WO2008040857A1 - Device for displaying renewable images - Google Patents

Device for displaying renewable images Download PDF

Info

Publication number
WO2008040857A1
WO2008040857A1 PCT/FR2007/000945 FR2007000945W WO2008040857A1 WO 2008040857 A1 WO2008040857 A1 WO 2008040857A1 FR 2007000945 W FR2007000945 W FR 2007000945W WO 2008040857 A1 WO2008040857 A1 WO 2008040857A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
gel
image
ramp
Prior art date
Application number
PCT/FR2007/000945
Other languages
French (fr)
Inventor
Jean Pierre Lazzari
Jean Marc Lazzari
Original Assignee
Jean Pierre Lazzari
Jean Marc Lazzari
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jean Pierre Lazzari, Jean Marc Lazzari filed Critical Jean Pierre Lazzari
Publication of WO2008040857A1 publication Critical patent/WO2008040857A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia

Definitions

  • the present invention aims at a device for displaying renewable images. It finds applications including advertising screens, preferably large, installed for example in public places.
  • the invention more particularly relates to display devices for still images, which are electronically renewable.
  • a second category of devices uses magnetic recording, as described for example in JP 4199181 or JP 8016115.
  • An endless magnetic tape is recorded by magnetic heads. The band passes near a magnetic powder which constitutes the toner. The latter is attracted by the points recorded on the tape, thus forming a latent image.
  • the ink consumption is a blocking factor, drastically limiting the size of the screen, and the number of images.
  • the volume of ink used can reach several tens of liters of ink per day.
  • the use of an endless belt is poorly suited to large screens, guiding the band becoming very difficult, especially for horizontal movement.
  • the object of the present invention is to remedy these drawbacks by proposing an electronically renewable image display device of great size and of high quality in terms of resolution, gray levels and colors produced on a flat surface. preferably rigid. This surface is uniformly covered with small areas called subpixels, coated with the fundamental colors, these colors being transparent. The sub pixels are totally or partially covered with a gelatinous substance, pasty appearance, similar to grease, which will be called later "gel". This monochrome gel is opaque to light. The gel deposited on the sub-pixels is recyclable. The screen is backlit. The generation of the image is fast.
  • the device according to the invention makes it possible to produce large screens. Finally the device by its simplicity can be manufactured at low cost.
  • This object is achieved by the invention, thanks to a preferably rigid and transparent plane constituting the plane of the screen.
  • a preferably rigid and transparent plane constituting the plane of the screen.
  • At the rear of this plane with respect to the observer there are small colored areas with the three basic colors that form the sub-pixels of the screen, a pixel consisting of three of these sub-pixels.
  • Each subpixel has a fundamental color that is transparent.
  • the sub-pixels are uniformly distributed on the plane constituting the screen.
  • the gray levels of the image are obtained by depositing a monochrome and opaque gel on the back of the surface of the sub-pixels.
  • the opaque gel covers a larger or smaller surface of the sub-pixel, depending on the desired gray level.
  • the viscosity and surface tension of the gel are such that the gel remains attached to the surface of the subpixels without flowing, drying or curing during the exposure time of the image.
  • the gel is recovered and recycled.
  • the inkjet techniques known to those skilled in the art are proposed for depositing the gel at the rear of the surface of the sub-pixels. A ramp with a large number of nozzles of ejection of gel droplets, moves to the back of the screen, to cover its entire surface. As the gel after exposure of the image, is recovered, and recycled, there is no consumption of gel according to the invention.
  • the subject of the invention is an electronically renewable image display device of large size that can reach several meters in length or height.
  • the screen consists of a plane preferably rigid and transparent, preferably mounted in a vertical position, comprising sub-pixels in the fundamental colors (red, green and blue), these colors being transparent so that the screen can be backlit.
  • Subpixels are simply small, colored and transparent areas.
  • the sub-pixels receive opaque gel droplets, produced by gel ejection nozzles, according to known inkjet techniques. A large number of nozzles are aligned under a ramp which sweeps at the rear of the screen its surface preferably in the direction of its largest dimension.
  • the number of opaque gel droplets more or less obstructs the passage of light passing through the sub-pixels, thus making it possible to achieve the gray levels of the image.
  • the sub-pixels of square or rectangular shape are uniformly distributed on the plane.
  • the sub-pixels are in the form of narrow bands, each having a fundamental color. These strips are parallel to the movement of the ramp comprising the nozzles for ejecting the gel droplets.
  • the length of the sub-pixel is only fixed by the deposition of the gel droplets, and its width by the width of the narrow band.
  • the size of the sub-pixels is between a few tenths of a square millimeter to a few tens of square millimeters depending on the size of the screen and its resolution.
  • the sub-pixels are totally or partially covered with an opaque and monochrome gel. Once deposited on the surface of the sub-pixels, the gel remains in the latent state, without flowing or drying or hardening during the exposure of the image, which is between a few seconds, and a few hours. In the case where the same image must remain exposed for a longer period, the invention provides that the same image is nevertheless erased and periodically renewed.
  • Various gel deposition techniques may be used, including inkjet techniques known to those skilled in the art.
  • the viscosity of the gel at the passage of the ejection nozzles is close to that of standard inks, ie of the order of 15 mPa.S.
  • the gel is heated in the reservoir feeding the ejection nozzles, to achieve the viscosity adequate for the proper ejection of the droplets. In contact with the rear surface of the sub-pixels, the gel regains its original viscosity.
  • these techniques use a solid ink, which is melted by heating, so that it can be ejected through the ink jet nozzles.
  • these techniques allow simply to make the gel more fluid if necessary to be ejected by conventional inkjet nozzles.
  • the diameter of the deposited gel drops is adjusted so that the sub-pixel can be completely covered with gel by a projection of up to 256 gel droplets, which allows, according to this mode, to achieve, depending on the number of droplets deposited, up to 256 gray levels per sub-pixel.
  • nozzles called "greyscale ink jet" according to the Anglo-Saxon term are proposed. These nozzles make it possible to eject droplets of variable volume. For example, to reach the 256 levels of gray, only 16 droplets of 16 variable volumes are enough.
  • the ramp that sweeps the screen at the back of it preferably moves along its long length, to minimize the number of nozzles that are aligned according to the width of the screen.
  • the gel removal means located after the ink jet nozzles, depending on the direction of movement of the ramp are inactive.
  • Various means for recovering the gel are provided, such as mechanical means, which use brushes or flexible rubber blades, means by suction, by blowing, by magnetic or electrostatic attraction, or a combination of these means.
  • the ramp supports the electronic and computer means for controlling the ejection nozzles, in particular the multiplexing of the nozzles, the heating of the gel if necessary, the means for removing the gel, the means for controlling the quality of the removal, as well as the means of filtration.
  • the ramp is guided by two rails located on either side of the rigid plane constituting the screen, preferably along the long sides of the screen.
  • the rails have means for moving the ramp, as well as means for locating the ramp at any time, with respect to the screen, and for controlling its speed of movement.
  • the screen has a back light, the light passes through the sub-pixels, and the main plane transparent, between the drops of gel, which obstruct more or less the passage of light to achieve the gray levels.
  • Radio or wired reception means coded graphic information are installed at the back of the screen, and after processing, transmitted to the means electronic control of nozzles installed on the mobile ramp.
  • FIG. 1 shows the general plan, seen from the rear, of the device according to the invention.
  • FIG. 2 shows the section according to A of the device
  • FIGS. 3A and 3B show two subpixel geometry modes
  • FIGS. 4A and 4B show examples of gray levels according to the two modes of geometry of the sub-pixels of FIGS. 3A and 3B
  • FIG. 5 shows in section the implantation of the various means of the ramp, in particular the ejection nozzles, and the gel recovery elements.
  • FIG. 6 shows in section an example of a device for removing the deposited gel.
  • Figure 1 shows a general view of the device according to the invention, seen from the rear relative to the observer.
  • the plane (100) generally in a vertical position constitutes the surface of the screen. It consists of a rigid preference plan. This plane is transparent, like a plane of glass for example.
  • the sub-pixels are represented by small areas uniformly distributed over the plan (100) coated with a transparent color, among the fundamental colors like red, green and blue.
  • Figure 1 shows a portion of these sub-pixels represented by small squares (101). Near the plane (100), and parallel to its surface, a ramp (102), guided by the rails (103) and (104) moves from left to right, and vice versa, generating each time a new image while erasing the previous one.
  • the movement means of the ramp (102) not shown here, and known to those skilled in the art, are mounted in the rails (103) and (104). Means for controlling the position of the ramp at all times, also known to those skilled in the art, are included in the movement means of the ramp (102).
  • Figure 2 shows a section along the axis (A) of Figure 1.
  • At the rear of the transparent plane (100) is the sub-pixels (101). These sub-pixels, which are simply transparent colored surfaces, are printed on the plane (100), or on a transparent flexible sheet attached to the rear of the plane (100).
  • the ramp (102) supports the erasing means and of generating the image. It moves parallel to the plane (100) at a fixed distance from the plane.
  • the lighting means (201) which produces light rays that pass through the sub-pixels and appear to the observer (202) colored according to the fundamental color of each pixel.
  • the light passing through each sub-pixel is partially or completely stopped by the opaque gel deposited by the ejection nozzles at the rear of the surface of each sub-pixel.
  • FIG. 3A represents a form of the invention, in which the sub-pixels have the shape of rectangles or squares, each having a color fundamental.
  • the sub-pixels in this first mode are therefore physically determined by their geometry, in both directions (x) and (y) of the plane (100).
  • FIG. 3B represents, according to another form of the invention, the sub-pixels which have the shape of narrow strips (300) covering all or part of the length of the plane (100), along the direction (x) of this plane.
  • the sub-pixels are geometrically defined only in the direction (y) of the plane (100).
  • the sub-pixels may have a variable length, depending on the needs of the image, their length being determined by the distribution of the gel drops in the direction (x).
  • FIG. 4A shows sub-pixels (401) (402) and (403) according to the form of the invention, of FIG. 3A.
  • the drops of gel are represented by the points (404).
  • the density of the deposited dots measured in dot per inch (dpi) or dot per inch is between 100 dpi and more than 1000 dpi .
  • the average diameter of the drops deposited is 70.5 microns. It is necessary that the points are secant and not tangent with each other, in order to obstruct the passage of light.
  • a screen of 3000 x 8000 sub-pixels is 3000 by 2660 pixels, a resolution of 8 million pixels would be obtained. The size of this screen would then be 2.37 meters x 6.32 meters.
  • Figure 4B shows the pixels according to the other embodiment of the invention of Figure 3B. Like the ramp
  • the images produced could have a very high horizontal resolution.
  • the pixels, according to this mode of the invention, would be narrow bands, monochrome, of length equal to that of the screen in the direction of movement of the ramp (102)
  • Figure 5 shows a section of the ramp (102). Opposite the plane (100) behind which the sub-pixels (101) are located, the nozzles for ejecting the drops of gel (500) are maintained at a suitable distance from the plane (100) by the ramp (102). The gel drops (404) are projected onto the surface of the sub-pixels (101), and form small opaque surfaces (506). According to the example of FIG. 5, the ramp (102) moves from right to left according to the arrow (507), erasing the previous image which is in front of the movement of the ramp (102) and generating a new image that appears after the passage of the ramp (102).
  • the means for recovering the gel are represented by a flexible blade (501) described below.
  • a second means (502) for recovering the gel located on the other side of the nozzle line (500) is not activated, as shown in FIG. 5, since it is located at the rear of the nozzles ejection, relative to the movement of the ramp (102), so as not to erase the new image that the ejection nozzles are producing.
  • the gel removed by the means (501) is filtered in order to eliminate any dust or dirt that could stick to the gel during exposure of the image. These filtering operations are known to those skilled in the art.
  • the gel is then stored in the reservoir (503) located just behind the ejection nozzles, ready to be reused.
  • the gel In the case where the chosen gel has a viscosity greater than that for which the ejection nozzles have been optimized, then the gel must be heated to reduce its viscosity. To do this, the tank (503) is heated to the necessary temperature, which is around 150 0 C depending on the type of gel. These heating means are known to those skilled in the art. In order to verify the quality of the erasing of the existing image, means (505) are installed on either side of the ejection nozzles (500) between the means (501) and (502) for recovering the gel. . These means of control
  • FIG. 6 shows the view from above of a gel removal means (506) constituting the image at wipe off.
  • a brush (601) in the form of a moving belt sweeps the plane (101) of the sub-pixels, moving the gel towards the bottom of the screen.
  • a flexible blade (600) preferably of rubber finishes recovering the gel which would not have been swept by the brush (601). The latter also sweeps the tip of the flexible blade (600) to remove the gel that would have accumulated on this blade.
  • the brush (601) is guided by a groove (602) dug in a guide attached to the ramp (102).
  • Figure 7 shows the section along B of Figure 6 of the gel recovery means.
  • the bottom of the plane (100) coated with the sub-pixels (101) is indicated by the index (700) in FIG. 7.
  • the brush (601) wraps around the wheel (701) at the bottom of the screen, the wheel (701) being driving.
  • the belt (601) circulates in the direction of the arrows (704), returning the gel to the bottom of the screen (700).
  • the bristles of the brush (601) are rotated on the grid (702).
  • the gel is deposited on this grid and is sucked through this grid into the container (703) connected to the filter station not shown here, which feeds the storage tank (503) above the line of nozzles (500 ) of Figure 5.

Abstract

The invention relates to a device for displaying renewable images that comprises a transparent surface as well as painted sub-pixels of the three fundamental colours (401), (402), (403), said colours being transparent. Light generating means generate a light that passes through the sub-pixels and transparent surface assembly. A monochrome recoverable and recyclable opaque gel (404) applied on the surface of the sub-pixels blocks more or less the light passing through the sub-pixels and the transparent surface, thus forming the levels of grey of an image. Application in wide-surface public displays of fixed and electronically renewable images.

Description

DISPOSITIF D'AFFICHAGE D'IMAGES RENOUVELABLES DEVICE FOR DISPLAYING RENEWABLE IMAGES
DESCRIPTIF Domaine d'application de l'invention:DESCRIPTION OF THE FIELD OF THE INVENTION
La présente invention a pour but un dispositif d'affichage d'images renouvelables. Elle trouve des applications notamment dans les écrans publicitaires, de préférence de grande taille, installés par exemple dans les lieux publics. L'invention concerne plus particulièrement les dispositifs d'affichage d'images fixes, renouvelables électroniquement.The present invention aims at a device for displaying renewable images. It finds applications including advertising screens, preferably large, installed for example in public places. The invention more particularly relates to display devices for still images, which are electronically renewable.
Etat de l ' art antérieur : Certains écrans de grande taille utilisent des LED selon le terme anglo-saxon qui signifie "Light Emission Diode". Ces écrans produisent des images animées. Leur utilisation est néanmoins restreinte, à cause de la faible qualité d'image, de leur coût élevé, mais également de leur maintenance. Les écrans plats plasma, ou à cristaux liquides, produisent une excellente qualité d'image, mais coûteraient extrêmement cher s'il fallait les fabriquer en très grande surface. De plus, il est difficile de les implanter en extérieur. C'est ainsi, que d'autres techniques, ont été développées. Une première catégorie utilise des dispositifs mécaniques, comme décrits dans les brevets WO0101378, WO03042966. Une rampe qui balaie l'écran, déplace des micro-volets de différentes couleurs, constituant les pixels de l'écran. Le brevet US4742632, propose des microvolets qui obstruent plus ou moins le passage de la lumière qui rétro-éclaire l'écran. Ces dispositifs sont extrêmement complexes, car pour obtenir une résolution d'image acceptable, il faut monter sur l'écran, un très grand nombre de ces volets ce qui est très coûteux, et difficile à réaliser. De plus, pour que le renouvellement de l'image soit rapide, il faut que le déplacement de la rampe qui balaie l'écran s'effectue en quelque dizaine de secondes, impliquant une grande complexité de déplacement des micro-volets par la rampe. Ce problème affecte grandement la fiabilité de l'ensemble. Une seconde catégorie de dispositifs, utilise l'enregistrement magnétique, comme décrit par exemple dans les brevets JP4199181 ou JP8016115. Une bande magnétique sans fin, est enregistrée par des têtes magnétiques. La bande passe à proximité d'une poudre magnétique qui constitue le toner. Ce dernier est attirée par les points enregistrés sur la bande, formant ainsi une image latente. Pour effacer l'image, la bande passe devant une tête magnétique qui la désaimante, permettant à un racloir ou un aspirateur de récupérer le toner ainsi libéré. Si ce procédé est plus fiable que le précédent, il présente néanmoins l'inconvénient de ne produire que des images bicolores, avec un faible contraste par rapport à la bande magnétique, car il n'existe qu'un choix très limité de couleur des toners magnétiques et des couches d'enregistrement. De plus, il est impossible de rétro-éclairer l'image, car il n'existe pas de bande magnétique transparente ayant les propriétés requises pour cette application. Une troisième catégorie, plus récente, a été développée, comme décrite dans les brevets JP6046225, et JP2003337548 et JP2002251150 par exemple. Cette technique consiste à imprimer une image sur une bande sans fin, en utilisant les techniques d'impression par jet d'encre. Ces techniques présentent l'avantage en comparaison des précédentes, de la simplicité, de la grande qualité de l'image, en terme de couleur et de résolution. Néanmoins, elles présentent certains inconvénients. Pour renouveler l'image, il faut effacer l'image précédente. Comme elle est constituée d'encres de plusieurs couleurs, les encres se mélangent à l'effacement, ce qui rend impossible leur recyclage. Il faut donc stocker les encres après effacement, dans un container dit "poubelle" . Le stockage de l'encre rejetée induit de nombreux problèmes. Outre les gaz toxiques qui se dégagent, le nettoyage du container est rendu difficile par le séchage de l'encre. Le brevet JP2002251150, décrit d'ailleurs un procédé par ultraviolet pour décomposer les substances organiques de ces encres dans la poubelle. Dans ces dispositifs, la consommation d'encre est un facteur bloquant, limitant drastiquement la taille de l'écran, et le nombre d'images . Le volume d'encre utilisé peut atteindre plusieurs dizaines de litres d'encre par jour. Par ailleurs, l'utilisation d'une bande sans fin, est mal adaptée aux écrans de grande taille, le guidage de la bande devenant très difficile, notamment pour un déplacement horizontal.State of the prior art: Some large screens use LEDs according to the Anglo-Saxon term which means "Light Emission Diode". These screens produce animated images. Their use is nevertheless restricted because of the low image quality, the high cost, and also the maintenance. Plasma or liquid crystal displays produce excellent image quality, but would be extremely expensive if they were to be manufactured in very large areas. In addition, it is difficult to implement outdoors. This is how other techniques have been developed. A first category uses mechanical devices, as described in patents WO0101378, WO03042966. A ramp that sweeps the screen, moves micro-shutters of different colors, constituting the pixels of the screen. Patent US4742632 proposes microvolts that obstruct more or less the passage of light that backlit the screen. These devices are extremely complex because to obtain a acceptable image resolution, it is necessary to mount on the screen, a very large number of these components which is very expensive, and difficult to achieve. In addition, for the renewal of the image is fast, it is necessary that the movement of the ramp that sweeps the screen is carried out in about ten seconds, involving a great complexity of moving the micro-shutters by the ramp. This problem greatly affects the reliability of the whole. A second category of devices uses magnetic recording, as described for example in JP 4199181 or JP 8016115. An endless magnetic tape is recorded by magnetic heads. The band passes near a magnetic powder which constitutes the toner. The latter is attracted by the points recorded on the tape, thus forming a latent image. To erase the image, the tape passes in front of a magnetic head that demagnetizes it, allowing a scraper or vacuum cleaner to recover the toner thus released. If this method is more reliable than the previous one, it nevertheless has the disadvantage of producing only two-color images, with low contrast compared to the magnetic tape, because there is only a very limited choice of color of the toners magnetic and recording layers. In addition, it is impossible to backlight the image, because there is no transparent magnetic tape having the properties required for this application. A third category, more recent, has been developed, as described in patents JP6046225, and JP2003337548 and JP2002251150 for example. This technique involves printing an image on an endless band, using jet printing techniques ink. These techniques have the advantage in comparison with the previous ones, the simplicity, the high quality of the image, in terms of color and resolution. Nevertheless, they have certain disadvantages. To renew the image, you must erase the previous image. As it is composed of inks of several colors, the inks mix with the erasing, which makes impossible their recycling. It is therefore necessary to store the inks after erasure, in a container called "trash". The storage of the rejected ink causes many problems. In addition to the toxic gases that emerge, the cleaning of the container is made difficult by the drying of the ink. Patent JP2002251150, moreover describes an ultraviolet process for decomposing the organic substances of these inks in the trash. In these devices, the ink consumption is a blocking factor, drastically limiting the size of the screen, and the number of images. The volume of ink used can reach several tens of liters of ink per day. Moreover, the use of an endless belt is poorly suited to large screens, guiding the band becoming very difficult, especially for horizontal movement.
La présente invention, a pour but de remédier à ces inconvénients, en proposant un dispositif d'affichage d'images renouvelables électroniquement, de grande dimension, et de grande qualité en terme de résolution, niveaux de gris et de couleurs réalisées sur une surface plane de préférence rigide. Cette surface est recouverte uniformément de petites surfaces appelées sous-pixels, revêtue des couleurs fondamentales, ces couleurs étant transparentes. Les sous pixels sont recouverts totalement ou partiellement d'une substance gélatineuse, d'aspect pâteuse, semblable à de la graisse, que l'on nommera par la suite le "gel". Ce gel monochrome est opaque à la lumière. Le gel déposé sur les sous-pixels est recyclable. L'écran est rétro-éclairé . La génération de l'image est rapide. Le dispositif selon l'invention permet de réaliser des écrans de grande taille. Enfin le dispositif de par sa simplicité peut être fabriqué à faible coût.The object of the present invention is to remedy these drawbacks by proposing an electronically renewable image display device of great size and of high quality in terms of resolution, gray levels and colors produced on a flat surface. preferably rigid. This surface is uniformly covered with small areas called subpixels, coated with the fundamental colors, these colors being transparent. The sub pixels are totally or partially covered with a gelatinous substance, pasty appearance, similar to grease, which will be called later "gel". This monochrome gel is opaque to light. The gel deposited on the sub-pixels is recyclable. The screen is backlit. The generation of the image is fast. The device according to the invention makes it possible to produce large screens. Finally the device by its simplicity can be manufactured at low cost.
Ce but est atteint par l'invention, grâce, à un plan de préférence rigide et transparent constituant le plan de l'écran. A l'arrière de ce plan par rapport à l'observateur, se trouvent de petites surfaces colorées aux trois couleurs fondamentales qui forment les sous-pixels de l'écran, un pixel étant constitué de trois de ces sous-pixels. Chaque sous-pixel comporte une couleur fondamentale qui est transparente. Les sous-pixels sont répartis uniformément sur le plan constituant l'écran. Les niveaux de gris de l'image sont obtenus par dépôt d'un gel monochrome et opaque, sur l'arrière de la surface des sous pixels. Le gel opaque recouvre une surface plus ou moins grande du sous-pixel, suivant le niveau de gris recherché. La viscosité et la tension de surface du gel sont tels que le gel reste fixé à la surface des sous-pixels, sans couler, ni sécher ou durcir pendant la durée d'exposition de l'image. Lorsqu'il convient d'effacer l'image pour en exposer une autre, le gel est récupéré et recyclé. Selon un mode de l'invention les techniques de jet d'encre connues de l'homme de l'art sont proposées pour déposer le gel à l'arrière de la surface des sous-pixels. Une rampe comportant un grand nombre de buses d'éjection de gouttelettes de gel, se déplace à l'arrière de l'écran, afin de couvrir toute sa surface. Comme le gel après l'exposition de l'image, est récupéré, et recyclé, il n'y a pas de consommation de gel selon l'invention.This object is achieved by the invention, thanks to a preferably rigid and transparent plane constituting the plane of the screen. At the rear of this plane with respect to the observer, there are small colored areas with the three basic colors that form the sub-pixels of the screen, a pixel consisting of three of these sub-pixels. Each subpixel has a fundamental color that is transparent. The sub-pixels are uniformly distributed on the plane constituting the screen. The gray levels of the image are obtained by depositing a monochrome and opaque gel on the back of the surface of the sub-pixels. The opaque gel covers a larger or smaller surface of the sub-pixel, depending on the desired gray level. The viscosity and surface tension of the gel are such that the gel remains attached to the surface of the subpixels without flowing, drying or curing during the exposure time of the image. When it is appropriate to erase the image to expose another, the gel is recovered and recycled. According to one embodiment of the invention, the inkjet techniques known to those skilled in the art are proposed for depositing the gel at the rear of the surface of the sub-pixels. A ramp with a large number of nozzles of ejection of gel droplets, moves to the back of the screen, to cover its entire surface. As the gel after exposure of the image, is recovered, and recycled, there is no consumption of gel according to the invention.
De façon plus précise, l'invention a pour objet un dispositif d'affichage d'image renouvelables électroniquement, de grande dimension pouvant atteindre plusieurs mètres de longueur ou de hauteur. L'écran est constitué d'un plan de préférence rigide et transparent, monté de préférence en position verticale, comportant des sous-pixels aux couleurs fondamentales, (rouge, verte et bleue) , ces couleurs étant transparentes afin que l'écran puisse être rétro éclairé. Les sous-pixels sont simplement de petites surfaces colorées et transparentes. Les sous pixels reçoivent des gouttelettes de gel opaque, produites par des buses d'éjection de gel, selon les techniques connues de jet d'encre. Un grand nombre de buses sont alignées sous une rampe qui balaie à l'arrière de l'écran sa surface préférentiellement dans le sens de sa plus grande dimension. Le nombre de gouttelettes de gel opaque obstrue plus ou moins le passage de la lumière qui traverse les sous pixels, permettant ainsi de réaliser les niveaux de gris de l'image. Les sous-pixels de forme carrée ou rectangulaire, sont répartis uniformément sur le plan. Selon un autre mode, les sous-pixels ont la forme de bandes étroites, chacune ayant une couleur fondamentale. Ces bandes sont parallèles au déplacement de la rampe comportant les buses d'éjection des gouttelettes de gel. Dans ce second mode, la longueur du sous-pixel est uniquement fixée par le dépôt des gouttelettes de gel, et sa largeur par la largeur de la bande étroite. La taille des sous-pixels est comprise entre quelques dixièmes de millimètres carrés à quelques dizaines de millimètres carrés selon la taille de l'écran et de sa résolution. Les sous-pixels sont recouverts totalement ou partiellement d'un gel opaque et monochrome. Une fois déposé sur la surface des sous- pixels, le gel reste à l'état latent, sans couler ni sécher ou durcir pendant la durée de l'exposition de l'image, qui est comprise entre quelques secondes, et quelques heures. Dans le cas où la même image doit rester exposée pour une durée supérieure, l'invention prévoit que la même image soit néanmoins effacée et renouvelée périodiquement. Différentes techniques de dépôt du gel peuvent être utilisées, notamment les techniques de jet d'encre connues de l'homme de l'art. Dans ce cas, la viscosité du gel au passage des buses d'éjections, est proche de celle des encres standards, c'est à dire de l'ordre de 15 mPa.S. Lorsqu'une viscosité plus importante est nécessaire, ce qui interdirait l'utilisation des buses à jet d'encre, alors le gel est chauffé dans le réservoir alimentant les buses d'éjections, pour atteindre la viscosité adéquate pour la bonne éjection des gouttelettes. Au contact de la surface arrière des sous-pixels, le gel retrouve sa viscosité d'origine. Ces techniques de chauffage sont connues de l'homme de l'art sous l'appellation anglo-saxonne de "hot melt ink jet printing", c'est à dire d'impression par jet d'encre liquéfiée par chauffage. En effet, selon les applications, ces techniques utilisent une encre solide, qui est fondue par chauffage, afin de pouvoir être éjectée au travers des buses de jet d'encre. Selon l'invention, ces techniques permettent simplement de rendre le gel plus fluide si nécessaire afin d'être éjecté par des buses de jet d'encre conventionnelles. Une fois l'exposition de l'image terminée, le gel est récupéré, ce qui a pour effet d'effacer l'image existante, afin qu'une nouvelle image soit formée. Le gel récupéré, est filtré puis réutilisé pour les images suivantes. Selon un mode de l'invention, le diamètre des gouttes de gel déposées, est ajusté de façon à ce que le sous pixel puisse être entièrement recouvert de gel par une projection pouvant atteindre 256 gouttelettes de gel, ce qui permet, selon ce mode, de réaliser en fonction du nombre de gouttelettes déposées, jusqu'à 256 niveaux de gris par sous pixel. Selon un autre mode de l'invention, des buses dites "greyscale ink jet" suivant le terme anglo-saxon sont proposées. Ces buses permettent d'éjecter des gouttelettes de volume variable. Par exemple, pour atteindre les 256 niveaux de gris, seulement 16 gouttelettes de 16 volumes variables suffisent. La rampe qui balaie l'écran à l'arrière de celui-ci, se déplace préférentiellement le long de sa grande longueur, afin de minimiser le nombre des buses qui sont alignées suivant la largeur de l'écran. De part et d'autre de la ligne des buses d'éjection, sont installés sur la même rampe des moyens d'enlèvement du gel. Au cours du déplacement de la rampe, l'enlèvement du gel, c'est à dire l'effacement de l'image existante, s'effectue juste avant la production par les buses d'éjection de l'image suivante. Ainsi, l'observateur, pendant la durée d'effacement de l'image existante, et la génération de l'image suivante, ne voit qu'un trait sombre, de largeur égale à celui de la rampe, qui balaie l'écran. Selon le sens de déplacement de la rampe, à l'avant de ce trait, l'image existante disparaît, et à l'arrière de ce trait, la nouvelle image apparaît. Afin de ne pas effacer la nouvelle image qui est en cours de dépôt, les moyens d'enlèvement du gel situés après les buses de jet d'encre, selon le sens de déplacement de la rampe, sont inactifs. Différents moyens de récupération du gel sont proposés, comme par exemple des moyens mécaniques, qui utilisent des brosses ou des lames caoutchouc souples, des moyens par aspiration, par soufflage, par attraction magnétique ou électrostatique, ou une combinaison de ces moyens. Selon un mode de l'invention, la rampe supporte les moyens électroniques et informatiques de pilotage des buses d'éjection notamment le multiplexage des buses, le chauffage du gel si nécessaire, les moyens d'enlèvement du gel, les moyens de contrôle de la qualité de l'enlèvement, ainsi que les moyens de filtration. La rampe est guidée par deux rails situés de part et d'autre du plan rigide constituant l'écran, préférentiellement le long des grands cotés de l'écran. Les rails possèdent des moyens de déplacement de la rampe, ainsi que des moyens permettant la localisation à tout instant de la rampe, par rapport à l'écran, et de contrôle de sa vitesse de déplacement. L'écran possède un éclairage arrière, la lumière traverse les sous pixels, et le plan principal transparent, entre les gouttes de gel, qui obstruent plus ou moins le passage de la lumière pour réaliser les niveaux de gris. Des moyens de réception radio ou filaires des informations graphiques codées, sont installés à l'arrière de l'écran, et après traitement, transmis aux moyens électroniques de pilotage des buses installés sur la rampe mobile.More precisely, the subject of the invention is an electronically renewable image display device of large size that can reach several meters in length or height. The screen consists of a plane preferably rigid and transparent, preferably mounted in a vertical position, comprising sub-pixels in the fundamental colors (red, green and blue), these colors being transparent so that the screen can be backlit. Subpixels are simply small, colored and transparent areas. The sub-pixels receive opaque gel droplets, produced by gel ejection nozzles, according to known inkjet techniques. A large number of nozzles are aligned under a ramp which sweeps at the rear of the screen its surface preferably in the direction of its largest dimension. The number of opaque gel droplets more or less obstructs the passage of light passing through the sub-pixels, thus making it possible to achieve the gray levels of the image. The sub-pixels of square or rectangular shape, are uniformly distributed on the plane. In another mode, the sub-pixels are in the form of narrow bands, each having a fundamental color. These strips are parallel to the movement of the ramp comprising the nozzles for ejecting the gel droplets. In this second mode, the length of the sub-pixel is only fixed by the deposition of the gel droplets, and its width by the width of the narrow band. The size of the sub-pixels is between a few tenths of a square millimeter to a few tens of square millimeters depending on the size of the screen and its resolution. The sub-pixels are totally or partially covered with an opaque and monochrome gel. Once deposited on the surface of the sub-pixels, the gel remains in the latent state, without flowing or drying or hardening during the exposure of the image, which is between a few seconds, and a few hours. In the case where the same image must remain exposed for a longer period, the invention provides that the same image is nevertheless erased and periodically renewed. Various gel deposition techniques may be used, including inkjet techniques known to those skilled in the art. In this case, the viscosity of the gel at the passage of the ejection nozzles, is close to that of standard inks, ie of the order of 15 mPa.S. When a higher viscosity is required, which would prohibit the use of the ink jet nozzles, then the gel is heated in the reservoir feeding the ejection nozzles, to achieve the viscosity adequate for the proper ejection of the droplets. In contact with the rear surface of the sub-pixels, the gel regains its original viscosity. These heating techniques are known to those skilled in the art under the name Anglo-Saxon "hot melt ink jet printing", ie printing ink jet liquefied by heating. Indeed, according to the applications, these techniques use a solid ink, which is melted by heating, so that it can be ejected through the ink jet nozzles. According to the invention, these techniques allow simply to make the gel more fluid if necessary to be ejected by conventional inkjet nozzles. Once the exposure of the image is complete, the gel is recovered, which has the effect of erasing the existing image, so that a new image is formed. The recovered gel is filtered and reused for subsequent images. According to one embodiment of the invention, the diameter of the deposited gel drops is adjusted so that the sub-pixel can be completely covered with gel by a projection of up to 256 gel droplets, which allows, according to this mode, to achieve, depending on the number of droplets deposited, up to 256 gray levels per sub-pixel. According to another embodiment of the invention, nozzles called "greyscale ink jet" according to the Anglo-Saxon term are proposed. These nozzles make it possible to eject droplets of variable volume. For example, to reach the 256 levels of gray, only 16 droplets of 16 variable volumes are enough. The ramp that sweeps the screen at the back of it, preferably moves along its long length, to minimize the number of nozzles that are aligned according to the width of the screen. On either side of the line of the ejection nozzles are installed on the same ramp means for removing the gel. During the movement of the ramp, the removal of the gel, ie the erasure of the existing image, is done just before production by the ejection nozzles of the next image. Thus, the observer, during the duration of erasure of the existing image, and the generation of the next image, sees only a dark line, of width equal to that of the ramp, which sweeps the screen. According to the direction of movement of the ramp, at the front of this line, the existing image disappears, and at the back of this line, the new image appears. In order not to erase the new image that is being deposited, the gel removal means located after the ink jet nozzles, depending on the direction of movement of the ramp, are inactive. Various means for recovering the gel are provided, such as mechanical means, which use brushes or flexible rubber blades, means by suction, by blowing, by magnetic or electrostatic attraction, or a combination of these means. According to one embodiment of the invention, the ramp supports the electronic and computer means for controlling the ejection nozzles, in particular the multiplexing of the nozzles, the heating of the gel if necessary, the means for removing the gel, the means for controlling the quality of the removal, as well as the means of filtration. The ramp is guided by two rails located on either side of the rigid plane constituting the screen, preferably along the long sides of the screen. The rails have means for moving the ramp, as well as means for locating the ramp at any time, with respect to the screen, and for controlling its speed of movement. The screen has a back light, the light passes through the sub-pixels, and the main plane transparent, between the drops of gel, which obstruct more or less the passage of light to achieve the gray levels. Radio or wired reception means coded graphic information, are installed at the back of the screen, and after processing, transmitted to the means electronic control of nozzles installed on the mobile ramp.
De toute façon, les caractéristiques et avantages de l'invention, apparaîtront mieux après la description qui suit, donnée à titre explicatif et nullement limitatif. Cette description se réfère aux dessins annexés, sur lesquels:In any case, the features and advantages of the invention will appear better after the description which follows, given for explanatory purposes and in no way limiting. This description refers to the accompanying drawings, in which:
--La figure 1 montre le plan général, vu par l'arrière, du dispositif selon l'invention. --La figure 2 montre la coupe selon A du dispositif- Figure 1 shows the general plan, seen from the rear, of the device according to the invention. FIG. 2 shows the section according to A of the device
--Les figures 3A et 3B montrent deux modes de géométrie des sous-pixelsFIGS. 3A and 3B show two subpixel geometry modes
--Les figures 4A et 4B montrent des exemples de niveaux de gris selon les deux modes de géométrie des sous-pixels des figures 3A et 3BFIGS. 4A and 4B show examples of gray levels according to the two modes of geometry of the sub-pixels of FIGS. 3A and 3B
--La figure 5 montre en coupe l'implantation des divers moyens de la rampe notamment les buses d'éjection, et des éléments de récupération du gel —La figure 6 montre en coupe un exemple de dispositif d'enlèvement du gel déposé.FIG. 5 shows in section the implantation of the various means of the ramp, in particular the ejection nozzles, and the gel recovery elements. FIG. 6 shows in section an example of a device for removing the deposited gel.
--La figure 7 montre une coupe des moyens de récupération du gel.- Figure 7 shows a section of the gel recovery means.
La figure 1 montre une vue générale du dispositif selon l'invention, vu de l'arrière par rapport à l'observateur. Le plan (100) généralement en position verticale, constitue la surface de l'écran. Il est constitué d'un plan de préférence rigide. Ce plan est transparent, comme un plan de verre par exemple. A l'arrière de ce plan, les sous-pixels sont représentés par de petites surfaces uniformément réparties sur le plan (100) revêtue d'une couleur transparente, parmi les couleurs fondamentales comme rouge, vert et bleu. La figure 1 montre une partie de ces sous-pixels représentés par de petits carrés (101). A proximité du plan (100), et parallèlement à sa surface, une rampe (102) , guidée par les rails (103) et (104) se déplace de gauche à droite, et vice et versa, générant à chaque passage une nouvelle image tout en effaçant la précédente. Les moyens de déplacement de la rampe (102) non représentés ici, et connus de l'homme de l'art, sont montés dans les rails (103) et (104). Des moyens de contrôle de la position de la rampe à tout instant, également connus de l'homme de l'art, sont inclus dans les moyens de déplacement de la rampe (102). La figure 2, montre une coupe selon l'axe (A) de la figure 1. A l'arrière du plan transparent (100), se trouve les sous-pixels (101) . Ces sous-pixels qui sont simplement des surfaces colorées transparentes, sont imprimés sur le plan (100), ou sur une feuille souple transparentes rapportées à l'arrière du plan (100) .La rampe (102) supporte les moyens d'effacement et de génération de l'image. Elle se déplace parallèlement au plan (100) à une distance constate du plan. A l'arrière de l'écran, se trouve les moyens d'éclairage (201) qui produisent des rayons lumineux qui traversent les sous- pixels et apparaissent à l'observateur (202) colorés selon la couleur fondamentale de chaque pixel. La lumière qui traverse chaque sous-pixel, est partiellement ou totalement arrêtée par le gel opaque déposé par les buses d'éjections à l'arrière de la surface de chaque sous- pixel .Figure 1 shows a general view of the device according to the invention, seen from the rear relative to the observer. The plane (100) generally in a vertical position constitutes the surface of the screen. It consists of a rigid preference plan. This plane is transparent, like a plane of glass for example. At the rear of this plane, the sub-pixels are represented by small areas uniformly distributed over the plan (100) coated with a transparent color, among the fundamental colors like red, green and blue. Figure 1 shows a portion of these sub-pixels represented by small squares (101). Near the plane (100), and parallel to its surface, a ramp (102), guided by the rails (103) and (104) moves from left to right, and vice versa, generating each time a new image while erasing the previous one. The movement means of the ramp (102) not shown here, and known to those skilled in the art, are mounted in the rails (103) and (104). Means for controlling the position of the ramp at all times, also known to those skilled in the art, are included in the movement means of the ramp (102). Figure 2 shows a section along the axis (A) of Figure 1. At the rear of the transparent plane (100) is the sub-pixels (101). These sub-pixels, which are simply transparent colored surfaces, are printed on the plane (100), or on a transparent flexible sheet attached to the rear of the plane (100). The ramp (102) supports the erasing means and of generating the image. It moves parallel to the plane (100) at a fixed distance from the plane. At the back of the screen is the lighting means (201) which produces light rays that pass through the sub-pixels and appear to the observer (202) colored according to the fundamental color of each pixel. The light passing through each sub-pixel is partially or completely stopped by the opaque gel deposited by the ejection nozzles at the rear of the surface of each sub-pixel.
La figure 3A représente une forme de l'invention, dans laquelle les sous-pixels ont la forme de rectangles ou de carrés, comportant chacun une couleur fondamentale. Les sous-pixels dans ce premier mode, sont donc physiquement déterminés par leur géométrie, dans les deux directions (x) et (y) du plan (100) .FIG. 3A represents a form of the invention, in which the sub-pixels have the shape of rectangles or squares, each having a color fundamental. The sub-pixels in this first mode, are therefore physically determined by their geometry, in both directions (x) and (y) of the plane (100).
La figure 3B représente selon une autre forme de l'invention, les sous-pixels qui ont la forme de bandes étroites (300) couvrant toute ou partie de la longueur du plan (100) , selon la direction (x) de ce plan. Selon ce mode, les sous-pixels ne sont définis géométriquement que dans la direction (y) du plan (100). Dans la direction (x) , les sous-pixels peuvent avoir une longueur variable, fonction des besoins de l'image, leur longueur étant déterminée par la répartition des gouttes de gel dans la direction (x) .FIG. 3B represents, according to another form of the invention, the sub-pixels which have the shape of narrow strips (300) covering all or part of the length of the plane (100), along the direction (x) of this plane. According to this mode, the sub-pixels are geometrically defined only in the direction (y) of the plane (100). In the direction (x), the sub-pixels may have a variable length, depending on the needs of the image, their length being determined by the distribution of the gel drops in the direction (x).
La figure 4A, montre des sous-pixels (401) (402) et (403) selon la forme de l'invention, de la figure 3A . A titre illustratif, nous allons déterminer, selon l'invention la taille de ces sous-pixels pour une image de haute qualité. Les gouttes de gel sont représentés par les points (404). Selon l'état de l'art des techniques de jet d'encre, la densité des points déposés mesurée en dot per inch (dpi) ou en point par inch, se situe entre 100 dpi et plus de 1000 dpi .A 360 dpi par exemple, le diamètre moyen des gouttes déposées est de 70,5 μm. Il est nécessaire que les points soient sécants et non pas tangents les uns avec les autres, afin de bien obstruer le passage de la lumière. Un coefficient de superposition de 70% est nécessaire, ce qui donne une distance entre les axes des points de 70,5μm x 0,7 = 49,35 μm. Pour une image de haute qualité, ayant 15,7 millions de couleurs, soit 256 niveaux de gris par couleur fondamentale, chacun de ces niveaux de gris étant représenté par une goutte de gel, chaque sous-pixel pourrait être couvert au maximum par 16 x 16 = 256 gouttes de gel. Le sous-pixel aurait alors la forme d'un carré de 49,35μm x 16 = 789,6 μm de coté. Supposons un écran de 3000 x 8000 sous-pixels soit 3000 par 2660 pixels, une résolution de 8 millions de pixels serait obtenue. La taille de cet écran serait alors de 2,37 mètres x 6,32 mètres.FIG. 4A shows sub-pixels (401) (402) and (403) according to the form of the invention, of FIG. 3A. As an illustration, we will determine, according to the invention, the size of these sub-pixels for a high quality image. The drops of gel are represented by the points (404). According to the state of the art of inkjet techniques, the density of the deposited dots measured in dot per inch (dpi) or dot per inch, is between 100 dpi and more than 1000 dpi .A 360 dpi by for example, the average diameter of the drops deposited is 70.5 microns. It is necessary that the points are secant and not tangent with each other, in order to obstruct the passage of light. A superimposition coefficient of 70% is necessary, which gives a distance between the axes of the points of 70.5 μm x 0.7 = 49.35 μm. For a high-quality image, with 15.7 million colors, or 256 greyscales per fundamental color, each of these gray levels being represented by a drop of gel, each sub-pixel could be covered at most by 16 x 16 = 256 drops of gel. The sub-pixel would then have the shape of a square of 49.35 μm x 16 = 789.6 μm on the side. Suppose a screen of 3000 x 8000 sub-pixels is 3000 by 2660 pixels, a resolution of 8 million pixels would be obtained. The size of this screen would then be 2.37 meters x 6.32 meters.
La figure 4B montre les pixels selon l'autre mode de 1 ' invention de la figure 3B . Comme la rampeFigure 4B shows the pixels according to the other embodiment of the invention of Figure 3B. Like the ramp
(102) se déplace horizontalement, il peut être avantageux de ne pas fixer la longueur des pixels dans le sens du déplacement de la rampe, mais d'utiliser la projection des gouttes de gel pour définir les niveaux de gris dans la même couleur fondamentale, le long du déplacement de la rampe. Ainsi, les images produites pourraient avoir une très grande résolution horizontale. Les pixels, selon ce mode de l'invention, seraient des bandes étroites, monochrome, de longueur égale à celle de l'écran dans le sens de déplacement de la rampe (102)(102) moves horizontally, it may be advantageous not to fix the length of the pixels in the direction of movement of the ramp, but to use the projection of the drops of gel to define the gray levels in the same fundamental color, along the movement of the ramp. Thus, the images produced could have a very high horizontal resolution. The pixels, according to this mode of the invention, would be narrow bands, monochrome, of length equal to that of the screen in the direction of movement of the ramp (102)
La figure 5 montre une coupe de la rampe (102). Face au plan (100) à l'arrière duquel sont situés les sous-pixels (101), les buses d'éjection des gouttes de gel (500) sont maintenues à une distance adéquate par rapport au plan (100), par la rampe (102). Les gouttes de gel (404) sont projetées sur la surface des sous- pixels (101) , et forment des petites surfaces opaques (506). Selon l'exemple de la figure 5, la rampe (102) se déplace de la droite vers la gauche selon la flèche (507), effaçant l'image précédente qui se trouve à l'avant du déplacement de la rampe (102) et générant une nouvelle image qui apparaît après le passage de la rampe (102) . Les moyens de récupération du gel sont représentés par une lamelle souple (501) décrite plus loin. Un second moyen (502) de récupération du gel situé de l'autre coté de la ligne des buses (500) , n'est pas activé, comme le montre la figure 5, car il se situe à l'arrière des buses d'éjection, par rapport au déplacement de la rampe (102), afin de ne pas effacer la nouvelle image que les buses d'éjection sont en train de produire. Le gel retiré par les moyens (501), est filtré afin d'éliminer d'éventuelles poussières ou salissures qui auraient pu se coller contre le gel pendant l'exposition de l'image. Ces opérations de filtrage sont connues de l'homme de l'art. Le gel est ensuite stocké dans le réservoir (503) situé juste à l'arrière des buses d'éjections, prêt à être réutilisé. Dans le cas où le gel choisi présente une viscosité supérieure à celle pour laquelle les buses d'éjections ont été optimisées, alors le gel doit être réchauffé afin de réduire sa viscosité. Pour ce faire, le réservoir (503) est chauffé à la température nécessaire, qui se situe aux environs de 1500C selon le type de gel. Ces moyens de chauffage sont connus de l'homme de l'art. Afin de vérifier la qualité de l'effacement de l'image existante, des moyens (505) sont installés de part et d'autre des buses d' éjections (500) entre les moyens (501) et (502) de récupération du gel. Ces moyens de contrôleFigure 5 shows a section of the ramp (102). Opposite the plane (100) behind which the sub-pixels (101) are located, the nozzles for ejecting the drops of gel (500) are maintained at a suitable distance from the plane (100) by the ramp (102). The gel drops (404) are projected onto the surface of the sub-pixels (101), and form small opaque surfaces (506). According to the example of FIG. 5, the ramp (102) moves from right to left according to the arrow (507), erasing the previous image which is in front of the movement of the ramp (102) and generating a new image that appears after the passage of the ramp (102). The means for recovering the gel are represented by a flexible blade (501) described below. A second means (502) for recovering the gel located on the other side of the nozzle line (500) is not activated, as shown in FIG. 5, since it is located at the rear of the nozzles ejection, relative to the movement of the ramp (102), so as not to erase the new image that the ejection nozzles are producing. The gel removed by the means (501) is filtered in order to eliminate any dust or dirt that could stick to the gel during exposure of the image. These filtering operations are known to those skilled in the art. The gel is then stored in the reservoir (503) located just behind the ejection nozzles, ready to be reused. In the case where the chosen gel has a viscosity greater than that for which the ejection nozzles have been optimized, then the gel must be heated to reduce its viscosity. To do this, the tank (503) is heated to the necessary temperature, which is around 150 0 C depending on the type of gel. These heating means are known to those skilled in the art. In order to verify the quality of the erasing of the existing image, means (505) are installed on either side of the ejection nozzles (500) between the means (501) and (502) for recovering the gel. . These means of control
(505) sont activés en même temps que le moyen de récupération du gel qui lui est associé. Ces moyens utilisant des techniques optiques, sont connus de l'homme de l'art. L'ensemble des moyens décrits de la figure 5, sont contrôlés par une électronique (504) embarquée sur la rampe (102) . Cet ensemble comprend notamment la gestion et le multiplexage des buses d'éjection (500), les moyens de récupération (501) et (502) , les moyens de contrôle (505) de l'effacement de l'image existante, la chaîne de récupération du gel, de sa filtration, des niveaux et température du gel contenu dans le réservoir (503).(505) are activated together with the gel recovery means associated therewith. These means using optical techniques are known to those skilled in the art. All of the means described in FIG. 5 are controlled by electronics (504) on the ramp (102). This set includes in particular the management and the multiplexing of the ejection nozzles (500), the recovery means (501) and (502), the control means (505) of the erasing of the existing image, the chain of recovery of the gel, its filtration, levels and temperature of the gel contained in the reservoir (503).
La figure 6 montre la coupe vue de dessus, d'un moyen d'enlèvement du gel (506) constituant l'image à effacer. Sur le plan (100) revêtu à l'arrière des sous- pixels (101), une brosse (601), sous la forme d'une courroie mobile balaie le plan (101) des sous-pixels, déplaçant le gel en direction du bas de l'écran. Une lame souple (600) de préférence en caoutchouc finit de récupérer le gel qui n'aurait pas été balayé par la brosse (601). Cette dernière balaie également la pointe de la lame souple (600) afin d'enlever le gel qui se serait accumulé sur cette lame. La brosse (601) est guidée par une gorge (602) creusée dans un guide fixé à la rampe (102) .FIG. 6 shows the view from above of a gel removal means (506) constituting the image at wipe off. On the plane (100) coated behind the sub-pixels (101), a brush (601) in the form of a moving belt sweeps the plane (101) of the sub-pixels, moving the gel towards the bottom of the screen. A flexible blade (600) preferably of rubber finishes recovering the gel which would not have been swept by the brush (601). The latter also sweeps the tip of the flexible blade (600) to remove the gel that would have accumulated on this blade. The brush (601) is guided by a groove (602) dug in a guide attached to the ramp (102).
La figure 7 montre la coupe selon B de la figure 6 du moyen de récupération du gel . Le bas du plan (100) revêtu des sous-pixels (101), est repéré par l'indice (700) sur la figure 7. La brosse (601) s'enroule autour de la roue (701) au bas de l'écran, la roue (701) étant motrice. La courroie (601) circule selon le sens des flèches (704), ramenant le gel au bas de l'écran (700). Les poils de la brosse (601) sont plaqués en rotation sur la grille (702) . Le gel se dépose sur cette grille puis est aspiré au travers de cette grille dans le container (703) relié à la station de filtrage non représentée ici, qui alimente le réservoir de stockage (503) au-dessus de la ligne de buses (500) de la figure 5. Figure 7 shows the section along B of Figure 6 of the gel recovery means. The bottom of the plane (100) coated with the sub-pixels (101) is indicated by the index (700) in FIG. 7. The brush (601) wraps around the wheel (701) at the bottom of the screen, the wheel (701) being driving. The belt (601) circulates in the direction of the arrows (704), returning the gel to the bottom of the screen (700). The bristles of the brush (601) are rotated on the grid (702). The gel is deposited on this grid and is sucked through this grid into the container (703) connected to the filter station not shown here, which feeds the storage tank (503) above the line of nozzles (500 ) of Figure 5.

Claims

REVENDICATIONS
1. Dispositif d'affichage d'images renouvelables comprenant une surface transparente, des sous-pixels peints aux trois couleurs fondamentales, ces couleurs étant transparentes, des moyens de génération de lumière, la lumière traversant l'ensemble des sous- pixels et la surface transparente, caractérisé en ce qu'un gel, opaque, monochrome, récupérable et recyclable déposé sur la surface des sous-pixels obstrue plus ou moins le passage de la lumière qui traverse les sous-pixels et la surface transparente, formant ainsi les niveaux de gris d'une image. 1. Renewable image display device comprising a transparent surface, sub-pixels painted in the three basic colors, these colors being transparent, light generating means, the light passing through all the sub-pixels and the surface transparent, characterized in that a gel, opaque, monochrome, recoverable and recyclable deposited on the surface of the sub-pixels more or less obstructs the passage of light through the sub-pixels and the transparent surface, thus forming the levels of gray of an image.
2. Dispositif d'affichage d'images renouvelables, selon la revendication 1 caractérisé en ce que le gel opaque monochrome récupérable et recyclable, est déposé sur la surface des sous-pixels sous la forme de gouttelettes projetées par des buses d'éjection, selon les techniques de jet d'encre.Renewable image display device according to claim 1, characterized in that the recoverable and recyclable monochrome opaque gel is deposited on the surface of the sub-pixels in the form of droplets projected by ejection nozzles, according to inkjet techniques.
3. Dispositif d'affichage d'images renouvelables, selon la revendication 1, caractérisé en ce que le gel opaque, monochrome, récupérable et recyclable, adhère à la surface des sous-pixels, sans couler, ni sécher ni durcir pendant la durée d'exposition de l'image.Renewable image display device according to claim 1, characterized in that the opaque, monochrome, recoverable and recyclable gel adheres to the surface of the sub-pixels without flowing, drying or hardening during the period of time. exposure of the image.
4. Dispositif d'affichage d'images renouvelables, selon la revendication 2, caractérisé en ce que le gel opaque, monochrome, récupérable et recyclable, au passage à travers le buses d'éjections a une viscosité de l'ordre de 15 mPa.s.4. Device for displaying renewable images, according to claim 2, characterized in that the opaque gel, monochrome, recoverable and recyclable, passing through the ejection nozzle has a viscosity of the order of 15 mPa. s.
5. Dispositif d'affichage d'images renouvelables, selon les revendications 1 et 2, caractérisé en ce que les buses d'éjection sont montées sur une rampe (102) qui balaie la surface de l'écran. 5. Renewable image display device according to claims 1 and 2, characterized in that the ejection nozzles are mounted on a ramp (102) which sweeps the surface of the screen.
6. Dispositif d'affichage d'images renouvelables, selon l'une quelcongue des revendications de 1 à 5, caractérisé en ce que la rampe (102 ) comprend des moyens de récupération du gel (505) et (502) situés de part et d'autre des buses d'éjection seul le moyen situé en amont des buses par rapport au déplacement de la rampe étant activé.6. Device for displaying renewable images, according to one of the claims 1 to 5, characterized in that the ramp (102) comprises means for recovering the gel (505) and (502) located on both sides. other ejection nozzles only the means located upstream of the nozzles relative to the movement of the ramp being activated.
7. Dispositif d'affichage d'images renouvelables, selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la rampe (102) supportant les buses d'éjection et les moyens de récupération, au cours de son déplacement, efface l'image en amont de son déplacement, et génère une nouvelle image en aval de son déplacement, la transition entre les deux images apparaissant à l'observateur comme une ligne sombre.7. Device for displaying renewable images, according to any one of claims 1 to 6, characterized in that the ramp (102) supporting the ejection nozzles and the recovery means, during its displacement, erases the image upstream of its displacement, and generates a new image downstream of its displacement, the transition between the two images appearing to the observer as a dark line.
8. Image produite selon le dispositif de la revendication 7 caractérisée en ce qu'elle est constituée de sous pixels peints sur la surface (100), ou sur une feuille souple rapportée sur la surface (100), ces sous pixels pouvant être constitués de bandes étroites monochromes (300) selon le sens du déplacement de la rampe (102). 8. Image produced according to the device of claim 7 characterized in that it consists of sub-pixels painted on the surface (100), or on a flexible sheet attached to the surface (100), these sub-pixels may consist of narrow monochrome strips (300) according to the direction of movement of the ramp (102).
PCT/FR2007/000945 2006-10-05 2007-06-08 Device for displaying renewable images WO2008040857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0608723 2006-10-05
FR0608723A FR2906923B1 (en) 2006-10-05 2006-10-05 DEVICE FOR DISPLAYING RENEWABLE IMAGES

Publications (1)

Publication Number Publication Date
WO2008040857A1 true WO2008040857A1 (en) 2008-04-10

Family

ID=37969756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000945 WO2008040857A1 (en) 2006-10-05 2007-06-08 Device for displaying renewable images

Country Status (2)

Country Link
FR (1) FR2906923B1 (en)
WO (1) WO2008040857A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742632A (en) * 1984-05-23 1988-05-10 Unisplay S.A. Enhanced matrix displays
US5253109A (en) * 1992-04-27 1993-10-12 Donnelly Corporation Electro-optic device with constant light transmitting area
EP0669561A2 (en) * 1994-02-28 1995-08-30 Nec Corporation Method and apparatus for displaying color image
JP2002251150A (en) * 2001-02-26 2002-09-06 Canon Inc Image record display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742632A (en) * 1984-05-23 1988-05-10 Unisplay S.A. Enhanced matrix displays
US5253109A (en) * 1992-04-27 1993-10-12 Donnelly Corporation Electro-optic device with constant light transmitting area
EP0669561A2 (en) * 1994-02-28 1995-08-30 Nec Corporation Method and apparatus for displaying color image
JP2002251150A (en) * 2001-02-26 2002-09-06 Canon Inc Image record display device

Also Published As

Publication number Publication date
FR2906923A1 (en) 2008-04-11
FR2906923B1 (en) 2008-12-12

Similar Documents

Publication Publication Date Title
EP0742914B1 (en) Device and methods for producing and repairing colour filters
EP2580065B1 (en) Method for customizing latent embedded images and document thus produced
CH693266A5 (en) ink cartridge and imprimanteutilisant thereof.
FR2595833A1 (en) PHOTOGRAPHIC TRACING TABLE USING A LIGHT MODULATOR AND METHOD FOR REPRODUCING GRAPHICS BY EXPOSURE
FR2466079A1 (en) PIECE SUCH AS, IN PARTICULAR, A CATHODE RAY TUBE, COMPRISING A MACHINE READABLE MARKING, AND ITS MANUFACTURING METHOD
EP2146228B1 (en) Liquid crystal alignment layer deposited and rubbed before creating microstructures
EP0012887B1 (en) Ink jet printer for vertical and horizontal printing
WO2008040857A1 (en) Device for displaying renewable images
CN109116463B (en) System and method for image-specific illumination of images printed onto optical waveguides
JP7273464B2 (en) Systems and methods for image-specific illumination of images printed on light guides
US10168279B1 (en) System and method for image specific illumination of image printed on optical waveguide
WO2008139045A1 (en) Electronically renewable image medium
US10539732B2 (en) System and method for image specific illumination of image printed on optical waveguide
FR2601146A1 (en) OPTICAL ADDRESSING DEVICE AND ITS USE IN ELECTROOPTIC IMAGING DEVICES
US7222956B2 (en) Image display apparatus
FR2771538A1 (en) Public display panel for diffusion of information
FR2931256A1 (en) Lenticular array device manufacturing method for three-dimensional TV for viewer, involves spacing elementary surfaces from each other so that phenomenon of surface tension not drives fusion of two adjacent elementary lenses into one
US10082460B1 (en) System and method for image specific illumination of image printed on optical waveguide
US11249240B2 (en) System and method for image specific illumination of image printed on optical waveguide
FR2931259A1 (en) Fabricating a device with lenticular network, comprises depositing layers of transparent liquid substance and a transparent plate on elementary surfaces, and making a solid substance by cooling, drying or polymerizing the sub-assemblies
FR2646952A1 (en) Composite device for cleaning and lubricating the surface of a magnetic recording element
FR2915613A1 (en) PIXELS OF IMAGES RENEWABLE ELECTRONICALLY.
FR2891765A1 (en) METHOD FOR CREATING AN IMAGE ON A MEDIUM
EP2677730A1 (en) Method for printing a matrix of colour pixels on a physical medium by printing oblique lines, and associated control device
EP1105859A1 (en) Advertising display and display unit for advertising billboards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07788850

Country of ref document: EP

Kind code of ref document: A1