WO2008032416A1 - Alignment chip for scanning electron microscope point aberration measurement - Google Patents

Alignment chip for scanning electron microscope point aberration measurement Download PDF

Info

Publication number
WO2008032416A1
WO2008032416A1 PCT/JP2006/318796 JP2006318796W WO2008032416A1 WO 2008032416 A1 WO2008032416 A1 WO 2008032416A1 JP 2006318796 W JP2006318796 W JP 2006318796W WO 2008032416 A1 WO2008032416 A1 WO 2008032416A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
alignment
mold
convex
forming
Prior art date
Application number
PCT/JP2006/318796
Other languages
French (fr)
Japanese (ja)
Inventor
Kenya Ohashi
Shinsuke Minata
Yasunori Shoji
Katsunori Nakajima
Original Assignee
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High-Technologies Corporation filed Critical Hitachi High-Technologies Corporation
Priority to PCT/JP2006/318796 priority Critical patent/WO2008032416A1/en
Priority to JP2008534227A priority patent/JP4654299B2/en
Publication of WO2008032416A1 publication Critical patent/WO2008032416A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration

Definitions

  • the present invention relates to a alignment chip for measuring and adjusting point aberrations installed in a scanning electron microscope and a pattern forming mold for forming an alignment pattern by imprinting. Background Technology '.
  • Scanning electron microscopes also use this microfabrication technology in the preparation of alignment tips for measuring point aberrations, and are commonly used as a studama adjustment sample, especially for high-precision observation operation microscopes. .
  • the lithography technology for producing this point aberration measurement pattern is approaching its limit, and a new pattern formation method has become necessary.
  • US Pat. No. 5, 7 72, 90 5 discloses a technique for performing fine pattern formation at a low cost. This is because a predetermined pattern is transferred by embossing a mold having the same pattern as the pattern to be formed on the substrate against the resist film layer formed on the surface of the substrate to be transferred. Is. In particular, according to the nanoprint technology described in Japanese Patent Application Laid-Open No. 2 0 4-7 7 1 5 8 7, a silicon wafer can be used as a mold, and a microstructure less than 25 nanometers can be formed by transfer. It is said that there is. Disclosure of the invention
  • the present inventors have studied an imprint technique capable of forming a fine pattern for point aberration correction measurement of a scanning microscope. As a result, the alignment having a conventional fine concentric cylindrical stacked alignment pattern is performed.
  • the following problems were found when forming the tip with the imprinting technology.
  • lithography technology for creating a new mold having a fine concentric columnar alignment pattern is not easy and requires a lot of time and cost.
  • Patent Document 2 discloses a technique for forming multi-level unevenness as a mold transfer pattern structure.
  • the inventors conducted a transfer experiment using a mold having a multi-stage structure, it was difficult to obtain the verticality of the uneven side wall surface suitable for point aberration correction measurement. It turns out that a mold structure is necessary.
  • the present invention solves the above-mentioned problems, and can be easily manufactured at a low cost in an alignment chip for measuring point aberration correction of a scanning electron microscope, and is a novel key suitable for point aberration correction measurement.
  • An object of the present invention is to provide an alignment chip having a alignment pattern.
  • the present invention provides a pattern forming mold for a point aberration correction measurement alignment chip and a method for manufacturing the alignment chip for manufacturing the alignment pattern of the alignment chip with high accuracy and low cost.
  • the purpose is to provide
  • the present invention provides an alignment chip for measuring a point aberration of a scanning electron microscope having an uneven pattern on a surface thereof, wherein the uneven pattern comprises a circular or polygonal closed loop (concentric tube or polygonal tube shape). It features an alignment chip having convex or concave portions.
  • a pattern forming mold for transferring the concavo-convex pattern onto the transfer body by pressing the concavo-convex pattern formed on the surface onto the transfer body, and the concavo-convex pattern forms a circular or polygonal closed loop. It is characterized by a mold for forming an astigmatism measurement alignment pattern having convex or concave portions.
  • a method for manufacturing an alignment chip for measuring point aberrations in a scanning electron microscope comprising pressing a mold having a concavo-convex pattern forming a circular or polygonal closed loop on a surface thereof onto a substrate to be transferred; Separating the mold from the substrate to be transferred, and transferring the concavo-convex pattern to the surface of the substrate to be transferred.
  • this circular or polygonal tubular convex part can be adjusted by adjusting its diameter dimension, and multiple convex parts with different diameters can be produced by nano-printing. It is possible to cope with point aberration correction when using a microscope. .
  • an alignment chip that can be easily manufactured at low cost and has a novel alignment pattern suitable for point aberration correction measurement.
  • a pattern forming mold for the alignment correction chip and a method for manufacturing the alignment chip, in which the alignment pattern of the alignment chip is manufactured with high accuracy and low cost.
  • FIG. 1 is an explanatory view of a cross-sectional structure showing an example of a dot aberration measurement alignment pattern of this embodiment, (a) is a cross-sectional view of a transferred structure, and (b) is an observation view from above. . ⁇
  • FIG. 2 is a cross-sectional view of a mold having a concave circular tube diameter portion of the mold as a cut surface.
  • FIG. 3 is a schematic diagram of a transferred structure having circular tube groups having different diameters. It is an example which shows the shape of a lement chip.
  • FIG. 4 is an example showing the shape of the alignment tip by the transferred structure having a polygonal tube group having different diameters.
  • Fig. 5 is a graph showing the change in the resin filling rate on the pattern wall surface with respect to the area within the loop of the pattern in nanoimprinting.
  • FIG. 6 is a graph showing the number of measurements until completion of the measurement of point aberration with respect to the loop height of the putter in nanoimprint.
  • BEST MODE FOR CARRYING OUT THE INVENTION (1) A nanoprint pattern forming mold according to this embodiment will be described below. Nanoimprint means transfer in the range of about 100 m to several nm. .
  • the mold for forming a nanoimprint pattern according to this embodiment (hereinafter abbreviated as a mold) is for transferring a nano-level pattern to a transferred structure, and the nano-level pattern is transferred to the transferred structure. It has a pattern forming section for transferring.
  • This pattern forming portion has a point-symmetric structure, and has a plurality of concave microstructures for forming convex portions having a shape capable of correcting point aberration called “studama adjustment using an electron beam”.
  • Point aberration correction is based on the point aberration correction program built in the computer in the electron microscope in advance and detects aberration deviations in all directions and performs feed pack control of the electron beam irradiation angle.
  • the fine pattern for that purpose may be a shape having a side wall having a single point-symmetrical outline.
  • a circular tube with an inner diameter of 50 nm and an outer diameter of 7 O nm is a convex part formed on the surface of a transfer medium with a height of 100 nm
  • the point aberration correction called studama adjustment is performed on this circle.
  • the electron beam applied to the inner and outer peripheral surfaces of the tube is reflected and formed.
  • the reflected electron beam is detected in the region where the deviation exceeds 20%, that is, 2 nm with respect to 10 nm, which is the wall thickness indicated by the radius difference between the inner and outer circumferences. If this happens, control the electron beam direction by controlling the insulator lens.
  • the alignment tip is formed by the mold having the concavo-convex pattern constituting the concentric circle or the polygonal closed loop, so that the shape having the side wall described above is formed. Therefore, in the scanning electron microscope Point aberration correction can be performed quickly.
  • the mold for forming the transferred structure has a shape in which a circular tube or a polygonal tube forms a hole in the concave portion because the uneven pattern is obtained by inverting the unevenness of the transferred structure.
  • the method for forming the concave portion for pattern formation described above in the mold is not particularly limited as long as the target forming portion can be formed.
  • photolithography uses electron beam drawing. Method, replica production by nanoimprint, etc., can be selected as appropriate according to the desired processing accuracy.
  • a release material layer for facilitating separation from the transfer pattern forming layer of the transfer substrate may be provided on the outermost surface of the mold on which the pattern forming portion is formed.
  • the release material layer is preferably a heat resistant resin such as a fluorine compound or a fluorine mixture.
  • point aberration correction of a scanning electron microscope can be performed in a short time.
  • stigma adjustment at the observation magnification can be performed by using alignment tips having different diameters.
  • nanoimprinting 'by manufacturing the alignment chip, the cost of measuring and correcting astigmatism components is significantly increased. Can be reduced.
  • the use of a mold in which concentric tubes or polygonal tubes having different diameters are formed in advance enables high-precision and high-efficiency point correction of a scanning electron microscope.
  • FIG. 1 is an explanatory diagram of a cross-sectional structure showing an example of a point aberration measurement client pattern of the present embodiment.
  • a spin coater was used on a Si wafer 1 a having a diameter of 6 inch ⁇ (15 cm ⁇ ) X thickness of about 0.5 mm, and a coating film 1 of 0.5 was formed from a thermoplastic resin resist I.
  • an electron beam drawing device J BX 6 0 0 FS manufactured by JEOL Ltd.
  • the mold of the concave portion of the fine circular tube obtained by exposure by direct drawing with the electron beam EB and development.
  • the tubular pattern 1 c was transferred to the thermoplastic resin resist ridge.
  • FIG. 2 shows a cross-sectional view of the mold with the diameter of the concave circular tube of the mold as the cut surface.
  • the mold has a circular tube with an inner diameter of 50 nm and an outer diameter of 70 nm, a depth of 10 O nm, and recesses 2a. It has become.
  • This mold is formed by directly drawing the silicon substrate 2b with an electron beam. If the pattern of the resist 1b is on the order of several hundred nm or more, Kr laser (wavelength 35 1 nm) or the like may be used instead of the electron beam.
  • the substrate main body of the substrate to be transferred is not particularly limited as long as a target member can be formed, and may have any predetermined strength. Specifically, silicon, various metal materials, glass, ceramics, plastics, etc. are preferably applied.
  • the transfer pattern forming layer of the substrate to be transferred is not particularly limited as long as a target member can be formed, and is selected according to desired processing accuracy.
  • Thermoplastic resins such as polyamide, polyether imide, thermoplastic polyimide, phenol resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, alkyd resin, silicon resin
  • Thermosetting resins such as aryl phthalate resin, polyamide bismaleimide, and polybisamide triazole, and materials in which two or more of these are blended can be used.
  • a resin that does not generate gas in a scanning electron microscope or a resin that suppresses an electron beam irradiation decomposition reaction in a scanning electron microscope is preferable.
  • the transfer pattern forming layer is not limited to a resin, and inorganic glass, a low melting point metal, or the like can be used.
  • FIG. 3 is an example showing the shape of the alignment chip by the transferred structure having a group of circular tubes having different diameters.
  • the substrate main body of the substrate to be transferred is not particularly limited as long as it can form a target member, and may have a predetermined strength. Specifically, silicon, various metal materials, glass, ceramic, plastic, etc. are preferably applied.
  • -Fig. 4 shows an example of the shape of the alignment tip by the transferred structure having a polygonal tube group having different diameters.
  • the substrate body of the substrate to be transferred is not particularly limited as long as a target member can be formed, and may have a predetermined strength. Specifically, silicon, various metal materials, glass, ceramic, plastic, etc. are preferably applied.
  • a circular or polygonal closed-loop concavo-convex part is formed on the transferred member, and the step between the closed-loop concave or convex part and the peripheral flat part is 1 0
  • the resin filling rate by nanoimprinting was measured from 0 nm to 1000 nm.
  • Figure 6 shows an example of the results.
  • the number of pattern movements until point aberration measurement refers to whether or not point convergence can be achieved with a single pattern, and if this is not possible due to poor shape, the next pattern is selected as the measurement target, and the electron beam irradiation range Indicates the number of operations to change. It was found that measurement of point aberrations became impossible when the step was 50 nm or less, and the wall height was required to be at least 60 nm.
  • the circular pipe can be a point-symmetric polygonal pipe. It is.
  • the mold for transferring the nano-level pattern is composed of nickel or nickel alloy with a concave part of the circular tube, and it is repeatedly transferred by having a fluorine-based molecular layer for release on the transfer pattern display. It was found that the structure can be fabricated. '
  • the transferred structure is essentially composed of an i3 ⁇ 4 plastic resin that softens by reaching the glass transition point by predetermined heating.
  • a transfer pattern forming layer composed of a thermoplastic resin that is softened by heating at a predetermined temperature on a silicon substrate.
  • the thickness of the thermoplastic resin is 1 j m, the cylindrical convex portion can be formed and held without deviating from the substrate.

Abstract

Provided is an alignment chip for point aberration correction measurement for a scanning electron microscope. The alignment chip can be simply manufactured at a low cost and is provided with a novel alignment pattern suitable for point aberration correction measurement. The alignment chip has an uneven pattern on the surface, and the uneven pattern has a protruding section or a recessed section configuring a circular or polygonal closed loop.

Description

. 明 細 畚 ' , 走査型電子顕微鏡点収差計測ァライメントチップ 技術分野  細 細 畚, Scanning electron microscope point aberration measurement alignment chip
本発明は、 走査型電子顕微鏡に設置する点収差を計測して調整するた めのァライメントチップ及びァライメントパ夕ユンをインプリントによ り形成するためのパターン形成用金型に関する。 背景技術 ' .  The present invention relates to a alignment chip for measuring and adjusting point aberrations installed in a scanning electron microscope and a pattern forming mold for forming an alignment pattern by imprinting. Background Technology '.
:近年、 半導体集積回路は微細化, 隼積化が進んでおり、 その微細加工 を実現するためのパターン転写技術としてフォ トリソグラフィ装置の高 精度化が進められてきた。 しかし、 加工方法が光露光の光源の波長に近.' づき.、 フォ トリソグラフィ技術も限界に近づいてきた。 そのため、 さら . なる微細化, 高集積化を進めるために、 フォ トリソグラフィ技術に代わ . り、荷電粒子線 ¾置の一種である電子線描画装置を用いるようになった。 、 電子線を用いたパターン.形成は、 i線, エキシマレーザ一等の光源を 用いたパターン形成における一括露光方法とは異なり、 マスクパターン を描画していく方法をとるため、 描画するパターンが多ければ多いほど 露光 (描画) 時間がかかり、 パターン形成に時間がかかることが欠点と . されている。 そのため、 2 5 6メガビッ ト, 1ギガビッ ト, 4.ギガビッ ト と、 集積度が飛躍的に高まるにつれ、 その分パターン形成時間も飛躍的 , に長くなることになり、 スループッ トが著しく劣ることが懸念される。 そこで、 電子線描画装置の高速化のために、 各種形状のマスクを組み合 わせそれらに一括して電子ビ一ムを照射して.複雑な形状の電子ビームを . 形成する一括図形照射法の開発が進められている。 しかし、 パターンの T JP2006/318796 : In recent years, semiconductor integrated circuits have been miniaturized and stacked, and the precision of photolithography equipment has been promoted as a pattern transfer technology for realizing fine processing. However, the processing method is approaching the wavelength of the light source for light exposure, and the photolithography technology is approaching its limit. Therefore, in order to advance further miniaturization and higher integration, an electron beam lithography apparatus, which is a kind of charged particle beam apparatus, has been used in place of photolithography technology. Unlike the batch exposure method that uses a light source such as an i-line or excimer laser, the pattern that uses an electron beam is drawn in a mask pattern, so there are many patterns to be drawn. The more it takes, the longer it takes to expose (draw), and the longer it takes to form the pattern. Therefore, as the degree of integration increases dramatically, such as 256-megabit, 1-gigabit, and 4-gigabit, the pattern formation time will increase dramatically, and the throughput may be significantly inferior. Concerned. Therefore, in order to increase the speed of the electron beam lithography system, various shapes of masks are combined, and they are collectively irradiated with an electron beam. Development is underway. But of the pattern T JP2006 / 318796
2 2
微細化が進められる一方で、 電子線描画装置を大型化せざるを得ないほ か、 マスク位置をより高精度に制御する機構が必要になるなど、 装置コ ストが高くなるという欠点があった。 While miniaturization is progressing, the electron beam lithography system has to be increased in size, and a mechanism for controlling the mask position with higher accuracy is required. .
走査型電子顕微鏡においても、 この微細加工技術を点収差計測のため のァライメントチップ作製において使用しており、 スティダマ調整用試 料として、特に高精度観察用操作型顕微鏡には常 teされている。しかし、 この点収差計測用のパターンを作製するリソグラフィ技術は限界に近づ きつつあり、 新規なパターン形成法が必要になってきた。  Scanning electron microscopes also use this microfabrication technology in the preparation of alignment tips for measuring point aberrations, and are commonly used as a studama adjustment sample, especially for high-precision observation operation microscopes. . However, the lithography technology for producing this point aberration measurement pattern is approaching its limit, and a new pattern formation method has become necessary.
これに対し、 微細なパターン形成を低コストで実施するための技術が 米国特許第 5, 7 7 2, 9 0 5号等に開示されている。 これは、 基板上に 形成したいパ夕一ンと同じパターンの凹凸を有する金型を、 被転写基板 表面に形成されたレジスト膜層に対して型押しすることで所定のパター' ンを転写するものである。 特に、 特開 2 0 0 4— 7 1 5 8 7号公報に記 載のナノィンプリント技術によれば、シリコンウェハを金型として用い、 2 5ナノメートル以下の微細構造を転写により形成可能であるとしてい る。 発明の開示  On the other hand, US Pat. No. 5, 7 72, 90 5 discloses a technique for performing fine pattern formation at a low cost. This is because a predetermined pattern is transferred by embossing a mold having the same pattern as the pattern to be formed on the substrate against the resist film layer formed on the surface of the substrate to be transferred. Is. In particular, according to the nanoprint technology described in Japanese Patent Application Laid-Open No. 2 0 4-7 7 1 5 8 7, a silicon wafer can be used as a mold, and a microstructure less than 25 nanometers can be formed by transfer. It is said that there is. Disclosure of the invention
本発明者らは、 走査型顕微鏡の点収差補正計測用の微細なパターンを 形成可能とされるインプリント技術について検討を行ったところ、 従来 の微細な同心円柱積層状のァライメント用パターンを有するァライメン トチップをインプリン卜技術で形成する際に以下の問題点があることが 判明した。 まず、 微細な同心円柱積層状のァライメント用パターンを有 する金型を新規に作成するためのリソグラフィ技術が容易ではなく、 多 くの時間とコストが必要となる。 さらに、 新しい金型を作製するに際し ては、 リソグラフィ技術を用いて、 焦点位置を調整して不明瞭な同心円 ができる条件を見出す必要があり、 再現性が乏しいため、 同一の金型に 多くの微細パターンを形成することが極めて困難である。 The present inventors have studied an imprint technique capable of forming a fine pattern for point aberration correction measurement of a scanning microscope. As a result, the alignment having a conventional fine concentric cylindrical stacked alignment pattern is performed. The following problems were found when forming the tip with the imprinting technology. First, lithography technology for creating a new mold having a fine concentric columnar alignment pattern is not easy and requires a lot of time and cost. In addition, when creating a new mold, Therefore, it is necessary to find the conditions for adjusting the focal position to create an unclear concentric circle by using lithography technology, and it is very difficult to form many fine patterns on the same mold because of poor reproducibility. It is.
また、 特許文献 2では、 金型の転写パターン構造として、 多段の凹凸 を形成する技術が開示されている。 しかしながら、 本発明者らが多段構 造を有する金型を用いて転写実験を行ったとこ^、 点収差補正計測に適 した凹凸の側壁面の垂直性を得ることが困難であり、 特殊な金型構造が 必要であることがわかった。  Patent Document 2 discloses a technique for forming multi-level unevenness as a mold transfer pattern structure. However, when the inventors conducted a transfer experiment using a mold having a multi-stage structure, it was difficult to obtain the verticality of the uneven side wall surface suitable for point aberration correction measurement. It turns out that a mold structure is necessary.
本発明は、 上述の課題を解決するものであり、 走査型電子顕微鏡の点 収差補正計測用のァライメントチップにおいて、 低コストで簡便に作製 が可能であり、 点収差補正計測に適した新規なァライメントパターンを 有するァライメントチップを提供することを目的とする。  The present invention solves the above-mentioned problems, and can be easily manufactured at a low cost in an alignment chip for measuring point aberration correction of a scanning electron microscope, and is a novel key suitable for point aberration correction measurement. An object of the present invention is to provide an alignment chip having a alignment pattern.
また、 本発明は、 ァライメントチップのァライメントパターンを高精 度で、 かつ低コストで作製する点収差補正計測ァライ.メントチップのパ ターン形成用金型およびァラ.ィメントチップの製造方法を提供すること を目的とする。  In addition, the present invention provides a pattern forming mold for a point aberration correction measurement alignment chip and a method for manufacturing the alignment chip for manufacturing the alignment pattern of the alignment chip with high accuracy and low cost. The purpose is to provide
本発明は、 表面に凹凸パ夕一ンを有する走査型電子顕微鏡の点収差計 測用のァライメントチップにおいて、 前記凹凸パターンが円形あるいは 多角形の閉ループ (同心円管あるいは多角形管形状) を構成する凸部又 は凹部を有するァライメントチップを特徴とする。  The present invention provides an alignment chip for measuring a point aberration of a scanning electron microscope having an uneven pattern on a surface thereof, wherein the uneven pattern comprises a circular or polygonal closed loop (concentric tube or polygonal tube shape). It features an alignment chip having convex or concave portions.
また、 表面に形成された凹凸パターンを被転写体に押し付けることで 被転写体に前記凹凸パターンを転写するためのパターン形成用金型であ つて、 前記凹凸パターンが円形あるいは多角形の閉ループを構成する凸 部又は凹部を有する点収差計測ァライメントパタ一ン形成用金型を特徴 とする。 また、 走査型電子顕微鏡の点収差計測用のァラィメントチップの製造 方法であって、 表面に円形あるいは多角形の閉ループを構成する凹凸パ ターンを有する金型を被転写基板に押し付ける工程と、 前記被転写基板 から金型を剥離して、 前記被転写基板の表面に前記凹凸パターンを転写 する工程とを有することを特徴とする.。 ' Also, a pattern forming mold for transferring the concavo-convex pattern onto the transfer body by pressing the concavo-convex pattern formed on the surface onto the transfer body, and the concavo-convex pattern forms a circular or polygonal closed loop. It is characterized by a mold for forming an astigmatism measurement alignment pattern having convex or concave portions. Also, a method for manufacturing an alignment chip for measuring point aberrations in a scanning electron microscope, the method comprising pressing a mold having a concavo-convex pattern forming a circular or polygonal closed loop on a surface thereof onto a substrate to be transferred; Separating the mold from the substrate to be transferred, and transferring the concavo-convex pattern to the surface of the substrate to be transferred. '
本発明によれば、 円管状もしくは多角形管状め凸部を設けたァライメ ントチップとすることで、 この円管状もしくは多角形管状を構成する凹 凸の壁面に亀子線を照射することにより、 点収差を補正することが可能 となる。'またこの円管状もしくは多角形管状の凸部は、 その直径寸法を 調整して、 異なる直径の複数個の凸部をナノィンプリントにより作製す ることが可能であるため、 異なる倍率での電子顕微鏡使用時における点 収差補正に対応することが可能となる。 .  According to the present invention, by forming an alignment tip provided with a circular tubular or polygonal tubular convex part, irradiating the concave wall surface constituting the circular tubular or polygonal tube with a turtle line causes point aberration. Can be corrected. 'Also, this circular or polygonal tubular convex part can be adjusted by adjusting its diameter dimension, and multiple convex parts with different diameters can be produced by nano-printing. It is possible to cope with point aberration correction when using a microscope. .
本発明によれば、 低コストで簡便に作製が可能であり、 点収差補正計 測に適した新規なァライメントパターンを有するァライメントチップを 提供することができる。 また.、 ァライメントチップのァライメントパ夕 ーンを高精度で、 かつ低コス卜で作製する点収差補正計測ァライメント チップのパターン形成用金型およびァライメントチップの製造方法を提 供することができる。 図面の簡単な説明 '  According to the present invention, it is possible to provide an alignment chip that can be easily manufactured at low cost and has a novel alignment pattern suitable for point aberration correction measurement. In addition, it is possible to provide a pattern forming mold for the alignment correction chip and a method for manufacturing the alignment chip, in which the alignment pattern of the alignment chip is manufactured with high accuracy and low cost. Brief description of the drawings ''
第 1図は、 本実施形態の点収差計測用ァライメントパターンの一例を 示す断面構造の説明図、 ( a ) は被転写構造体の断面図、 (b ) は上部か らの観察図である。 ·  FIG. 1 is an explanatory view of a cross-sectional structure showing an example of a dot aberration measurement alignment pattern of this embodiment, (a) is a cross-sectional view of a transferred structure, and (b) is an observation view from above. . ·
第 2図は、金型の凹部円管直径部を裁断面とした金型の断面図である。 第 3図は、 異なる直径を有する円管群を有する被転写構造体によるァ ライメントチップの形状を示す一例である。 FIG. 2 is a cross-sectional view of a mold having a concave circular tube diameter portion of the mold as a cut surface. FIG. 3 is a schematic diagram of a transferred structure having circular tube groups having different diameters. It is an example which shows the shape of a lement chip.
第 4図は、 異なる径を有する多角形管群を有する被転写構造体による ァライメントチップの形状を示す一例である。  FIG. 4 is an example showing the shape of the alignment tip by the transferred structure having a polygonal tube group having different diameters.
第 5図は、 ナノインプリントにおけるパターンのループ内面積に対す るパターン壁面への樹脂充填率の変化を示すグラフである'。  Fig. 5 is a graph showing the change in the resin filling rate on the pattern wall surface with respect to the area within the loop of the pattern in nanoimprinting.
第 6図は、 ナノインプリントにおけるパター のループ高さに対する 点収差計測完了までの測定回数を示すグラフである。 発明を実施するための最良の形態 ■ 以下、 本実施形態に係るナノィンプリントパターン形成用金型につい て説明する。 なお、 ナノインプリントとは、 数 1 0 0 mから数 n m程 度の範囲の転写を意味している。 .  FIG. 6 is a graph showing the number of measurements until completion of the measurement of point aberration with respect to the loop height of the putter in nanoimprint. BEST MODE FOR CARRYING OUT THE INVENTION (1) A nanoprint pattern forming mold according to this embodiment will be described below. Nanoimprint means transfer in the range of about 100 m to several nm. .
本実施形態に係るナノインプリントパターン形成用金型 (以下、 金型 と略記する) は、 被転写構造体にナノレベルのパターンを転写するため のものであり、 被転写構造体にナノレベルのパターンを転写するための パターン形成部を有している。 このパターン形成部は点対称の構造を有 し、 電子線を用いたスティダマ調整と呼ばれる点収差補正ができる形状 を有する凸部を形成するための複数の凹部微細構造を有する。 点収差補 正は予め電子顕微鏡内のコンピューターに組み込まれた点収差補正プロ グラムに従い、 全方位における収差ずれを検出して電子線照射角をフィ 一ドパック制御するものである。 そのための微細パターンはひとつの点 対称な輪郭となる側壁を有する形状であればよい。 例えば、 内周直径 5 0 n m , 外周直径 7 O n mの円管が高さ 1 0 0 n mで被転写体表面に 形成された凸部である場合、 スティダマ調整と呼ばれる点収差補正はこ の円管における内周及び外周側面に照射した電子線が反射して形成され る像の輝度最大点が、 内周及び外周の半径差で示される壁面厚さである 1 0 n mに対して、 偏差が 2 0 %を超えた領域すなわち 2 n mで反射電 子線が検出された場合に、 竃子線照射レンズを制御して電子線の方向制 御を実施する。 この際に、 同心円あるいは多角形の閉ループを構成する 凹凸パターンを有する金型により、 ァライメン.トチップを形成すること で、. 上記に示した側壁を有する形状が形成され ため、 走査型電子顕微 鏡において点収差補正が迅速に実施できる。 ま 、 このような側壁を有 する円管は 2 0 0 n mピッチで格子状に複数配置されることにより、 ナ ノィンプリントによる転写が一部欠損レた場合でも補償され、 精度.を保 つた点収差補正が可能となる。 この被転写構造体を形成する金型は、 そ の凹凸パターンが被転写構造体の凹凸を反転させたものとなるので、 円 管または多角形管が凹部の穴を形成する形状を有する。 この金型に前記'' したパターン形成のための凹部を形成する方法は、 目的とする形成部が 形成できるものであれば特に限定されるものではないが、 例えば、 フォ トリソグラフィゃ電子線描画法, ナノインプリントによるレプリカ作製 等、 所望する加工精度に応じて適宜選択することができる。 なお、 パ夕 ーン形成部が形成された金型の最表面には、 被転写基板の転写パ夕一ン 形成層との分離を容易にするための離型材層を設けてもよい。 この離型 材層としては、 フッ素化合物, フッ素混合物などの耐熱性樹脂であるこ とが好ましい。 The mold for forming a nanoimprint pattern according to this embodiment (hereinafter abbreviated as a mold) is for transferring a nano-level pattern to a transferred structure, and the nano-level pattern is transferred to the transferred structure. It has a pattern forming section for transferring. This pattern forming portion has a point-symmetric structure, and has a plurality of concave microstructures for forming convex portions having a shape capable of correcting point aberration called “studama adjustment using an electron beam”. Point aberration correction is based on the point aberration correction program built in the computer in the electron microscope in advance and detects aberration deviations in all directions and performs feed pack control of the electron beam irradiation angle. The fine pattern for that purpose may be a shape having a side wall having a single point-symmetrical outline. For example, if a circular tube with an inner diameter of 50 nm and an outer diameter of 7 O nm is a convex part formed on the surface of a transfer medium with a height of 100 nm, the point aberration correction called studama adjustment is performed on this circle. The electron beam applied to the inner and outer peripheral surfaces of the tube is reflected and formed. The reflected electron beam is detected in the region where the deviation exceeds 20%, that is, 2 nm with respect to 10 nm, which is the wall thickness indicated by the radius difference between the inner and outer circumferences. If this happens, control the electron beam direction by controlling the insulator lens. At this time, the alignment tip is formed by the mold having the concavo-convex pattern constituting the concentric circle or the polygonal closed loop, so that the shape having the side wall described above is formed. Therefore, in the scanning electron microscope Point aberration correction can be performed quickly. In addition, by arranging a plurality of circular tubes with such side walls in a lattice pattern at a pitch of 200 nm, even if the transfer due to nanoprinting is partially lost, it is compensated and point aberration that maintains accuracy. Correction is possible. The mold for forming the transferred structure has a shape in which a circular tube or a polygonal tube forms a hole in the concave portion because the uneven pattern is obtained by inverting the unevenness of the transferred structure. The method for forming the concave portion for pattern formation described above in the mold is not particularly limited as long as the target forming portion can be formed. For example, photolithography uses electron beam drawing. Method, replica production by nanoimprint, etc., can be selected as appropriate according to the desired processing accuracy. A release material layer for facilitating separation from the transfer pattern forming layer of the transfer substrate may be provided on the outermost surface of the mold on which the pattern forming portion is formed. The release material layer is preferably a heat resistant resin such as a fluorine compound or a fluorine mixture.
本発明によれば、 走査型電子顕微鏡の点収差補正を短時間で実施でき る。 また、 測定倍率が異なる顕微鏡使用に際して、 直径の異なる直径を 有するァライメントチップを用いることで、 観察倍率におけるスティグ マ調整が可能となる。 さらに、 ナノインプリントにより、 '当該ァライメ ントチップを作製することにより、 点収差補正計測部品のコストを著し く削減できる。 すなわち、 予め、 直径の異なる同心円管もしくは多角形 管を形成する金型により、 走査型電子顕微鏡の点収差補正の高精度 · 高 効率化が可能となる。 According to the present invention, point aberration correction of a scanning electron microscope can be performed in a short time. In addition, when using microscopes with different measurement magnifications, stigma adjustment at the observation magnification can be performed by using alignment tips having different diameters. Furthermore, by nanoimprinting, 'by manufacturing the alignment chip, the cost of measuring and correcting astigmatism components is significantly increased. Can be reduced. In other words, the use of a mold in which concentric tubes or polygonal tubes having different diameters are formed in advance enables high-precision and high-efficiency point correction of a scanning electron microscope.
以下、 本発明の実施例について図面を用いて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施例 1)  (Example 1)
第 1図は、 本実施形態の点収差計測用ァライ ントパターンの一例を 示す断面構造の説明図である。 直径 6 inch φ ( 1 5 cm φ) X厚さ約 0.5匪 の S iウェハ 1 aに、 スピンコ一夕を用いて.、 熱可塑,性樹脂レ ジスト Iこより 0.5 の塗膜 1 を形成した。 続いて、 電子線描画装 置 J BX 6 0 0 0 F S (日本電子製) .を用い、 電子線ビーム EBで直接 描画することにより露光し、 現像することにより得た微細円管凹部の金 型により、 熱可塑性樹脂レジス卜に円管状のパターン 1 c を転写した。 この被転写構造体を上部から見ると、 一定のピッチで格子状に並んだ円 管状の突起 (凸部) I dがある。 第 2図に金型の凹部円管直径部を裁断 面とした金型の断面図を示す.。 このように金型は内周直径 5 0 n m, 外 周直径 7 0 nmの円管が深さ 1 0 O nmで凹部 2 aを有し、 円管凹部の 間隔は 20 0 nmピッチの格子状となっている。 この金型はシリコン基 板 2 bを電子線ビームで直接描画することにより形成している。 なお、 レジスト 1 bのパターンが数百 nmオーダー以上であれば、 電子線では なく、 K rレーザー (波長 3 5 1 nm) 等を用いてもよい。 凹凸が形成 されたレジスト 1 bをマスクパターンとして S iウェハあるいは N i金 属のドライエッチングを行い、 S i表面あるいは N i金属表面に凹凸を 形成後、 02 アツシングによりレジス ト 1 bを除去して金型を再度作製 することもできる。 以上の工程によって、 直径 1 0 0 n mの円柱状凹部 がー面に形成された被転写構造体が得られ、 点収差補正計測ァライメン トチップが走査型電子顕微鏡に設置できた。 FIG. 1 is an explanatory diagram of a cross-sectional structure showing an example of a point aberration measurement client pattern of the present embodiment. A spin coater was used on a Si wafer 1 a having a diameter of 6 inch φ (15 cm φ) X thickness of about 0.5 mm, and a coating film 1 of 0.5 was formed from a thermoplastic resin resist I. Subsequently, using an electron beam drawing device J BX 6 0 0 FS (manufactured by JEOL Ltd.), the mold of the concave portion of the fine circular tube obtained by exposure by direct drawing with the electron beam EB and development. As a result, the tubular pattern 1 c was transferred to the thermoplastic resin resist ridge. When this transferred structure is viewed from above, there are cylindrical projections (convex portions) Id arranged in a lattice at a constant pitch. Fig. 2 shows a cross-sectional view of the mold with the diameter of the concave circular tube of the mold as the cut surface. In this way, the mold has a circular tube with an inner diameter of 50 nm and an outer diameter of 70 nm, a depth of 10 O nm, and recesses 2a. It has become. This mold is formed by directly drawing the silicon substrate 2b with an electron beam. If the pattern of the resist 1b is on the order of several hundred nm or more, Kr laser (wavelength 35 1 nm) or the like may be used instead of the electron beam. Using resist 1b with irregularities as a mask pattern, dry etching of Si wafer or Ni metal, forming irregularities on the Si surface or Ni metal surface, and then removing resist 1b by 0 2 ashing The mold can also be made again. Through the above process, a transferred structure having a cylindrical recess with a diameter of 100 nm formed on the surface is obtained. Tochip was installed in the scanning electron microscope.
ここで、 前記被転写基板の基板本体は、 目的とする部材を形成できる ものであれば特に限定されるものではなく、 所定の強度を有するもので あればよい。 具体的には、 シリコン, 各種金属材料, ガラス, セラミツ ク, プラスチックなどが好ましく適用.される。  Here, the substrate main body of the substrate to be transferred is not particularly limited as long as a target member can be formed, and may have any predetermined strength. Specifically, silicon, various metal materials, glass, ceramics, plastics, etc. are preferably applied.
前記被転写基板の転写パターン形成層は、 目的とする部材を形成でき るものであれば特に限定されるものではなく、 所望する加工精度に応じ て選択される。 具体的には、 ポリエチレン, ポリプロピレン, ポリビニ ルアルコール, ポリ塩化ビニリデン, ポリエチレンテレフ夕レート', ポ リ塩化ビニール, ポリスチレン, A B S樹脂, A S樹脂, ァクリル樹脂, ポリアミ ド, ポリアセ夕一ル, ポリブチレンテレフタレ一ト, ガラス強 化ポリエチレンテレフ夕レート, ポリカーボネート, 変性ポリフエニレ' ンェ一デル,ポリフエ二レンスルフィ ド,ポリエーテルエーテルケトン, 液晶性ポリマー, フッ素樹脂, ポリアレート, ポリスルホン, ポリエー テルスルホン, ポリアミ ドィ.ミ ド、 ポリエーテルイミ ド, 熱可塑性ポリ イミ ド等の熱可塑性樹脂や、. フエノール樹脂, メラミン樹脂, ユリア樹 脂, エポキシ樹脂, 不飽和ポリエステル樹脂, アルキド樹脂, シリコ ン樹脂, ジァリルフタレート樹脂, ポリアミ ドビスマレイミ ド, ポリビ スアミ ドトリァゾール等の熱硬化性樹脂、 及ぴこれらを 2種以上プレン ドした材料を用いることが可能である。 これらの樹脂としては、 走.査型 電子顕微鏡内でガスが発生しない樹脂や、 走査型電子顕微鏡内における 電子線照射分解反応を抑制した樹脂とすることが好ましい。 なお、 この 転写パターン形成層は、 樹脂に限定されるものではなく、 無機ガラス, 低融点金属などを用いることもできる。  The transfer pattern forming layer of the substrate to be transferred is not particularly limited as long as a target member can be formed, and is selected according to desired processing accuracy. Specifically, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyacetylene terephthalate Taleate, glass-reinforced polyethylene terephthalate, polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyetheretherketone, liquid crystalline polymer, fluororesin, polyarate, polysulfone, polyethersulfone, polyamidoimi. Thermoplastic resins such as polyamide, polyether imide, thermoplastic polyimide, phenol resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, alkyd resin, silicon resin Thermosetting resins such as aryl phthalate resin, polyamide bismaleimide, and polybisamide triazole, and materials in which two or more of these are blended can be used. As these resins, a resin that does not generate gas in a scanning electron microscope or a resin that suppresses an electron beam irradiation decomposition reaction in a scanning electron microscope is preferable. The transfer pattern forming layer is not limited to a resin, and inorganic glass, a low melting point metal, or the like can be used.
(実施例 2 ) 第 3図は異なる直径を有する円管群を有する被転写構造体によるァラ ィメン卜チップの形状を示す一例である。 同一基板内に異なる直径を有 する円管を配置することにより、 走査型電子顕微鏡の点収差補正計測に 際して、 拡大倍率を調整して生ずる点収差補正の誤差を低減できる。 こ こで、 前記被転写基板の基板本体は、 目的とする部材を形成できるもの であれば特に限定されるものではなく、 所定の強度を有するものであれ ばよい。 具体的には、. シリコン, 各種金属材料, ガラス, セラミック, プラスチックなどが好ましく適用される。 (Example 2) FIG. 3 is an example showing the shape of the alignment chip by the transferred structure having a group of circular tubes having different diameters. By arranging circular tubes with different diameters on the same substrate, it is possible to reduce errors in correction of point aberration caused by adjusting the magnification when performing point aberration correction measurement of a scanning electron microscope. Here, the substrate main body of the substrate to be transferred is not particularly limited as long as it can form a target member, and may have a predetermined strength. Specifically, silicon, various metal materials, glass, ceramic, plastic, etc. are preferably applied.
(実施例 3 ) '  (Example 3) '
-第 4図は異なる径を有する多角形管群を有する被転写構造体によるァ ライメントチップの形状を示す一例である。 同一基板内に異なる大きさ の多角形管を配置することにより、 走査犁電子顕微鏡の点収差補正計測'' に際して、 拡大倍率を調整して生ずる点収差補正の誤差を低減できる。 ここで、 前記被転写基板の基板本体は、 目的とする部材を形成できるも のであれば特に限定されるものではなく、 所定の強度を有するものであ ればよい。 具体的には、 シリコン, 各種金属材料, ガラス, セラミック, プラスチックなどが好ましく適用される。 - -Fig. 4 shows an example of the shape of the alignment tip by the transferred structure having a polygonal tube group having different diameters. By arranging polygonal tubes of different sizes on the same substrate, it is possible to reduce point aberration correction errors caused by adjusting the magnification when performing scanning aberration measurement with a scanning electron microscope. Here, the substrate body of the substrate to be transferred is not particularly limited as long as a target member can be formed, and may have a predetermined strength. Specifically, silicon, various metal materials, glass, ceramic, plastic, etc. are preferably applied. -
(実施例 4 ) (Example 4)
ナノレベルのパターンを転写する金型において、 転写される部材に円 形あるいは多角形の閉ループの凹凸部を形成するため、 フォ トリソグラ フィあるいは電子線直接描画法により、 円管あるいは多角形管の外周に よって形成される閉ループ内の面積が l O O n m 2から l O O O O n m 2 とするように凹部形状を形成した金型をナノインプリントに供する。 こ の面積を有する金型により、 被転写構成材の'基板上にある樹脂は、 もし くは樹脂自体が基板となる構造の樹脂は微細パターン内を流動充填でき 0 In molds that transfer nano-level patterns, circular or polygonal closed-loop concavo-convex parts are formed on the transferred member, so that the outer periphery of the circular or polygonal tube can be formed by photolithography or electron beam direct drawing. The mold in which the concave shape is formed so that the area in the closed loop formed by this is from l OO nm 2 to l OOOO nm 2 is used for nanoimprinting. Due to the mold having this area, the resin on the substrate of the component to be transferred, or the resin with the resin itself as the substrate can be fluidly filled in the fine pattern. 0
る.ことがわかった。 また、 ループ内面積が 6 0 nm2 以下となると充填 率は 7 0 %以下となる。 そのため、 点収差補正計測に必要な壁面傾斜角 が 8 5度以上であるのに対して、 ループ内面積が 6 0 nm2 以下では 8 0度以下となり、 点収差補正に適さないことがわかった。 第 5図にそ の結果の一例を示す。 一方、 円管あるいは多角形管の外周によって形成 される閉ループ内の面積が 1 0 0 0 0 nm2 以上とすると 1万倍以上の 倍率における点収差補正に際しては、 偏差を計測するに際して移動させ る電子線ビームの距離が大きいために、 高精度を保つ補正がで,きないこ とがわかった。 I understood that. When the area inside the loop is 60 nm 2 or less, the filling rate is 70% or less. Therefore, the wall inclination angle required for point aberration correction measurement is 85 degrees or more, but when the area inside the loop is 60 nm 2 or less, it is 80 degrees or less, indicating that it is not suitable for point aberration correction. . Figure 5 shows an example of the results. On the other hand, if the area in the closed loop formed by the outer circumference of the circular tube or polygonal tube is 100000 nm 2 or more, when correcting the point aberration at a magnification of 10,000 times or more, it is moved when measuring the deviation. Since the distance of the electron beam is large, it was found that correction that maintains high accuracy was possible, but it was not possible.
: (実施例 5)·  : (Example 5)
ナノレベルのパターンをナノインプリントにより転写することにより、 被転写部材に円形あるいは多角形の閉ループの凹凸部を形成し、 閉ル一' プの凹部あるいは凸部と周辺の平坦部との段差を 1 0 0 nmから 1000 nmとしてナノインプリントによる樹脂の充填率を計測した。 第 6図に その結果の一例を示す。 点収差計測までのパターン移動回数とは、 点収 差ができるかをひとつのパターンで実施後、 形状の不良で不可能である 場合は、 となりのパターンを測定対象として選択し、 電子線照射範囲を 変更する操作の回数を示す。 段差が 5 0 nm以下では点収差の計測が不 可能となり、 壁面の高さとして少なく とも 6 0 nm以上が必要であるこ とがわかった。  By transferring the nano-level pattern by nanoimprinting, a circular or polygonal closed-loop concavo-convex part is formed on the transferred member, and the step between the closed-loop concave or convex part and the peripheral flat part is 1 0 The resin filling rate by nanoimprinting was measured from 0 nm to 1000 nm. Figure 6 shows an example of the results. The number of pattern movements until point aberration measurement refers to whether or not point convergence can be achieved with a single pattern, and if this is not possible due to poor shape, the next pattern is selected as the measurement target, and the electron beam irradiation range Indicates the number of operations to change. It was found that measurement of point aberrations became impossible when the step was 50 nm or less, and the wall height was required to be at least 60 nm.
(実施例 6 )  (Example 6)
ナノレベルの円管パターンを転写される部材において、 円管が形成す る閉ループの壁面の厚さである管厚が 1 0 nmから 1 0 0 nmとした場 合、 いずれの壁面厚さにおいても走査型電子顕微鏡の点収差補正計測が 可能であることがわかった。 この際、 円管は点対称の多角形管でも可能 である。 When the tube thickness, which is the thickness of the wall surface of the closed loop formed by the circular tube, is changed from 10 nm to 100 nm in a member to which a nano-level circular tube pattern is transferred, It was found that point aberration correction measurement with a scanning electron microscope is possible. At this time, the circular pipe can be a point-symmetric polygonal pipe. It is.
(実施例 7 )  (Example 7)
ナノレベルのパターンを転写する金型は、 円管の凹部を有するニッケ ルもしくはニッケル合金から構成され、 転写パターンの表 ¾に離型のた めのフッ素系分子層を有することにより、 繰返し被転写構造体を作製で きることがわかった。 '  The mold for transferring the nano-level pattern is composed of nickel or nickel alloy with a concave part of the circular tube, and it is repeatedly transferred by having a fluorine-based molecular layer for release on the transfer pattern display. It was found that the structure can be fabricated. '
(実施例 8 )  (Example 8)
被転写構造体は、 所定の加熱によりガラス転移点に到達する,ことで軟 化する i¾可塑性の樹脂から本質的に構成される。 しかし、 シリコンを基 板としてその基板上に所定の温度の加熱作用により軟化する熱可塑性の 樹脂より構成された転写パターン形成層とから構成されていても同様の 微細パターンが転写できることがわかる。. この際、 熱可塑性樹脂の厚さ' は 1 j mとすることで、 円管状凸部が基板から乖離することなく形成保 持できることがわかった。  The transferred structure is essentially composed of an i¾ plastic resin that softens by reaching the glass transition point by predetermined heating. However, it can be seen that the same fine pattern can be transferred even if it is composed of a transfer pattern forming layer composed of a thermoplastic resin that is softened by heating at a predetermined temperature on a silicon substrate. At this time, it was found that when the thickness of the thermoplastic resin is 1 j m, the cylindrical convex portion can be formed and held without deviating from the substrate.

Claims

2 2
請 求 の. 範 囲 ' 1 . 表面に凹凸パターンを有する走査型電子顕微鏡の点収差計測用のァ ライメントチップにおいて、 前記凹凸パターンが円形あるいは多角形の 閉ループを構成する凸部又は凹部を有することを特徴とするァライメン トチップ。 Claims' 1. In the alignment chip for point aberration measurement of a scanning electron microscope having a concavo-convex pattern on the surface, the concavo-convex pattern has a convex part or a concave part constituting a circular or polygonal closed loop. Alignment chip characterized by
2 . 請求項 1に記載のァライメントチップにお て、 前記円形あるいは 前記多角形の閉ループを構成する凸部又は凹部が少なくとも 2つ以上形 成されているこどを特徴とするァライメントチップ。 '  2. The alignment chip according to claim 1, wherein at least two or more convex portions or concave portions constituting the circular or polygonal closed loop are formed. '
3 . 請求項 2に記載のァ ィメントチップにおいて、 直径が異なる前記 閉ループを有することを特徴とするァライメントチップ。  3. The alignment tip according to claim 2, comprising the closed loops having different diameters.
4 . 請求項 1 に記載のァライメントチップにおいて、 前記閉ループを構 成する凸部又は凹部の面積が 1 0 0 n m zから 1 0 0 0 0 n m 2であるこ' とを特徴とするァライメントチップ。 4. In § Lai Instruments chip according to claim 1, § Lai instrument tip the closed loop area of the projections or recesses to configure and wherein the 1 0 0 0 0 nm 2 Dearuko 'from 1 0 0 nm z .
5 . 請求項 1 に記載のァライメントチップにおいて、.前記閉ループを構 成する凸部又は'凹部と周辺の平坦部との段差が 1 0 0 n mから 1 0 0 0 ri mであることを特徴とするァライメントチップ。  5. The alignment chip according to claim 1, wherein a step between a convex portion or a 'concave portion constituting the closed loop and a peripheral flat portion is from 100 nm to 100 00 rim. Alignment chip.
6 . 表面に形成された凹凸パ夕一ンを被転写体に押し付けることで被転 写体に前記凹凸パターンを転写するためのパターン形成用金型であって、 前記凹凸パターンが円形あるいは多角形の閉ループを構成する凸部又は 凹部を有することを特徵とする点収差計測ァライメントパターン形成用 金型。  6. A pattern forming mold for transferring the concavo-convex pattern to the transferred body by pressing the concavo-convex pattern formed on the surface against the transferred body, wherein the concavo-convex pattern is circular or polygonal A mold for forming an astigmatism measurement alignment pattern, characterized by having a convex portion or a concave portion constituting a closed loop.
7 . 前記円形あるいは前記多角形の閉ループを構成する凸部又は凹部が 少なく とも 2つ以上形成されていることを特徵とする請求項 6に記載の 点収差計測ァライメントパターン形成用金型。  7. The mold for forming an astigmatism measurement alignment pattern according to claim 6, wherein at least two or more convex portions or concave portions constituting the circular or polygonal closed loop are formed.
8 . 点収差計測ァライメントパ夕一ン形成用金型において、 直径が異な る前記閉ループを有することを特徴とする^収差計測ァライメントバタ —ン形成用金型。 8. In the mold for forming the alignment aberration component for the point aberration measurement, the diameter is different. A mold for forming an aberration measurement alignment pattern, characterized by having the closed loop.
9 . 前記閉ループを構成する凸部又は凹部の面積が 1 0 0 n m2から9. The area of the convex part or concave part constituting the closed loop is from 100 nm 2
1 0 0 0 0 n m 2であることを特徴とする請求項 6に記載の点収差計測 ァライメントパターン形成用金型。 ' The point aberration measurement mold for forming an alignment pattern according to claim 6, wherein the mold is 1 0 0 0 0 nm 2 . '
1 0 . 前記閉ループを構成する凸部または凹部と周辺の平坦部との段差 が 1 0 0 n mから 1 0 0 0 n mであることを特徴とする請求項 6に記載 の点収差計測ァライメントパターン形成用金型。  10. The point aberration measurement alignment pattern according to claim 6, wherein a step between a convex portion or a concave portion constituting the closed loop and a peripheral flat portion is from 100 nm to 100 nm. Mold for forming.
1 1 . ニッケルもしくはニッケル合金から構成されており、 前記凹凸パ ターンの表面に.離型めための分子層を有していることを特徵とする請求 項 6に記載の点収差計測ァライメントパターン形成用金型。  11. The point aberration measurement alignment pattern according to claim 6, which is made of nickel or a nickel alloy, and has a molecular layer for releasing from the surface of the uneven pattern. Mold for forming.
1 2 . 走査型電子顕微鏡の点収差計測用のァライメントチップの製造方 法であって、  1 2. A method of manufacturing an alignment tip for measuring the point aberration of a scanning electron microscope,
表面に円形あるいは多角形の閉ループを構成する凹凸パターンを有す る金型を被転写基板に押し付ける工程と、  Pressing a mold having a concavo-convex pattern forming a circular or polygonal closed loop on the surface against the substrate to be transferred;
前記被転写基板から金型を剥離して、 前記被転写基板の表面に前記凹 凸パタ一ンを転写する工程と、 - を有することを特徴とするァライメントチップの製造方法。  And a step of peeling the mold from the substrate to be transferred, and transferring the concave / convex pattern onto the surface of the substrate to be transferred.
1 3 . 前記被転写基板が、 所定の加熱によりガラス転移点に到達するこ とで軟化する熱可塑性の樹脂から構成され、 あるいは、 シリコン基板と 所定の温度の加熱作用により軟化する熱可塑性の樹脂より構成された転 写パ夕一ン形成層とから構成されていることを特徴とする請求項 1 2に 記載のァライメントチップの製造方法。  1 3. The substrate to be transferred is composed of a thermoplastic resin that softens by reaching a glass transition point by a predetermined heating, or a thermoplastic resin that softens by a heating action of a silicon substrate and a predetermined temperature 13. The alignment chip manufacturing method according to claim 12, further comprising: a transfer pattern forming layer configured by:
1 4 . 前記樹脂部が 1 以上の厚さを有することを特徴とする請求項 1 3に記載のァライメントチップの製造方法。  14. The alignment chip manufacturing method according to claim 13, wherein the resin portion has a thickness of 1 or more.
PCT/JP2006/318796 2006-09-15 2006-09-15 Alignment chip for scanning electron microscope point aberration measurement WO2008032416A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/318796 WO2008032416A1 (en) 2006-09-15 2006-09-15 Alignment chip for scanning electron microscope point aberration measurement
JP2008534227A JP4654299B2 (en) 2006-09-15 2006-09-15 Scanning electron microscope point aberration measurement alignment chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318796 WO2008032416A1 (en) 2006-09-15 2006-09-15 Alignment chip for scanning electron microscope point aberration measurement

Publications (1)

Publication Number Publication Date
WO2008032416A1 true WO2008032416A1 (en) 2008-03-20

Family

ID=39183487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318796 WO2008032416A1 (en) 2006-09-15 2006-09-15 Alignment chip for scanning electron microscope point aberration measurement

Country Status (2)

Country Link
JP (1) JP4654299B2 (en)
WO (1) WO2008032416A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239009A (en) * 2009-03-31 2010-10-21 Toshiba Corp Method for manufacturing semiconductor device, and method for forming template and pattern inspection data
WO2019110572A1 (en) * 2017-12-05 2019-06-13 Asml Netherlands B.V. Systems and methods for tuning and calibrating charged particle beam apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181155A (en) * 1991-06-28 1994-06-28 Digital Equip Corp <Dec> Structure and method for direct calibration of alignment measuring system adapted to topography of actual semiconductor wafer process
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
JP2000156189A (en) * 1998-07-09 2000-06-06 Nikon Corp Electron beam device and detecting method for shift in electron beam axis
WO2002040980A1 (en) * 2000-11-17 2002-05-23 Ebara Corporation Wafer inspecting method, wafer inspecting instrument, and electron beam apparatus
JP2003123677A (en) * 2001-10-15 2003-04-25 Pioneer Electronic Corp Electron beam device and electron beam adjusting method
JP2003133214A (en) * 2001-10-26 2003-05-09 Sony Corp Mask pattern correction method and semiconductor device manufacturing method
JP2004071587A (en) * 2002-08-01 2004-03-04 Hitachi Ltd Stamper, method of transferring pattern using it, and method of forming structure by transferring pattern

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482742B1 (en) * 2000-07-18 2002-11-19 Stephen Y. Chou Fluid pressure imprint lithography
JP3728840B2 (en) * 1996-12-19 2005-12-21 株式会社ニコン Aberration measurement method for projection optical system and mask for aberration measurement
JP4112759B2 (en) * 1999-09-24 2008-07-02 株式会社東芝 Pattern measurement method
JP2006153871A (en) * 2000-11-17 2006-06-15 Ebara Corp Substrate inspection method, substrate inspecting device, and electron beam system
US6743368B2 (en) * 2002-01-31 2004-06-01 Hewlett-Packard Development Company, L.P. Nano-size imprinting stamp using spacer technique
AU2003230676A1 (en) * 2002-03-15 2003-09-29 Princeton University Laser assisted direct imprint lithography
JP2005527974A (en) * 2002-05-24 2005-09-15 ワイ. チョウ,スティーヴン, Method and apparatus for field induced pressure imprint lithography
JP5167583B2 (en) * 2004-11-10 2013-03-21 東レ株式会社 Pattern forming method and pattern forming sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181155A (en) * 1991-06-28 1994-06-28 Digital Equip Corp <Dec> Structure and method for direct calibration of alignment measuring system adapted to topography of actual semiconductor wafer process
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
JP2000156189A (en) * 1998-07-09 2000-06-06 Nikon Corp Electron beam device and detecting method for shift in electron beam axis
WO2002040980A1 (en) * 2000-11-17 2002-05-23 Ebara Corporation Wafer inspecting method, wafer inspecting instrument, and electron beam apparatus
JP2003123677A (en) * 2001-10-15 2003-04-25 Pioneer Electronic Corp Electron beam device and electron beam adjusting method
JP2003133214A (en) * 2001-10-26 2003-05-09 Sony Corp Mask pattern correction method and semiconductor device manufacturing method
JP2004071587A (en) * 2002-08-01 2004-03-04 Hitachi Ltd Stamper, method of transferring pattern using it, and method of forming structure by transferring pattern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239009A (en) * 2009-03-31 2010-10-21 Toshiba Corp Method for manufacturing semiconductor device, and method for forming template and pattern inspection data
US8222150B2 (en) 2009-03-31 2012-07-17 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device, template, and method of creating pattern inspection data
KR101182885B1 (en) * 2009-03-31 2012-09-13 가부시끼가이샤 도시바 Method of manufacturing semiconductor device, template, and method of creating pattern inspection data
WO2019110572A1 (en) * 2017-12-05 2019-06-13 Asml Netherlands B.V. Systems and methods for tuning and calibrating charged particle beam apparatus

Also Published As

Publication number Publication date
JP4654299B2 (en) 2011-03-16
JPWO2008032416A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
EP1762893B1 (en) Mold, imprint apparatus, and process for producing structure
Zhou Nanoimprint lithography: an enabling process for nanofabrication
TWI426353B (en) Imprint lithography system and method of imprinting
JP6019685B2 (en) Nanoimprint method and nanoimprint apparatus
CN108020986B (en) Apparatus and method for separating a nano-imprint template from a cured pattern layer formed on a substrate
JP6951226B2 (en) How to control extrusion during imprint template duplication process
US20080090052A1 (en) Nanoimprint Mold, Method of Forming a Nonopattern, and a Resin-Molded Product
US20110111593A1 (en) Pattern formation method, pattern formation system, and method for manufacturing semiconductor device
WO2007133346A2 (en) Imprint lithography method and system
JP2013055327A (en) Imprint device and manufacturing method of article
JP2008126450A (en) Mold, manufacturing method therefor and magnetic recording medium
US20220390834A1 (en) Template replication
JP5050532B2 (en) Imprint mold, imprint mold manufacturing method, and surface modification apparatus
CN111158073A (en) Method for making grating nano-imprint template by using electron beam lithography technology
JP2013543456A (en) High contrast alignment mark by multi-stage imprint
WO2008032416A1 (en) Alignment chip for scanning electron microscope point aberration measurement
JP5150926B2 (en) Manufacturing method of imprint mold
JP2006040321A (en) Method for manufacturing recording medium and recording medium
TWI411522B (en) Substrate alignment
Aassime et al. Conventional and un-conventional lithography for fabricating thin film functional devices
JP2004286570A (en) Nanopillar sensor
JP2007101979A (en) Method of manufacturing microstructure, method of manufacturing die for molding microstructure, method of manufacturing optical element having microstructure, optical element having microstructure and optical apparatus
Fujimori The molded mask method: The origin of nanoimprint lithography
JP4534709B2 (en) Diamond parts manufacturing method
Zhou et al. Principles and Status of Nanoimprint Lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008534227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798235

Country of ref document: EP

Kind code of ref document: A1