WO2008015782A1 - Microneedle patch and process for producing the same - Google Patents

Microneedle patch and process for producing the same Download PDF

Info

Publication number
WO2008015782A1
WO2008015782A1 PCT/JP2007/000811 JP2007000811W WO2008015782A1 WO 2008015782 A1 WO2008015782 A1 WO 2008015782A1 JP 2007000811 W JP2007000811 W JP 2007000811W WO 2008015782 A1 WO2008015782 A1 WO 2008015782A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
patch
micro
dollar
shape
Prior art date
Application number
PCT/JP2007/000811
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Takigawa
Kazushi Kawatsu
Tatsuya Harikou
Original Assignee
Hamamatsu Foundation For Science And Technology Promotion
Shizuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation For Science And Technology Promotion, Shizuoka Prefectural Government filed Critical Hamamatsu Foundation For Science And Technology Promotion
Publication of WO2008015782A1 publication Critical patent/WO2008015782A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • A61B17/205Vaccinating by means of needles or other puncturing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • Human skin is roughly divided into three layers from the surface: epidermis, dermis and subcutaneous fat.
  • the epidermis is the stratum corneum, granule layer, spiny layer and dermis as the outermost layer in contact with the outside world. It consists of a basal layer in contact with.
  • the epidermis has an average thickness of about 100 m, excluding palms and wrinkles, and has 500 to 600 Langerhans cells per square millimeter.
  • Langerhans cells take up and activate antigens that are present or invaded in the skin, move to the regional lymph nodes, stimulate T cells to differentiate into cytotoxic T cells, and B cells through T cells Antibody is produced by stimulating. Because of this action, Langerhans cells are known to protect living organisms from infection and cancer.
  • a device having a needle-like structure capable of administering a drug such as a vaccine material into a living body has been conventionally proposed (for example, see Patent Document 1).
  • a thin film film through which the needle part can penetrate is interposed between a needle-like structure having a needle part and a living body, and the needle part is punctured into the skin. Drugs in the thin film can be administered.
  • This needle is The length is 2 3 0; U m, and it is a silicon needle structure with 50 lines arranged on the support.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 00 _ 6 5 7 7 5
  • the present invention has been made in view of such circumstances, and can be punctured without the tip of the needle reaching the dermis, from which a microphone mouth needle type capable of administering a drug such as a vaccine material is provided. It is to provide a patch and its manufacturing method.
  • a plurality of micro-projection needles are integrally formed on the back surface of the sheet-like patch portion, and the needle is used while the back surface of the patch portion is in close contact with the patient's skin.
  • the needle is characterized in that the length dimension from the proximal end to the distal end is approximately 50 to 10 O ⁇ m.
  • the invention according to claim 2 is the microneedle type patch according to claim 1, wherein the lengths of the needles are different, and the heights of the needles from the back surface of the patch part are non-uniform. It is characterized by.
  • the invention according to claim 3 is the microphone mouth needle type patch according to claim 1 or 2, characterized in that the needle is made of a biodegradable resin that can be decomposed in vivo.
  • the invention according to claim 4 is the micro nidle type patch according to any one of claims 1 to 3, wherein the needle has a proximal end diameter of approximately 1 OO m or less. It has a conical shape.
  • the invention according to claim 5 is the micro niddle type patch according to any one of claims 1 to 4, wherein the surface of the needle is provided with a fine uneven shape. It is characterized by that.
  • the invention according to claim 6 is the microneedle type patch according to any one of claims 1 to 5, wherein the patch portion is made of a flexible member, and the entire back surface of the patch is formed by the patient. It is characterized by being able to closely adhere to the shape of the skin.
  • the invention according to claim 7 is that a predetermined resin material having thermoplastic properties is melted in a mold having a plurality of conical holes each having a depth of approximately 50 to 10 Om. After the resin material is cooled and cured, it is released from the mold so that a plurality of micro-projections of needles following the hole shape are integrally formed on the back surface of the sheet-like patch. It is characterized by obtaining a 21 dollar type patch.
  • the invention according to claim 9 is the method of manufacturing a microneedle type / touch according to claim 8, wherein the master forms a single block having the needle shape by lathe machining using a byte. It is obtained by arranging a plurality of such blocks in parallel.
  • the length of the needle formed on the back surface of the patch portion from the proximal end to the distal end is approximately 50 to 10 Om, The tip can be punctured without reaching the dermis, and drugs such as acupuncture material can be administered from there.
  • drugs such as acupuncture material
  • the back surface of the patch portion is kept in close contact with the patient's skin.
  • the needle is made of a biodegradable resin that can be decomposed in a living body, for example, when the needle is punctured, it breaks and remains in the patient's body.
  • the microneedle type patch is discarded, it can be easily disassembled, preventing problems such as environmental destruction.
  • the needle since the needle has a conical shape with a proximal diameter of approximately 100 m or less, the pain is prevented from being given to the patient, Better puncture can be made possible.
  • the surface of the needle is provided with a fine uneven shape, when the drug is applied to the surface of the needle, the drug continues to be held in the uneven shape, The drug can be successfully administered from the puncture site.
  • the patch portion is made of a flexible member, and the entire back surface thereof can closely adhere to the shape of the patient's skin, the puncturing operation can be performed more reliably and satisfactorily. Can do.
  • a predetermined resin material having thermoplastic properties is melted in a mold having a plurality of conical holes each having a depth of approximately 50 to 10 Om.
  • the mold is obtained by growing the Ni metal layer on the master including the needle shape by electroplating, it is easy to change the needle length and the like. It is possible to obtain a micro two-dollar patch at a lower cost.
  • the master 1 is obtained by forming a block having a single needle shape by lathe machining with a byte and arranging a plurality of the blocks in parallel. That you can get a micro two-dollar patch.
  • the concave / convex shape is imparted to the surface of the master by the cutting trace by the byte, it is possible to easily obtain the micro two-dollar type patch in which the fine concave / convex shape is imparted to the surface of the needle.
  • the microneedle type patch punctures the skin of a patient with a microprojection needle and administers a drug (cancer peptide or the like) from there to activate Langerhans cells to infect the living body. It produces antibodies and cytotoxic T cells to protect against cancer and the like.
  • a sheet-like patch portion 1 is integrally formed with the patch portion 1, and the patch portion 1 Mainly composed of a plurality of micro-projection needles 2 formed on the back surface.
  • the present microneedle type patch is obtained by forming a biodegradable resin that can be decomposed in a living body and integrating the patch portion 1 and the needle 2 together.
  • a biodegradable resin examples thereof include polylactic acid (PLA), aliphatic copolymer polyester, and polyhydroxybutyrate (PHB).
  • PLA polylactic acid
  • PHB polyhydroxybutyrate
  • the needle 2 is made of a biodegradable resin, so that the living body is not affected and is safe.
  • the microneedle type patch is discarded, it can be easily disassembled, preventing problems such as environmental destruction.
  • thermoplastic properties instead of the above biodegradable resin, other resin materials having thermoplastic properties may be used.
  • resin materials having thermoplastic properties
  • the patch portion 1 is a flexible member formed by forming the biodegradable resin into a thin film, and the entire back surface (surface on which the needle 2 is formed) It is configured to be able to closely adhere to the shape of the patient's skin. This will cause needle 2 to When the patch part 1 is pressed against the patient's skin to puncture the patient, the patch part 1 bends along the site, so that the patient can adhere well, and the puncture operation can be performed more reliably and satisfactorily.
  • the needle 2 has a conical shape with a proximal end (patch 1 side end) diameter of approximately 1 OO m or less, and pain is imparted to the patient when the needle 2 is punctured into the skin. In addition to suppressing this, it is possible to achieve better puncture. It should be noted that the needle 2 may have another shape (such as a quadrangular pyramid or a cylinder) as long as the patient's skin can be punctured satisfactorily.
  • the surface of the needle 2 is provided with a fine uneven shape (in this embodiment, a spiral shape), and the surface of the needle 2 was coated with a drug.
  • the drug is continuously held in the uneven shape (spiral shape), and the drug can be successfully administered from the puncture site.
  • the uneven shape on the surface of the needle 2 is not limited to a spiral shape, but is a shape in which a plurality of recesses or grooves are formed at an arbitrary site, or a streak-like vertical stripe from the tip to the base, and corrugated in the circumferential direction of the cone surface It is good also as what formed the groove
  • the needle 2 has a length dimension t from the proximal end to the distal end of approximately 50 to 1 O O m.
  • the needle 2 is punctured into the body, and the tip does not reach the dermis, from which the drug is administered. be able to.
  • the needle 2 can be punctured better and more reliably.
  • the lengths of the respective needles 2 are different, and the heights of the needles 2 from the back surface of the patch portion 1 are non-uniform.
  • the length of each needle 2 is varied within a range of about 50 to 100 m.
  • needles having large lengths and needles having small lengths may be alternately formed, or may be formed by mixing at regular intervals or irregularly.
  • the pressing force is dispersed and punctured Makes needle 2 smooth on the patient's skin It can penetrate and make puncture well.
  • a manufacturing method of the microneedle type patch as described above will be described.
  • a metal cylindrical member round bar
  • its end face is cut by a byte.
  • a cylindrical block 3 in which a single micro-projection shape (needle shape 3 a) having a height dimension t of about 50 to 10 Om is formed in the approximate center of the end face.
  • the needle shape 3 a is formed by cutting with a lathe of a lathe, a cutting mark (feed mark) by the byte is formed in a spiral shape.
  • a plurality of blocks 3 having the needle shape 3a with different height dimensions as described above are prepared, and the blocks 3 are passed through the holes 4a of the structure 4 as shown in FIG. .
  • the hole 4 a has an inner diameter substantially equal to the outer diameter of the block 3, and faces the needle shape 3 a from the opening of each hole 4 a.
  • a plurality of needle shapes 3 a can be arranged side by side, and a master composed of the structure 4 facing the needle shapes 3 a can be obtained.
  • FIG. 6 when a Ni metal layer is grown on the master including the needle shape 3 a by electrical fitting and the Ni metal layer is removed from the master, as shown in FIG. It is possible to obtain a mold 5 having a plurality of holes 5 a having a shape opposite to the needle shape 3 a (manufacture of a mold by an electroplating method). Since the hole 5 a of the mold 5 is formed by transferring the surface shape of the needle shape 3 a, the depth (height) dimension t is approximately 50 to 1 like the needle shape 3 a. Although it is set to OO m, the dimension t is varied to be non-uniform.
  • a mold 5 and another mold 6 are arranged to face each other to form a cavity C therein, and a resin material having thermoplastic properties in the cavity C.
  • a resin material having thermoplastic properties in the cavity C.
  • biodegradable resin is poured in a molten state, and after releasing the cooling effect of the resin material, a microneedle type having a patch portion 1 and a needle 2 as shown in FIG. You can get a patch.
  • the needle 2 has a length dimension t of approximately 5 0 to 1 0 0 m.
  • a mold made of, for example, a titanium alloy sintered body can be obtained by metal powder injection molding using the master. According to such a mold, since titanium has good releasability from resin, it can be used when forming microneedle type patches. Thus, a release agent or the like can be dispensed with. In addition, due to the fine pores generated in the process of metal powder injection molding, a concavo-convex shape is formed on the surface of the mold, and the concavo-convex shape is transferred to the surface of the needle when the micro two-dollar type patch is formed.
  • a semi-molten resin such as nanoimprint (hot press) is pressed against the mold cavity. It may be a molding method using a molding method or a coater (means for pouring molten resin into the mold cavity using a centrifugal force).
  • the back surface of the patch 1 is applied to the patient's skin (for example, the skin of the arm or The needle 2 punctures the skin, and the drug applied to the needle 2 is administered into the body by bringing it into close contact with the skin (chest, back, stomach, etc.). Also, without applying the drug to the surface of the needle 2, the back surface of the patch part 1 is in close contact with the skin and the needle 2 is punctured, then the microneedle patch is removed from the skin and the drug is administered from the puncture mark. It may be.
  • the tip of the needle 2 can be prevented from reaching the patient's dermis at the time of puncturing.
  • the drug can be administered without pain and avoiding the risk of bleeding and secondary infection.
  • the vaccine material is administered as a drug, uptake by Langerhans cells is ensured, and the living body is infected.
  • Antibodies and cytotoxic T cells can be produced to protect against cancer and cancer.
  • the present invention is not limited to this, and in particular, in the case of administering a drug from the puncture mark after puncture with a needle.
  • the surface of the needle may not be provided with an uneven shape (such as a spiral shape).
  • foreign matters such as salt (magnesium chloride, etc., which is the main component of Nigari) are included, and the foreign matter is removed after molding (in the case of salt, it is dissolved with hot water, etc.) By doing so, an uneven shape may be imparted to the surface of the needle.
  • the manufacturing method of the microneedle type patch is not limited to the one in the present embodiment, and the surface of the plate-like member (metal plate or the like) is directly machined or laser processed, and the needle as in the present embodiment.
  • a micro two-dollar type patch having the above may be formed. Further, by applying an adhesive to the back surface of the patch part 1 and allowing it to adhere to the skin with the adhesive, the micro two-dollar patch can be kept in close contact for a long time.
  • FIG. 1 is a schematic diagram showing a microneedle patch according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a state where the needle is punctured with the micro-bi dollar patch in close contact with the patient's skin.
  • FIG. 8 Schematic diagram showing a mold for manufacturing the micro two-dollar patch and a micro one-dollar patch obtained from the mold.

Abstract

[PROBLEMS] To provide a microneedle patch that without reaching of the distal end of needles to the dermis, can attain puncturing so as to allow administration of medicine, such as a vaccine material, through the puncture, and provide a process for producing the same. [MEANS FOR SOLVING PROBLEMS] There is provided a microneedle patch comprising sheet patch part (1) and, integrally superimposed on the rear surface thereof, multiple microprotrusion needles (2), so that while sticking the rear surface of the patch part (1) to the skin of a patient, there can be attained puncturing of the skin with needles (2), wherein the needles (2) have a dimension of length (t) from its proximal end to distal end ranging from about 50 to 100 μm.

Description

明 細 書  Specification
マイクロニードル型パッチ及びその製造方法  Microneedle type patch and manufacturing method thereof
技術分野  Technical field
[0001 ] 本発明は、 シ一ト状のパッチ部の裏面に複数の微小突起状の針が一体的に 形成され、 当該パッチ部裏面を患者の皮膚に接触させつつ針を皮膚に穿刺さ せ得るマイクロニードル型/ ッチ及びその製造方法に関するものである。 背景技術  In the present invention, a plurality of microprojection needles are integrally formed on the back surface of a sheet-like patch portion, and the needle is punctured into the skin while the back surface of the patch portion is in contact with the patient's skin. The present invention relates to a microneedle type / switch obtained and a manufacturing method thereof. Background art
[0002] 人の皮膚は、 その表面から表皮、 真皮及び皮下脂肪の 3層に大きく分けら れ、 このうち表皮は、 外界と接触する最外層としての角層、 顆粒層、 有棘層 及び真皮と接触する基底層から構成されている。 表皮は、 掌や踵を除くと、 その厚さが平均 1 0 0 m前後であり、 1平方ミリあたり 5 0 0〜 6 0 0個 のランゲルハンス細胞を有している。 かかるランゲルハンス細胞は、 皮膚に 存在する或いは侵入した抗原を取り込んで活性化するとともに、 所属リンパ 節に移動し、 T細胞を刺激して細胞障害性 T細胞に分化させ、 T細胞を介し て B細胞を刺激することにより抗体を産出させる。 この作用から、 ランゲル ハンス細胞は、 生体を感染や癌等から防御するものとして知られている。  [0002] Human skin is roughly divided into three layers from the surface: epidermis, dermis and subcutaneous fat. Of these, the epidermis is the stratum corneum, granule layer, spiny layer and dermis as the outermost layer in contact with the outside world. It consists of a basal layer in contact with. The epidermis has an average thickness of about 100 m, excluding palms and wrinkles, and has 500 to 600 Langerhans cells per square millimeter. Such Langerhans cells take up and activate antigens that are present or invaded in the skin, move to the regional lymph nodes, stimulate T cells to differentiate into cytotoxic T cells, and B cells through T cells Antibody is produced by stimulating. Because of this action, Langerhans cells are known to protect living organisms from infection and cancer.
[0003] 上記の如く感染や癌を防御するヮクチンを表皮のランゲルハンス細胞に到 達させるための手段として、 注射針によるワクチン素材の投与が広く行われ ているが、 かかる注射針による投与では、 ワクチン素材が表皮を超えて真皮 内に到達してしまい、 ランゲルハンス細胞による取り込みが確実に行われな いという不具合があった。 また、 注射針による投与は、 患者にとって痛みが 伴うとともに、 出血や 2次感染の危険性があり問題がある。  [0003] As described above, as a means for reaching the Langerhans cells of the epidermis to protect the infection and cancer, vaccine material is widely administered with an injection needle. There was a problem that the material reached the dermis beyond the epidermis, and the uptake by Langerhans cells was not performed reliably. In addition, administration with an injection needle is painful for the patient, and there are risks of bleeding and secondary infection.
[0004] 一方、 ワクチン素材などの薬物を生体内に投与し得る針状構造体を備えた デバイスが従来より提案されている (例えば、 特許文献 1参照) 。 かかるデ バイス (マイクロ二一ドル型パッチ) によれば、 針部を有する針状構造体と 生体との間に当該針部が貫通可能な薄膜フィルムを介在させ、 針部を皮膚に 穿刺させつつ薄膜フィルム内の薬物を投与することができる。 この針部は、 長さ寸法が 2 3 0; U mとされ、 支持部に 5 0本配列したシリコン製針状構造 体とされている。 [0004] On the other hand, a device having a needle-like structure capable of administering a drug such as a vaccine material into a living body has been conventionally proposed (for example, see Patent Document 1). According to such a device (micro two-dollar type patch), a thin film film through which the needle part can penetrate is interposed between a needle-like structure having a needle part and a living body, and the needle part is punctured into the skin. Drugs in the thin film can be administered. This needle is The length is 2 3 0; U m, and it is a silicon needle structure with 50 lines arranged on the support.
特許文献 1 :特開 2 0 0 4 _ 6 5 7 7 5号公報  Patent Document 1: Japanese Patent Laid-Open No. 2 0 00 _ 6 5 7 7 5
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、 上記従来のマイクロニードル型パッチにおいては、 針部の 長さが 2 3 O mとされているため、 患者の皮膚に穿刺させた場合、 注射針 と同様、 先端が真皮に到達してしまい、 そこからワクチン素材などの薬物を 投与しても、 ランゲルハンス細胞による取り込みが確実に行われないという 不具合があった。 また、 針部が真皮に到達してしまうことから、 患者にとつ て痛みが伴うとともに、 出血や 2次感染の危険性があるという問題もあつた  [0005] However, in the conventional microneedle type patch, since the length of the needle portion is 2 3 O m, when the patient's skin is punctured, the tip reaches the dermis like the injection needle. Therefore, even if a drug such as a vaccine material was administered from there, there was a problem that the uptake by Langerhans cells was not reliably performed. In addition, since the needle reaches the dermis, there is a problem that the patient is painful and there is a risk of bleeding and secondary infection.
[0006] 本発明は、 このような事情に鑑みてなされたもので、 針の先端が真皮に到 達することなく穿刺させることができ、 そこからワクチン素材などの薬物を 投与し得るマイク口ニードル型パッチ及びその製造方法を提供することにあ る。 [0006] The present invention has been made in view of such circumstances, and can be punctured without the tip of the needle reaching the dermis, from which a microphone mouth needle type capable of administering a drug such as a vaccine material is provided. It is to provide a patch and its manufacturing method.
課題を解決するための手段  Means for solving the problem
[0007] 請求項 1記載の発明は、 シ一ト状のパッチ部の裏面に複数の微小突起状の 針が一体的に形成され、 当該パッチ部裏面を患者の皮膚に密着させつつ前記 針を皮膚に穿刺させ得るマイクロニードル型パッチにおいて、 前記針は、 そ の基端から先端までの長さ寸法が略 5 0〜 1 0 O ^ mとされたことを特徴と する。  [0007] In the invention of claim 1, a plurality of micro-projection needles are integrally formed on the back surface of the sheet-like patch portion, and the needle is used while the back surface of the patch portion is in close contact with the patient's skin. In the microneedle type patch that can be pierced into the skin, the needle is characterized in that the length dimension from the proximal end to the distal end is approximately 50 to 10 O ^ m.
[0008] 請求項 2記載の発明は、 請求項 1記載のマイクロニードル型パッチにおい て、 前記針の長さ寸法を異ならせ、 前記パッチ部裏面からの当該針の高さを 不均一としたことを特徴とする。  [0008] The invention according to claim 2 is the microneedle type patch according to claim 1, wherein the lengths of the needles are different, and the heights of the needles from the back surface of the patch part are non-uniform. It is characterized by.
[0009] 請求項 3記載の発明は、 請求項 1又は請求項 2記載のマイク口ニードル型 パッチにおいて、 前記針は、 生体内で分解され得る生分解性樹脂から成るこ とを特徴とする。 [0010] 請求項 4記載の発明は、 請求項 1〜請求項 3の何れか 1つに記載のマイク ロニ一ドル型パッチにおいて、 前記針は、 基端側の直径が略 1 O O m以下 の円錐形状とされたことを特徴とする。 [0009] The invention according to claim 3 is the microphone mouth needle type patch according to claim 1 or 2, characterized in that the needle is made of a biodegradable resin that can be decomposed in vivo. [0010] The invention according to claim 4 is the micro nidle type patch according to any one of claims 1 to 3, wherein the needle has a proximal end diameter of approximately 1 OO m or less. It has a conical shape.
[001 1 ] 請求項 5記載の発明は、 請求項 1〜請求項 4の何れか 1つに記載のマイク ロニ一ドル型パッチにおいて、 前記針の表面には、 微細な凹凸形状が付与さ れたことを特徴とする。  [001 1] The invention according to claim 5 is the micro niddle type patch according to any one of claims 1 to 4, wherein the surface of the needle is provided with a fine uneven shape. It is characterized by that.
[0012] 請求項 6記載の発明は、 請求項 1〜請求項 5の何れか 1つに記載のマイク ロニードル型パッチにおいて、 前記パッチ部は、 可撓性部材から成り、 その 裏面全域が患者の皮膚の形状に倣って密着し得ることを特徴とする。  [0012] The invention according to claim 6 is the microneedle type patch according to any one of claims 1 to 5, wherein the patch portion is made of a flexible member, and the entire back surface of the patch is formed by the patient. It is characterized by being able to closely adhere to the shape of the skin.
[0013] 請求項 7記載の発明は、 深さが略 5 0〜1 0 O mとされた円錐形状の孔 を複数有した型内に熱可塑性の特性を有した所定の樹脂材を溶融状態にて流 し込み、 当該樹脂材の冷却硬化後、 離型することにより、 シート状のパッチ 部の裏面に、 前記孔形状に倣った複数の微小突起状の針が一体的に形成され たマイクロ二一ドル型パッチを得ることを特徴とする。  [0013] The invention according to claim 7 is that a predetermined resin material having thermoplastic properties is melted in a mold having a plurality of conical holes each having a depth of approximately 50 to 10 Om. After the resin material is cooled and cured, it is released from the mold so that a plurality of micro-projections of needles following the hole shape are integrally formed on the back surface of the sheet-like patch. It is characterized by obtaining a 21 dollar type patch.
[0014] 請求項 8記載の発明は、 請求項 7記載のマイクロニードル型/ ツチの製造 方法において、 前記型は、 切削加工等の機械加工にて高さ寸法が略 5 0〜1 0 0; U mとされた円錐形状の微小突起状の針形状を複数並設させたマスター を形成し、 電気めつきにより当該針形状を含むマスター上に N i金属層を成 長させることにより得られることを特徴とする。  [0014] The invention described in claim 8 is the method of manufacturing a microneedle mold / touch according to claim 7, wherein the mold has a height dimension of approximately 50 to 100 by machining such as cutting. It is obtained by forming a master in which a plurality of conical micro-protrusion needles with U m are arranged side by side, and growing a Ni metal layer on the master containing the needles by electrical contact. It is characterized by.
[0015] 請求項 9記載の発明は、 請求項 8記載のマイクロニードル型/ ツチの製造 方法において、 前記マスタ一は、 バイ トによる旋盤加工により単一の前記針 形状を有したブロックを形成し、 当該ブロックを複数並設させて得られるこ とを特徴とする。  [0015] The invention according to claim 9 is the method of manufacturing a microneedle type / touch according to claim 8, wherein the master forms a single block having the needle shape by lathe machining using a byte. It is obtained by arranging a plurality of such blocks in parallel.
発明の効果  The invention's effect
[0016] 請求項 1の発明によれば、 パッチ部の裏面に形成された針が、 その基端か ら先端までの長さ寸法が略 5 0〜 1 0 O mとされているので、 その先端が 真皮に到達することなく穿刺させることができ、 そこからヮクチン素材など の薬物を投与することができる。 [001 7] 請求項 2の発明によれば、 針の長さ寸法を異ならせ、 パッチ部裏面からの 当該針の高さを不均一としたので、 パッチ部裏面を患者の皮膚に密着させつ つ押圧した際、 その押圧力を分散させて穿刺することにより、 針が患者の皮 膚にスムーズに入り込み、 穿刺を良好に行わせることができる。 [0016] According to the invention of claim 1, since the length of the needle formed on the back surface of the patch portion from the proximal end to the distal end is approximately 50 to 10 Om, The tip can be punctured without reaching the dermis, and drugs such as acupuncture material can be administered from there. [001 7] According to the invention of claim 2, since the lengths of the needles are made different and the heights of the needles from the back surface of the patch portion are uneven, the back surface of the patch portion is kept in close contact with the patient's skin. When the urine is pressed, the puncture is performed by dispersing the urging force so that the needle can smoothly enter the patient's skin and the puncture can be performed satisfactorily.
[0018] 請求項 3の発明によれば、 針が生体内で分解され得る生分解性樹脂から成 るので、 例えば針を穿刺した際に折損して患者の体内に残存してしまった場 合であっても、 影響がなく安全であるとともに、 マイクロニードル型パッチ を廃棄しても容易に分解されるため、 環境破壊等の不具合が防止される。  [0018] According to the invention of claim 3, since the needle is made of a biodegradable resin that can be decomposed in a living body, for example, when the needle is punctured, it breaks and remains in the patient's body. However, there is no impact and safety, and even if the microneedle type patch is discarded, it can be easily disassembled, preventing problems such as environmental destruction.
[001 9] 請求項 4の発明によれば、 針は基端側の直径が略 1 0 0 m以下の円錐形 状とされているので、 患者へ痛みが付与されるのを抑制するとともに、 より 良好な穿刺を可能とすることができる。  [001 9] According to the invention of claim 4, since the needle has a conical shape with a proximal diameter of approximately 100 m or less, the pain is prevented from being given to the patient, Better puncture can be made possible.
[0020] 請求項 5の発明によれば、 前記針の表面には、 微細な凹凸形状が付与され ているので、 当該針の表面に薬剤を塗布した際、 凹凸形状に薬剤が保持され 続け、 その薬剤を良好に穿刺箇所から投与することができる。  [0020] According to the invention of claim 5, since the surface of the needle is provided with a fine uneven shape, when the drug is applied to the surface of the needle, the drug continues to be held in the uneven shape, The drug can be successfully administered from the puncture site.
[0021 ] 請求項 6の発明によれば、 パッチ部が可撓性部材から成り、 その裏面全域 が患者の皮膚の形状に倣って密着し得るので、 穿刺作業をより確実且つ良好 に行わせることができる。  [0021] According to the invention of claim 6, since the patch portion is made of a flexible member, and the entire back surface thereof can closely adhere to the shape of the patient's skin, the puncturing operation can be performed more reliably and satisfactorily. Can do.
[0022] 請求項 7の発明によれば、 深さが略 5 0〜1 0 O mとされた円錐形状の 孔を複数有した型内に熱可塑性の特性を有した所定の樹脂材を溶融状態にて 流し込み、 当該孔の形状を樹脂材に転写させることにより、 容易且つ簡易に マイクロ二一ドル型パッチを得ることができる。  [0022] According to the invention of claim 7, a predetermined resin material having thermoplastic properties is melted in a mold having a plurality of conical holes each having a depth of approximately 50 to 10 Om. By pouring in a state and transferring the shape of the hole to the resin material, a micro bi-dollar type patch can be obtained easily and easily.
[0023] 請求項 8の発明によれば、 電気めつきにより針形状を含むマスター上に N i金属層を成長させることにより型を得るので、 針の長さ寸法等の変更を容 易に行うことができるとともに、 より安価にマイクロ二一ドル型パッチを得 ることができる。  [0023] According to the invention of claim 8, since the mold is obtained by growing the Ni metal layer on the master including the needle shape by electroplating, it is easy to change the needle length and the like. It is possible to obtain a micro two-dollar patch at a lower cost.
[0024] 請求項 9の発明によれば、 マスタ一は、 バイ トによる旋盤加工により単一 の前記針形状を有したブロックを形成し、 当該ブロックを複数並設させて得 られるので、 より安価にマイクロ二一ドル型パッチを得ることができるとと もに、 バイ トによる切削跡によりマスタ一表面に凹凸形状が付与されること から、 針の表面に微細な凹凸形状が付与されたマイクロ二一ドル型パッチを 容易に得ることができる。 [0024] According to the invention of claim 9, the master 1 is obtained by forming a block having a single needle shape by lathe machining with a byte and arranging a plurality of the blocks in parallel. That you can get a micro two-dollar patch In addition, since the concave / convex shape is imparted to the surface of the master by the cutting trace by the byte, it is possible to easily obtain the micro two-dollar type patch in which the fine concave / convex shape is imparted to the surface of the needle.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、 本発明の実施形態について図面を参照しながら具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
本実施形態に係るマイクロニードル型パッチは、 微小突起状の針を患者の 皮膚に穿刺し、 そこから薬剤 (癌ペプチド等) を投与することにより、 ラン ゲルハンス細胞を活性化させ、 生体を感染や癌等から防御するための抗体や 細胞傷害性 T細胞を産出させるもので、 図 1に示すように、 シート状のパッ チ部 1 と、 該パッチ部 1 と一体成形されて当該パッチ部 1の裏面に複数形成 された微小突起状の針 2とから主に構成されている。  The microneedle type patch according to the present embodiment punctures the skin of a patient with a microprojection needle and administers a drug (cancer peptide or the like) from there to activate Langerhans cells to infect the living body. It produces antibodies and cytotoxic T cells to protect against cancer and the like. As shown in FIG. 1, a sheet-like patch portion 1 is integrally formed with the patch portion 1, and the patch portion 1 Mainly composed of a plurality of micro-projection needles 2 formed on the back surface.
[0026] 本マイクロニードル型パッチは、 生体内で分解され得る生分解性樹脂を成 形してパッチ部 1 と針 2とを一体として得られたもので、 適用可能な生分解 性樹脂として、 ポリ乳酸 (P L A ) 、 脂肪族共重合ポリエステル、 ポリヒド 口キシブチレ一ト (P H B ) 等が挙げられる。 これにより、 例えば針 2を穿 刺した際に折損して患者の体内に残存してしまった場合であっても、 当該針 2が生分解性樹脂から成ることから、 生体に影響がなく安全であるとともに 、 マイクロニードル型パッチを廃棄しても容易に分解されるため、 環境破壊 等の不具合が防止される。  [0026] The present microneedle type patch is obtained by forming a biodegradable resin that can be decomposed in a living body and integrating the patch portion 1 and the needle 2 together. As an applicable biodegradable resin, Examples thereof include polylactic acid (PLA), aliphatic copolymer polyester, and polyhydroxybutyrate (PHB). Thus, for example, even when the needle 2 is punctured and remains in the patient's body, the needle 2 is made of a biodegradable resin, so that the living body is not affected and is safe. At the same time, even if the microneedle type patch is discarded, it can be easily disassembled, preventing problems such as environmental destruction.
[0027] 尚、 上記生分解性樹脂に代えて、 熱可塑性の特性を有した他の樹脂材とし てもよく、 例えばポリ塩化ビニル、 ポリプロピレン、 ポリスチレン、 ポリ力 —ポネイ ト、 ポリエチレン、 ポリメチルメタクリレート、 ヒドロキシェチル メタクリレート、 ポリビニルアルコール、 テフロン (登録商標) 、 ポリスル フォン等の高分子プラスチック、 或いはチタン、 チタン合金、 ステンレス鋼 、 シリコン等の樹脂材以外の金属等としてもよい。  [0027] It should be noted that, instead of the above biodegradable resin, other resin materials having thermoplastic properties may be used. For example, polyvinyl chloride, polypropylene, polystyrene, poly force-ponate, polyethylene, polymethyl methacrylate , Hydroxyethyl methacrylate, polyvinyl alcohol, Teflon (registered trademark), polymer plastics such as polysulfone, or metals other than resin materials such as titanium, titanium alloy, stainless steel, and silicon.
[0028] また、 パッチ部 1は、 上記生分解性樹脂を薄膜状に形成して成ることによ り、 可撓性部材とされており、 その裏面 (針 2が形成された面) 全域が患者 の皮膚の形状に倣って密着し得るよう構成されている。 これにより、 針 2を 患者に穿刺すべくパッチ部 1を患者の皮膚に押圧させれば、 その部位に倣つ て撓むことから良好に密着し、 穿刺作業をより確実且つ良好に行わせること ができる。 [0028] In addition, the patch portion 1 is a flexible member formed by forming the biodegradable resin into a thin film, and the entire back surface (surface on which the needle 2 is formed) It is configured to be able to closely adhere to the shape of the patient's skin. This will cause needle 2 to When the patch part 1 is pressed against the patient's skin to puncture the patient, the patch part 1 bends along the site, so that the patient can adhere well, and the puncture operation can be performed more reliably and satisfactorily.
[0029] 針 2は、 基端 (パッチ部 1側の端部) 側の直径が略 1 O O m以下の円錐 形状とされており、 当該針 2を皮膚に穿刺した際の患者へ痛みが付与される のを抑制するとともに、 より良好な穿刺を可能とすることができる。 尚、 患 者の皮膚への穿刺が良好に行えれば、 針 2を他の形状 (四角錐や円筒状等) としてもよい。  [0029] The needle 2 has a conical shape with a proximal end (patch 1 side end) diameter of approximately 1 OO m or less, and pain is imparted to the patient when the needle 2 is punctured into the skin. In addition to suppressing this, it is possible to achieve better puncture. It should be noted that the needle 2 may have another shape (such as a quadrangular pyramid or a cylinder) as long as the patient's skin can be punctured satisfactorily.
[0030] また、 針 2の表面には、 図 2に示すように、 微細な凹凸形状 (本実施形態 においては、 螺旋形状) が付与されており、 当該針 2の表面に薬剤を塗布し た際、 凹凸形状 (螺旋形状) に薬剤が保持され続け、 その薬剤を良好に穿刺 箇所から投与することができる。 針 2表面の凹凸形状は、 螺旋形状に限定さ れず、 任意部位に凹部又は溝が複数形成されたもの、 或いは先端から基端に 沿ったスジ状の縦縞で、 円錐表面の円周方向に波形の凹凸の溝を形成させた もの等としてもよい。  [0030] Further, as shown in FIG. 2, the surface of the needle 2 is provided with a fine uneven shape (in this embodiment, a spiral shape), and the surface of the needle 2 was coated with a drug. At this time, the drug is continuously held in the uneven shape (spiral shape), and the drug can be successfully administered from the puncture site. The uneven shape on the surface of the needle 2 is not limited to a spiral shape, but is a shape in which a plurality of recesses or grooves are formed at an arbitrary site, or a streak-like vertical stripe from the tip to the base, and corrugated in the circumferential direction of the cone surface It is good also as what formed the groove | channel of this uneven | corrugated.
[0031 ] ここで、 本実施形態に係る針 2は、 その基端から先端までの長さ寸法 tが 略 5 0〜 1 O O mとされている。 これにより、 図 3で示すように、 皮膚の 表面にパッチ部 1の裏面を密着させれば、 針 2が体内に穿刺されるとともに 、 その先端が真皮まで到達せず、 そこから薬物を投与することができる。 ま た、 マイクロニードル型パッチを密着させる前に、 予め角層を剥離させて取 り除いておけば、 針 2の穿刺をより良好且つ確実に行わせることができる。  [0031] Here, the needle 2 according to the present embodiment has a length dimension t from the proximal end to the distal end of approximately 50 to 1 O O m. Thus, as shown in FIG. 3, if the back surface of the patch part 1 is brought into close contact with the surface of the skin, the needle 2 is punctured into the body, and the tip does not reach the dermis, from which the drug is administered. be able to. In addition, if the stratum corneum is peeled off and removed in advance before the microneedle type patch is brought into close contact, the needle 2 can be punctured better and more reliably.
[0032] 更に、 それぞれの針 2は、 その長さ寸法が異なっており、 パッチ部 1裏面 からの当該針 2の高さが不均一とされている。 但し、 各針 2の長さ寸法は、 略 5 0〜 1 0 0 mの範囲内で異ならせている。 例えば、 長さ寸法が大きい 針と小さい針とを交互に形成させたり、 或いは等間隔又は不規則に混合して 形成してもよい。 このように、 針 2の長さ寸法を異ならせて高さを不均一と することにより、 パッチ部 1裏面を患者の皮膚に密着させつつ押圧した際、 その押圧力を分散させて穿刺することにより、 針 2が患者の皮膚にスムーズ に入り込み、 穿刺を良好に行わせることができる。 [0032] Further, the lengths of the respective needles 2 are different, and the heights of the needles 2 from the back surface of the patch portion 1 are non-uniform. However, the length of each needle 2 is varied within a range of about 50 to 100 m. For example, needles having large lengths and needles having small lengths may be alternately formed, or may be formed by mixing at regular intervals or irregularly. In this way, by making the length of the needle 2 different and making the height non-uniform, when the patch part 1 is pressed while closely contacting the back of the patient's skin, the pressing force is dispersed and punctured Makes needle 2 smooth on the patient's skin It can penetrate and make puncture well.
[0033] 次に、 上記の如きマイクロニードル型パッチの製造方法について説明する まず、 金属製円柱状部材 (丸棒) を旋盤加工機にセットし、 その端面をバ イ トにより切削加工することにより、 図 4に示すように、 端面の略中央に、 高さ寸法 tが略 5 0〜1 0 O mである単一の微小突起状 (針形状 3 a ) が 形成された円柱状のプロック 3を得る。 かかる針形状 3 aは、 旋盤加工機の バイ 卜で切削加工して形成されるため、 当該バイ トによる切削跡 (送りマー ク) が螺旋状に形成されている。  [0033] Next, a manufacturing method of the microneedle type patch as described above will be described. First, a metal cylindrical member (round bar) is set on a lathe machine, and its end face is cut by a byte. As shown in FIG. 4, a cylindrical block 3 in which a single micro-projection shape (needle shape 3 a) having a height dimension t of about 50 to 10 Om is formed in the approximate center of the end face. Get. Since the needle shape 3 a is formed by cutting with a lathe of a lathe, a cutting mark (feed mark) by the byte is formed in a spiral shape.
[0034] 上記の如きブロック 3であって針形状 3 aの高さ寸法が異なるものを複数 用意するとともに、 図 5に示すように、 それらブロック 3を構造体 4の孔 4 aに揷通させる。 孔 4 aは、 ブロック 3の外径と略等しい内径を有しており 、 各孔 4 aの開口から針形状 3 aを臨ませている。 これにより、 針形状 3 a を複数並設させることができ、 針形状 3 aを臨ませた構造体 4から成るマス ターを得ることができる。  [0034] A plurality of blocks 3 having the needle shape 3a with different height dimensions as described above are prepared, and the blocks 3 are passed through the holes 4a of the structure 4 as shown in FIG. . The hole 4 a has an inner diameter substantially equal to the outer diameter of the block 3, and faces the needle shape 3 a from the opening of each hole 4 a. As a result, a plurality of needle shapes 3 a can be arranged side by side, and a master composed of the structure 4 facing the needle shapes 3 a can be obtained.
[0035] 然るに、 図 6で示すように、 電気めつきにより針形状 3 aを含むマスタ一 上に N i金属層を成長させ、 当該 N i金属層をマスターから取り除けば、 図 7に示すような針形状 3 aとは逆形状の孔 5 aを複数有した型 5を得ること ができる (電錶法による型の製造) 。 かかる型 5の孔 5 aは、 針形状 3 aの 表面形状が転写して形成されたものであるため、 当該針形状 3 aと同様、 深 さ (高さ) 寸法 tが略 5 0〜1 O O mとされつつ、 当該寸法 tを異ならせ て不均一なものとされている。  However, as shown in FIG. 6, when a Ni metal layer is grown on the master including the needle shape 3 a by electrical fitting and the Ni metal layer is removed from the master, as shown in FIG. It is possible to obtain a mold 5 having a plurality of holes 5 a having a shape opposite to the needle shape 3 a (manufacture of a mold by an electroplating method). Since the hole 5 a of the mold 5 is formed by transferring the surface shape of the needle shape 3 a, the depth (height) dimension t is approximately 50 to 1 like the needle shape 3 a. Although it is set to OO m, the dimension t is varied to be non-uniform.
[0036] その後、 図 8に示すように、 型 5と別の型 6とを対向して配置させ、 内部 にキヤビティ Cを形成するとともに、 そのキヤビティ C内に熱可塑性の特性 を有した樹脂材 (本実施形態においては生分解性樹脂) を溶融状態にて流し 込み、 当該樹脂材の冷却効果後、 離型すれば、 図 1で示すようなパッチ部 1 及び針 2を有したマイクロニードル型パッチを得ることができる。 勿論、 針 2は、 孔 5の形状が転写して倣った形状とされるため、 その長さ寸法 tが略 5 0〜 1 0 0 mとされる。 Thereafter, as shown in FIG. 8, a mold 5 and another mold 6 are arranged to face each other to form a cavity C therein, and a resin material having thermoplastic properties in the cavity C. (In this embodiment, biodegradable resin) is poured in a molten state, and after releasing the cooling effect of the resin material, a microneedle type having a patch portion 1 and a needle 2 as shown in FIG. You can get a patch. Of course, since the shape of the hole 5 is transferred and imitated, the needle 2 has a length dimension t of approximately 5 0 to 1 0 0 m.
[0037] 本実施形態によれば、 深さが略 5 0〜 1 0 0; u mとされた円錐形状の孔 5 aを複数有した型 5 (キヤビティ C ) 内に熱可塑性の特性を有した所定の樹 脂材を所定の圧力を付与しつつ溶融状態にて流し込み、 当該孔 5 aの形状を 樹脂材に転写させることにより、 容易且つ簡易にマイク口二一ドル型パッチ を得ることができる (射出成形法による成形) 。 し力、して、 孔 5 aには、 マ スターの針形状 3 a表面における螺旋状の切削跡が転写されており、 かかる 切削跡が針 2に転写されるため、 当該針 2の表面には螺旋状の凹凸形状が付 与されているとともに、 長さ寸法を異ならせた不均一な高さの針 2とされて いる。 [0037] According to this embodiment, the mold 5 (cavity C) having a plurality of conical holes 5a having a depth of approximately 50 to 100; um had thermoplastic properties. By pouring a predetermined resin material in a molten state while applying a predetermined pressure, and transferring the shape of the hole 5a to the resin material, it is possible to easily and easily obtain a two-dollar microphone patch. (Molding by injection molding method). The spiral cutting trace on the surface of the master needle 3a is transferred to the hole 5a, and the cutting trace is transferred to the needle 2. Therefore, the hole 2a is transferred to the surface of the needle 2. In addition to being provided with a spiral uneven shape, the needles 2 are of uneven height with different length dimensions.
[0038] また、 電気めつき (電錶法) により針形状を含むマスター上に N i金属層 を成長させることにより型 (電錶型) を得るので、 針 2の長さ寸法等の変更 を容易に行うことができるとともに、 より安価にマイクロ二一ドル型パッチ を得ることができる。 即ち、 例えば端面に任意高さ寸法の針形状 3 aが形成 されたブロック 3を種々用意しておき、 構造体 4の孔 4 a内に揷通するプロ ック 3を任意選択して変更すれば、 針 2の長さ寸法が所望のものに容易に変 更することができるのである。  [0038] In addition, since a die (electron type) is obtained by growing a Ni metal layer on a master including a needle shape by electroplating (electroplating method), it is easy to change the length of needle 2, etc. It is possible to obtain a micro two-dollar type patch at a lower cost. That is, for example, various blocks 3 each having a needle shape 3 a having an arbitrary height are formed on the end face, and the block 3 passing through the hole 4 a of the structure 4 can be arbitrarily selected and changed. For example, the length dimension of the needle 2 can be easily changed to a desired one.
[0039] 更に、 マスタ一は、 バイ トによる旋盤加工により単一の針形状 3 aを有し たブロック 3を形成し、 当該ブロック 3を構造体 4に複数並設させて得られ るので、 より安価にマイクロ二一ドル型パッチを得ることができるとともに 、 バイ トによる切削跡によりマスター表面に凹凸形状 (螺旋形状) が付与さ れることから、 針 2の表面に微細な凹凸形状が付与されたマイクロ二一ドル 型パッチを容易に得ることができる。 尚、 ブロック 3及び構造体 4を非鉄系 ステンレス等とすれば、 マスタ一を鯖難くすることができる。  [0039] Furthermore, the master 1 is obtained by forming a block 3 having a single needle shape 3a by lathe machining with a byte and arranging a plurality of the blocks 3 in parallel with the structure 4. A micro two-dollar patch can be obtained at a lower cost, and a concave / convex shape (spiral shape) is imparted to the master surface due to the cutting trace by the byte, so that a fine concave / convex shape is imparted to the surface of the needle 2. It is possible to easily obtain a micro two-dollar patch. If the block 3 and the structure 4 are made of non-ferrous stainless steel or the like, the master can be made difficult.
[0040] ところで、 上記の如き電錶法による型の製造に代えて、 以下の方法とする ことができる。 上記マスターを利用し、 金属粉末射出成形にて例えばチタン 合金焼結体から成る型を得ることができる。 かかる型によれば、 チタンが樹 脂との剥離性が良好なことから、 マイクロニードル型パッチの成形時におい て剥離剤等を不要とすることができる。 また、 金属粉末射出成形の過程で生 じる微細気孔により、 型表面に凹凸形状が形成されることとなり、 マイクロ 二一ドル型パッチの成形時、 その凹凸形状が針の表面に転写される。 [0040] By the way, instead of manufacturing the mold by the above-described electroplating method, the following method can be used. A mold made of, for example, a titanium alloy sintered body can be obtained by metal powder injection molding using the master. According to such a mold, since titanium has good releasability from resin, it can be used when forming microneedle type patches. Thus, a release agent or the like can be dispensed with. In addition, due to the fine pores generated in the process of metal powder injection molding, a concavo-convex shape is formed on the surface of the mold, and the concavo-convex shape is transferred to the surface of the needle when the micro two-dollar type patch is formed.
[0041 ] また、 チタン合金材料をレーザ (フェムト秒レーザ) 加工することにより 、 型を製造するようにしてもよい。 具体的には、 チタン合金材の表面にレ一 ザを照射して、 深さが略 5 0〜1 0 O mとされた円錐形状の孔を複数形成 することにより型を得るようにする。 この場合、 レーザ加工跡 (孔周縁から 頂部まで略直線状に延びる複数のスジ状縦縞で、 円錐孔表面の円周方向に波 形状の凹凸の溝形状) が孔内に形成されることとなるため、 マイクロニード ル型パッチの成形時、 そのスジ状跡が針の表面に転写されて凹凸形状が付与 されることとなる。  [0041] Alternatively, the mold may be manufactured by laser processing a titanium alloy material (femtosecond laser). Specifically, a die is obtained by irradiating the surface of the titanium alloy material with a laser to form a plurality of conical holes having a depth of about 50 to 10 Om. In this case, laser processing traces (a plurality of stripe-like vertical stripes extending substantially linearly from the periphery of the hole to the top thereof, and a wavy uneven groove shape in the circumferential direction of the surface of the conical hole) are formed in the hole. Therefore, when forming a microneedle type patch, the streaks are transferred to the surface of the needle to give an uneven shape.
[0042] —方、 上記の如き型を用いて本マイクロニードル型パッチを成形するには 、 射出成形法に代えて、 例えばナノインプリント (ホットプレス) の如き半 溶融樹脂を型のキヤビティに押し当てて成形する方法、 或いはコ一ター (遠 心力を用いて型のキヤビティ内に溶融樹脂を流し込む手段) を用いた成形方 法としてもよい。  [0042] —On the other hand, in order to mold the microneedle type patch using the mold as described above, instead of the injection molding method, a semi-molten resin such as nanoimprint (hot press) is pressed against the mold cavity. It may be a molding method using a molding method or a coater (means for pouring molten resin into the mold cavity using a centrifugal force).
[0043] 上記の如き製造方法にて得られたマイクロ二一ドル型パッチによれば、 針 2の表面に薬剤を塗布した後、 パッチ部 1の裏面を患者の皮膚 (例えば、 腕 の皮膚や胸、 背中、 腹などの皮膚) に密着させることにより、 針 2が皮膚を 穿刺して、 当該針 2に塗布された薬剤が体内に投与されることとなる。 また 、 針 2の表面に薬剤を塗布せず、 パッチ部 1の裏面を皮膚に密着させて針 2 を穿刺させた後、 マイクロニードル型パッチを皮膚から取り除き、 穿刺跡か ら薬剤を投与させるようにしてもよい。  [0043] According to the micro two-dollar type patch obtained by the manufacturing method as described above, after the drug is applied to the surface of the needle 2, the back surface of the patch 1 is applied to the patient's skin (for example, the skin of the arm or The needle 2 punctures the skin, and the drug applied to the needle 2 is administered into the body by bringing it into close contact with the skin (chest, back, stomach, etc.). Also, without applying the drug to the surface of the needle 2, the back surface of the patch part 1 is in close contact with the skin and the needle 2 is punctured, then the microneedle patch is removed from the skin and the drug is administered from the puncture mark. It may be.
[0044] 何れの場合であっても、 本実施形態の如きマイクロニードル型パッチによ れば、 穿刺時、 針 2の先端が患者の真皮に到達してしまうのを回避できるの で、 患者にとって痛みが伴わず、 出血や 2次感染の危険性を回避しつつ薬剤 を投与することができる。 また、 ワクチン素材を薬剤として投与すれば、 ラ ンゲルハンス細胞による取り込みが確実に行われることとなり、 生体を感染 や癌等から防御するための抗体や細胞傷害性 T細胞を産出させることができ る。 In any case, according to the microneedle type patch as in the present embodiment, the tip of the needle 2 can be prevented from reaching the patient's dermis at the time of puncturing. The drug can be administered without pain and avoiding the risk of bleeding and secondary infection. In addition, if the vaccine material is administered as a drug, uptake by Langerhans cells is ensured, and the living body is infected. Antibodies and cytotoxic T cells can be produced to protect against cancer and cancer.
[0045] 以上、 本実施形態に係るマイクロニードル型パッチついて説明したが、 本 発明はこれに限定されるものではなく、 特に、 針で穿刺した後、 その穿刺跡 から薬剤を投与するものにおいては、 当該針の表面に凹凸形状 (螺旋形状等 ) が付与されていなくてもよい。 また、 針を樹脂材等で成形する際に塩等の 異物 (二ガリの主成分である塩化マグネシウム等) を含有させておき、 成形 後に当該異物を除去 (塩の場合は温水等で溶解) することにより、 針の表面 に凹凸形状を付与するようにしてもよい。  [0045] While the microneedle type patch according to the present embodiment has been described above, the present invention is not limited to this, and in particular, in the case of administering a drug from the puncture mark after puncture with a needle. The surface of the needle may not be provided with an uneven shape (such as a spiral shape). Also, when molding the needle with a resin material, etc., foreign matters such as salt (magnesium chloride, etc., which is the main component of Nigari) are included, and the foreign matter is removed after molding (in the case of salt, it is dissolved with hot water, etc.) By doing so, an uneven shape may be imparted to the surface of the needle.
[0046] 更に、 マイクロニードル型パッチの製造方法は、 本実施形態のものに限定 されず、 板状部材 (金属板等) の表面に直接機械加工やレーザ加工を施し、 本実施形態の如き針を有したマイクロ二一ドル型パッチを形成するようにし てもよい。 また、 パッチ部 1の裏面に粘着剤を塗布しておき、 当該粘着剤で 皮膚に粘着させることにより、 長時間に亘つてマイクロ二一ドル型パッチを 密着させておくことができる。  [0046] Further, the manufacturing method of the microneedle type patch is not limited to the one in the present embodiment, and the surface of the plate-like member (metal plate or the like) is directly machined or laser processed, and the needle as in the present embodiment. A micro two-dollar type patch having the above may be formed. Further, by applying an adhesive to the back surface of the patch part 1 and allowing it to adhere to the skin with the adhesive, the micro two-dollar patch can be kept in close contact for a long time.
産業上の利用可能性  Industrial applicability
[0047] 基端から先端までの長さ寸法が略 5 0〜 1 0 O ^ mの針を有したマイクロ ニードル型パッチ及びその製造方法であれば、 外観形状が異なるもの或いは 他の機能が付加されたもの等にも適用することができる。  [0047] A microneedle type patch having needles with a length from the proximal end to the distal end of approximately 50 to 10 O ^ m and a method for manufacturing the microneedles, or having a different appearance or other functions It can also be applied to those that have been made.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1 ]本発明の実施形態に係るマイクロニードル型パッチを示す概要図  [0048] FIG. 1 is a schematic diagram showing a microneedle patch according to an embodiment of the present invention.
[図 2]同マイクロ二一ドル型パッチにおける針の拡大図  [Fig.2] Enlarged view of the needle in the micro $ 21 patch
[図 3]同マイクロ二一ドル型パッチを患者の皮膚に密着させて針を穿刺した状 態を示す模式図  FIG. 3 is a schematic diagram showing a state where the needle is punctured with the micro-bi dollar patch in close contact with the patient's skin.
[図 4]同マイクロ二一ドル型パッチを製造するためのマスタ一を構成するプロ ックを示す模式図  [Fig. 4] Schematic diagram showing the blocks that make up the master for manufacturing the micro $ 2 patch.
[図 5]同マイクロ二一ドル型パッチを製造するためのマスタ一を示す模式図 [図 6]同マイクロ二一ドル型パッチを製造するためのマスタ一及び該マスタ一 で得られる型を示す模式図 FIG. 5 is a schematic diagram showing a master for manufacturing the micro two-dollar patch. FIG. 6 is a master for manufacturing the micro two-dollar patch and the master one. Schematic showing the mold obtained in
[図 7]同マイクロ二一ドル型パッチを製造するための型を示す模式図  [Fig. 7] Schematic diagram showing the mold for manufacturing the same micro two-dollar patch
[図 8]同マイクロ二一ドル型パッチを製造するための型及び該型で得られるマ イクロニ一ドル型パッチを示す模式図  [Fig. 8] Schematic diagram showing a mold for manufacturing the micro two-dollar patch and a micro one-dollar patch obtained from the mold.
符号の説明 Explanation of symbols
1 パッチ部  1 Patch section
2 針  2 needles
3 ブロック  3 blocks
3 a 針形状 (マスタ -)  3 a Needle shape (Master-)
4 構造体 (マスタ -)  4 Structure (Master-)
5 型  Type 5
5 a 孔  5 a hole
6 別の型  6 Different mold
C キヤビティ  C cavityity

Claims

請求の範囲 The scope of the claims
[1 ] シ一ト状のパッチ部の裏面に複数の微小突起状の針が一体的に形成され、 当該パッチ部裏面を患者の皮膚に密着させつつ前記針を皮膚に穿刺させ得る マイクロ二一ドル型パッチにおいて、  [1] A plurality of micro-projection needles are integrally formed on the back surface of a sheet-like patch portion, and the needle can be punctured into the skin while the back surface of the patch portion is in close contact with the patient's skin. In the dollar patch,
前記針は、 その基端から先端までの長さ寸法が略 5 0〜1 O O mとされ たことを特徴とするマイクロ二一ドル型パッチ。  The micro two-dollar type patch characterized in that the length of the needle from its proximal end to the distal end is approximately 50 to 1 O O m.
[2] 前記針の長さ寸法を異ならせ、 前記パッチ部裏面からの当該針の高さを不 均一としたことを特徴とする請求項 1記載のマイクロ二一ドル型パッチ。 [2] The micro two-dollar patch according to claim 1, wherein the length of the needle is made different so that the height of the needle from the back surface of the patch portion is non-uniform.
[3] 前記針は、 生体内で分解され得る生分解性樹脂から成ることを特徴とする 請求項 1又は請求項 2記載のマイク口ニードル型パッチ。 3. The microphone mouth needle type patch according to claim 1 or 2, wherein the needle is made of a biodegradable resin that can be decomposed in a living body.
[4] 前記針は、 基端側の直径が略 1 O O m以下の円錐形状とされたことを特 徵とする請求項 1〜請求項 3の何れか 1つに記載のマイクロニードル型パッ チ。 [4] The microneedle type patch according to any one of claims 1 to 3, wherein the needle has a conical shape having a proximal end diameter of approximately 1 OO m or less. .
[5] 前記針の表面には、 微細な凹凸形状が付与されたことを特徴とする請求項  [5] The surface of the needle is provided with a fine uneven shape.
1〜請求項 4の何れか 1つに記載のマイクロ二一ドル型パッチ。  The micro two-dollar type patch according to any one of claims 1 to 4.
[6] 前記パッチ部は、 可撓性部材から成り、 その裏面全域が患者の皮膚の形状 に倣って密着し得ることを特徴とする請求項 1〜請求項 5の何れか 1つに記 載のマイクロ二一ドル型パッチ。  [6] The patch section according to any one of claims 1 to 5, wherein the patch portion is made of a flexible member, and the entire back surface thereof can be closely adhered following the shape of the patient's skin. A micro two-dollar patch.
[7] 深さが略 5 0〜1 O O mとされた円錐形状の孔を複数有した型内に熱可 塑性の特性を有した所定の樹脂材を溶融状態にて流し込み、 当該樹脂材の冷 却硬化後、 離型することにより、 シート状のパッチ部の裏面に、 前記孔形状 に倣った複数の微小突起状の針が一体的に形成されたマイクロニードル型パ ツチを得ることを特徴とするマイクロ二一ドル型パッチの製造方法。  [7] A predetermined resin material having thermoplastic properties is poured in a molten state into a mold having a plurality of conical holes with a depth of approximately 50 to 1 OO m, and the resin material After cooling and hardening, a microneedle-type patch is obtained in which a plurality of micro-projection needles that conform to the hole shape are integrally formed on the back surface of the sheet-like patch portion. A manufacturing method of a micro two-dollar type patch.
[8] 前記型は、 切削加工等の機械加工にて高さ寸法が略 5 0〜1 O O mとさ れた円錐形状の微小突起状の針形状を複数並設させたマスターを形成し、 電 気めつきにより当該針形状を含むマスター上に N i金属層を成長させること により得られることを特徴とする請求項 7記載のマイクロ二一ドル型パッチ の製造方法。 前記マスターは、 バイ トによる旋盤加工により単一の前記針形状を有した ブロックを形成し、 当該ブロックを複数並設させて得られることを特徴とす る請求項 8記載のマイク口ニードル型パッチの製造方法。 [8] The mold forms a master in which a plurality of conical micro-protrusions having a height of approximately 50 to 1 OO m by machining such as cutting are arranged side by side. 8. The method for producing a micro two-dollar type patch according to claim 7, wherein the micro two-dollar type patch is obtained by growing a Ni metal layer on a master including the needle shape by electroplating. The microphone mouth needle type patch according to claim 8, wherein the master is obtained by forming a single block having the needle shape by lathe processing using a byte, and arranging a plurality of the blocks in parallel. Manufacturing method.
PCT/JP2007/000811 2006-07-31 2007-07-30 Microneedle patch and process for producing the same WO2008015782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006208482A JP2008029710A (en) 2006-07-31 2006-07-31 Microneedle type patch and its manufacturing method
JP2006-208482 2006-07-31

Publications (1)

Publication Number Publication Date
WO2008015782A1 true WO2008015782A1 (en) 2008-02-07

Family

ID=38996969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000811 WO2008015782A1 (en) 2006-07-31 2007-07-30 Microneedle patch and process for producing the same

Country Status (2)

Country Link
JP (1) JP2008029710A (en)
WO (1) WO2008015782A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001480A2 (en) 2011-06-28 2013-01-03 Gyoeker Gyula Istvan Railway vehicle wheel with in-wheel motor
CN103957934A (en) * 2011-11-20 2014-07-30 葛兰素史密丝克莱恩生物有限公司 Vaccine comprising a TLR-5 agonist as adjuvant for use in cutaneous immunisation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225987A (en) * 2008-03-21 2009-10-08 Toppan Printing Co Ltd Needle shape body
WO2009130926A1 (en) * 2008-04-22 2009-10-29 南部化成株式会社 Endermic method, needle organizer and endermic injector device
JP5668192B2 (en) * 2010-03-10 2015-02-12 株式会社ライトニックス Medical needle and puncture device
CN103889497A (en) 2011-10-20 2014-06-25 考司美德制药株式会社 Microneedle deposition technique
JP5472771B1 (en) 2012-09-28 2014-04-16 コスメディ製薬株式会社 Microneedle holding drug on the step
EP3216483B1 (en) 2014-11-07 2019-03-20 Toppan Printing Co., Ltd. Needle assembly for transdermal administration and method for manufacturing same
JP2016195651A (en) * 2015-04-02 2016-11-24 日本写真印刷株式会社 Microneedle sheet
CA3007753C (en) * 2015-12-28 2021-07-06 Endoderma Co., Ltd. Microstructure for transdermal absorption and method for manufacturing same
KR101719319B1 (en) * 2016-04-05 2017-03-23 주식회사 엘지생활건강 Micro Needle structure for efficient skin-piercing
JP6434193B2 (en) 2016-05-31 2018-12-05 Nissha株式会社 Microneedle array and manufacturing method thereof
CN110035792A (en) 2016-12-28 2019-07-19 考司美德制药株式会社 It is coated with the micropin preparation of drug containing ingredient
KR102069091B1 (en) * 2017-09-11 2020-01-22 강명호 Microneedle Roller
WO2023042889A1 (en) 2021-09-15 2023-03-23 コスメディ製薬株式会社 Microneedle array coated with drug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149485A (en) * 1999-09-22 2001-06-05 Becton Dickinson & Co Method and device for percutaneous dosage of substance
US20020082543A1 (en) * 2000-12-14 2002-06-27 Jung-Hwan Park Microneedle devices and production thereof
JP2002522170A (en) * 1998-08-13 2002-07-23 イムプリント ファーマスーティカルス リミテッド Device for feeding one or more needle shaking substances driven at high speed
JP2004526581A (en) * 2001-03-14 2004-09-02 ザ プロクター アンド ギャンブル カンパニー Method of fabricating microneedles structure using soft lithography and photolithography
JP2006010421A (en) * 2004-06-24 2006-01-12 Gunma Prefecture Microminiature needle and its manufacturing method
JP2006051361A (en) * 2005-07-13 2006-02-23 Nano Device & System Research Inc Functional micropile
WO2006075689A1 (en) * 2005-01-14 2006-07-20 Fujikura Ltd. Drug delivery instrument and method of producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522170A (en) * 1998-08-13 2002-07-23 イムプリント ファーマスーティカルス リミテッド Device for feeding one or more needle shaking substances driven at high speed
JP2001149485A (en) * 1999-09-22 2001-06-05 Becton Dickinson & Co Method and device for percutaneous dosage of substance
US20020082543A1 (en) * 2000-12-14 2002-06-27 Jung-Hwan Park Microneedle devices and production thereof
JP2004526581A (en) * 2001-03-14 2004-09-02 ザ プロクター アンド ギャンブル カンパニー Method of fabricating microneedles structure using soft lithography and photolithography
JP2006010421A (en) * 2004-06-24 2006-01-12 Gunma Prefecture Microminiature needle and its manufacturing method
WO2006075689A1 (en) * 2005-01-14 2006-07-20 Fujikura Ltd. Drug delivery instrument and method of producing the same
JP2006051361A (en) * 2005-07-13 2006-02-23 Nano Device & System Research Inc Functional micropile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001480A2 (en) 2011-06-28 2013-01-03 Gyoeker Gyula Istvan Railway vehicle wheel with in-wheel motor
CN103957934A (en) * 2011-11-20 2014-07-30 葛兰素史密丝克莱恩生物有限公司 Vaccine comprising a TLR-5 agonist as adjuvant for use in cutaneous immunisation

Also Published As

Publication number Publication date
JP2008029710A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
WO2008015782A1 (en) Microneedle patch and process for producing the same
JP6928735B2 (en) Hollow microneedle with beveled opening
US7627938B2 (en) Tapered hollow metallic microneedle array assembly and method of making and using the same
US10576257B2 (en) Article comprising a microneedle and methods of use
CA2491839C (en) A method of forming a mold and molding a micro-device
JP2011508611A (en) Needleless device for drug delivery through biological barriers
US20170304603A1 (en) Transdermal administration device
WO2016208635A1 (en) Needle member and method for manufacturing needle member
JP6330342B2 (en) Manufacturing method of microneedle
Sonetha et al. Step-wise micro-fabrication techniques of microneedle arrays with applications in transdermal drug delivery–A review
CN108883262B (en) Transdermal drug delivery device
US10596040B2 (en) Transdermal administration device
Mishra et al. MEMS-based hollow microneedles for transdermal drug delivery
JP6003338B2 (en) Acicular package
US20180200495A1 (en) Administration device
WO2020119353A1 (en) Soft-back microneedle and manufacturing method therefor
JP2013111104A (en) Method for manufacturing microneedle device
JP6581010B2 (en) Microneedle array
JP2015128499A (en) Method of manufacturing microneedle
JP2015016160A (en) Microneedle
JP5931130B2 (en) Microneedle array manufacturing method and injection mold used therefor
JP2015231476A (en) Needle-like body pad
Korkmaz et al. Dissolvable and Coated Microneedle Arrays: Design, Fabrication, Materials and Administration Methods
JP2018011712A (en) Percutaneous administration device
Borey et al. A review Recent Advanced of Fabrication Techniques and Application of Micro-Needle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790305

Country of ref document: EP

Kind code of ref document: A1