g., using connection 114). Instead of grounding, the ultra-small resonant structure may be connected to a region of some known potential. [0011] The grounded region 112 and connection 114 may be formed of a metal such as, e.g., silver (Ag), and the structure 104 may be formed directly on the metal. [0012] Although only one ultra-small resonant structure 104 is shown in most examples in this description, those skilled in the art will realize, upon reading this description, that more than one ultra-small resonant structure may be formed on an IC. [0013] The IC may be any IC formed, e.g., with conventional semiconductor processing. The ultra-small resonant structure(s) may be any ultra-small resonant structure(s). Exemplary ultra-small resonant structures are described in the various related applications which have been incorporated herein by reference. [0014] The ultra-small resonant structures may be made, e.g., using techniques such as described in U.S. Patent Application No. 10/917,51 1, entitled "Patterning Thin Metal Film by Dry Reactive Ion Etching" and/or U.S. Application No. 11/203,407, entitled "Method Of Patterning Ultra-Small Structures," both of which have been incorporated herein by reference.
[0015] The ultra-small resonant structure may comprise any number of resonant microstructures constructed and adapted to produce EMR, e.g., as described above and/or in U.S. Application no. 11/325,448, entitled "Selectable Frequency Light Emitter from Single Metal Layer," filed January 5, 2006 [Atty. Docket 2549-0060], U.S. Application No. 11/325,432, entitled, "Matrix Array Display," filed January 5, 2006, and U.S. Application No. 11/243,476 [Atty. Docket 2549-0058], filed on October 5, 2005, entitled "Structures And Methods For Coupling Energy From An Electromagnetic Wave"; U.S. Application No. 11/243,477 [Atty. Docket 2549-0059], filed on October 5, 2005, entitled "Electron beam induced resonance;" and U.S. Application No. 11/302,471, entitled "Coupled Nano-Resonating Energy Emitting Structures," filed December 14, 2005 [atty. docket 2549-0056]; and U.S. Patent Application No. 11/400,280, titled "Micro Resonant Detector for Optical Signals on a Chip," filed April 10, 2006, [Atty. Docket No. 2549-
0068]; and U.S. Patent Application No. 11/ , , entitled "Coupling energy in a plasmon wave- to an electron beam," filed on even date herewith [Atty. Docket No. 2549- 0072]. [0016] The ultra-small resonant structures may emit light (such as infrared light, visible light or ultraviolet light or any other electromagnetic radiation (EMR) at a wide range of frequencies, and often at a frequency higher than that of microwave). The EMR is emitted when the resonant structure is exposed to a beam of charged particles ejected from or emitted by a source of charged particles. The source may be controlled by applying a signal on data input. The source can be any desired source of charged particles such as an ion gun, a Thermionic filament, tungsten filament, a cathode, a vacuum triode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a field emission cathode, a chemical ionizer, a thermal ionizer, an ion-impact ionizer, an electron source from a scanning electron microscope, etc. The particles may be positive ions, negative ions, electrons, and protons and the like.
[0017] Fig. 3A is a side view of a system 300A which includes ultra-small resonant structures 304 formed on a grounded region 314 on a (top) surface of an IC 302. One or more sources of charged particles 306 are positioned so that the emitted beam(s) of particles 308 cause the structures 304 to resonate.
[0018] Fig. 3B is a top view of an exemplary system as shown in Fig. 3A. As shown in Fig. 3B, the structures 304 comprise a plurality of arrays of structures 304-B1, 304-B2, . . ., 304-Bn, formed on the grounded region 314. Corresponding charged particle emitters 306-1, 306-2, . . ., 306-n are formed on a different surface, perhaps on an IC. Each particle emitter 306-/r emits a beam of charged particles to a corresponding array of ultra-small resonant structures 304-BAr. A deflector mechanism 307-k may be associated with some or all of the particle emitters 306-& to control the direction of the emitted beam. Control of the deflectors is not shown. For example, the beam emitted by particle emitter 306-2 has been deflected by emitter(s) 307-2.
[0019] Those skilled in the art will understand, upon reading this disclosure, that some or all of the deflector(s) may be formed on the same surface as the resonant structures.
[0020] In some cases it is desirable to have an ultra-small resonant structure electrically connect with the underlying IC. For example, FlG. 4 shows an integrated structure 400 in which IC 402 is integrated with various ultra-small resonant structures 404-1, 404-2, 404-3 (collectively ultra-small resonant structures 404). While Fig. 4 shows three ultra-small resonant structures, those skilled in the art will immediately understand upon review of this disclosure that the number of ultra-small resonant structures will vary by their function and application, and that more or less than three may be used.
[0021] Preferably a dielectric (insulation) layer 406 is formed on a surface of IC
402. A conducting (metal) layer 408, (e.g., silver or copper) is formed on the dielectric layer 406, and a second dielectric layer 410 is formed on the conducting layer 408. Another substrate layer 412 may then be formed on the second dielectric layer 410. [0022] The first and second dielectric layers 406, 410 may be formed using, e.g.,
SiO2. The metal layer 408 may be formed using gold (Au), copper (Cu), aluminum (Al), tungsten (W) or the like.
[0023] Typically the conducting/metal layer 408 does not cover the entire dielectric layer below it. Those skilled in the art will understand, upon review of this disclosure, that the conducting/metal layer 408 covers a sufficient portion or portions of the first dielectric layer 406 to enable appropriate electrical contact(s) between one or more of the ultra-small resonant structures 404 and the IC 402. [0024] The ultra-small resonant structures 404 may then be formed on the substrate 412.
[0025] One or more of the ultra-small resonant structures communicates with the
IC 402 through contact vias formed in the insulation layers. As shown in the drawing, two of the ultra-small resonant structures connect to two contact locations (denoted C). [0026] Fig. 4 also shows a deflection mechanism (plate 409) coupled to the IC at
C3. The plate 409 may be used to control a beam of charged particles, causing the beam to travel along path Pl (when not deflected) or path P2 (when deflected). In this manner, the interaction of the beam of charged particles with the various resonant structures, e.g., with resonant structure 404-3, may be controlled by the IC. (The source of the beam of charged particles is not shown.) [0027] Since the ultra-small resonant structures can be formed at temperatures of less than 12O0C, the process of integrating an IC with ultra-small resonant structures will not damage the IC.
[0028] Fig. 5 shows an exemplary circuit 500 without a substrate layer, and in which the ultra-small resonant structures are formed directly on the second dielectric layer 550.
[0029] In some cases, as shown, e.g., in the circuit 600 in Fig. 6, the ultra-small resonant structures are formed directly on a surface of the IC 602. [0030] Fig. 7 shows an exemplary circuit 700 in which the ultra-small resonant structures 704 are formed directly on the conducting (metal) layer 708. In this case the ultra-small resonant structure should not include a source of charged particles. The source of charged particles for each ultra-small resonant structure should, instead, be located off-chip.
[0031 ] All of the ultra-small resonant structures described are preferably under vacuum conditions during operation. Accordingly, in each of the exemplary embodiments described herein, the entire integrated package / circuit (which includes the IC and ultra-small resonant structures) may be vacuum packaged. Alternatively, the portion of the package containing at least the ultra-small resonant structure(s) should be vacuum packaged. Our invention does not require any particular kind of evacuation structure. Many known hermetic sealing techniques can be employed to ensure the vacuum condition remains during a reasonable lifespan of operation. We anticipate that the devices can be operated in a pressure up to atmospheric pressure if .the mean free path of the electrons is -longer than the device length at the operating pressure. [0032] While certain configurations of structures have been illustrated for the purposes of presenting the basic structures of the present invention, one of ordinary skill in the art will appreciate that other variations are possible which would still fall within the scope of the appended claims. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims

CLAIMSWe claim:
1. A method making a device comprising: obtaining an integrated circuit (IC); forming a ultra-small resonant structure on an external surface of the IC; and vacuum packaging at least said ultra-small resonant structure.
2. A method as in claim 1 further comprising: electrically grounding said ultra-small resonant structure.
3. A method as in claim 1 further comprising: electrically connecting said ultra-small resonant structure to a known electrical potential.
4. A method as in claim 2 further comprising: forming a region on said IC; grounding said region; and electrically connecting said ultra-small resonant structure to said region.
5. A method as in claim 3 further comprising: forming a region on said IC; electrically connecting said region to a known electrical potential; and electrically connecting said ultra-small resonant structure to said region.
6. A method as in claim 2 wherein said ultra-small resonant structure is electrically grounded by electrically connecting said ultra-small resonant structure to an appropriate connection pin of said IC.
7. A method as in claim 3 wherein said ultra-small resonant structure is electrically connected to an appropriate connection pin of said IC to provide the known electrical potential.
8. A method as in claim 4 wherein said region is grounded by being electrically connected to an appropriate connection pin of said IC.
9. A method as in claim 5 wherein said region is set to said known electrical potential by being electrically connected to an appropriate connection pin of said IC.
10. A method as in claim 1 wherein said step of vacuum packaging comprises: hermetically sealing at least said ultra-small resonant structure.
11. A method as in any one of claims 1-10 wherein said ultra-small resonant structure is constructed and adapted to emit electromagnetic radiation (EMR) in response to excitation by a beam of charged particles.
12. A method as in any one of claims 1-10 wherein said ultra-small resonant structure is constructed and adapted to detect electromagnetic radiation (EMR).
13. A method as in any one of claims 1-10 wherein said at least one ultra-small resonant structure includes a source of charged particles.
14. A method as in claim 13 wherein said source of charged particles is selected from the group comprising: an ion gun, a thermionic filament, tungsten filament, a cathode, a vacuum triode, a field emission cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, an ion-impact ionizer.
15. A method as in claim 13 wherein the charged particles are selected from the group comprising: positive ions, negative ions, electrons, and protons.
16. A method as in claim 11 wherein the at least on ultra-small resonant structure is constructed and adapted to emit at least one of visible light, infrared light, and ultraviolet light.
17. A method as in claim 1 further comprising: electrically connecting said ultra-small resonant structure to said IC.
18. A method making a device comprising: forming at least one ultra-small resonant structure on an external surface of an integrated circuit (IC); and vacuum packaging at least said at least one ultra-small resonant structure.
19. A device comprising: an integrated circuit (IC); and at least one ultra-small resonant structure formed on an external surface of said IC.
20. A device as in claim 19 wherein said at least one ultra-small resonant structure is vacuum packaged.
21. A device as in claim 19 wherein said at least one ultra-small resonant structure is electrically grounded.
22. A device as in claim 19 wherein said at least on ultra-small resonant structure is electrically connected to a known electrical potential.
23. A device as in claim 19 further comprising: at least one electrically grounded region formed on said IC3 wherein said at least one ultra-small resonant structure is electrically grounded by being connected to said least one region.
24. A device as in claim 19 further comprising: at least one region formed on said IC, said at least one region being electrically connected to a known electrical potential, wherein said at least one ultra-small resonant structure is electrically connected to said least one region.
25. A device as in claim 19 wherein at least one of said at least one ultra-small resonant structure is electrically connected to said IC.
26. A device as in claim 19 wherein said at least one of said at least one ultra- small resonant structure is constructed and adapted to emit electromagnetic radiation (EMR) in response to excitation by a beam of charged particles.
27. A device as in claim 26 further comprising: a deflector electrically connected to said IC and constructed and adapted to control said EMR emitted by said at least one ultra-small resonant structure.
28. A device as in claim 27 wherein said deflector comprises: one or more deflector plates.
29. A device as in claim 28 wherein said deflector plates are formed on the same external surface of the IC as the at least one resonant structure.
30. A device as in claim 28 wherein said deflector controls said EMR by selectively deflecting said beam of charged particles.
31. A device as in claim 19 wherein said at least one of said at least one ultra- small resonant structure is constructed and adapted to detect electromagnetic radiation (EMR).
32. A device as in claim 19 wherein said at least one ultra-small resonant structure includes a source of charged particles.
33. A device as in claim 32 wherein said source of charged particles is selected from the group comprising: an ion gun, a tungsten filament, a cathode, a planar vacuum triode, an electron- impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, and an ion-impact ionizer.
34. A device as in claim 32 wherein the charged particles are selected from the group comprising: positive ions, negative ions, electrons, and protons.
35. A method making a circuit comprising: obtaining an integrated circuit (IC); forming at least one ultra-small resonant structure, wherein said at least one ultra- small resonant structure is electrically connected to said IC; and vacuum packaging said circuit.
36. A method as in claim 35 further comprising: forming a first dielectric layer on a surface of said IC; forming an interconnect layer on said first dielectric layer; and forming a second dielectric layer on said interconnect layer, wherein said at least one ultra-small resonant structure is formed on said second dielectric layer.
37. A method as in claim 35 wherein said at least one ultra-small resonant structure is formed on a surface of said IC.
38. A method as in claim 35 further comprising: forming a first dielectric layer on a surface of said IC; forming an interconnect layer on said first dielectric layer; wherein said at least one ultra-small resonant structure is formed on said second interconnect layer.
39. A method as in claim 36 further comprising: forming at least one contact via in said second dielectric layer to allow electrical connection of an ultra-small resonant structure on said substrate to said interconnect layer, and forming a second contact via in said first dielectric layer to allow electrical connection of said IC to said interconnect layer, wherein said at least one ultra-small resonant structure is electrically connected to said IC via said first contact via, said interconnect layer and said second contact via.
40. A method as in claim 35 wherein said at least one ultra-small resonant structure is constructed and adapted to emit electromagnetic radiation (EMR) in response to excitation by a beam of charged particles.
41.- A method as in claim 35 wherein said at least one ultra-small resonant structure is constructed and adapted to detect electromagnetic radiation (EMR).
42. A method as in any one of claims 35-37 wherein said at least one ultra- small resonant structure includes a source of charged particles.
43. A method as in claim 42 wherein said source of charged particles is selected from the group comprising: an ion gun, a tungsten filament, a cathode, a planar vacuum triode, an electron- impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, and an ion-impact ionizer.
44. A method as in claim 42 wherein the charged particles are selected from the group comprising: positive ions, negative ions, electrons, and protons.
45. A method as in any one of claims 35-37 wherein the at least on ultra-small resonant structure is constructed and adapted to emit at least one of visible light, infrared light, and ultraviolet light.
46. A method as in any one of claims 35-37 wherein said at least one ultra- small resonant structure is constructed and adapted to detect electromagnetic radiation.
47. A method as in claim 36 wherein said first dielectric layer comprises SiO2.
48. method as in claim 36 wherein said second dielectric layer comprises SiO2.
49. A method as in claim 36 wherein said interconnect layer comprises a metal selected from the group comprising: gold (Au), copper (Cu), aluminum (Al) and tungsten (W).
50.- A circuit comprising: an integrated circuit (IC); and at least one ultra-small resonant structure electrically connected to said IC, wherein said IC and said at least one ultra-small resonant structure are vacuum packaged. 6 022777
51. A circuit as in claim 50 wherein said at least one ultra-small resonant structure is constructed and adapted to emit electromagnetic radiation (EMR) in response to excitation by a beam of charged particles.
52. A circuit as in claim 50 wherein said at least one ultra-small resonant structure is formed on a surface of said IC.
53. A circuit as in claim 50 further comprising: a first dielectric layer formed on a surface of said IC; an interconnect layer on said first dielectric layer; and a second dielectric layer on said interconnect layer, wherein said at least one ultra- small resonant structure is formed on said second dielectric layer.
54. A circuit as in claim 50 further comprising: a first dielectric layer on a surface of said IC; an interconnect layer on said first dielectric layer; wherein said at least one ultra- small resonant structure is formed on said second interconnect layer.
PCT/US2006/022777 2006-05-05 2006-06-12 Integration of vacuum microelectronic device with integrated circuit WO2007130091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/418,318 US8188431B2 (en) 2006-05-05 2006-05-05 Integration of vacuum microelectronic device with integrated circuit
US11/418,318 2006-05-05

Publications (1)

Publication Number Publication Date
WO2007130091A1 true WO2007130091A1 (en) 2007-11-15

Family

ID=38661683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/022777 WO2007130091A1 (en) 2006-05-05 2006-06-12 Integration of vacuum microelectronic device with integrated circuit

Country Status (3)

Country Link
US (2) US8188431B2 (en)
TW (1) TW200743206A (en)
WO (1) WO2007130091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136794B2 (en) 2011-06-22 2015-09-15 Research Triangle Institute, International Bipolar microelectronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935930B1 (en) * 2009-07-04 2011-05-03 Jonathan Gorrell Coupling energy from a two dimensional array of nano-resonanting structures
RU2476951C1 (en) * 2011-07-27 2013-02-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Microprofile of structure of vacuum integral microwave circuit and method of its manufacturing
RU2507679C2 (en) * 2012-04-16 2014-02-20 Виталий Яковлевич Подвигалкин Bulk microblock of vacuum integrated circuits of logic microwave return wave systems
US20230029210A1 (en) * 2021-07-22 2023-01-26 National Tsing Hua University Dielectric-grating-waveguide free-electron laser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021663A1 (en) * 1992-04-08 1993-10-28 Georgia Tech Research Corporation Process for lift-off of thin film materials from a growth substrate
US6040625A (en) * 1997-09-25 2000-03-21 I/O Sensors, Inc. Sensor package arrangement
US20030012925A1 (en) * 2001-07-16 2003-01-16 Motorola, Inc. Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
US20030034535A1 (en) * 2001-08-15 2003-02-20 Motorola, Inc. Mems devices suitable for integration with chip having integrated silicon and compound semiconductor devices, and methods for fabricating such devices
JP2004032323A (en) * 2002-06-25 2004-01-29 Toyo Commun Equip Co Ltd Surface mounting type piezoelectric oscillator and its manufacturing method
WO2005015143A2 (en) * 2003-08-11 2005-02-17 Opgal Ltd. Radiometry using an uncooled microbolometer detector
US6885262B2 (en) * 2002-11-05 2005-04-26 Ube Industries, Ltd. Band-pass filter using film bulk acoustic resonator

Family Cites Families (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634372A (en) * 1953-04-07 Super high-frequency electromag
US1948384A (en) * 1932-01-26 1934-02-20 Research Corp Method and apparatus for the acceleration of ions
US2307086A (en) * 1941-05-07 1943-01-05 Univ Leland Stanford Junior High frequency electrical apparatus
US2431396A (en) 1942-12-21 1947-11-25 Rca Corp Current magnitude-ratio responsive amplifier
US2397905A (en) * 1944-08-07 1946-04-09 Int Harvester Co Thrust collar construction
US2473477A (en) 1946-07-24 1949-06-14 Raythcon Mfg Company Magnetic induction device
US2932798A (en) * 1956-01-05 1960-04-12 Research Corp Imparting energy to charged particles
US2944183A (en) 1957-01-25 1960-07-05 Bell Telephone Labor Inc Internal cavity reflex klystron tuned by a tightly coupled external cavity
US2966611A (en) 1959-07-21 1960-12-27 Sperry Rand Corp Ruggedized klystron tuner
US3231779A (en) * 1962-06-25 1966-01-25 Gen Electric Elastic wave responsive apparatus
US3274428A (en) 1962-06-29 1966-09-20 English Electric Valve Co Ltd Travelling wave tube with band pass slow wave structure whose frequency characteristic changes along its length
US3301707A (en) * 1962-12-27 1967-01-31 Union Carbide Corp Thin film resistors and methods of making thereof
GB1054461A (en) * 1963-02-06
US3315117A (en) * 1963-07-15 1967-04-18 Burton J Udelson Electrostatically focused electron beam phase shifter
US3387169A (en) 1965-05-07 1968-06-04 Sfd Lab Inc Slow wave structure of the comb type having strap means connecting the teeth to form iterative inductive shunt loadings
US4053845A (en) 1967-03-06 1977-10-11 Gordon Gould Optically pumped laser amplifiers
US4746201A (en) 1967-03-06 1988-05-24 Gordon Gould Polarizing apparatus employing an optical element inclined at brewster's angle
US3546524A (en) 1967-11-24 1970-12-08 Varian Associates Linear accelerator having the beam injected at a position of maximum r.f. accelerating field
US3571642A (en) * 1968-01-17 1971-03-23 Ca Atomic Energy Ltd Method and apparatus for interleaved charged particle acceleration
US3543147A (en) 1968-03-29 1970-11-24 Atomic Energy Commission Phase angle measurement system for determining and controlling the resonance of the radio frequency accelerating cavities for high energy charged particle accelerators
US3586899A (en) 1968-06-12 1971-06-22 Ibm Apparatus using smith-purcell effect for frequency modulation and beam deflection
US3560694A (en) * 1969-01-21 1971-02-02 Varian Associates Microwave applicator employing flat multimode cavity for treating webs
US3761828A (en) 1970-12-10 1973-09-25 J Pollard Linear particle accelerator with coast through shield
US3886399A (en) * 1973-08-20 1975-05-27 Varian Associates Electron beam electrical power transmission system
US3923568A (en) 1974-01-14 1975-12-02 Int Plasma Corp Dry plasma process for etching noble metal
DE2429612C2 (en) 1974-06-20 1984-08-02 Siemens AG, 1000 Berlin und 8000 München Acousto-optical data input converter for block-organized holographic data storage and method for its control
US4704583A (en) 1974-08-16 1987-11-03 Gordon Gould Light amplifiers employing collisions to produce a population inversion
US4155817A (en) * 1978-08-11 1979-05-22 American Chemical And Refining Company, Inc. Low free cyanide high purity silver electroplating bath and method
JPS6056238B2 (en) 1979-06-01 1985-12-09 株式会社井上ジャパックス研究所 Electroplating method
US4296354A (en) 1979-11-28 1981-10-20 Varian Associates, Inc. Traveling wave tube with frequency variable sever length
US4282436A (en) 1980-06-04 1981-08-04 The United States Of America As Represented By The Secretary Of The Navy Intense ion beam generation with an inverse reflex tetrode (IRT)
US4453108A (en) 1980-11-21 1984-06-05 William Marsh Rice University Device for generating RF energy from electromagnetic radiation of another form such as light
US4661783A (en) * 1981-03-18 1987-04-28 The United States Of America As Represented By The Secretary Of The Navy Free electron and cyclotron resonance distributed feedback lasers and masers
US4450554A (en) * 1981-08-10 1984-05-22 International Telephone And Telegraph Corporation Asynchronous integrated voice and data communication system
US4528659A (en) 1981-12-17 1985-07-09 International Business Machines Corporation Interleaved digital data and voice communications system apparatus and method
US4589107A (en) 1982-11-30 1986-05-13 Itt Corporation Simultaneous voice and data communication and data base access in a switching system using a combined voice conference and data base processing module
US4652703A (en) * 1983-03-01 1987-03-24 Racal Data Communications Inc. Digital voice transmission having improved echo suppression
US4482779A (en) 1983-04-19 1984-11-13 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Inelastic tunnel diodes
US4598397A (en) 1984-02-21 1986-07-01 Cxc Corporation Microtelephone controller
US4713581A (en) 1983-08-09 1987-12-15 Haimson Research Corporation Method and apparatus for accelerating a particle beam
US4829527A (en) 1984-04-23 1989-05-09 The United States Of America As Represented By The Secretary Of The Army Wideband electronic frequency tuning for orotrons
FR2564646B1 (en) * 1984-05-21 1986-09-26 Centre Nat Rech Scient IMPROVED FREE ELECTRON LASER
EP0162173B1 (en) 1984-05-23 1989-08-16 International Business Machines Corporation Digital transmission system for a packetized voice
US4819228A (en) * 1984-10-29 1989-04-04 Stratacom Inc. Synchronous packet voice/data communication system
GB2171576B (en) 1985-02-04 1989-07-12 Mitel Telecom Ltd Spread spectrum leaky feeder communication system
US4675863A (en) * 1985-03-20 1987-06-23 International Mobile Machines Corp. Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
JPS6229135A (en) 1985-07-29 1987-02-07 Advantest Corp Charged particle beam exposure and device thereof
IL79775A (en) 1985-08-23 1990-06-10 Republic Telcom Systems Corp Multiplexed digital packet telephone system
US4727550A (en) 1985-09-19 1988-02-23 Chang David B Radiation source
US4740963A (en) * 1986-01-30 1988-04-26 Lear Siegler, Inc. Voice and data communication system
US4712042A (en) 1986-02-03 1987-12-08 Accsys Technology, Inc. Variable frequency RFQ linear accelerator
JPS62142863U (en) 1986-03-05 1987-09-09
JPH0763171B2 (en) 1986-06-10 1995-07-05 株式会社日立製作所 Data / voice transmission / reception method
US4761059A (en) 1986-07-28 1988-08-02 Rockwell International Corporation External beam combining of multiple lasers
US4813040A (en) * 1986-10-31 1989-03-14 Futato Steven P Method and apparatus for transmitting digital data and real-time digitalized voice information over a communications channel
US5163118A (en) 1986-11-10 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Lattice mismatched hetrostructure optical waveguide
JPH07118749B2 (en) * 1986-11-14 1995-12-18 株式会社日立製作所 Voice / data transmission equipment
US4806859A (en) 1987-01-27 1989-02-21 Ford Motor Company Resonant vibrating structures with driving sensing means for noncontacting position and pick up sensing
KR960007442B1 (en) * 1987-02-09 1996-05-31 가부시끼사이샤 티엘브이 Steam trap operation detector
US4932022A (en) 1987-10-07 1990-06-05 Telenova, Inc. Integrated voice and data telephone system
US4864131A (en) 1987-11-09 1989-09-05 The University Of Michigan Positron microscopy
US4838021A (en) 1987-12-11 1989-06-13 Hughes Aircraft Company Electrostatic ion thruster with improved thrust modulation
US4890282A (en) 1988-03-08 1989-12-26 Network Equipment Technologies, Inc. Mixed mode compression for data transmission
US4866704A (en) 1988-03-16 1989-09-12 California Institute Of Technology Fiber optic voice/data network
US4887265A (en) 1988-03-18 1989-12-12 Motorola, Inc. Packet-switched cellular telephone system
US5185073A (en) * 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
JPH0744511B2 (en) 1988-09-14 1995-05-15 富士通株式会社 High suburb rate multiplexing method
US5130985A (en) 1988-11-25 1992-07-14 Hitachi, Ltd. Speech packet communication system and method
FR2641093B1 (en) 1988-12-23 1994-04-29 Alcatel Business Systems
US4981371A (en) * 1989-02-17 1991-01-01 Itt Corporation Integrated I/O interface for communication terminal
US5023563A (en) 1989-06-08 1991-06-11 Hughes Aircraft Company Upshifted free electron laser amplifier
US5036513A (en) 1989-06-21 1991-07-30 Academy Of Applied Science Method of and apparatus for integrated voice (audio) communication simultaneously with "under voice" user-transparent digital data between telephone instruments
US5157000A (en) 1989-07-10 1992-10-20 Texas Instruments Incorporated Method for dry etching openings in integrated circuit layers
US5155726A (en) 1990-01-22 1992-10-13 Digital Equipment Corporation Station-to-station full duplex communication in a token ring local area network
US5235248A (en) 1990-06-08 1993-08-10 The United States Of America As Represented By The United States Department Of Energy Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields
US5127001A (en) 1990-06-22 1992-06-30 Unisys Corporation Conference call arrangement for distributed network
US5113141A (en) 1990-07-18 1992-05-12 Science Applications International Corporation Four-fingers RFQ linac structure
US5268693A (en) 1990-08-31 1993-12-07 Trustees Of Dartmouth College Semiconductor film free electron laser
US5263043A (en) 1990-08-31 1993-11-16 Trustees Of Dartmouth College Free electron laser utilizing grating coupling
US5199553A (en) * 1990-10-09 1993-04-06 Fuji Electric Co., Ltd. Sliding contactor for electric equipment
US5128729A (en) 1990-11-13 1992-07-07 Motorola, Inc. Complex opto-isolator with improved stand-off voltage stability
US5214650A (en) 1990-11-19 1993-05-25 Ag Communication Systems Corporation Simultaneous voice and data system using the existing two-wire inter-face
US5302240A (en) * 1991-01-22 1994-04-12 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
US5187591A (en) * 1991-01-24 1993-02-16 Micom Communications Corp. System for transmitting and receiving aural information and modulated data
US5341374A (en) 1991-03-01 1994-08-23 Trilan Systems Corporation Communication network integrating voice data and video with distributed call processing
US5150410A (en) 1991-04-11 1992-09-22 Itt Corporation Secure digital conferencing system
US5283819A (en) * 1991-04-25 1994-02-01 Compuadd Corporation Computing and multimedia entertainment system
FR2677490B1 (en) 1991-06-07 1997-05-16 Thomson Csf SEMICONDUCTOR OPTICAL TRANSCEIVER.
GB9113684D0 (en) 1991-06-25 1991-08-21 Smiths Industries Plc Display filter arrangements
US5229782A (en) * 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5199918A (en) * 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
US5305312A (en) * 1992-02-07 1994-04-19 At&T Bell Laboratories Apparatus for interfacing analog telephones and digital data terminals to an ISDN line
US5466929A (en) 1992-02-21 1995-11-14 Hitachi, Ltd. Apparatus and method for suppressing electrification of sample in charged beam irradiation apparatus
DK0725939T3 (en) 1992-03-13 1999-11-15 Kopin Corp Display system for mounting on the head
US5233623A (en) 1992-04-29 1993-08-03 Research Foundation Of State University Of New York Integrated semiconductor laser with electronic directivity and focusing control
US5282197A (en) * 1992-05-15 1994-01-25 International Business Machines Low frequency audio sub-channel embedded signalling
US5739579A (en) * 1992-06-29 1998-04-14 Intel Corporation Method for forming interconnections for semiconductor fabrication and semiconductor device having such interconnections
US5562838A (en) * 1993-03-29 1996-10-08 Martin Marietta Corporation Optical light pipe and microwave waveguide interconnects in multichip modules formed using adaptive lithography
US5539414A (en) 1993-09-02 1996-07-23 Inmarsat Folded dipole microstrip antenna
TW255015B (en) 1993-11-05 1995-08-21 Motorola Inc
US5578909A (en) 1994-07-15 1996-11-26 The Regents Of The Univ. Of California Coupled-cavity drift-tube linac
US5485277A (en) 1994-07-26 1996-01-16 Physical Optics Corporation Surface plasmon resonance sensor and methods for the utilization thereof
US5608263A (en) * 1994-09-06 1997-03-04 The Regents Of The University Of Michigan Micromachined self packaged circuits for high-frequency applications
WO1996014206A1 (en) * 1994-11-08 1996-05-17 Spectra Science Corporation Semiconductor nanocrystal display materials and display apparatus employing same
JP2770755B2 (en) 1994-11-16 1998-07-02 日本電気株式会社 Field emission type electron gun
US5637966A (en) 1995-02-06 1997-06-10 The Regents Of The University Of Michigan Method for generating a plasma wave to accelerate electrons
US5504341A (en) * 1995-02-17 1996-04-02 Zimec Consulting, Inc. Producing RF electric fields suitable for accelerating atomic and molecular ions in an ion implantation system
JP2921430B2 (en) 1995-03-03 1999-07-19 双葉電子工業株式会社 Optical writing element
US5604352A (en) * 1995-04-25 1997-02-18 Raychem Corporation Apparatus comprising voltage multiplication components
US5705443A (en) * 1995-05-30 1998-01-06 Advanced Technology Materials, Inc. Etching method for refractory materials
WO1997015820A1 (en) 1995-10-25 1997-05-01 University Of Washington Surface plasmon resonance electrode as chemical sensor
JP3487699B2 (en) 1995-11-08 2004-01-19 株式会社日立製作所 Ultrasonic treatment method and apparatus
US5889449A (en) * 1995-12-07 1999-03-30 Space Systems/Loral, Inc. Electromagnetic transmission line elements having a boundary between materials of high and low dielectric constants
KR0176876B1 (en) 1995-12-12 1999-03-20 구자홍 Magnetron
US6008577A (en) * 1996-01-18 1999-12-28 Micron Technology, Inc. Flat panel display with magnetic focusing layer
JPH09223475A (en) 1996-02-19 1997-08-26 Nikon Corp Electromagnetic deflector and charge particle beam transfer apparatus using thereof
US5825140A (en) 1996-02-29 1998-10-20 Nissin Electric Co., Ltd. Radio-frequency type charged particle accelerator
US5663971A (en) 1996-04-02 1997-09-02 The Regents Of The University Of California, Office Of Technology Transfer Axial interaction free-electron laser
US5821705A (en) 1996-06-25 1998-10-13 The United States Of America As Represented By The United States Department Of Energy Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
WO1998005920A1 (en) 1996-08-08 1998-02-12 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US5889797A (en) * 1996-08-26 1999-03-30 The Regents Of The University Of California Measuring short electron bunch lengths using coherent smith-purcell radiation
KR100226752B1 (en) 1996-08-26 1999-10-15 구본준 Method for forming multi-metal interconnection layer of semiconductor device
US5811943A (en) 1996-09-23 1998-09-22 Schonberg Research Corporation Hollow-beam microwave linear accelerator
US6060833A (en) 1996-10-18 2000-05-09 Velazco; Jose E. Continuous rotating-wave electron beam accelerator
US5780970A (en) 1996-10-28 1998-07-14 University Of Maryland Multi-stage depressed collector for small orbit gyrotrons
US5790585A (en) 1996-11-12 1998-08-04 The Trustees Of Dartmouth College Grating coupling free electron laser apparatus and method
US5744919A (en) * 1996-12-12 1998-04-28 Mishin; Andrey V. CW particle accelerator with low particle injection velocity
US5757009A (en) 1996-12-27 1998-05-26 Northrop Grumman Corporation Charged particle beam expander
JPH10200204A (en) * 1997-01-06 1998-07-31 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, manufacturing method thereof, and surface-emitting semiconductor laser array using the same
CA2279934A1 (en) 1997-02-11 1998-08-13 Scientific Generics Limited Signalling system
US6180415B1 (en) * 1997-02-20 2001-01-30 The Regents Of The University Of California Plasmon resonant particles, methods and apparatus
US6008496A (en) 1997-05-05 1999-12-28 University Of Florida High resolution resonance ionization imaging detector and method
US5821836A (en) 1997-05-23 1998-10-13 The Regents Of The University Of Michigan Miniaturized filter assembly
DE69735898T2 (en) * 1997-06-19 2007-04-19 European Organization For Nuclear Research Method for element transmutation by neutrons
US5972193A (en) 1997-10-10 1999-10-26 Industrial Technology Research Institute Method of manufacturing a planar coil using a transparency substrate
JP2981543B2 (en) * 1997-10-27 1999-11-22 金沢大学長 Electron tube type one-way optical amplifier
US6117784A (en) 1997-11-12 2000-09-12 International Business Machines Corporation Process for integrated circuit wiring
US6143476A (en) 1997-12-12 2000-11-07 Applied Materials Inc Method for high temperature etching of patterned layers using an organic mask stack
EP0964251B1 (en) * 1997-12-15 2008-07-23 Seiko Instruments Inc. Optical waveguide probe and its manufacturing method
KR100279737B1 (en) 1997-12-19 2001-02-01 정선종 Short-wavelength photoelectric device composed of field emission device and optical device and fabrication method thereof
US5963857A (en) 1998-01-20 1999-10-05 Lucent Technologies, Inc. Article comprising a micro-machined filter
US6338968B1 (en) * 1998-02-02 2002-01-15 Signature Bioscience, Inc. Method and apparatus for detecting molecular binding events
EP0969493A1 (en) 1998-07-03 2000-01-05 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Apparatus and method for examining specimen with a charged particle beam
JP2972879B1 (en) 1998-08-18 1999-11-08 金沢大学長 One-way optical amplifier
US6316876B1 (en) 1998-08-19 2001-11-13 Eiji Tanabe High gradient, compact, standing wave linear accelerator structure
JP3666267B2 (en) 1998-09-18 2005-06-29 株式会社日立製作所 Automatic charged particle beam scanning inspection system
US6524461B2 (en) 1998-10-14 2003-02-25 Faraday Technology Marketing Group, Llc Electrodeposition of metals in small recesses using modulated electric fields
US6210555B1 (en) 1999-01-29 2001-04-03 Faraday Technology Marketing Group, Llc Electrodeposition of metals in small recesses for manufacture of high density interconnects using reverse pulse plating
MXPA00005871A (en) 1998-10-14 2002-08-06 Faraday Technology Inc Empty
US6577040B2 (en) 1999-01-14 2003-06-10 The Regents Of The University Of Michigan Method and apparatus for generating a signal having at least one desired output frequency utilizing a bank of vibrating micromechanical devices
US6297511B1 (en) 1999-04-01 2001-10-02 Raytheon Company High frequency infrared emitter
US6724486B1 (en) * 1999-04-28 2004-04-20 Zygo Corporation Helium- Neon laser light source generating two harmonically related, single- frequency wavelengths for use in displacement and dispersion measuring interferometry
JP3465627B2 (en) 1999-04-28 2003-11-10 株式会社村田製作所 Electronic components, dielectric resonators, dielectric filters, duplexers, communication equipment
JP3057229B1 (en) 1999-05-20 2000-06-26 金沢大学長 Electromagnetic wave amplifier and electromagnetic wave generator
JP3792126B2 (en) 1999-05-25 2006-07-05 ナヴォテック・ゲーエムベーハー Small terahertz radiation source
TW408496B (en) * 1999-06-21 2000-10-11 United Microelectronics Corp The structure of image sensor
US6384406B1 (en) * 1999-08-05 2002-05-07 Microvision, Inc. Active tuning of a torsional resonant structure
US6309528B1 (en) 1999-10-15 2001-10-30 Faraday Technology Marketing Group, Llc Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
US6870438B1 (en) * 1999-11-10 2005-03-22 Kyocera Corporation Multi-layered wiring board for slot coupling a transmission line to a waveguide
FR2803950B1 (en) 2000-01-14 2002-03-01 Centre Nat Rech Scient VERTICAL METAL MICROSONATOR PHOTODETECTION DEVICE AND MANUFACTURING METHOD THEREOF
EP1122761B1 (en) 2000-02-01 2004-05-26 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Optical column for charged particle beam device
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
JP3667188B2 (en) 2000-03-03 2005-07-06 キヤノン株式会社 Electron beam excitation laser device and multi-electron beam excitation laser device
JP2001273861A (en) * 2000-03-28 2001-10-05 Toshiba Corp Charged beam apparatus and pattern incline observation method
DE10019359C2 (en) 2000-04-18 2002-11-07 Nanofilm Technologie Gmbh SPR sensor
US6700748B1 (en) * 2000-04-28 2004-03-02 International Business Machines Corporation Methods for creating ground paths for ILS
US6453087B2 (en) 2000-04-28 2002-09-17 Confluent Photonics Co. Miniature monolithic optical add-drop multiplexer
JP2002121699A (en) 2000-05-25 2002-04-26 Nippon Techno Kk Electroplating method using combination of vibrating flow and impulsive plating current of plating bath
US6801002B2 (en) * 2000-05-26 2004-10-05 Exaconnect Corp. Use of a free space electron switch in a telecommunications network
US6545425B2 (en) * 2000-05-26 2003-04-08 Exaconnect Corp. Use of a free space electron switch in a telecommunications network
US7064500B2 (en) 2000-05-26 2006-06-20 Exaconnect Corp. Semi-conductor interconnect using free space electron switch
US6800877B2 (en) 2000-05-26 2004-10-05 Exaconnect Corp. Semi-conductor interconnect using free space electron switch
US6829286B1 (en) 2000-05-26 2004-12-07 Opticomp Corporation Resonant cavity enhanced VCSEL/waveguide grating coupler
US6407516B1 (en) 2000-05-26 2002-06-18 Exaconnect Inc. Free space electron switch
US7257327B2 (en) * 2000-06-01 2007-08-14 Raytheon Company Wireless communication system with high efficiency/high power optical source
US6373194B1 (en) * 2000-06-01 2002-04-16 Raytheon Company Optical magnetron for high efficiency production of optical radiation
US6972421B2 (en) 2000-06-09 2005-12-06 Cymer, Inc. Extreme ultraviolet light source
EP1301822A1 (en) * 2000-06-15 2003-04-16 California Institute Of Technology Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators
JP3993094B2 (en) 2000-07-27 2007-10-17 株式会社荏原製作所 Sheet beam inspection system
US6441298B1 (en) 2000-08-15 2002-08-27 Nec Research Institute, Inc Surface-plasmon enhanced photovoltaic device
WO2002020390A2 (en) * 2000-09-08 2002-03-14 Ball Ronald H Illumination system for escalator handrails
AU2002212974A1 (en) 2000-09-22 2002-04-02 Vermont Photonics Apparatuses and methods for generating coherent electromagnetic laser radiation
JP3762208B2 (en) 2000-09-29 2006-04-05 株式会社東芝 Optical wiring board manufacturing method
AU2101902A (en) 2000-12-01 2002-06-11 Yeda Res & Dev Device and method for the examination of samples in a non-vacuum environment using a scanning electron microscope
US6777244B2 (en) 2000-12-06 2004-08-17 Hrl Laboratories, Llc Compact sensor using microcavity structures
US20020071457A1 (en) 2000-12-08 2002-06-13 Hogan Josh N. Pulsed non-linear resonant cavity
KR20020061103A (en) 2001-01-12 2002-07-22 후루까와덴끼고오교 가부시끼가이샤 Antenna device and terminal with the antenna device
US6603781B1 (en) 2001-01-19 2003-08-05 Siros Technologies, Inc. Multi-wavelength transmitter
US6636653B2 (en) 2001-02-02 2003-10-21 Teravicta Technologies, Inc. Integrated optical micro-electromechanical systems and methods of fabricating and operating the same
US6603915B2 (en) 2001-02-05 2003-08-05 Fujitsu Limited Interposer and method for producing a light-guiding structure
US6636534B2 (en) 2001-02-26 2003-10-21 University Of Hawaii Phase displacement free-electron laser
JP3990983B2 (en) * 2001-02-28 2007-10-17 株式会社日立製作所 Method and apparatus for measuring physical properties of minute area
WO2002071532A1 (en) 2001-03-02 2002-09-12 Matsushita Electric Industrial Co., Ltd. Dielectric filter, antenna duplexer
US6493424B2 (en) 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
SE520339C2 (en) 2001-03-07 2003-06-24 Acreo Ab Electrochemical transistor device, used for e.g. polymer batteries, includes active element having transistor channel made of organic material and gate electrode where voltage is applied to control electron flow
US7038399B2 (en) 2001-03-13 2006-05-02 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
US6819432B2 (en) 2001-03-14 2004-11-16 Hrl Laboratories, Llc Coherent detecting receiver using a time delay interferometer and adaptive beam combiner
EP1243428A1 (en) 2001-03-20 2002-09-25 The Technology Partnership Public Limited Company Led print head for electrophotographic printer
US7077982B2 (en) 2001-03-23 2006-07-18 Fuji Photo Film Co., Ltd. Molecular electric wire, molecular electric wire circuit using the same and process for producing the molecular electric wire circuit
US6788847B2 (en) 2001-04-05 2004-09-07 Luxtera, Inc. Photonic input/output port
US6912330B2 (en) 2001-05-17 2005-06-28 Sioptical Inc. Integrated optical/electronic circuits and associated methods of simultaneous generation thereof
US7177515B2 (en) * 2002-03-20 2007-02-13 The Regents Of The University Of Colorado Surface plasmon devices
US7010183B2 (en) * 2002-03-20 2006-03-07 The Regents Of The University Of Colorado Surface plasmon devices
US6525477B2 (en) * 2001-05-29 2003-02-25 Raytheon Company Optical magnetron generator
US7068948B2 (en) 2001-06-13 2006-06-27 Gazillion Bits, Inc. Generation of optical signals with return-to-zero format
JP3698075B2 (en) 2001-06-20 2005-09-21 株式会社日立製作所 Semiconductor substrate inspection method and apparatus
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
EP1278314B1 (en) * 2001-07-17 2007-01-10 Alcatel Monitoring unit for optical burst signals
US6990257B2 (en) 2001-09-10 2006-01-24 California Institute Of Technology Electronically biased strip loaded waveguide
US6640023B2 (en) 2001-09-27 2003-10-28 Memx, Inc. Single chip optical cross connect
US6831301B2 (en) * 2001-10-15 2004-12-14 Micron Technology, Inc. Method and system for electrically coupling a chip to chip package
JP2003209411A (en) 2001-10-30 2003-07-25 Matsushita Electric Ind Co Ltd High frequency module and production method for high frequency module
US6808955B2 (en) * 2001-11-02 2004-10-26 Intel Corporation Method of fabricating an integrated circuit that seals a MEMS device within a cavity
US6908355B2 (en) 2001-11-13 2005-06-21 Burle Technologies, Inc. Photocathode
US7248297B2 (en) 2001-11-30 2007-07-24 The Board Of Trustees Of The Leland Stanford Junior University Integrated color pixel (ICP)
US6635949B2 (en) * 2002-01-04 2003-10-21 Intersil Americas Inc. Symmetric inducting device for an integrated circuit having a ground shield
WO2003061470A1 (en) 2002-01-18 2003-07-31 California Institute Of Technology Method and apparatus for nanomagnetic manipulation and sensing
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
WO2004001849A2 (en) 2002-04-30 2003-12-31 Hrl Laboratories, Llc Quartz-based nanoresonators and method of fabricating same
US6738176B2 (en) 2002-04-30 2004-05-18 Mario Rabinowitz Dynamic multi-wavelength switching ensemble
JP2003331774A (en) 2002-05-16 2003-11-21 Toshiba Corp Electron beam equipment and device manufacturing method using the equipment
JP2004014943A (en) * 2002-06-10 2004-01-15 Sony Corp Multibeam semiconductor laser, semiconductor light emitting device, and semiconductor device
US6887773B2 (en) 2002-06-19 2005-05-03 Luxtera, Inc. Methods of incorporating germanium within CMOS process
US20040011432A1 (en) 2002-07-17 2004-01-22 Podlaha Elizabeth J. Metal alloy electrodeposited microstructures
EP1388883B1 (en) 2002-08-07 2013-06-05 Fei Company Coaxial FIB-SEM column
JP4373063B2 (en) * 2002-09-02 2009-11-25 株式会社半導体エネルギー研究所 Electronic circuit equipment
US6828575B2 (en) 2002-09-26 2004-12-07 Massachusetts Institute Of Technology Photonic crystals: a medium exhibiting anomalous cherenkov radiation
US8228959B2 (en) * 2002-09-27 2012-07-24 The Trustees Of Dartmouth College Free electron laser, and associated components and methods
US6841795B2 (en) 2002-10-25 2005-01-11 The University Of Connecticut Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation
US6922118B2 (en) 2002-11-01 2005-07-26 Hrl Laboratories, Llc Micro electrical mechanical system (MEMS) tuning using focused ion beams
AU2003290525A1 (en) 2002-11-07 2004-06-03 Sophia Wireless, Inc. Coupled resonator filters formed by micromachining
US6936981B2 (en) 2002-11-08 2005-08-30 Applied Materials, Inc. Retarding electron beams in multiple electron beam pattern generation
JP2004172965A (en) 2002-11-20 2004-06-17 Seiko Epson Corp Inter-chip optical interconnection circuit, electro-optical device and electronic appliance
US6924920B2 (en) 2003-05-29 2005-08-02 Stanislav Zhilkov Method of modulation and electron modulator for optical communication and data transmission
CN101114694A (en) * 2002-11-26 2008-01-30 株式会社东芝 Magnetic cell and magnetic memory
JP4249474B2 (en) 2002-12-06 2009-04-02 セイコーエプソン株式会社 Wavelength multiplexing chip-to-chip optical interconnection circuit
JP2004191392A (en) 2002-12-06 2004-07-08 Seiko Epson Corp Wavelength multiple intra-chip optical interconnection circuit, electro-optical device and electronic appliance
ITMI20022608A1 (en) 2002-12-09 2004-06-10 Fond Di Adroterapia Oncologic A Tera LINAC WITH DRAWING TUBES FOR THE ACCELERATION OF A BAND OF IONS.
US20040180244A1 (en) 2003-01-24 2004-09-16 Tour James Mitchell Process and apparatus for microwave desorption of elements or species from carbon nanotubes
US7157839B2 (en) 2003-01-27 2007-01-02 3M Innovative Properties Company Phosphor based light sources utilizing total internal reflection
JP4044453B2 (en) 2003-02-06 2008-02-06 株式会社東芝 Quantum memory and information processing method using quantum memory
US20040154925A1 (en) 2003-02-11 2004-08-12 Podlaha Elizabeth J. Composite metal and composite metal alloy microstructures
JP4574118B2 (en) * 2003-02-12 2010-11-04 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US20040171272A1 (en) 2003-02-28 2004-09-02 Applied Materials, Inc. Method of etching metallic materials to form a tapered profile
US20040184270A1 (en) 2003-03-17 2004-09-23 Halter Michael A. LED light module with micro-reflector cavities
US7138629B2 (en) 2003-04-22 2006-11-21 Ebara Corporation Testing apparatus using charged particles and device manufacturing method using the testing apparatus
US6954515B2 (en) 2003-04-25 2005-10-11 Varian Medical Systems, Inc., Radiation sources and radiation scanning systems with improved uniformity of radiation intensity
WO2004101857A2 (en) * 2003-05-07 2004-11-25 Microfabrica Inc. Methods and apparatus for forming multi-layer structures using adhered masks
US6884335B2 (en) 2003-05-20 2005-04-26 Novellus Systems, Inc. Electroplating using DC current interruption and variable rotation rate
US6943650B2 (en) 2003-05-29 2005-09-13 Freescale Semiconductor, Inc. Electromagnetic band gap microwave filter
US7446601B2 (en) 2003-06-23 2008-11-04 Astronix Research, Llc Electron beam RF amplifier and emitter
US20050194258A1 (en) 2003-06-27 2005-09-08 Microfabrica Inc. Electrochemical fabrication methods incorporating dielectric materials and/or using dielectric substrates
US6953291B2 (en) 2003-06-30 2005-10-11 Finisar Corporation Compact package design for vertical cavity surface emitting laser array to optical fiber cable connection
US7279686B2 (en) 2003-07-08 2007-10-09 Biomed Solutions, Llc Integrated sub-nanometer-scale electron beam systems
US7141800B2 (en) * 2003-07-11 2006-11-28 Charles E. Bryson, III Non-dispersive charged particle energy analyzer
WO2005025243A2 (en) 2003-09-04 2005-03-17 The Regents Of The University Of California Reconfigurable multi-channel all optical regenerators
US7292614B2 (en) 2003-09-23 2007-11-06 Eastman Kodak Company Organic laser and liquid crystal display
US20050067286A1 (en) * 2003-09-26 2005-03-31 The University Of Cincinnati Microfabricated structures and processes for manufacturing same
US7362972B2 (en) * 2003-09-29 2008-04-22 Jds Uniphase Inc. Laser transmitter capable of transmitting line data and supervisory information at a plurality of data rates
US7170142B2 (en) 2003-10-03 2007-01-30 Applied Materials, Inc. Planar integrated circuit including a plasmon waveguide-fed Schottky barrier detector and transistors connected therewith
US7295638B2 (en) 2003-11-17 2007-11-13 Motorola, Inc. Communication device
US7042982B2 (en) 2003-11-19 2006-05-09 Lucent Technologies Inc. Focusable and steerable micro-miniature x-ray apparatus
WO2005066672A1 (en) 2003-12-05 2005-07-21 3M Innovative Properties Company Process for producing photonic crystals and controlled defects therein
WO2005073627A1 (en) 2004-01-28 2005-08-11 Tir Systems Ltd. Sealed housing unit for lighting system
EP1711739A4 (en) 2004-01-28 2008-07-23 Tir Technology Lp Directly viewable luminaire
US7274835B2 (en) 2004-02-18 2007-09-25 Cornell Research Foundation, Inc. Optical waveguide displacement sensor
JP2005242219A (en) 2004-02-27 2005-09-08 Fujitsu Ltd Array type wavelength converter
US7092603B2 (en) 2004-03-03 2006-08-15 Fujitsu Limited Optical bridge for chip-to-board interconnection and methods of fabrication
JP4370945B2 (en) 2004-03-11 2009-11-25 ソニー株式会社 Measuring method of dielectric constant
US6996303B2 (en) 2004-03-12 2006-02-07 Fujitsu Limited Flexible optical waveguides for backplane optical interconnections
US7012419B2 (en) 2004-03-26 2006-03-14 Ut-Battelle, Llc Fast Faraday cup with high bandwidth
CN1965414B (en) 2004-04-05 2010-09-29 日本电气株式会社 Photodiode and method for manufacturing same
JP4257741B2 (en) 2004-04-19 2009-04-22 三菱電機株式会社 Charged particle beam accelerator, particle beam irradiation medical system using charged particle beam accelerator, and method of operating particle beam irradiation medical system
US7428322B2 (en) 2004-04-20 2008-09-23 Bio-Rad Laboratories, Inc. Imaging method and apparatus
US7454095B2 (en) 2004-04-27 2008-11-18 California Institute Of Technology Integrated plasmon and dielectric waveguides
KR100586965B1 (en) 2004-05-27 2006-06-08 삼성전기주식회사 Light emitting diode device
US7294834B2 (en) * 2004-06-16 2007-11-13 National University Of Singapore Scanning electron microscope
US7155107B2 (en) * 2004-06-18 2006-12-26 Southwest Research Institute System and method for detection of fiber optic cable using static and induced charge
US7194798B2 (en) * 2004-06-30 2007-03-27 Hitachi Global Storage Technologies Netherlands B.V. Method for use in making a write coil of magnetic head
US20060062258A1 (en) * 2004-07-02 2006-03-23 Vanderbilt University Smith-Purcell free electron laser and method of operating same
US7130102B2 (en) 2004-07-19 2006-10-31 Mario Rabinowitz Dynamic reflection, illumination, and projection
EP3557956A1 (en) 2004-07-21 2019-10-23 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
GB0416600D0 (en) 2004-07-24 2004-08-25 Univ Newcastle A process for manufacturing micro- and nano-devices
US7375631B2 (en) 2004-07-26 2008-05-20 Lenovo (Singapore) Pte. Ltd. Enabling and disabling a wireless RFID portable transponder
US20060035173A1 (en) * 2004-08-13 2006-02-16 Mark Davidson Patterning thin metal films by dry reactive ion etching
US7586097B2 (en) 2006-01-05 2009-09-08 Virgin Islands Microsystems, Inc. Switching micro-resonant structures using at least one director
US7626179B2 (en) * 2005-09-30 2009-12-01 Virgin Island Microsystems, Inc. Electron beam induced resonance
US7791290B2 (en) * 2005-09-30 2010-09-07 Virgin Islands Microsystems, Inc. Ultra-small resonating charged particle beam modulator
KR100623477B1 (en) * 2004-08-25 2006-09-19 한국정보통신대학교 산학협력단 Optical printed circuit boards and optical interconnection blocks using optical fiber bundles
WO2006042239A2 (en) 2004-10-06 2006-04-20 The Regents Of The University Of California Cascaded cavity silicon raman laser with electrical modulation, switching, and active mode locking capability
US20060187794A1 (en) 2004-10-14 2006-08-24 Tim Harvey Uses of wave guided miniature holographic system
TWI253714B (en) 2004-12-21 2006-04-21 Phoenix Prec Technology Corp Method for fabricating a multi-layer circuit board with fine pitch
US7592255B2 (en) 2004-12-22 2009-09-22 Hewlett-Packard Development Company, L.P. Fabricating arrays of metallic nanostructures
US7508576B2 (en) 2005-01-20 2009-03-24 Intel Corporation Digital signal regeneration, reshaping and wavelength conversion using an optical bistable silicon raman laser
US7466326B2 (en) 2005-01-21 2008-12-16 Konica Minolta Business Technologies, Inc. Image forming method and image forming apparatus
US7309953B2 (en) 2005-01-24 2007-12-18 Principia Lightworks, Inc. Electron beam pumped laser light source for projection television
US7120332B1 (en) 2005-03-31 2006-10-10 Eastman Kodak Company Placement of lumiphores within a light emitting resonator in a visual display with electro-optical addressing architecture
US7397055B2 (en) 2005-05-02 2008-07-08 Raytheon Company Smith-Purcell radiation source using negative-index metamaterial (NIM)
JP4945561B2 (en) * 2005-06-30 2012-06-06 デ,ロシェモント,エル.,ピエール Electrical component and method of manufacturing the same
KR101359562B1 (en) 2005-07-08 2014-02-07 넥스젠 세미 홀딩 인코포레이티드 Apparatus and method for controlled particle beam manufacturing
US20070013765A1 (en) * 2005-07-18 2007-01-18 Eastman Kodak Company Flexible organic laser printer
TWI282708B (en) * 2005-08-03 2007-06-11 Ind Tech Res Inst Vertical pixel structure for emi-flective display and method for making the same
US8425858B2 (en) * 2005-10-14 2013-04-23 Morpho Detection, Inc. Detection apparatus and associated method
US7473916B2 (en) * 2005-12-16 2009-01-06 Asml Netherlands B.V. Apparatus and method for detecting contamination within a lithographic apparatus
US7547904B2 (en) 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
US7470920B2 (en) 2006-01-05 2008-12-30 Virgin Islands Microsystems, Inc. Resonant structure-based display
US7619373B2 (en) 2006-01-05 2009-11-17 Virgin Islands Microsystems, Inc. Selectable frequency light emitter
US7623165B2 (en) 2006-02-28 2009-11-24 Aptina Imaging Corporation Vertical tri-color sensor
US7443358B2 (en) 2006-02-28 2008-10-28 Virgin Island Microsystems, Inc. Integrated filter in antenna-based detector
US7862756B2 (en) 2006-03-30 2011-01-04 Asml Netherland B.V. Imprint lithography
US20070264023A1 (en) 2006-04-26 2007-11-15 Virgin Islands Microsystems, Inc. Free space interchip communications
US7646991B2 (en) 2006-04-26 2010-01-12 Virgin Island Microsystems, Inc. Selectable frequency EMR emitter
US7511808B2 (en) 2006-04-27 2009-03-31 Hewlett-Packard Development Company, L.P. Analyte stages including tunable resonant cavities and Raman signal-enhancing structures
US7359589B2 (en) 2006-05-05 2008-04-15 Virgin Islands Microsystems, Inc. Coupling electromagnetic wave through microcircuit
US7442940B2 (en) 2006-05-05 2008-10-28 Virgin Island Microsystems, Inc. Focal plane array incorporating ultra-small resonant structures
US7342441B2 (en) * 2006-05-05 2008-03-11 Virgin Islands Microsystems, Inc. Heterodyne receiver array using resonant structures
US20070258720A1 (en) 2006-05-05 2007-11-08 Virgin Islands Microsystems, Inc. Inter-chip optical communication
US7554083B2 (en) 2006-05-05 2009-06-30 Virgin Islands Microsystems, Inc. Integration of electromagnetic detector on integrated chip
US7728702B2 (en) * 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Shielding of integrated circuit package with high-permeability magnetic material
US7586167B2 (en) 2006-05-05 2009-09-08 Virgin Islands Microsystems, Inc. Detecting plasmons using a metallurgical junction
US7569836B2 (en) 2006-05-05 2009-08-04 Virgin Islands Microsystems, Inc. Transmission of data between microchips using a particle beam
US7436177B2 (en) 2006-05-05 2008-10-14 Virgin Islands Microsystems, Inc. SEM test apparatus
US20070258492A1 (en) 2006-05-05 2007-11-08 Virgin Islands Microsystems, Inc. Light-emitting resonant structure driving raman laser
US7573045B2 (en) 2006-05-15 2009-08-11 Virgin Islands Microsystems, Inc. Plasmon wave propagation devices and methods
US7450794B2 (en) * 2006-09-19 2008-11-11 Virgin Islands Microsystems, Inc. Microcircuit using electromagnetic wave routing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021663A1 (en) * 1992-04-08 1993-10-28 Georgia Tech Research Corporation Process for lift-off of thin film materials from a growth substrate
US6040625A (en) * 1997-09-25 2000-03-21 I/O Sensors, Inc. Sensor package arrangement
US20030012925A1 (en) * 2001-07-16 2003-01-16 Motorola, Inc. Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
US20030034535A1 (en) * 2001-08-15 2003-02-20 Motorola, Inc. Mems devices suitable for integration with chip having integrated silicon and compound semiconductor devices, and methods for fabricating such devices
JP2004032323A (en) * 2002-06-25 2004-01-29 Toyo Commun Equip Co Ltd Surface mounting type piezoelectric oscillator and its manufacturing method
US6885262B2 (en) * 2002-11-05 2005-04-26 Ube Industries, Ltd. Band-pass filter using film bulk acoustic resonator
WO2005015143A2 (en) * 2003-08-11 2005-02-17 Opgal Ltd. Radiometry using an uncooled microbolometer detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPELLER AND YU: "A low-noise MEMS accelerometer for unattended ground sensor applications", APPLIED MEMS INC., 12200 PARC CREST, STAFFORD, TX, USA 77477, Retrieved from the Internet <URL:http://www.link.aip.org/link/?PSISDG/5417/63/1> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136794B2 (en) 2011-06-22 2015-09-15 Research Triangle Institute, International Bipolar microelectronic device

Also Published As

Publication number Publication date
US20070259465A1 (en) 2007-11-08
US20100289099A1 (en) 2010-11-18
US8188431B2 (en) 2012-05-29
TW200743206A (en) 2007-11-16

Similar Documents

Publication Publication Date Title
US7554083B2 (en) Integration of electromagnetic detector on integrated chip
US7359589B2 (en) Coupling electromagnetic wave through microcircuit
JP3792126B2 (en) Small terahertz radiation source
US5982250A (en) Millimeter-wave LTCC package
Wi et al. Package-level integrated antennas based on LTCC technology
US20100289099A1 (en) Integration of vacuum microelectronic device with integrated circuit
US5692298A (en) Method of making ceramic microwave electronic package
US9608731B2 (en) Microfabricated optical apparatus
EP2575167B1 (en) Electronic device
WO2007130094A2 (en) Inter-chip optical communication
CN107146953A (en) Device for radiating or receiving electromagnetic wave
Ndip et al. Modelling the shape, length and radiation characteristics of bond wire antennas
US7579609B2 (en) Coupling light of light emitting resonator to waveguide
US7791053B2 (en) Depressed anode with plasmon-enabled devices such as ultra-small resonant structures
US7282776B2 (en) Method and structure for coupling two microcircuits
US11804442B2 (en) Combined backing plate and housing for use in bump bonded chip assembly
US20070258675A1 (en) Multiplexed optical communication between chips on a multi-chip module
US7583370B2 (en) Resonant structures and methods for encoding signals into surface plasmons
KR102228555B1 (en) Semiconductor chip package and method for packaging semiconductor chip
JP6587692B2 (en) Apparatus and method for transmitting high frequency signals
US20070258146A1 (en) Reflecting filtering cover
JP2005539459A (en) High frequency signal transmitter
WO2004059359A1 (en) To-can package of high speed data communications
WO2007106114A2 (en) Coupling output from a micro resonator to a plasmon transmission line
JP2003198036A (en) Optical semiconductor package structure and optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06784768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 06784768

Country of ref document: EP

Kind code of ref document: A1